
i

Developing a data repository for the

Climate Adaptive City Enschede

Joeri Planting B.Sc Thesis August - 2018

Supervisor:
ir. ing. R.G.A. Bults
Critical Observer:

ir. J. Scholten

Creative Technology
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Faculty of Electrical Engineering,
Mathematics & Computer Science

ii

iii

Abstract

Due to climate change, more frequent and heavier rainfall occurs in the Netherlands.

The city of Enschede’s sewage system is unable to handle the amount of rainwater in

case of heavy rainfall, which causes for streets to flood. The municipality of Enschede

is looking for solutions, which resulted in the Smart Rainwater Buffer graduation

project. The municipality also wants to monitor air temperature to gain insight in the

urban heat island effect in Enschede, which resulted in the graduation project Air

Temperature Monitoring. Both projects are brought together under the name Climate

Adaptive City Enschede (CAC). This report describes the development of a suitable

data repository for the CAC project.

 Literature and state of the art research was done in order to gain insight in the

characteristics and pros and cons of the different classes of databases that exist, which

are (old)SQL, NoSQL, and NewSQL. Some database management systems of each of

the classes were compared, with focus on characteristics as data integrity, performance,

and geospatial functionalities. The concept for the repository consist of the database

and a generic interface. After setting up the requirements, the functional architecture

was designed with the data repository consisting of a database, and three interfaces.

One for each of the following roles, administrator, producer, consumer, which contain

the needed functionalities.

 The implementation of the database of the final prototype is done with the

database management system PostgreSQL, extended with PostGIS. This combination

is a very mature, reliable, and fast database management system. The PostGIS extension

offers the most extensive set of geospatial functionality of all database management

systems. The interfaces are implemented using the Lumen php micro-framework.

iv

v

Acknowledgements

First I’d like to thank my fellow students Jeroen Waterink, Thijs Dortman, Laura

Kester, and Adam Bako for the collaboration within the Climate Adaptive City

Enschede project. I would also like to thank my supervisor Richard Bults and my

critical observer Hans Scholten a lot, for their guidance, help, and insights during this

graduation project.

Finally, I’d like to thank Hendrik-Jan Teekens from the municipality of Enschede for

making the CAC graduation projects available to the University of Twente, as well as

for his time and valuable input.

vi

vii

Table of Contents

1. Introduction .. 1

1.1 Situation ... 1

1.2 Challenges .. 1

1.3 Research Questions .. 1

1.4 Outline .. 2

2. Background Research .. 4

2.1 Background .. 4

2.1.1 Enschede’s water problem .. 4

2.1.2 Urban Heat Island Effect .. 5

2.1.3 Sub-projects .. 6

2.2 Previous Work ... 7

2.2.1 Smart Rainwater Buffer .. 7

2.2.2 Air Temperature Monitoring ... 8

2.2.3 Conclusion .. 9

2.3 Literature Review ... 9

2.3.1 Introduction ... 9

2.3.2 Types of databases .. 10

2.3.3 Geospatial data .. 12

2.3.4 Conclusion .. 13

2.4 State Of The Art Review .. 14

2.4.1 PostGIS ... 14

2.4.2 MySQL ... 15

2.4.4 MongoDB ... 16

2.4.5 VoltDB .. 17

2.5 Conclusion ... 17

3. Methods and Techniques ... 20

3.1 Interviews ... 20

3.2 Design process for Creative Technology ... 21

3.2.1 Ideation ... 22

3.2.2 Specification ... 22

3.2.3 Realization .. 22

3.2.4 Evaluation ... 23

3.3 Stakeholder Analysis ... 23

3.3.1 Stakeholder roles ... 24

3.3.2 Stakeholder types .. 24

viii

3.3.2 Stakeholder prioritization .. 24

3.4 Requirement Analysis .. 25

3.4.1 MoSCoW .. 25

3.5 Scenarios .. 26

4. Ideation .. 28

4.1 Stakeholder Identification and Analysis .. 28

4.1.1 Identification ... 28

4.1.2 Categorization and prioritization .. 29

4.2 Preliminary requirements ... 31

4.2.1 Functional requirements .. 31

4.2.2 Non-functional requirements .. 32

4.2.3 The dataset .. 32

4.3 Concept .. 35

5. Specification .. 39

5.1 Requirements ... 39

5.1.1 Functional requirements .. 39

5.1.2 Non-functional requirements .. 42

5.2 Table structure ... 42

5.2.1 RPS ... 43

5.2.2 AirT ... 44

5.2.3 SRB ... 46

5.2.4 Universal solution ... 47

5.3 Functional architecture ... 53

5.3.1 Overview ... 53

5.3.2 Repository ... 54

5.3.3 Producer interface ... 54

5.3.4 Consumer interface ... 59

5.4.5 Administrator interface ... 64

5.4 PACT Analysis .. 64

5.4.1 People .. 64

5.4.2 Activities ... 65

5.4.3 Context .. 66

5.4.4 Technologies ... 66

5.5 PACT-FICS scenario ... 66

6. Realization ... 71

6.1 Hardware .. 71

6.2 Database management system ... 71

ix

6.2.1 PostgreSQL & PostGIS ... 72

6.2.2 PostgreSQL install log .. 75

6.2.3 PostGIS install log .. 76

6.2.4 Creating the database .. 77

6.3 Lumen php micro-framework .. 80

6.3.1 Installation ... 80

6.3.2 Routes ... 81

6.3.3 AdminController.php .. 86

6.3.4 ProducerController.php ... 87

6.3.5 ConsumerController.php ... 92

7. Evaluation .. 99

7.1 Postman .. 99

7.2 Functional testing ... 99

7.2.1 Tests .. 100

7.3 Performance ... 108

7.3.1 Admin interface .. 108

7.3.2 Producer interface ... 109

7.3.3 Consumer interface ... 109

7.4 Conclusion ... 110

8. Conclusion ... 113

9. Recommendations .. 116

References .. 117

Appendix .. 120

A. PostGIS Function Support Matrix ... 120

B. web.php, routes specification .. 130

C. AdminController.php .. 131

D. ProducerController.php ... 132

E. ConsumerController.php ... 136

x

1

1. Introduction

In this chapter a short description of the situation will be provided, followed by the challenges and research

questions regarding this graduation project. Finally, an outline of the contents of this thesis will be described.

1.1 Situation

Climate change, increase in city density and increase in hardened surfaces cause problems handling water and

heat, which are expected to increase over time [1]. The municipalities of Almelo, Hengelo and Enschede as well

as the Vechtstromen water authority participate in several projects, brought together under the name Klimaat

Actieve Stad (KAS) [2]. With the KAS projects the municipalities and water authority aim to better cope with

water and the changing climate, and contribute to an increase in quality of life for its citizens. From the KAS

projects of the municipalities and the water authority, the graduation project Climate Adaptive City (CAC)

Enschede followed.

 The CAC Enschede project can be seen as a so called smart city project. Data handling arises as an

important factor in such smart city projects. The Climate Active City Enschede (CAC) graduation project

consists of several sub-projects, namely the Smart Rainwater Buffer (SRB), Air Temperature Monitoring

(AirT), and the Reference Precipitation System (RPS). These projects will generate large amounts of location

based data which has to be processed, stored, and be accessible for visualization in user interfaces.

1.2 Challenges

The goal of this graduation project is to develop a data repository for the CAC Enschede project. Data repository

development is highly dependent on the system’s requirements. To identify the requirements, close

collaboration with all projects generating and querying data and the municipality is necessary.

Each of the projects will have multiple sensor nodes deployed which frequently generate location based

data, resulting in a huge amount of data that needs to be stored. The stored data has to be accessible by user

interfaces to provide visualizations for end-users. From this, multiple challenges follow regarding how to handle

the heterogenic origin of data, the efficiency, costs, and scalability of the database system for potentially big

data, concurrent access, and data integrity. Regarding the visualization, challenges follow in querying areas

within a spatial based database system and potentially storing additional information on area types.

1.3 Research Questions

The research question that followed the challenges stated in the previous section is:

How to develop a suitable data repository for geo-tagged environmental data for the Climate Adaptive

City Enschede project?

The following sub-questions will be used in order to answer the above stated research question. The first,

addressing the geospatial aspect of the data, is:

2

What database management system is most suitable for storing geospatial data?

The second, regarding the performance of the system, is:

How to maintain performance with large amounts of data generating sensor nodes?

1.4 Outline

First a background study will be discussed in chapter 2. This chapter starts with describing the water

problem of Enschede and the urban heat island effect. Secondly, previous work on the Smart Rainwater

Buffer and Air Temperature Monitoring graduation projects in relation to data storage will be

discussed. Thirdly a literature review regarding different types of databases and storage of geospatial

data is discussed, after which a state of the art review describes 4 different database management

systems and their geospatial functionalities. Chapter 3 describes the methods and techniques used in

this graduation project. Chapters 4, 5, 6, and 7 contain the results of the Creative Technology design

process, which are the concept, requirements, functional architecture, and the final prototype. Chapter

8 contains the conclusion. Finally, future recommendations are made in chapter 9.

3

4

2. Background Research

This chapter introduces the situation in Enschede regarding its water problems and the heat island

effect as the context of this research. Thereafter previous work on the SRB and AirT projects will be

discussed. Thirdly the conducted literature review as well as a state of the art review is discussed.

2.1 Background

2.1.1 Enschede’s water problem

The changing climate has an effect on the frequency and intensity of rainfall in certain periods during

the year. Periods of intense and heavy rainfall are alternated with longer periods of draught and heat

waves. Enschede faces some problems managing the amount of water in case of heavy rainfall. There

are four main reasons for the issues Enschede has with managing heavy rainfall, of which some are

visualized in figure 2.1. First of all the city is built on a moraine, causing for a difference in height of

approximately 44 meters. Enschede is built over several natural water sources on this moraine, which

would naturally dispose of water continuously and gradually. However, due to the increase of hardened

surface of the city, a very high volume of water flows during heavy rainfall in a short period of time

[3]. Secondly, Enschede has a rich history of textile industry. The decline of this industry in Enschede

has caused for factories that existed to close down, causing the groundwater levels to rise. The third

reason is that most urban brooks that flowed through Enschede have disappeared over the years, as can

be seen in figure 2.2. Finally the city is mainly build on clay ground, which is a poor permeable soil

layer.

Figure 2.1: Visualization of Enschede its water issues due to its location. Image by Gemeente

Enschede, modified by Gelieke Steeghs

5

Figure 2.2: Urban brook system in Enschede of 1900 (left) and 2010 (right). Image by Kennisportaal

Ruimtelijke Adaptatie.

Already several projects have been deployed to improve the cities capabilities in handling heavy

rainfall. Urban brooks are being reconstructed, of which de Roombeek, Beek ‘t Zwering, and de

Stadsbeek are examples [4]. Also wadi’s are used as natural water buffers in case of heavy rainfall [5].

A wadi is a lower area for buffering rainwater, but it can be used by citizens in dry periods. Water

flows to these lower areas during rainfall and is held there so that is can gradually infiltrate the ground.

An example of a wadi can be found in figure 2.3a. Furthermore, green roofs (figure 2.3b) are used to

temporarily store rainwater and slow the drainage of the water from the roofs, a reservoir called

Kristalbad has been realized which can store approximately 187.000 m3 water, and a huge water buffer

will be constructed underneath de Oldenzaalsestraat.

 Figure 2.3a: Example of a wadi Figure 2.3b, Example of a green roof

2.1.2 Urban Heat Island Effect

Periods of heat can have severe negative effects on the health and wellbeing of people. The

municipality of Enschede wants to monitor city temperature, in order to gain insight in the urban heat

https://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjH2I-i1_bcAhXBzqQKHQP_D7wQjRx6BAgBEAU&url=https%3A%2F%2Fsedumgreenroof.co.uk%2F&psig=AOvVaw3PNWWM1Zh0TxF43iEG0DtT&ust=1534684443346798

6

island effect (UHI) [6]. This effect means that the temperature in urban areas is higher than its

surrounding areas, as depicted in figure 2.4, and has (potentially) serious consequences for the health

and wellbeing of the citizens. Consequences of UHIs are increases in peak energy demand, degradation

of air quality, increased thermal stress on residents, strong impact on urban ecosystems, and a

significant increase in the level and risk of morbidity or illness caused by heat.

 The primary cause for the UHI effect is urbanization. This means the increase of building

density and the amount of hardened and heat absorbing surfaces, and the decrease of natural vegetation.

Also the rise in city temperature causes for an increase in the use of air conditioning systems, which

in turn dissipate heat into the city air. In order to increase knowledge of the UHI effects on Enschede,

the municipality wants to monitor temperature throughout the city by deploying several sensors.

Figure 2.4:Visualization of the urban heat island effect. Image by tallsay.com.

2.1.3 Sub-projects

In this section each of the CAC sub-projects will be explained in short, excluding the data repository.

SRB

The primary goal of the SRB project is to buffer rainwater in case of heavy rainfall to reduce the strain

on the sewage system. The buffering will be done by a smart rainwater buffer which in this phase of

the project will be owned by citizens of the municipality of Enschede. In order to buffer and dispose

rainwater autonomously, the SRB will use sensors to provide the system with the water level and water

temperature measurements. The dashboard for the users will contain visualizations of the data

produced by one or more SRBs.

7

AirT

The AirT project consist of multiple sensor nodes deployed in the Enschede, of which the produced

data will be used by the municipality of Enschede and researchers of the University of Twente to gain

insight in the urban heat island effect in Enschede.

RPS

For the reference precipitation system, a Lambrecht precipitation sensor will be used. The data

produced by this sensor will be used to give insight in the smart rainwater barrel performance and for

historic precipitation.

2.2 Previous Work

This section covers previous graduation projects regarding the Smart Rainwater Buffer and Air

Temperature Monitoring, with focus on data storage.

2.2.1 Smart Rainwater Buffer

In 2016/2017 Felicia Rindt [7] and Gelieke Steeghs [8] worked on the development of a smart

rainwater buffering system. As a functional requirement they state that the data generated by the buffer

should be store in a central database. They use a Raspberry Pi 3B as server to host the database. A

relational database management system has been used, namely MySQL.

The database consists of 7 tables, of which a detailed view can be found in figure 2.5. The user

table holds the user’s id, name and address. The water buffer table describes a single buffer, holding

an id, location, capacity, planned discharge id, datetime heartbeat, update time, default output valve

and future volume refill. The discharge table consists of a planned discharge id, start date and time,

and the planned discharge amount. The discharge command table contains data on a discharged amount

by the citizen. It holds the unique discharge command id, the discharge buffer id, the amount, the

discharge status, the discharge creation date and time, and the valve used for the discharge. The

waterflow table holds the cumulative output flow for a valve on a single buffer. The buffer information

table contains the water level in the buffer on a certain moment in time. Lastly, the event table contains

data on the priority, date and time, type of the event, and a message to be displayed in the interface.

8

Figure 2.5: Table structure of the current SRB database [6]

2.2.2 Air Temperature Monitoring

For the AirT graduation project, Yoan Latzer [9] and Tom Onderwater [10] have investigated several

communication techniques to transfer the sensor data to a central server. They decided to use The

Things Network (TTN), which is an open source Internet of Things focused network for low

powered devices using the LoRaWAN protocol. A Python script collects the data from an online

TTN application using the MQTT protocol and writes the data to the database’s main table, the

measurement table. A second table holds a list of all deployed sensor nodes, in order to easily return

a list of sensors for data formatting. This measurement table contains the following fields:

• measurement_type: In their project the only measured data was Temperature, so this

field was manually set to Temperature. They do state that other types of

measurements could be incorporated in the future.

• device_id: A unique identifier for each device, provided by the TTN metadata.

• value

• latitude

• longitude

• day

• month

9

• year

• hour

• minute

A relational database management system has been used. Furthermore, a Django server is used to

communicate with the database, as can be seen in figure 2.6. The Django framework does not

officially support NoSQL databases [11].

Figure 2.6: Application structure for the air temperature monitoring project [9].

There were some performance issues loading the webpage. Thee page loading delay was caused by a

the application requesting the full measurements table data.

2.2.3 Conclusion

Following from previous work it can be concluded that limited research on data storage has been done

in the context of the CAC Enschede project.

2.3 Literature Review

2.3.1 Introduction

Data plays an increasingly important role in a large variety of projects, like smart cities, which more

and more incorporate internet of things applications and internet connected devices. City

management can use collected data to improve overall city management efficiency and for

10

improvements in various sectors, like water- and sewage management, city temperature monitoring

and prediction, traffic reduction, energy saving and improving overall quality of life for its citizens

[12]. The increasing amount and heterogeneity of sensor data is accompanied with challenges in

managing and storing these large volumes of data.

For the CAC Enschede a data repository has to be developed, which lays at the center of several

sub-projects. These projects are the Smart Rainwater Buffer (SRB), the Reference Precipitation

System (RPS), and Air Temperature Monitoring (AirT), and also accompanied data visualizations in

user interfaces. For the data produced and used by the sub projects, the location of the sensor nodes

are of great value. Visualizing UHIs requires location based visualization. For the smart rainwater

buffer, the location is very important as well. In order to reduce the strain on the sewage system, it is

necessary to know where rain will fall first and in what sequence the buffers should be emptied.

The total number of sensor nodes producing location based data is very likely to increase above

10.000 in the future. Therefore, exploration of possibilities for geo-tagged data processing, storing,

and managing is needed. This literature review aims at giving an overview of characteristics, and pros

and cons of several database types, database management systems and geospatial possibilities in the

context of the CAC project.

The main question to be answered in this literature review is: what solutions do exist for

managing and storing large volumes of geo-tagged date? This question will be answered by addressing

the following subtopics, namely: what database types exist, what are their characteristics, and what

is a possible solution concerning storage of location based data. Scientific literature will be used to

answer the research question and sub questions, postulated in section 1.3.

2.3.2 Types of databases

Since the mid 1960’s, data has been primarily stored in relational databases. Because they use SQL as

their querying language, they are also known as SQL database systems [13]. Data is becoming more

and more important nowadays and finds an increasing amount of possible applications. The internet

of things is a fast growing concept. The amount of generated data increases along with the growth in

the value of data and internet connected applications. This growth in generation of data has caused for

two new classes of database management systems to emerge, non-relational and new-relational data,

better known as NoSQL and NewSQL databases respectively [13]. Which type of database is most

suitable, is highly dependent on the application requirements [14]. In order to make a good decision

based on the application requirements, understanding of the key characteristics of the different types

of databases is needed.

11

SQL

The first and often called traditional database management system is SQL. SQL database management

systems have since the start been used to store large amounts of data in fixed schemas [13]. The

relational model has been thoroughly studied, is well understood, and has for long provided a high

level of consistency and efficiency [15]. Data is stored in tables in a traditional row and column format.

Stored data is organized in relations, using keys to link data in different tables together. SQL database

management systems adhere to the so called ACID properties. ACID stands for Atomicity,

Consistency, Isolation, and Durability. By adhering to these properties, database management systems

handle concurrency in transactions, ensuring the integrity of the data. The ACID model is standard,

efficient, and reliable and its properties are very important characteristics of a SQL database

management system [13]. SQL systems scale vertically. This means when scaling up, the centralized

storage and processing capacity have to be increased by upgrading the hardware [15]. The current

CAC project has structured data, thus the SQL class of databases could be a good fit.

NoSQL

Scalability and a decrease in performance when the dataset grows very large in SQL systems caused

for the need of another solution. NoSQL emerged as a possible system with the main intention to

improve scalability and performance issues encountered with traditional SQL systems. Database

management systems based on NoSQL are non-relational. These databases have no fixed schemas and

can therefore handle a wide variety of data [13]. NoSQL database management systems are also called

document base systems, storing data as documents in formats likes XML and JSON [15]. NoSQL

systems are not expected to substitute the relational based SQL system, but can outperform a SQL

system when a document based system better fits the requirements. However, improvement in

performance comes at a cost. R. Sánches et. Al [15] state that non-relational systems do not offer

support for join operations and do not fully adhere to all ACID properties. However, S. D. Kuznetsov

and A.V. Poskonin [16] state that NoSQL stands for all non-relational database management systems.

The term therefore also incorporates earlier non-distributable and ACID compliant systems.

Distribution means that these systems scale horizontally. By decentralizing the database, the storage

can be distributed over multiple data centers and multiple CPUs can be utilized at the same time,

improving query performance [15]. When in the future the CAC project is fully deployed, distributing

the database over different municipalities could be a good way to greatly improve and maintain

performance, but this introduces an increase in complexity for the unstructured way of storing the data.

Furthermore, a drawback of this type of database management system is that is does not offer full

ACID compliance, which could compromise the data integrity for the project.

12

NewSQL

Both SQL and NoSQL have their drawbacks. A system that tries to bring together the best of both

worlds is NewSQL. NewSQL, also referred to as the modern relational model, keeps the relational

property of traditional relational database management systems. The difference with the traditional

system is that NewSQL incorporates NoSQL solutions as well [13] [17] [18], like scalability and high

performance. NewSQL is claimed to be a very capable database management systems specifically for

the increasing amount of internet of things data [13]. NewSQL databases primarily use SQL querying

language, adhere to the ACID properties for transactions, have an architecture offering higher

performance than traditional relational database management systems, and have the possibility to run

on a large number of nodes without suffering from bottlenecks [17]. Most NewSQL database

management systems use in-memory storage of data, resulting in higher performance compared to

SQL as well as NoSQL databases [13] [17] [18]. According to K. Grolinger et. al. [19], using NewSQL

systems is in general suitable in circumstances where additional scalability and performance is required

from traditional database management systems. NewSQL could be a fitting solution in the future when

the CAC project grows amongst the entire Vechtstromen district, which will likely require higher

performance capabilities from the system than the initial pilot project.

2.3.3 Geospatial data

The data that will be generated by the CAC projects is location based. This means that the data

repository solution has to offer support for geo-tagged data and location metadata to indicate the area

type of the location. Several approaches can be used to realize storage of geospatial data.

A four layer framework is proposed by S. Luan et. al. [20], consisting of a geography node

using R-tree indexing, a logical node, an application node, and a storage node. The geography node

describes the location and shape of a place, to express location information more accurately compared

to the geometric point based representation [20]. However, this framework utilizes a hybrid SQL -

NoSQL approach and introduces an unnecessary amount of complexity to the project.

There exist database management systems specially designed for storing and querying spatial

data, namely spatial database management systems. These systems usually are a regular system,

extended with spatial capabilities. They also extend the mature querying language SQL, then called

spatial querying language, and offer spatial querying features [21]. In order to provide efficient

querying of spatial data, which is of high importance within the project, spatial indexing is required.

R-tree indexing is the most widely used method for managing spatial data objects [22]. An open source

SQL database management system, namely PostgreSQL, offers very good spatial information storage

support using the PostGIS extension [21]. PostGIS and PostgreSQL use R-tree indexing on top of

13

GiST (generalized search tree), offering robust spatial indexing. Performance of PostgreSQL

compared to the NoSQL database system MongoDB, is sufficient [23]. Both implementations have

different overall characteristics, and performance differs depending on the type and amount of

simultaneous read/write operations. Again, choice of database management system is highly dependent

on system requirements. As said before, Spatial Database Management Systems are usually not an

independent software solution, but serve as an extension to existing database management systems like

PostgreSQL or MySQL [24].

The PostGIS extension for the PostgreSQL database management system is open source, has

the largest user base, and offers the most complete implementation of OGC’s Simple Feature

Specification (a standard for mostly two dimensional geometrics) of any free and open source database

management system [24]. However, in order to make a definite decision, both a clear overview of the

requirements for the CAC project has to be acquired, as well as further exploration of spatial

possibilities of NoSQL and NewSQL database management systems.

2.3.4 Conclusion

Regarding the question what solutions do exist for managing and storing large volumes of geo-tagged

data, an overview of different database management systems was provided as well as possibilities for

storing geospatial based data. Caused by an increase in the amount and importance of data and

applications generating data, two new types of database management systems have arisen: NoSQL and

NewSQL. Database management systems can be categorized in being relational (SQL) and non-

relational (NoSQL). The former being based on the traditional and most mature model, the latter

offering a new solution to immense volumes of data and performance, but with a tradeoff in one or

more of the ACID properties. Next to the traditional relational and non-relational database

management systems SQL and NoSQL respectively, a so called modern relational system has

emerged. NewSQL offers the possibility for distributed nodes, storing relational data in-memory

instead of on-disk. This means an increase in performance capabilities comparable to NoSQL, whilst

adhering to the ACID properties and the relation model used in SQL systems.

 Since the choice for a database management system is highly dependent on the requirements

for system, clearly specifying these requirements in the next phase of the project is needed in order to

decide which system to use. Furthermore, sufficient research exists on SQL based solutions for storage

of geospatial data, but further exploration of NoSQL and NewSQL geospatial solutions has to be done.

14

2.4 State Of The Art Review

In this chapter first the Simple Features Access of the Open Geospatial Consortium [25] will be

described. Second, a description of different database management systems and their possibilities for

storing geospatial data is provided, in order to be able to compare geospatial support and performance

of the different systems. As stated in the literature review in section 2.3.3, the PostGIS extension of

PostgreSQL offers a very good and reliable solution for storing geospatial data. However, performance

comparisons have shown that NoSQL and NewSQL systems are likely to have higher performance

than SQL systems, and offer better scalability [23]. Overall the CAC project will be write intense as

compared to reads, thus next to support for geo-tagged data storage, performance is an important

preliminary requirement as well. Therefor the performance of PostGIS, MySQL, MongoDB, and

VoltDB, as well as their geospatial features will be examined.

2.4.1 PostGIS

PostGIS is an extension of PostgreSQL, making it a spatial database management system by adding

support for geographical objects and location querying in SQL. It claims to offer a large set of features,

of which many are rarely found in other spatial databases [26]. PostGIS offers full support of the Open

Geospatial Consortium Simple Features standard.

PostGIS supports geography and geometry objects. Geography is a new datatype. It allows for

the storage of data in latitude/longitude pairs and supports long range distance measurements, because

no projection on cartesian spatial reference systems is done which often don’t represent the entire earth,

but it comes at a cost. Most computations on geography are slower, there are fewer functions defined

on geography than on geometry, and these functions require more CPU time to execute.

Geometry is the best fit if all data fits in a single spatial reference system representing for

instance only the Netherlands, or a lot of spatial processing is required, such as clustering of

geometries. If the data is contained in a small area like a municipality, using geometry and appropriate

projection is the best solution both in terms of performance and available functionality.

Relevant Functions

The AirT and SRB projects will cover the area of the municipality of Enschede. Eventually, the SRB

is expected to cover the area covered by the Vechtstromen water authority. With this in mind, some

relevant functions and geometry types of PostGIS are explained below. For a complete list of PostGIS

features, see Appendix A.

Since the projects are location based and cover a certain area, representation of an area in the

database is useful. A Polygon is a geometry type well suited to represent areas. They represent objects

15

of which the size and shape is important. Examples given are city limits, parks, building footprints,

and bodies of water. The concept of polygons is included in most graphics systems.

Collections can be used to group simple geometries into sets. These are useful for modeling real

world objects, like the smart rainwater buffers, as spatial objects. Supported collections are the

MultiPoint, MultiLineString, MultiPolygon, and the GeometryCollection, which are a collection of

points, linestrings, polygons, and a heterogeneous collection of any geometry respectively.

Querying collections of data from multiple sensor nodes of a certain area of the city, is a

preliminary requirement of the system. Spatial databases have the ability to compare relationships

between geometries. Some functions provided by PostGIS include ST_Equals, which returns TRUE if

two geometries are of the same type and have the same x, y coordinate pair. ST_Intersects, ST_Disjoint,

ST_Crosses, and ST_Overlaps are functions that check whether two geometries of equal or differing

types have space in common. ST_Within and ST_Contains check whether a geometry is fully contained

within another geometry. In order to return geometries within a certain distance of for example a point,

the function ST_DWithin provides an index-accelerated boolean test; hence calculation of an actual

buffer is not necessary. Spatial Joins are supported and provide the functionality to combine

information from different tables, using the spatial relationship as key.

Ensuring performance when the dataset grows is very important. Searching the table rows in

sequential order becomes an issue with tables exceeding a few thousand rows. Indexing the dataset is

a solution to improve performance. Spatial indexing is claimed to be one of the greatest assets of

PostGIS. PostGIS uses R-tree indexing on top of GiST indexing. R-tree indexing means breaking up

data into rectangles, which in turn break up in sub-rectangles, which again break up in sub-rectangles,

etc. GiST, or Generalized Search Tree, indexing, breaks up data into things on one side, things that

overlap, and things that are inside. Spatial indexes greatly improve spatial query performance of the

spatial database.

2.4.2 MySQL

Compared to the PostgreSQL – PostGIS combination, MySQL offers a less complete set of Simple

Features and the documentation is less extensive. The supported spatial data types are geometry, point,

linestring, polygon, multipoint, multilinestring, multipolygon, and geometrycollection [27]. Spatial

indexes are implemented using R-tree indexing only. MySQL does not offer support for rasters which

are very useful for the creation of heatmaps. Also topology, geocoding, address standardization, and

aggregate functions are not supported. Geocoding is the transformation of a description of a location,

like a coordinate pair or an address, to an actual place on the earth’s surface. Some aggregate functions

are, taking a few PostGIS functions as example, constructing an array of geometries, creating a

16

Linestring from point geometries, returning the union of geometries, and creating a polygon

GeometryCollection from linework of a set of geometries.

 Another drawback of using MySQL as a spatial database management system, is space

operation. For example, the PostGIS function ST_Contains will return all geometry types within

another geometry, like points within a polygon. MBR_Contains on the other hand, a comparable

MySQL function, only supports geometry within the minimum bounding box of another geometry,

like a polygon. See figure 2.7 for a visual representation of this difference.

Figure 2.7: Differences in spatial querying functions of PostGIS and MySQL

2.4.4 MongoDB

As previously stated in the literature review, MongoDB belongs to the non-relational database class,

also called NoSQL. The main difference between SQL and NoSQL is adherence to the ACID

properties, which ensure transactions to fully take place or not take place at all, handle concurrent

access, and ensure durability of the data in case of a crash or power loss. As said before, SQL systems

store structured data in a predefined table based schema, using keys to define relations between tables.

NoSQL systems allow for the storage of unstructured data. It does so by storing key-value pairs in

JSON like documents. Similar documents can be stored in a collection, which is comparable to a table

in SQL. Due to the more flexible data structure of NoSQL, it is easier to make mistakes. Next to the

lack of ACID adherence, NoSQL has no equivalent for the JOIN functionality of SQL systems. With

SQL, JOIN offers the possibility to query related data using a single SQL statement. Taking the SRB

project as example, obtaining the water level of all smart rainwater buffers in SQL would be possible

in a single SQL statement, combining the water_buffer and buffer_information tables of figure 2.5

using JOIN. In order to obtain the same result in a NoSQL system, the retrieval of all water_buffer

documents as well as the buffer_information documents is needed. Then all documents have to be

manually linked in program logic. Concerning data integrity, SQL’s fixed schema will ensure that all

17

buffer_information entries are related to a water_buffer; i.e. the deletion of a water_buffer is not

permitted if one or more buffer_information entries are associated with the water_buffer. Such

integrity rules are not available to NoSQL systems, since they allow storage of any data regardless of

other documents. NoSQL systems trade-off the lesser data integrity with higher scalability and

performance, due to the denormalized way of storing data.

 In MongoDB geospatial data is stored in GeoSON objects. Supported objects include Point,

Linestring, Polygon, MultiPoint, MultiLineString, MultiPolygon, and GeometryCollection [28].

Geospatial queries on GeoSON objects are calculated on a sphere. It is possible to use two dimensional

indexing with MongoDB, allowing querying of flat surface data. The list of supported query operators

is rather short, especially when compared to PostGIS. Assuming two dimensional non-spherical

indexing, the provided query operations are $geoWithin, $near, and $nearSphere. Respectively this

means the selection of geometries within a bounding GeoSON geometry, returning geospatial objects

ordered by the distance to a point, and returning geospatial objects ordered by the distance to a point

on a sphere.

2.4.5 VoltDB

VoltDB belongs to the relational database class. It is a NewSQL database management system. As

stated in the literature review of section 2.3. NewSQL aims at combining the best of both worlds into

a new type of database. The best of both worlds meaning the structured relational storage schema, SQL

language, and ACID adherence of SQL, and the scalability and performance of NoSQL systems.

 Regarding the support for geospatial data, VoltDB lacks behind. Especially when compared to

PostGIS. VoltDB supports only two geospatial datatypes, namely GEOGRAPHY and

GEOGRAPHY_POINT [29]. The GEOGRAPHY_POINT represents a single point on earth which is

defined by the latitude/longitude pair. The GEOGRAPHY datatype represents a bounded region of the

earth and is defined by one or more polygons. Provided functions are AREA(), CENTROID(),

CONTAINS(), and DISTANCE(). Respectively they return the area of a region, the center point of a

region, whether a region contains a certain point, and the distance between a point an a region or two

points.

2.5 Conclusion

The previous research regarding the data storage of the SRB and AirT projects was certainly limited.

Therefor a literature and state of the art review was conducted to elaborate on the different possibilities

that exist for the storage of geospatial data.

18

In the conducted literature review in section 2.3, an overview of different database types and

characteristics was provided. The conclusion drawn from this literature review is that of all open source

and free database management systems, the PostgreSQL extension PostGIS provides the most

complete list of features regarding geospatial support. However being a SQL type of database, some

issues arise regarding scalability and performance as compared to NoSQL and NewSQL database

systems.

In the state of the art review of section 2.4, several database management systems of different

database classes were investigated. In the relational class regarding the SQL database type, the

PostgreSQL extension PostGIS and MySQL were discussed. Regarding the non-relational NoSQL

database type, MongoDB was discussed. Finally, the relational NewSQL database management system

VoltDB was discussed. The state of the art review showed similar results as compared to the literature

review. PostGIS had by far the most extensive set of features supporting geospatial data. PostGIS being

completely free and open source is a big plus, as well as its extensive documentation and large user

community. MySQL, MongoDB and VoltDB all offer community as well as enterprise solutions, and

have a less rich set of supported geospatial features.

Each discussed system has its advantages and disadvantages, mainly regarding data integrity,

geospatial data support, scalability, and performance. As was concluded from the literature review,

choosing a database type is highly dependent on the system requirements. Further research is needed

in order to determine a suitable data repository solution for the Climate Adaptive City Enschede

graduation project, offering a combination of sufficient geospatial support and performance.

19

20

3. Methods and Techniques

This chapter describes the methods and techniques used for this bachelor thesis, in context with the

research subject.

3.1 Interviews

Interviews with stakeholders will be used to determine and verify the (preliminary) requirements.

Interviewing can be done by applying different types of interviews. Four of these types of interviews

are explained below [30].

Structured interviews

With structured interviews, the questions are created prior to the interview and are the same for each

respondent. The questions are mostly close ended and there is usually not much room for variation in

responses. The interviewer has a neutral role, acting casual and friendly, and does not insert his or her

own opinion.

Semi-structured interviews

Semi-structured interviews take place in formal setting. The difference with a structured interview is

that the interviewer develops and follows an interview guide with topics that have to be addressed in

the interview, usually in a particular order. The interviewer is allowed to deviate from the guide when

he or she feels it is appropriate.

Unstructured interviews

Again this type of interview takes place in a formal setting, with both the interviewer and respondents

being aware that an interview is taking place. There is no structured interview guide, but the

interviewer does a plan regarding the focus and goal of the interview. The questions are usually open

ended and have low control over the respondents answers, allowing the respondents to open up.

Informal interviews

The interviewer talks with respondents informally, without the use of an interview guide. The

conversation has to be remembered by the interviewer, and he or she can make notes to help recall the

conversation. Informal interviews allow respondents to speak freely and openly.

21

3.2 Design process for Creative Technology

The bachelor program Creative Technology aims to teach students to develop new and innovative

products. It is a multidisciplinary program with the goal to produce engineers that are able to act as a

“bridge” in multidisciplinary teams, which means being able to speak the language of different

engineering disciplines, such as for example industrial design, interaction design, electrical

engineering, and computer science. According to A. Mader and W. Eggink [31], design within the

Creative Technology field lies between user centered design and classical engineering design

approaches. They propose a Creative Technology specific design method, consisting of four phases,

namely ideation, specification, realization, and evaluation as can be seen in figure 3.1. In the following

sections each phase will be explained in relation to their use in this thesis.

Figure 3.1 The Creative Technology design process [31]

22

3.2.1 Ideation

The Creative Technology design process starts with a design question, which in this case consists of

the research questions stated in chapter 1. In this first phase of the design process, user

needs/stakeholder requirements and technology can be starting points or motivational forces. The

ideation phase in context of this graduation project will have technology as the starting point, primarily

using multiple existing technologies as source of inspiration. Preliminary project requirements will be

elicited from the stakeholders by the use of (informal) interviews and brainstorm sessions. These

methods will are explained in section. The inspiration from looking at existing technologies and the

preliminary requirements will be used to come up with a more elaborated project idea at the end of the

ideation phase. Looking at the possible results of the ideation phase, an experience idea, interaction

idea, product idea, service idea, and business idea as can be seen in figure 3.1, a service idea is likely

to be the result. This is because this graduation project will provide data storage, data access, and

geospatial analysis functionality as a service to the SRB and AirT projects rather than being an

experience, interaction, product, or business idea.

3.2.2 Specification

Starting with where the ideation phase ends, a creative idea which in the case of this graduation project

will be a service idea, the specification phase further explores the influence that user experience and

functional specifications have on each other by using multiple prototypes. Short evaluation and

feedback loops are used in order to determine shortcomings and strengths of prototypes, after which

prototypes can be discarded, improved, or combined into new prototypes. By using the short evaluation

and feedback loops it is also possible that new functional requirements arise, which can then possibly

result in new prototypes. Driving factor in this phase is the user experience. Prototypes are often

reduced to one or a few parts of the future product, each part being responsible for a certain part of the

user experience. At the end of this phase the requirements for this graduation project will be final. In

order to finalize the preliminary requirements, they need to be verified with the stakeholders of this

project by the use of (informal) interviews and brainstorm sessions. The specification phase results in

a complete service specification with which the realization phase will be started.

3.2.3 Realization

The realization phase starts with the conclusion of the specification phase, which is a complete service

specification. This specification will be decomposed into subcomponents by looking at different the

different roles that exist in the prototype. Each subcomponent can then be further analyzed by

decomposing its functional requirements into three levels, each describing the component’s

23

functionality in more detail. The separate components are then realized and integrated into one

prototype. Some functional testing will have to be done in this phase to validate whether the end service

of a prototype meets the project’s functional specifications. This will be done by writing applications

simulating components of the stakeholder’s projects. More extensive functional testing will be done

in the evaluation phase.

3.2.4 Evaluation

Evaluation is the final phase of the Creative Technology design process. Although some functional

testing has usually already taken place in the realization phase, further functional testing will be done

in the evaluation phase in order to check whether all functional requirements are met. Also user testing

can be used to check whether the user requirements and the intended experience are satisfied by the

design decisions that were made during the project. Since there are no direct end users involved in this

project, the main focus will be on testing the functional requirements. The testing done in this phase

will be more extensive as compared to the functional testing in the realization phase. Next to testing

the prototypes functionality, also the performance and storage capacity requirements will be tested.

This will be done by writing applications simulating multiple data producing and consuming clients

and analyzing measurements done on the system’s performance and the amount of produced data.

3.3 Stakeholder Analysis

The approach for analysis of the stakeholders proposed by Sharp et al. [32] will be used, together with

a power versus interest grid [33]. Sharp et al. [32] state multiple definitions for the term stakeholder,

of which the following is believed to best describe the term in context of this graduation project:

“System stakeholders are people or organizations who will be affected by the system and who have a

direct or indirect influence on the system requirements”. [34]

First the stakeholders for this project will be identified by brainstorming, after which categorization

will be done. H. Sharp et al. [32] distinguish between two types of stakeholders, namely baseline- and

satellite stakeholders. For this project the focus will be on the baseline stakeholders, since they interact

with the system directly. Baseline stakeholders will be divided into two meta group roles, namely that

of producer or consumer. Also, baseline stakeholders will be assigned one or more of four types,

namely users, developers, legislators, and decision-makers. After that, individual roles within the meta

role groups and baseline stakeholder types will be assigned. Finally, each stakeholder will be placed

24

on a power versus interest grid, to determine which stakeholders to manage closely and which to just

keep up to date.

3.3.1 Stakeholder roles

As mentioned in the previous section, the baseline stakeholders will be divided into the meta role group

of either producer or consumer. Producer stakeholders produce information and provide this to the

system. Consumer stakeholders retrieve, process, and use information from the system.

3.3.2 Stakeholder types

The types that can be assigned to a baseline stakeholder are that of user, developer, legislator, and

decision-maker. Users are defined as the people, groups, or companies who interact with and control

the system directly, and those who will use the products of the system such as information. Developers

are stakeholders in the requirement process as well as the users, but have a different role in the

requirement specification and the system itself as compared to the users. Roles within the developers

baseline group could be for example analysts, designers, programmers, and project managers. Two

examples of the legislator baseline type are professional bodies and government agencies, and finally

the decision-makers are development team managers, user managers and financial controllers. The

legislators and decision-makers can affect development and operation of the system by guidelines for

operation, such as guidelines for costs, performance, security, and privacy.

3.3.2 Stakeholder prioritization

Next to categorization, each of the stakeholders will be placed on a power versus interest grid, of which

an empty example can be seen in figure 3.2. The y-axis indicates the power a stakeholder has, ranging

from low power to high power from bottom to top. The power indicates the amount of influence a

stakeholder has on the development of the system. The x-axis indicates the stakeholder’s interest in

the development of the system, ranging from low interest to high interest from left to right. The

diagram is divided into 4 equal sized sections. The sections are:

• Monitor (minimum effort) –low power and high interest

• Keep satisfied – high power, low interest

• Keep informed – low power, high interest

• Manage closely – high power and high interest

Depending on the combination of the power and interest, a stakeholder is placed in one of the four

diagram sections.

25

Figure 3.2, An empty power versus interest grid [33]

3.4 Requirement Analysis

The requirements will be determined by informal interviews with the stakeholders (see section 3.1).

The requirements will first be categorized in functional and non-functional requirements. After that

further categorization will be done using the MoSCoW method, which is explained in section 3.4.1.

Functional requirements will describe functionality and behavior that the system should provide, and

the non-functional requirements will specify the quality attributes of the system. The MoSCoW

method is explained in the next section.

3.4.1 MoSCoW

In order to categorize the (non-)functional requirements, the MoSCoW method will be used.

Categorization will be done by specifying the requirements as must have, should have, could have,

and won’t have requirements. All must have requirements must be included in the final solution. They

are the most critical requirements that must be implemented within the current timeframe of the project.

Should have requirements are important as well, but not as critical within the current project timeframe

as must have requirements. These requirements should be implemented as much as possible after the

solutions meets the must have requirements. A could have requirement is desirable, has lower priority

than a should have requirement, and should only be implemented if it fits within the current timeframe

and available resources of the project. Lastly, a won’t have requirement is identified as the least

26

important requirement. Won’t have requirements will either not be implemented at all, or possibly

reconsidered for future work.

3.5 Scenarios

Scenarios will be constructed to describe how each of the clients will interact with the system, and to

further specify their needs and the preliminary requirements. In order to construct these scenarios from

both a user’s as well as a designer’s perspective, the PACT framework together with FICS will be

used.

PACT Analysis

PACT analysis can be used to describe the user’s perspective and to structure the construction of

scenarios by identifying activities of people in different contexts and using different technologies.

PACT stands for People, Activities, Context, and Technologies [35].

People

The people part of the PACT analysis for this project will consist of the different roles that the

stakeholders have.

Activities

Each individual role of the stakeholders is accompanied with specific activities in interacting

with the project. These activities are very important in constructing useful scenarios that

describe the user’s perspective.

Context

The context will describe the context in which the activities are performed.

Technologies

The technologies part focusses on the in- and output of data, the content, and communication.

FICS

FICS will be used to describe the designer’s perspective, and stands for functions and events,

interactions and usability issues, content and structure, and style and aesthetics.

27

28

4. Ideation

This chapter describes the ideation phase of this graduation project.

4.1 Stakeholder Identification and Analysis

4.1.1 Identification

First all stakeholders have been identified by brainstorming and drawing a scheme of the total CAC

project, which can be seen in figure 4.1. As said in chapter 1, the CAC project consists of the following

(graduation) projects excluding the data repository:

• SRB

• AirT

• RPS

Descriptions of each of the projects can be found in section 2.1.3.

The SRB project consists of a team of three, namely Jeroen Waterink, Thijs Dortman, and Sefora Tunc.

Sefora will not be considered to be a baseline stakeholder for this project since she focusses on the

D.I.Y. assembly instructions of the SRB and doesn’t interact with the project directly. The other two,

Jeroen and Thijs, focus on the design of a modular smart rainwater buffer and a user dashboard

respectively. The other project, AirT, consists of a team of 2, Laura Kester and Adam Bako, of which

both are considered baseline stakeholders within this graduation project. Laura Kester focusses on the

design of a sensor module and Adam Bako deals with the visualization of the sensor data. Thijs works

on the RPS as well, deploying a Lambrecht precipitation sensor.

 Three other stakeholders exist within this graduation projects. These are the municipality of

Enschede, the Vechtstromen water authority, and the University of Twente. They don’t interact with

system directly, and hence they’re not considered to be baseline stakeholders within this project.

As has been said in section 3.3.1, the baseline stakeholders will be divided into the grouped

role of either producer or consumer. Within the grouped role, the baseline stakeholders are assigned

individual roles. The projects of Jeroen and Laura will both produce data. Therefore Jeroen and Laura

will both be assigned the grouped role of producer. Their individual roles are that of SRB developer

and AirT developer respectively. Thijs and Adam’s projects will consume data and are therefore

assigned the grouped role of consumer. Their individual roles will be that of SRB dashboard developer

and AirT dashboard developer respectively. Thijs will also have the role of RPS developer, since he

works on the RPS as well.

29

Figure 4.1 The CAC project from the data repository’s perspective

In figure 4.1, the baseline stakeholders are grouped per project and per meta role group. On the left

and indicated by blue are the SRB stakeholders and on the right and indicated by green are the AirT

stakeholders. As said before, the RPS stakeholder is indicated by purple. Next to the grouping by

project and specific individual roles, these stakeholders are grouped by their meta role in the CAC

project, indicated by the grey boxes.

4.1.2 Categorization and prioritization

To give a clear image of the types of stakeholders, the baseline stakeholders are categorized using the

baseline stakeholder types: users, developers, legislators, and decision makers (see section 3.3.2).

Table 4.4 contains a list with this categorization. Next to categorizing the stakeholders, they are placed

on a power vs. interest grid to give an indication of the power and interest each of the stakeholders

have in the project and how close each of the stakeholders have to be managed.

30

Table 4.4 Stakeholder categorization

Stakeholder Type

SRB developer User – developer

SRB dashboard developer User – developer

AirT developer User – developer

AirT dashboard developer User – developer

RPS developer User – developer

On the power vs. interest grid in figure 4.3, the baseline stakeholders are indicated by the bold text.

Although the municipality of Enschede, the Vechtstromen water authority, and the University of

Twente are not considered baseline stakeholders in this project, they are included in the power vs.

interest grid to give an indication of their power and interest in this project.

The municipality of Enschede and the University of Twente are placed on the border of the

keep satisfied and monitor boxes of the grid. Due to their indirect influence via the baseline

stakeholders, their interest in this specific project is considered low and their power medium. The

Vechtstromen water authority cooperates with the municipality of Enschede, has low power and

interest and is placed in the monitor box.

All baseline stakeholders are placed in the manage closely box. A top-down approach will be

used to determine the dataset that is needed by the consumers (see section 4.2.3). This means that the

dataset that needs to be produced by the producers will be determined by the dataset needed by the

consumers. Therefor the SRB and AirT dashboard developers are placed higher on the power axis of

the grid than the SRB and AirT developers. Their interest in this project is considered to be equal,

since both producers and consumers will have more or less equal dependency on the data repository.

The SRB dashboard developer is placed a bit higher on the power axis than the AirT dashboard

developer, because it’s expected that the SRB project will require more from the repository’s

functionality than the AirT project.

Finally, the RPS developer is considered to have less power and interest than the SRB and AirT

projects, since this is an additional non-graduation project which will have lower priority for the RPS

and SRB baseline stakeholder than the development of the SRB dashboard.

31

Figure 4.3, Stakeholder power vs. interest grid

4.2 Preliminary requirements

The requirements listed in this section are preliminary, since further specification and prioritization of

the requirements will be done in the specification phase in chapter 5. The preliminary requirements

listed in this section will be categorized in functional and non-functional requirements.

4.2.1 Functional requirements

• The system must be able to store geo-tagged data.

• The system must support multiple types of sensor system nodes (SRB, AirT, RPS).

• The system must be able to store sensor system node specific characteristics.

• The system should be able to provide a .csv formatted download of all raw data.

• The system must be application independent. (support multiple different visualization

applications)

• The system could provide location metadata.

32

• The system must be able to provide location based data.

• The system must be able to provide specific sensor system node data.

• The system should be able to provide street level data.

• The system should be able to provide selected area data.

• The system should be able to provide clustered sensor system nodes data.

• The system should be able to provide time based data.

• The system must be able to store sensor system specific events.

4.2.2 Non-functional requirements

• The system must maintain performance with large amounts of stored data.

• The system must support clients producing data every 5 minutes minimum.

• The system should require low maintenance.

• The system must shield clients from complexity.

• The system must be reliable.

• The system must maintain data integrity.

• The system must handle concurrency.

• The system should be low cost.

• The system must be flexible.

• The system must run on a hardware platform

4.2.3 The dataset

A top-down approach is used in order to determine the dataset needed by the consumers for the

visualizations. By informal interviews and brainstorming with the consumers (with the producers

present as well), the preliminary required data was identified and communicated to the producers. See

figure 4.4 for a visual representation of the used approach. The results from the informal interviews

and brainstorm sesions, the required datasets, are listed below.

33

Figure 4.4, Top-down approach to determine data requirements

SRB data

The preliminary dataset needed by the SRB dashboard project is shown in table 4.5. SRB specific

characteristics are needed for calculations and visualizations in the SRB dashboard application:

location and buffer capacity. The current SRB fill level will be used to inform SRB users how much

water is available in their SRB for private usage. The historic amount of buffered rainwater is needed

to compare a SRB user’s buffering performance with other SRB users buffering performances. The

planned discharges are used to visualize what is expected to happen with the buffered rainwater in a

user’s SRB, along with the accompanied predicted precipitation. Regular discharges are used to

visualize what actually happened regarding discharges, again with the accompanied precipitation. The

manual discharges will indicate when buffered water has been drained manually using the water tap.

For legionella and frost warnings, the water temperature is needed. The historic precipitation will be

produced by the RPS project.

34

Table 4.5 Data and units needed by the SRB dashboard project

Data type Unit

Location Latitude - longitude

Buffer capacity Liters

Current fill level Liters

Historic amount of buffered rainwater Liters per time period

(Manual) discharge Date, time, desired fill level in liters,

precipitation in mm/h

Planned discharge Date, time, desired fill level in liters,

precipitation in mm/h

Precipitation predictions for SRB location mm/h

Historic precipitation for users location Per day for past month

Per month for past 2 years

Water temperature Degrees Celsius

AirT data

The preliminary dataset needed by the AirT dashboard project can be found in table 4.6. Again some

sensor system characteristics are important for calculations and visualization: the location and the

skyview factor. This skyview factor is the percentage of visible sky for the AirT location. This means

sky not blocked by for example buildings or trees. This factor will be used to calculate solar radiation.

The data that will be visualized is the air temperature, wind speed, and humidity.

Table 4.6 Data and units needed by the AirT dashboard project

Data type Unit

Location Latitude - longitude

Air Temperature Degrees Celsius

Wind speed m/s

Humidity Percentages

Skyview factor Percentages

35

4.3 Concept

For this project, in order to provide database storage and access and geospatial functionality to the

CAC sub-projects, a custom client interface will be developed. This interface will be used to abstract

between the different layers of the total project. It will provide the clients with general functionality in

order to insert and retrieve data from the database, of which a visual representation can be found in

figure 4.4. The interface will be generic, offering producers input possibilities to register a new sensor

system node, insert sensor system measurements, and add events such as a rainwater buffer discharge.

The consumers will have the possibility to retrieve point based, street level based, and clustered data

as well as a .csv formatted download of stored data. The meaning of point based data, street level data,

and clustered data is explained in more detail below.

Figure 4.4, Database system structure and provided functionality

Point based data

Client applications, such as the SRB and AirT dashboard applications, will be able to retrieve data for

a certain point location by making a point location request to the generic interface. If multiple sensor

system nodes exist on that particular location, selection of one or more sensor system nodes will be

possible.

Street level data

For privacy reasons with the SRB dashboard application, users will only be able to see the performance

of other SRB users at street level. This was decided with the SRB stakeholders and the municipality

Data repository

36

during an informal interview. The system will be able to calculate and provide averages for multiple

sensor system nodes on street level, represented by a geometry of the type linestring.

Area selection

Consumer applications will be provided the functionality to select an area on a map, returning data for

all sensor system nodes contained within the selected area.

Clustered data

In the early stages of the CAC project, it is expected that an insufficient number of SRBs will be

deployed to meet the privacy requirements by providing street level data only. There is a requirement

for a function to cluster sensor system nodes together and specify a minimum amount of sensor system

nodes per cluster.

Following the preliminary requirements and the grouped roles of producer and consumer that were

assigned to the projects that will interact with the repository, three generic interfaces will be developed:

a consumer interface, a producer interface, and an administrator interface. Both the producer and

consumer interfaces will be universal instead of sensor system specific. Sensor system specific

functionality of the producers and consumers, if required, will be implemented by the producers and/or

consumers themselves. The interfaces shield producers, consumers, and administrators from

complexity of the repository side programming by offering functions that can be called, and to improve

maintainability of the repository. A scheme of this high level architecture can be found in figure 4.5.

The producers are the SRB, AirT, and RPS developers. The consumers are the SRB and AirT

dashboard developers. If required, for example for data formatting, client specific interfaces will be

needed to be developed by the students working on the specific projects themselves.

37

Figure 4.5, High level architecture

Data repository

38

39

5. Specification

In this chapter the preliminary functional and non-functional requirements listed in chapter 4 will be

further specified and prioritized by the use of the MoSCoW method explained in chapter 3. After that

the database table structure will be explained. Finally, the final concept idea in chapter 4 will be further

described by a 3 level deep analysis of the functional architecture.

5.1 Requirements

In this section the system requirements will be prioritized using the MoSCoW method. Determining

the priority of each of the system’s requirements is done by verification in informal interviews with

the project stakeholders. Since a good specified requirement only describes one single function or

attribute, some preliminary requirements from chapter 4 are split up in multiple separate requirements.

Also, by describing each requirement as a single functionality or attribute, the requirements can be

prioritized more precisely.

5.1.1 Functional requirements

The prioritized functional requirements can be found in table 5.1. As mentioned above, some of the

preliminary requirements of chapter 4 have been split up in several requirements, in order to describe

only one single system functionality or attribute. The system must at least support SRB, AirT, and RPS

nodes along with the types of measurements that have been determined by and verified with the

stakeholders. This means for example that supporting those three types of sensor system nodes are

prioritized as must have requirements, and the more general requirement be sensor type independent

is prioritized as should have requirement.

 All RPS requirements are considered could have requirements, since the RPS developer’s

priority lies with the development of the SRB dashboard and thus minimizes the time spend on the

RPS. Both street level data and area selection will not be implemented by the SRB dashboard developer

and the AirT dashboard developer, so these requirements are prioritized as won’t haves. The alternative

to the street level data, the clustered nodes data, is dropped by the SRB dashboard developer and does

not apply to the AirT dashboard developer. The SRB dashboard developer’s stakeholders don’t

consider this functionality useful in this stage of the SRB project. Instead, the SRB dashboard

developer will provide comparison of an SRB user’s buffered amount of rainwater with the city’s total

amount of buffered rainwater for last month. Calculation of this data will be implemented in the

consumer interface. This is considered extra work and therefor prioritized as a could have requirement.

40

Table 5.1. Prioritized functional system requirements

The system must

be able to store geo-tagged data.

support multiple data producing sensor system nodes.

support multiple data consuming applications.

support SRB nodes.

support SRB dashboard application.

support AirT nodes.

support AirT dashboard application.

be able to store SRB node (historic) location.

be able to store SRB legionella protection setting.

be able to store SRB frost protection setting.

be able to store SRB buffer capacity.

be able to store SRB fill level.

be able to store SRB water temperature.

be able to store SRB planned discharge.

be able to store SRB autonomous discharges.

be able to store SRB manual discharges.

be able to store AirT node (historic) location.

be able to store AirT air temperature.

be able to store AirT humidity.

be able to store AirT wind speed.

be able to provide a .csv formatted download of all stored AirT data.

be able to provide current location of SRBs.

be able to provide current location of AirTs.

be able to provide historic locations of SRBs.

be able to provide historic locations of AirTs.

be able to provide point location data to the SRB dashboard application.

be able to provide sensor system specific data to the SRB dashboard application.

be able to provide time selection data to the SRB dashboard application.

be able to provide point location data to the AirT dashboard application.

41

be able to provide time selection data to the AirT dashboard application.

be able to provide the data to the AirT dashboard application in json format.

be able to provide the data to the SRB dashboard application in json format.

The system should

be application independent.

be sensor system type independent.

be measurement type independent.

be able to store sensor system specific events.

be able to store sensor system specific characteristics.

The system could

be able to store an SRB user’s username and password

be able to provide last month’s single SRB buffered rainwater amount to the SRB dashboard

application.

be able to provide last month’s total SRB buffered rainwater amount to the SRB dashboard

application.

be able to provide clustered sensor system nodes data to the SRB dashboard application.

Be able to support RPS nodes.

be able to store RPS node (historic) location.

be able to store RPS precipitation measurements.

be able to store precipitation prediction data belonging to a discharge event.

be able to provide a .csv formatted download of all stored SRB data.

be able to provide a .csv formatted download of all stored RPS data.

offer sensor system type registration.

offer measurement type registration.

offer characteristic type registration.

offer event type registration.

The system won’t

be able to provide street level averaged data.

be able to provide averaged sensor system node data by area selection.

42

5.1.2 Non-functional requirements

In this section the preliminary non-functional requirements are prioritized using the MoSCoW method.

Table 5.2 shows the prioritized non-functional requirements.

Table 5.2. Prioritized non-functional system requirements

The system must

maintain performance with large amounts of stored data.
require low maintenance.

shield clients from complexity.

be reliable.

run on a single hardware platform.

maintain data integrity.

handle transaction concurrency.

support multiple client connections.

support frequent data input.

support frequent data output.

The system should

be flexible.

The system could

be low cost.

The system won’t

be scalable.

5.2 Table structure

The table structure for the database will be explained in this section. Data can be either a fact or a

dimension. A fact is a numerical measure for which the dimension(s) provide the context [36]. A fact

is described in one table row per combination of dimensions. First the fact(s) and dimension(s) will be

determined by determining which questions the data should answer, so that a star schema can be drawn

to visualize the fact(s) and dimension(s). This star schema will provide the basis upon which the table

structure will be designed. This section will start with a separate analysis for each of the subprojects,

after which found similarities will lead to a universal table schema.

43

5.2.1 RPS

Star schema

The RPS will produce location and time based precipitation data, in order to provide (historic)

precipitation measurements that can be used by the SRB project to determine the SRB buffering

performance to some extent. The question that needs to be answered with this data is: What is the

historic precipitation for a certain RPS node? The facts, dimensions and their attributes following this

question can be found in table 5.3. The fact in this case is the precipitation and the dimension is the

RPS node. There will be one row of precipitation data per combination of RPS node and time. The

attributes of precipitation are amount and time. The attribute for the RPS node is location. The

associated star schema can be found in figure 5.1.

Table 5.3. Fact, dimensions, and attributes for the RPS.

Fact Dimension

• Precipitation

o Amount

o Time

• RPS node

o location

Figure 5.1. Star schema for the RPS

Table structure

For the RPS project the table structure can be found in figure 5.2. The schema consists of the fact table

precipitation and the dimension table RPS_node. The location attribute of the RPS_node dimension is

a separate table, since the location of a RPS node can change and thus requires a timestamp. When the

RPS node location has changed, the historic RPS node location has to be preserved. The precipitation

table contains time based precipitation measurement values for individual RPS nodes, linked by the

RPS_nodeid which uniquely identifies each RPS node. The RPS_node table contains a unique

identifier for all deployed RPS nodes.

44

Figure 5.2. Table structure for the RPS

5.2.2 AirT

Star schema

The AirT project consists of multiple deployed AirT sensor system nodes. Each of these nodes will

produce location and time based environmental measurements: air temperature, humidity, and wind

speed, and possibly solar radiation. In order to determine the solar radiation, a one-time per AirT node

location skyview factor will be used. The question that needs to be answered is: What are the (historic)

measured values for a certain AirT sensor node? The fact, dimensions, and attributes can be found in

table 5.4. The fact in this case is a measurement, containing the attributes air temperature, humidity,

wind speed, and time. The solar radiation was prioritized and verified with the AirT stakeholders as a

could have requirement, since at this stage of the project solar radiation will not yet be calculated. The

dimension is AirT node. The attributes for the AirT node is location. The star schema for the AirT

project can be found in figure 5.3.

Table 5.4. Fact, dimensions, and attributes for the AirT.

Fact Dimension

• Measurement

o Air temperature

o Humidity

o Windspeed

o Time

• AirT node

o Location

45

Figure 5.3. Start schema for the AirT & SRB

Table structure

For the AirT project the table structure can be found in figure 5.4. For the AirT nodes the historic

location is of importance as well. Therefor here the attribute location is a separate table again, linked

to an AirT node by the AirT node’s unique identifier and containing the latitude, longitude and

timestamp of the location. The fact table measurement contains the attributes temperature, humidity,

windspeed, and the timestamp ts. Each measurement in this table is linked to an AirT_node by the use

of the AirT node’s unique identifier.

Figure 5.4. Table structure for the AirT

46

5.2.3 SRB

Star schema

The SRB nodes produce location and time based measurements as well. The measurements provided

by each SRB node are the buffer fill level and water temperature. The question that needs to be

answered with this data is: What are the (historic) measured values for (multiple) SRB nodes? The

fact, dimensions, and attributes can be found in table 5.5. Again, the fact for the SRB is measurement,

with attributes fill level and water temperature. The dimensions are the SRB node and time. The SRB

node dimension has attributes location, capacity, planned discharge, manual discharge, and

discharge. The star schema for the SRB has the same structure as the AirT and can be found in figure

5.2.

Table 5.5. Fact, dimensions, and attributes for the SRB.

Fact Dimension

• Measurement

o Fill level

o Water temperature

o Time

• SRB node

o Location

o Capacity

o planned discharge

o manual discharge

o discharge

Table structure

For the SRB project the table structure can be found in figure 5.5. The attribute location is again a

separate table. The location is linked to a SRB by the SRB_node’s unique identifier. Additional to the

table structure of the AirT, tables for planned, manual, and regular discharges were added.

47

Figure 5.5. Table structure for the SRB

5.2.4 Universal solution

As said in section 4.3, the producer and consumer interfaces will be universal. This means that any

type of sensor system or application can use the interface’s functionalities. In order to support the

universal nature of the interfaces, the underlying database structure should be universal as well. By

looking at the similarities of the individual table structures of the three pre-mentioned projects, a

universal solution was designed and verified with the stakeholders. The idea behind the solution will

be explained by explaining separate parts of the total table structure. Finally, the total table structure

will be discussed by putting all separate parts together.

Sensor systems

In order to design a universal table structure for the database, the table structure should be sensor

system type independent. Instead of having separate tables for the SRB, AirT, and RPS types of

sensorsystems, the table structure has 1 sensor systems table and a sensor system types table (see figure

5.6). Let’s first take a look at the sensorsystems table. In this table, each registered sensor system has

an id and a sensorsystem_type_id. The id is used to uniquely identify individual sensor systems, and

the sensorsystem_type_id is linked to a sensor system type in the sensorsystem_types table. This table

contains all types of sensor systems that are allowed to register. The table as columns for the id and

the type in human readably text, for instance the srb, airt, and rps. Sensor systems can register using

the producer interface, as long as the type of sensor system exists in the sensorsystem_types table.

Whenever a new type of sensor system has to be added to the repository, the only thing that has to be

48

done is for the administrator to add the new type to the sensorsystem_types table using the

administrator interface. From that moment on sensor systems of the newly added type can be registered

in the sensorsystems table. The circle symbol on the sensorsystems table side of the dashed line,

indicates that a sensorsystem_type can have zero or more sensorsystems. The perpendicular dash on

the sensorsystem_types table side of the dashed line, indicates that each registered sensor system can

have only one sensor system type.

Figure 5.6, sensorsystems and sensorsystem_types tables

Locations

Next to the fact that each registered sensor system has a in the sensorsystem_types table defined type,

it also has a location. The locations table is shown in figure 5.7. The table has columns

sensorsystem_id, location, ts, and precision. The sensorsystem_id is a foreign key, linking a location

to a certain sensorsystem. The location is the location of the sensorsystem. The ts stands for timestamp,

which is required since sensor systems can change location, and historic locations have to be preserved.

The precision column is nullable. It is for sensor systems optional to add a value for the precision of

the location. The location is the latitude longitude pair of the sensor system’s location on earth. Each

sensor system can have multiple locations, and each combination of location and timestamp can have

one sensor system.

49

Figure 5.7, sensorsystems, sensorsystem_types, and locations tables

Characteristics

Recall the universal solution of the sensorsystems and sensorsystem_types tables: a sensor system can

only register when the type of sensor system is defined in the sensorsystem_types table, and adding a

new type of sensor system is as simple as adding just one row in the sensorsystem_types table. The

same idea is used for the characteristics. Taking an SRB as example, a characteristic could be the SRB

capacity. So when an SRB node registers itself, assuming the type SRB is defined in the

sensorsystem_types table and thus registration is allowed, the characteristic capacity could be included

in the registration. Looking at the tables characteristics and characteristic_types, it is clear that the

table pair uses the same principle as the sensorsystems and sensorsystem_types tables. A characteristic

is linked to a sensorsystem_id, a characteristic_type, and has a value. A characteristic type has an id,

a type in human readable text, and is linked to a sensorsystem_type_id. The latter means that

characteristics are sensor system type specific, for example the characteristic capacity belongs to the

sensor system type SRB. When an SRB wants to register with a capacity of 900 liters, the characteristic

type capacity has to be defined in the characteristic_types table, linked to the sensorsystem_type_id

belonging to the type SRB. Again, when a sensor system acquires a new type of characteristic, all that

needs to be done is for the administrator to add the new type to the characteristic_types table.

Figure 5.8, sensorsystems, sensorsystem_types, characteristics, and characteristic_types table

50

Measurements

All projects produce measurements of different types. The SRB produces fill level and water

temperature measurements. The AirT produces air temperature, humidity, and wind speed

measurements. The RPS produces precipitation measurements. Having all these different types of

measurements as columns in one measurements table would cause for the table to contain a large

number of empty fields. Also this would not be a universal solution, since the measurements table has

to be altered when a sensor system would expand with a sensor measuring a not yet in the table existing

phenomenon. Instead of having columns for each type of measurement in a single table, the same

universal idea is used for measurements (see figure 5.9). In the measurements table, each row

represents a measurement of a single type indicated by the measurement_type_id, linked to a single

sensor system by the sensorsystem_id, with accompanied value and timestamp. The

measurement_types table contains all types of measurements that are allowed, linked to a certain type

of sensor system. Taking the SRB again as example, measurements types will be the fill level and

water temperature. As long as the measurement types are defined in the measurement_types table and

linked to the type of sensor system, a registered sensor system can register measurements of the defined

measurement types. Adding a new type of measurement for a certain sensor system type is as easy as

adding one row in the measurement_types table, which will be done by the repository administrator.

Figure 5.9, tables for the measurements and measurement types

Events

Again, the same idea is used for the events and event_types tables. For a sensor system to register an

event, the type of the event has to exist in the event_types table. Events can be for instance, taking the

SRB again as example, manual, autonomous, or planned discharges. See figure 5.10 for the events and

event types tables.

The events table contains columns with foreign key sensorsystem_id, which links an event to

a sensor system, foreign key event_type_id, which links an event to an event type, two columns for

values belonging to an event, and a column for the timestamp. An event can thus have two values,

which resulted from the requirement that precipitation prediction data belonging to a SRB discharge

51

event should be stored as well as the desired capacity of the SRB. The second value column, value2,

is nullable since some types of events could also require just one value to be stored.

The event_types table contains the columns id, type, and sensorsystem_type_id. The id is used

to uniquely identify event types. The type column contains the type of event in human readable text.

The sensorsystem_type_id column links specific events to a specific type of sensor system. The event

type manual discharge for example belongs to the sensor system type SRB, so only a SRB can register

events of the type manual discharge. New event types can be added to the table by the repository

administrator via the administrator interface.

Figure 5.10, tables for the events and event types

Users

The requirement for the storing of SRB owners usernames and password followed from the privacy

issues explained in section 4.3. An individual SRB owner can only see other SRB owner’s buffering

performance in a merged manner. Individual data can only be accessed by the users themselves. When

a new SRB node registers, a username and password will be linked to the SRB node in the users table

(see figure 5.11). This table contains the columns id, username, password, and sensorsystem_id. The

id uniquely identifies a user, the username is the user’s username, the password is the user’s password,

and the sensorsystem_id is a foreign key linking a user to a sensorsystem.

52

Figure 5.11, the users table.

Total table structure

Putting together the tables sensorsystems and sensorsystem_types for the sensor systems, locations for

the locations of the sensor systems, characteristics and characteristic_types for the sensor system

characteristics, measurements and measurement_types for sensor system measurements, events and

event_types for sensor system events, and users for sensor system users, brings us to the total table

structure of figure 5.12. The total table structure will be further elaborated on by examples in section

5.4.

Figure 5.12, the total table structure

53

5.3 Functional architecture

In this section the functional architecture will be discussed by a three level deep decomposition of the

project. Starting with level 0, an overview of the repository’s functional architecture will be discussed.

Level 1 will describe the repository’s functional architecture in more detail, and finally in level 2 the

interface’s default functional architecture will be discussed in detail. Some extra stakeholder specific

functionalities have been implemented, which will be discussed in chapter 6.

In the figures in the following sections, white block arrows indicate data transfer between producer,

consumer, administrator, and their corresponding interfaces. The black filled arrow indicate http

response status codes in case of the producer and administrator, and data requests in case of the

consumer.

5.3.1 Overview

The functional architecture at level 0 (figure 5.13) simply consists of the repository represented by a

black box along with everything that goes in and out of the repository. In the middle is the data

repository, represented by the grey colored box. The required input functionality is listed on the left.

This includes registration of a user, registration of a sensor system, registration of sensor system’s

characteristics, measurements, and events, and registration of sensor system types, characteristic types,

event types, and measurement types. On the right the required output functionality is listed. This

includes obtaining the sensor system id belonging to a certain user, the current and historic location(s)

of all or a single sensor system, sensor system characteristic(s), measured data for a certain sensor

system, registered events, last month’s amount of buffered rainwater for a single SRB as well the total

amount of buffered rainwater for last month, and the possibility to download a .csv formatted file of

all raw data.

Figure 5.13, Data repository decomposition level 0

54

5.3.2 Repository

In the previous section, all input functionality is grouped together. However, if we take a closer look

we can see that the bottom five points in the list don’t belong to the producers role. These are

functionalities provided in the administrator interface (see section 4.3 and 5.2.4). Therefor at

decomposition level 1, the black box representing the data repository is show with more detail in figure

5.14. In this figure the required input and output functionalities are split up in parts belonging to the

roles of producer, consumer, and administrator. Here it is clear that the role specific functionality will

be implemented in three separate interfaces. These interfaces will translate requests made to an

interface into SQL commands for inserting into and retrieving data from the database, which lies at

the center of the repository, indicated by the blue box in figure 5.14.

Figure 5.14, Data repository decomposition level 1

5.3.3 Producer interface

The producer interface provides the functionality to register a user, register a sensor system, register

sensor system characteristics, update the sensor system’s location, and register measurements. All

these functionalities will be described below.

User and sensor system registration

The sensor system registration lies at the basis of this part of the producer interface’s functionality.

This basis is extended with the possibility to register a sensor system along with a user. First the basis

will be described. The basic registration of a sensor system is visualized in figure 5.15. Here a producer

requests registration of a sensor system and provides the interface with the sensor system’s serial

number, the type of sensor system, and the sensor system’s location. The interface will check the

validity of the request, by checking whether the serial number provided is unique and whether the type

55

of sensor system is registered in the sensorsystem_types table (see section 5.2.4). If the request is valid,

the interface will use SQL commands to insert the data into the database. In both cases the producer

will receive a response, informing whether the made request was successful.

Figure 5.15, Registration of a sensor system

Additionally to the basic functionality of sensor system registration, a producer can add a value

representing the precision of the latitude longitude pair. When the precision of the location is provided

in the sensor system registration request, the precision will be inserted into the locations table’s column

precision as well (see figure 5.16). Again, in both the cases where the request was valid or invalid, the

producer will receive a response, informing whether the made request was successful.

Figure 5.16, Registration of a sensor system with location precision

For registration of a sensor system with a user (figure 5.17), a producer can provide a username and

password in the request. If the serial number and user are unique and the sensor system type is

registered in the sensorsystem_types table, the request is valid and the password will be hashed. Finally

the request will be translated into three SQL insert commands, registering the sensor system in the

sensor systems table, it’s location in the locations table, and the corresponding user in the users table.

56

Figure 5.17, Registration of a sensor system with a user

Registration of sensor system characteristics

A producer might want to register certain sensor system characteristics, such as the example from

section 5.2.4, the SRB capacity. Figure 5.18 shows the process of making a request for registration of

a sensor system characteristic. The producer provides the sensor system’s serial number and type, the

type of characteristic, and the characteristic’s value. The request will then be validated, by checking

whether the serial number exists in the sensorsystems table, whether the sensor system’s serial number

is registered with the requested sensor system type, and whether the characteristic type with

corresponding sensor system type exists in the characteristic_types table. When the request was valid,

the characteristic will be inserted into the characteristics table. From that moment on, the registered

sensor system has a registered characteristic. Multiple different characteristics can be registered, as

long as the sensor system’s serial number is registered in the sensorsystems table, and the characteristic

type is registered with corresponding sensor system type in the characteristic_types table.

Figure 5.18, Registration of sensor system characteristics

Update sensor system’s location

When a sensor system is moved, its location changes. For instance when the municipality of Enschede

decides to relocate one of the AirT nodes. A producer can update a sensor system’s location by sending

57

a location update request to the producers interface (see figure 5.19). The producer provides the sensor

system’s serial number and type, the new latitude longitude pair, and optionally the precision indicated

by blue. The same validation occurs as with the sensor system and characteristic registration. In order

to update a sensor system’s location, the sensor system’s serial number has to exist in the

sensorsystems table and the provided sensor system type has to correspond with the type that is the

sensor system’s serial number is registered with. When the request is valid, the new location will be

inserted into the locations table.

Figure 5.19, Updating a sensor system’s location

Registration of events

For the SRB project, it is a requirement that manual, autonomous, and planned discharges are stored

in the data repository’s database. These three types of SRB discharges are unified under the name

events, in order to keep the solution universal. Other types of sensor systems could in the future also

require for certain events to be stored, for example a planned update or maintenance of which the

information can then be communicated via for instance visualizations or notifications in a user

dashboard. The process of event registration is shown in figure 5.10. A producer provides the interface

with the sensor system’s serial number and type, the type of event, the value, and the timestamp.

Optionally (indicated by blue in figure 5.20), a producer can add a second value to an event. This can

for example be precipitation prediction data corresponding with the planned or autonomous discharge

of a SRB.

58

Figure 5.20, Registration of an event

Registration of measurements

Sensor systems, such as for example an SRB and AirT, possibly have multiple sensors measuring

different (environmental) phenomenon. Therefor, I chose to provide producers with the possibility to

register up to four types of measurements and their corresponding values in one request. Figure 5.21

shows a visual representation of the measurement registration process for a single type of measurement

and figure 5.22 for two types of measurements. Registering three or four types of measurement values

in one request, works the same as registering two types of measurement values. First the measurement

type has to be specified, after which the corresponding value follows. When the request is valid, which

means that the sensor system’s serial number is registered with the same type as send in the request,

and the measurement types are registered with the corresponding sensor system type in the

measurement_types table, the measurements are inserted into the measurements table.

Figure 5.21, Registration of a single type of measurement

59

Figure 5.22, Registration of two types of measurements

5.3.4 Consumer interface

The consumer interface provides consumers with the functionality to retrieve the sensor system’s id

belonging to a certain user, the current location of one or all sensor systems, the historic locations of

one or all sensor systems, sensor system’s characteristics, sensor system’s measurements, events, and

the possibility to download a .csv formatted file of all raw AirT data. Some extra functionality was

implemented for the SRB dashboard developer, namely the possibility to retrieve last month’s amount

of buffered rainwater for a single SRB as well as for all SRBs, which will be further elaborated on in

chapter 6.

Sensor system id for a user

In the SRB user dashboard that will be developed by the SRB dashboard developer, individual SRB

data can only be accessed by its owners. Therefor logging in with a username and password is needed

in order to retrieve individual SRB data. When the username and password match, the corresponding

sensor system id is returned to the dashboard application. The scheme of this functionality can be seen

in figure 5.23. When the request made is valid, the username exists and the password matches, the

result of the SQL query will be returned to the consumer, which is the sensor system’s id and type.

60

Figure 5.23, Retrieving the sensor system id belonging to a user

Current location(s) of sensor system(s)

For visualization on for instance a map, a consumer has to be able to retrieve the current location of

one or more sensor systems. Measurements within the same timeframe as the sensor system’s location

can be matched linked to that location. The scheme of retrieving a single sensor system’s current

location can be found in figure 5.24. Figure 5.25 shows the process of retrieving all sensor systems of

a single type’s current locations. The same validation as described before happen again, checking

whether the sensorsystem_type exists, and whether the sensor system’s serial number is registered with

the same type as send in the request. If the request is valid, the result will be returned tot the consumer.

Figure 5.24, Retrieving a single sensor system’s current location

Figure 5.25, Retrieving all sensor systems of a single type’s current locations

61

Historic locations of sensor system

In the request for sensor system’s historic locations (figure 5.26), a consumer should provide the

interface with the sensor system’s serial number and type. After validating the existence of the serial

number and corresponding sensor system type in the sensorsystems table, database is queried and the

result is returned to the consumer.

Figure 5.26, Retrieving historic locations of a sensor system

Sensor system characteristics

Sensor systems are provided the possibility to store sensor system specific characteristics in the data

repository. As said in section 4.2.3, a SRB has for example the characteristic capacity. This

characteristic can be important for calculations, determining buffering performance, and visualizations

in the SRB dashboard. A visual representation of requesting sensor system’s characteristics can be

found in figure 5.27. The consumer provides the interface with the sensor system’s serial number and

type, after which the both are validated. If the supplied parameters are valid, the database is queried

and the result is returned to the consumer.

Figure 5.27, Retrieving sensor system characteristics

Sensor system’s measurements

Consumers are provided the functionality to retrieve all measurements for a single sensor system

(figure 5.28), all current day measurements for a single sensor system (figure 5.29), all measurements

in a specified time frame for a single sensor system (figure 5.30), and all measurements in a specified

62

time frame for all sensor systems of a single type (figure 5.31). Again the same validation as explained

multiple times before occurs prior to querying the database for the result, and will from now on only

be explained when validation deviates from the previous mentioned validation of the in the request

send parameters (existence of the sensor system’s serial number and type in the sensorsystems table).

Figure 5.28, Retrieving all measurements for a single sensor system

Figure 5.29, Retrieving all current day measurements for a single sensor system

Figure 5.30, Retrieving all measurements in a specified time frame for a single sensor system

63

Figure 5.31, Retrieving all measurements in a specified time frame for all sensor systems of a single

type

Events

Consumers are provided the functionality to request all events for a single sensor system (figure 5.32),

all events for a single sensor system within a specified timeframe (figure 5.33), and specific events

within a specified time frame (figure 5.34).

Figure 5.32, Retrieving all events for a single sensor system

Figure 5.33, Retrieving all events within a specified time frame for a single sensor system

64

Figure 5.34, Retrieving all events of a specified type within a specified time frame for a single sensor

system

5.4.5 Administrator interface

For the administrator interface, the implemented functionality consists of registration of a new sensor

system type, a new characteristic type, a new event type, and a new measurement type. A visual

representation can be found in figure 5.35. All four provided functionalities are shown in a single

figure.

Figure 5.35, All administrator interface functionality

5.4 PACT Analysis

In order to describe the system users perspective and structure the construction of scenarios, a PACT

analysis will be used.

5.4.1 People

Three types of ‘people’, for which in the context of this project roles would be a better fitting name,

can be identified. These roles are:

• Administrator

65

• Producer

• Consumer

Each role has its own characteristics and requirements. Each role will be described in short below.

Administrator

The table structure and interfaces will be universal. This means that any type of sensor system can be

add to the system, as well as any type of measurement, characteristic, and event. The data repository’s

administrator will have control over registration of new types of sensor systems, measurements,

characteristics, and events.

Producer

A sensor system produces data which has to be stored in the data repository, and can therefor be seen

as a producer. A producer is likely to need to be able to register itself, register its user, register

measurements, register characteristics, and register events.

Consumer

A consumer consumes data from the data repository. A consumer can be for instance a visualization

application, which visualizes sensor system data like measurements and events based on sensor system

locations and within a certain time frame.

5.4.2 Activities

The data repository provides several functions in each of the interfaces. The implemented interfaces

should accommodate the three described roles with functions to perform the activities described below.

Administrator

The administrator’s activities are registering new types of sensor systems, new types of sensor system

characteristics, new types of sensor system measurements, and new types of sensor system events.

Producer

Producer activities are registering a sensor system with location, registering a sensor system with

location and location precision, and registering a sensor system with location, username and password.

All given that the type of sensor system has been registered in the repository by the repository

administrator. When a sensor system has been registered, a producer can update its location, and

register sensor system characteristics, measurements, and events, given that the types of

66

characteristics, measurements, and events have been registered in the repository by the repository’s

administrator.

Consumer

A consumer, for example a visualization application, needs to be able to retrieve current and historic

locations of sensor systems and sensor system characteristics. Also (specific or all) events registered

by sensor systems should be made available to a consumer, with the possibility to specify a time frame

in for the requested events. Finally, requesting measurements for a sensor system. For measurements

its also needed to be able to specify a time frame. Additionally for the SRB consumer, the last month’s

amount of buffered rainwater of a single as well as all SRBs can be requested.

5.4.3 Context

The context is the same for all three roles. In order to be able to use the functionality provided by each

of the interface, administrators, producers, and consumer need to implement the possibility to make

http POST and GET request to interface end points in their sensor systems and/or applications. The

only difference lies in the end points that need to specified in the http requests.

5.4.4 Technologies

The technologies used for each of the three roles is the same. Producers and administrators can input

data using the producers and administrators interfaces respectively. Consumers can output data using

the consumers interface. The API server runs on a single machine, and has a connection with the

database. Administrators, producers, and consumers only have access to the corresponding interfaces,

which will translate the requests into SQL queries to the database.

5.5 PACT-FICS scenario

The PACT analysis of section 5.4 is used together with FICS, to construct a scenario describing both

the user’s (or role’s) perspective as well as the designer’s perspective of this project.

Dominiek is 22 year old third year student Creative Technology and works on the development of a

new type of sensor system to be add to the CAC project. She works together with 21 year old Heinrich,

who is also a third year Creative Technology student working on the development of a visualization

application for the data produced by Dominiek’s sensor system.

 Heinrich’s visualization application needs to provide users with location based fine dust

measurements and traffic flow measurements. For every sensor system location he needs the amount

of cars that pass per 10 minutes as well as fine dust measurements. This data should be provided by

67

Dominiek’s developed sensor system, be stored in the CAC data repository, and made available to

Heinrich’s visualization application. Before the development of the sensor system was completed, the

relevant database tables contain the data shown in figure 5.36 and 5.37:

sensorsystem_types

id Type

1 srb

2 airt

Figure 5.36, The sensorsystem_types table prior to registration of a new sensor system type

measurement_types

id sensorsystem_type_id type

1 1 Fill_level

2 1 water_temperature

3 2 air_temperature

4 2 humidity

5 2 wind_speed

Figure 5.37, The measurement_types table prior to registration of new measurement types

Dominiek and Heinrich’s project is called Fine Dust Monitoring (FDM). Dominiek finished the

development of her prototype and contacts the repository administrator. She requests for the type of

sensor system to be added to the repository, as well as the new types of measurements accompanied

with the new sensor system type. The repository administrator first registers the new sensor system

68

type using the administrator interface, with the type fdm. The sensorsystem_types table now contains

the new sensor system type (see figure 5.38).

sensorsystem_types

id Type

1 srb

2 airt

3 fdm

Figure 5.38, The sensorsystem_types table with the new sensor system type

Now the new type of sensor system is registered, Dominiek can register fdm sensor systems. However,

she can not yet register measurements, since no measurement types have yet been registered for the

fdm sensor system type. In order to be able to register measurements, the measurement types have to

be specified in the measurement_types table with corresponding sensor system type. The administrator

adds the types fine_dust and passed_cars to the measurement_types table (see figure 5.39). From this

moment on Dominiek and Heinrich can both communicate with the producer and consumer interfaces

using http POST and GET requests in order to insert and retrieve fine dust monitoring data.

measurement_types

id sensorsystem_type_id type

1 1 Fill_level

2 1 water_temperature

3 2 air_temperature

4 2 humidity

5 2 wind_speed

6 3 fine_dust

7 3 passed_cars

69

70

71

6. Realization

This chapter describes the hardware and software that was used to develop the prototype, the database

management system installation log, the interface software installation log, the functionality that was

implemented as extra service to the stakeholders, and the prototype code.

6.1 Hardware

The prototype, consisting of the database management system and the interfaces, runs on a single

machine. This is a DELL OptiPlex 7050 with the following specifications:

• Operating system: Ubuntu 18.04

• Memory: 7,7 GiB

• Processor: Intel® Core™ i7-7700 CPU @ 3,60 GHz x8

• Graphics: Intel HD Graphics 630 (Kaby Lake GT2)

• Hard Disk: 2,0 TB WDC WD20EZRZ-00z5hb0

• SSD: Samsung PM961 256 GB

6.2 Database management system

In order to determine which database management system should be used, the options and their

characteristics described in chapter 2 were presented to and discussed with the stakeholders. The

outcome showed a clear preference for the use of the PostgreSQL database management system,

extended with spatial objects and functionality by PostGIS. There are three reasons for the choice for

PostgreSQL with PostGIS. The first is that both PostgreSQL and PostGIS are completely free and

open source software. The discussed alternatives MySQL, MongoDB, and VoltDB are not. Next to a

free version, MySQL offers enterprise editions as well. MongoDB and VoltDB both offer monthly

subscriptions in order to use their services. The second reason is that PostgreSQL and PostGIS offer

an immense set of functionality, not equaled by any of the other database systems. The third and final

reason is that PostgreSQL and PostGIS are very mature, extremely well documented (see appendix A),

and have a very large supporting community. See sections 2.3, 2.4, and 2.5 for background research

regarding PostgreSQL and PostGIS. The PostgreSQL tutorial in the PostgreSQL documentation [37]

gives three options to access the database:

• Enter, edit, and execute SQL commands in psql, the PostgreSQL interactive terminal program.

• By using an existing graphical frontend tool. pgAdmin or an office suite with ODBC or JDBC

support are mentioned examples.

• Writing a custom client interface.

72

For this project the third option will be implemented (see section 6.3).

6.2.1 PostgreSQL & PostGIS

PostgreSQL is an open source object relational database system, with a strong reputation for reliability,

data integrity, feature robustness, extensibility, and performance [37]. It also offers advanced GiST

indexing (see section 2.3.3). The most relevant aspect of the choice for PostgreSQL is the PostGIS

extension (see section 2.3.3 and 2.4). PostGIS offers the most extensive set of geospatial functionality.

PostGIS extends PostgreSQL with geometry and geography object, as well as geometry and geography

functions. Some relevant examples are explained below. For this project the geometry object types are

used, since more functionality is available for geometry objects as compared to geography objects and

performance is higher. Especially when flat earth projection is used. This means that instead of a round

earth representation, locations are projected on a cartesian special reference system like the Dutch

Rijksdriehoekscoördinaten (RD-coordinates system) [38] (see figure 6.1), which will be used in the

representation of locations in the data repository. The city Amersfoort used to be where the x and y

axis intersected, but for practical reasons the axes shifted such that each locations in the Netherlands

yields a positive value for the x and y axis. Some relevant examples of PostGIS functions are elaborated

on below.

Figure 6.1, Visual representation of the RD coordinate system

Area selection

With this functionality, PostGIS has an important advantage over other database management systems.

Selecting geometries such as points within another geometry such as a polygon, is more precise (see

73

figure 6.2). Instead of using a minimum bounding box around the polygon, indicated by the red square

in the left image, which returns some false results, PostGIS returns only geometries that are actually

inside the polygon geometry, which is the blue colored area in the picture.

Figure 6.2: Differences in spatial querying functions.

This property of this PostGIS function can be very useful when for example in the future SRB data

will be made available to other on a postal code are level, like the postal code areas in Enschede shown

in figure 6.3.

Figure 6.3, Enschede’s postal code areas

Geometry clustering

As said in section 5.1.1, the SRB dashboard developer’s requirement for the system to provide

clustered averaged SRB data was reprioritized into a could have requirement. At this time of the project

74

this functionality will not be implemented, but it can be very useful for future work. For example the

PostGIS function ST_ClusterDBScan (figure 6.4) can cluster geometries based on the distance

between their centroids, the arithmetic mean position of all the points in a geometry. The minimum

amount of geometries per cluster can be specified using this function, which can be very useful for

anonymization of SRB data.

Figure 6.4, Visual representation of the ST_ClusterDBScan function. Clusters are assigned a cid

(cluster id)

Subdividing areas

ST_SubDivide is a function that can subdivide an area, for example a polygon geometry shape, into

multiple subareas, such as show in figure 6.5. This can possibly be useful in the future as well for

anonymization of for example SRB data.

Figure 6.5, Visual representation of the ST_SubDivide function

75

Street level averaged data

Again for possible future anonymization of for example SRB data, is averaging data on street level

(see figure 6.6). In this timeframe of the project this functionality will not be implemented, and is

prioritized as a could have requirement (see section 5.1.1). With this function it would be possible to

create geometries of the type linestring, representing streets. SRB data other than that of the SRB

user’s own SRB can then made available only on street level. Data of SRBs of which the locations

intersect or lie within a certain range of the linestring representing a street, can then be averaged.

Figure 6.6, Visual representation of linestring geometry objects representing streets.

6.2.2 PostgreSQL install log

This section contains the log of the PostgreSQL installation on the server machine, running Ubuntu

18.04. The PostgreSQL version that will be used is PostgreSQL 10.4, which is available as package in

Ubuntu’s default repositories.

sudo apt update

sudo apt upgrade

sudo apt install build-essential

sudo apt-get install postgresql-10

After installation, the directory in which the database will be stored has to be created and directory

permissions for the postgres user which automatically exists after installation of PostgreSQL have to

be set. After that, log in as user postgres with password postgres.

76

root# mkdir /media/hd/pgsql

root# chown postgres /media/hd/pgsql

root# su postgres

Next, the database will be initialized by the first command. The second command starts the database

server and the third command stops the database server.

/usr/lib/postgresql/10/bin/pg_ctl -D /media/hd/pgsql/data initdb

/usr/lib/postgresql/10/bin/pg_ctl -D /media/hd/pgsql/data -l logfile start

/usr/lib/postgresql/10/bin/pg_ctl -D /media/hd/pgsql/data stop

Configure the database server settings for remote access.

Modify /media/hd/pgsql/data/postgresql.conf

Replace at the listen_addresses ‘localhost’ with ‘*’.

I encountered some issues with starting the database server. In order to fix this, modify the file in the

same folder, named pg_hba.conf. Add the following two lines at the end:

host all all 0.0.0.0/0 md5

host all all ::/0 md5

Test with the following command

psql -h 107.170.158.89 -U postgres

In case issues arise with attempting connect to the database with the default postgres password, this

can be fixed by changing the password. Log in on linux as postgres user and enter the following

commands and enter the new password:

psql postgres

\password postgres

6.2.3 PostGIS install log

First verify what version of Ubuntu is running, by

sudo lsb_release -a

Add repository to sources.list

77

sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt bionic-pgdg

main" >> /etc/apt/sources.list'

Add keys

wget --quiet -O - http://apt.postgresql.org/pub/repos/apt/ACCC4CF8.asc |

sudo apt-key add -

sudo apt update

sudo apt upgrade

Install PostGIS 2.4

sudo apt install postgresql-10-postgis-2.4

sudo apt postgresql-10-postgis-scripts

sudo apt install postgis

6.2.4 Creating the database

Log in as user postgres. Then create the database using the createdb command with the desired

database name. Open the terminal-based front end to be able to type in queries to the database by using

the psql command together with the database name. After that, create the postgis and tablefunc

extensions. The tablefunc extensions add the functionality to create pivot tables using PostgreSQL’s

crosstab function.

createdb cac

psql cac

CREATE EXTENSION postgis;

CREATE EXTENSION tablefunc;

Now the tables need to be created. Enter the following commands to create the tables (see section 5.2.4

for the table structure). The type SMALLSERIAL is an auto incrementing value of the type small int.

Primary keys can be specified by adding primary key after a column specification. Foreign keys can

be specified by adding references [table name]([column name]) after a column specification. The

geometry column is added to the locations table by AddGeometryColumn (‘[table name]’, ‘[column

name]’, [SRID], ‘[geometry type]’, [dimension]);. The SRID (spatial reference system id) that is used

below is the Dutch RD-coordinate system.

78

CREATE TABLE sensorsystem_types (

id SMALLSERIAL primary key,

type varchar(80)

);

CREATE TABLE sensorsystems (

id INTEGER primary key,

sensorsystem_type_id SMALLINT references sensorsystem_types(id)

);

CREATE TABLE locations (

sensorsystem_id INTEGER references sensorsystems(id),

ts TIMESTAMP

);

SELECT AddGeometryColumn ('locations', 'location', 28992, 'POINT', 2);

CREATE TABLE measurement_types (

id SMALLSERIAL primary key,

sensorsystem_type_id SMALLINT references sensorsystem_types(id),

type varchar(80)

);

CREATE TABLE measurements (

sensorsystem_id INTEGER references sensorsystems(id),

measurement_type_id SMALLINT references measurement_types(id),

value numeric,

ts TIMESTAMP

);

CREATE TABLE characteristic_types (

id SMALLSERIAL primary key,

sensorsystem_type_id SMALLINT references sensorsystem_types(id),

type varchar(80)

);

CREATE TABLE characteristics (

79

sensorsystem_id INTEGER references sensorsystems(id),

characteristic_type_id SMALLINT references characteristic_types(id),

value numeric

);

CREATE TABLE event_types (

id SMALLSERIAL primary key,

sensorsystem_type_id SMALLINT references sensorsystem_types(id),

type varchar(80)

);

CREATE TABLE events (

sensorsystem_id INTEGER references sensorsystems(id),

event_type_id SMALLINT references event_types(id),

value numeric,

precipitation numeric,

ts TIMESTAMP

);

Since at this moment the interfaces have not been implemented yet, the sensor system types,

characteristic types, event types, and measurement types have to be inserted manually by writing SQL

commands in the terminal-based front end psql.

INSERT INTO sensorsystem_types (type)

VALUES ('srb'),('airt'),('rps');

INSERT INTO characteristic_types (sensorsystem_type_id, type)

VALUES (1,'capacity'), (2,'skyview_factor');

INSERT INTO event_types (sensorsystem_type_id, type)

VALUES (1,'discharge'), (1,'manual_discharge'), (1,'planned_discharge);

INSERT INTO measurement_types (sensorsystem_type_id, type)

VALUES (1,'fill_level'), (1,'water_temperature'), (2,'air_temperature'),

(2,'humidity'), (2,'wind_speed');

80

6.3 Lumen php micro-framework

Lumen is a php micro-framework by Laravel [39]. It’s an elegant solution for building Laravel based

and fast APIs. It claims on the website to be one of the fastest micro-frameworks available. Using

Lumen, three RESTful APIs will be developed, one for consumers, one for producers, and one for

administrators. The consumer interface provides the requested data to consumers in json format, which

is a requirement for the project. A RESTful API uses HTTP requests to GET, PUT, POST, and

DELETE data. With Lumen it is possible to make use of Models and Controllers, however the for this

project required queries are to complex for this approach. Therefor models will not be used, and raw

queries will be implemented in the Controller files functions. This section starts with the installation

log, after which the routes that have been set up are discussed. Finally, the controller files and

implementation of the functionalities will be discussed.

6.3.1 Installation

The lumen framework has a few system requirements:

• PHP >= 7.1.3

• OpenSSL PHP Extension

• PDO PHP Extension

• Mbstring PHP Extension

To list the PHP extensions, enter the following command:

php -m

Enter the following commands to install the missing PHP extensions:

sudo apt-get install php-mbstring

sudo apt-get install php-pgsql

sudo systemctl restart apache2

Lumen uses composer [40] to manage its dependencies. Install composer by running the following

script:

php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"

php -r "if (hash_file('SHA384', 'composer-setup.php') ===

'544e09ee996cdf60ece3804abc52599c22b1f40f4323403c44d44fdfdd586475ca9813a8

58088ffbc1f233e9b180f061') { echo 'Installer verified'; } else { echo

'Installer corrupt'; unlink('composer-setup.php'); } echo PHP_EOL;"

81

php composer-setup.php

php -r "unlink('composer-setup.php');"

Get the Lumen installer
composer global require “laravel/lumen-installer”

Install the following extension

sudo apt-get install php-xml

Install Lumen, with name cacapi. The directory cacapi will be created, in which lumen will be

installed.

composer create-project –prefer-dist laravel/lumen cacapi

Serving the application, using port 23450

php -S 0.0.0.0:23450 -t cacapi/public

Configure environment. Rename the file .env.example to .env, using the following command:

mv .env.example .env

Set environment variables. Open the .env file and fill in the following values:

DB_CONNECTION=pgsql

DB_HOST=130.89.12.84

DB_PORT=5432

DB_DATABASE=cac

DB_USERNAME=postgres

DB_PASSWORD=postgres

Uncomment the lines //app->withEloquent and //$app->withFacades(); in the file

cacapi/bootstrap/app.php

6.3.2 Routes

Setting up routes for the RESTful API can be done in the web.php file in the directory /cacapi/routes.

Router groups are created, one for each role. Each router group has its own prefix. The prefixes are

cons for consumers, prod for producers, and admin for administrators. These routes are the endpoints

in the APIs.

82

Admin routes

For the administrators interface with prefix admin, four routes have been developed. These routes with

example POST requests are:

• newsensorsystemtype/{type}

http://130.89.12.84:23450/admin/newsensorsystemtype/srb

Inserts a new type of sensor system (srb) into the sensorsystem_types table

• newcharacteristictype/{type}/{sensorsystem_type_id}

http://130.89.12.84:23450/admin/newcharacteristictype/capacity/1

Inserts a new type of srb characteristic (capacity) into the sensorsystem_types table

• neweventtype/{type}/{sensorsystem_type_id}

http://130.89.12.84:23450/admin/neweventtype/discharge/1

Inserts a new type of srb event (discharge) into the event_types table

• newmeasurementtype/{type}/{sensorsystem_type_id}

http://130.89.12.84:23450/admin/newmeasurementtype/fill_level/1

Inserts a new type of srb measurement (fill_level) into the measurement_types table

Routes are implemented as shown in figure 6.7. The Admin routes are used once as example. The

consumer and producer routes are implemented in the same way and will not be explained in detail.

The complete code can be found in appendix B.

 On line 19, the router group and corresponding prefix are specified. Lines 21 – 24 describe

functionality specific routes within the admin router group. The type of request is specified in each

route, which in all four cases is a post request. The first part of a route specifies the route’s address,

and behind the slash and in brackets the required parameters. The second part of the route, after the

comma, specifies which function of which controller file has to be called. In case of the route specified

on line 21 in figure 6.7, the function newSensorsystemType of the AdminController will be used. The

parameters specified behind the slash and in brackets will be passed on to the in the controller specified

function. The controllers and their functions will be discussed in sections 6.3.3 – 6.3.5.

Figure 6.7, The administrator interface routes

83

One route address can contain multiple end points by specifying a varying number of parameters that

can be passed to a route. See figure 6.8 for an example. These two routes belong to the consumer

interface, and are used to retrieve all data for a single sensor system in a specified time period and all

measurements for all sensor systems in a specified time period respectively. Highlighted by yellow are

the routes addresses, which are identical. However, the number of parameters is different and therefor

two different functions of the consumer controller can be called (highlighted with green).

Figure 6.8, Example of one route address with a different number of parameters

Producer routes

For the producers interface with prefix prod, thirteen routes have been developed. These routes with

example POST requests are:

• registersensorsystem/{sensorsystem_id}/{sensorsystem_type_id}/{lat}/{lon}/{username}/{p

assword}

http://130.89.12.84:23450/prod/registersensorsystem/1/1/52,239154/6,850667/Joeri/mypass

word

Registers a sensor system with id = 1, type = 1, lat = 52,239154, long = 6,850667, userame

= Joeri, and password = mypassword

• registersensorsystem/{sensorsystem_id}/{sensorsystem_type_id}/{lat}/{lon}

http://130.89.12.84:23450/prod/registersensorsystem/1/1/52,239154/6,850667

Registers a sensor system with id = 1, type = 1, lat = 52,239154, long = 6,850667

• registersensorsystem/{sensorsystem_id}/{sensorsystem_type_id}/{lat}/{lon}/{precision}

http://130.89.12.84:23450/prod/registersensorsystem/1/1/52,239154/6,850667/100

Registers a sensor system with id = 1, type = 1, lat = 52,239154, long = 6,850667, and

precision = 100

• registercharacteristic/{sensorsystem_id}/{sensorsystem_type_id}/{characteristic_type_id}/{c

haracteristic_value}

http://130.89.12.84:23450/prod/registercharacteristic/1/1/1/500

84

Registers a characteristic with sensor system id = 1, sensor system type = 1, characteristic

type =1, and value = 500

• updatelocation/{sensorsystem_id}/{sensorsystem_type_id}/{lat}/{lon}

http://130.89.12.84:23450/prod/updatelocation/1/1/52,239154/6,850667

Updates the location of sensor system with id = 1, type = 1

• updatelocation/{sensorsystem_id}/{sensorsystem_type_id}/{lat}/{lon}/{precision}

http://130.89.12.84:23450/prod/updatelocation/1/1/52,239154/6,850667/100

Updates the location of sensor system with id = 1, type = 1, and with precision 100

• registerevent/{sensorsystem_id}/{sensorsystem_type_id}/{event_type_id}/{value}/{ts}

http://130.89.12.84:23450/prod/registerevent /1/1/1/130,5/2018-06-12:14:29:15

Registers an event of type = 1, value = 130,5 and timestamp = 2016-06-12:14:29:15 for

sensor system id = 1 and sensor system type = 1

• registerevent/{sensorsystem_id}/{sensorsystem_type_id}/{event_type_id}/{value}/{precipit

ation}/{ts}

http://130.89.12.84:23450/prod/registerevent /1/1/1/130,5/6/2018-06-12:14:29:15

Registers an event of type = 1, value = 130,5, precipitation = 6, and timestamp = 2016-06-

12:14:29:15 for sensor system id = 1 and sensor system type = 1

• registermeasurement/{sensorsystem_id}/{sensorsystem_type_id}/{measurement_type_id}/{v

alue}/{ts}

http://130.89.12.84:23450/prod/registermeasurement /1/1/1/200/2018-06-12:14:29:15

Registers a measurement of type = 1, value = 200, timestamp 2018-06-12:14:29:15, for

sensor system id = 1 and sensor system type = 1

• registermeasurement/{sensorsystem_id}/{sensorsystem_type_id}/{measurement_type_id1}/{

value1}/{measurement_type_id2}/{value2}/{ts}

http://130.89.12.84:23450/prod/registermeasurement /1/1/1/200/2/23/2018-06-12:14:29:15

Same as previous, but with 1 additional type of measurement (2 total)

• registermeasurement/{sensorsystem_id}/{sensorsystem_type_id}/{measurement_type_id1}/{

value1}/{measurement_type_id2}/{value2}/{measurement_type_id3}/{value3}/{ts}

http://130.89.12.84:23450/prod/registermeasurement /1/1/1/200/2/23/3/44/2018-06-

12:14:29:15

Same as previous, but with 1 additional type of measurement (3 total)

• registermeasurement/{sensorsystem_id}/{sensorsystem_type_id}/{measurement_type_id1}/{

value1}/{measurement_type_id2}/{value2}/{measurement_type_id3}/{value3}/{measureme

85

nt_type_id4}/{value4}/{ts}

http://130.89.12.84:23450/prod/registermeasurement /1/1/1/200/2/23/3/44/4/9,21/2018-06-

12:14:29:15

Same as previous, but with 1 additional type of measurement (4 total)

• deleteplanneddischarges/{sensorsystem_id}/{sensorsystem_type_id}

http://130.89.12.84:23450/prod/deleteplanneddischarges/1/1

Deletes all planned discharges for a single sensor system

Consumer routes

For the consumers interface with prefix cons, fourteen routes have been developed. These routes with

example GET requests are:

• id/{username}/{password}

http://130.89.12.84:23450/cons/id/Joeri/mypassword

Requests the sensor system id for user = Joeri and password = mypassword

• locations/{sensorsystem_type_id}

http://130.89.12.84:23450/cons/locations/1

Requests current locations of all sensor systems with type = 1

• location/{sensorsystem_id}/{sensorsystem_type_id}

http://130.89.12.84:23450/cons/location/1/1

Request current location of sensor system id = 1 and type = 1

• locations/{sensorsystem_id}/{sensorsystem_type_id}

http://130.89.12.84:23450/cons/locations/1/1

Request all locations of sensor system id = 1 and type = 1

• characteristics/{sensorsystem_id}/{sensorsystem_type_id}

http://130.89.12.84:23450/cons/characteristics/1/1

Request characteristics of sensor system id = 1 and type 1

• measurements/{sensorsystem_id}/{sensorsystem_type_id}

http://130.89.12.84:23450/cons/measurements/1/1

Request all measurements of sensor system id = 1 and type = 1

• daymeasurements/{sensorsystem_id}/{sensorsystem_type_id}

http://130.89.12.84:23450/cons/daymeasurements/1/1

Request all measurements of current day of sensor system id = 1 and type = 1

86

• datemeasurements/{sensorsystem_id}/{sensorsystem_type_id}/{date1}/{date2}

http://130.89.12.84:23450/cons/datemeasurements/1/1/2018-01-01:00:00:00/2018-05-

05:23:59:59

Request all measurements for sensor system id = 1, type = 1, within the specified timeframe

• datemeasurements/{sensorsystem_type_id}/{date1}/{date2}

http://130.89.12.84:23450/cons/datemeasurements/1/2018-01-01:00:00:00/2018-05-

05:23:59:59

Request all measurements for all sensor systems of type = 1 within the specified timeframe

• buffered/{sensorsystem_id}/{sensorsystem_type_id}

http://130.89.12.84:23450/cons/buffered/1/1

Request last month’s amount of buffered rainwater for sensor system id = 1 and type = 1

• buffered/{sensorsystem_type_id}

http://130.89.12.84:23450/cons/buffered/1

Request last month’s total amount of buffered rainwater for all sensor systems of type = 1

• events/{sensorsystem_id}/{sensorsystem_type_id}

http://130.89.12.84:23450/cons/events/1/1

Request all events for sensor system id = 1 and type = 1

• events/{sensorsystem_id}/{sensorsystem_type_id}/{date1}/{date2}

http://130.89.12.84:23450/cons/events/1/1/2018-01-01:00:00:00/2018-05-05:23:59:59

Request all events for sensor system id = 1 and type = 1 within the specified timeframe

• events/{sensorsystem_id}/{sensorsystem_type_id}/{event_type_id}/{date1}/{date2}

http://130.89.12.84:23450/cons/events/1/1/1/2018-01-01:00:00:00/2018-05-05:23:59:59

Request all events of event type = 1 for sensor system id = 1 and type = 1 within the specified

timeframe

6.3.3 AdminController.php

The AdminController.php file contains the implementation of the functions referenced to by the admin

routes (see section 6.3.2 for examples). The complete code can be found in appendix C. The admin

controller functions are shown in figure 6.9. The routes pass the in the http post request specified

parameters to the functions, after which the values are used in the SQL insert statements.

87

Figure 6.9, The admin controller’s functions

6.3.4 ProducerController.php

The producer functions will be described in this section. The complete code can be found in appendix

D.

Validation functions

The following validation functions are used to verify the in the request specified parameters prior to

making changes in the database. The three functions in figure 6.10 are used to verify whether a sensor

system id is already registered, whether the type of sensor system is registered by the administrator in

the sensorsystem_types table, and whether a requested sensor system id and sensor system type id

match respectively.

Figure 6.10, Sensor system validation functions

88

The function in figure 6.11 is used to check whether a user exists in the users table.

Figure 6.11, User validation function

Validation functions for characteristics, events, and measurements can be found in figure 6.12. The

existence of a characteristic type that is requested for registration, as well as validation whether the

characteristic type corresponds with the sensor system type and whether the characteristic with

corresponding value has already been registered for the sensor system id is checked in the function

called characteristicExists.

 The same goes for the measurements and events. The first check that is made in the

eventTypeExists function is whether the type of event exists in the event_types table. After that, the

combination of event type and sensor system type are validated by checking whether these match in

the event_types table.

Figure 6.12, Characteristic, event, and measurement validation functions

Sensor system registration functions

Three functions regarding the registrations of a sensor system have been implemented. These are the

basic registration, registration with added value for location precision, and registration with a user.

The basic registration function can be seen in figure 6.13. This function requires the sensor system id,

the sensor system type, and the latitude and longitude of the sensor system’s location. First the

uniqueness of the to be registered sensor system’s id is validated, by calling the function

sensorsystemIdExists. If the sensor system id already exists in the database, a response message and

89

http status code is returned. If the to be registered sensor system id is unique, the existence of the to be

registered type of the sensor system is validated. If the sensor system type exists, the sensor system

and its location will be inserted into the corresponding database tables, and a response message and

http status code is returned. If the sensor system type doesn’t exist, nothing will be inserted into the

database and a response message and http status code will be returned.

 The SQL statement on line 82 contains some functions that require elaboration in order to

understand what is going on. The now() function is used to insert the timestamp of the moment of

insertion of the new sensor system. The ST_GeomFromText creates a geometry object of the type

point, with SRID 4326. The function ST_Transform is used to project the SRID 4326 onto the cartesian

special reference system with SRID 28992, which is the Dutch RD-coordinate system (see section

6.2.1).

Figure 6.13, Basic sensor system registration function

The basic registration function is extended with the possibility to add a value for the precision of the

latitude longitude pair. This function can be found in the complete code in appendix D. The only

difference here is one extra value in the INSERT INTO locations statement on line 82 of figure 6.14.

It’s also possible to register a sensor system with a username and password. In order to do so, the two

lines in figure 6.14 are added to the basic sensor system registration function as well as a call to the

userExists validation function prior to inserting data into the database. Again, for the complete code

see appendix D. The password will be hashed using the sha256 hash algorithm, before it will be stored

in the database.

Figure 6.14, Registration with username and password

90

Characteristic registration functions

For the registration of sensor system characteristics, the producer provides the function in figure 6.15

with the sensorsystem_id, sensorsystem_type_id, characteristic_type_id, and the characteristic_value.

First the call to the function validateSensorsystem validates the existence of the sensor system id with

corresponding type. If no conflicts arise, the function characteristicExists validates the existence of

the characteristic type with matching sensor system type, and checks whether or not the characteristic

has already been registered with accompanied value. Again, if all validations pass, the characteristic

data will be inserted into the database tables. As can be seen in figure 6.15, again all outcomes of

validation and successful data insertion return response messages and http status codes.

Figure 6.15, Characteristic registration function

Location update functions

Regarding updating a sensor system’s location, two functions are implemented. One for updating the

location without a value for location precision, and one for updating the location with a value for

location precision. The same validation on lines 131-142 of figure 6.15 is used in both location update

functions. See appendix D for the updateSensorsystemLocations and

updateSensorsystemLocationWithLocationPrecision function’s code.

Event registration functions

Again the same validation on lines 131-142 of figure 6.15 is used in the functions newEvent and

newEventWithPrecipitation. Additionally, the event type specified in the request is validated by the

validation function eventTypeExists (see figure 6.16). This functions verifies the existence of the

91

requested event type in the database, as well as whether the event type corresponds with the in the

request specified sensor system type. The difference of the newEventWithPrecipitation function with

the function shown in figure 6.16, is one added function parameter, and one extra value in the INSERT

INTO events statement on line 244. For the complete code, see appendix D.

Figure 6.16, The new event registration function

Measurement registration functions

A measurement post request can contain up to four measurements (see section 5.3.3). Four functions

have been implemented, namely oneNewMeasurement, twoNewMeasurements,

threeNewMeasurements, and fourNewMeasurements. In order to explain the measurements functions,

the function for registering four measurements will be explained. The code of this function can be

found in figure 6.17. First, the sensor system and sensor system type are validated again using the

validateSensorsystem function. After that, all measurement types in the request are put into an array.

In the foreach loop, the validateMeasurement_type function is called for each measurement type in the

array. If all specified measurement types pass validation, the measurements are inserted into the

measurements table.

92

Figure 6.17, Function for registration of four measurements

6.3.5 ConsumerController.php

In this section, crucial parts of the consumer functions will be described. The complete code can be

found in appendix E.

Validation functions

The same validation functions as in the producers interface are used (see section 6.3.4), except for the

characteristics, events, and measurement validation functions.

User’s sensor system id

When a SRB user logs in in the SRB dashboard application, the user’s SRB sensor system id can be

requested at the consumer interface. The function getUserSensorsystemId in figure 6.18 takes the

username and password as parameters, after which the validation function userExists is called to check

whether the user exists in the users table. If the provided password is correct, the user’s SRB sensor

system id will be returned.

Figure 6.18, Function for retrieving a user’s sensor system id

93

Locations

Regarding the retrieval of sensor system locations, three functions have been implemented. The first,

getAllSensorsystemsCurrentLocations, returns all current locations of all sensor systems of a single

sensor system type (see figure 6.19). It takes the sensor system type as parameter and validates its

existence in the database. On line 68, the sensor system’s locations are transformed from the RD-

coordinate system, to SRID 4326 using the ST_Transform function, after which the functions ST_YMax

and ST_XMax extract the latitude and longitude respectively from the point geometry object. The sub

query starting on line 71, selects the most recent stored locations using the max() function.

Figure 6.19, Function for retrieving all locations of all sensor systems of a single sensor system type

The second function regarding sensor system location is getSingleSensorsystemCurrentLocation,

which returns the current location of a single sensor system. The only differences in the code shown

in figure 6.19, are that the function takes an extra parameter for the sensor system id, calls the

validateSensorsystem function, and has an extra statement in the WHERE clause starting on line 70

(see figure 6.20).

Figure 6.20, Difference with the function in figure 6.19, heighted with yellow

The final function regarding sensor system locations is getSingleSensorsystemAllLocations, which

returns the current as well as the historic locations of a single sensor system. The function takes two

parameters, for the sensor system id and sensor system type id. These are validated again using the

function validateSensorsystem. The raw SQL is quite similar to the previous described location

functions, and can be found below in figure 6.21.

94

Figure 6.21, Raw SQL for retrieval of all locations of a single sensor system

Characteristics

One function regarding characteristics has been implemented in the consumers interface, namely

getSingleSensorsystemCharacteristics (see figure 6.22). The function takes two parameters: the sensor

system id and the sensor system type id. Again, the both are validated using the validateSensorsystem

function. When the sensor system send in the request is valid, the validation function returns ‘1’, after

which case 1 of the switch statement on line 141 will be executed. Another switch statement will

execute code depending on the sensor system type id. This is because some extra functionality has

been implemented for the SRB and AirT dashboard developers next to the default functionality.

On line 143, a string is stored in the variable $crosstab. This string contains SQL, which will be used

in the crosstab function on line 151 and 160. The crosstab function was added by creating the tablefunc

extension for PostgreSQL (see section 6.2.4). Using this function, pivot tables can be created. This

implemented functionality is added as extra service to the SRB and AirT dashboard developers. By

the use of the crosstab function, each different characteristic type will be represented in the result by

its own column instead of having a characteristic_type column with separate rows for each type of

characteristic (see tables 6.1 and 6.2 for an example). The SQL in the default option, which will be

used when a new sensor system type is added to the project, produces results as shown in table 6.2.

95

Figure 6.22, Function for retrieval of sensor system characteristics

Table 6.1, Example of the query’s result using the crosstab() function

sensorsystem_id capacity water_quality_guard_setting freeze_guard_setting water_collection_area

1 500 1 1 20

Table 6.2, Example of the query’s result without using the crosstab() function

sensorsystem_id characteristic type value

1 capacity 500

1 water_quality_guard_setting 1

1 freeze_guard_setting 1

1 water_collection_area 20

Measurements

Four functions regarding retrieval of sensor system measurements have been implemented. The first,

getAllMeasurements, provides the consumer with all measurements of a single sensor system. It takes

parameters for the sensor system id and the sensor system type, which will be verified using the same

verification functions explained numerous times before. The same extra functionality as with the

characteristic function is implemented in all measurement functions as well. The second function,

getDayMeasurements, provides the consumer with all measurements of a single sensor system on the

96

current day. The third function, getMeasurementsPeriod, takes two extra parameters: date1 and date2.

The function provides the consumer with all measurements of a single sensor system within the

specified time period. Finally, the function getAllMeasurementsPeriod takes parameters for the sensor

system type id, and two dates specifying the timeframe. This function returns all measurements for all

sensor systems of a single type within the specified timeframe. See appendix E for the complete code.

Last month’s amount of buffered rainwater

Two functions have been implemented as extra service for the SRB dashboard developer. The first,

getBuffered, provides the consumer with last month’s amount of buffered rainwater for a single sensor

system (see figure 6.23). This function sums the increase in the SRB’s fill level for last month.

Figure 6.23, Function providing last month’s amount of buffered rainwater for a single sensor

system

The second function, getBufferedTotal, provides the consumer with last month’s amount of buffered

rainwater for all SRBs (see figure 6.24). First, all sensor system ids of the type SRB are stored in the

variable $sensorsystemids. In the foreach loop, the same query as in figure 6.23 is run for every SRB

and the results are summed. The summed result is stored in an object, which then is encoded as json

and returned to the consumer.

97

Figure 6.24, Function providing last month’s total amount of buffered rainwater.

98

99

7. Evaluation

In this chapter the functional testing will be described.

7.1 Postman

Postman [41] will be used to simulate administrator, producer, and consumer projects. Using The

interfaces will be tested by making HTTP requests using the Postman application. With Postman,

collections of requests can be made. The collections of request are shown on the left side of the

screenshot in figure 7.1. For each route that has been implemented (see section 6.3.2) a request has

been added to a collection in Postman. Requests are grouped per role and type. For example, all

consumer routes concerning measurements are grouped in the collection called CONS measurements.

Figure 7.1, Screenshot of the Postman environment

7.2 Functional testing

This section describes the test process used for the functional testing using Postman. First test data will

be listed with corresponding requests, expected result, and actual result. The tests will be grouped per

Postman collection.

100

The test will start with the ADMIN collection, testing the insertion of new sensor system types, new

characteristic types, new event types, and new measurement types. After that, test data will be

produced and POST requests will be made to the producers interface. Producing the test data will start

with the PROD register new sensor system collection, after which test characteristics, test

measurements, test events, and updated test locations will be registered. When testing the producer

interface is completed successfully, the consumer interface will be tested, starting with requesting the

sensor system id for a user. After that the characteristics, locations, events, and measurement routes

will be tested.

7.2.1 Tests

In this section the test data is listed, http request are set up, and expected and actual test results are

listed. Everything will be grouped per Postman collection. All requests have prefix

http://130.89.12.84:23450/. Parameters should be added to the end of the request.

ADMIN

The following administrator interface functions will be tested:

• Register new sensor system type

o Parameters: sst_test

o Request: admin/newsensorsystemtype/

o Expected result: Status: 200 OK

o Result: Status: 200 OK

• Register new characteristic type

o Parameters: ct_test/3

o Request: admin/newcharacteristictype/

o Expected result: Status: 200 OK

o Result: Status: 200 OK

• Register new event type

o Parameters: et_test/3

o Request: admin/neweventtype/

o Expected result: Status: 200 OK

o Result: Status : 200 OK

• Register new measurement type

o Parameters: mt_test/3

o Request: admin/newmeasurementtype/

o Expected result: Status: 200 OK

o Result: Status: 200 OK

All tests for the administrator interface have passed.

PROD register new sensor system

• Register new sensor system

101

o Parameters: 999/3/52,225781/6,915926

o Request: prod/registersensorsystem/

o Expected result: Sensor system registration successful! Status: 200 OK

o Result: Sensor system registration successful! Status: 200 OK

• Register new sensor system with user

o Parameters: 998/3/52,225781/6,915926/user/pw

o Request: prod/registersensorsystem/

o Expected result: Sensor system registration successful! Status: 200 OK

o Result: Sensor system registration successful! Status: 200 OK

• Register new sensor system with location precision

o Parameters: 997/3/52,225781/6,915926/100

o Request: prod/registersensorsystem/

o Expected result: Sensor system registration successful! Status: 200 OK

o Result: Sensor system registration successful! Status: 200 OK

PROD update location

• Update location

o Parameters: 999/3/52,181175/6,905999

o Request: prod/updatelocation/

o Expected result: Sensor system location update successful Status: 200 OK

o Result: Sensor system location update successful Status: 200 OK

• Update location with precision

o Parameters: 999/3/52,181175/6,905999/33

o Request: prod/updatelocation/

o Expected result: Sensor system location update successful Status: 200 OK

o Result: Sensor system location update successful Status: 200 OK

PROD

• Register characteristics

o Parameters:

▪ 999/3/6/100

▪ 998/3/6/200

▪ 997/3/6/300

o Request:

▪ prod/registercharacteristic/

o Expected results:

▪ sensorsystem characteristic registration successful! Status: 200 OK

o Results:

▪ sensorsystem characteristic registration successful! Status: 200 OK

PROD event

• Register event

o Parameters:

▪ 999/3/4/100/now()

▪ 998/3/4/200/now()

▪ 997/3/4/300/now()

o Requests:

▪ prod/registerevent/

o Expected results:

▪ Event registration successful! Status: 200 OK

o Results:

102

▪ Event registration successful! Status: 200 OK

• Register event with second value

o Parameters:

▪ 999/3/4/1/2/now()

▪ 998/3/4/3/4/now()

▪ 997/3/4/5/6/now()

o Request:

▪ prod/registerevent/

o Expected results:

▪ Event registration successful! Status: 200 OK

o Results:

▪ Event registration successful! Status: 200 OK

PROD measurements

• Insert one measurement

o Parameters:

▪ 999/3/6/999/now()

o Request:

▪ prod/registermeasurement/

o Expected result:

▪ Measurement registration successful! Status: 200 OK

o Result:

▪ Measurement registration successful! Status: 200 OK

• Insert two measurements

o Parameters

▪ 998/3/6/998/6/997/now()

o Request:

▪ prod/registermeasurement/

o Expected result:

▪ Measurement registration successful! Status: 200 OK

o Result:

▪ Measurement registration successful! Status: 200 OK

• Insert three measurements

o Parameters

▪ 997/3/6/996/6/995/6/994/now()

o Request:

▪ prod/registermeasurement/

o Expected result:

▪ Measurement registration successful! Status: 200 OK

o Result:

▪ Measurement registration successful! Status: 200 OK

• Register four measurements

o Parameters

▪ 999/3/6/1/6/2/6/3/6/4,5/now()

o Request:

▪ prod/registermeasurement/

o Expected result:

▪ Measurement registration successful! Status: 200 OK

o Result:

▪ Measurement registration successful! Status: 200 OK

103

All tests for the producers interface have passed.

CONS

• Get sensor system id for user

o Parameters:

▪ user/pw

o Request:

▪ cons/id/

o Expected results:

▪ sensorsystem_id: 998

type: sst_test

o Results:

▪ sensorsystem_id: 998

type: sst_test

• Get characteristics of sensor system

o Parameters:

▪ 999/3

▪ 998/3

▪ 997/3

o Request:

▪ cons/characteristics/

o Expected results:

▪ sensorsystem_id: 999

type: ct_test

value: 100

▪ sensorsystem_id: 998

type: ct_test

value: 200

▪ sensorsystem_id: 997

type: ct_test

value: 300

o Results:

▪ sensorsystem_id: 999

type: ct_test

value: 100

▪ sensorsystem_id: 998

type: ct_test

value: 200

▪ sensorsystem_id: 997

type: ct_test

value: 300

CONS locations

• Current single sensor location

o Parameters:

▪ 999/3

o Request:

▪ cons/location/

o Expected result:

▪ sensorsystem_id: 999

latitude: 52.181175

longitude: 6.905999

104

o Results:

▪ sensorsystem_id: 999

latitude: 57.2286740056091

longitude: 6.8550050031981

• All single sensor system locations

o Parameters:

▪ 999/3

o Request:

▪ cons/locations

o Expected results:

▪ sensorsystem_id: 999

latitude: 52.225781

longitude: 6.915926

timestamp: unknown

▪ sensorsystem_id: 999

latitude: 52.181175

longitude: 6.905999

timestamp: unknown

▪ sensorsystem_id: 999

latitude: 52.181175

longitude: 6.905999

timestamp: unknown
o Results:

▪ sensorsystem_id: 999

latitude: 52.2257810040113

longitude: 6.91592600329726

timestamp: 2018-06-29 21:53:39.578025

▪ sensorsystem_id: 999

latitude: 52.1811750039849

longitude: 6.90599900328681

timestamp: 2018-06-29 21:54:22.511096

▪ sensorsystem_id: 999

latitude: 52.1811750039849

longitude: 6.90599900328681

timestamp: 2018-06-29 22:00:04.061523

• All current locations of a single type of sensor system

o Parameters:

▪ 3

o Request:

▪ cons/locations/

o Expected results:
▪ sensorsystem_id: 999

latitude: 52.181175

longitude: 6.905999

▪ sensorsystem_id: 998

latitude: 52.225781

longitude: 6.915926

105

▪ sensorsystem_id: 997

latitude: 52.225781

longitude: 6.915926

o Results:
▪ sensorsystem_id: 999

latitude: 57.2286740056091

longitude: 6.8550050031981
▪ sensorsystem_id: 998

latitude: 52.2257810040113

longitude: 6.91592600329726
▪ sensorsystem_id: 997

latitude: 52.2257810040113

longitude: 6.91592600329726
CONS events

- Get all events of a single sensor system

- Parameters:

▪ 999/3

- Request:

▪ cons/events

- Expected results:

▪ sensorsystem_id: 999

event_type: et_test

value: 100

precipitation: null

timestamp: unknown

▪ sensorsystem_id: 999

event_type: et_test

value: 1

precipitation: 2

timestamp: unknown

- Results:

▪ sensorsystem_id: 999

event_type: et_test

value: 100

precipitation: null

timestamp: 2018-06-29 22:05:04.635241

▪ sensorsystem_id: 999

event_type: et_test

value: 1

precipitation: 2

timestamp: 2018-06-29 22:06:49.009815

- All events for a single sensor system within specified time period

- Parameters:

▪ 999/3/2018-06-01/now()

- Request:

▪ cons/events

- Expected results:

▪ sensorsystem_id: 999

event_type: et_test

106

value: 100

timestamp: unknown

▪ sensorsystem_id: 999

event_type: et_test

value: 1

timestamp: unknown

- Results:

▪ sensorsystem_id: 999

event_type: et_test

value: 100

timestamp: 2018-06-29 22:05:04.635241

▪ sensorsystem_id: 999

event_type: et_test

value: 1

timestamp: 2018-06-29 22:06:49.009815

- Get specific event for single sensor system within time period

- Parameters:

▪ 999/3/4/2018-06-01/now()

- Request:

▪ cons/events

- Expected results:

▪ sensorsystem_id: 999

event_type: et_test

value: 100

timestamp: unknown

▪ sensorsystem_id: 999

event_type: et_test

value: 1

timestamp: unknown

- Results:

▪ sensorsystem_id: 999

event_type: et_test

value: 100

timestamp: 2018-06-29 22:05:04.635241

▪ sensorsystem_id: 999

event_type: et_test

value: 1

timestamp: 2018-06-29 22:06:49.009815

CONS measurements

• Get all measurements for a single sensor system

o Parameters:

▪ 998/3

o Request:

▪ cons/measurements

o Expected results:

▪ id: 998

event_type: mt_test

107

value: 998

ts: unknown

▪ id: 998

event_type: mt_test

value: 997

ts: unknown

o Results:

▪ id: 998

event_type: mt_test

value: 998

ts: 2018-06-29 22:09:03.761232

▪ id: 998

event_type: mt_test

value: 997

ts: 2018-06-29 22:09:34.011818

• All measurements current day for a single sensor system

o Parameters:

▪ 998/3

o Request:

▪ cons/daymeasurements

o Expected results:

o Results:

• All measurements for a single sensor system in time period

o Parameters:

▪ 998/3/2018-06-28/2018-06-30

o Request:

▪ cons/datemeasurements

o Expected results:

▪ id: 998

event_type: mt_test

value: 998

ts: unknown

▪ id: 998

event_type: mt_test

value: 997

ts: unknown

o Results:

▪ id: 998

event_type: mt_test

value: 998

ts: 2018-06-29 22:09:03.761232

▪ id: 998

event_type: mt_test

value: 997

ts: 2018-06-29 22:09:34.011818

108

CONS buffered amount

In order to test the consumer interface functions for last month’s total and single sensor system’s

buffered amount of rainwater, three test sensor systems of the type SRB were used. The following fill

level data was inserted into the database, with all values from old to new and in liters:

• testsrb1: 100, 50.54, 311.76, 200

o Expected total buffered: 211.76

o Result: 211.76

• testsrb2: 20.4, 102.89, 300, 99

o Expected total buffered: 279.6

o Result: 279.6

• testsrb3: 450, 100, 25, 250.3

o Expected total buffered: 225.3

o Result: 225.3

The buffered amount functions work as expected.

7.3 Performance

In order to test the performance of the system, Postman is used again. The routes and their response

time are listed below, as well as the number of rows in the tables used by each route.

7.3.1 Admin interface

In this section the admin routes and their response time are listed, as well the number of rows in each

if the tables accessed by the routes. The accessed tables are listed below the route name. The number

of rows in each table are indicated by the number in brackets behind the table name. The response

time is indicated by number in brackets after the route name.

Register new sensor system type (86 ms)

sensorsystem_types (3)

Register new characteristic type (90 ms)

characteristic_types (6)

Register new event type (569 ms)

event_types(4)

Register new measurement type (194 ms)

event_types(6)

109

7.3.2 Producer interface

In this section the producers routes and their response time are listed, as well the number of rows in

each if the tables accessed by the routes. The accessed tables are listed below the route name. The

number of rows in each table are indicated by the number in brackets behind the table name. The

response time is indicated by number in brackets behind the route name.

Sensor system registration (107 ms)

sensorsystems(7)

locations(47)

Sensor system registration with user (589 ms)

sensorsystems(7)

locations(47)

users(2)

Update location (614 ms)

locations(48)

register characteristic (580 ms)

characteristics(4)

Register event (94 ms)

events(4573)

Register four measurements (110 ms)

measurements(186177)

7.3.3 Consumer interface

In this section the comsumers routes and their response time are listed, as well the number of rows in

each if the tables accessed by the routes. The accessed tables are listed below the route name. The

number of rows in each table are indicated by the number in brackets behind the table name. The

response time is indicated by number in brackets after the route name.

Get sensor system id for user (94 ms)

sensorsystems(9)

users(3)

Get characteristics of sensor system (83 ms)

characteristic_types(9)

characteristics(5)

Get all current sensor system locations of a single type (64 ms)

110

sensorsystems(9)

locations(50)

Get all events of single sensor system (413 ms)

events (4574)

event_types (5)

Get all measurements today single sensor system (464 ms)

measurements (186211)

measurement_types (7)

Get all measurements single sensor system (8981 ms)

sensorsystems(186211)

locations(7)

Executing the same query used in the route returning all measurements of a single sensor system

using the terminal-based front end psql, yields almost immediate results. The interface appears to

have a negative effect on the performance.

7.4 Conclusion

The interface’s functionality was tested using Postman. The tests were successful, however some

deviations occurred in the values for the latitude and longitude of sensor system locations. The

functions in which the deviations in latitude and longitude appeared are:

• Current single sensor location

• All single sensor system locations

• All current locations of a single type of sensor system

At this moment it is not yet clear what causes these deviations. Expected is that is has to do with the

projection of the location’s latitude and longitude on the cartesian RD-coordinates spatial reference

system.

 Regarding the performance of the implemented interfaces using the Lumen framework, it can

be concluded that at this stage of the project the performance is good. However, the more results a

request delivers, the larger the difference in response time as compared to executing the same query

using the PostgreSQL terminal-based front end psql. Retrieving all measurements for a single sensor

system took 8981 ms using the consumer interface. Executing the same query using psql, showed

almost instantaneous results. When the number of rows in the database tables increases, the difference

in response time between the interface’s functions and executing the same queries psql is expected to

increase. Improving performance of the database can be done by for instance building indexes for large

tables and tweaking the database settings such as the max_connections, shared_buffers, and work_mem

111

[42]. The API seems to be affecting the performance in a negative way. Further research has to be

done on why this happens and on how to improve API performance.

112

113

8. Conclusion

In this chapter the answers to the research questions stated in section 1.3 will be provided, as well as

other conclusions drawn from this graduation project. The research question and sub-questions used

to answer the research question stated in section 1.3 are:

- How to develop a suitable data repository for geo-tagged environmental data for the Climate

Adaptive City Enschede project?

- What database management system is most suitable for storing geospatial data?

- How to maintain performance with large amounts of data generating sensor nodes?

In order to provide an answer to these questions, background research was done. This background

research included looking at previous graduation projects, a literature research on different classes of

databases and several database management systems and their geospatial functionalities, and a state of

art research on multiple different database management systems from different database classes.

 Regarding the first question, what database management system is most suitable for storing

geospatial data, the conclusion can be draw that PostgreSQL in combination with the PostgreSQL

extension PostGIS is the most suitable database management system for storing geospatial data.

PostgreSQL is a very mature, reliable, fast, well documented object-relational database management

system, and has a very large supporting community. Furthermore, it is free and open source. Most

other database management systems offer enterprise editions next to free version, which could result

is not all beneficial aspects and functionality will be available in the free versions. The PostGIS

PostgreSQL extension is free and open source as well, and is just as well documented as PostgreSQL.

PostGIS offers the most extensive set of geospatial functionalities of all available database

management systems, as well as some advanced extras such as GiST indexing (see section 2.3.3 and

2.4.1).

 The second question is how to maintain performance with large amounts of data generating

sensor nodes? In the literature and state of the art review in chapter 2 of this repost, it was pointed out

that the database classes NoSQL and NewSQL usually have higher performance. However, this

doesn’t mean that (Old)SQL systems have low performance. PostgreSQL is a very mature database

management system of the SQL class of databases, and has proven to be a very reliable and high

performance database management system. The database settings can be tweaked and advance

indexing, such as GiST indexing, can be used on large tables to further improve database performance.

The test showed some significant difference in response time in using the interface’s functions and

114

executing the same queries using the terminal-based front end psql. Further research has to be done on

the improvement of API performance.

Finally, the main research question, how to develop a suitable data repository for geo-tagged

environmental data for the Climate Adaptive City Enschede project, can be answered. The list of

requirements that followed from brainstorming and informal interviews with project’s stakeholders,

has lead to the database table structure and the functional architecture of the system. The data

repository contains three interfaces, an administrator, a consumer, and a producer interface. The

interfaces are generic, providing universal functionalities to sensor systems producing data and

(visualization) applications consuming data. Some project specific extra functionality was

implemented on top of the basic universal functionality. Underlying the generic interfaces, lies the

table structure of the database. The table structure was to designed to be universal as well. It is possible

for any type of sensor system to produce any type of measurements, store any type of sensor system

characteristics, and store any type sensor system events. If in the future a new type of sensor systems

is added to the CAC projects, this type with its accompanied measurement, event, and characteristic

types simply has be added by the repository administrator. Also, when a already existing sensor system

expands with a new type of sensor producing a new type of measurement, the only thing that has to be

done is for the administrator to add the new type of measurement to the system.

115

116

9. Recommendations

This chapter contains future recommendations for further development of the system. First of all, when

in the future more SRB sensor systems are deployed, data should be anonymized on a maximum zoom

in of street level clustered nodes. Individual SRB data is only available to the SRB’s owners. At this

stage of the project anonymization is done by providing only the last month’s total amount of buffered

rainwater of all SRBs, and providing individual data only to the SRB owner. The functionality to

provide data averaged on street level clustered sensor systems should be implemented in the future, as

well as possibly the functionality to cluster sensor systems together based on the distances between

them and a specified minimum amount of sensor systems per cluster. Also future research has to be

conducted on data repository security, as for this stage of the project no serious security measures have

been implemented except for the hashing of user passwords. For example using API client

authentication. At this stage of the project anyone in possession of the http request hyperlink can make

POST and GET requests to one of the repository’s interfaces. Finally, research has to be done on

further improving database and API performance. The tests showed significant differences in interface

response time and the PostgreSQL terminal-based front end psql, executing the same queries. The

database performs very well at this stage of the project. The interfaces perform sufficient as well,

however retrieving all measurements of a sensor system has a relative high response time. Improving

database performance should be done by creating indexes when tables grow to contain a large amount

of rows, and tweaking database setting such as the number of connections and available work memory.

Expected is that in the current implementation of the system, the bottleneck will we the implementation

of the interfaces. Further research has to be done on how to improve API performance.

117

References

[1] "Klimaatactieve steden - Natuur en Milieu Overijssel," [Online]. Available:

https://www.natuurenmilieuoverijssel.nl/wat-wij-bieden/klimaatactieve-steden/. [Accessed 01

Apr 2018].

[2] "KlimaatActieve Stad (KAS) - Vechtstromen," [Online]. Available:

https://www.vechtstromen.nl/over/klimaat/klimaatactieve/. [Accessed 01 Apr 2018].

[3] "Water in Enschede: feiten, cijfers en trends," Gemeente Enschede, 2012.

[4] "Infographic over de Enschedese waterhuishouding," Gemeente Enschede, [Online]. Available:

https://www.enschede.nl/file/5278. [Accessed Apr 2018].

[5] "Wadi Het Bijvank," Gemeente Enschede, [Online]. Available:

https://www.enschede.nl/duurzame-daad/wadi-het-bijvank. [Accessed Apr 2018].

[6] E. Sharifi and S. Lehmann, "Correlation analysis of surface temperature of rooftops,

streerscapes and urban heat island effect," Journal of Urban and Environmental engineering,

pp. 3-11, 2015.

[7] F. Rindt, "Developing A Smart Rainwater Buffering System For The Citizens Of Enschede,"

Bachelor thesis Creative Technology, July 2017.

[8] G. Steeghs, "Developing A Smart Rainwater Buffering System For The Municipality Of

Enschede," Bachelor thesis Creative Technology, July 2017.

[9] Y. M. E. Latzer, "Air Temperature Visualization Of Public Spaces In Enschede," Bachelor

thesis Creative Technology, March 2018.

[10] T. Onderwater, "Developing A Sensor Network For Real Time Temperature Monitoring In

Enschede," Bachelor thesis Creative Technology, February 2018.

[11] "FAQ: Databases and models, Django documentation," [Online]. Available:

https://docs.djangoproject.com/en/2.0/faq/models/#does-django-support-nosql-databases.

[Accessed Apr 2018].

[12] J. Jin, J. Gubbi, S. Marusic and M. Palaniswami, "An Information Framework for Creating a

Smart City Through Internet of Things," IEEE Internet of Things Journal, no. 1, pp. 112-121,

2014.

[13] H. Fatima and K. Wasnik, "Comparison of SQL, NoSQL and NewSQL databases for internet

of things," IEEE Bombay Section Symposium (IBSS), pp. 1-6, 2016.

[14] S. Duggirala, "NewSQL Databases and Scalable In-Memory Analytics," in Advances in

Computers, Elsevier, 2018, pp. 49-76.

[15] R. Sánchez-de-Madariaga, A. Muñoz, R. Lozano-Rubí, P. Serrano-Balazote, A. L. Castro, O.

Moreno and M. Pascual, "Examining database persistence of ISO/EN 13606 standardized

electronic health record extracts: relational vs. NoSQL approaches," BMC Medical Informatics

and Decision Making, pp. 17-123, 2017.

[16] S. D. Kuznetsov and A. V. Poskonin, "NoSQL data management systems," Programming and

Computer Software, no. 40, pp. 323-332, 2014.

[17] K. Kaur and M. Sachdeva, "Performance evaluation of NewSQL databases," in International

Conference on Inventive Systems and Control (ICISC), Coimbatore, 2017.

[18] A. Pavlo and M. Aslett, "What’s Really New with NewSQL?," ACM SIGMOD Record archive,

no. 45, pp. 45-55, 2016.

118

[19] K. Grolinger and W. A. Higashino, "Data management in cloud environments: NoSQL and

NewSQL data stores," Journal of Cloud Computing, pp. 2-22, 2013.

[20] S. Luan, H. Cai, F. Bu and L. Jiang, "A Four-Layer Flexible Spatial Data Framework towards

IoT Application," in IEEE 12th International Conference on e-Business Engineering, Beijing,

2015.

[21] N. Pant, M. Fouladgar, R. Elmasri and K. Jitkajornwanich, "A Survey of Spatio-Temporal

Database Research," Intelligent Information and Database Systems, pp. 115-126, 2018.

[22] A. Xavier and A. A. Arivazhagan, "Investigation and Visualization of Query Determine Spatial

Pattern in GIS," Indonesian Journal of Electrical Engineering and Computer Science, no. 9,

pp. 552-554, 2018.

[23] J. S. van der Veen, B. van der Waaij and R. J. Meijer, "Sensor Data Storage Performance: SQL

or NoSQL, Physical or Virtual," in IEEE 5th International Conference on Cloud Computing

(CLOUD), Honolulu, 2012.

[24] S. Steiniger and A. J. S. Hunter, "Free and Open Source GIS Software for Building a Spatial

Data Infrastructure," in Geospatial Free and Open Source Software in the 21st Century,

Springer, Berlin, Heidelberg, 2012, pp. 247-261.

[25] "Simple Feature Access - Part 1: Common Architecture | OGC," [Online]. Available:

http://www.opengeospatial.org/standards/sfa. [Accessed 05 2018].

[26] "PostGIS - Spatial and Geographic Objects for PostgreSQL," [Online]. Available:

https://postgis.net/. [Accessed Apr 2018].

[27] "MySQL," [Online]. Available: https://www.mysql.com/. [Accessed Apr 2018].

[28] "MongoDB for GIANT Ideas," [Online]. Available: https://www.mongodb.com/. [Accessed

Apr 2018].

[29] "In Memory Database, VoltDB," [Online]. Available: https://www.voltdb.com/. [Accessed Apr

2018].

[30] "RWJF - Qualitative Research Guidelines | Interviewing | Interviewing," RWJF, 2008.

[Online]. Available: http://www.qualres.org/HomeInte-3595.html. [Accessed Juni 2018].

[31] A. Mader and W. Eggink, "A Design Process For Creative Technology," in INTERNATIONAL

CONFERENCE ON ENGINEERING AND PRODUCT DESIGN EDUCATION, Enschede,

2014.

[32] H. Sharp, A. Finkelstein and G. Galal, "Stakeholder identification in the requirements

engineering process," in Proceedings. Tenth International Workshop on Database and Expert

Systems Applications. DEXA 99, Florence, 1999.

[33] J. M. Bryson, "What to do when stakeholders matter: stakeholder identification and analysis

techniques," Public Management Review, no. 6, pp. 21-53, 2007.

[34] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and Techniques, Wiley

Publishing, 1998.

[35] D. Benyon and C. Macaulay, "Scenarios and the HCI-SE design problem," Interacting with

Computers, no. 14, pp. 397-405, 2002.

[36] C. S. Jensen, T. B. Pedersen and C. Thomsen, Multidimensional Databases and

DataWarehousing, Morgan & Claypool, 2010.

[37] "PostgreSQL: Documentation: 10: Part I. Tutorial," PostgreSQL, [Online]. Available:

https://www.postgresql.org/docs/10/static/tutorial.html. [Accessed May 2018].

[38] "Rijksdriehoeksstelsel," Kadaster, [Online]. Available:

https://www.kadaster.nl/rijksdriehoeksstelsel. [Accessed 7 2018].

119

[39] "Lumen - PHP Micro-Framework By Laravel," [Online]. Available: https://lumen.laravel.com/.

[Accessed 7 2018].

[40] "Composer," [Online]. Available: https://getcomposer.org/. [Accessed 7 2018].

[41] "Postman | API Developer Environment," [Online]. Available: https://www.getpostman.com/.

[Accessed 07 2018].

[42] "Tuning Your PostgreSQL Server - PostgreSQL wiki," [Online]. Available:

https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server. [Accessed 07 2018].

120

Appendix

A. PostGIS Function Support Matrix

Below is an alphabetical listing of spatial specific functions in PostGIS and the kinds of spatial types they work with or

OGC/SQL compliance they try to conform to.

• A means the function works with the type or subtype natively.

• A means it works but with a transform cast built-in using cast to geometry, transform to a "best srid" spatial

ref and then cast back. Results may not be as expected for large areas or areas at poles and may accumulate

floating point junk.

• A means the function works with the type because of a auto-cast to another such as to box3d rather than

direct type support.

• A means the function only available if PostGIS compiled with SFCGAL support.

• A means the function support is provided by SFCGAL if PostGIS compiled with SFCGAL support,

otherwise GEOS/built-in support.

• geom - Basic 2D geometry support (x,y).

• geog - Basic 2D geography support (x,y).

• 2.5D - basic 2D geometries in 3 D/4D space (has Z or M coord).

• PS - Polyhedral surfaces

• T - Triangles and Triangulated Irregular Network surfaces (TIN)

Function geom geog 2.5D Curves SQL MM PS T

Box2D

Box3D

Find_SRID

GeometryType

ST_3DArea

ST_3DClosestPoint

ST_3DDFullyWithin

ST_3DDWithin

ST_3DDifference

ST_3DDistance

ST_3DExtent

ST_3DIntersection

121

Function geom geog 2.5D Curves SQL MM PS T

ST_3DIntersects

ST_3DLength

ST_3DLongestLine

ST_3DMakeBox

ST_3DMaxDistance

ST_3DPerimeter

ST_3DShortestLine

ST_3DUnion

ST_Accum

ST_AddMeasure

ST_AddPoint

ST_Affine

ST_ApproximateMedialAxis

ST_Area

ST_AsBinary

ST_AsEWKB

ST_AsEWKT

ST_AsEncodedPolyline

ST_AsGML

ST_AsGeoJSON

ST_AsGeobuf

ST_AsHEXEWKB

ST_AsKML

ST_AsLatLonText

ST_AsMVT

ST_AsMVTGeom

ST_AsSVG

ST_AsTWKB

ST_AsText

ST_AsX3D

ST_Azimuth

ST_BdMPolyFromText

122

Function geom geog 2.5D Curves SQL MM PS T

ST_BdPolyFromText

ST_Boundary

ST_BoundingDiagonal

ST_Box2dFromGeoHash

ST_Buffer

ST_BuildArea

ST_CPAWithin

ST_Centroid

ST_ClipByBox2D

ST_ClosestPoint

ST_ClosestPointOfApproach

ST_ClusterDBSCAN

ST_ClusterIntersecting

ST_ClusterKMeans

ST_ClusterWithin

ST_Collect

ST_CollectionExtract

ST_CollectionHomogenize

ST_ConcaveHull

ST_Contains

ST_ContainsProperly

ST_ConvexHull

ST_CoordDim

ST_CoveredBy

ST_Covers

ST_Crosses

ST_CurveToLine

ST_DFullyWithin

ST_DWithin

ST_DelaunayTriangles

ST_Difference

ST_Dimension

ST_Disjoint

123

Function geom geog 2.5D Curves SQL MM PS T

ST_Distance

ST_DistanceCPA

ST_DistanceSphere

ST_DistanceSpheroid

ST_Dump

ST_DumpPoints

ST_DumpRings

ST_EndPoint

ST_Envelope

ST_Equals

ST_EstimatedExtent

ST_Expand

ST_Extent

ST_ExteriorRing

ST_Extrude

ST_FlipCoordinates

ST_Force2D

ST_ForceCurve

ST_ForceLHR

ST_ForcePolygonCCW

ST_ForcePolygonCW

ST_ForceRHR

ST_ForceSFS

ST_Force3D

ST_Force3DM

ST_Force3DZ

ST_Force4D

ST_ForceCollection

ST_FrechetDistance

ST_GMLToSQL

ST_GeneratePoints

ST_GeoHash

ST_GeogFromText

124

Function geom geog 2.5D Curves SQL MM PS T

ST_GeogFromWKB

ST_GeographyFromText

ST_GeomCollFromText

ST_GeomFromEWKB

ST_GeomFromEWKT

ST_GeomFromGML

ST_GeomFromGeoHash

ST_GeomFromGeoJSON

ST_GeomFromKML

ST_GeomFromTWKB

ST_GeomFromText

ST_GeomFromWKB

ST_GeometricMedian

ST_GeometryFromText

ST_GeometryN

ST_GeometryType

|>>

<<|

~

@

=

<<

|&>

&<|

&<

&>

>>

~=

ST_HasArc

ST_HausdorffDistance

ST_InteriorRingN

ST_InterpolatePoint

ST_Intersection

125

Function geom geog 2.5D Curves SQL MM PS T

ST_Intersects

ST_IsClosed

ST_IsCollection

ST_IsEmpty

ST_IsPlanar

ST_IsPolygonCCW

ST_IsPolygonCW

ST_IsRing

ST_IsSimple

ST_IsSolid

ST_IsValid

ST_IsValidDetail

ST_IsValidReason

ST_IsValidTrajectory

ST_Length

ST_Length2D

ST_Length2D_Spheroid

ST_LengthSpheroid

ST_LineCrossingDirection

ST_LineFromEncodedPolyline

ST_LineFromMultiPoint

ST_LineFromText

ST_LineFromWKB

ST_LineInterpolatePoint

ST_LineLocatePoint

ST_LineMerge

ST_LineSubstring

ST_LineToCurve

ST_LinestringFromWKB

ST_LocateAlong

ST_LocateBetween

ST_LocateBetweenElevations

126

Function geom geog 2.5D Curves SQL MM PS T

ST_LongestLine

ST_M

ST_MLineFromText

ST_MPointFromText

ST_MPolyFromText

ST_MakeBox2D

ST_MakeEnvelope

ST_MakeLine

ST_MakePoint

ST_MakePointM

ST_MakePolygon

ST_MakeSolid

ST_MakeValid

ST_MaxDistance

ST_MemSize

ST_MemUnion

ST_MinimumBoundingCircle

ST_MinimumBoundingRadius

ST_MinimumClearance

ST_MinimumClearanceLine

ST_MinkowskiSum

ST_Multi

ST_NDims

ST_NPoints

ST_NRings

ST_Node

ST_Normalize

ST_NumGeometries

ST_NumInteriorRing

ST_NumInteriorRings

ST_NumPatches

ST_NumPoints

ST_OffsetCurve

127

Function geom geog 2.5D Curves SQL MM PS T

ST_OrderingEquals

ST_Orientation

ST_Overlaps

ST_PatchN

ST_Perimeter

ST_Perimeter2D

ST_Point

ST_PointFromGeoHash

ST_PointFromText

ST_PointFromWKB

ST_PointN

ST_PointOnSurface

ST_PointInsideCircle

ST_Points

ST_Polygon

ST_PolygonFromText

ST_Polygonize

ST_Project

ST_Relate

ST_RelateMatch

ST_RemovePoint

ST_RemoveRepeatedPoints

ST_Reverse

ST_Rotate

ST_RotateX

ST_RotateY

ST_RotateZ

ST_SRID

ST_Scale

ST_Segmentize

ST_SetEffectiveArea

ST_SetPoint

ST_SetSRID

128

Function geom geog 2.5D Curves SQL MM PS T

ST_SharedPaths

ST_ShiftLongitude

ST_ShortestLine

ST_Simplify

ST_SimplifyPreserveTopology

ST_SimplifyVW

ST_Snap

ST_SnapToGrid

ST_Split

ST_StartPoint

ST_StraightSkeleton

ST_Subdivide

ST_Summary

ST_SwapOrdinates

ST_SymDifference

ST_Tesselate

ST_Touches

ST_TransScale

ST_Transform

ST_Translate

ST_UnaryUnion

ST_Union

ST_Volume

ST_VoronoiLines

ST_VoronoiPolygons

ST_WKBToSQL

ST_WKTToSQL

ST_Within

ST_WrapX

ST_X

ST_XMax

ST_XMin

ST_Y

129

Function geom geog 2.5D Curves SQL MM PS T

ST_YMax

ST_YMin

ST_Z

ST_ZMax

ST_ZMin

ST_Zmflag

~(box2df,box2df)

~(box2df,geometry)

~(geometry,box2df)

<#>

<<#>>

<<->>

|=|

<->

&&

&&&

@(box2df,box2df)

@(box2df,geometry)

@(geometry,box2df)

&&(box2df,box2df)

&&(box2df,geometry)

&&(geometry,box2df)

&&&(geometry,gidx)

&&&(gidx,geometry)

&&&(gidx,gidx)

postgis.backend

postgis.enable_outdb_rasters

postgis.gdal_datapath

postgis.gdal_enabled_drivers

postgis_sfcgal_versio

130

B. web.php, routes specification

131

C. AdminController.php

132

D. ProducerController.php

133

134

135

136

E. ConsumerController.php

137

138

139

140

141

