

Developing a serious game
as a tool for collecting data

on food waste behavior

Christiaan Verloop

Supervisor
dr. A.M. Schaafstal

Critical observer
dr. J. Zwiers

Creative Technology, University of Twente

July 20, 2018

2

Abstract
A third of all produced food is wasted worldwide, much of which occurs at the consumer. Traditional

research methods on food waste behavior have proven unreliable. Hence, new methods are being

tested. The purpose of this study is to explore the possibilities of using a serious game as a tool for

collecting data on food waste behavior. To this end, a game is devised, developed and evaluated to

ultimately answer the questions; How can a serious game collect realistic data on food waste

behavior? What data needs to be collected from the game, and how should the data be saved and

formatted to be useful to the client?

The first chapter explains the origin and the context of the assignment. The second chapter explores

the state of the art on serious games and data collection. In the third chapter, multiple ideas are

devised after which one is chosen to be developed further. In the fourth chapter the chosen idea is

specified, both in terms of gameplay, and in terms of data collection. Next is a description of the

realization phase of this project, this includes the game, the data collection, and the documentation.

In the next chapter, the game is evaluated with the use of two user tests. Finally, the paper concludes

that the data collection and storage were a suitable solution for the developed game, however, it also

concludes that the developed game is not a reliable tool for collecting realistic data on food waste

behavior. This is followed by recommendations for the future to resolve the issues discovered in the

developed game.

3

Acknowledgements
First off, I would like to thank Camille Gruter for her diligent work on the art side of this project. Next, I

want to thank our supervisor Alma Schaafstal; throughout this project she has always had a clear

vision of the goals of this project, she helped us stay on track when we risked straying off. Her critical

view on the project has greatly increased the completeness of the end result. I’m also grateful to Anke

Janssen and Rene de Wijk; not only did they provide us with an interesting and challenging

assignment, they also took the time have regular meetings wherein we discussed and aligned our

ideas with the goals of the project. Thanks also to our critical observer Job Zwiers for his feedback

during the last stages of the project. Finally, I want to thank all the play testers of the game for their

participation and feedback, it has helped tremendously in evaluating the game’s success.

4

Table of contents

List of Figures ... 6

Introduction ... 8

Source of the assignment .. 8

Client goals and requirements .. 9

Scope ... 9

State of the art ... 10

Data storage .. 10

State based .. 10

Event based ... 10

Evaluation .. 10

Database type .. 11

Relational databases ... 11

Non-relational databases .. 12

Evaluation .. 12

Games with a similar topic .. 13

Food waste games ... 13

Cooking games .. 13

Evaluation .. 14

Ideation ... 15

Requirements .. 15

Brainstorm ... 15

Tamagotchi game .. 15

AR game ... 16

Restaurant game ... 16

Mother earth game ... 16

King game .. 16

Family game... 17

Narrowing down .. 17

Specification .. 19

Game format ... 20

Data collection ... 21

Data format ... 22

5

Users .. 22

Savefiles ... 22

Events .. 23

DayStats ... 23

ProductInstances ... 23

ProductTypes ... 23

Settings .. 23

Realization ... 24

Game ... 24

Database .. 44

Documentation .. 47

Evaluation .. 48

User test 1 ... 48

Results ... 48

User test 2 ... 49

Results ... 49

Behavior ... 49

Data ... 52

Conclusion ... 54

Future work ... 56

Recommendations .. 56

Known bugs ... 57

Future possibilities .. 58

References ... 59

Appendices .. 60

Appendix A .. 60

Appendix B .. 62

Appendix C... 63

Appendix D .. 64

Appendix E ... 74

Appendix F ... 77

6

List of Figures

Figure 1: Tamagotchi ... 15

Figure 2: Database overview .. 22

Figure 3: Login screen .. 24

Figure 4: Introduction screen .. 25

Figure 5: Dining room .. 25

Figure 6: Kitchen .. 26

Figure 7: Catapult .. 26

Figure 8: Recipe book .. 27

Figure 9: Statistics overview .. 27

Figure 10: Help screen ... 28

Figure 11: Village ... 28

Figure 12: Supermarket lane 1 ... 29

Figure 13: Supermarket lane 2 ... 29

Figure 14: Inside of a shelf ... 30

Figure 15: More product information .. 30

Figure 16: Basket ... 31

Figure 17: Supermarket cash register .. 31

Figure 18: Shopping bag .. 32

Figure 19: Street with greengrocer .. 32

Figure 20: Greengrocer .. 33

Figure 21: Greengrocer cash register .. 33

Figure 22: Street with butcher ... 34

Figure 23: Butcher ... 34

Figure 24: Butcher cash register .. 35

Figure 25: Castle entrance ... 35

Figure 26: Shopping bag in kitchen .. 36

Figure 27: Products in fridge .. 36

Figure 28: Recipe choice menu .. 37

Figure 29: More product information .. 37

Figure 30: Products on kitchen counter ... 38

Figure 31: Cooking part of the kitchen... 38

Figure 32: Products in pans.. 39

Figure 33: King and guests eating .. 39

Figure 34: Finished dinner ... 40

Figure 35: Food waste in the catapult ... 40

Figure 36: Catapult being emptied .. 41

Figure 37: Food waste in village ... 41

Figure 38: More food waste in village .. 42

Figure 39: Decreasing satisfaction ... 42

Figure 40: Most food waste in village .. 43

Figure 41: Expired products ... 43

Figure 42: EventTable .. 44

Figure 43: DayTable ... 45

Figure 44: ProductInstances .. 45

Figure 45: ProductTypes .. 45

file:///C:/Users/Chris/Documents/Gp%20thesis%20final.docx%23_Toc519893367

7

Figure 46: Savefiles .. 45

Figure 47: Users ... 46

Figure 48: Settings ... 46

Figure 49: 'Buitenbeentjes' - misshaped fruits and vegetables sold by Albert Heijn. 58

Table 1: Unnormalized database. .. 11

Table 2: Normalized database. .. 11

Table 3: Normalized database. .. 11

Graph 1: Average number of shop visits per day. .. 50

Graph 2: Time until dinner was served. ... 50

Graph 3: Grams served per number of eaters ... 51

file:///C:/Users/Chris/Documents/Gp%20thesis%20final.docx%23_Toc519893415

8

Introduction
A third of all produced food is wasted worldwide, much of which occurs at the consumer (FAO, 2011).
Much research has been done as to what foods are wasted, and how to decrease the amount of
wasted food. One such research institution is the Wageningen University & Research.

Source of the assignment
The department Food and Bio-based Research at the Wageningen University & Research conducts

extensive research on food waste. One of their projects is ‘Houdbaarheid begrepen’
(Wageningen University & Research, 2016), which focusses on expiration-date related food
waste. The goal of this project is to reduce spoilage in shops and at the consumer. To achieve
this goal, new interventions need to be developed to decrease food waste in households.
Additionally, people need to be educated about the possibilities of saving leftovers, and the
meaning of TGT/THT dates.
Before interventions can be developed, it needs to be known what kinds of products are currently

being wasted, when they are wasted and why they are wasted. There are several methods for

acquiring such information. One of the most common ways is through surveys. These are quick to

perform and easy to distribute across a large amount of people. They are also very cheap. The main

downside is that the answers given by the participants are self-reported. This can be problem

depending on the subject of the survey. When asked about their behavior, people can feel

embarrassed, or they can feel like they have to conform with societal norms. This was found to be the

case when using surveys to gather data on food waste behavior. People tended to give socially desired

answers, rather than accurately reporting their food waste behavior. In some cases, the survey can

also make people aware of their food waste behavior, which can cause a desire in the participants to

improve their behavior. This may sound like a good thing, however, people tended to fill in the survey

as if they had already improved their behavior. While in reality, they often forget about their good

intentions within the week.

For these reasons, surveys have been found to be unreliable for gathering data on food waste

behavior. That’s why other methods have been considered. One of these is to make people keep a

diary in which they write what products they buy, what the expiration date was, where they stored the

product, when they used the product, and whether they wasted the product. This is a lot of effort on

the participants side, which means that a monetary incentive needs to be offered. This makes this

type of research very costly, especially since such a diary would need to span several weeks. On top of

that, the main problem of surveys is also present in this method; the behavior is self-reported, so

people can sugarcoat the truth.

Another way to gather data about food was is to dig through garbage bins. This is dirty work, but it

avoids the problem of self-reported behavior. This method can give insight as to what products are

wasted most, however, it doesn’t reveal much information about when the products were wasted,

where they were stored, and why they were wasted.

Another way is to follow people in real life to observe their behavior directly, however, this is even

more expensive than keeping diaries and comes with big privacy concerns. Additionally, people are

likely to behave differently when they feel watched.

9

Since none of the aforementioned methods suffice for collecting data on food waste behavior, a new

method had to be devised. The project leader Anke Janssen, and two of her colleagues Rene de Wijk

and Hilke Bos-Brouwers came up with a new idea: To put participants in a simulated environment in

which they perform all the actions that make up the food cycle in households. This simulation could be

in the format of a serious game. The game then automatically collects data on people’s actions. This

idea eliminates much of cost- and privacy-concerns of the other ideas. Additionally, the behavior is

measured unobtrusively, which means people don’t feel constantly watched. The researchers (from

now on ‘the client’) contacted the University of Twente to see if two students could explore the

possibilities of such a game.

Client goals and requirements
The client defined two goals for the serious game. The first and primary goal is to collect realistic data

on food waste behavior. The secondary goal is to improve people’s food waste behavior. The target

audience for the game are people involved in the provisioning, storing, preparation, consumption and

wasting of food in a household. The client is mostly interested in the behavior of people who go

grocery shopping once or twice a week. Additionally, the data needs to be collected remotely.

Scope
This game will be made by Camille Gruter and Christiaan Verloop for their graduation project. The

timespan of this project is 5 months, half of which will be used to come up with a clear vision for the

game. The other half will be spent on creating the prototype and evaluating it. In this project, Camille

will focus on the art and design of the game, while Christiaan will be responsible for programming of

the game and the data collection. Therefore, this paper will focus on the programming and data

collection of the game.

During the development of this game, both students will try to answer the question ‘How can a

serious game collect realistic data on food waste behavior?’ The prototype that will be developed

serves as basis to provide answer to this question. Furthermore, this paper also aims to answer the

question of what data need to be collected from the game, and how should the data be saved and

formatted to be useful to the client.

10

State of the art
With the aforementioned goals and requirements in mind, the next step is to look at what already

exists in terms of data storage, and games in general. The first section will describe the different ways

in which game data can be stored. The second section will look at the type of database the data could

be stored in. Finally, the last section will investigate existing games with a similar topic to the one that

will be developed.

Data storage
This section will look into the different ways of storing game data, to find out what methods are most

suitable for this project. In general, there seem to be three main ways of storing data; state-based,

event-based, and artifact-based (Allen & March, 2006). Only the former two will be described in more

detail below, since the later has grown out of fashion.

State based
When a change happens to an object in the game, the game stores the new state of this object in the

database. For example, if a player had 50 euro, and bought something for 20 euro, the new entry in

the database will show 30 euro, which is the current balance of the player. This type of data storage

makes it easy to see what the current state of the game is. It does not show however, what the 20

euro was lost, or where it was spent on. Therefore, this type of data is most useful in situations where

variables can only change for one reason, for example, in a game like snake, your length can only

increase by eating a block. In the money example however, the money could have been spent on

many different things. These details are lost in state-based data storage.

Event based
In event-based storage, the game saves events, rather than states. So, when looking at the same

money example, the new entry in the database will say -20 instead of 30. These events are stored in

an event table and allow more detail about the properties of the event to be saved. For example,

there could be a column specifying what type of event happened, in this case a purchase event.

Furthermore, an item ID could be specified to see what item was purchased. The main downside to

event-based data storage is that it is harder to see the current state of the game. To find this out, the

starting state needs to be known, after which all the events need to be reconstructed. Nevertheless,

people familiar with queries are on average more accurate in formulating queries in event-based data

representations than in state-based representations (Allen & March, 2006).

Evaluation
Both state-based and event-based data storage have their advantages and disadvantages. For this

project however, it is very important to know what actions lead to a result. For this reason, event-

based data seems most appropriate. The downside of having to reconstruct all actions to retrieve a

variable at specific time could be mitigated by combining the two; in addition to storing the change,

the new value could also be stored. This would make the table very superfluous however, so a possible

solution is to only store the new value infrequently, for example at the end of the day, since for most

values, it doesn’t need to be know what exactly it is at all times.

11

Database type
Once data has been collected, it needs to be stored. This section will explore the various ways of doing

this. Nowadays there are two main categories of database systems; relational, and non-relational.

Each come with their advantages and disadvantages.

Relational databases
Relational databases have been the standard for many decades now. They often consist of multiple

tables with a fixed number of columns and a variable number of rows. Within a row, there can be

information about different properties (the columns), or there can be a reference ID. This reference ID

can be looked up in a different table to view more information about it. A relational database that

doesn’t follow this pattern is not normalized. An example can be seen in table 1. This table stores the

customer information in every purchase. This creates a lot of duplicate data. Instead, the table can be

normalized as seen in graph 2 and 3. Each purchase now has a reference ID, which can be looked up in

another table to view more information about the customer.

Item Price Amount Date Time
Customer
name

Customer
phone number Customer email

Apple 0.4 1 7/7/2018 1:23 PM John 612345678 John@gmail.com

Banana 0.32 2 10/7/2018 10:28 AM Peter 687654321 Peter@gmail.com

Peach 0.5 4 20/7/2018 3:13 PM John 612345678 John@gmail.com

Pear 0.22 3 20/7/2018 3:15 PM John 612345678 John@gmail.com

Table 1: Unnormalized database.

Items Price Amount Date Time Customer ID

Apple 0.4 1 7/7/2018 1:23 PM 1

Banana 0.32 2 10/7/2018 10:28 AM 2

Peach 0.5 4 20/7/2018 3:13 PM 1

Pear 0.22 3 20/7/2018 3:15 PM 1
Table 2: Normalized database.

Customer ID name phone number email

1 John 612345678 John@gmail.com

2 Peter 687654321 Peter@gmail.com

Table 3: Normalized database.

Relational databases have a predefined structure; there is a fixed number of columns, each of which

can hold a predefined data type. Because of this, the database it is known exactly what data is held in

each column. The predefined structure allows for complex actions, like joining tables bases on values

in certain columns. Tables can even be rolled back to a previous state. The downside to the predefined

structure however, is that data with a different, or no structure cannot be saved in a relational

database. By far the most popular relational database management systems are Oracle, MySQL, and

Microsoft SQL Server (Solid IT, 2018).

mailto:John@gmail.com
mailto:Peter@gmail.com
mailto:John@gmail.com
mailto:John@gmail.com
mailto:John@gmail.com
mailto:Peter@gmail.com

12

Non-relational databases
Before relational databases became the standard, non-relational databases were used. However, with

the introduction of relational databases, these quickly became irrelevant for the majority of tasks.

Recently, they have been making a comeback however (Solid IT, 2018). This is because certain

applications, particularly ones with a high data velocity, unknown, or rapidly changing data structure

cannot be handled well using relational databases. Furthermore, relational databases tend to slow

down when dealing with huge volumes of data. (Győrödi, Győrödi, Pecherle, & Olah, 2015) Non-

relational databases are able to store semi-structured and even unstructured data. This gives great

possibilities, but it means that the database will not verify if the structure of the data is correct. This

means that the application which reads and writes to the database is responsible for delivering data in

a useable format. Non-relational databases are generally faster for extremely big databases. This is

because they do not support computationally heavy functionalities like joining tables and rolling back

tables to a previous state. There are different types of non-relational database, three of which are

outlined below (Győrödi, Győrödi, Pecherle, & Olah, 2015).

One of the simplest types of non-relational databases is the key-value store. This database can only

store pairs of keys and values. When a key is known, a value can be retrieved. Values can either be all

of the same type, in which case no extra type information needs to be attached, or of different types,

in which case each value comes with type information. The simplicity of key-value stores is often

inadequate for complex applications, however, the simplicity also allows for very high performance.

The most notable example of a key-value store is Redis.

Another type of non-relational database is the wide column store. This type of database does not have

a fixed number of columns, in fact, the data type of a column can be different for each row. This brings

great flexibility. For example, graphs 1-3 currently only support one phone number. A wide column

store however, allows you to add multiple columns, to store multiple phone numbers per customer.

The most popular examples of wide column stores are Cassandra and HBase.

Document oriented databases are the most flexible of the three. These store information similarly to

key-value stores. They store a key, but instead of a simple value, they store a document as a value.

This document can consist of multiple other values of various types. Documents can even have other

documents nested within them. The most popular example of this type of database is MongoDB.

Evaluation
For this project, a relational database seems most suitable, since the structure of the data will be easy

to predefine, and the size of the database will reach nowhere near the amounts at which slowdowns

occur. Furthermore, relational databases are more well-known, which helps the client in using the

system. Of the most popular relational database management systems, MySQL is the most accessible

since it has an open source license, and it runs on virtually all platforms and is thoroughly

documented.

13

Games with a similar topic
Before starting development, it’s important to know what games with similar topics already exist, to

find out what parts may be relevant for this project.

Food waste games
There are several ‘games’ about food waste, however all of these are closer to quizzes than actual

games. They test your knowledge and bring awareness about food waste. Because of this they have a

very low replay value.

‘Food savers’ is an online board game developed by the project ‘Food Waste Effect’. (Food Waste

Effect, 2017) Players all start at the beginning of a path consisting of 64 tiles. The goal of the players is

to be the first one to reach the end of the path. To do this, players have to answer questions on each

tile they land on. If a question is answered correctly, the player can take a few steps. The path goes

through four different area each of which has questions about a different topic related to food waste.

The game was made to educate people about food products, processes, traditions, food poverty and

food waste. The target audience for this game is families, so both adults and kids.

‘Zero waste’ is a game developed to teach kids about food waste and recycling (Jim Metzner

Productions, 2014). This game takes place in a dirty city. The city consists of 10 areas each with a

question related to waste or recycling. Every correct answer makes that area of the city cleaner. The

goal is to get as many questions correct as you can. The target audience for this game is kids from

primary schools.

‘Rethink waste’ is a game developed by the city of Surrey to educate its inhabitants about recycling

(City of Surrey, 2018). The player has to sort all kinds of waste (some of which is food waste) into 4

different bins. There are 5 levels, each of which has six items to sort. If the player puts an item in the

wrong bin, the player can retry without any penalty. Once a level has been completed, the player can

add a decoration to their park. The more decorations in the park, the more visitors it attracts.

Cooking games
Since not many games are about food waste specifically, cooking games were also looked into, since

they have an overlapping element with food waste. The following games were evaluated to see

whether they provide relevant aspects to the subject of food waste.

• Overcooked (Ghost town games, 2018)

• Order up!! (SVS Games, 2008)

• Cooking dash (Glu games, 2016)

• Yummy Yummy Cooking Jam (Virtual toys, 2008)

• Food Truck Chef (Nukebox studios, 2017)

• Cooking Joy (Google Play, 2017)

• Cooking fever (Nordcurrent, 2014)

• Cooking Mama 5 (Office Create, 2013)

The games won’t be described individually, since all but the last in the list have the same core game

mechanic; the player is the chef of a restaurant, and needs to fulfill customer orders. The player has

an unlimited resource of ingredients, which need to be cut, put in a pan or on a grill, and put on a

plate, after which it can be given to the customer who pays money for the meals. These games usually

14

have levels which have a target amount of money that the player needs to reach to complete the

level. These games are usually targeted towards kids, mostly girls.

Only two of these games stand out in terms of having added mechanics. Overcooked is the only

multiplayer game in the list. Players need to cooperate to finish the meals in time. In contrast to all the

other games, this is not a point and click game, but one where the player moves around a character.

This, combined with the multiplayer aspect can make this game quite chaotic. The developer

embraces this and further amplifies the chaos by having different levels with different challenges, such

as splitting the kitchen up into difficult to cross parts. This makes for an engaging couch experience

that even many adults enjoy.

The other game that stands out is Cooking Mama 5. Unlike all other games, this game does not focus

on customers, players can just make meals that they want to make. The cooking in this game is

probably the most detailed of all the games in this list. Additionally, the game also has different

modes, one of which is a minigame wherein the player must harvest food from trees, or catch food

fallen off a truck. In another mini game, the player has to try and fit all kinds of products into the

fridge.

Evaluation
The games about food waste discussed in this section were made to create awareness about food

waste. All of them do so by testing your knowledge. This can be an effective way of creating

awareness, however, no real-life or simulated behavior is measured.

The cooking games discussed do simulate a part of the food cycle, so behavior can be measured. Most

of the games listed take place in a restaurant. This setting is different from the client’s needs, since

food waste is handled differently in restaurants than in households. Furthermore, all but one game

don’t include the provisioning and storing or products, and none of the games take due dates and

food waste into account. The game that stood out most is Cooking Mama 5, since it takes place in a

household, rather than in a restaurant. Furthermore, this game includes 3 aspects of the food cycle in

households; provisioning, storing and preparing.

The food waste games don’t measure behavior but quiz the player about food waste. This can help in

improving people’s food waste behavior but will not help in collected behavioral data on food waste.

Inspiration can be taken from the preparation aspect present in all the cooking games. Additionally,

the storing aspect from Cooking Mama 5 could be relevant for this project too. The provisioning

aspect of Cooking Mama 5 is less relevant, since the food isn’t bought.

15

Ideation
Requirements
The client had specified some initial goals and requirements for the game, but before ideas can be

generated, more in depth information about the requirements needs to be acquired. After consulting

the client, it became clear that the game must function as a research tool. This implies that the client

can tweak the input variables to see what the effects are on people’s behavior. This is necessary to

gain insight in the questions the client wants to discover:

• Are people money driven, health driven, or convenience driven?

• How much do these factors (money, health, convenience) affect food waste?

• In which steps of the food cycle in households is food wasted, and why?

In order to acquire accurate data for these questions, it is important that the action in the game are

similar to the actions in the real world. In other words: if a person would do a certain action in the real

world, the person should also be tempted to perform the same action in the game. This means that all

the actions in the food cycle in households must be present in the game: provisioning, storing,

preparation, consumption and wasting. Furthermore, aspects that play a role in these actions should

be present in this game.

The secondary goal of the game is to improve people’s food waste behavior. To achieve this, players

need to be made aware of the food waste they make, and they need to feel the downsides of this.

The client further specified that the game needs to be in Dutch. This is because the target audience

will be exclusively Dutch.

Brainstorm
With the requirements in mind, many ideas were conceived. All of them include a way for the player

to see the impact their food waste is making. This is to satisfy the secondary goal. To satisfy the

primary goal, all the games contain the steps of the food cycle in households.

Tamagotchi game
One of the most abstract ideas was a Tamagotchi-like

game wherein the player needs to feed a critter by buying

food and giving it to the critter. If too much food is given,

the critter refuses to eat it and the food would drop down

to the ground. This food waste piles up until it engulfs the

critter at which point the player loses the game.

This game didn’t focus enough on expiration date, and

the purchasing and storing was too far removed from

reality. Additionally, the food waste was too visible. It

must be visible to satisfy the secondary goal of the game,

but if the food waste is too visible, it can affect the data.

For these reasons, this idea was discarded.

Figure 1: Tamagotchi

16

AR game
The most true-to-life game was one wherein the user uses the camera of their mobile phone to take a

picture of the products in their shopping cart. Then, a puzzle game would be generated based on that

photo. Similarly, for the other stages in the foodcycle (storing, preparing, consuming, wasting),

another photo is taken, and a new puzzle is generated based on it. The photos would give great insight

into what people buy, use and waste, however, some crucial elements, like expiration date are missing

in the photos. Furthermore, analyzing photos to recognize products is time consuming work. This

could be automated by the game using artificial intelligence, however, after looking into the feasibility

of this, it was quickly found that it would be very technologically challenging. Additionally, players’

privacy is at risk in such a game, because there could be sensitive information in the pictures taken,

either in the background, or in the products themselves.

Restaurant game
Another idea was a game wherein the player manages a restaurant. The player must buy, store, and

prepare food, and any food not eaten is thrown away. Guests would reserve tables in advance to allow

the player to buy enough food. Any food wasted in the restaurant would pile up either within the

restaurant, or near the entrance. This is to make people more aware of their food waste.

This idea was quickly abandoned, since food waste is handled very differently in restaurants than in

households, because of the large number of eaters, the freshness that customers demand, and the

fact that you need to have all ingredients for all recipes in stock, because you don’t know what

customers will chose. For these reasons, the restaurant seemed least appropriate.

Mother earth game
Focusing more on small-scale cooking, was the ‘mother earth game’. This game takes place in a small

village. In the middle of this village is a mythical being called ‘mother earth’ who protects and

conserves the village. ‘Mother earth’ receives money from donations of the village. The player is

allowed to use this money to feed ‘mother earth’ by buying food in the village, storing it, preparing it,

and serving it to ‘mother earth’. Any food waste gathers around mother earth.

The mother earth idea had a mythical vibe to it, which can be an interesting style for a game, but the

mythical nature also caused some mental steps and illogicalities, like ‘How exactly does mother earth

protect the village, and from what?’ and ‘If mother earth is so important, why does the food waste

gather around her?’ These mental steps remove the player further from the real world, rather than

staying close to it, this is likely to cause people to behave less like in the real world, since the setting is

alien to them.

King game
The king game is similar to the ‘mother earth game’ idea, except it takes place in a world more like the

real one. The player is the cook of a king. The king gives the player a weekly budget which the player

can use to buy food in the village of the king. The player can then store the food, prepare the food,

and serve the food to the king. Any food that is thrown away is catapulted into the village. The

objective of the player is to keep both the king happy by making good dishes and to keep the village

happy by not catapulting too much food into the village.

This idea stays closer to the real world than the ‘mother earth game’, however, there are still some

peculiarities, for example, a king ruling over just one village, however, the mental translation from a

17

village to the country is easily made. There is still an element of fun in the game while staying close to

the real world.

Family game
The family game takes place in a world much like ours. The player is responsible for the food of their

family. The player must buy food, store food and prepare food for their family. The food is then eaten

by the family. Any leftover food is throw away. This idea stays closest to the real world, however, it

also is the least appealing as a game, since people already do these activities for their families in real

life. This idea was discarded because it was considered ‘too boring’.

Narrowing down
After all ideas were considered, the king game was chosen to be developed further because it stays

close to the real world, while staying fun and interesting as a game. To further define and shape the

game, a list of 100 factors that affect the actions in the food cycle was conceived. This list can be

found in appendix A. Together with the client, a selection of factors was made that were interesting

and relevant for the game. These factors were then integrated into the game as follows.

• Price – Products have a price reflective of real life. Products in the fresh stores are more

expensive than in the supermarket.

• Quality – All products are of high quality, but products in the fresh stores are slightly better.

• Health – Will not be implemented in detail yet, but products from the fresh stores are

healthier.

• Freshness – Products from the fresh stores are fresher than products from the supermarket.

• Use-by-date – In the shop, products have a predetermined due date. This due date indicates

how many more days it can be used if the product is stored in its current location. For

example, an apple might have a due date of 5 days uncooled. If it is placed in the fridge

however, the due date is higher. Products that have a due date below zero are expired and no

longer taste good.

• What do I still have? – This factor is implemented by having storages in the kitchen; cupboard,

fridge and freezer.

• Number of eaters – The king’s family will often join him, however, not everyone is always

present. The number of eaters each week is constant, however, the distribution per day can

be different. This is to keep it fair to the player, who receives the same budget every week.

• Money Available – At the start of each week, the player gets a predetermined budget.

• Portion size – Each product in the shops has a specified number of grams. For this version, no

different portion sizes are available for the same product. However, the engine will allow it.

• Packaging exterior – Each product in the shops has a picture of the product. For this version,

no variations in packaging exterior are available for the same product. However, the engine

will allow it.

• 35% discount sticker – For this version no discounted products are available, however, the

engine will allow it.

• Distance from shop to home – The supermarket is on the village square, which is closest to the

castle, the fresh stores are in the streets adjacent to the village square and require an extra

click to get to.

• When should dinner be ready? – The player has a time limit each day. If it’s already late on the

day, the player might not have time to go shopping, and make dinner in time.

18

• Storage size at home – The storages in the kitchen have limited capacity. If a storage is full, a

product either needs to be moved to another storage, used, or thrown away.

• Planning – The player can choose a recipe from the recipe book and go shopping to get those

ingredients. If the player did not plan ahead, they might forget a product. Planning can also be

used to save time, for example, by shopping for multiple days on one day, the player will have

enough time to prepare a good meal the next few days.

• How much of each storage type do I have? – Each storage has its own capacity. If the freezer

is full, a product can be moved to the fridge, however, this does impact the due date.

• Use, move or waste? – If a storage is full, the player can choose to use a product, move it to

another storage, or waste it.

• Is product expired? – If a product has expired, the player can throw it away, or use it, but it

will not taste good anymore.

• What do I want? – The player is free to choose what recipe they want to make. The king has

no preference.

• What do I have? – Before cooking, it is wise to check if the player has all the products required

for the meal.

• Number of eaters – The amount of food to prepare depends on the number of eaters. If too

much is made, the remains are wasted, if too little is made, the king will be dissatisfied.

• How much do eaters eat? – Each eater has a minimum and maximum amount of food that will

satisfy them.

• I’m full – If an eater gets too much food, the remains are not eaten. These leftovers need to

be thrown away.

• The food wasn’t prepared well – If ingredients are raw or burnt the eaters will not eat the

food. The remains need to be thrown away.

After these factors were integrated into the game, a preliminary chart was made to confirm with the

clients that the idea was clear to everyone, see appendix B. This chart shows all the different scenes in

the game and the properties of each scene.

19

Specification
The next step was to prepare work on the prototype. For the development part of this project, this

meant making a class diagram showing all the properties and interactions of objects in the game, see

appendix C. This class diagram was discussed with the client to make sure the idea of the game aligned

with the clients’ needs. After further discussion with the clients, the game and the data collection

were specified as follows.

• The player is responsible of making dinner for the king and his guests.

• The player can buy food in the shops in the village.

• The village contains a supermarket and fresh stores.

• The supermarket is more easily accessible than the fresh stores.

• Products in the supermarket are cheaper than products in the fresh stores.

• Products in the fresh stores are tastier than products in the supermarket.

• All shops are open every day of the week.

• The prices of the products should be in euros and should reflect real life prices.

• The use-by-date of a product is expressed in days left.

• The use-by-date is always the same for a certain product in the shop.

• The use-by-date should reflect real life use-by-date.

• Products should be dry, cooled, or frozen, reflective of real life.

• The use-by-date of a product is based on the type of storage it is in (dry, cooled, frozen).

• There is a limit on the number of products the player can carry.

• The player cannot spend more money than they have.

• There is time limit each day, which indicates when the king wants to eat.

• Bought products must be stored in one of the storages of the kitchen.

• The kitchen has dry, cooled, and frozen storages, each with their own capacity.

• The use-by-date of a product increases if it is stored colder than in the supermarket.

• The use-by-date of a product decreases if it is stored warmer than in the supermarket.

• The use-by-date of a product decreases by one day per in-game day.

• If a product has expired, it is made visually clear that this is the case.

• Products in the storages can be thrown away at all times.

• The player has recipes available in the form of a recipe book.

• The recipe specifies the amounts for each ingredient for a 4-person dish.

• For each ingredient, the player can choose how many grams to add.

• If a recipe is followed properly, the dish tastes good.

• If an ingredient is missing, or was added at the wrong time, the dish tastes less good.

• If one or more expired ingredients were used, the dish tastes less good.

• If a dish is prepared for too short, or too long, the dish tastes less good.

• A bar above the pan indicates the progress of the dish.

• The king is satisfied when a dish tastes good, if it is enough to feed all eaters, and is in time.

• All eaters have the same minimum and maximum required amount of food per dish.

• If the king is satisfied about a dish, the player receives bonus points.

• If too much food is prepared for the number of eaters, the extra food is to be thrown away.

• Food that is to be thrown away is loaded into a catapult.

20

• The catapult costs money to fire.

• Food waste that has been catapulted lands in the village.

• The food waste in the village is made visual.

• Food waste is measured in grams.

• The more food waste in the village, the less satisfied the village is.

• At the start of each in-game week, it is made clear how many eaters there will be on each day.

• The number of eaters each week is predefined.

• The distribution of eaters per day can vary between weeks.

• At the start of each in-game week, the player receives a predefined budget.

• At the start of each in-game week, money not spent in the previous week is lost.

• Bonus points can be gained by making good meals for the king.

• Bonus points can be used to unlock new recipes and ingredients.

• The skill level of the player is determined by the satisfaction of the king + the satisfaction of

the village.

• The client needs to be able to easily tweak the following values:

o Capacity of each storage

o Weekly budget of the player

o Number of eaters per week

o Cost of the catapult

o Scale factor for the village food waste

o Duration of a day

o Penalties and bonusses in a dish

o Minimum and maximum amount of food eaten per guest

• Products and recipes need to be able to be added and edited without having to change the

game code.

Game format
The game will be a 2D game. This was chosen because the target audience is more familiar with 2D

games than 3D games, and because the addition of a third dimension does not add much value in

terms of gameplay or data collection.

The client indicated no preference concerning the platform the game would be developed for (PC,

mobile or web). Since web and mobile are more accessible for the target audience of this game, web

was chosen, because it requires no downloading and installing, which makes it easier to get started.

Furthermore, no information is saved on the player’s device.

21

Data collection
The client indicated that the following data were important to be collected:

• What has been bought + expiration date

• What is used + expiration data

• What is not used and when is it thrown away + expiration date

• How much money is spent per shop visit and per week

• How much food is prepared (for how many people)

• Was the recipe followed? Are all ingredients present?

• Is the preparation time correct, too short or too long?

• How often is the catapult used?

The data required to answer these questions could be saved literally, which would make it very easy to

retrieve the information. However, this would result in a very unorganized and superfluous database.

For this reason, the use of a relational database was proposed. The retrieval of data in a relational

database requires queries to gather information from multiple tables at the same time. The client was

comfortable enough with this to agree on the usage of a relational database. The following structure

was conceived, note that not all the data that answer the questions of the client are saved literally;

some things need to be derived.

• All properties of products, including:

o Name

o Grams

o Price

o Due date

o Shop

• Each interaction with a product and the expiry date at the time of interacting, this includes:

o Moving

o Using

o Wasting

• An overview of statistics per day, this includes:

o Properties of the meal

▪ Grams served

▪ Was the food still raw

▪ Was the food burnt

▪ Was an ingredient missing

▪ Was an expired product used

▪ Was the meal served on time

o Satisfaction of king and village

o Food waste made

o Number of eaters

o Money left

• Miscellaneous actions like:

o Using the catapult

o Visiting a shop

o Serving dinner

22

Data format
The client has indicated that the data should be readable and processable by Excel or SPSS. The data

will be stored on the server in an SQL database, where the tables can be exported to a CSV format

(Comma Separated Values). This format is supported by both Excel and SPSS. The database will use the

following seven tables.

Figure 2: Database overview

Users
The users table stores a user ID, a username and a password. The user ID functions a unique identifier

for each player. (Currently the system does not allow users with the same name to register, so the

username could function as a unique identifier as well, however, in the future the game could use

email-based registration which could allow non-unique usernames.) This ID can be used to look up

data about the player in other tables. The username and password are used to login to the game. The

passwords are currently stored in plain text. This is not an appropriate solution for a public game,

since all users could lose their accounts if the database got hacked. The game is currently still closed to

the public, and the clients will only ask small groups of people to play the game for their first tests, so

non-encrypted passwords suffice for now.

Savefiles
The saveFiles table stores the progress of the players, this way, players can log out of the game, and

come back later to continue where they left off. When a user logs in, the system loads the most recent

saveFile of the player by selecting the saveFile with the highest GameFileID that matches the UserID.

23

The SaveFile is a JSON string which stores all the variables that determine the current state of the

game. This table is not relevant for the client but is necessary to save player’s progress between play

sessions.

Events
The events table stores all relevant events for the client. This includes all interactions with a product,

shooting the catapult, visiting a shop, and ending the day. Each event is signified by an EventID. The

EventType indicates what type of event happened. The DayStatsID column is only relevant in the case

of an ‘endDay’ event. It is a reference to the DayStats table which saves the details of the day that just

ended. ProductInstanceID is used to signify which productInstance a certain event happened to.

Examples of such events are ‘using a product’, ‘moving a product’, and ‘wasting a product’. The

ActionAmount indicates how much of a product was moved, used, or wasted. LocationFrom saves

where a product was moved or wasted from, while LocationTo saved where a product was moved to.

Shop saves which shop was visited in the case of a shopVisit event. Each event is accompanied by a

Day and Time. Days are measured in terms of in-game days, while Time is measured in frames.

DayStats
The DayStats table stores the properties of a certain day. This includes the number of eaters that day,

how much food was served, and was there anything wrong with the meal? E.g. Raw, burnt, late,

expired, missing product. Furthermore, it stores the satisfaction of the king and the village at the end

of the day. Lastly, it stores how much money the player has left, and how much food waste has been

made.

ProductInstances
This table exists to look up what type of product a certain product instance is. The reason a distinction

needs to be made between productTypes and productInstances is because there can be many

instances of a certain product type. For this reason, the ProductInstances table has a

ProductInstanceID that matches with a ProductTypeID. This ProductTypeID can then be looked up in

the ProductTypes table to view more details.

ProductTypes
The productTypes table stores all information about products. This includes the name, the amount,

the price, the due date, the store it is sold in, and the storage type it is sold in (dry, cold or frozen).

Settings
The final table is the settings table, unlike the other tables, this table acts as an input for the game.

The client can change variables in the table which directly affect users who log in afterwards. This is

crucial to the usefulness of this game as a research tool. If the client wants to know how people’s

behavior changes if they get more, or less budget, they can simply change the values in this table

without having to change anything in the code of the game.

24

Realization
The next step was to start developing the game. Unity was chosen as the programming environment

to build the game in because of its focus on game development and for its multi-platform

compatibility. Within unity, games can be programmed using C# or using UnityScript, which is similar

to JavaScript. While C# is more verbose, it is less prone to ambiguity errors than UnityScript, hence C#

was chosen for this project.

The game can be played at http://christiaanverloop.000webhostapp.com/.

Game
Next will be a description of all the scenes of the game and the functionalities within them.

Figure 3: Login screen

This is the login screen. In here the player can register a new account or log in to an existing account.

Users can register without a password if they want. It is not possible to register a new account with an

existing username.

http://christiaanverloop.000webhostapp.com/

25

Figure 4: Introduction screen

This is the introduction screen. This explains the setting of the game to the player. When the player is

ready, they can start the game by clicking ‘Start’. This screen is only shown to first time players.

Figure 5: Dining room

After the player has clicked the start button, the player enters the dining room of the king. Here, the

king will tell the player that there is no time limit today, and that the storages in the kitchen are still

empty. The player has to buy food and make food today. In this scene the player can click on arrow

left to go to the katapult (figure 7), the village button (figure 11), and arrow right to go to the kitchen

(figure 6). In the top right, the player can see which day it is today, and how much money the player

currently has. The orange infobutton shows the statistics of the game so far (figure 9). The blue button

with the questionmark pops up a help screen (figure 10).

26

Figure 6: Kitchen

This is the kitchen, where players can store products and make food. In this scene the player can click

on arrow left to go to the dining room (figure 5), the village button (figure 11), and arrow right to go to

the catapult (figure 7). On the top right there is an extra button available compared to the previous

scene; the recipebook. Clicking this opens a recipebook (figure 8), which shows the required

ingredients for each recipe. The storages (fridge, cupboard, freezer) can be clicked to see their content

(figure 27). The bag icon in the bottom right corner can be clicked to view its content (figure 26).

Figure 7: Catapult

The catapult stores all the foodwaste. The bar on the top left fills up as more food is put into the

catapult. The catapult costs money to fire, indicated in the fire button. The player can click on arrow

left to go to the kitchen (figure 6), the village button (figure 11), and arrow right to go to the dining

room (figure 5). When the fire button is clicked, food is catapulted into the village (figure 36).

27

Figure 8: Recipe book

When the recipe button is clicked, this window pops up. It shows what ingredients are required or

possible to use in all the recipes. The recipes are suitable for 4 persons. This means that the player has

to adjust the amounts to match the number of eaters that day. The folded corner of the page is

clickable and takes the player to the next page of the book. The arrow on the top left closes the recipe

book.

Figure 9: Statistics overview

When the information button is clicked, this window pops up. In here, the player can check how many

eaters there are on each day of the week, as well as the satisfaction of the king and the village. In the

middle, from top to bottom are the player’s balance, the weekly budget, and the number of

bonuspoints. These bonuspoints can currently not be used yet, but are meant to buy bonusses from.

The arrow on the top left closes the window.

28

Figure 10: Help screen

The questionmark button opens this window, which shows a short explantion of the icons. The arrow

closes the window again. By clicking on the ‘Opslaan en afsluiten’ button, the player can save the

game, to later continue where they left of.

Figure 11: Village

The village button leads to this scene. In here is a square with a statue, a villager, and a supermarket.

The player can click on arrow left to go to the street with the greengrocer (figure 19) and arrow right

to go to the street with the butcher (figure 22). To go back to the castle, the player can click on the

castle on the top left (figure 25). In the bottom right is the shopping bag of the player, which can be

clicked to view the contents (figure 18). In the middle of the scene is a supermarket, which when

clicked on takes the player to the supermarket. (figure 12).

29

Figure 12: Supermarket lane 1

This is one of two shop lanes. On the left is a dry shelf, and on the right is a cooled shelf. The player

can click on the shelf quadrants to view the products on that quadrant (figure 14). By clicking on the

button on the top left, the player is taken to the cash register (figure 17). The arrow to the right leads

to the second shop lane (figure 13). The basket icon in the bottom right can be clicked to show the

contents of the basket (figure 16).

Figure 13: Supermarket lane 2

This is the second shop lane, which functions nearly identical to the first shop lane. In contrast to the

first shop lane, this lane has a frozen section on the right.

30

Figure 14: Inside of a shelf

When the player clicks on a shop section, the products can be viewed from closerby. The player can

either buy the product directly from here, or view more information about the product by clicking on

it (figure 15). The arrow on the top left takes the player back to the appropriate shop lane.

Figure 15: More product information

If a player clicks on the product picture, this popup shows more information about the product. This

includes the amount, the due date, and the price of the product. This window can be closed again by

clicking on the side of the popup.

31

Figure 16: Basket

This popup shows the content of the basket. Products can be clicked to view more information (figure

15). Products can also be removed from the basket by clicking the ‘terugzetten’ button. This popup

can be closed again by clicking on the basket icon in the bottom right. The player can also go to the

cash register from here by clicking the button on the center bottom (figure 17).

Figure 17: Supermarket cash register

The text in the center of the screen tells the player how much the products in the basket cost in total.

The player can either confirm the purchase by pressing the left button, which takes the player back to

the village (figure 11) or continuing shopping by clicking the right button, which takes the player to the

previous shop lane.

32

Figure 18: Shopping bag

When the player pays for the products, they are transferred to the shopping bag. In here, the player

can view the products. This window can be closed again by clicking on the shopping bag icon.

Figure 19: Street with greengrocer

On the left side of the village square is this street which contains a greengrocer (figure 20). The player

can go back to the village square by clicking the arrow.

33

Figure 20: Greengrocer

In the greengrocer, the player can click on products to view more information about them (figure 15).

The player can pay for the products by clicking on the employee or by clicking on the button on the

top left. This leads to the checkout window (figure 21).

Figure 21: Greengrocer cash register

In this scene, the player can pay for the products bought in the greengrocer. This functions the same

as the cash register in the supermarket (figure 17).

34

Figure 22: Street with butcher

On the right side of the village square is this street which contains a butcher (figure 23). The player can

go back to the village square by clicking the arrow.

Figure 23: Butcher

In the butcher, the player can click on products to view more information about them (figure 15). The

player can pay for the products by clicking on the employee or by clicking on the button on the top

left. This leads to the checkout window (figure 24).

35

Figure 24: Butcher cash register

In this scene, the player can pay for the products bought in the butcher. This functions the same as the

cash register in the supermarket (figure 17).

Figure 25: Castle entrance

In the village, the player can click on the castle to get to this scene. Here, the player can click on any of

the scenes to go to the respective room in the castle.

36

Figure 26: Shopping bag in kitchen

After the player has bought products in the village, the products can be dragged from the bag to one

of the storages; fridge, cupboard or freezer. The products expire faster in warmer storages and slower

in colder storages.

Figure 27: Products in fridge

In the storages, the player can view the content of the storage. Like in the supermarket, the product

picture can be clicked to view more information about the product (figure 29). The player can decide

to use a product by clicking the ‘gebruiken’ button (figure 30), or waste a product by clicking the

‘weggooien’ button (figure 35).

37

Figure 28: Recipe choice menu

After clicking the ‘Kies recept’ button in the kitchen, this window pops up. The player can choose the

recipe they want to make by clicking ‘kies’ on the desired recipe.

Figure 29: More product information

In the storages, more information can be seen by clicking on the product, this is very useful for the

player to keep an eye of the amounts left and the due date remaining. If a product expires, the visuals

change (figure 41).

38

Figure 30: Products on kitchen counter

When products are used, they are put on the kitchen counter. The player can then start cooking by

clicking on the cooking area (figure 31).

Figure 31: Cooking part of the kitchen

The player can click on pans to put them on the stove. The player can then drag products to the pan

(figure 32). The arrow can be clicked to go back to the full kitchen view (figure 6).

39

Figure 32: Products in pans

When a product is dragged to a pan, a text input field pops up. The player enters how many grams

they want to put into the pan. For this they can check the recipebook (figure 8) or come up with their

own amount. When the first product enters a pan, a progress bar appears. A purple triangle indicates

how ready the dish is. The player can stop the progress of a pan, by clicking on it. Once the player is

ready to serve, the ‘Serveren’ button can be clicked. This will serve the meal to the king (figure 33).

Figure 33: King and guests eating

When a meal is served, the king judges it based on 6 factors: Was the meal cooked long enough, but

not too long (figure 32). Was an expired ingredient used (figure 41). Where ingredients missing. Was

enough food served for the number of eaters, and was the meal served in time. Based on these

factors, the eaters eat nothing, part, or everything of the meal (figure 34). The king also makes verbal

comments on the meal.

40

Figure 34: Finished dinner

Once the meal has been finished (or discarded as unedible), the ‘Tafel afruimen’ button appears. If

there were no leftovers, this button will only clear the plates form the table, but if there are leftovers,

these leftovers are transferred to the catapult (figure 35). When this button is clicked, the next day

starts.

Figure 35: Food waste in the catapult

From the second day on, there is a timelimit to each day, indicated at the center top. If there is food in

the catapult, it can be emptied by pressing the ‘Vuur!’ button (figure 36).

41

Figure 36: Catapult being emptied

When the catapult is fired, the food waste is catapulted into the village (figure 37).

Figure 37: Food waste in village

Food waste catapulted is visible in the village. The more waste is catapulted, the more waste is visible

in the village (figure 38).

42

Figure 38: More food waste in village

If the village gets very dirty, the satisfaction of the villagers decreases, this can be seen in the villager’s

expression or in the overview (figure 39).

Figure 39: Decreasing satisfaction

In the overview, the villager satisfaction decreases as more food is catapulted into the village.

43

Figure 40: Most food waste in village

This is the maximum visual dirtyness of the village.

Figure 41: Expired products

If products are stored for too long, they expire, which changes their appearance. The due date can

also be seen by clicking on the product picture (figure 29).

44

Database
The data structure in figure 2 was used to construct the database as can be seen in figures 42 through

48. The database is hosted on a server to allow multiple game clients to write data to it

simultaneously. The main events are stored in the event table. This is event-based data; the actions in

the game can be reconstructed from this list. One of the events is ‘ending a day’. This action has a

DayStatsID which points to another table; the DayTable. In this table are some state-based data is

stored, like the budget of the player at the end of the day, the amount of food waste, and the king’s

satisfaction level.

This structure was chosen because it can be very tricky to gather this information using event-based

data only; one would have to calculate every change in the player’s balance from a point at which it

was known in order to find out how much money the player currently has.

Some questions are still difficult to answer with the current table structure. Like ‘what products are in

the storages right now’. This question requires you to trace every product that moved in and out of a

storage. However, the client is more interested in overall trends rather than specific snapshots.

The combination of event-based data and a relational database does cause some columns to be

empty, since not all the event properties apply to every event, however, as long as the number of

columns is not very large, this is not a problem. If the game is developed further, and many more

types of events are added, it could be considered to switch to a non-relational database to avoid the

large number of empty columns.

The raw data can be viewed using the phpMyAdmin GUI on the server. The tables can be exported to

a variety of formats including CSV. Specific queries can be retrieved using MySQL, some examples of

which can be seen in the next chapter. These query results can also be exported to CSV.

Figure 42: EventTable

45

Figure 43: DayTable

Figure 44: ProductInstances

Figure 45: ProductTypes

Figure 46: Savefiles

46

Figure 47: Users

Figure 48: Settings

Some things cannot be changed using the SettingsTable; changing the properties of products or

recipes need to be done within unity. The instructions on how to do this can be found in the user

guide in appendix D.

47

Documentation
In order to make the end product useable for the client it is important that there are instructions on

how to use the tool. For this reason a user guide has been made. This can be found in appendix D. The

user guide described how to set up the game on a server, what instructions to give to the user, how to

retrieve information from the server as well as how to change settings using the SettingsTable. It also

describes how to make changes within unity, and how to reupload the game to the server. Finally, it

contains a list of tested compatibilities.

If the client wants to continue development on this game, a more technical documentation is required

to explain the structure of the game code, as well as to outline things that may need to be changed.

This way, future programmers can build upon the current game. This technical documentation can be

found in appendix E.

48

Evaluation
In order to evaluate the game, two user tests were conducted. One to discover any bugs or unclarities,

and one to see if the game collects realistic data, as well as to see if the unclarities have been resolved

after the improvements based on the first test.

User test 1
User test 1 was held when the greengrocer and the butcher didn’t exist yet. There were still only two

recipes. The game was still played locally, and the data was also saved locally. The king’s voice lines

were very basic, and there were no visible guests. There was a time limit even on the first day.

Four students were asked to play the game for about 20 minutes while thinking out loud. During the

gameplay, notes were taken about unclarities, comments, and noteworthy behavior. After the

gameplay, the participants had opportunity to give more comments about the game, and to explain

what aspects weren’t clear yet.

Results
It became obvious that the goal of the game wasn’t immediately clear. It wasn’t explained well to the

player what they should do. Many buttons were unclear; for example, many people took a long time

to find the village button, the overview button, and the recipe book button. In the village, many

people didn’t know how to get back to the castle. Furthermore, some people didn’t understand what

the timer bar was for, whereas in other participants, the timer bar created stress, especially in the first

day. None of the participants noticed how many people they should be cooking for. Additionally, a

point of frustration was the fact that pans and their content would disappear when going from the

zoomed in kitchen view to the full kitchen view. People were also frustrated that they could only make

two recipes. Lastly, when users entered a storage, the scrollbar would start half way. Products are

filled from the top however, so people would have to scroll up in the storage to find the products,

which created some confusion.

Based on these comments and observations, the following improvements were made:

• The king now has voice lines that guide the player through the first day.

• The time limit isn’t present in the first day.

• The timer was visually changed to be more recognizable as a timer bar.

• More recipes, and variations within recipes were added to allow more freedom in cooking

• The icon of the overview button was changed.

• A help button was added, which shows the meaning of the buttons and the time bar.

• Pans now save their content when leaving the scene.

• The scrollbar in the storages starts at the top.

• There are guests in the dining room indicative of how many people the player should cook for.

Furthermore, the following things were changed:

• The game is played online, and data is stored on a server.

• A greengrocer and a butcher were added to increase people’s options.

• A villager was added whose face indicates the satisfaction of the villagers

49

User test 2
After changes had been made based on the first user test, the second user test was conducted in the

version described in the previous chapter. The goal of this user test is to see if changes resolved the

unclarities found in the first user test, and to see if the behavior shown in the game is representative

of behavior in the real world. To do this test accurately, the participants need be in the target

audience this time. Hence, 4 adults were asked to play the game for about 40 minutes. Before the

gameplay, they were asked to fill in a survey, see appendix F. The goal of this survey is to establish the

real-life behavior of the participant, such that the behavior measured by the game could be compared

against it. (Critical note: the client found surveys about food waste behavior to be unreliable, so it is

possible that the results of the survey do not accurately reflect their real-life behavior, however,

surveys are currently the best tool available to compare the game against.) During the gameplay,

notes were written down about comments made by the participants, unclarities, and noteworthy

behavior.

Results
In contrast with the first user test, the timer bar was understood by all participants. The overview icon

was clicked more often, and the village button was found more quickly, however, people also clicked

the village button when they wanted to go back to kitchen. Multiple participants explained that the

village button looked a bit like a castle. The bag icon also caused some confusion; one participant

thought it looked like a prison.

Overall, the goal of the game remained unclear in the beginning, and some buttons were still

confusing. The participants expressed great frustration about the limited number of recipes, and the

freedom within them. They wanted to make their meals unrestricted of any recipes. Another point of

frustration was that leftovers could not be saved for the next day, but had to be thrown away. This

point was particularly made by one participant who intentionally always makes too much food, and

eats the leftovers for lunch the next day.

Behavior
The results from the survey were compared against the observed behaviors. It became clear that

some aspects of the game evoke highly unrealistic data. One such example is the number of times

people go shopping, see graph 1. In the survey all participants indicated that they go shopping

between 1 and 3 times per week. However, in the game, people went shopping multiple times per

day.

50

Graph 1: Average number of shop visits per day.

In 40% of these shop visits, nothing was bought. When asked about this behavior, the participants

admitted that this behavior was not representative of their real-life shopping behavior. Some

participants reported that this was caused because they had to remember the products for the recipe

by heart, rather than being able to make a shopping list, or take the recipe book to the shop.

Graph 2: Time until dinner was served.

0

1

2

3

4

5

6

7

1 2 3 4

sh
o

p
 v

is
it

s

In-game day

Shop visits per day

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8

R
ea

l-
lif

e
se

co
n

d
s

In-game day

Time until dinner was served

51

Graph 1 and Graph 2 show that the game has a very significant learning curve. In the beginning,

people are displaying highly unrealistic behavior, however, after a few in-game days, the behavior

does start to become more realistic.

After a few days though, the catapult starts to get full. When people fire the catapult, there is visible

food waste the next time they visit the village. Some participants noticed this immediately, while

others only noticed a few days later. Either way, once it is clear to the player that keeping the village

clean is another goal of the game, they change their behavior. The sample size was too small to see

this in the data, but all players did make verbal comments about the village getting dirty, and

recognizing that this is a bad thing. The question is of course; is the changed behavior still reflective of

real-life behavior once people recognize this secondary goal of the game? It could be that the act of

making people aware that food waste is bad changes their real-life behavior too, however, it seems

more likely that they will only change their behavior in the game, without changing their real-life

behavior.

After the first user test, guests were added in the dining room to make it more clear how many people

the player should cook for, nevertheless, most participants still didn’t take the number of eaters in

consideration. In the data, a weak upward trend can be seen, see Graph 2. However, due to the small

sample size, this is not of statistical significance.

Graph 3: Grams served per number of eaters

Perhaps one of the most fundamental sources of unrealistic behavior was in the recipes. People were

not able to make the dishes they wanted to make, because there were only three recipes available.

Because of this, comments like “I would never buy this in real life” and “This is not fair, because I put

very different things in this recipe” were made. This is a big concern for the data integrity, since

people are not buying what they would buy in real life. Therefore, the data isn’t representative of their

real-life behavior.

Some aspects of the game did generate realistic behavior though; in the survey two of the participants

indicated that they never visit fresh stores, while two others claimed they often visited fresh stores.

The ones who never visit fresh stores only went to the fresh stores in the game 2-3 times, while the

participants who often visited fresh stores did so in game 5-7 times.

0

200

400

600

800

1000

1200

1 eater 2 eaters 3 eaters 4 eaters

Grams served

52

Some behaviors couldn’t be measured accurately given the small sample size and the short playing

time. These include expired products, the effects of the villager satisfaction, whether the weekly

budget and the daily time limit are feasible once players are more familiar with the game, and in

general how people behave after the first week of playing.

Data
To evaluate the effectiveness of the data collection, it needs to be seen whether the collected data

helps answer the questions of the client, and how the data can be retrieved. The information the

client wanted to collect was the following:

1. What has been bought + expiration date

2. What is used + expiration data

3. What is not used and when is it thrown away + expiration date

4. How much money is spent per shop visit and per week

5. How much food is prepared (for how many people)

6. Was the recipe followed? Are all ingredients present?

7. Is the preparation time correct, too short or too long?

8. How often is the catapult used?

Below are MySQL queries that answer the corresponding questions. In these queries, the username is

“x”. This needs to be replaced with the username of interest. The ‘AND `UserID` IN (SELECT

`UserID` FROM `users` WHERE `UserName` = "x")’ part can also be omitted to view

the information of all users, rather than a specific one.

1.
SELECT

`EventID`,`ProductInstanceID`,`ActionAmount`,`ActionDue`,`Day`,`Time

` FROM `eventtable` WHERE `EventType` = "moveProduct" AND

`LocationTo` = "Basket" AND `UserID` IN (SELECT `UserID` FROM

`users` WHERE `UserName` = "x")

2.
SELECT `EventID`,

`ProductInstanceID`,`ActionAmount`,`ActionDue`,`Day`,`Time` FROM

`eventtable` WHERE `EventType` = "useProduct" AND `UserID` IN

(SELECT `UserID` FROM `users` WHERE `UserName` = "x")

3.
SELECT

`EventID`,`ProductInstanceID`,`ActionAmount`,`ActionDue`,`LocationFr

om`,`Day`,`Time` FROM `eventtable` WHERE `EventType` =

"wasteProduct" AND `UserID` IN (SELECT `UserID` FROM `users` WHERE

`UserName` = "x")

4.
SELECT `UserID`,`EventID`,`ActionAmount`,`Shop`,`Day`,`Time` FROM

`eventtable` WHERE `EventType` = "shopVisit" AND `UserID` IN (

 SELECT `UserID` FROM `users` WHERE `UserName` = "x")

53

5.
SELECT `Day`,`Eaters`,`GramsServed` FROM (

SELECT `Day`, `dayStatsID` FROM `eventtable` WHERE `EventType` =

"endDay" AND `UserID` IN (

 SELECT `UserID` FROM `users` WHERE `UserName` = "x")

)AS base

INNER JOIN `daytable` ON base.dayStatsID = `daytable`.`DayStatsID`

6.
SELECT `Day`,`MissingProduct` FROM (

SELECT `Day`, `dayStatsID` FROM `eventtable` WHERE `EventType` =

"endDay" AND `UserID` IN (

 SELECT `UserID` FROM `users` WHERE `UserName` = "x")

)AS base

INNER JOIN `daytable` ON base.dayStatsID = `daytable`.`DayStatsID`

7.
SELECT `Day`,`Raw`,`Burnt` FROM (

SELECT `Day`, `dayStatsID` FROM `eventtable` WHERE `EventType` =

"endDay" AND `UserID` IN (

 SELECT `UserID` FROM `users` WHERE `UserName` = "x")

)AS base

INNER JOIN `daytable` ON base.dayStatsID = `daytable`.`DayStatsID`

8.
SELECT `UserID`,`EventID`,`EventType`,`ActionAmount`,`Day`,`Time`

FROM `eventtable` WHERE `EventType` = "shootCatapult" AND `UserID`

IN (

 SELECT `UserID` FROM `users` WHERE `UserName` = "x")

As demonstrated above, all the questions of client can be retrieved from the collected data. The client

has access to all the data required to form models about player behavior, to ultimately gain insight in

their main questions:

• Are people money driven, health driven, or convenience driven?

• How much do these factors (money, health, convenience) affect food waste?

• In which steps of the food cycle in households is food wasted, and why?

54

Conclusion
The goal of this project was to develop a serious game as a tool for collecting data on food waste

behavior, and for improving people’s food waste behavior. These goals require the game to evoke

realistic actions from the player, and to make the player aware of the impact of food waste. Several

ideas were conceived, and one was chosen to be developed further.

After the game had been developed, two user tests were conducted. In the second user test it became

clear that the many of the measured behaviors were not representative of players’ real-life behaviors.

Several reasons for this have been identified:

1. Recipes are limiting player’s options; they cannot make many of the recipes they would make

in real life. This causes people to buy products they would otherwise not buy, and might even

have no experience with. This could lead to increased food waste, which would not be

representative of real-life behavior. Furthermore, the limited number of recipes also causes

people to waste products that turned out not to be useable in the recipe they wanted to

make.

2. Once the player has made some food waste, and has catapulted it into the village, the food

waste is now visible in the village. This makes people realize there is a second goal to the

game; not only should the king be kept satisfied, but the villagers too. This realization causes a

change in behavior towards wasting less food. It is unknown, but unlikely, that this altered

behavior is still representative of player’s real-life behavior. This is problematic since the

secondary purpose of this game was to improve people’s food waste behavior. However, with

no way of testing if real-life behavior changes, this secondary goal hinders the primary goal of

collecting realistic data about food waste behavior.

3. People made many more shop visits than in real life, this is partly because it takes much less

time and effort than in real life, but another factor is the fact that players do not have access

to a shopping list. This forces them to either improvise in the store, or go back to the castle, to

take a look in the recipe book, after which the player visits the shop yet again.

4. This game takes a while for players to grasp. Because of this, behavior is not yet realistic in the

first few days of the game. This is especially concerning in combination with the second

reason in this list, since this leaves only a small window wherein behavior is potentially

realistic; in the beginning, behavior is unrealistic because people are still getting used to the

game, but once people understand the game better, they alter their behavior to keep the

villagers satisfied. This window seems to be only a few in-game days in size for most players,

and the start and end of this window can differ per player, making it virtually impossible to

determine whether the collected data is realistic.

Not all behaviors were unrealistic however; players who never visit fresh stores in real life also didn’t

visit fresh stores in the game after the first day. Players who often visit fresh stores in real life also

showed this behavior in the game.

Nevertheless, it has to be concluded that the game in its current form is not a reliable tool for

collecting data on food waste behavior, however, the groundworks have been laid for an improved

version of the game which resolves the problems outlined in this report. The next chapter will detail

what aspects of the game need to be changed to make the game successful at its intended goals.

55

In terms of data collection, a relational database was found to be the most suitable for the type and

amount of data that this game collects. A list of events is stored in the database such that the

gameplay can be reconstructed. Besides storing events, some extra information is stored as well to

make it easier to retrieve information about snapshots. The client can use queries to gather insightful

information about food waste behavior.

The SettingsTable serves as an input for the game; the client can change variables like the budget of

the player, the duration of the day, the capacities of the storages, etc. This allows them to test

different hypothesis regarding the impact of certain factors on food waste.

56

Future work
This chapter will describe the main aspects that need to be changed to make the game a viable tool

for collecting realistic data. Additionally, a list of recommendations is given to make the game more

useful and versatile. Lastly, a list of potential future use cases is given.

Recommendations
There are several crucial features that need to change in order to collect realistic data.

• Giving the player the ability to make dishes without having to follow recipes. This will greatly

increase the representativeness of players’ actions.

• Delaying, or even omitting the visible food waste in the village, to prevent players from

optimizing their behavior to satisfy the villagers, rather than displaying their real-life behavior.

• Increase the time and/or effort it takes to go shopping. This is to prevent players from

shopping way more than they do in real life. Another way to decrease the number of times

people go shopping is to give them access to a shopping list, this way they won’t have to go

back to the castle to check the recipe again.

• Make the game easier to learn. This is very important to quickly start generating realistic data.

This can be achieved by having more a more intuitive user interface and navigation. Another

way is to make a tutorial that really guides the player step by step in the first day or two.

Next is a list of recommendations that are not crucial, but can further improve the game, either in

terms of playability, or in terms of realistic data collection.

• There must be a solution if the player runs out of money. Currently, when this happens, the

player will have to serve the king whatever products the player still has, to finish the week and

receive a new budget. If the player has no money or products, the player gets stuck.

• The ability to drag products from the bag directly to the kitchen counter, rather than first

having to put it in a storage.

• The ability to move a product from one storage to another, without having to put it on the

kitchen counter first.

• The ability to throw away a product from the kitchen counter.

• More incentive to keep playing, e.g. by having more story in the game or by adding bonusses,

these bonusses could make the food even more tasty, or help keep the village clean, or they

could be purely aesthetic bonusses.

• Change the expiry date of a product if the packaging has been opened. This applies to some

products (sauces) more than others (spaghetti).

• Disable or punish the ability to put products that don’t belong in the freezer or fridge, in these

places. Currently, all products increase in expiry date when put into the freezer, even products

that really don’t belong there, like milk.

• Have per-product expiry dates for the different storages. Currently all products that belong in

the fridge halve their expiry date when put into the cupboard, however, in real life, some

products expire much quicker than others outside of the fridge.

• There should be more tangible consequences of serving dinner too late. Currently, this just

affects the king’s satisfaction, however, nothing really ‘happens’ when the timer is full.

• It should be more clear to the player that a new day starts once the table has been cleaned.

This can be done by fading the screen to black, and back to normal. Then the next guests

would already sit there.

57

• It should be possible to save leftovers for the next day, rather than having to throw it away.

• The addition of a garbage man, to prevent the village from becoming increasingly more

polluted without having the ability to clean it.

• Making it more visible that products are expired, by having an animation of a smelly scent

above the product.

• Adding a talking animation for the king.

• Have a physical recipe book in the kitchen that players can click, rather than an icon.

If the game turns out to be a big success, there are some more additions that could improve it even

more:

• Adding breakfast and lunch.

• Having an extra storage, namely a cellar.

• Adding ripeness to fruits, so it may take a few days after purchasing until they taste good.

• A level system wherein the time limit is dynamic; new players get more time, but once they

get better, they have less time per day.

• Passwords should be encrypted.

• Eaters who can unexpectedly join or cancel.

• More UI animations and sounds

• Better systems for changing product packaging, e.g. cans vs jars vs fresh, different sizes, bonus

sticker. All of these things are possible with the current game, however, they require each

variation to be a unique object, even though some properties overlap.

• Allowing products and recipes to be added and edited from the server instead of from the

unity editor. The challenge with this is storing the sprites in the database. They could be

encoded, but then another tool would be required to encode the images.

Known bugs
This are some unintended behaviors, some of which are important to fix before using the game as a

research tool. In the game code is more information about what causes the bugs. The list goes from

severe, to not severe.

• If you have pans with products in them, and leave the zoomed in view of the kitchen, and then

go back to the zoomed in view, the pan progress resets, and the pans duplicate, creating two

progress bars, only one of which can be paused.

• Going to the cash register from the basket always leads to the supermarket cash register

regardless of which shop the player is currently in.

• The euro sign is not visible in the web version of the game.

• If you drag a product to a pan, don't type anything, and drag another product to the pan, the

two input fields overlap.

• The UI doesn’t scale correctly if the aspect ratio is not 16x9. (The windowed version on the

web is 16x9 though)

• The fresh bonus is counted per product instance instead of per product type. When using a

ton of fresh products, this can cause the kings satisfaction to exceed the maximum of 5.

• The king's voice reactions after the first meal don't finish.

• In the freezer you can scroll way too far up and down.

• You can't quite scroll far enough down in the basket and the bag.

• When viewing more information about a product in the shopping basket, the 'terugzetten'

button works, but the visuals don't update.

58

• If you are in a product section of the supermarket, and go to the cash register from the

basket, and then click ‘verder winkelen’, you are taken back to the shop section you were in,

however if you then click arrow back, you are taken back to the cash register, instead of the

appropriate shop lane.

• If the game is saved and reloaded before the end of the first day, the timer will be present on

the first day.

• If you save the game at the catapult or in the village, and reload the game, the catapult cost

and food waste in the village aren’t loaded until re-entering the scene.

• Products float above the shelves.

• The player can click on the storages in the kitchen through the recipe book.

• If you fire the catapult many times in a row, the animation stops at the wrong frame.

• The top cupboard can be opened, but not closed.

Future possibilities
The possibilities of this game aren’t limited to measuring people’s food waste behavior; variables can

be altered to see how this behavior changes. For example, adding multiple options of the same

product, with different package sizes, package types, different due dates, etc. These results can then

be used to alter packaging in real life, to reduce food waste.

It can also be used to test the reception of

new products. People cannot taste these

through the game of course, but it can be

tested whether consumers are willing to

buy misshaped food like in figure 49.

Another thing that could be altered is the

way in which due dates are displayed, for

example, ‘best before’, ‘use before’, ‘quality

guaranteed until’, etc. This could have an

impact on how people treat products near

the expiration date.

Many more variables, like budget, number

of eaters, time, can all be changed find

correlations between these factors and

food waste, to ultimately discover what the

main factors of food waste behavior are, and how to help people waste less food.

This type of technology could also be used for other fields of study, although for many research fields

it is probably not worth the time and effort to create a game instead of a survey, however, for subjects

where surveys have been proven to be unreliable, serious games could be a solution to gathering

realistic data.

Figure 49: 'Buitenbeentjes' - misshaped fruits and vegetables sold
by Albert Heijn.

59

References
Allen, G. N., & March, S. T. (2006). The Effects of State-Based and Event-Based Data Representation on

User Performance in Query Formulation Tasks. MIS Quarterly, 269-290.

City of Surrey. (2018). Waste sorting game. Retrieved 7 16, 2018, from City of Surrey:

https://surrey.recycle.game/

FAO, G. (2011). Global food losses and food waste–Extent, causes and prevention. SAVE FOOD: An

initiative on Food Loss and Waste Reduction.

Food Waste Effect. (2017). Family game. Retrieved 7 15, 2018, from Food Waste Effect:

http://foodwasteeffect.eu/en/the-game

Ghost town games. (2018). Overcooked. Retrieved 7 15, 2018, from Ghost town games:

http://www.ghosttowngames.com/overcooked/

Glu games. (2016). Cooking dash. Retrieved 7 15, 2018, from Glu:

https://www.glu.com/games/cooking-dash/

Google Play. (2017). Cooking Joy - Super Cooking Games, Best Cook! Retrieved 7 15, 2018, from Google

Play Store: https://play.google.com/store/apps/details?id=com.biglemon.cookingjoy&hl=en

Győrödi, C., Győrödi, R., Pecherle, G., & Olah, A. (2015). A Comparative Study: MongoDB vs. MySQL.

Conference: 2015 13th International Conference on Engineering of Modern Electric Systems

(EMES), 1-6.

Jim Metzner Productions. (2014). Play the zero waste game. Retrieved 15 7, 2018, from The kids'

science challenge: http://www.kidsciencechallenge.com/year-four/zw_game.php

Mafa. (n.d.). Supermarket shopping spree. Retrieved from Mafa: http://www.mafa.com/Supermarket-

Shopping-Spree

Nordcurrent. (2014). Cooking Fever. Retrieved 7 15, 2018, from Nordcurrent:

http://www.nordcurrent.com/ipad/cooking-fever

Nukebox studios. (2017). Food Truck Chef. Retrieved 7 15, 2018, from Nukebox studios:

http://nukeboxstudios.com/nukebox/foodtruckchefgame/

Office Create. (2013). Cooking Mama. Retrieved 7 15, 2018, from Office Create:

http://www.ofcr.co.jp/APP_CookingMama/en/

Solid IT. (2018). rankings. Retrieved 7 15, 2018, from DB-engines: https://db-engines.com/en/ranking

SVS Games. (2008). Order up. Retrieved 7 15, 2018, from SVS Games:

http://www.svsgames.com/category/projects/order-up/

Virtual toys. (2008). Nintendo Wii. Retrieved 7 15, 2018, from Virtual toys:

https://web.archive.org/web/20111006124506/http://www.virtualtoys.net/index.php?option

=com_content&task=blogcategory&id=14&Itemid=33&lang=en

Wageningen University & Research. (2016). Houdbaarheid Begrepen. Retrieved 7 11, 2018, from

https://www.wur.nl/nl/Onderzoek-Resultaten/Onderzoeksprojecten-

LNV/Expertisegebieden/kennisonline/Houdbaarheid-Begrepen.htm

60

Appendices
Appendix A

Product choice

Price

Quality

Health

Freshness

Use-by-date

Discount

What do I still have?

Money available

Visitors

Product advertisements

Emotions

Weather

Season

Special occasions

Number of eaters

Preparation difficulty

Preparation time

Preparation knowledge

Variation

Eat rhythms

Allergies

Ingredients

Weekday / weekend

Diet

Weight

Calories

Principles

Religion

Habits

Luxury

Combinations

Brand

Pre-cut

Shop arrangement

Product popularity

Product in stock

Portion size

Recommendations

Doctor’s advice

Packaging exterior

Packaging size

35% discount sticker

Shop choice

Service

Atmosphere

Distance to home

Distance to other shops

Payment methods

Shop advertisements

Discounts

Opening times

Cleanliness

61

Shop reputation

Delivery service

Business

Cooled drinks

Free coffee / tea / cookies

Freshness

Relationships with staff

Self service

Time choice

Weather

What time is it?

When should dinner be ready?

When do I have time?

When do I feel like it?

One-day discounts

Business

Frequency choice

Time

Effort

Storage size at home

Storage size of vehicle

Effort of vehicle

Speed of vehicle

Forgot a product

Planning

Storage

How much storage do I have?

How much cooled storage?

How much frozen storage?

How full are the storages?

What products do I need to add?

Does that fit?

What products can go away?

Use, move or waste?

Is product expired?

Does product still taste good?

Are there things I forgot I had?

Preparation

What do I want?

What do I have?

What had I planned?

Use everything or a bit?

Number of eaters

How much do eaters eat?

What do eaters like?

Better too much than too little or not?

Eating

I’m full

I’m not hungry

I’m in a hurry and can’t finish everything

The food wasn’t prepared well

An ingredient was expired

Wrong time of day

Throw away remains or save for later?

62

Appendix B

63

Appendix C
Note: this class diagram is not representative of the final game

64

Appendix D

Food waste game user manual
This manual consists of five parts:

1. Setting up the game on the server.

2. Instructions to give to the user.

3. Retrieving information from the server.

4. Changing settings of the game.

5. Changing other parts of the game.

Disclaimer: Passwords are not encrypted, but stored in plain text. The database is not

sanitized, so it is vulnerable to SQL injection attacks. To mitigate the risk of data loss, do not

host any other data in the database used for the game. Neither the game developer, nor the

University of Twente are responsible for any data loss.

Setting up the game on the server

1. Upload all files in Food Waste Game\Game\PHP files to the server. These can be put

in a folder to keep the server more organized.

2. On the server, create a MySQL database.

3. Import the database from Food Waste Game\Game\Database\full. Alternatively,

tables can be imported individually from Food Waste

Game\Game\Database\individual When uploading individually, make sure that

‘foodwastegame_database.sql’ and ‘foodwastegame_extra.sql’ are imported last.

4. Open Food Waste Game\Game\Unity files\Food waste

game\Assets\Resources\authentication\authentication.csv

5. In the first column of the csv file, replace the url with the url of the server. Make sure

the filepath includes the folder that contains the PHP files uploaded in step 2.

6. In the second column of the csv file, replace the servername.

7. In the third column of the csv file replace the server password.

8. In the last column of the csv file, replace the database name.

9. Save and close the file.

10. Upload ‘index.html’, the ‘Build’ folder, the ‘Build_Data’ folder, and the

‘TemplateData’ folder located in Food Waste Game\Game\Unity files\Food waste

game\Build.

11. The game should now be playable on the platforms listed at the end of this

document.

65

Instruction for players

1. When registering, don’t use a password that you use for other services. Or don’t use

a password at all.

2. If you want to stop playing, click the blue question mark on the top right, then click

‘Opslaan en afsluiten’. This will save your progress. You can now close the browser

tab. The next time you log in, you can continue playing from where you left of.

Retrieving information from the server

The tables in the database can be exported to csv.

Alternatively, parts of tables, or combined tables can be retrieved using MySQL queries.

These can then also be exported to csv by clicking on ‘export’ in the ‘Query results operations’

section at the bottom.

Changing settings of the game

To change game settings like weekly budget, number of guests, capacity of storages, etc, the

values in the ‘settings’ table in the database can be edited. The game will use the row with

the highest settingID. This means that you can either edit the row with the current highest

settingID, or add a new row, if you want to see the previous settings for later.

Changing other parts of the game

If properties of products, recipes, or the code of the game need to be changed, the game

needs to be opened in Unity. Unity can be downloaded here: https://unity3d.com/get-

unity/download

When installing, make sure to tick the WebGL box.

Next will be described how to:

• Change a product

• Add a product

• Change a recipe

• Add a recipe

• Rebuild the game to put it back on the server

https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download

66

Changing products

1. Products can be found under Assets -> Resources -> products. In this folder are two

other folders for products in the greengrocer and butcher.

Select the product that needs to be changed.

2. In the inspector, values can be changed. These are saved automatically. Most of

these variables should speak for themselves, but some require some explanation.

• ‘due’ is the number of days remaining in the selected ‘Shop storage type’.

• ‘shopCategory determines in which shop section the product will be displayed.

67

• Sprites need to be imported into unity before they can be assigned to a product.

To import a sprite, navigate to Assets -> art -> newSupermarket -> newProducts.

Then right click and click ‘Import new Asset…’. Select the image.

Go back to the product inspector, and click ‘Select’ on the image you want to change.

A window will appear wherein you can search for the sprite.

• The checkboxes with pans are to allow users to put the product in that pan.

Clicking a checkbox reveals three sprite slots, for the product when it is raw,

done, or burnt. If you only have one sprite, fill all of these slots with that same

sprite.

68

• Proteins, fat, carbs, vitamins and minerals are currently not implemented.

Changing these values does nothing as of now.

69

Adding a product

1. To add a product, navigate to the products folder (Assets -> Resources -> products).

2. Right click -> Create -> Product. A new product will be created in the products folder.

3. The name will be ‘newProduct’. This name must be changed, otherwise, additional

new products will overwrite any existing products named ‘newProduct’.

4. If the product belongs in the butcher or in the greengrocer, drag the product to one

of the two folders in the product folder.

5. The properties of the product can be edited in the inspector.

70

Changing recipes

1. To change a recipe, navigate to the recipes folder (Assets -> Resources -> recipes) and

click on the recipe that needs to be changed.

2. In the product inspector values can be changed. These are saved automatically. The

variables in the recipes require some explanation.

• ‘Sprite’ is a picture of a plate with the recipe.

• ‘Unlocked’ indicates whether the player has unlocked the recipe. This mechanic

hasn’t been tested in a long time, so it’s functionality isn’t guaranteed. Keep the

box checked if you are unsure.

• ‘Ingredients’ is a list of products that can be added to the recipe. To add a

product to this list, increase the ‘Size’ variable, this will add an extra element

(which will be a duplicate of the previous last product) Put the new product in the

extra element.

• The ‘Size’ variable in ‘Required Pans’ indicates how many different pans must at

least be used for the recipe.

• ‘Pans’ is a list of pans that satisfy the same function in the recipe. For example,

things can be cooked in a big pan or a small pan. However, things cannot be

cooked in a frying pan.

• ‘Required Products’ indicates what products can be made put in this pan. Per

‘Required products’ there can be a list of variations of products that fulfil the

same role. For example, Broccoli and Cauliflower both satisfy the role of a

vegetable in the recipe. When adding products, make sure these are also in the

‘Ingredient’ list at the top.

• ‘Duration’ indicates how many seconds it takes for that pan to go from raw to

burnt.

71

72

Adding a recipe

1. To add a recipe navigate to the recipes folder (Assets -> Resources -> recipes)

2. Right click -> Create -> Recipe. The name will be ‘newRecipe’. This name must be

changed, otherwise, additional new recipes will overwrite any existing products

named ‘newRecipe’.

Change or add other things.

If you want to edit other things, like changing or adding new features, it is recommended to

check out the technical document detailing the structure of the game.

Rebuild the game to put it back on the server

When the changes have been made in Unity, go to file -> build settings. Select WebGL and

click ‘build’ at the bottom of the window. It will ask you to select a folder. Select the ‘Build’

folder in Food Waste Game\Game\Unity files\Food waste game.

It will then build the game for the web. This may take a while. When it is finished,

‘index.html’, the ‘Build’ folder, and the ‘TemplateData’ folder located in Food Waste

Game\Game\Unity files\Food waste game\Build will have been updated.

Only the ‘Build’ folder needs to be reuploaded to the server.

73

Tested compatibilities

Mozilla Firefox 61.0.1 Windows 10 Works

Mozilla Firefox 56.0.2 Windows 10 Works

Safari 11.1.2 OS X Works

Google Chrome 67.0.3396.99 Windows 10 Works

Google Chrome 67.0.3396.87 Android 8 works, but external keyboard
required to type.

Microsoft Edge 42.17134.1.0 Windows 10 Works or doesn’t work
depending on whether
‘mixed content’ is allowed.

Internet explorer
11.165.17134.0

Windows 10 Works, but slow, minor UI
glitches, and no audio.

Safari 5.1.7 Windows 10 Doesn’t work; no webGL
support.

Google Chrome 67.0.3396.87 Android 6 Doesn’t work.

Chrome 63.0.3325.152 iOS 10.3 Doesn’t work

Chrome 67.0.3396.87 iOS 10.3 Doesn’t work

Safari 10 iOS 10.3 Doesn’t work

Safari 11 iOS 11.4 Doesn’t work

74

Appendix E

Technical documentation
This document contains a high-level overview of the structure of the program. More detailed

explanations are commented in the scripts themselves.

Main

Main is singleton. This means that there can only be one instance of this class. This instance is a static

value of the class. This way it can be accessed from anywhere using Main.obj. The singleton stores

many global variables that define the state of the game. These variables need to be saved in the

database to save people’s progress. Since Main derives from MonoBehavior, it cannot be serialized.

That’s why the ‘Data’ class exists. It holds a copy of the variables in main. The data class is serialized

and deserialized to save data.

(An alternative may be to save all the variables in a separate column in the table, instead of saving the

serialized json string in one column. This could increase backwards compatibility; with the current

system, the addition or removal of a variable makes the saved serialized string incompatible with the

new Data class.)

Events are stored through the addEvent method.

The shops

The supermarket contains of three scenes; lane1, lane2, and supermarketCashRegister. The lanes

consist of sections each of which contains several products. When you click on a section, you will go to

the shopSection scene. In here the panelLoader will load all the products in the Resources -> products

folder and picks the products that match the category of that shopSection. It then loads panel prefabs

to put this products in. These panels are then placed by ProductPlacer.

The butcher and greengrocer do not load the product dynamically, since every product is visible on

the main screen. The player just clicks on a product and sees the infoPanel with the appropriate

product. (Small note about the greengrocer, I thought ‘grocery store’ was a synonym to ‘greengrocer’,

but it’s actually a synonym to ‘supermarket’. If you see ‘grocery store’ somewhere in the code or

database, it refers to the greengrocer.

When a purchase is confimed, the event is saved by calling the addEvent method in Main. It saves the

store that was visited and how much was spent. (The store name is gathered from the scenename, so

don’t change the name unless you also change this system.)

Products

ProductObjects are scriptableObjects, these are objects not bound to any scene that can store

information. They are intended as a sort of prefab, but with variables. These variables should not be

changed during run time, they only act as template. The process of adding and editing products is

described in the user guide.

The scripts related to these scriptableObjects are in the scripts-> product folder. To add editable

variables to objects, for example a ‘waste impact’, it needs to be added to the ProductObject script.

However, to also be able to view the new variable, it must also be added to the ProductInspector. The

75

productInspector overwrites the default inspector to show the variables in an organized way to the

programmer.

An important distinction to make is the difference between a productObject (the scriptableObject)

and a productInstance. There is only one ‘spaghetti’ productObject, but there may be many instances

of spaghetti, each with their own due date, location, and grams left.

The ‘product’ class (not within the product folder) determines how products are displayed in their

panel. It could be decided in the future to completely remove panels and only show the product

image, this could increase the perceived realism. Either way, there are different kinds of panels in the

Resources folder, for example, StoreInfoPanel, ProductChoicePanel, basketProductPanel, bagProduct,

etc. These each have the product script attached. Some have more elements than others (for

example, in the supermarket you can see the price, but not in the bag).

Storages

StorageObjects are also scriptableObjects. These store the properties about storages that don’t

change. Adding or editing a storage goes the same way as for products.

Storage is the storageInstance, this stores the properties that do change, like capacity and content.

Currently, any class that wants to add a product to a storage does so after checking whether the

storage is full. The storage does not check this when adding a product. This was done because it

wasn’t clear what should happen if someone’s bag is full, and they buy more products. (All products

from basket are transferred to bag, but if that doesn’t fit, what products would stay behind, would you

still pay for them?) For now, the bag will just overflow. This may need to be changed.

Village

The village displays more trash, the more food waste the player has made. This is done by activating

one of 6 stages of food waste, this is done in the VillageWaste class. These stages have the villager’s

head as a child, which activates with them.

Pans

PanObjects are also scriptableObjects. The implementation of pans is a bit poor. The content of the

pan is stored in the ‘pan’ class, which is attached to the sprite of the pan, rather than a separate class

like with products. Since MonoBehaviors are destroyed upon leaving the scene, the pan used to not be

persistent. This was ‘fixed’, by storing and reloading the content of the pans in the ‘pans’ class, which

also saves which pan is where. This is a bad solution however, since the progress of the pans is reset

upon reloading the scene. Additionally, the pan is duplicated on reloading the scene. I recommend

completely redoing the pan system, including the timers. The ‘drag’ class checks if a product is

released on top of a storage or a pan. It may be an idea to make pans a type of storage as well.

King

When the player enters the diningRoom, the kingManager class checks if it is already known which

guests will be present today. If not, it decides that in that moment. It then loads the guests.

When food is served, the properties of the dish are stored in Main. Based on these properties, the

kingManager chooses the appropriate voice lines, and activates the appropriate king sprites. The king

sprites include a talking animation, but it hasn’t been implemented yet.

The correct plate sprites are loaded by the getPlate class which is attached to KingEating. If the king

decides that the meal is not edible, he pushes the plate, this is handled by the pushPlate class

attached to KingPushPlate.

76

If too much food was served, or the food wasn’t eaten, the plates aren’t empty after dinner. If

everything was eaten, the plates are empty. Either way, the player must click on ‘tafel afruimen’. This

saves the properties of the day in the database and starts a new day.

Catapult

Food thrown away ends up in the catapult. Waste made from the storages first checks if there is space

in the catapult before putting it in. Waste made from the dining room always fits in the catapult. This

may not be desired, but this is to prevent the player from getting stuck if the catapult is full.

The catapult animation works in a weird way. The looping animation is disabled by default and is

enabled when the ‘Vuur!’ button is clicked. It then disables the animation 0.98 seconds later. This is

because I couldn’t figure out how to display the animation only once.

These are the high-level explanations of the different mechanics, for more details about smaller

classes, and specific methods, there are comments in the code that explain what they do and how

they work. If things are still unclear you can email me.

77

Appendix F

78

79

80

81

