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ABSTRACT 

The recent increase in wearable technology and their application in scientific studies 

as well as in everyday life is calling for new ways of analyzing the data retrieved. In a 

psychological framework the combination of wearables with automated analysis software 

could make real-time biofeedback significantly more accessible to health care professionals. 

The Massachusetts Institute for Technology has developed the EDA-Explorer, a tool which 

promises to relieve the often unskilled professional from manually finding peaks and 

disturbances - so called artifacts - in the data sets of laboratory and ambulatory research. 

This study aims to validate this tool by comparing its output against the ‘golden standard’ 

for electrodermal activity (EDA) analysis. In a laboratory experiment, participants were 

asked to complete three tasks that would stress-test the Empatica E4, a measurement 

device for electrodermal activity. Peak detection and the artifact rejection were then 

performed by both the EDA-Explorer and Ledalab and Visual Inspection respectively. The 

EDA-Explorer’s Through-To-Peak method for identifying peaks could be shown to be 

accurate to the point of outperforming both Ledalab’s Through-To-Peak and Compulsive-

Decomposition-Analysis method. For artifact rejection, it can be concluded that the EDA-

Explorer is still in the early stages of development and that it’s binary and multiclass 

method should not be used in an ambulatory setting. All findings are discussed on the 

background of ambulatory studies, contrasting alternative tooling and starting a discussion 

on how to define artifacts for electrodermal activity data analysis. Additionally, this paper 

offers a short summary of issues discovered in using the Empatica E4 as a measurement 

device. 



3 | P a g e  

 

Jan Hemmelmann – s1367552 

INDEX 
Abstract ......................................................................................................................................................................... 2 

Index .............................................................................................................................................................................. 3 

1. Introduction ............................................................................................................................................................... 5 

1.1 Electrodermal Activity ......................................................................................................................................... 6 

1.2 Skin Conductance Response (SCR) ...................................................................................................................... 6 

1.3 Problems with the analysis of EDA data ............................................................................................................. 7 

1.4 Wearable technologies and their application ..................................................................................................... 9 

1.5 Problems with wearable technologies in the realm of EDA .............................................................................. 10 

1.6 Artifact detection and rejection and the ‘state of the art’ ............................................................................... 11 

1.7 The EDA-Explorer .............................................................................................................................................. 13 

1.8 Scope and roadmap .......................................................................................................................................... 13 

1.9 Research Question & Hypothesis ...................................................................................................................... 14 

2. Method and Material............................................................................................................................................... 14 

2.1 Data collection .................................................................................................................................................. 14 

2.2 Materials ........................................................................................................................................................... 14 

2.3 Procedure .......................................................................................................................................................... 15 

2.4 Conversion and analysis .................................................................................................................................... 17 

2.5 Sample size ........................................................................................................................................................ 19 

3 Results ....................................................................................................................................................................... 20 

3.1 Peak detection .................................................................................................................................................. 20 

3.2 Artifact rejection ............................................................................................................................................... 24 

3.3 A systematic error report on the usability of the Empatica E4 ......................................................................... 28 

3.3.1 Failure of creating a proper EDA signal ..................................................................................................... 28 

3.3.2 Failure of export................................................................................................................................... 30 

3.3.3 Usability issues .......................................................................................................................................... 31 

4 Discussion ........................................................................................................................................................... 33 



4 | P a g e  

 

Jan Hemmelmann – s1367552 

4.1 Answer to the hypotheses ................................................................................................................................ 33 

4.2 Discuss findings in light of Alternative tooling .................................................................................................. 34 

4.3 Limitations ........................................................................................................................................................ 36 

4.4 Practical implications ........................................................................................................................................ 37 

5. References ............................................................................................................................................................... 39 

6. Appendix .................................................................................................................................................................. 41 

Appendix 1 – Instruction for the participant .......................................................................................................... 41 

Appendix 2 - Informed Consent .............................................................................................................................. 41 

Appendix 3 – Data set conversion........................................................................................................................... 43 

Appendix 4 – Data, scripts, graphs & more............................................................................................................. 57 

Appendix 5 – plotted EDA data sets........................................................................................................................ 57 

 



5 | P a g e  

 

Jan Hemmelmann – s1367552 

1. INTRODUCTION 

Accelerated progress in recent years in the realm of wearable technology has 

opened up novel opportunities for ambulatory studies concerned with human physiology. 

Nowadays, wearable sensors such as the Empatica E4 are enabling researchers to gain a 

unique insight into the emotional state of a participant or client at any given point in time 

and place (Callaway & Rozar, 2015; Mukhopadhyay, 2015). Specifically, the measurement of 

electro dermal activity (EDA), which is retrieved from measuring the skin conductance level 

(SCL) on the human skin, has for many years found use cases in applied research, 

psychotherapy and the evaluation and treatment of schizophrenia, depression and anxiety 

(Venables, 1977). From a psychological framework this cross between physiological 

measurements and portability introduces many new possibilities (such as longitudinal 

studies and real-time real-world monitoring) as well as challenges (such as disturbances and 

the amount of data produced) (Erçelebi, 2004; Kitipawang, Kakria, & Tripathi, 2015a; Taylor 

et al., 2015; Zhang, Haghdan, & Xu, 2017). The goal of this paper is to address these 

challenges and evaluate a technical solution designed to overcome them. 

Recently, the Massachusetts Institute of Technology published the first automatic 

artifact rejection tool for electrodermal activity data. This analysis tool is called the EDA-

Explorer (Taylor et al., 2017). The measurement of EDA-data over a long period of time in 

ambulatory scenarios generates a considerable amount of noise, also called artifacts. Visual 

inspection by a human analyzer is the ‘state of the art method’ for dealing with such 

artifacts (Benedek & Kaernbach, 2010; Kim, Bang, & Kim, 2014; Taylor et al., 2017). The 

automatic artifact rejection feature of the EDA-Explorer promises to process such data 

rapidly and automatically and thereby overcome this problematic gap. The aim of this study 

is to validate the quality of the automatic artifact rejection (and peak detection) of the EDA-

Explorer by comparing the Explorer’s automatic analysis options for parameter extraction 

and artifact rejection to the currently available ‘state of the art’ methods. 
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1.1 ELECTRODERMAL ACTIVITY 

Electrodermal activity or EDA can be described as autonomic, electrical variations on 

the surface of the human skin. Such variations can be caused by stressors, an increase or 

decrease in temperature (Wenger, 2003), or physical or mental efforts (such as running or 

mental problem solving), which lead to the perturbation of the ongoing regulatory activities 

of the sympathetic nervous system (SNS) (Dawson, Schell, Filion, & Berntson, 2015). The 

SNS causes a stimulation of the body’s sweat glands, also called sudomotor innervation. The 

result is perspiration and it is responsible for the electrical variations as mentioned above, 

which can be measured non-intrusively (Boucsein et al., 2012) and quantified by placing 

two electrodes apart from each other onto the skin and applying a small voltage. What is 

measured is the called Skin Conductance (SC), which in a general sense can be related to 

emotional arousal  (Boucsein, 2012), which makes SC data an interesting source of 

information in a clinical setting as well as in other fields of research. The unit of 

measurement is MicroSiemens (μS). General SC can be divided into the underlying Tonic 

Skin Conductance Level (SCL) and more rapid, Phasic Skin Conductance Responses (SCRs). 

SCL can be better understood as the level of skin conductance that is specific to the 

individual. It can be estimated by measuring a time interval of rest. SCRs are responses to 

external or internal stimuli, such as a sudden loud noise or disturbing thoughts, that cause 

sudomotor innervation by the SNS. 

1.2 SKIN CONDUCTANCE RESPONSE (SCR) 

Research is interested in SCRs largely because they are thought to be the most direct 

representation of sudomotor activity, which is directly linked to the SNS. The link between 

sudomotor activity and SCRs however does not transfer one to one. In the following, this 

paper will describe a common single SCR shape and then addresses possible issues with 

laying the link between physiology and what can be seen as SCRs on the graph. 
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FIGURE 1 – A TYPICAL SKIN CONDUCTANCE RESPONSE 

As described in Figure 1, a SCR can follow shortly after a certain stimulus (such as a 

sudden loud noise). The time between stimulus onset and response onset is described as 

latency and lasts for roughly 1-5 seconds (Boucsein, 2012.; iMotions, 2016). After a quick 

rise time, the signal reaches its peak which appears at the moment where the SCR arrives 

on its highest amplitude. After the peak, the amplitude slowly returns to its original state. 

The time of this process is also called recovery time. In a stressful situation, SCRs can occur 

frequently and sometimes quickly after one another (Macefield & Wallin, 1996). In such a 

case, superposition of SCRs occurs, when the next SCR starts before the last one had time to 

fully recover. 

1.3 PROBLEMS WITH THE ANALYSIS OF EDA DATA 

There are a few obstacles when trying to make sense of the raw data retrieved by 

measuring electrodermal activity. The amplitude of SC at a certain point in time is the only 

information that a raw EDA data set contains. In order to make a statement, for example, of 

the physiological level of a participant in a study on anger management, the data has to be 

translated and visualized into meaningful information. 
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First, SCRs never start at zero. As mentioned before, every person also has a 

different SCL depending on for example their skin type, or the temperature in the lab, 

meaning that the SCRs in which the researcher might be interested in start from this 

specific tonic amplitude. In order to come to a valid estimation of the onset and amplitude 

of a single response, SCL needs to be taken into account.  

Second, superposition or the stacking up of SCRs before the signal has fully 

recovered to its original state is a prominent research topic because it holds the potential of 

contaminating the data set, which can result in researchers and clinical staff to come to 

wrong assumptions about certain responses. Neglecting the effect of superposition, would 

frequently result in an underestimation of the amplitude of the following SCRs (Benedek & 

Kaernbach, 2010). Commonly, the through-to-peak or TTP method is used for peak 

detection. However, TTP does not account for superposition, which occurs when a new SCR 

starts while the relaxation periode of the previous SCR has not yet finished. In order to 

achieve a proper estimation of amplitude, research identifies methods for correcting the 

effects of superposition. The decomposition method by means of deconvolution was one of 

the first attempts to get closer to the ‘real’ skin conductance level by estimating the 

sudomotor activity by using an Impulse Response Function (IRF), which was meant to 

represent the ‘personal shape of a SCR’ (Benedek, 2011; Greco, Velenza, & Scilingo, 2016). 

The problem with this method is that it assumes a single SCR to be representative enough 

for the estimation of SMNA throughout the entire data set. One problem with this 

approach is the fact that there might not be a single, ‘clean’ SCR that can be retrieved from 

the data set. Another problem is that it was shown that the shape of a SCR can vary greatly. 

Breault and Ducharme (1993) show, that inter-individual differences as well as intra-

individual differences in SCR rise-time and recovery-time can occur frequently. Recently 

Benedek and Kaernbach (2010) introduced the decomposition of SC data by means of 

nonnegative deconvolution. This method promises to solve the problem of superposition 

and individual differences and to properly estimate the amplitude of SCRs which can then 

be linked to the underlying sudomotor nerve bursts. This methodology is also implemented 
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and extended by the Continuous Decomposition Analysis (CDA), which now serves as the 

golden standard for peak detection in EDA data. 

Analysis tools for electro dermal activity implement computer algorithms that 

automatically (but progressively time consuming with the length of the data set) calculate 

amplitudes according to the knowledge about superposition. A frequently used analysis 

tool for peak detection in EDA data is Ledalab. CDA is accessible via the Ledalab software 

(“Ledalab Software,” 2016). For the purpose of this study and because of its wide 

application and years of research and intensive documentation, LEDALAB is considered the 

golden standard for peak detection. It should be noted though, that research should never 

solely rely on automated tooling. A visual inspection of the data set should always be 

performed in order to further support the results retrieved from automated tooling. 

1.4 WEARABLE TECHNOLOGIES AND THEIR APPLICATION 

In recent years wearable technologies have started spreading greatly into everyday 

life. The measurement of heart rate, footsteps and calorie burn has become drastically 

easier because of wearables, but also a wide variety of informational services recently 

experienced a shift from the smart phone to the smart watch (“Apple Smart Watch,” 2018; 

“Fitbit Smart Watches,” 2018; “IDC Tracker® + Data Products,” 2018; “Samsung Smart 

Watches,” 2018). But the use cases are not restricted to the private sector. The Empatica E4 

is one example of a recent development towards wearable technology that holds the 

potential of finding its way into both the private and institutional sector (Callaway & Rozar, 

2015). The E4 measures heart rate and acceleration, as well as temperature and skin 

conductance. For that reason, it becomes increasingly interesting for research on (for 

example) the emotional state of the participant during an experiment. However, the great 

potential of the E4 does not lie in its sensors. It lies in the fact that the device comes in the 

format of a wristband without any wires, allowing for unobtrusive long-term measurements 

of such data. 
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The development of wearable technology contributes to a shift from controlled lab 

studies to ambulatory, real-time and real-world measurements (Goodwin, Velicer, & Intille, 

2008). In an even broader context, wearable technology is already being used for 

continuous medical monitoring for patients that would otherwise need to be hospitalized 

(Edwards, 2012). In such cases the technology offers real time monitoring and feedback, as 

well as long term statistics of wellbeing to the individual, the doctor and even friends and 

family (Kitipawang, Kakria, & Tripathi, 2015b; Salvo, Francesco, & Costanzo, 2010). While 

the technology holds great potential to gather unique data, the real-world environment can 

compromise the collected data sets.  

1.5 PROBLEMS WITH WEARABLE TECHNOLOGIES IN THE REALM OF EDA 

The real world is uncontrollable, and so are the occurrences that people encounter 

every day. The unpredictable nature of events creates new challenges for researchers when 

using wearable technologies for their research, especially when it comes to EDA data. 

Distinguishing the cause of specific SCRs is one problem. As described above, SCRs can 

result from a variety of different stimuli. Even more problematic is the distinction between 

an SCR and a so-called artifact. 

In the EDA literature the term artifact is frequently used to describe a variety of 

disturbances on an EDA data set. In order to avoid confusion this research makes a clear 

distinction between artifacts caused by bodily functions and those caused by external 

influences. An example for the first category would be if during an experiment the 

participant stands up from his/her chair to stretch. This movement would trigger the SNS 

and create a SCR on the data set which is related to a bodily function. Those kinds of SCRs 

can be useful to ambulatory studies, but because such a SCR might not be related to what 

the researcher is interested in, some literature defines this kind of disturbance as an 

artifact. This first category of artifacts is not caused by the movement or pressure on the 

sonsor of the measurement device and is unlikely to be distinguishable from any other SCR. 

An example for the second category would be if the participant would accidentally hit the 

measurement device (for example a wristband) onto the table in front of him/her, whereby 
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creating pressure on the sensor of the measurement device or moving his/her arm so fast, 

that the placement of the sensor on the arm shifts. This disturbance might not even trigger 

the SNS of the participant (and is therefore unrelated to any bodily functions), but it 

certainly creates an artifact on the data set, which could then later be confused with a 

normal SCR and could therefore be misleading in the interpretation of the data. The first 

category of artifacts (motion of the body) lies outside the scope of this paper as this 

research identifies ambulatory longitudinal studies to be the great benefit of wearable 

technology. In such studies, the first category of artifacts is not only a constant given but 

can even be valuable information to the researchers. Furthermore, those kinds of artifacts 

can not be categorized because they can not be distinguished visually from normal SCR’s. 

This research focuses on the second category of articats, external disturbances (or the 

movement of and pressure on the sensor of the measurement device) only. From this point 

onward, those kinds of disturbences are meant when the term ’artifact’ is used. 

Artifacts can differ in nature. Literature most prominently addresses motion artifacts 

which arise from the movement of the limb that the measurement device is attached to 

(Chen et al., 2013; Zhang et al., 2017). Similar to the one created by motion, pressure on 

the measurement device can also create artifacts, so called pressure artifacts (Edelberg, 

1967; Xia, Jaques, Taylor, Fedor, & Picard, 2015). Pressure artifacts can be described as 

external pressure or even muscular activity that increases the pressure on the wristband for 

a short period of time and thereby disturbing the signal. Both kinds of peaks can look 

similar to a normal SCR on the data set and are likely to appear in ambulatory longitudinal 

studies but add no potential value to the topic of interest and can even be harmful to the 

analysis process when gone unnoticed. 

1.6 ARTIFACT DETECTION AND REJECTION AND THE ‘STATE OF THE ART’ 

If possible, artifacts are best dealt with before the measurements are taken. In 

controlled lab studies artifacts can largely be prevented by choosing an appropriate 

experimental design and instructing participants to sit completely still. It can also help in 

longitudinal studies to inform the participant about the possibility of artifacts and how to 
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prevent them as much as possible (Braithwaite, Watson, Jones, & Rowe, 2013). However, 

even when introduced properly artifacts will eventually appear on a data set that has been 

recorded over a longer period of time. The first step towards Artifact rejection is artifact 

identification. Boucsein (1992) states:  

“The detection of artifacts in the EDA signal necessitates a visual inspection of the data 

sequence by the experimenter, even if an automatic parameterization is performed by 

means of laboratory computers” 

He further proposes that artifacts should already be detected during the experiment 

(Boucsein, 2012). Today, 25 years later, the application for EDA measurements has spread 

so far into the realm of wearable technology and away from controlled lab studies, that a 

manual detection during those types of recording is not feasible any longer due to the 

sheer amount of data recorded in just a few days. Also, a later evaluation of those kinds of 

data set becomes challenging for the same reason. 

In experiments in which the continuity of the data is a necessity, researchers might 

want to choose to correct artifacts instead of rejecting them (Chen et al., 2013). Different 

approaches are being researched. One of the most prominent ones to this day is Wavelet-

Based Artifact Removal (Chen et al., 2013; Erçelebi, 2004; Lee et al., 2010). However, this 

paper focuses on wearables and their longitudinal application. Such studies are less 

interested in estimating or correcting one single underlying SCR of a specific moment in 

time at which an artifact has occurred, but more about a ‘clean’ signal over extensive time-

periods. To this day, the state of the art for artifact rejection in this area lies in visual 

inspection. However, recently the Massachusetts Institute of Technology released a 

prototype of an automated artifact rejection tool for EDA data, which holds the potential to 

some extent, circumvent Boucsein’s claim about visual inspection and arrive at an 

acceptable EDA signal from automatic analysis. 
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1.7 THE EDA-EXPLORER 

 The EDA-Explorer is a tool programmed in Python (version 2.7) that promises to 

automatically run over the entire data set and identify both peaks and artifacts. Taylor et 

al.’s (2017) approach for artifact rejection was to train the Explorer using the Support 

Vector Machines machine learning algorithm. The Explorer was trained by EDA experts who 

judged 1560 five-second intervals as either clean, questionable or containing artifacts. It 

should be noted that the researchers are not making a distinction between motion and 

pressure artifacts. Less information is provided about their approach for Peak detection. 

The script does not use the CDA standard that is handled by LEDALAB but relies on more 

rudimentary TTP analysis where first- and second-order deriviates of the SC signal are 

evaluated for speed and acceleration changes typically found when an SCR occurs. Another 

limitation of the EDA-Explorer is that it can only process one raw file at a time. Therefore, 

working with multiple data sets in the online solution or the downloaded Python script can 

become time consuming. In the study at hand, the EDA Explorer was used in combination 

with a batch script developed by Matthijs Noordzij and Peter de Looff (provided on request) 

which allowed for the processing of multiple (without limit) E4 files of multiple subjects 

automatically. 

1.8 SCOPE AND ROADMAP 

The Scope of this paper is to judge the validity of the EDA-Explorer as a 

measurement tool for ambulatory EDA data. This is done by exploring the similarities and 

differences between the EDA-Explorer and the golden standard for both peak detection and 

artifact rejection. The emphasis of this paper lies on longitudinal real-world studies with the 

Empatica E4. Generalizability to other scenarios is limited and will be further debated in the 

discussion section. 

The underlying thought for developing the experiment was to create motion or 

pressure artifact rich data sets in order to stress-test the EDA-Explorer. It was chosen to 

accomplish this by implementing frequently occurring real-world situations to increase the 

validity of this study’s implications for the real world. 
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1.9 RESEARCH QUESTION & HYPOTHESIS 

To what extent does the judgment of an artifact-rich dataset by Visual Inspection 

and Ledalab agree or disagree with the judgment concerning artifact rejection and peak 

detection performed by the EDA-Explorer? As an answer to the research question this study 

proposes two general hypotheses. The first hypothesis addresses peak detection. The later 

hypothesis addresses artifact rejection. 

Hypothesis 1: The agreement in the number of peaks per time interval and moment 

of peaks between the EDA-Explorer (TTP) and Ledalab (TTP) is visually clearly detectable. 

Hypothesis 2: The agreement in the number of artifacts and moment of artifacts per 

time interval between the EDA-Explorer (binary and multiclass) and Visual Inspection is 

visually clearly detectable. 

2. METHOD AND MATERIAL 

2.1 DATA COLLECTION 

20 participants, 14 male and 6 female students, between 22 and 29 years of age, 

participated in the experiment. The location for the experiment was the lab rooms on the 

University grounds and the staircases surrounding it. The procedure was the same for every 

participant. The experiment was approved by the ethical commission of the University of 

Twente prior to execution.  All participants signed an informed conset prior to the study 

(see Appendix 2). No participants received any rewards for their participation. A pre-test 

was performed with two students at the age of 24 and 25 in order to get an insight into the 

effectiveness of the tasks in evoking artifact rich data. 

2.2 MATERIALS 

 The Empatica E4 was used as a measurement device for EDA data. Electro dermal 

activity, heart rate, acceleration and temperature were recorded throughout the entire 

experiment. Blood volume pulse is recorded at 64 Hz, electro dermal activity at 4 Hz, 
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acceleration in three axes at 32 Hz and temperature on the skin at 4 Hz (“E4 wristband 

technical specifications,” 2016a). The participant was seated in a normal, upright sitting 

position in an office chair in the lab room. All participants were informed about the nature 

of the study (see Appendix 1). All instructions were given verbally. All data was processed 

via the Empatica online service and anonymously saved on the computer of the researcher 

for further analysis.  

2.3 PROCEDURE 

For every participant, the experiment took 25 minutes. The first 10 minutes were 

used to verbally introduce the participant to the experiment and explain every task he/she 

was about to perform. The participant was also introduced to the functionality of the 

Empatica E4 and questions were answered. The participant was asked to walk up and down 

a flight of stairs prior to the experiment to assure a minimum level of perspiration and 

thereby a clean measurement as is reccomended by Empatica (“E4 wristband technical 

specifications,” 2016b). The E4 wristband was put on the dominant hand of the participant 

right before the experiment started and stayed turned on throughout the whole 

experiment. After signing the informed consent, the experiment started (see Appendix 2). 

Researcher and participant were next to each other throughout the entire experiment. 

Every task but the baseline measurement took 2 minutes. The baseline measurement (5 

minutes) was taken while the participant was sitting calmly and engaging in casual smalltalk 

with the researcher. Possibly uncomfortable topics were avoided. This task was used as a 

baseline measurement of electrodermal activity to determine the individual SCL of every 

participant. The tasks were as follows. Task one was to clap both hands together every ten 

seconds, whereby operationalizing motion. The clapping task was the only task in which the 

timing was controlled. Motion artifacts were expected to happen from either moving the 

arm or the moment when both hands clap together. The second task was to carry a grocery 

bag (with the hand of the Empatica E4) from one table to the other and back, whereby 

operationalizing pressure. Both tables were 80cm high and about 3 meters away from each 

other. The bag was a big shopping bag from Albert Heijn (a major Dutch supermarket). The 
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bag weighed 5kgs. No specific instructions on how to carry the bag were given. The last task 

was to play rock-paper-scissors (RPS) with the researcher, whereby operationalizing heavy 

movement and probably the misplacement of the watch on the participants arm. The 

artifacts created by the RPS task were expected to (1) stress test the E4 and (2) vary in 

intensity depending on how engaged the person was playing the game. Scores of the game 

were not recorded. Lastly, the participant was debriefed, and the E4 turned off and 

removed. The data from the E4 was uploaded and then downloaded onto the researcher’s 

computer via the Empatica Manager. The device was then cleaned for the next participant. 

It was also made sure that the battery was properly charged at all times in order to avoid 

electrical artifacts. The internal time of the E4 was synced with the researcher’s laptop. This 

laptop also served as a timer for the experiment.  

 A pre-test was performed in order to evaluate the severity of disturbances on the 

data set. For the pre-test, two male participants at the age of 24 and 25 followed the exact 

same instructions as above. A first evaluation of both data sets showed major artifact 

creation for all tasks (except the baseline measurement). It is concluded that all tasks serve 

as candidates for artifact creation and will be taken into the actual experiment.  

Interestingly, in the pre-test one of the participants showed a very high skin resistance (or 

low skin conductance level) of around 0.4 μS before, throughout and after the physically 

strenuous session. 
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2.4 CONVERSION AND ANALYSIS 

 

FIGURE 2 - ANALYSIS ROADMAP FROM RAW E4 OUTPUT FILE TO PLOTTING BOTH ARTIFACT REJECTION AND PEAK DETECTION DATA. 

EACH DATA SET WAS ANALYZED BY ALL METHODS OF EACH TOOL. ARTIFACT- AND PEAK-DATA FROM THE EXPLORER WERE THEN 

CONVERTED INTO THE SAME FORMAT TO ALLOW FOR COMPARISON.  

The data analysis was done in multiple steps as illustrated above. After savind the 

raw file from the E4 to a dedicated location on the researcher’s laptop, all data sets were 

first automatically extracted, analyzed and then exported into artifact and peak data by the 

EDA-Explorer. The artifact data was created by the binary method, which classifies every 

five second interval as either (-1) containing an artifact or (1) containing no artifact and the 

multiclass method, which classifies every five second interval as either (-1) containing and 

artifact, (1) containing no artifact or (0) uncertainty. The peak data was created by the TTP 

method using a threshold (or sensitivity) of 0.01 μS changes and 0.005 μS changes. This 

means that the EDA-Explorer created four data sets, two artifact data sets and two peak 

data sets.  

Secondly, all data sets were plotted using an R script which was specifically 

developed for this purpose (See Appendix 3). The data was then prepared for the raters, 

using plotted 15 second intervals of raw EDA data. It was chosen for 15 second intervals for 

multiple reasons which will be explained below. 
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FIGURE 3 - PLOTTING DECISION FROM LEFT TO RIGHT (5 SECOND INTERVAL WITH DOTS AND MEAN SCORE WERE FOUND TO BE 

INSUFICIENT FOR AN ACCURATE JUDGEMENT SINCE THEY PROVIDE TOO LITTLE CONTEXT. 10 SECOND INTERVALS AND DOTS WERE 

OFFERING SOMEHWAT MORE CONTEXT. THE FINAL DECISION WAS TO USE 15 SECOND INTERVALS AND LINES IN ADDITION TO THE 

DOTS FOR MAXIMUM CONTEXT WITHOUT LOSING TOO MUCH DETAIL) 

Figure 3 shows the visual differences in plotting various time intervals. While choosing an 

appropriate time frame, scale and visualization, it became apparent that the context (or the 

five seconds before and after the to be rated five second interval) could be an important 

asset for arriving at an accurate rating. This context may be useful for the rating since 

artifacts can be compared to and therefore distinguished from SCR’s and artifacts may also 

be occuring in between two intervals. In those cases, raters were instructed to classify both 

intervals as containing artifacts. Furthermore, fifteen second intervals do not yet lack the 

detail that is crucial when it comes to identifying the shape of the peak. Additionally, it was 

chosen to use a combination of lines and dots for better readability. Once the plots were 

created, the visual inspection was performed by two raters using the visual inspection 

method. Both raters were students who were trained using the LEDALAB paper on SCRs and 

Taylor et al’s paper on artifact rejection (Benedek, 2011; Taylor et al., 2017). The rating was 

performed on five-second intervals within fifteen-second interval visualizations (see Figure 

3, right most picture). Each five-second interval was rated on whether it contained at least 

one artifact (-1), or no artifacts (1), meaning their rating created the same kind of data that 

the binary method of the EDA-Explorer creates. This classification was first proposed, 

handled and automatically performed by the EDA-Explorer (Taylor et al., 2017). It was 

chosen to also handle the same classification rules as proposed by Taylor et al. (2017) which 

include the lack of exponential decay of a SCR and quantification errors with a signal 

amplitude greater than 5% of the SCL at that moment. 
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 Thirdly, LEDALAB was used to perform the peak detection using the same threshold 

values as the EDA-Explorer (0.005 and 0.010 μS). From LEDALAB the TTP and the CDA 

methods were used for both thresholds resulting in four data sets. 

 In this manner each raw E4 zip file created nine output data sets (three for artifact 

rejection and six for peak detection). Before comparing the different outputs to each other, 

some of the data sets had to be converted in order to match the data structure. For 

example, Ledalab uses the time from onset of the measurement device, whereas the EDA-

Explorer uses the Unix time stamp as a measurement for time. In this case, it was chosen to 

convert the Unix time stamp into time from onset by subtracting the start time from every 

single measurement point (See Appendix 3 for a detailed description of this process). Peaks 

also had to be matched, because the EDA-Explorer identifies the actual peaks, whereas 

Ledalab identifies the peak’s onset. The EDA-Explorer output was therefore adjusted in 

order to also identify the peak’s onset. The converted data was transferred to .csv and SPSS 

files which in turn served as the foundation of all analyses. 

Lastly, the data sets of all participants were plotted using an R-script that was 

developed by the researcher (See Appendix 3). The plotted data was then visually examined 

for peaks and artifacts. All statistical analyses and their results can be found in the results 

section below. 

2.5 SAMPLE SIZE 

 The sample size was greatly reduced by multiple errors with the E4 measurement 

device, which are discussed in depth in section 3.3. From all 22 participants that followed 

the same experimental design, only four data sets could eventually be used for the analysis. 

This has implications on the generalizability of the data sets in regard to different skin types 

and age groups. The analysis itself mostly relies on in-depth visual inspection and is 

interested in comparing the performance of various tools on one and the same data set. All 

results are critically reviewed in context of the limited sample size. 
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3 RESULTS 

The below results were devided into two major parts. The first part concerned peak 

detection and the second part concerned artifact rejection. A third part was added in order 

to systematically report all errors that were encountered during the experiment (which led 

to the exclusion of many participants) in order to inform future research about possible 

problems with the use of the measurement device. 

3.1 Peak DETECTION 

The peak detection was run by both the EDA-Explorer and Ledalab (using TTP and 

CDA method) for two thresholds (.005 & .010). The analysis revealed that there is only a 

slight difference between the two thresholds. Both .005 and .010 measurements could be 

used interchangeably, because they consistently identified the same points in time as 

peaks. A .005 threshold identified slightly more peaks than the .010 threshold (see 

Appendix 5). Furthermore, it can be shown (as could be expected from literature) that the 

Ledalab CDA method is more sensitive of a method for peak detection than TTP. Ledalab 

CDA identifies an average of N=153.1 peaks per data set, whereas Ledalab TTP identifies 

N=86.8 and Explorer TTP only N=35.85 peaks.  

TABLE 1 - SUM FREQUENCIES SUMMARIZED FOR ALL FOUR PARTICIPANTS DEVIDED BY TASK AND ANALYSIS METHOD 

 EXPLORER TTP LEDALAB TTP LEDALAB CDA 

BASELINE (1 MINUTE) 16.40 27.20 69.40 

CLAPPING 45.00 85.00 151.00 

CARRYING 37.00 97.00 184.00 

RPS 45.00 138.00 208.00 

In order to find a possible agreement between the different methods it was chosen 

to first aggregate the data-set into 30-second intervals. It was chosen to do so, because 

comparing zeros and ones on a millisecond level would have made it impossible to find any 

agreement. The aggregation to 30-secod intervals gave a total of 22 values per method 
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because the duration of the entire experiment was 11 minutes. For the peak detection it 

was chosen to compare the means of peaks found in this specific time interval. Calculating 

Cohens Kappa revealed no agreement between any of the three methods. All scores are 

listed in the table below. 

TABLE 2 - INTER-RATER AGREEMENT BETWEEN EXPLORER TTP, LEDALAB TTP AND LEDALAB CDA 

AGREEMENT BETWEEN… N KAPPA SIGN. 

LEDALAB CDA AND EXPLORER TTP  22 0.00 NAN  

LEDALAB TTP AND EXPLORER TTP  22 -0.004 0.746,  

LEDALAB TTP AND LEDALAB CDA  22 -0.10 0.608 

The graph below contrasts Ledalab’s CDA, TTP and the Explorers TTP method on one 

representative sample data set. 

 

FIGURE 4 – LEDALAB’S CDA METHOD IS TOO SENSITIVE BECAUSE IT IDENTIFIES MANY PEAKS IN A CLEAR RELAXATION PERIODE 

The above snapshot was taken during the period of the Baseline measurement of 

one participant. A relaxation period could be identified from 140 to 175 seconds of the 
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experiment. During this time, there was little change in SCL, yet the CDA method identified 

a total of 10 SCR’s during that time interval. This sample was just one representative 

example of many. Another finding that could be displayed in the graph above is that the 

EDA-Explorer identified the top of the peaks whereas Ledalab set the point of peak 

identification at the beginning of the SCR (as mentioned in the method section and see 

Appendix 5). The CDA method identified the halfway point between onset and actual peak. 

This is due to the fact that CDA makes an attempt of calculating the underlying sudomotor 

activity rather than simply finding the peaks on the graph. These differences were 

accounted for in the further calculations. 

 

FIGURE 5 - ADJUSTED EXPLORER TTP METHOD SHOWS CLOSE SIMILARITY WITH LEDALAB'S TTP METHOD, BUT THE EXPLORER TTP 

METHOD MISSES TWO SCR’S. 

When zoomed in closely and comparing the adjusted data set from the EDA Explorer 

to Ledalab’s TTP it ccould be shown that both methods identified almost the exact same 

moment as the moment of the peak’s onset. The example above is one of few examples in 
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which the EDA-Explorer fails to identify two of the SCR’s as peaks. Interestingly, the greatest 

difference between the EDA-Explorer’s peak detection and Ledalab’s peak detection is, that 

the Explorer accurately negated most artifacts as peaks, whereas Ledalab’s TTP (and CDA) 

methods also rendered artifacts as peaks. This is further explored in the graph below.  

 

FIGURE 6 – THE EDA-EXPLORER SEEMS TO IGNORE ARTIFACTS IN THE PEAK DETECTION. THE BINARY METHOD IDENTIFIES MOST BUT 

NOT ALL OF THE ARTIFACTS. NOTE THAT THE EXPLORER'S BINARY METHOD RENDERS FIVE-SECOND INTERVALS AS CONTAINING 

ARTIFACTS OR NOT (THE DOTTED LINES).  

The preferred section for the explorative analysis is the start of the clapping task, 

because we can be certain as to where the artifacts occurred. When thinking back of the 

task, participants were asked to clap every 10 seconds which would then be creating an 

artifact on the data set. This experimental setup is visually recognizable in the graph below, 

which. This graph was created to show the end of the baseline measurement, followed by 

the clapping task and lastly the beginning of the carrying task.  
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FIGURE 7 - BASELINE 40-340 SECONDS, CLAPPING TASK 340-460 SECONDS, START OF CARRYING TASK 460 SECONDS. BINARY METHOD 

VISUALIZED AS FIVE SECOND INTERVALS. MULTICLASS ARTIFACT REJECTION DOES NOT IDENTFY ANY ARTIFACTS IN THE CHOSEN 

INTERVAL. 

Visually it was relatively easy to identify a pattern of artifacts followed by a SCR, 

followed by another artifact and then another SCR. Interestingly, every ‘spiky’ peak (the 

artifact) was followed by a SCR. This SCR could, as we addressed in the introduction, be 

classified as an artifact of the first category (one which is produced by the SNS as a reaction 

to a trigger that was not intended by the researcher). The current research was not 

interested in these kinds of artifacts. Strangely, the EDA-Explorer rendered most of these 

aretifacts as neither peak nor artifact, but simply ignored the occurrence. An interaction 

between the EDA-Explorer’s peak detection and artifact rejection method was tested for by 

running all methods first separately and then combined. Both ways of analyzing produced 

the exact same results. An interaction between the methods can therefore be ruled out as 

an explanation for this phenomenon.  

3.2 ARTIFACT REJECTION 

To begin with it needs to be clarified that the artifacts file from the EDA-Explorer 

summarizes time intervals of five seconds each and states whether or not it found an 

artifact in this time interval. That means that the lines from the Binary and Multiclass 
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algorithm can only accidentally fall right on the artifact when that artifact occurs right at 

the beginning of the time interval. The dotted lines for all plots that follow indicate the 

starting point from which the five second interval starts. It was chosen for this, because 

plotting artifacts as intervals make the plots unreadable. 

Diving into the data revealed some major findings about the artifact rejection 

algorithms. To begin with it could be shown that the binary method identified more 

artifacts than the multiclass method did, even when including all ‘uncertain’ (represented 

by 0 values in the data set) identifications of the multiclass method. On average across all 

four experiments the EDA-Explorer Binary method found N = 26.25 artifacts, the EDA-

Explorer Multiclass method found N = 19.75 (N = 55 including uncertainty) and Visual 

Inspection found N = 52.75 artifacts.  

TABLE 3 - SUM FREQUENCIES SUMMARIZED FOR ALL FOUR PARTICIPANTS DEVIDED BY TASK AND ANALYSIS METHOD 

 EXPLORER BINARY EXPLORER MULTICLASS VISUAL INSPECTION 

BASELINE (1 MINUTE) 15.00 1.00 10.00 

CLAPPING 11.00 7.00 54.00 

CARRYING 25.00 15.00 67.00 

RPS 54.00 56.00 50.00 

Again, it was chosen to aggregate the data-set into 30-second intervals for the 

artifact rejection, before testing for inter-rater agreement. For the artifact rejection it was 

chosen to first convert all data into a more understandable format. Before -1 indicated an 

artifact and 1 indicated no artifact. This was converted, so that every 1 stood for an artifact 

and 0 for no artifact per time interval. All scores were then summarized into 30-second 

intervals and the sums were then analysed for agreement between raters. Calculating 

Cohens Kappa revealed no agreement between any of the three methods (binary, 

multiclass and visual inspection). All scores are listed in the table below. 
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TABLE 4 - INTER-RATER AGREEMENT BETWEEN BINARY, MULTICLASS AND VISUAL INSPECTION 

AGREEMENT BETWEEN… N KAPPA SIGN. 

BINARY & MULTICLASS  22 0.351 0.000 

BINARY & VI  22 0.138 0.017 

MULTICLASS & VI 22 -0.127 0.080 

 

 

FIGURE 8 - ARTIFACT REJECTION BINARY, MULTICLASS AND VISUAL INSPECTION ACROSS THE ENTIRE TIME SPAN OF THE EXPERIMENT 

Visual inspection was the basis on which all findings from the EDA-Explorer were discussed. 

As can be seen in the graph above, the binary and multiclass method of the EDA-Explorer 

identified no artifacts in the baseline measurement, a smaller amount (especially true for 

the multiclass method) of the artifacts than visual inspection found in the clapping task, a 

similar amount of artifacts in the carrying task and more artifacts than visual inspection in 

the RPS task. A representative plot could then show the clapping task in more detail in 

order to evaluate the accuracy of both methods compared to visual inspection (see graph 

below). 
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FIGURE 9 - VISUAL INSPECTION VS EDA-EXPLORER BINARY AND MULTICLASS DURING THE CLAPPING TASK. NOTE THAT EACH LINE 

INDICATES THE STARTING POINT OF A FIVE SECOND INTERVAL.   

Visual inspection correctly identified all artifacts in every other five-second interval, as 

would be expected by the experimental design of the task. Furthermore, artifact rejection 

performed by the EDA-Explorer identified close to no artifacts in the entire task (binary 

N=2, multiclass N=0). When plotting the RPS-task on the other hand it appeared to be so 

rich in artifacts, that the EDA-Explorer rendered every single five-second interval as 

containing at least one artifact. Interestingly, this finding was only partially consistent with 

the identification based on visual inspection, as can be seen in the graph below. 



28 | P a g e  

 

Jan Hemmelmann – s1367552 

 

FIGURE 10 - VISUAL INSPECTION VS EDA-EXPLORER BINARY AND MULTICLASS DURING RPS TASK 

The experiment was set up to make the last task the most artifact heavy task. This 

can be found back in all data sets. For this task, the binary method identified almost every 

single five second interval as containing artifacts, whereas visual inspection suggested that 

artifacts only occur heavily in the beginning of the task. The multiclass method identified 

different intervals than visual inspection and the Explorer binary method.  

All of the above statements were double checked with (1) different time intervals 

within the same data set, (2) the same intervals in different data sets and (3) other time 

intervals in other data sets. All findings were consistent with the findings presented above. 

(also see Appendix 5) 

3.3 A SYSTEMATIC ERROR REPORT ON THE USABILITY OF THE EMPATICA E4 

Of all 22 datasets, only 4 could be used for the analysis. 18 data sets had to be 

rejected. The various causes for the rejection of those data sets gave reason to have a 

closer look at the Empatica E4 and what went wrong in the experiment. This part of the 

paper specifically focuses on systematically reporting all problems with the E4 and the 

experimental design and to make suggestions for their improvement. 

3.3.1 FAILURE OF CREATING A PROPER EDA SIGNAL 
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FIGURE 11 - DESCRIBES THE SCL LEVEL OF SESSION 6. A LOW SCL DURING BASELINE, CLAPPING TASK AND CARRYING TASK AND A 

SUDDEN INCREASE IN SCL IN TASK 3 CAN BE NOTED.  

The problem with most measurements, as can be seen in Figure 8, was that almost 

no signal was picked up during the first half or even the entire time of the experiment. 

Given such a signal it was impossible for the EDA-Explorer or Ledalab to identify any peaks 

or artifacts. Seeing the figure above, it could also be ruled out that the E4 was compressing 

the signal in any way. What appears most likely in this case is that the sensor did not pick 

up a signal because of a wrong placement of the wristband on the wrist. Personally, I 

assume that the E4 was applied too tightly on the skin preventing the sweat glands from 

releasing water or the sweat being able to form a continuous layer on the skin. Suddenly, 

the arm was moved so abruptly, that the wristband was slightly relocated and picked up a 

signal from the surrounding glands that were able to release water the whole time, causing 

an increase in SCL. Another possible explanation could be that the E4 only recorded a signal 

from a certain threshold and the participant was not sweating enough.  

For 8 out of 10 participants of the first experimental round, the signal on the E4 did 

not exceed 0.35μS and did not vary greater than ±0.1 across the entire experiment even 

though the sensor was cleaned after each use of the E4 and the participants had to walk up 

and down a flight of stairs before the experiment to get their perspiration started. In 

consideration of Figure 8 it needs to be assumed that those experimental rounds cannot be 

taken into consideration for further analysis because the sensor failed to pick up a proper 

signal. Even though participants frequently reported to be quite warm, this finding was 

thought to origin from the fact that the experiment did not induce enough perspiration in 
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participants. Therefore, in the following round of experiments, for 10 participants, the 

warm up phase was adjusted. The participants were asked to walk up and down a flight of 

stairs five times and were noticeably breathing more heavily right before starting the 

experiment. Yet, 3 out of 10 data sets had to be discarded again because of an unusable 

SCL. The most apparent problem with inducing perspiration in the first place is it raises the 

baseline SCL, which if not consciously accounted for can possibly influence the results of 

other experiments. A balancing act must be performed between too much or too little 

warm up, which in both cases would render the data set useless. In this context, an 

additional problem occurs. When it comes to longitudinal measurements, the experimenter 

has no live feedback when using the E4 in its standard recording mode. That means that the 

researcher has no choice but to (1) do a pre-test via Bluetooth mode or (2) check the data 

set daily after upload. Suggestions for improvement include (1) a more sensitive sensor or 

higher amplitude, (2) the LED indicating when SCL drops below 1.25μS (which was found to 

be the minimum value in valid data sets from this experiment) and (3) allowing live 

feedback via Bluetooth connection while data is recorded to the hard drive of the E4. 

3.3.2 FAILURE OF EXPORT 

A second problem occurred near the end of the experimental phase. After finishing 

the experiment, the researcher immediately transfered the data set from the E4 to 

Empatica via Empatica Connect. Session 18 did download the session from the device, 

stopped at 100%, but did not continue with the upload of this session to the Empatica 

online database. Two more sessions (19 and 20) were recorded. All three sessions 18, 19 

and 20 could not be transferred to Empatica because of the persisting error with file 18 and 

no apparent possibility to skip a data set. Rebooting, re-installing Empatica Connect, 

resetting the E4 and trying different computers and internet connections did not solve this 

problem. In the conversation with the responsible department at the university it was 

discovered that this problem had occurred before. Three additional sessions had to be 

discarded. The E4 had to be returned to Empatica for inspection and reparation. 

Suggestions for improvement include: (1) a software update for Empatica Connect that 
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allows the user to manually skip the down- and upload of a specific file or (2) a software 

update that allows the user to directly access the hard drive of the E4. 

3.3.3 USABILITY ISSUES 

A few usability issues were discovered throughout the experimental phase. Firstly, 

almost all participants needed help with putting on the wristband in the first place. 

Furthermore, it often happened that the wristband needed adjustment after closing it 

because it was either too tight and therefore uncomfortable, or too loose for a proper 

recording of EDA data. A possible solution would be to redesign the closing mechanism of 

the wristband as shown in Figure 9 and 10 below. Figure 9 shows a wristband that goes 

through a slope on one side of the watch and then returns to the middle where it is possibly 

held by a magnet. The magnet here could possibly interefere with the skin conductance 

electrodes. Figure 10 shows another possible closing mechanism that resembles the one of 

a zip tie. Either closing mechanism would allow for smooth progressive and stepless 

adjustment for any kind of wrist. 

 

FIGURE 12 - POSSIBLE WRISTBAND CLOSING MECHANISM USING A SLOPE AND A MAGNET 
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FIGURE 13 - POSSIBLE CLOSING MECHANISM (2) 

As described above, one concern with the E4 was the closing mechanism of the wrist strap. 

Another one was the size and appearance of the E4. It was frequently mentioned in the 

conversation with the participants. ¼ of all participants made a comment about the 

appearance of the watch, most of them reffering to its ‘clunkiness’. Similar findings were 

also noted by (van Lier et al., 2017). 

Secondly, the Unix-Time-Stamp was handled by the E4. When connecting the E4 to a 

computer, the Unix-Time was supposed to sync automatically. For reasons still unknown, 

the laptop time was exactly 2 minutes earlier than the time of the E4 measurement device. 

This was true for both the pre-test as the actual experiment. Strangely, the last two data 

sets exported before the export error occurred were off by exactly 2 hours and 2 minutes. 

The difference in time was checked rigiously for every data set individually. This time-check 

was not difficult to do but creates unnecessary extra work for the researcher. Especially in 

experimental designs in which absolute clock-time is a crucial factor, this could produce 

problems. A possible solution for this flaw is to either fix the synchronization between 

laptop and the E4, or to present the Unix Time handled by the E4 inside of the Empatica 

Connect application on the researcher’s laptop, so that it could be used as a reference point 

during the experiment. In this way, the researcher could ignore the time of the laptop 

completely and rely on the internal time of the E4. Additionally, it could be useful to 

implement a simple stopwatch or even establish a connection between the E4 and the 

laptop that displays the time from onset. 
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4 DISCUSSION 

The discussion section is divided into four parts, starting with relating the findings back 

to the hypotheses and answering the research question. Part two contrasts the findings of 

this study with additional literature, theories and other measurement tools. Part three 

examines the limitations and places this research into a broader context. Finally, part four 

reviews the practical relevance of the findings from a psychological point of view. 

4.1 ANSWER TO THE HYPOTHESES 

The validity of the EDA-Explorer based on the findings from this study indicates that 

the peak detection TTP method performs unexpectedly well in artifact rich situations, up to 

the point of outperforming Ledalab’s TTP and CDA methods, whereas artifact rejection 

performance is varying per method and nature of the disturbance, but poor throughout.  

Hypothesis 1: “The agreement in the number of peaks per time interval and moment 

of peaks between the EDA-Explorer (TTP) and Ledalab (TTP) is visually clearly detectable.” 

Hypothesis 1 can only partially be confirmed by visual inspection. On the one hand, both 

TTP methods identify almost the exact same point in time as the beginning of an artifact. 

On the other hand, Ledalab seems to also identify artifacts as peaks, whereas the EDA-

Explorer sometimes misses peaks on the data set. Statistically, no agreement between the 

two methods can be found. Even though it was found that peaks were largely ignored by 

the Explorer in moments when artifacts were present, this explanation can only be part of 

the answer to why there is no agreement between Explorer TTP and Ledalab TTP, because 

peak detection and artifact rejection are two separate scripts that evaluate the data set 

independently from each other. Another explanation is the difference in technology. The 

Ledalab software uses its very unique approach to TTP analysis, as does the more recent 

EDA-Explorer. Even though the results differ significantly, both TTP methods were found to 

perform extremely well. The EDA-Explorer could be slightly preferred over the Ledalab TTP 

method because of its distinctive sensitivity to the difference between a SCR and an 

artifact. 
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Hypothesis 2: “The agreement in the number of artifacts and moment of artifacts per 

time interval between the EDA-Explorer (binary and multiclass) and Visual Inspection is 

visually clearly detectable.” Hypothesis 2 must be rejected. It appears that both artifact 

rejection methods from the EDA-Explorer greatly disagree with Visual Inspection, as 

implemented in the present study, as they are either too sensitive, too insensitive or 

inaccurate depending on the task. Results indicate that the binary method on the one hand 

identifies many of the same peaks as Visual Inspection, but it also overestimates the 

amount of artifacts in artifact rich situations such as the RPS-task and underestimates the 

amount of peaks in artifact poor situations such as the clapping task. The multiclass method 

on the other hand identifies a smaller amount of artifacts than peak detection and is highly 

inaccurate in artifact rich situations. In artifact poor situations, the multiclass method barely 

identifies any artifacts. The difference between the methods is further supported 

statistically through no inter-rater agreement. 

All of the findings can be explained by multiple factors. The first factor, as discussed 

above, is the frequency in which artifacts are occuring. The second factor is possibly the 

nature of the task itself. The RPS-Task can be described as artifact rich, given the constant 

movement of the participants arm, but the artifacts created by this task can also be 

classified as motion artifacts. In comparison, the clapping task involves a mixture of motion 

and pressure. Given this distinction one might argue that both methods (binary and 

multiclass) are more sensitive to motion artifacts than they are to pressure artifacts. This 

assumption is compatible with the notion of the multiclass method being inaccurate. 

However, there is only small support from the carrying task (a task specifically designed to 

create pressure artifacts) and there is too little research done on the EDA-Explorer as of 

today. Another problem with the artifact rejection approach in general could have 

influenced the results. Recent literature discusses the limitations of the sectioning approach 

by Taylor et. al’s (2017) and offers an explanation to the here observed phenomenon 

(Kleckner et al., 2017) (This will be further explained and discussed in 4.2). 

4.2 DISCUSS FINDINGS IN LIGHT OF ALTERNATIVE TOOLING 
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Most tooling (e.g. Ledalab, PsPM, Movisens Data Analyser) provide visual insight 

into the data sets, appliy basic filtering and identify SCRs (Bach, 2014; Joffily, 2012; 

Rothman & Silver, 2018; Storm, Fremming, Odegaard, Martinsen, & Morkrid, 2000). Few 

tools attempt to automatically detect artifacts in the data set or more specifically motion 

and pressure artifacts that are caused not by the recording method itself but external 

factors. Kelsey et. al (2017) propose a different approach to artifact detection: a single 

analysis for both peak detection and artifact rejection. They critique Taylor et. al (2017) 

because they section the data into smaller chunks. Kelsey et. al (2017) argue that peaks and 

artifacts are inseparable and sectioning the data may cause SCRs to be missed when they 

fall on the splitting point. Another issue is that, if both artifacts and SCRs occur in the same 

section, they cannot be properly distinguished. This insight, when relating it back to this 

research, offers an answer to the question why the EDA-Explorer correctly identified SCRs 

during the clapping task while artifact rejection missed almost all of the artifacts. It could be 

shown that each artifact (the clap) is almost directly followed by a SCR. The body reacts to 

the clap with a physiological response. This means that we can be certain of the 

simultaneous occurance of both artifact and SCR in the same time frame, which most likely 

fall into the same five-second section that the EDA-Explorer handles. Kelsey et. al’s parse 

recovery algorithm or orthogonal matching pursuit (OMP) offer a solution to this problem 

but is still being developed. Testing the data sets of this study with the novel parse recover 

algorithm falls out of the scope of this paper, but according to the researchers, it currently 

identifies peaks and artifacts with a success rate of 80%. 

Kleckner et. al’s (2017) EDAQA is another open source EDA evaluation tool 

designed for ambulatory EDA data analysis. Their approach features four simple rules for 

classifying an artifact as such: “1. EDA is out of range (not within 0.05-60 μS) 2. EDA 

changes too quickly (faster than ±10 μS/sec) 3. Temperature is out of range (not within 30- 

40ºC) 4. EDA data are surrounding (within 5 sec of) invalid portions according to rules 1-

3”(Kleckner et al., 2017). A problem with their approach lies in the tight definition of what 

an artifact can be and by instructing the EDA-Expert raters to oblige to this framework 

instead of using their own best judgement. The study continues by comparing the 



36 | P a g e  

 

Jan Hemmelmann – s1367552 

human’s rating to the tool’s rating, unsurprisingly finding an extraordinary agreement. It 

can be argued that an artifact can be much more than the four-rule definition covers. In 

this research and with data sets that were designed to contain plenty of artifacts, 

handleing such a definition would have led to identifying close to no artifacts overall.  

Their study is also a response to the EDA-Explorer. Their critique on the EDA-

Explorer is the lack of transparency: “Although sophisticated, the authors did not indicate 

what rules the machine learning model used to identify any portion of EDA data as “valid” 

or “invalid” based on a complex 14- dimensional EDA feature space.“ (Kleckner et al., 

2017). Agreeably, this is a big limitation to their research because it makes it impossible 

to argue for or against their approach. 

4.3 LIMITATIONS 

The population of this study is limited to students between the age of 25 and 29, 

whereby rendering the results more applicable to this agegroup, since people of different 

age groups have very different Skin Conductance Levels. It could be that older people would 

have created stronger or weaker peaks and artifacts on the data set which in turn could 

result in a different result from the analysis by the EDA-Explorer and Ledalab. Another 

limitation is the use of the Empatica E4. On the one hand the use of the E4 limits the 

generalizability of the findings to data set retrieved by other measurement devices, but 

more importantly it limits the overall sample size, due to its failure. The consequences of 

that error have severely filtered the sample to very specific data sets that are not as 

representative as a random selection would have been. For example, the age group has 

been limited to 25 to 29-year-old students. However, this limitation must also be put into 

perspective, seeing that the study is not interested in comparing people or groups of 

people to each other, but to identify the similarities and differences in analysis tools that 

were given the same exact data sets to analyze. The research relied mostly on visual 

inspection of close-up data sets and single data points.  

This research is designed to stress-test both the measurement device (in our case the 

Empatica E4) and the analysis tooling (The EDA-Explorer and Ledalab). The experimental 

design certainly pushed the E4 and the analysis tools to the limits of their capability. The 



37 | P a g e  

 

Jan Hemmelmann – s1367552 

experimental design is not an everyday life situation and even though ambulatory 

longitudinal studies will have to deal with similar sorts of artifacts, those artifacts will not 

appear so frequent or intense. This research more fundamentally gives answer to the 

validity of the EDA-Explorer in artifact rich situations.  

4.4 PRACTICAL IMPLICATIONS 

The real value of automatic analysis tools such as the Empatica E4 lie in the field of 

longitudinal studies, because of the amount of time it would take to go through the data 

manually. Therefore, it is chosen to summarize the practical implications on the background 

of conducting such studies.  

All findings must be seen in context. This study was really stressful for both the E4 and 

the EDA-Explorer. Such artifact rich measurements are not usual in everyday life situation. 

But even when stress-testing the E4, the EDA-Explorer is a great tool for peak detection. It is 

the conclusion of this research that the EDA-Explorer should be preffered over Ledalab, 

especially when handling artefact rich data sets. The EDA-Explorer’s ability to distingish 

between peaks and artifacts makes it superior in peak detection. 

That said, this study also gives a good indication of the limitations for future studies 

that other researchers might want to consider before conducting their own experiments. 

For example, it is not recommended to use the Empatica E4 in cases of very low expected 

arousal of the SNS. Those kinds of studies should turn to stationary devices such as the Q 

Sensor instead. Another limitation to consider is the accuracy of artifact rejection tooling. 

Measuring sports activities for example might produce too many artifacts, whereby 

rendering the data sets useless to the researcher interested in peaks. of the EDA-Explorer’s 

peak detection and artifact rejection methods.  

Realistically speaking, artifact rejection in an ambulatory setting is still in the process of 

becoming usable. Lots of research and additions to current tooling need to be made in 

order to create a reliable automation. The artefact rejection method of the EDA-Explorer is 

(1) flawed because of the method it uses and the separation in five-second intervals it 
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applies (2) not transparently enough documented and (3) performs greatly inaccurate in 

artefact rich data sets. It is the recommendation of this paper to not rely on this tool for 

artefact rejection in ambulatory studies in which motion or pressure artifacts (which are not 

produced by bodily functions, but by external events) are likely to occur paired together 

with SCRs. The EDAQA offers an alternative to the EDA-Explorer but oversimplifies the 

definition of what an artefact can be, whereby making it too insensitive (Kleckner et al., 

2017). It is the opinion of the researcher that in most use cases it would be more harmful 

for the research to miss artifacts, than it would be to identify too many measurement 

points as artifacts, since the real value of longitudinal EDA data usually lies in the occurance 

or absence of SCRs. However, this must be considered individually by other researchers 

based on their research question and design. Future research should focus on creating a 

universal definition of what an artifact is and how it can be properly identified in various 

situations. It is proposed to collaboratively direct all efforts towards laying the groundwork 

first and developing tools second. Steps need to be taken to diversify the population, 

recording devices and contexts that contribute to the data sets that are being used for the 

creation of any automatic tool in order to make it useful in every day life situations. 

Furthermore, it is suggested to also clearly define a SCR in terms of rise and fall in μS over 

time and train any tool to identify SCRs too, since that is the information most research is 

interested in. A method that deserves futher examination and could offer a viable solution 

to the current problems could be the OMP method (Kelsey et al., 2017). 

From a psychological point of view, the promises of wearable technology are immense. 

In an ambulatory longitudinal study, the Empatica E4 in combination with an automatic 

analysis tool has strong advantages over stationary solutions. In a real world example, when 

SCRs and artifacts occur with a low frequency, the Explorer should be used for peak 

detection and might even be a viable option for artifact rejection if used with awareness of 

its limitations. Especially in the detection of seizures or other sudden illness in which real-

time biofeedback is desirable, the combination of wearables and the EDA-Explorer hold the 

potential to save lives.  
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6. APPENDIX 

APPENDIX 1 – INSTRUCTION FOR THE PARTICIPANT 

“Welcome to my study on the EDA-Explorer. This study is meant to record your physiological reaction to 4 

different everyday life tasks using the measurement device that you see here in front of you on the table. The 

tasks are sitting, clapping, carrying a bag of groceries and playing rock-paper-scissors. The order of those 

activities will be as follows: (1) sitting – 5 minutes (2) clapping one time every 10 seconds – 2 minutes, (3) 

carrying a bag of groceries (5kg) – 2 minutes, (4), playing rock-paper-scissors with the researcher – 2 minutes 

and (5) debriefing. Before the experiment begins we will warm up by walking up and down some stairs here in 

the Cubicus. This is necessary for a clean signal on the measurement device. In all tasks I will be right by your 

side. You can stop the experiment at any time without having to give a reason why. You will be wearing this 

measurement device during the whole session. It will record you skin conductance level. It should sit tight but 

not uncomfortable on your wrist. The recorded data will of course be anonymously saved and analyzed. If you 

have any questions, please ask me now.” 

After this introduction questions were answered. Then the researcher asks the participant to sign the informed 

consent, which will be as attached below (Appendix 2). After the experiment the debriefing was phrased 

something like this: 

“This experiment was meant to create some so-called noise arti 

facts on the measured data. That is why I asked you to move your wrist quickly or carry the bag. These tasks 

are meant to test the device on the one hand, but more so to later test the analysis software that is currently 

being developed by MIT. I am hoping to get some data that is not completely clean, so that I can compare two 

different analyzing tools against each other. I am hoping to find out whether one tool outperforms the other. 

There is really not much more to it. If you have any more questions you can of course ask them. Otherwise, 

have a good day.” 

APPENDIX 2 - INFORMED CONSENT  
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Informed Consent for standard research 

 ‘I hereby declare that I have been informed in a manner which is clear to me about the nature and method of 

the research as described to me in person. My questions have been answered to my satisfaction. I agree of my 

own free will to participate in this research. I reserve the right to withdraw this consent without the need to 

give any reason and I am aware that I may withdraw from the experiment at any time. If my research results 

are to be used in scientific publications or made public in any other manner, then they will be made completely 

anonymous. My personal data will not be disclosed to third parties without my express permission. If I request 

further information about the research, now or in the future, I may contact:  

Name: Jan Hemmelmann,  

E-mail: j.hemmelmann(at)student.utwente.nl 

Mobile: +31683613114 

If you have any complaints about this research, please direct them to the secretary of the Ethics Committee of 

the Faculty of Behavioural Sciences at the University of Twente, Drs. L. Kamphuis-Blikman P.O. Box 217, 7500 

AE Enschede (NL), telephone: +31 (0)53 489 3399; email: l.j.m.blikman@utwente.nl).  

 

Signed in duplicate: 

 

 

……………………………  …………………………… 

Name subject          Signature 

 

 

I have provided explanatory notes about the research. I declare myself willing to answer to the best of my 

ability any questions which may still arise about the research.’ 

 

……………………………  …………………………… 

Name researcher    Signature 

mailto:l.j.m.blikman@utwente.nl
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APPENDIX 3 – DATA SET CONVERSION  

Start with E4.rar file 

General Info - Extract and analyze data by EDA Explorer.  

• Artifact rejection – binary and multiclass 

• Peak detection with EDA-Explorer - Threshold 0.01, offset = 1, max. rise and decay time = 4 

• Peak detection with Ledalab – handle same values 

Workflow Peak detection: 

1. Save all Raw files to laptop 

2. Run Explorer without AR -> save files (including graph) 

3. Open Peaks.csv 

4. Select Column A -> Find/Replace (1) . to &, (2) , to ., (3) & to , 

5. Save as .csv 

6. Import into SPSS using the assistant file 

7. Insert StartTime as case above all measurements 

8. Transform Variable V1 by extracting time only (Variable Name: TimeOnly) 

9. Change TimeOnly to Numeric 

10. Calculate new variable by using ‘TimeOnly’ – first value from ‘TimeOnly’ variable. (Variable Name: 

‘TimeFromOnsetExp’ 

11. Save SPSS file as: SessionX_ExplorerInSPSS 

12. Clean data set only leaving TimeFromOnsetExp 

13. Import Ledalab data set into SPSS by using the text import assistant file 

14. Reduce onset_SCR… to 5 signs 

15. Copy and paste into Excel Sheet 

16. Follow Steps 14&15 with TTP data set 

17. Select Column A & B -> Find/Replace .  to , 

18. Insert Ledalab data (CDA and TTP) into SPSS (Variable names: Ledalab_CDA and Ledalab_TTP) 

19. Save File as: Session7_ExplorerAndLedalabInSPSS.sav 

20. Run this file through R Script (counter.R) 

21. Name and save .csv output file to folder of your choice 

22. Import csv into SPSS (using the “SortedPeaks” assistant file) or R in order to run inter rater comparison 

or similar analysis  -  Note: befor importing into SPSS make sure that the csv file is not opened in Excel 

otherwise no data will be importe 

 

Counter.R 
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Workflow plotting Artifacts for Visual Inspection: 

1. Save all Raw files to laptop 

2. Run Explorer with Binary & Multiclass -> save files (including graphs) 

3. Open EDA.csv  

4. Save as EDA_Time.csv 

5. Delete the first 4 rows of data 

6. Calculate Seconds (S) from start recording until beginning of the Base Line measurement 

7. Delete the first X rows (X= S*4) 

8. Calculate Seconds (S) from end RPS until the end-time 

9. Delete the last X rows (X= S*4) 

10. Copy all data to column B Row 1 in the EDA_Time.csv 

11. From 660.csv copy column B and insert it as column A into EDA_Time.csv 

12. Create Column C and move comma by 6 places using “ =SUM(B2/1000000) “ for every row (B3, B4…) 

13. Copy and paste column C into SPSS (Reduce variable to two decimals) and from SPSS back into Excel 

replacing the values of column B. 
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14. Delete Column C 

15. Save 

16. Run this file through the R Script (Plotting_v2.Rmd) 

17. Save the output as PNG in the designated folder 

 

Plotting_v2.Rmd 

Plotting EDA Data for Visual Inspection 

Jan Hemmelmann 

5 September 2017 

Load the relevant libraries 

library(tidyverse) 

## Loading tidyverse: ggplot2 
## Loading tidyverse: tibble 
## Loading tidyverse: tidyr 
## Loading tidyverse: readr 
## Loading tidyverse: purrr 
## Loading tidyverse: dplyr 

## Conflicts with tidy packages -----------------------------------------
----- 

## filter(): dplyr, stats 
## lag():    dplyr, stats 

library(gridExtra) 

##  
## Attaching package: 'gridExtra' 

## The following object is masked from 'package:dplyr': 
##  
##     combine 

library(readr) 

import the datafile 

# import the EDA data of (for now) 1 participant 
EDA_data <- 
as.data.frame(read_csv2("C:/Users/j/Dropbox/shared_jan_matthijs/2. 
Analysis/3 Conversion/2 Artifact rejection/session15/EDA_Time.csv")) 
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## Using ',' as decimal and '.' as grouping mark. Use read_delim() for 
more control. 

## Parsed with column specification: 
## cols( 
##   SessionTimeInSeconds = col_double(), 
##   EDA = col_double() 
## ) 

add a column that holds the interval number 

This will help us with the plotting later on. It will allow us create one plot for each 
interval. 

amountOfIntervals <- nrow(EDA_data)/60 + 1 
EDA_data$interval_number <- rep(1:amountOfIntervals, each = 60, 
length.out = nrow(EDA_data)) 

now plot the X second intervals 

plotList <- list() # this list stores all the plots 
 
for (interval in 1:amountOfIntervals) { # for each interval, do the 
following 
  # create one plot for each interval and add it to the list that stores 
all the intervals 
  plotList[[interval]] <- EDA_data %>%  
    filter(interval_number == interval) %>% # only draw the interval with 
the right interval number 
    ggplot(data = ., aes(x = SessionTimeInSeconds, y = EDA)) +  
    geom_point() +  
    geom_line() + # there might be a more suitable geom than geom_line? 
    #geom_smooth(aes(group = 1))+ 
  #  theme(axis.text.y = element_blank()) + # disable the y value labels 
for better readability 
    ggtitle(as.character(interval)) # add the interval number as title 
} 
 
# draw all the plots that are stored in the plotList 
marrangeGrob(grobs=plotList, nrow =3,  ncol = 2) # this will create 
various pages for all the plots 

## geom_path: Each group consists of only one observation. Do you need to 
## adjust the group aesthetic? 

--- 
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Plotting EDA data sets 

title: "Plotting EDA Data for Visual Inspection" 

author: "Jan Hemmelmann" 

date: "09.April.2018" 

output: 

  word_document: default 

  pdf_document: default 

  html_document: default 

--- 

 

##Get Libraries 

 

```{r} 

library(haven) 

library(ggplot2) 

library(tidyverse) 

#library(gridExtra) 

``` 

 

## import the  datafiles 
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```{r} 

MF7 <- read_sav("C:/Users/J Hemmelman/Dropbox/shared_jan_matthijs/3. 
Experiment & Analysis/4 Analysis/MasterFile_S07.sav") 

MF11 <- read_sav("C:/Users/J Hemmelman/Dropbox/shared_jan_matthijs/3. 
Experiment & Analysis/4 Analysis/MasterFile_S11.sav") 

#MF11_raw <- read_sav("C:/Users/j/Dropbox/shared_jan_matthijs/3. Experiment & 
Analysis/4 Analysis/MasterFile_S11.sav") 

MF13 <- read_sav("C:/Users/J Hemmelman/Dropbox/shared_jan_matthijs/3. 
Experiment & Analysis/4 Analysis/MasterFile_S13.sav") 

MF15 <- read_sav("C:/Users/J Hemmelman/Dropbox/shared_jan_matthijs/3. 
Experiment & Analysis/4 Analysis/MasterFile_S15.sav") 

``` 

 

## calibration  

 

Compensate for a time-shift in the data (-1 placing all data of defined kind 1 second 
earlier) 

If you do this, work with another variable so that the original .sav stays untouched. 
(MFXX_raw) 

```{r} 

#MF11$S11_TTP_Leda_010 <- as.data.frame(sapply(MF11_raw$S11_TTP_Leda_010, 
function(x){x-0.5})) 

 

``` 
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## Prep Data For classification based on tasks (MF11, 13 and 15 incomplete) 

 

```{r} 

#Lable Baseline, Clapping, Carrying & RPS Task with 1,2,3,4 respectively 

#MF7$ExperimentID = 0 

#MF7[MF7$Time > 39 & MF7$Time <= 339,]$ExperimentID <- 1 

#MF7[MF7$Time > 339 & MF7$Time <= 459,]$ExperimentID <- 2 

#MF7[MF7$Time > 459 & MF7$Time <= 579,]$ExperimentID <- 3 

#MF7[MF7$Time > 579 & MF7$Time <= 699,]$ExperimentID <- 4 

 

#MF11$ExperimentID = 0 

#MF11[MF11$Time > 39 & MF11$Time <= 339,]$ExperimentID <- 1 

#MF11[MF11$Time > 339 & MF11$Time <= 459,]$ExperimentID <- 2 

#MF11[MF11$Time > 459 & MF11$Time <= 579,]$ExperimentID <- 3 

#MF11[MF11$Time > 579 & MF11$Time <= 699,]$ExperimentID <- 4 

 

#MF13$ExperimentID = 0 

#MF13[MF13$Time > 39 & MF13$Time <= 339,]$ExperimentID <- 1 



50 | P a g e  

 

Jan Hemmelmann – s1367552 

#MF13[MF13$Time > 339 & MF13$Time <= 459,]$ExperimentID <- 2 

#MF13[MF13$Time > 459 & MF13$Time <= 579,]$ExperimentID <- 3 

#MF13[MF13$Time > 579 & MF13$Time <= 699,]$ExperimentID <- 4 

 

#MF15$ExperimentID = 0 

#MF15[MF15$Time > 39 & MF15$Time <= 339,]$ExperimentID <- 1 

#MF15[MF15$Time > 339 & MF15$Time <= 459,]$ExperimentID <- 2 

#MF15[MF15$Time > 459 & MF15$Time <= 579,]$ExperimentID <- 3 

#MF15[MF15$Time > 579 & MF15$Time <= 699,]$ExperimentID <- 4 

``` 

 

 

## Plotting 

 

```{r} 

#Plot data per task - change c(x,x)numbers 

 

 

#BL = coord_cartesian(xlim = c(40, 340), ylim = c(0.5,1.5)) 

#Clapping= coord_cartesian(xlim = c(340, 460), ylim = c(0.5,2)) 
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#Carrying= coord_cartesian(xlim = c(460, 580), ylim = c(1,3.5)) 

#RPS= coord_cartesian(xlim = c(580, 700), ylim = c(2,6.5)) 

 

MF7 %>% 

  ggplot(aes(x = Time)) + 

    geom_line(aes(y=EDA_DATA)) + 

    labs(x = "Time from onset (in seconds)", y = "SCL in µS") + 

    #geom_vline(aes(xintercept = MF7$S07_TTPAdj_Exp_005, colour="Explorer TTP 
Adjusted .005")) + 

    #geom_vline(aes(xintercept = MF7$S07_TTP_Exp_005, colour="Explorer TTP .005")) 
+ 

    #geom_vline(aes(xintercept = MF7$S07_CDA_Led_005, colour="Ledalab CDA .005")) + 

    #geom_vline(aes(xintercept = MF7$S07_TTP_Led_005, colour="Ledalab TTP .005")) + 

    #geom_vline(aes(xintercept = MF7$S07_TTP_Expl_010, colour="Explorer TTP .01")) + 

    #geom_vline(aes(xintercept = MF7$S07_CDA_Leda_010, colour="Ledalab CDA .01")) + 

    #geom_vline(aes(xintercept = MF7$S07_TTP_Leda_010, colour="Ledalab TTP .01")) + 

    geom_vline(aes(xintercept = MF7$S07_AR_Binary_Exp, colour="Binary"), size=1, 
linetype = "dashed") + 

    #geom_vline(aes(xintercept = MF7$S07_AR_Multiclass_Exp, colour="x Multiclass", 
linetype = "dashed")) + 

    geom_vline(aes(xintercept = MF7$S07_AR_VI_Adj, colour="Visual Inspection", 
linetype = "dashed")) + 

    geom_vline(aes(xintercept = MF7$S07_AR_Multiclass_Exp_0_Included, 
colour="Multiclass 0 Included", linetype= "dashed")) + 
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    coord_cartesian(xlim = c(300, 400), ylim = c(0,6.5)) 

    #scale_fill_manual(labels = c("1", "2"), values = c("gray", "blue")) 

 

 

#BL = coord_cartesian(xlim = c(15, 315), ylim = c(0.5,1.5)) 

#Clapping= coord_cartesian(xlim = c(315, 435), ylim = c(7,10))  

#Carrying= coord_cartesian(xlim = c(435, 555), ylim = c(6,10)) 

#RPS= coord_cartesian(xlim = c(555, 675), ylim = c(4,10)) 

 

MF11 %>% 

  ggplot(aes(x = Time)) + 

    geom_line(aes(y=EDA_DATA)) + 

    labs(x = "Time from onset (in seconds)", y = "SCL in µS") + 

    #geom_vline(aes(xintercept = MF11$S11_TTPAdj_Exp_005, colour="Explorer TTP 
Adjusted .005")) + 

    #geom_vline(aes(xintercept = MF11$S11_TTP_Exp_005, colour="Explorer TTP .005")) 
+ 

    #geom_vline(aes(xintercept = MF11$S11_CDA_Led_005, colour="Ledalab CDA .005")) 
+ 

    #geom_vline(aes(xintercept = MF11$S11_TTP_Led_005, colour="Ledalab TTP .005")) 
+ 

    #geom_vline(aes(xintercept = MF11$S11_TTP_Expl_010, colour="Explorer TTP .01")) 
+ 
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    #geom_vline(aes(xintercept = MF11$S11_CDA_Leda_010, colour="Ledalab CDA .01")) 
+ 

    #geom_vline(aes(xintercept = MF11$S11_TTP_Leda_010, colour="Ledalab TTP .01")) 
+ 

    geom_vline(aes(xintercept = MF11$S11_AR_Binary_Exp, colour = "Explorer Binary"), 
size = 1, linetype = "dashed") + 

    geom_vline(aes(xintercept = MF11$S11_AR_Multiclass_Exp,colour= "Explorer 
Multiclass"), linetype = "dashed") + 

    geom_vline(aes(xintercept = MF11$S11_AR_VI_Adj, colour="Visual Inspection 
Binary", linetype = "dashed")) + 

    coord_cartesian(xlim = c(560,680), ylim = c(4,12)) 

    #scale_fill_manual(labels = c("1", "2"), values = c("gray", "blue")) 

 

 

#BL=20-320 

#Clapping=320-440  

#Carrying=440-560  

#RPS=560-680 

 

MF13 %>% 

  ggplot(aes(x = Time)) + 

    geom_line(aes(y=EDA_DATA)) + 

    labs(x = "Time from onset (in seconds)", y = "SCL in µS") + 
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    #geom_vline(aes(xintercept = MF13$S13_TTPAdj_Exp_005, colour="Explorer TTP 
Adjusted .005")) +   

    #geom_vline(aes(xintercept = MF13$S13_TTP_Exp_005, color="Explorer TTP .005")) 
+ 

    #geom_vline(aes(xintercept = MF13$S13_CDA_Led_005, color="Ledalab CDA .005")) + 

    #geom_vline(aes(xintercept = MF13$S13_TTP_Led_005, color="Ledalab TTP .005")) + 

    #geom_vline(aes(xintercept = MF13$S13_TTP_Expl_010, color="Explorer TTP .01")) + 

    #geom_vline(aes(xintercept = MF13$S13_CDA_Leda_010, color="Ledalab CDA .01")) + 

    #geom_vline(aes(xintercept = MF13$S13_TTP_Leda_010, color="Ledalab TTP .01")) + 

    geom_vline(aes(xintercept = MF13$S13_AR_Binary_Exp, colour = "Binary"), size = 1, 
linetype = "dashed") + 

    geom_vline(aes(xintercept = MF13$S13_AR_Multiclass_Exp,colour= "Multiclass"), 
linetype = "dashed") + 

    geom_vline(aes(xintercept = MF13$S13_AR_VI_Adj, colour="Visual Inspection", 
linetype = "dashed")) + 

    coord_cartesian(xlim = c(560,680), ylim = c(3,13)) 

    #scale_fill_manual(labels = c("1", "2"), values = c("gray", "blue")) 

 

#BL=20-320,  

#Clapping=320-440,  

#Carrying=440-560  

#RPS= coord_cartesian(xlim = c(560,680), ylim = c(2,9)) 
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MF15 %>% 

  ggplot(aes(x = Time)) + 

    geom_line(aes(y=EDA_DATA)) + 

    labs(x = "Time from onset (in seconds)", y = "SCL in µS") + 

    #geom_vline(aes(xintercept = MF15$S15_TTPAdj_Exp_005, colour="Explorer TTP 
Adjusted .005")) + 

    #geom_vline(aes(xintercept = MF15$S15_TTP_Exp_005, color="Explorer TTP .005")) 
+ 

    #geom_vline(aes(xintercept = MF15$S15_CDA_Led_005, color="Ledalab CDA .005")) + 

    #geom_vline(aes(xintercept = MF15$S15_TTP_Led_005, color="Ledalab TTP .005")) + 

    #geom_vline(aes(xintercept = MF15$S15_TTP_Expl_010, color="Explorer TTP .01")) + 

    #geom_vline(aes(xintercept = MF15$S15_CDA_Leda_010, color="Ledalab CDA .01")) + 

    #geom_vline(aes(xintercept = MF15$S15_TTP_Leda_010, color="Ledalab TTP .01")) + 

    geom_vline(aes(xintercept = MF15$S15_AR_Binary_Exp, colour = "AR Explorer 
Binary"), size = 1, linetype = "dashed") + 

    geom_vline(aes(xintercept = MF15$S15_AR_Multiclass_Exp,colour= "AR Explorer 
Multiclass"), linetype = "dashed") + 

    geom_vline(aes(xintercept = MF15$S15_AR_VI_Adj, colour="AR Visual Inspection 
Binary", linetype = "dashed")) + 

    coord_cartesian(xlim = c(400,500), ylim = c(5,10)) 

    #scale_fill_manual(labels = c("1", "2"), values = c("gray", "blue")) 

``` 
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APPENDIX 4 – DATA, SCRIPTS, GRAPHS & MORE 

All data, scripts, graphs, tables and documents used or created in/for this experiment can 

be provided on request. The original version is submitted including a USB-stick. 

For further information please contact: jan.hemmelmann@googlemail.com 

APPENDIX 5 – PLOTTED EDA DATA SETS 

 

FIGURE 14 – PEAK DETECTION LEDALAB TTP .005 & LEDALAB TTP .010 

 

FIGURE 15 - EXPLORER TTP .005 & EXPLORER TTP .010 

mailto:jan.hemmelmann@googlemail.com
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FIGURE 16 - LEDALAB CDA .005 & LEDALAB CDA .010 

 

FIGURE 17 - HIGHLIGHTING THE DIFFERENCE BETWEEN THE EXPLORER TTP AND LEDALAB'S TTP AND CDA 

 

 

FIGURE 18 - EXPLORER TTP AND EXPLORER TTP ADJUSTED FOR PEAK RISE TIME 
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FIGURE 19 - BLUE-GREEN-RED PATTERN 

 

FIGURE 20 - THIS GRAPH SHOWS A VERY RARELY OCCURRING PHENOMENON WHERE THE EXPLORER IDENTIFIES A SCR AS WELL AS AN 

ARTIFACT ON THE SAME PEAK 
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FIGURE 21 - AGGREGATED PEAKS 

 

FIGURE 22 - AGGREGADED ARTIFACTS 


