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Abstract
In this master’s thesis, a novel sequential image generation

model based on Generative Adversarial Networks (GANs) is
proposed. Even though recent GAN-based approaches have
been successful in generating for example faces, birds, flow-
ers, street view images in a realistic manner, user control over
the image is still limited. The proposed approach generates
an image element-by-element (object-by-object) progressively
and improves the controllability of the image generation pro-
cess explicitly through an element-specific latent vector. Also,
it improves the controllability by resolving affine transfor-
mation and occlusion issues existing conditional GANs mod-
els have. Experiments are carried out on the subset of the
challenging and diverse MS-COCO dataset and the proposed
model is compared with the state-of-the-art baselines. Both
qualitative and quantitative results are provided to show the
strength and the advantages of the proposed model.

1. Introduction

Image generation is an interesting problem in computer vi-
sion and machine learning. There has been huge progress
in this research area after Generative Adversarial Networks
(GANs) are introduced by Goodfellow et al. [1]. Recently,
many GAN-based approaches have been proposed to gen-
erate photo-realistic natural images. Even though these ap-
proaches can generate very realistic images in some domains
e.g face [52], birds images [50], generating complex scene
images such as street view images is a still difficult problem.
Because those images consist of many structural information
and constraints but current models have an issue with geo-
metric and structural patterns as pointed out in [48]. Some
previous works based on conditional GANs e.g [21], [13],
[14] have achieved to synthesize very complex images such
as Cityscapes street images [49], or ADE20K scene images
[51] by using the semantic layout as a prior knowledge to a
model. This kind of supervision also increases the control-
lability of the image generation as it allows a user to control
the scene layout. However, these existing models still have
a fundamental limitation on control over the generated scene.
Controllability over the elements of a scene e.g a specific ob-
ject is quite hard since a single entangled latent vector is used
for the entire scene and altering this vector usually makes a
change in the entire scene. So, for instance, it is very hard
to specify or edit a specific object color in the scene while
keeping the rest of the image the same. The affine transforma-

Figure 1: Example images generated by the state-of-the-art
models and the proposed sequential model. The images are
generated from the given semantic layout map that consists of
four zebras. Pix2pix and Pix2pix++ generate a lot of artifacts
and struggle to generate a realistic image while the proposed
model can generate step-by-step a more realistic image.

tion issue is another drawback of the current conditional GAN
models. Altering an object’s position (or scale, rotation) in the
image usually causes changes in other parts in the image. This
feature would not be desirable for some applications such as
an interior design application. For instance, when the user
designs a bedroom, he/she may want to change the armchair
position in the image while keeping the rest of the scene ex-
actly the same; however, these conventional models may not
allow the user to do this. In addition to those limitations, the
occlusion is a problem because of the compact semantic map
representation. When the object is occluded by another ob-
ject or even sometimes when they are close each other, these
models produce artifacts for instance, in some cases, they ig-
nore the occluded object, merge them into a single object or
produce meaningless objects. (See Figure 1.).

For many automatic image generation applications es-
pecially for the interactive applications, these kinds of
element/object-level control mechanism would be very ben-
eficial. The purpose of this master’s thesis is to study
element/object-level control and improve the controllability
of the image generation process using GANs. The main re-
search question for this work is twofold: (1) Can we gener-
ate an image in a realistic manner with a disentangled control
over each foreground object and the background of the scene?
(2) Can we generate higher quality and more diverse images
compared to state-of-the-art GAN-based methods?
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In order to realize a model that has a separate control mech-
anism over the elements of an image, a sequential image gen-
eration model is proposed. The proposed model adopts the
layered structure modeling for images that is described in Sec-
tion 2.7 and generates an image step-by-step starting with the
background of the scene and forms the scene progressively
by putting a single foreground object at each step. At each
time step, a user has a control over an element through a
specific latent vector. The generation process is similar to
landscape painting where the painter usually first draws the
general structure of the scene e.g background and then draws
the smaller details e.g foreground objects one-by-one. So this
kind of sequential scheme in an incremental fashion is a quite
natural way of generating an image. The other motivation for
generating an image step-by-step is to break down the genera-
tion problem into a sequence of easier problems and therefore
to have a smaller task to deal with at each step.

The contributions of this work are the following:

• A new sequential image generation model is proposed
which allows a user element/object-level control during
the generation process.

• The proposed approach resolves the occlusion artifacts
of the existing conditional GAN models.

• Also, it improves image quality and diversity.

This thesis is structured as follows. Preliminaries and
closely related works are provided in Section 2 and 3, respec-
tively. In Section 4, the proposed method is described in de-
tail. Experimental setups and both qualitative and quantitative
results are given in Section 5 and the limitation of the method
is discussed in Section 6. Finally, the conclusion is drawn and
possible future research direction is pointed out in Section 7.

2. Background
2.1. Deep Generative Models

Let us assume that the data we have X = {x(i)}, where
i = 1, ..., N , consisting of N samples comes from some un-
known distribution Preal. Generative models can be simply
considered as any model that takes the data X (i.e training
data) and learns to represent an estimate of that distribution.
The result is a probability distribution Pmodel. Some mod-
els estimate Pmodel explicitly; for instance through maximum
likelihood estimation (MLE). In that case, the objective of the
MLE is

arg max
θ∈Rd

1

N

N∑
i=1

logPθ(x(i)) (1)

where θ are the model parameters. The other models learn
to sample from Pmodel with or without explicitly defining it.

Images are highly complex data; for instance, even very
small-sized images; let’s say 32-by-32 pixels RGB image
lives in 32x32x3 = 3072-dimensional space and contains
32x32x3x8 = 24576-bits information, so it is quite challeng-
ing to estimate the probability distribution of this kind of com-
plex data. Fortunately, recent advancements in deep learning

techniques make this feasible and recent generative models
have achieved great success in image synthesis tasks. These
tasks span image generation from scratch, image-to-image
translation, colorization, image super-resolution, image com-
pletion/inpainting and so on.

Three popular examples of generative models are: Autore-
gressive models (e.g PixelRNN [27], PixelCNN [28]), Varia-
tional Autoencoders (VAEs) [10] and Generative Adveserial
Networks (GANs) [1]. PixelRNN/CNN are explicit density
models which use chain rule to decompose likelihood of an
image x into a product of 1-d distributions:

Pθ(x) =

n∏
i=1

Pθ(xi|x1, x2, ..., xi−1) (2)

where P (xi|x1, x2, ..., xi−1) is the probability of ith pixel
value given all previous pixels and P (x) is the likelihood of
image x which is computationally tractable. Then, they max-
imize likelihood of training data (Equation (1)). The advan-
tages of this approach is that it can explicity compute likeli-
hood, P (x) and generate good samples; the disadvantage is
that it is slow due to the sequential generation.

In VAEs, it is assumed that data are generated by some
random process, involving an unobserved continuous random
variable z which is unknown. The process consists of two
steps: (1) a value z(i) is generated from some prior distribu-
tion Pθ∗(z); (2) a value x(i) is generated from some condi-
tional distribution Pθ∗(x|z) so the likelihood is:

Pθ(x) =

∫
Pθ(x|z)Pθ(z)dz (3)

Unfortunately, this likelihood is computationally in-
tractable; therefore, instead of directly maximizing log-
likelihood, the lower bound on log-likelihood that is compu-
tationally tractable is derived and optimized.

L(x; θ) ≤ logPθ(x) (4)

The advantages of VAEs are that they have a nice proba-
bilistic formulation and allow inference of P (z|x) which can
be useful representation for other tasks. The main disadvan-
tages of VAEs are the gap between L and the true likelihood
can result in Pmodel learning something other than the true
data distribution, Preal [11] and secondly, they generate blur-
rier and lower quality samples compared to GANs.

Unlike previous approaches, GANs learn to sample from
real data distribution, Preal without dealing with any explicit
density function (Pmodel is defined implicitly.). Because there
is no easy way to sample from high dimensional, complex real
data distribution, they first sample from a simple distribution
(random noise e.g multivariate Gaussian) and learn the trans-
formation to real distribution. More details are given in the
next section. The advantage of GANs is that they can gener-
ate very sharp, high-quality samples. The main disadvantage
of GANs is the training instability which will be discussed in
Section 2.5.
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2.2. Generative Adversarial Networks

Generative adversarial networks are based on a game-
theoretic scenario in which the generative model competes
against an adversary. The generative model directly pro-
duces samples x = G(z; θG). Its adversary, the discriminative
model, attempts to distinguish between samples drawn from
the training dataset (real samples) and samples produced by
the generative model (fake samples). The discriminator pro-
duces a probability for a given sample, D(x; θD) which rep-
resents the likeliness of being real.

In the original article, the following analogy is given to
explain the generative adversarial network framework more
intuitively. The generative model is a team of counterfeiters,
trying to produce fake currency and use it without detection,
while the discriminative model is analogous to the police, try-
ing to detect the counterfeit currency. Competition in this
game drives both teams to improve their methods until the
counterfeits are indistinguishable from the genuine articles.

The learning in generative adversarial networks is for-
mulated as a two-player minimax game with value function
V (G,D). Discriminator tries to maximize the value; in con-
trast, the generator tries to minimize the value.

G∗ = arg min
G

max
D

V (G,D) (5)

V (G,D) = Ex∼Preal(x)[logD(x)]+Ez∼Pz(z)[log(1−D(G(z)))]
(6)

This drives the discriminator to attempt to learn to correctly
classify samples as real or fake. Simultaneously, the genera-
tor attempts to fool the classifier into believing its samples
are real. At convergence, the generators samples are indistin-
guishable from real data, and the discriminator’s output is 1

2
everywhere; this means Pmodel = Preal. This minimax game
has a global optimum for Pmodel = Preal; see the original
article [1] for the theoretical proof.
G and D are differentiable functions with respect to their

parameters (θG and θD respectively) and their inputs (z and x
respectively). They are typically represented by deep neural
networks. Generator, G maps noise vector, z which lives in
low dimensional space, Z (it is usually called latent space
and its typical dimension is 100 or 128.) to an image that
lives in higher dimensional image space, X (G : Z → X ). z
is sampled from a simple prior distribution such as Gaussian
or uniform distributions. Discriminator, D takes an image,
x (both real and fake samples) as an input and produces a
probability of being real, as an output (D : X → [0, 1]).

Training Process

The value function of the minimax game, V (G,D) is used
as a loss function (called adversarial loss) and parameters of
G and D are optimized simultaneously using backpropaga-
tion algorithm. The training alternates between following two
main steps (m is mini-batch size.).

• Update the discriminator, D by gradient ascend

∇θD
1

m

m∑
i=1

[log(D(x)) + log(1−D(G(z)))]

• Update the generator, G by gradient descend

∇θG
1

m

m∑
i=1

log(1−D(G(z)))

In practice, the second step is replaced with gradient as-
cend of ∇θG 1

m

∑m
i=1 log(D(G(z))). This is because in the

early stage of the training D can discriminate real and fake
samples easily because they are quite different. In that case,
log(1 − D(G(z))) saturates when D(G(z)) goes to zero so
log(D(G(z)) provides a stronger gradient for the generator.

2.3. Conditional Generative Adversarial Networks

Conditional GANs [3] are an extension to the original
model. In this case, both the generator and discriminator are
conditioned on some extra information, y. y could be any
kind of auxiliary information, such as class labels, semantic
maps or data from other modalities. This conditioning can be
done by putting y as additional inputs to both the generator
and discriminator. In this case, value function can be written
as follows.

(7)
V (G,D) = Ex,y∼Preal(x,y)[logD(x, y)]

+ Ez∼Pz(z),y∼Py(y)[log(1−D(G(z, y), y))]

2.4. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [47] are a type of
artificial neural networks for processing data that has a known
grid-like topology (e.g image, time-series data). They have
proven to be very effective for many challenging computer vi-
sion problems; for instance image classification, object detec-
tion, and semantic segmentation. Unlike feedforward neural
networks (i.e multilayer perceptrons) there are two important
concepts adopted by CNNs: (1) sparse connectivity (interac-
tions) and (2) weight sharing. Sparse connectivity refers to
the inputs of any neuron in the ith layer comes from a small
subset of neurons in the (i − 1)th layer. It reduces memory
needs and computations as well as allows CNNs to exploit lo-
cal correlations in data (e.g edges and blobs in the image). In
CNNs rather than learning a separate set of parameters for ev-
ery location, only one set is learned and applied for every loca-
tion. This increases learning efficiency by reducing the num-
ber of parameters being learned significantly and achieves a
translation-invariant capturing of patterns. Backpropagation
algorithm can still be used to learn such shared parameters.

Convolution vs Transposed Convolution Operations

Convolution is the main operation in CNNs. A feature map is
computed from an image (or the previous feature map) using
this operation:
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(8)F (i, j) =
∑
m

∑
n

x(i+m, j + n)K(m,n)

where F is the output feature map, x is the input (image
or the previous feature map) and K is a kernel (weight ma-
trix). Convolution maps from an input space to a feature space
and transposed convolution (a.k.a. fractionally-strided convo-
lution, deconvolution) is another operation that allows us to
go the other way around, map from a feature space to an in-
put space. It is quite useful for image generation tasks. We
can simply consider that it enlarges the feature map in spatial
dimensions by first contaminating the input with zeros (See
[39] for better and detailed explanation.). These operations
for a 2D image are illustrated in Figure 2.

Figure 2: Left images: Convolution operations (for i, j =
0, 0 and i, j = 0, 1) on 5x5 image (blue) using 3x3 kernel
(gray), the output feature map is 5x5 (green). Right images:
Deconvolution operations (for i, j = 0, 0 and i, j = 0, 1) on
3x3 image (blue) using 3x3 kernel (gray), the output feature
map is 5x5 (green). White grids in inputs are zeros padded.
Courtesy Dumoulin et al. [39].

2.5. Deep Convolutional GANs (DCGAN)

DCGAN that is introduced by Radford et al. [2] makes
generating high-quality images using GANs feasible. It is one
of the most popular types of GAN used in literature. Convolu-
tional neural networks are used in place of the multi-layer per-
ceptrons and several architectural constraints are introduced.
The discriminator has standard CNN architecture and the gen-
erator has transposed convolutional layers instead of convo-
lutional layers; therefore, the representation at each layer of
the generator is successively larger, as it maps from a low-
dimensional noise vector to a high-dimensional image. The
architectural constraints are: (1) replacing any pooling layers
with strided convolutions for the discriminator and transposed
convolutions for the generator, (2) using batch normalization
layer in both the generator and the discriminator, (3) remov-
ing fully connected hidden layers, (4) using ReLU activation
in the generator for all layers except for the output which uses
Tanh and LeakyReLU activation in the discriminator for all
layers.

2.6. Stability of GAN Training

Training GANs requires finding the Nash equilibrium of a
minimax game described in Section 2.2 and it is a more dif-
ficult problem than optimizing a pre-defined fixed objective
function as pointed out in [11]. Their training is unstable and

requires a lot of tricks and choosing suitable hyper-parameters
to get reasonable results. The other main issue about GANs
is the mode collapse. In this case, the generator only out-
puts samples from a small set of modes; in extreme case, it
could be even a single mode. This could happen because
the generator can find a way to fool the discriminator into
thinking that it is outputting realistic samples by generating
a single sharp sample. So it is a quite active research area to
stabilize the GANs‘ training and improving sample diversity
(handling mode collapse). In order to deal with these prob-
lems, some works proposed different learning objectives and
dynamics such as Wasserstein GAN [7], Least-square GAN
[8], Loss-sensitive GAN [9], Optimal Transport GAN [32],
Energy-based GAN [33], Unrolled GAN [34]. Some other
works such as DCGAN [2] (described in the previous sec-
tion) carefully design the network architectures. In addition to
them, several other useful tricks used in literature (e.g mini-
batch discrimination, feature matching, historical averaging)
are described in [35].

Spectral Normalization for GAN

Spectral normalization is a new regularization technique re-
cently proposed by Miyato et al. [4]. They argue that spectral
normalization makes the discriminator network training more
stable so in return, the generator receives a better gradient and
learn better and whole training process is more stable. Obser-
vations in the early experiments confirmed its effectiveness;
therefore, spectral normalization is applied to the discrimina-
tor networks. It simply normalizes network weights at each
layer by the spectral norm of the weight matrix at that layer
(Spectral norm of the matrix is equivalent to the largest sin-
gular value of the matrix.). Additional computational cost is
small since the power iteration method is used for estimating
the largest singular values of the matrices.

Feature Matching Loss

For image generation tasks, it is popular to add a reconstruc-
tion loss to an objective function in order to stabilize training
and obtain higher quality samples. In this case, the genera-
tor has two tasks: (1) fool the discriminator and (2) gener-
ate samples similar to training images. Previous works ([37],
[38]) showed that reconstruction loss in a feature space (called
feature matching loss) is more effective than in a pixel space.
The feature matching loss is used in the experiments. Early
experiments showed that it is also effective to learn class con-
ditioning. The feature matching loss for the model sample, x̂
is computed as follows.

(9)Lrec =
∑
l

||Φl(x̂)− Φl(x)||

where x is the corresponding training image (ground truth
image), Φl is the feature extracted from the lth layer of a
CNN. VGG-19 network [36] pre-trained on ImageNet dataset
[19] is used in the experiments.
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2.7. Layered-Structure Modeling for Images

It is natural to model the 2D image of the 3D world in a
layered structure in order to deal with a complex scene more
easily. This modeling is already used in GAN literature such
as in [5], [12] and in this work, the same idea is employed:
the background and each foreground object are described in a
separate layer. The image, x with the foreground object, f and
the background, b can be modelled as:

(10)x = f�m + b� (1−m)

where m is the foreground mask and � is an element-wise
multiplication.

3. Related Work
Image generation has been recently very active research

area in computer vision community. Some recent approaches
are based on auto-regressive models e.g [40], VAE e.g [41]
and GAN e.g [2], [5], [29], [13]. GAN-based models are more
popular compared to their competitors due to sampling effi-
ciency and high image quality in spite of their difficult train-
ing. In GAN literature, in order to control the generated im-
age somehow, various approaches have been proposed condi-
tioned on class label e.g [31], attribute vector e.g [26], text
description e.g [30], and semantic layout e.g [21] etc. Reed
et al. [42] proposed to learn to control the foreground ob-
ject position by conditioning on bounding-box and keypoint
coordinates. Karacan et al. [21] succeeded at synthesizing
realistic outdoor images from input semantic layout map and
attributes. Isola et al. [13] proposed conditional adversar-
ial networks as a general-purpose solution to image-to-image
translation problems; their model can generate an image from
the semantic layout map or the other way around, generating a
semantic layout map from the natural image. Hong et al. [22]
generates an image from text description. They have sepa-
rate models for mask and image generations; they first gener-
ate semantic layout map from input text description and then
generates the natural image from the semantic layout. These
approaches can control the scene content up to a certain level
but none of them can control different elements of the scene
e.g different objects separately. The proposed model is simi-
lar to these works, it generates the image from semantic layout
map; however, unlike these models, it can control every object
in the scene and the background separately.

The basic idea of generating images sequentially is that it
breaks down the original problem into a sequence of more
manageable stages. In literature, sequential image genera-
tion has been studied in different ways. Some models e.g.
[14], [29] generate images in course-to-fine fashion. Denton
et al. [43] introduced a sequential model that has a series of
generative models, each of which captures image structure at
a particular scale of a Laplacian pyramid while Zhang et al.
[29] improved the image quality by increasing image resolu-
tion with a two-stage GAN. Some models such as [5], [6], and
[12] generate images part-by-part in order to deal with smaller
problems at each generation step and disentangle the noise for

different parts of the image which allows us to control the dif-
ferent parts separately. However, there is no supervision in
these models; they are not conditioned on the semantic layout
map. Therefore, control over each part is limited to a noise
for that part. One drawback of these models is that genera-
tors do not necessarily learn to draw semantically meaningful
part of the image since each sub-model (generator) learns its
responsibility itself during training. For instance, for the face
images, one generator may learn to draw both eyes and the
background and the other one learns to draw the rest of the
face. Their qualitative results support this argument. This
issue can be resolved by appropriate supervision but even if
these models are supervised accordingly, they still have an
important limitation because their simultaneous or recurrent
learning procedures make the GANs training even more dif-
ficult. In these models, the number of the generation steps is
pre-defined and limited to 3 in their experiments. So they are
not suitable for generating complex images which consist of
an arbitrary number of parts.

Park et al. [44] quite recently introduced a new method
to learn to generate foreground object image by conditioning
on both the text description, the foreground object mask and
the given background image while preserving the background
image. This might be the most relevant work to the proposed
method. But the method is able to generate only a single fore-
ground object when the background image is provided.

The proposed method aims to improve the controllability
of image generation by adopting advantages of both condi-
tional GAN models and sequential models.

4. Methodology
4.1. Proposed Model

The proposed model is based on conditional GAN; it gen-
erates an image from a semantic layout map. The image is
generated step-by-step in an incremental fashion. It can be
formulated as following:

(11)x = G(zbg, z1, ..., zn,M1, ...,Mn)

where x is the generated image, G is the generator func-
tion, zbg is a noise vector associated with the background of
the scene, zi is the noise vector associated with ith foreground
object in the scene and Mi is the semantic layout map for the
ith foreground object. The proposed sequential model gen-
erates an image in n+1 steps where n is the number of fore-
ground objects in the scene:

Step 0:
(12)I0 = Gbg(zbg)

Step 1:
(13)I1 = G∗(I0, z1,M1)

Step i:
(14)Ii = G∗(Ii−1, zi,Mi)

Step n:
x = In = G∗(In−1, zn,Mn) (15)
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where Ii is the image generated at ith step. If we can model
G∗ as

(16)G∗(I, z,M) = I +Gfg(I, z,M)

then, equation (11) can be written as

x = G(zbg, z1, ..., zn,M1, ...,Mn)

= Gbg(zbg) +Gfg(I0, z1,M1) + ...+Gfg(In−1, zn,Mn)

(17)

Thus, if we can find such Gbg and G∗ functions; then,
we get a separate noise vector for each object and the
background. In the sequential generation process, at each
time step, we have an explicit control over the object which
is generated at that time step. However, control through the
noise is constrained by the image generated so far (previous
frame) since G∗ is conditioned on the previous frame. This
is a desirable feature because generated image should be
semantically meaningful; for instance, if the background is
dark, foreground object should not be shiny. So G* should
be aware of what has been generated so far and put the new
foreground object accordingly.

The proposed model consists of two generators: the back-
ground generator, Gbg and the foreground generator, G∗.
Generating process starts with generating the background im-
age, I0 by Gbg which takes a fixed-size noise vector, zbg as an
input and this image is fed to foreground generator, G∗. G∗

takes also fixed-size noise (z) vector and semantic layout map
(M) as an input. Then,G∗ generates I1 in a way that preserves
the background as much as possible while drawing the speci-
fied foreground object. This generation process continues un-
til all the objects are drawn. The task of G∗ is preserving the
previous image and adding the current foreground object. The
proposed image generation process is depicted in Figure 3.

Figure 3: The proposed sequential image generation model.
Gbg , G∗ are the background and foreground generators, re-
spectively.

4.2. Foreground Model Learning

In order to deal with the smaller problem at once, the
foreground and the background models are learned separately

Figure 4: The foreground model training procedure.

rather than simultaneously. For convenience, the G∗ function
is reformulated as following:

(18)G∗((1−M)� I, z,M) = (1−M)� I
+Gfg((1−M)� I, z,M)

Here � is a pixel-wise multiplication. In this formulation,
the foreground object generated by G∗ is constrained by the
scene outside the object mask which makes more sense be-
cause what previously drawn in the mask region is irrelevant
for the new foreground so that region should not constrain it.
This new formulation allows us to approach this problem as
an image inpainting, completion problem. So the foreground
model can be trained similar to GAN-based image inpainting
models e.g [45], [46] instead of recurrent training. During
training, real dataset images are used as an input to the gen-
erator. For each forward pass, one foreground in the dataset
image is randomly selected and used. Since dataset consists of
both images which comprise of single or multiple foreground
objects, this training procedure leads the generator to learn to
draw foreground object while reconstructing either only back-
ground or background with other foreground objects. The
foreground model, G∗ is trained in an adversarial scheme. So
there are two discriminators which are jointly trained withG∗.
The overall objective function is defined as follows.

(19)L = Lglobal + λlLlocal + λrLrec + λFMLFM

where Lglobal and Llocal are adversarial losses, Lrec is a
L2 reconstruction loss and LFM is a feature matching loss.
λ‘s are trade-off parameters that are determined emprically.

Lglobal = Ex∼pdata(x)[logDglobal(x,M)] + Ez∼pz(z)[log(1

−Dglobal(G((1−M)� x, z,M),M))]

(20)

where x is a ground-truth image associated with seman-
tic map, M. Lglobal encourages the generator to generate an
image looks like training images.

Llocal = Ex∼pdata(x)[logDlocal(S(x), S(M))]

+ Ez∼pz(z)[log(1

−Dlocal(S(G((1−M)� x, z,M)), S(M)))]

(21)
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Here S is a bi-linear function that crops the region of in-
terest (object bounding box) and interpolates in a fully differ-
entiable way. This loss encourages the generator to generate
foreground object looks like real foreground objects by focus-
ing only foreground region.

(22)Lrec = E[((1−BB)� (G((1−M)� x, z,M)− x))2]

Lrec encourages the generator to reconstruct the input
image outside bounding-box, BB. The idea for using a
bounding-box, BB instead of a mask, M is to give the gen-
erator, G∗ more flexibility to modify the surrounding of the
object accordingly. Lastly, LFM is a feature matching loss
used for stabilizing the training which is explained in Section
2.6. The training procedure is depicted in Figure 4.

The foreground generator design is inspired from text-to-
image models such as [30] and [22]. The main difference is
that the previous frame is encoded instead of text embedding.
Propagating the noise vector z to the output more, features
come from z are concatenated in another intermediate layer
in the network; a similar technique is used in [53]. Besides,
‘U-Net’[55]-like skip connection is added for the feature map
obtained from the previous image. It is useful for reconstruct-
ing the previous image. The foreground generator architecture
is illustrated in Figure 5.

Figure 5: The foreground model network architecture. It gen-
erates an image by conditioning on both the previously gen-
erated image and the semantic layout map of the foreground
object.

4.3. Background Model Learning

The purpose of the background model is to learn to gener-
ate background image (without any foreground objects) sim-
ilar to backgrounds of the training images. Because, the real
background images are not provided separately, the simple
trick in the generator architecture is done in order to learn the
background model in a classical GAN training scheme. The
background model is conditioned on semantic layout map and
it has two branches: (1) the first branch maps the noise vec-
tor to the background feature map and it is further processed
to output xbg , the background image without any foreground
objects. (2) The second branch maps the semantic layout map
to another feature map and it is concatenated with background

features then, they are further processed to generate x, the nor-
mal image with foreground objects which is similar to dataset
images. The model architecture is illustrated in Figure 6. The
overall training objective is defined as follows.

(23)L = Lglobal + λrLrec + λFMLFM

where Lglobal is an adveserial loss as given in equation
(20); however, in this case, M is a semantic layout map for
the entire scene instead of a single foreground object. The lo-
cal discriminator is not used for the backgroud model. Lrec is
a reconstraction loss:

(24)Lrec = E[((1−M)� (xbg − x))2]

This loss encourages xbg to be similar to x but without the
foreground objects. LFM is a feature matching loss same as
the one in the equation (19).

During test time, the second branch of the generator can be
discarded.

Figure 6: The background model network architecture. It gen-
erates two images: (1) the background image, (2) the normal
image (background+foreground) that is conditioned on the se-
mantic layout map.

5. Experiments & Results
5.1. Dataset

Microsoft Common Objects in Context (MS COCO)
dataset[16] is used to evaluate the model performance. The
dataset contains 164K training images over 80 semantic
classes. Images are annotated with (foreground) object se-
mantic masks and bounding boxes as well as 5 image cap-
tions. The dataset is very diverse and complex that contains
images of multiple objects in natural environments and var-
ied viewpoints. To ease the problem, semantically related 6
classes are chosen: Cow, sheep, giraffe, zebra, bear, and ele-
phant. These classes have similar background image distribu-
tion and there are approximately 11K images in total for these
classes.

5.2. Baseline

The proposed method is compared against three different
baselines both quantitatively and qualitatively. All baseline
models are non-sequential; they generate images at once.
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5.2.1 Standard CNN

The first baseline is a standard CNN model which translates
a semantic layout into a natural image. This model is trained
without GAN loss; only L1 reconstruction loss is minimized
during training. So it is a deterministic model which basi-
cally learns this mapping by heart without any stochasticity.
There is no discriminator used during training, everything else
(e.g. generator architecture, hyper-parameters) are the same
as Pix2pix which is described in the next section. The pur-
pose of this baseline model is to emphasize the correlation
between the qualitative and quantitative results.

5.2.2 Pix2pix

In literature, Pix2pix [13] is considered as the state of the
art baseline for the image-to-image translation problem (The
problem in this work is the semantic map to natural image
translation.); therefore, Pix2pix is adopted as the baseline
model. It is a conventional GAN model which is conditioned
to a semantic layout. In order to stabilize the training, the L1
reconstruction loss is utilized. The one of the most important
issue about this model is that the stochasticity is very limited,
the noise is provided only in the form of dropout, applied on
several layers of the generator at both training and test time.
The model is trained exactly the same as described in the ar-
ticle [13].

5.2.3 Pix2pix++

In the proposed sequential model, the generator and the dis-
criminator architectures and also the training tricks differ
compared to Pix2pix. To emphasize the advantage of the se-
quential model more, another baseline (called Pix2pix++) is
used as well. Pix2pix++ is a conventional GAN model which
conditioned to a semantic layout similar to Pix2pix. However,
in this case, the same discriminator networks and the similar
generator network with the sequential case are used. Also,
exactly the same training tricks (e.g. spectral normalization,
feature matching loss) and hyper-parameters are used during
training.

5.3. Evaluation Metrics

Experimental results are presented in terms of Frechet In-
ception Distance (FID) and the sementic segmentation accu-
racy.

5.3.1 Frechet Inception Distance (FID)

FID is a recently proposed metric by Heusel et al.[17] which
measures the distance between two different image data dis-
tribution (real image dataset vs generated image dataset) in
feature space. [17] empirically shows that FID is consistent
with human judgment in terms of visual fidelity and with
increasing disturbances (e.g Gaussian noise, salt and pepper
noise, Gaussian blur, swirl, black rectangles). In default set-
tings, it extracts 2048-dimensional features from Inception V3

Method FID
Standard CNN 120.7
Pix2pix 34.0
Pix2pix++ 24.0
Sequential (proposed) 28.7
Sequential (Bg from Pix2pix++) 23.2

Table 1: Quantitative evaluation results: Frechet Inception
Distance (FID). Lower score means generated image samples
are similar to real images in terms of visual quality and con-
tent. Bg stands for background.

network[18] pre-trained on ImageNet dataset[19] (3th max-
pooling layer is used.). It assumes that features are of mul-
tivariate Gaussian distribution. The Frechet distance[23] be-
tween these two Gaussian distributions is then used to quan-
tify the quality of generated samples as given by the following
formula.

d(p1, p2) = ||m1 −m2||2 + Tr(C1 + C2 − 2(C1C2)1/2)

(25)

Here mi is a mean and Ci is a co-variance matrix
of the observed distribution, pi. In the extreme case,
limp1→p2 d(p1, p2) = 0. Intiutively, FID is lower, if gen-
erated image samples are similar to real images in terms of
visual quality and semantic content.

5.3.2 Semantic Segmentation Accuracy

Semantic segmentation accuracy is a recently used measure to
estimate the synthesized image quality (e.g. used in [13], [14],
[15]). The intuition is that if the generated image is realistic;
then, an off-the-shelf semantic segmentation model should
be able to segment the image correctly. In this work, deep
learning semantic segmentation model, Deeplab [25] which
is pre-trained on MS-COCO dataset is used as a segmenta-
tion model. Intersection-over-Union (IoU) is used to evalu-
ate the segmentation performance. The IoU is the standard
performance measure that is commonly used for the semantic
segmentation problem. Given a predicted and ground-truth
semantic maps, the IoU score gives the similarity between
the predicted region and the ground-truth region for an object
present in the image. It is defined as the size of the intersection
divided by the union of the two regions. The IoU score is high
if the semantic segmentation model prediction is accurate.

5.4. Experimental Setup

5.4.1 Experimental Objectives

The main purpose of the experiment is to show that if the
proposed sequential model can generate an image similar to
dataset images in an incremental fashion (object-by-object)
and if there is an improvement in user control over the gen-
erated image. In order to evaluate that generated images are
similar to dataset images, FID score that is described in the
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Mean IoU Mean IoU
Method Training-set Validation-set
Standard CNN 0.298 0.272
Pix2pix 0.504 0.480
Pix2pix++ 0.608 0.605
Sequential (proposed) 0.650 0.650
Ground-truth 0.803 0.770

Table 2: Quantitative evaluation results: Semantic seg-
mentation performance, Mean IoU (Intersection-over-Union).
Ground-truth corresponds to model performance on the real
dataset images, so it can be considered as an upper bound.

Section 5.3.1 is computed and compared with the baseline
cases. Qualitative results are provided to illustrate the im-
provement in the user control (both the control through the
disentangled noise and the control on the affine transforma-
tion of the object mask). The second purpose of the exper-
iment is to evaluate if the sequential model generates better
quality and more diverse images compared to conventional
GAN models. To evaluate the quality and diversity, FID and
mean IoU scores are computed and compared with the base-
line cases as well as qualitative results are provided. Another
purpose of the experiment is to evaluate whether the sequen-
tial model can deal with occlusion and near objects better
compared to the baseline model. Qualitative results are pro-
vided to assess that, too.

Figure 7: Qualitative results: 128x128 example images gen-
erated sequentialy in 3 steps by the proposed model. Object
classes are giraffe, bear, elephant, sheep, cow and zebra, cow,
elephant, respectively.

5.4.2 Experimental Pipeline

The proposed sequential model has two sub-models: the back-
ground generator and the foreground generator. These models
are trained separately. During the test time, the baseline gen-
erators take the entire semantic map as an input and generate

Figure 8: Qualitative results: 128x128 example images
generated by different models using train-set object masks.
Ground-truth corresponds to real dataset images.

Figure 9: Qualitative results: 128x128 example images gen-
erated by different models using validation-set object masks.

an image. In the sequential case, first, the background is gen-
erated and the foreground objects are generated one-by-one
in a random order until all the foreground objects are drawn.
There is no user observation and control in this process. Af-
terward, FID and the mean IoU scores are computed using the
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10K images. According to [54], 10K is a reasonable number
for FID score. In order to have an idea about models’ general-
ization performances, mean IoU scores are also computed on
the images generated from the validation-set masks (contains
450 images).

5.4.3 Training Details

For the proposed sequential model and the Pix2pix++, the
Adam optimizer [20] with β1 = 0 and β2 = 0.9 are used for
training. By default, the learning rate both for the discrimina-
tors and the generator is 0.0002. The learning rate is decayed
to 1

2 of its previous value every 80 epochs. All the models are
trained for 480 epochs. The parameters of the generators are
updated once in every 5 discriminators’ updates. The trade-
off parameters in the loss function given in the equation (19)
are set λl = 0.1, λr = 0.00001, λFM = 1 and in the equation
(23) λr = 100, λFM = 1. All the implementation are done
using Pytorch deep learning framework [24]. The code will be
available at: https://github.com/0zgur0/scene_
generation_using_GANs

5.4.4 Expected Outcomes

As a result of the experiment, for the sequential model, higher
mean IoU score is expected since the improvement in the im-
age quality is expected. Because in the experiment, images
are generated without any user observation and control, it is
possible that the sequential model generates an image which is
not similar to dataset images e.g it might even be flying sheep.
So this might cause higher FID score. Even though there is an
improvement in the image quality, FID score might be higher
for the sequential model. But still, similar FID scores are ex-
pected for the sequential model and Pix2pix++. Higher image
diversity is expected since the sequential model has more flex-
ibility and stochasticity. The sequential model should improve
the user control over the scene as well as deal with occlusion
and the near objects better.

5.5. Quantitative Results

FID scores for the baseline models and the proposed model
are given in Table 1. For a better interpretation, FID score is
computed for images that are created by copying foreground
objects from the image generated by the sequential model and
pasting on the corresponding image generated by Pix2pix++.
So these images are more similar to training images in terms
of content (This guarantees that there are no flying sheep etc.);
however, boundary artifacts occur due to copy-paste process
which causes higher FID, too. Pix2pix++ achieves better FID
score, 24.0 then the proposed model does (28.7); however,
images generated by copy-paste give the best FID score, 23.2
in spite of boundary artifacts. Mean IoU scores are given in
Table 2. It is computed for the real dataset images (ground-
truth) as well, so the corresponding scores can be considered
as an upper bound for mean IoU. The best scores are achieved
by the proposed model with a significant difference.

5.6. Qualitative Results

Various qualitative results are presented in order to show
the strength and the advantage of the proposed model. The
original size of the images is 128x128 pixels. In Figure 7,
the sequential generation process is illustrated in 3 steps. The
generation process is not limited to 3 steps, it is chosen just for
convenience. Some example images generated by the base-
line models and the proposed model are given in Figure 8 and
9 to emphasize the quality and the diversity. The enhance-
ments in the user control are shown in Figure 10 and 11. In
Figure 10, images are generated in 2 steps. For each sub-
set of images, the latent (noise) vector at the first step (It de-
termines the background.) is identical and the second latent
vector (It determines the foreground.) is different; therefore,
these images should have the same backgrounds and the dif-
ferent foregrounds. This is the results that show explicit user
control through an object-specific latent vector. In Figure 11,
the baseline model (Pix2pix++) and the proposed model re-
sponses are compared when the user transforms (translation,
rotation, scaling) the input object mask (Same noise vector is
used for each subset of images.). Finally, the behaviors of the
near objects and the occlusion are compared in Figure 12.

Figure 10: Qualitative results: 128x128 example images gen-
erated sequentialy in 2 steps. For each consecutive three im-
ages, the latent vector for the background is identical and the
one for the foreground is different so they should have the
same backgrounds and the different foregrounds.

5.7. Analysis

The sequential model achieves similar FID score with the
strong baselines, Pix2pix and Pix2pix++. This shows that the
proposed sequential model learns to generate images faith-
fully as the conventional models do; at the same time, it pro-
vides more user control compared to conventional models.
Mean IoU scores, FID score for the data created by copy-paste
(23.2) and the qualitative results suggest that the sequential
model improves the image quality. Although the image qual-
ity is higher, FID score is worse for the sequential model com-
pared to Pix2pix++. Probably, the reason is the fact that the
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Figure 11: Qualitative results: The affine transformation be-
haviors of the proposed model (Sequential) and the baseline
model (Pix2pix++). The same latent vectors are used for each
consecutive three images.

Figure 12: Qualitative results: The occlusion and the near
objects behaviors of the proposed model (Sequential) and the
baseline model (Pix2pix++). The same latent vectors are used
for the images at the same column.

sequential model can generate images out of the training data
distribution. So this result supports that the sequential model
also increases the diversity.

The proposed model also contributes to the controllabil-
ity by resolving the affine transformation issue conventional
models have. If you examine the Figure 11 carefully, even
when the object is translated a little, both the foreground and
the background is changed for Pix2pix++. In contrast, for the
sequential model only small changes occur in the foreground.
When the object is rotated, the change in the background can

be very severe; it can even replace the part of the sky with the
ground. Apparently, the conventional model learns the corre-
lation between the ground and the legs of the zebra and when
the zebra is rotated, it confuses and draws a meaningless im-
age. Moreover, the proposed model resolves the occlusion
issue. Figure 12 compares the responses of the baseline and
the proposed models when the object masks get closer. In the
giraffe example, when the masks get closer (second row), the
colors of the giraffes become similar in the Pix2pix++ case.
When they touch each other slightly (third row), Pix2pix++
merges giraffes and draws continuous pattern. In the full oc-
clusion case (fourth row), it draws a giraffe with two heads. In
the zebra example, when the masks touch each other slightly
(second row), Pix2pix++ splits the zebras at the wrong place.
In the full occlusion case (fourth row), the only single zebra
is drawn. Those artifacts are not occurred in the proposed
model.

6. Discussion
The proposed sequential image generation approach can be

applied in different image generation tasks and on different
datasets. However, the learning scheme adopted in this work
assumes that dataset images have a background and a couple
of foreground objects. Some of them have single and some of
them have multiple foreground objects. Therefore, this model
can not be applied directly on any dataset which has a seman-
tic annotation. In order to adopt this approach for the dataset
which has a dense semantic annotation e.g Cityscapes dataset
[49], the learning scheme needs to be modified.

7. Conclusion
In this master’s thesis, a novel sequential image genera-

tion model based on Generative Adversarial Networks is pro-
posed. This model adopts the layered structure modeling for
images and generates an image step-by-step starting with the
background of the scene and forms the scene progressively
by putting a single foreground object at each step. The pro-
posed approach improves the controllability of the image gen-
eration process through a element/object-level control mech-
anism. The experimental results suggest that the sequential
generation scheme also improves the image quality and the
diversity. In addition to them, it is shown that it resolves the
occlusion artifacts of the existing conditional GAN models.
As a future work, the mask generation can be studied. The
current model requires an input mask but there are the only
limited amount of pre-defined masks. In order to improve
controllability over mask selection and to create a model that
can generate images from scratch or from input text descrip-
tion, the mask generator is needed.
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