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“Big whirls have little whirls,
that feed on their velocity,

and little whirls have lesser whirls,
and so on to viscosity.”

— Lewis Fry Richardson



Abstract

In this work a modified turbulent boundary layer and shear layer are studied. The base

flow is changed by the introduction of spanwise periodic disturbances. An experimental

investigation is carried out, where the spanwise periodic disturbances are realised by using

an array of cylinders upstream of a backwards facing step. Due to the design of the test

section, the disturbances cannot be chosen as the most optimal disturbances. Recent

developments have seen the stabilizing effects of streamwise velocity streaks on several

different base flows. It is shown that the array of roughness elements incite spanwise

periodic disturbances with elongated streamwise presence. It is shown that for large

height (k > δ) and small height (k < δ) the streamwise streaks survive the effects of

a backwards facing step and are present until at least twelve boundary layer thicknesses

from their initiation. Previous research has shown how streaks modulate the spanwise rms

profiles in a near wall range for a zero pressure gradient turbulent boundary layer. Streaks

resulting from the forcing by the roughness elements show the same type of behaviour on

a scale that is comparable to the height of the roughness elements. A loudspeaker is used

to force a single phase, single frequency disturbance upstream of the roughness elements.

A linear stability analysis is carried out on the shear layer at a distance of one step height

downstream from the BFS. The eigenmodes that are found in the stability analysis match

with the Fourier modes that result from a phase averaging procedure. The amplitude of

the Fourier modes for a baseline case are compared to the forced base flow and show that

the streaks have a stabilizing effect on the shear layer, and attenuate velocity fluctuations

that are present in the shear layer, while increasing the shear layer thickness. The way in

which streaks are studied can be greatly simplified by using roughness elements to force

streaks to the desired specification. Another application may be found in the acoustic

noise generated by jets. As the fluctuations in the shear layer are attenuated, the shear

layer may produce less noise while the increased thickness may allow fluctuations to exist

at longer wavelengths and produce a lower noise. An acoustic investigation can provide

clarity.
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1 Introduction

Some of the most common phenomena in the modern day aeronautical industry are

the effects induced by turbulent separated flows. These include turbulent boundary layer

separation (eg. on wings) and turbulent shear layers (eg. engine outflows). Both of these

flows have been and still are studied extensively. Flow separation in boundary layers can

lead to loss of performance of the flow device, i.e. loss of lift of a wing. The turbulent

mixing layer created by the exhaust of a jet engine contributes to the overall airplane

noise. Recent developments in the jet engine industry have seen serrated edges added to

the nacelles of aircraft jet engines. These modified nacelles introduce a spanwise periodic

disturbance in the flow. The way these serrated edges are designed is still mostly empiric.

Understanding how these serrated edges change the flow situation and what their effect

is based on their design could provide useful in developing a systematic design process for

these type of applications.

1.1 Turbulent boundary layer

The turbulent boundary layer has been studied extensively and a great deal of work has

been written about it. A great controversy started with the publication of (BARENBLATT,

1993) and (BARENBLATT et al., 1997), who suggested a power law for the description of

the mean velocity profile. This triggered a renewed interest and a lot of new work. This

new work included diverse projects as the superpipe (ZAGAROLA; SMITS, 1998), very low

freestream turbulence windtunnel (OSTERLUND, 1999) and a 27 meter entrance length

wind tunnel (NICKELS et al., 2007), all capable of studying high Reynolds number flow.

Smits (SMITS et al., 2011) gives a more detailed overview of this development. One of

the results is the uncovering of a new class of organized motions that are larger than

the characteristic length scale of a flow, so called large scale motions (LSM). Marusic

(MARUSIC et al., 2010a) has studied these streamwise velocity streaks and the resulting

changes in the fluctuations in different wall distances.
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1.2 Backwards facing step

A widely employed geometry to study shear layers and their reattachment is the back-

wards facing step (BFS). The backwards facing step is a very simple geometry where a

sudden expansion of the test section is used to create a shear layer. the classical BFS

can be seen in figure 1.1. Because of its simplicity it is easy to study even with little

resources, and has been studied for years. A review of research that has been done on the

flow reattachment and the BFS configuration has been written by Eaton and Johnston

(EATON; JOHNSTON, 1981). The influence of the properties of the separating boundary

FIGURE 1.1 – Classical Backwards Facing Step configuration, taken from (EATON; JOHN-

STON, 1981)

layer has been studied for different laminar boundary layers (SINHA et al., 1982) and tur-

bulent boundary layers (ADAMS; JOHNSTON, 1988a). The influence of the step-height

Reynolds number on the reattachment length and wall shear stress has also been studied

(ADAMS; JOHNSTON, 1988b)

1.3 Organized motion

In the early 80’s of the previous century there was a rise in the understanding of turbu-

lence, but the understanding of fluid mechanics was limited by the presence of turbulence

(CANTWELL, 1981). The recognition of organized motion prompted exploration in the

application of linear stability theory to the turbulent flows. Spatial stability analysis of

a free shear layer profile by Michalke (MICHALKE, 1965) shows good agreement between

linear stability theory and experimental data, specifically the phase velocity cr and growth

rate αi. Where the theory was originally only used on laminar flows to study transition,

Crow (CROW; CHAMPAGNE, 1971) applied it to a turbulent jet, and observed the pres-

ence of a preferred mode, responding to a low-amplitude periodic exitation. Suggested

by Freymuth (FREYMUTH, 1966) and extended by Crow (CROW; CHAMPAGNE, 1971) this
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these results encourage the use of linear stability models on turbulent flows with a decom-

position of the velocity field in a mean, periodic disturbance and incoherent disturbance,

where the mean profile is used as the base flow in the stability analysis. Hussain and

Reynolds (HUSSAIN et al., 1970) have proposed a decomposition for a signal f(x, t) based

on the previous description of velocity components. Consider a periodic disturbance, i.e.

wave, imposed on the flow in an arbitrary way (e.g. loudspeaker, vibrating ribbon). To

extraxt an organized wave motion from the turbulent field, this wave can be used as ref-

erence for selective sampling. The proposed decomposition is given in equation 1.1, where

f̄(x) is the mean, f̃(x, t) is the contribution from the artificially forced wave, and f ′(x, t)

is the incoherent part of the signal.

f(x, t) = f̄(x) + f̃(x, t) + f ′(x, t) (1.1)

A phase average can now be calculated as

⟨f(x, t)⟩ = lim
N→∞

1

N

N∑
n=0

f(x, t+ nτ) (1.2)

with τ the period of the forcing wave. Because the phase average in equation 1.2 is given

for a particular phase φ the wave component can be derived as

f̃(x, t) = ⟨f(x, t)⟩ − f̄(x)

The wave component f̃(x, t) is periodic by definition and whenever a propagating wave is

present in the flow, it should arise from signal f(x, t), provided that the used equipment

is able to capture the disturbances. After enough averaging iterations the homogeneity of

turbulence in time ensures that any disturbances that were not deliberately imposed on

the flow will average out, making sure that f̃(x, t) represents a hydrodynamic wave.

The influence of free stream turbulence on the laminar boundary layer has been stud-

ied, and spanwsise modulations of the boundary layer thickness have been observed

(KENDALL, 1985). The observed disturbances have been named Klebanoff modes, af-

ter early observations by Klebanoff (KLEBANOFF, 1971). These results prompted a new

direction of research where these Klebanoff modes are forced using spanwise distributed

roughness elements.

1.3.1 Flow control

Kendall and Bakchinov (KENDALL, 1990; BAKCHINOV et al., 1995) have observered

velocity deficits in the region between the roughness elements, while White (WHITE, 2002)

has observed a velocity amplification in this region. Cossu and Brandt (COSSU; BRANDT,
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2002) have done numerical investigation of the stabilization of Tollmien-Schlichting waves

in the Blasius boundary layer, which have been experimentally verified by Fransson et al

(FRANSSON et al., 2004; FRANSSON et al., 2005; FRANSSON et al., 2006).

The effect on the drag reduction of a bluff body using roughness elements in a turbulent

boundary layer flow was studied by Pujals (PUJALS et al., 2010), they found that the

separation on the rear-end of an Ahmed body is suppressed by the presence of large scale

streaks on the topside of the body. Ryan (RYAN et al., 2011) compared the velocity field

behind a single cylinder with that behind an array of similar cylinders in a turbulent

boundary layer. The velocity deficit is larger behind an array of cylinders and is largest

in the spanwise center between two cylinders.

1.4 Goals

The goals of this work are to study the effects of spanwise periodic forcing of the

turbulent boundary layer, and the generation of streamwise streaks, on the properties of

the turbulent boundary layer and the shear layer induced by a classical BFS configuration.

An existing test-section for the study of the reattachment of a shear layer, detached

from a BFS, is adapted to allow for static spanwise periodic forcing. The effects of the

forcing on the boundary layer and its characteristics will be studied as well as the influence

on the shear layer. A linear stability analysis is performed on the shear layer, in a similar

way as in (ORMONDE et al., 2018). It is investigated if the velocity fluctuations in the

shear layer are influenced by a linear mechanism.

In this chapter a review of previous work and results is given. In chapter 2 the

linear stability theory is explored in more depth and concepts that will be used later

are introduced. Code to perform stability analysis is also verified using previous results.

Chapter 3 describes the experimental setup that was used to perform experiments, and the

decisions that have been made to come to the final design of the experiments. In chapter

4 the experimental results will be shown and discussed. Firstly results for the experiment

will be shown in full while later a distinction will be made between the boundary layer

and the shear layer. Finally, chapter 5 will give conclusions and a discussion about future

research possibilities. There is an appendix, which contains multiple experimental results.

In chapter 4 a scope is narrowed to avoid cluttering and to get the clearest results.



2 Linear stability theory

This chapter serves to introduce the subject of linear stability and the concepts of

linearization, stability analysis and linear structures. These concepts are introduced here

because they serve as foundations for decisions made further on, for both experimental

setup, and analysis of the results. It is largely based on the book by Peter Schmid and

Dan Henningson (SCHMID; HENNINGSON, 2001).

2.1 Derivation of the Orr-Sommerfeld equation

The general equations of motion for fluids are the Navier-Stokes equations. For an

inviscid fluid they are defined as

∂ui

∂t
= −uj

∂ui

∂xj

− ∂p

∂xi

+
1

Re
∇2ui (2.1)

∂ui

∂xi

= 0 (2.2)

where ui is the i’th velocity component, xi is the i’th spatial coordinate, p is the pressure,

and Re is the Reynolds number. Equation 2.1 describes conservation of momentum,

and equation 2.2 describes conservation of mass. Boundary and initial conditions will be

applied in the form

ui(xi, 0) = u0
i (xi)

ui(xi, t) = 0 on solid boundaries.

To nondimensionalize the equations, a velocity scale is chosen based on the base flow.

Only boundary layer and shear layer flow will be considered, and hence the freestream

velocity U∞ is chosen. The length scale is a relevant length h. Now consider a base state

of the system (Ui, P ) and a perturbed state of the system (Ui + u′
i, P + p′), where the

primes indicate small perturbations. Both states satisfy the Navier-Stokes equations. If

the equations for the base state are subtracted from the equations of the perturbed state,
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the resulting equations are the nonlinear disturbance equations

∂ui

∂t
= −Uj

∂ui

∂xi

− uj
∂Ui

∂xj

− ∂p

∂xi

+
1

Re
∇2ui − uj

∂ui

∂xj

(2.3)

∂ui

∂xi

= 0 (2.4)

where the primes have been omitted for clarity. The topic of interest is linear stability,

and thus equation 2.3 has to be linearized. As mentioned earlier, the added perturbations

are small in magnitude. It will be assumed that the product of two small perturbations

is significantly small such that the contribution can be neglected.

uiuj << 1

Regarding equation 2.3 this means that the last term on the right hand side is neglected.

Considering the classical canonical base flows (e.g. Couette, Blasius), the base flow

Ui = U(y)δ1i is assumed a parallel flow in the x-direction that is only dependent on the

wall-normal position y. Substituting this assumption for U in equation 2.3 the following

set of equations is derived:

∂u

∂t
+ U

∂u

∂x
+ vU ′ = −∂p

∂x
+

1

Re
∇2u (2.5)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+

1

Re
∇2v (2.6)

∂w

∂t
+ U

∂w

∂x
= −∂p

∂z
+

1

Re
∇2w (2.7)

where the prime in U ′ indicates a derivative in y-direction. The continuity equation does

not undergo much visual change:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.8)

To be able to solve the perturbation equations in a feasible manner, it is desirable to be

able to express this in as little and simple equations as possible. With that goal in mind,

the divergence of equations 2.5 through 2.7 is taken, and together with the continuity

equation 2.8 an expression for the perturbation pressure is found

∇2p = −2U ′ ∂v

∂x
. (2.9)

Together with equation 2.6, the equation for the perturbation pressure is used to eliminate
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p and results in an expression for the normal velocity v[(
∂

∂t
+ U

∂

∂x

)
∇2 − U ′′ ∂

∂x
− 1

Re
∇4

]
v = 0 (2.10)

with boundary conditions

v = v′ = 0 at a solid wall and in the far field (2.11)

and initial condition

v(x, y, z, t = 0) = v0(x, y, z). (2.12)

A specific type of disturbance will be considered, namely wavelike disturbances. An ansatz

for a wavelike solution can be made in the form

v(x, y, z, t) = ṽ(y)ei(αx+βy−ωt). (2.13)

α and β are streamwise and spanwise wavenumbers respectively and ω is the frequency.

Substituting this expression 2.13 in equation 2.10 results in an equation for ṽ[
(−iω + iαU)(D2 − k2)− iαU ′′ − 1

Re
(D2 − k2)2

]
ṽ = 0 (2.14)

where D2 is the second derivative in y-direction and

k2 = α2 + β2 (2.15)

The resulting equation 2.14 is called the Orr-Sommerfeld equation (Orr, 1907; Sommerfeld,

1908) and is the basis for temporal and spatial stability analysis.

2.2 Stability analysis

2.2.1 Temporal stability analysis

There are a few different ways to perform stability analysis, based on the method

used and specifically in which way a disturbance is introduced. In temporal stability

analysis the wavenumbers α and β are considered to be real and the resulting ω will be

complex. In spatial stability the frequency ω is considered real and the wavenumbers can

now be complex. In Michalke (MICHALKE, 1964) the inviscid problem is studied, which

is described by the Rayleigh equation. The Rayleigh equation, rearranged for temporal

stability is given by equation 2.16, where c = αω is the phase speed, and can be derived
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from the Orr-Sommerfeld equation by taking the limit for Re → ∞.[
U

(
d2

dy2
− α2

)
− d2U

dy2

]
ṽ = c

(
d2

dy2
− α2

)
ṽ (2.16)

Equation 2.16 is an eigenvalue problem, as is the Orr-Sommerfeld equation in equation

2.14, and can be solved for an array of values for α to find eigenmodes ω, β = 0. Looking at

the ansatz and realizing that ω will be complex valued, i.e. ω = ωr+ iωi, some conclusions

can already be made. If the ansatz is written as in equation 2.18, it can be seen that if

ωi > 0 the eigenmode grows exponentially with time, and thus is unstable. On the other

hand, if ωi < 0 the eigenmode decays exponentially with time and the solution is stable.

This problem has an infinite amount of solutions for ω. If a single positive value of ωi

exists, the solution is unstable. In the special case that ωi = 0 the eigenmode is neutrally

stable.

v(x, y, z, t) = ṽ(y)ei(αx−(ωr+iωi)t) (2.17)

= ṽ(y)ei(αx−ωrt)eωit (2.18)

2.2.2 Spatial stability analysis

For spatial stability analysis a real ω will be assumed, resulting in complex eigenmodes

α = αr + iαi. Decomposing the eigenmodes again the ansatz is now written as in 2.19.

v(x, y, z, t) = ṽ(y)ei(αrx−wt)e−αix (2.19)

The difference with temporal eigenmodes is the direction of propagation. In time, distur-

bances can only propagate in positive direction, while in space disturbances can propagate

both in positive and negative direction. It is no longer sufficient to look at the value of

αi to draw conclusions of the stability of the system. Now the generalized group veloc-

ity vG needs to be taken into consideration. The generalized group velocity of a certain

eigenmode is determined by the response to an impuls on the given system. A positive

vG indicates that this mode contributes to the response of the system downstream of the

location of the impulse, or in positive spatial direction. A negative vG then indicates that

the eigenmode contributes to the response of the system upstream of the impulse, or in

negative spatial direction. The group velocity is defined in equation 2.20. Eigenmodes

with positive group velocities are called α+ modes. Eigenmodes with negative group ve-

locities are called α− modes. Stability is determined using both the group velocity and

the value of αi. For α− modes the same condition holds as for temporal stability, i.e.

if αi < 0 the eigenmode grows exponentially in positive spatial direction and if αi > 0

the eigenmode decays exponentially in positive spatial direction. For α+ modes the exact
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opposite holds.

vG =
∂ω

∂α
(2.20)

Consider a system governed by the Orr-Sommerfeld equation (2.14) with the hyperbolic

tangent profile, equation 2.21, as a base flow.

U(y) =
1

2
+

1

2
tanh(y) (2.21)

Now assuming β = 0 and rewriting, the Orr-Sommerfeld can be written as a generalised

nonlinear eigenvalue problem for α.[
−1

Re
α4 − iUα3 + (iω +

2

Re
D2)α2 + i(UD2 − U ′′)α− iωD2 − 1

Re
D4

]
ṽ = 0 (2.22)

To solve this nonlinear eigenvalue problem, equation 2.22 will be written as a system of

equations, adapted from Cavalieri and Agarwal (CAVALIERI; AGARWAL, 2013).⎡⎢⎢⎢⎢⎣
0 I 0 0

0 0 I 0

0 0 0 I

−F0 −F1 −F2 −F3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

v

αv

α2v

α3v

⎤⎥⎥⎥⎥⎦ = α

⎡⎢⎢⎢⎢⎣
I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 F4

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

v

αv

α2v

α3v

⎤⎥⎥⎥⎥⎦ (2.23)

Where Fi are the coefficients corresponding to αi. The discrete derivative operator D is

discretized using a pseudo-spectral Chebyshev method. The domain is split in N = 501

points and is initially defined on the grid [−1, 1], which is stretched with a factor of 20.

The domain is stretched to better represent the shear layer behaviour by placing the

boundaries far from the high shear region around y = 0. The results of the stability

analysis can be seen in figures 2.1 and 2.2.

2.3 Comments on the current application

The same code that is used to solve the Orr-Sommerfeld equation in equation 2.23

is used to perform a stability analysis on a base flow obtained in experiments. Where

in the previous analysis there was a forcing with temporal frequency ω and the stability

was determined in terms of wavenumber α, in the experiment there will also be a spatial

forcing, i.e. β ̸= 0 ∈ R

For the previous derivation of the Orr-Sommerfeld equation the assumption was made

that the base flow is parallel in x-direction and only dependent on the wall-normal position

y. In the experiments that have been performed, and will be introduced later, the base
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FIGURE 2.1 – Imaginary wavenumber

flow has a spanwise periodic component. That is, the base flow is now expressed as

Ui = U(y, z)δ1i. In a similar derivation as before, a set of equations for the 2D base flow

is obtained:

(−iω + iαU)∇̂2v̂ + iαUzzv̂ + 2iαUzv̂z − αUyyv̂ (2.24)

− 2iαUzŵy − 2iαUyzŵ − 1

Re
∇̂4v̂ = 0 (2.25)

(−iω + iαU)η̂ − Uzv̂y + Uzyv̂ + Uyv̂z + Uzzŵ − 1

Re
∇̂2η̂ = 0 (2.26)

with

∇̂2 =
∂2

∂y2
+

∂2

∂z2
− α2 (2.27)

In the current work the Orr-Sommerfeld equation, in combination with a 1D baseflow will

be considered.
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FIGURE 2.2 – Phase velocity



3 Experimental setup

The experiments have been performed in an open circuit wind tunnel at the Prof. Kwei

Lien Feng laboratory at ITA. The wind tunnel operates at low speeds (0 − 33 m/s) and

with a freestream turbulence level of 0.5%. The test section is similar to the test section

used by Ormonde et al (ORMONDE et al., 2018). A sketch of the test section can be seen in

figure 3.1. It has a rectangular cross section and has a sudden expansion in the y direction,

the classic backwards facing step. A characteristic length scale is defined by the step height

h, and a characteristic velocity is given by the freestream velocity U∞. The expansion

ratio of the step is (H + h)/H = 1.08 where H is the height of the test section. The span

over step height ratio is e/h = 10.25, in correspondence with the criterion determined

by De Brederode and Bradshaw (BREDERODE; BRADSHAW, 1972) that e/h > 10. This

criterion ensures a nominally two-dimensional mixing layer by avoiding three-dimensional

wall effects at z = 0. The test section allows for different splitter plates to be installed.

These splitter plates can be designed to serve different purposes and allow for different

experiments. Ormonde (ORMONDE et al., 2018) has used a splitter plate with perforations

to influence the backflow in the shear layer. In this work a plate with the possibility to

place arrays of roughness elements is used. The arrays of circular roughness elements

with height k, diameter d and spacing ∆z are used as a static flow forcing. The elements

can be placed at several streamwise locations upstream from the BFS. A definition of the

coordinate system and the roughness elements in an upstream position can be seen in

figure 3.2, where the positive x-direction is the streamwise direction, y the wall normal,

and z the spanwise coordinate. The total length of the flat plate for boundary layer

development is L = 31.25h.

3.1 Data acquisition

Data was acquired using hot-wire anemometry. Measurements have been conducted

using a single boundary layer hotwire probe, the Dantec 55P05 probe. The wire has a

diameter of 5 µm and a length of 1.25 mm. The viscous length l+ = luτ/ν, is 63.5.

Following (MARUSIC et al., 2010b) a value for the viscous length l+ ≤ 20 is sufficient to
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FIGURE 3.1 – Schematic of the test section used, from Ormonde (ORMONDE et al., 2018)

FIGURE 3.2 – Sketch with a definition of the coordinate system and roughness elements
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FIGURE 3.3 – Schematic of the data acquisition system, taken from (ORMONDE et al.,
2018)

resolve for most of the kinetic energy for wall bounded flows. A higher value will result

in measurement errors in the near-wall region. Measurements were done in the x-y plane,

at multiple z-locations, at a sample rate of 24 kHz for a duration of 10 s. The signal was

conditioned and linearized using DISA 56 series equipment. A low pass frequency filter

set at a value of fLP = 10kHz was used to prevent aliasing by frequencies higher than

the Nyquist frequency fNY =
fsample

2
. The resulting analog signal is converted to a digital

one with a National Instruments NI USB-6009 AD converter. The AD converter has a

resolution of 14 bits. A schematic of the setup can be seen in figure 3.3.

3.2 Acoustic forcing

The goal of temporal flow forcing is to excite a Kelvin-Helmholtz mode in the shear

layer. The acoustic forcing is applied by using a signal generator. A Edutec model EEL-

8003 is used to produce a sine wave. The signal generator is connected to an amplifier.

The amplifier, NCA model SA20, sends the amplified signal to a loudspeaker that is

connected to the test-section, and to the AD converter. The loudspeaker excites the flow

with pressure waves. The hot-wire and forcing signal are recorded simultaneously. This

is of importance for the phase-averaging that will be done during the processing.

The previous chapter has introduced the concepts of temporal and spatial stability. The

purpose of this acoustic forcing is to impose a single frequency ωr on the flow which can

be tracked, and recognized in the energy spectrum. The analytical tools that have been

introduced focus on the 2D flow situation, and so will the forcing. To achieve this, the

forcing needs to only excite plane acoustic waves, i.e. other oblique waves are decaying.

A condition to ensure only plane propagative waves can be derived using duct acoustics

(RIENSTRA; HIRSCHBERG, 2015): ω < πc0/Ly,z, where c0 is the speed of sound and Ly,z

is the length in the dimension of its respective subscript. If this condition is satisfied,
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all oblique waves will decay in direction of propagation x. The wind tunnel that is used

has dimensions Ly = 0.5m and Lz = 0.41. This results in a cut-on frequency for oblique

waves of fcut−on = 340Hz. Only one temporal forcing frequency has been used. The

frequency was chosen based on previous research by (??), the starting value was 112Hz

and after finetuning while listening for an acoustic resonance has been set at 110Hz.

The corresponding Strouhal number is St = fh
U∞

= 1.3 The forcing amplitude has been

empirically determined, and approved after the forcing frequency was recognized in the

energy spectrum of the hot-wire measurements, while the signal arriving from the amplifier

still shows little disturbance from the sine function.

3.3 Static forcing

The goal of spatial flow forcing in this experiment is to create the streamwise velocity

streaks that have been observed in many previous works, in a structural manner. Rough-

ness elements have been used to force these large scale streamwise structures, as has been

done in various earlier work (BAKCHINOV et al., 1995; WHITE, 2002; FRANSSON et al.,

2006). Table 3.1 gives an overview of the parameters used in these experiments. White

cells indicate values that were not given or could not be derived.

Bakchinov et al. White et al. Fransson et al. Pujals et al. Ryan et al.

U∞(m/s) 8.2 8 12 7 20 6

k(mm) 1.8 0.38 0.38 0.78 12

δ(mm) 0.72 0.664 0.542 0.29 20 72

k/δ 2.5 0.57 0.70 2.65 0.6 0.13

d(mm) (square) 2 6.35 6.35 2 6

Rek 740 45 80 285

Reτ 1200

Reδ 137 28800

ReL 1.35 · 106

xk(mm) 285 225 225 40

∆z(mm) 10 12.5 25.0 8 24

β 0.45 0.24 0.24 0.230

TABLE 3.1 – Experimental parameters from previous experiments

The roughness elements used in this setup have a cylindrical cross section of diameter

d, and a height of k. A total of 11 elements have been used, with equal spacing ∆Z. The

elements have been placed at several locations X0 upstream of the BFS. The specifications

of the different configurations of static forcing can be seen in table 3.2. In table 3.3
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the parameters that are independent of the configuration can be found. The freestream

velocity U∞, step height h and approach length xk have been chosen based on previous

experiments with the same test section by (ORMONDE et al., 2018). The step height and

approach length being determined by the design of the test section. An optimal spatial

wavenumber was found by (ANDERSSON et al., 1999) and (LUCHINI, 2000) at β = 0.45.

This optimal disturbance was found for the Blasius profile at high Reynolds numbers.

Following this optimal disturbance as basis for determining a spanwise spacing results

in a situation where only 3 elements can be placed in the test section. This is similar

to what Pujals (PUJALS et al., 2010) encountered. It is thought not wise to follow this

assumption because of the influence of the wall effects will be too large. Instead the

deciding factor has been a number of elements and in an iterative process the spanwise

spacing has been determined using relations and data from (COSSU et al., 2009). From

Ormonde (ORMONDE et al., 2018) an estimate for the boundary layer thickness is taken

(δ = 0.8h), and the assumption has been made that λz/δ = 1. In this way a total of eleven

roughness elements will be able to fit in the test section. The spanwise spacing has been

determined based on the design of the test section. The streamwise spacing was free to

determine. In figure 3.4 growth rates and their dependence on the spanwise wavenumber

are shown, taken from (??). The relation δ = 0.223∆ is given, and due to the earlier

assumption it holds that λz = 0.223∆. Looking at figure 3.4 it can be seen that:

tmaxUe

∆
≈ 1 (3.1)

and also

tmaxUe ≈ ∆ =
δ

0.223
≈ ∆x (3.2)

Now an expression for the streamwise spacing is found. The boundary layer thickness

from Ormonde (ORMONDE et al., 2018) together with the expression for the streamwise

spacing results in

∆x = 3.6h. (3.3)

Taking this condition as a guidance should ensure that the generated streak is at a maxi-

mum at the moment that reaches the BFS. As can be seen in table 3.2 this coincides with

configuration C2.
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FIGURE 3.4 – (a) Dependence on the spanwise wavenumber β∆ of the maximum growth
Gmax of streamwise uniform (α = 0) perturbations for the selected Reynolds numbers
Reδ∗ . (b) Times tmax at which the optimal growths reported in (a) are attained. (COSSU

et al., 2009)

ID X0 k(mm) k/δ
C1 −8 80 2.5
C2 −4 80 2.5
C3 −1 80 2.5
C4 −8 20 0.625
C6 −1 20 0.625

TABLE 3.2 – Different pin configurations for static forcing

Reh U∞(m/s) h(mm) d(mm) xk ∆z(mm) β n
5.3 · 104 22.5 40 8 23.25h 32 2π 11

TABLE 3.3 – Experimental parameters

3.3.1 Data processing

The recorded hot-wire signal f(x, t) is measured in volts. A calibration, using a Betz

apparatus and thermometer, is used to convert the signal in volts to meters per second

using equation 3.4, where φ is an angular coefficient, and c is a linear coefficient.

u(x, t) = φf(x, t) + c (3.4)

The signal f(x, t) is recorded simultaneously with the acoustic forcing signal g(t). Espe-

cially for longer time series the generation of a signal may be subject to imperfections,

leading to a deviation from a purely sinusoidal wave and frequency drift. To avoid this
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problem the Hilbert transform may be applied (LUO et al., 2009), which is defined as the

convolution of the signal g(t) with the function 1/πt. The Hilbert transform is given in

equation 3.5, where p.v. is the Cauchy principal value of the improper integral.

H(g)(t) =
1

πt
∗ g(t) = 1

π
p.v.

∫ ∞

−∞

g(τ)

t− τ
dτ (3.5)

If the signal g(t) is a sinusoidal or quasi-sinusoidal signal, its Hilbert transform h(t) will be

a similar signal, in quadrature with g(t). Another, complex, function can be constructed

with as real part the original function g(t) and its complex part the Hilbert transform

h(t): z(t) = g(t) + ih(t), and the instantaneous phase of the excitation signal can be

extracted. The phase-average ⟨f(x, t)⟩ of finite signal f(x, t) is calculated according to

equation 4.15, where K = trecord/τ is the number of cycles present in the acquired signal

and φn = n2π
N

=
[
1
N
2π, 2

N
2π, ..., 2π

]
is the phase, divided into N parts.

⟨f(x, t)⟩ = 1

K

K∑
k=0

N∑
n=0

f(x, φn + 2πk) (3.6)

A Fourier transform is applied to the phase-averaged signal. The Fourier modes are

represented by the Fourier coefficients Cn = An + iBn and contain information about the

amplitude and phase. C0 is real valued and is equivalent to the amplitude of the mean,

which in this case is zero. The excitation frequency is represented by C1. This property

will be extracted from the phase average to compare with predictions made by linear

stability analysis.



4 Results

This chapter will start with general results of the velocity profiles and rms profiles of

the total situation. Later the results will be split into two different parts, namely the

boundary layer X < 0 and the shear layer X > 0. The methods used for analysis for the

two situations are such different that a separation is needed for clarity.

4.1 Velocity mean and rms overview

Here the main characteristics of the flow before and after encountering the BFS are

presented. Results of the velocity profiles will be shown for the baseline case, where there

is no forcing in the z = 0 plane, and in the x − y planes at z = 0 and z = ∆z/2 for the

forced situation. The same is true for the rms distributions that will be presented. All

measurements have been done for Re = 5.3 · 104. To avoid cluttering, only figures for

situations ’C1’ and ’C4’ will be shown. In figures 4.1 and 4.2 these velocity profiles can

be seen. It must be noted that the coordinates at the x-axis only serve as a guidance to

show at which location the measurement was taken. The black dashed line corresponds to

the centerline, the red crosses correspond to the centerline profile at z = 0, and the blue

circles correspond to the offcenter plane at z = ∆z/2. In further figures the same markers

and colours will be used. Looking at these figures, a couple of pronounced features can

be seen. First of all the trivial transition from boundary layer to shear layer from X = 0.

Another expected feature is the wake region behind the roughness elements. The wake

region is defined by a low pressure area directly behind the element, which results in a

velocity deficit in the same region. This is only present for in figure 4.1. Comparing the

forced profile of C1 with the baseline profile, the effect of the roughness elements is clearly

represented in the lower mean velocity. Comparing the two forced mean profiles, it can

be seen that there is a difference around height Y = 1.5. This difference is attributed

to streaky streamwise behaviour. The streamwise streaky behaviour is more apparent in

figure 4.2. The influence of the streaks is seen for all streamwise measurements, both

in the boundary layer and ’survive’ the BFS and extend well into the shear layer. As

mentioned before, the coordinate system has been normalized by the step height. If
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δ(mm) δ∗(mm) θ(mm) H = δ∗

θ
Reτ Reθ

29.96 3.44 2.48 1.38 1.67 · 103 3.67 · 103

TABLE 4.1 – Flow properties of the baseline boundary layer prior to detachment X = −1

FIGURE 4.1 – Full figure containing streamwise velocity profiles of the baseline (black
dashed), centerplane (red crosses) and offcenter plane (blue circles) for configuration ’C1’

downstream coordinate is expressed in term of boundary layer thickness δ it is seen that

the streaks persist up until ≈ 12δ downstream. For roughness elements that are placed

inside the boundary layer, the forced effect extends throughout the whole boundary layer

in y−direction. Table 4.1 shows the properties of the baseline boundary layer prior to

detachment at the BFS.

Figures 4.3 and 4.4 show the rms profiles of all streamwise measurement locations.

First of all a clear increase in rms value for the region Y > 0 can be seen in all profiles. In

the shear layer in the region Y < 0 an attenuation of the fluctuations is observed, which

is more present further downstream, indicating that the streaks could have a stabilizing

effect on the shear layer. The rms values for the slow streak decay to freestream values

later than the fast streak does. This difference manifests around the upper part of the

streak. The same behaviour is observed in figure 4.4. There is slight attenuation of the

shear layer fluctuations, and there is a clear region where the rms profiles show different

behaviour.
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FIGURE 4.2 – Full figure containing streamwise velocity profiles of the baseline (black
dashed), centerplane (red crosses) and offcenter plane (blue circles) for configuration ’C4’

FIGURE 4.3 – Full figure containing streamwise rms distributions of the baseline (black
dashed), centerplane (red crosses) and offcenter plane (blue circles) for configuration ’C1’
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FIGURE 4.4 – Full figure containing streamwise rms distributions of the baseline (black
dashed), centerplane (red crosses) and offcenter plane (blue circles) for configuration ’C4’

4.2 Boundary layer

In this section experimental results of the effect of the forcing on the boundary layer

are further studied. Specifically the boundary layer for configuration C4 at streamwise

location X = −1 will be considered. Flow properties will be scaled in viscous units.

The data acquisition technique that was used, and the experiments that were performed,

focused on acquiring velocity data. To determine the friction velocity, oil film interfer-

ometry or laser doppler anemometry techniques can be used (JOHANSSON et al., 2005).

Due to several limitations, it was not possible to perform these in the current study. To

get an approximation of the friction velocity, numerical data for zero pressure gradient

turbulent boundary layers from (ÖRLÜ; SCHLATTER, 2013) have been used, together with

the relation in equation 4.1 from (OSTERLUND, 2000):

cf = 2
[1
κ
ln(Reθ) + C

]−2

(4.1)

where C is a constant and κ is the Von Kármán constant. Data for a zero pressure gradient

turbulent boundary layer with a freestream velocity of U∞ = 20.0621 m/s and friction

velocity of uτ = 0.77614 m/s have been plotted against theoretical values according to

Pope (POPE, 2000). The constants of the velocity profile, in inner scaling, for experiments

of the baseline case are then empirically determined by looking when the profile has most

overlap with the data from (ÖRLÜ; SCHLATTER, 2013). The result for the boundary layer

at X = −3 can be seen in figure 4.5. These values for the friction velocity are used as

constant values for each streamwise position in both the baseline and forced situations. A
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FIGURE 4.5 – Velocity profile for data from (ÖRLÜ; SCHLATTER, 2013), experimental
data for a baseline case at X = −3, and theoretical values from (POPE, 2000), all in inner
scaling

uτ,Orlu X = −5 X = −3 X = −1 X = −0.1
0.77614 0.7614 0.7731 0.7972 0.7966

TABLE 4.2 – Friction velocities empirically determined after matching baseline data with
data from Orlu (ÖRLÜ; SCHLATTER, 2013)

friction velocity has been determined for all measurements upstream from the BFS. The

friction velocities can be seen in table 4.2. In the previous section the different behaviour

of the rms profiles has already been pointed out, and this will be investigated further

now. In figure 4.7 The rms profiles at X = −0.1 of configuration C4 are shown. The

red crosses show the profile at the centerline, and the blue circles show the profile at the

offcenter plane. In outer scaling (in figure 4.4) it was already clear that there is a region

where the rms values of the slow streak are higher than those of the fast streak. Inner

scaling now shows that the opposite is also happening, but at a position much closer to the

wall. This effect has been seen before by Marusic (MARUSIC et al., 2010a) and a schematic

representation of this effect can be seen in figure 4.6. The small downward movement that

is present in the fast streak convects the present fluctuations toward the wall, creating a

region of higher rms near the wall. The opposite is happening for the slow streak. The

slow upward movement convects fluctuations away from the wall, creating a region of high

rms further away from the wall. It must be noted that the values for very low y+ have

probably been influenced by interaction from the hotwire positioning very close to the

wall. The streak amplitude is calculated in the same way as Fransson did (FRANSSON et

al., 2004):

AST = max
y

[U(y)high − U(y)low]/2 (4.2)
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FIGURE 4.6 – Schematic representation of streamwise streaks in spanwise cross-section,
from (MARUSIC et al., 2010a)

where U(y)high and U(y)low represent the velocity profiles for the fast and the slow streak

respectively. The maximum streak amplitude and its height have been determined for

all streamwise positions of the boundary layer. The rms profiles with the location of the

maximum streak amplitude can be seen in figures 4.8 through 4.11. The height where

the rms profiles cross is approximately the center of the streaks. The streamwise trend is

consistent with earlier results, the streaks move away from the wall.

As was mentioned before, the effect of the presence of streaks on the velocity fluctuations

has been seen before, and is schematically seen in figure 4.6. However, this has all been

seen for turbulent boundary layers where this phenomenon is always present, at a distance

very close to the wall (y+ ≈ 15). The measurements that are shown in figures 4.7 through

4.11 show the same effect at a much larger distance from the wall, up to y+ ≈ 2000. The

large scale streaks, also superstructures, are in this way isolated and their properties can

be studied. This can provide an easy way to study this phenomenon without the need

for a windtunnel like the one used in Marusic (MARUSIC; HUTCHINS, 2008), with an entry

length of 27 meters.

FIGURE 4.7 – Rms profile in viscous units at X = −0.1 of configuration C4
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FIGURE 4.8 – Maximum amplitude
X = −5

FIGURE 4.9 – Maximum amplitude
X = −3

FIGURE 4.10 – Maximum amplitude
X = −1

FIGURE 4.11 – Maximum amplitude
X = −0.1

4.3 Shear layer

In this section the experimental results of the effect of the forcing on the shear layer are

further studied. Specifically the shear layer for configuration C4 at streamwise location

X = 1 will be considered. The velocity profiles and rms profiles can be seen in figures 4.12

and 4.13. A condition similar to what has been done by Ormonde (ORMONDE et al., 2017)

has been applied here as well. The hot-wire measurements cannot measure the direction

of the flow, due to the setup, and thus the velocities measured in the region y < 0 are

measured as positive. No positive velocities are expected below y = −0.3, and as such the

values of the measured velocities are multiplied with −1, to get an approximation to the

backflow. The first thing that is noted is the velocity difference between the centerline

profile and the off-center profile, and the baseline. The velocity profiles for the exited flow

show a two stage transition in the shear layer. Looking at figure 4.13, the same two stage

behaviour can be seen in the rms profiles, in the form of a bump. There is only a slight

deviation in the peak value, i.e. higher for the centerline profile, or fast streak, and lower
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FIGURE 4.12 – Velocity profile for X = 1

FIGURE 4.13 – Rms profile for X = 1

for the off-center profile, or slow streak. The same behaviour as was described by Marusic

(MARUSIC et al., 2010a) and observed for the boundary layer can still be observed, the

perturbations for the fast streak are more present close to Y = 0 and at a certain point

of increasing Y there are more perturbations in the slow streak.

Looking at the energy spectrum in figure 4.14 shows that the signal that was forced by

the loudspeaker is propagated downstream and recorded by the hotwire.

4.3.1 Linear stability and comparison with forced shear layers

Now that it is confirmed that the disturbance imposed by the loudspeaker propagates

to the shear layer, the phase averaging procedure can be applied. The phase averaging

is applied as was described earlier in chapter 2, and the first Fourier coefficient can be

extracted. The results can be seen in figure 4.15. This result will be compared to the
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FIGURE 4.14 – Energy spectrum of the recorded signal for X = 1, Y = 0

eigenfunction of the Kelvin-Helmholtz mode that may be found using the linear stability

analysis. The goal is to test if the amplitude of the velocity fluctuations is driven by a

linear mechanism.

FIGURE 4.15 – Results for the phase averaging procedure for X = 1

The result for the spanwise forced shear layer is similar to the baseline, only damped.

The peak is in the same location but of lower amplitude, as is the same with the charac-

teristic bump.

Now the mean velocity profile will be used as a base flow for the linear stability analysis.

The baseflow is 2D in nature but here the 1D Orr-Sommerfeld from equation 2.22 is be

solved. As base flow the average of the two spanwise mean velocity profiles is taken.

A continuous approximation of the velocity profile is acquired by using a piecewise cubic
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hermite interpolating polynomial on the numerical domain, y ∈ [−1, 19]. The interpolated

velocity profile can be seen in figure 4.16.

FIGURE 4.16 – Interpolated velocity profile (black solid line), and fast and slow streak
velocity profiles (red crosses and blue circles respectively) at X = 1

Again the datapoints below Y = −0.3 are believed to be negative values due to the

present backflow. Like the analysis in chapter two, the system of equations is discretised

on a chebyshev grid with N = 501 points. After solving the system of equations the

resulting eigenspectrum can be found in figure 4.17.

FIGURE 4.17 – Eigenspectrum for the solution of the 1D Orr-Sommerfeld equation

After performing the stability analysis, and checking for the group velocity, there

appears one unstable eigenmode, the Kelvin-Helmholtz mode, at α = 2.98− 1.089i. The
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(a) Roughness elements, measurement at
z/∆z = 0

(b) Roughness elements, measurement at
z/∆z = 2

(c) Baseline, measurement at z/∆z = 0

FIGURE 4.18 – Eigenfunctions from LST and eigenmode responses for the forced (4.18a
& 4.18b) and baseline (4.18c) measurements at X = 1.

eigenmode ṽ(y) corresponding to this eigenvalue is used to calculated the streamwise

disturbances according to the continuity equation, 4.3. The resulting eigenfunction is a

solution to the Orr-Sommerfeld equation with arbitrary amplitude and is scaled such that

the maximum of û is equal to the maximum of uKH , for its relative configuration.

ũ =
i

α

dṽ

dy
(4.3)

In figure 4.18 the results from the LST and the Fourier modes for the base flow from

figure 4.16 are shown. A good match is observed. The match for the region Y > 0 is very

close. The region for negative Y shows discrepancies, which are worst for the baseline

case in figure 4.18c. The discrepancies in the region Y < 0 may be caused by several

effects. The presence of backflow, although an approximation has been made, cannot be

captured by a single-wire hotwire probe. Furthermore, the experimental accuracy may

contribute to the discrepancy. The interpolated base flow velocity profile in figure 4.16

looks smooth. In the process of solving the Orr-Sommerfeld equation the first and second
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FIGURE 4.19 – Spatial growth rate as a function of Strouhal number, for baseline (blue
solid) and forced (red dashed) base flow profile at X = 1. Strouhal number for the forcing
used in experiments is marked (solid black vertical).

derivatives of the base flow are calculated and in the process of derivation, slight errors

are amplified. The exaggerated oscillation around Y ≈ −0.25 could be due to this effect.

Despite the discrepancies, the agreement with the linear stability theory model can provide

a theoretical basis for the analysis of the behaviour of coherent structures in these types

of flows.

Because it is now known that the linear stability theory can be used to get a decent

approximation of the eigenmodes, it can now be extended to calculate the spatial growth

rate (−αih) over a range of Strouhal numbers. These results can be seen in figure 4.19. The

flow with the roughness elements shows a slightly larger growth rate for lower frequencies.

After Strouhal St ≈ 1.05 the situation mirrors, and the baseline flow has a larger growth

rate for higher Strouhal numbers. This agrees with what was found in the experiments,

and was shown in figure 4.15. The linear stability theory is successful in predicting the

response of the shear layer to the forcing and the evolution of coherent structures in the

shear layer, as the eigenfunctions and the Fourier modes show good agreement.



5 Conclusions and future

prospectives

This section serves to summarize the most important results, and draw conclusions.

Also prospectives for the future are given, be it possible applications, or directions for

future research.

A test section has been designed to force spanwise periodic disturbances on a turbulent

boundary layer flow, approaching a backwards facing step configuration. This was both

inspired by work on the stabilizing effect of velocity streaks on the transition to turbulence

(FRANSSON et al., 2006) and the possibilities provided by the test sections built by and

used in (ORMONDE et al., 2018).

The results show that the properties of the boundary layer are changed, i.e. the

roughness elements induce spanwise periodic velocity streaks. Once the streaks reach the

backwards facing step they remain present. For roughness elements with heights larger

than the boundary layer the streaks are induced outside the boundary layer, whereas for

roughness elements with heights smaller than the boundary layer thickness the streaks

stay inside the boundary layer. After movement downstream of the backward facing step

the amplitude of perturbations in the shear layer is lowered with respect to the baseline

case, while the thickness of the shear layer increases.

The phase averaging analysis shows a decrease in presence of Kelvin-Helmholtz mode

in the shear layer. The Kelvin-Helmholtz mode being the most unstable mode in a flow,

this result indicates a stabilizing effect of streaks on the shear layer. This result has been

achieved while using suboptimal disturbances. Optimal disturbances may prove to have

a bigger effect on the damping of Kelvin-Helmholtz modes.

The stability analysis was successful in predicting the behaviour of the dominant mode

in the shear layer. There are still discrepancies between the LST result and the dominant

mode, which is attributed to the uncertainty in the region Y < 0 because of the inability

to measure backflow with the current setup. Another contributing factor to discrepancies

may be the fact that here the base flow was approximated as one dimensional in nature, i.e.

steady in both x- and z-directions, and the Orr-Sommerfeld equation for a one dimensional
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base flow was solved.

As mentioned in the previous chapter, the overall amplitude of the rms in the shear

layer is reduced when streamwise streaks are introduced to the shear layer. In this work the

focus has been on dynamical flow properties, but an acoustic investigation may yield new

insights on reducing turbulent noise in shear layers. The reduced velocity perturbations

may hint at a reduced amplitude of noise. The increased shear layer thickness can provide

the possibility for larger wavelength disturbances to be present in the shear layer, resulting

in a general lower frequency noise. It is suggested to design an experimental setup using

the parameters of this work, for a jet, where acoustic measurements are possible. If

the prediction of lower frequency noise is confirmed this may ultimately provide a useful

insight for the design of jet engines and their produced jet noise.
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<http://www.annualreviews.org/doi/10.1146/annurev.fl.13.010181.002325>.

CAVALIERI, A.; AGARWAL, A. The effect of base-flow changes in Kelvin-Helmholtz
instability. 19th AIAA/CEAS Aeroacoustics Conference, n. May, p. 27–29, 2013.
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Appendix A - Other experimental

configurations

In this appendix results for the other experimental configurations will be discussed.

The experiments have been conducted with the same experimental parameters, except

for the element height k and upstream position of the elements, as described in table

3.2. These results have not been analyzed in the same quantitative manner as has been

described in the main text. This is because the preliminary results show largely similar

behaviour. Although figures for configurations C1 and C4 have been shown, they are

repeated here.

A.1 Velocity and rms profiles

Figures A.1 through A.5 show the velocity profiles for different streamwise locations

for the different experimental configurations. Figures A.6 through A.10 show the rms

profiles. It must be noted that the coordinates at the x-axis only serve as a guidance to

show at which location the measurement was taken. As was discussed in the main text,

the roughness elements create streamwise velocity streaks. For configurations C1, C2 and

C3, the streaks are created at a height somewhat below the tip of the roughness element

at Y = 2. In figures A.2 and A.3 the wake behind the roughness elements can still be

seen. This is one of the reasons these configurations were not the best suitable options for

thorough analysis. It must be noted that after some development length the wake decays

and streaks remain. Similar effect as have been described are expected to be present.

For configuration C6 the same thing is true. A wake is present, which decays after some

development length, after which streaks remain. The attenuation of the velocity profile

for the shear layer in configuration C6 is bigger than for configuration C4. However for

both configurations with the roughness elements located at X = −0.1, the amplitude of

the velocity fluctuations is not attenuated. This can be because the undeveloped streaks

and wake are directly introduced to the shear layer. The velocity fluctuations for the

intermediate configuration C2 are of lower magnitude than for fully developed streaks.
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FIGURE A.1 – Velocity profiles at different streamwise locations for configuration C1

FIGURE A.2 – Velocity profiles at different streamwise locations for configuration C2
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FIGURE A.3 – Velocity profiles at different streamwise locations for configuration C3

FIGURE A.4 – Velocity profiles at different streamwise locations for configuration C4
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FIGURE A.5 – Velocity profiles at different streamwise locations for configuration C6
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FIGURE A.6 – Rms profiles at different streamwise locations for configuration C1

FIGURE A.7 – Rms profiles at different streamwise locations for configuration C2
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FIGURE A.8 – Rms profiles at different streamwise locations for configuration C3

FIGURE A.9 – Rms profiles at different streamwise locations for configuration C4
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FIGURE A.10 – Rms profiles at different streamwise locations for configuration C6
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Mecânica. Área de Sistemas Aeroespaciais e Mecatrônica. Orientador: Prof. Dr. Adalberto Santos Dupont.
Coorientadora: Profa. Dra. Doralice Serra. Defesa em 05/03/2015. Publicada em 25/03/2015.
11. RESUMO:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum tempus elit nunc, in scelerisque ex scelerisque
mattis. Mauris auctor dui id ultrices efficitur. Praesent varius ligula et bibendum accumsan. Praesent malesuada
pretium dui, quis ultrices dolor eleifend fermentum. Donec sit amet dictum nunc. Mauris lobortis semper eleifend.
Praesent fringilla viverra dolor fermentum auctor. Nulla porta tristique aliquam. Suspendisse convallis felis non
odio varius, nec sollicitudin libero porta. Morbi consectetur dapibus sem at gravida. Nunc dictum pharetra
cursus. Proin cursus, nunc nec luctus auctor, lorem quam vestibulum ipsum, sit amet vehicula nisl purus eu est.
Ut suscipit rhoncus sem, nec egestas dolor sodales sed. Sed convallis blandit lorem et tempus. Nullam imperdiet
velit nulla, ut tincidunt arcu vestibulum mattis.
Nunc sit amet porttitor justo, ut placerat dolor. Vestibulum pellentesque cursus posuere. In mollis lectus sit
amet lacus semper aliquet. Morbi blandit ornare ante et consequat. Sed vitae metus neque. Mauris elementum
viverra turpis non gravida. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus
mus. Quisque sit amet quam viverra, tincidunt ipsum auctor, iaculis quam. Nam consequat tellus at lorem
pulvinar, at fermentum lectus viverra. In sed orci a nulla posuere tincidunt. Aliquam ac odio nec lacus tincidunt
semper ultricies at diam. Donec tempor nisl nulla, tristique fringilla mi bibendum fermentum. Praesent pharetra,
tellus a malesuada viverra, nisl lectus commodo mi, non efficitur justo nisi nec sem.

12. GRAU DE SIGILO:

(X) OSTENSIVO ( ) RESERVADO ( ) SECRETO


	Face Page
	Cataloging-in-Publication
	Thesis Committee Composition:
	Acknowledgments
	Epigraph
	Abstract
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Turbulent boundary layer
	1.2 Backwards facing step
	1.3 Organized motion
	1.3.1 Flow control

	1.4 Goals

	2 Linear stability theory
	2.1 Derivation of the Orr-Sommerfeld equation
	2.2 Stability analysis
	2.2.1 Temporal stability analysis
	2.2.2 Spatial stability analysis

	2.3 Comments on the current application

	3 Experimental setup
	3.1 Data acquisition
	3.2 Acoustic forcing
	3.3 Static forcing
	3.3.1 Data processing


	4 Results
	4.1 Velocity mean and rms overview
	4.2 Boundary layer
	4.3 Shear layer
	4.3.1 Linear stability and comparison with forced shear layers


	5 Conclusions and future prospectives
	Bibliography
	A Other experimental configurations
	A.1 Velocity and rms profiles

	Folha de Registro do Documento

