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Abstract

In the fast growing E-Mobility market, it is increasingly important to properly support the charging
process of Electric Vehicles (EV). Allego as Charge Point Operator (CPO) offers services to manage
EV-charging infrastructures. Integration of vehicle data can help to support the current services and
offerings and also offers opportunities for new services. The integration of vehicle data can thus en-
able a CPO to extend and expand its service offering.

This thesis discusses the different data sources and protocols that can be used to gather vehicle data.
In addition, the various applications of vehicle data within the scope of a CPO are identified.

Due to the great diversity of data sources and protocols that can be used to access vehicle data, a
versatile platform needs to be set up to cope with this diversity in an efficient, flexible and scalable
manner. This thesis gives an architecture that enables the integration and combination of multiple
data sources. Based on existing middleware techniques and applications in practice, an architec-
ture for a platform is created that connects (internal and external) systems in in an action-driven
manner.

The architecture developed has been designed in such a way that data can be integrated in a flexible
and scalable manner. The principles developed can also be applied to other assets, such as charging
stations.
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1.1. Introduction
Computer Science is a broad scientific field that studies the possibilities of automating algorithmic
processes that scale. It is in this context that many applications of Computer Science have evolved
from relatively simple structures to more complex setups that support the ever rising scale at which
the applications are deployed.
In the beginning, computer systems were mainly used for educational purposes and for corpora-
tions that ran mainframe systems that were accessed through terminal computers. The main goal
was communication and there often was no higher function. The introduction of the IBM PC started
a new era in which the computer was available to a wider public [1]. In the nineties when the in-
ternet emerged [2] computers started to become more widespread and available for more people.
During the nineties, the internet evolved from a document-centric communication platform to a
more service-oriented ’Dynamic Web’ [3].

This new demand for online services is seen as the start of the concept of cloud-computing. Ama-
zon made the first move to cloud services as we now know them; the Amazon datacentres had an
overcapacity of 90 percent to handle peak loads, and Amazon decided to develop a cloud architec-
ture on their hardware to use this overcapacity also in off-peak time [4].

The EV-market, especially seen from a CPO perspective, is a very good example of usage of a service-
oriented Web. The main objective of a CPO is to provide a service for managing of charging stations
in the field. The amount of charging stations grows rapidly, thus challenging the scalability of the
services that the CPO develops [5]. Only managing of charging stations is not enough; in the growing
market for electric vehicles (EVs), new challenges arise to improve the efficiency and effectiveness
of the EV-driving experience. Customers are demanding more functionality and features.

In the Public Transport market, for example, Allego offers services to manage EV charging infras-
tructures. These services stretch further than basic insights in the status of charge poles. In the
future they want to offer value-added services such as active monitoring of entire fleets of buses.
Fleet owners are, for example, increasingly interested in the exact position and state of their vehi-
cles [6].

This is a reason for Allego to investigate the possibilities for the integration of vehicle data into their
existing IT-platform. With these new demands, Allego faces new challenges both on functional and
non-functional level. Allego has to be more flexible then ever to support the newly requested fea-
tures, but at the same time, the infrastructure has to be resilient to the enormous scale-up that is
currently occuring.

This final project reports on means to extract realtime vehicle data from vehicles in a both flexible
and scalable way. The project covers both an analysis of existing offerings, but also proposes a new
framework for handling this challenge. Lastly, the thesis focuses on the current cloud-infrastructure
and how this infrastructure may be improved so that it is ready to support applications that will be
enriched with vehicle data.
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1.2. Research Purpose
The main purpose of this final project is to develop a scalable method for the integration vehicle
data from electric vehicles into an existing backend-system for charge pole management.
An overview of the integration of vehicle data is given in figure 1.1. The figure shows the extraction
of vehicle data and third-party data related to vehicles. This data sources are integrated in such a
way that they can support the internal services within the Allego platform.

Figure 1.1: Overview integration vehicle data (Extraction, Integration, Services)

Extraction
In order to integrate data from electric vehicles, the data has to be gathered from the vehicles. With
conventional vehicles there are several methods for tracking and receiving vehicle data, for example
ODB-dongles, and CAN-tracking devices [7]. Beside the existing data extraction methods there are
developments in the field of data exchange for connected cars. For example, the Car Connectivity
Consortium is developing the Car Data model which makes it possible to exchange car data between
OEM and third parties in a standardized manner [8]. Within Europe, car manufacturers are working
together to support the exchange of vehicle data to service providers [9].
In this project no new extraction methods are developed, however the different extraction methods
available influence the solution developed within this project.

Integration
In order to support the different types of extraction sources, the architecture should be capable of
supporting a large amount of different data extraction methods. This requires the architecture to
be flexible. Currently there are already a multitude of methods to extract vehicle data. For this final
project, we will use the public transport sector to demonstrate different extraction methods. In the
future there might be a demand for the integration of even more types of (vehicle) data as well, for
instance data from trucks or passenger cars. Seen from an even broader perspective, it is very well
possible that a wide variety of other data sources will have to be integrated in an equal way. Ex-
amples could be traffic density information or current weather conditions. The architecture should
be developed in such a way that it is possible to support these future demands regarding types of
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supported vehicles and supported services.

Services
After all the data has been gathered in the right way and the integration layer has processed the data
in such a way that the data is available in a standardized format, there will be a multitude of services
that would profit from being able to use this data. There are currently already some services that
would benefit from the availability of vehicle data. For example, the Smart Charging solution cur-
rently in development within Allego can use the integration of vehicle data to improve the charging
process. In the analysis phase of this thesis several (existing and new services) that can benefit from
vehicle data are described. The project does not aim to develop new services, but it should at least
fully support the use cases for all these services.

This thesis is focused on the second step in the integration process: the integration of vehicle data
from different sources and providing it in a standardized format to support multiple services in the
backend platform. The focus is not on developing new standards for the extraction of vehicle data.
Based on the exploration made during the Research Topics phase we concluded that different stan-
dards (both on data and physical level) are already developed, and these standards can also be very
well used in the EV-domain. In addition, this research will not focus on developing new services
in the backend, because it is a crucial prerequisite to set up a good architecture and standardized
central data format to provide data to these services before developing them.
The research thus focuses on the bridge between extraction and services: the integration phase. It
strives to develop a platform that ensures that internal consumers of vehicle data do not have to
take the data source into account. Instead they can rely on a abstraction that delivers them a stan-
dardized, prepared dataset. The platform must ensure that different protocols can communicate
with the existing backend. In this way the services can communicate with vehicles in a abstract way.

1.2.1. Research Questions
The main research question for this thesis is:

"What architectural setup would provide both scalable and flexible solutions for integration of
vehicle data?"

In this thesis the main research question is answered by first answering the following sub-questions:

1. What is the current state-of-art in EV charging solutions and data integration?

2. What elements are required to set up a system for the integration of vehicle data?

• Which actors are involved?
• Which protocols are used to communicate between actors?
• Which services can benefit from vehicle data?

3. How can we combine data from different sources?

• How will we determine the standardized central format?
• How can we deal with conflicting data?
• How can we deal with complementing data?

4. How can we develop an architecture that is able to deal with future growth?

• How can we develop a software architecture that is flexibly extensible with new data
sources?
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• How can we deal with new services in the backend that use vehicle data?
• How can we make sure that this architecture remains scalable?

5. What lessons can be learned evaluating the developed architecture?

1.2.2. Scope
To reduce the amount of dependencies from external actors, this thesis is focused on the design of
a software architecture that supports services in the existing backend by combining several internal
and external data sources. This would be described as the ‘Integration’-phase in the process of
getting all kinds of data from different sources to many different services. In the future new data
sources and services can be flexibly added to the integration layer.

1.2.3. Contribution
The result of this thesis is a clearly defined architectural design for the integration of different data
sources for vehicle data into an existing back-end for charge pole management. The architecture is
unique in the sense that should be able to remain flexible even without knowing what new sources
or consuming services will be connected to it in the future.
In the new market of electric vehicles it is important to develop such an universal way to monitor
these type of vehicle data sources. The research focuses on the development of a widely applicable
methodology to combine data from different sources and integrate it into a generic representation
of vehicles.

1.2.4. Approach
This final project is a design research where a software architecture is defined for the integration of
vehicle data. The research is divided in four phases. Each phase is discussed in a separate chapter
in this report.
These phases are:

• The Analysis Phase Chapter 2
In the Analysis Phase, the EV domain is discussed in more detail. In addition, the various
existing and new data sources are discussed and the existing and future services within the
Allego backend are described. Based on this analysis, use cases and requirements have been
drawn up that the software architecture for vehicle data must meet.

• The Design Phase Chapter 3
In this phase the proposed solution for a model to integrate vehicle data into an existing back-
end is described and modeled. Based on the different datasources and services from the anal-
ysis phase a design is made. The different elements of this design are discussed in this phase.

• The Implementation Phase Chapter 4
The developed and described solution from the design phase is developed as a proof of con-
cept. In this phase specific implementation choices are discussed. This leads to a prototype
which can run in a scalable Microsoft Azure cloud-environment.

• The Validation Phase Chapter 5
In the validation phase the developed architecture is validated. This validation was carried
out by means of an expert validation. In addition, the feasibility of adding new services and
data resources in the future was tested.
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1.3. Allego and research projects
This thesis, conducted at the University of Twente, has been executed externally at Allego. Allego
is a charge point operator (CPO) with over 4500 charge points in the Netherlands, Germany, Great
Britain and Belgium. The company has approximately 200 employees and four offices. One in the
Netherlands (Arnhem), two in Germany (Düsseldorf and Berlin) and one in Belgium (Mechelen).

The company was founded five years ago and has experienced an impressive growth, both in size of
the company itself as in the amount of charging poles the company manages.

As a CPO, Allego offers services for the installation of chargers. Allego offers support in requesting
the electricity grid connection as well as physically placing the charger. In addition, Allego’s IT-
backend is able to handle charging sessions and manage charging points. Allego is thus completely
relieving its customers in in the management of charging stations.

As e-mobility grows, new challenges are emerging in the field of charging electric vehicles. Charging
infrastructure must adapt to the capacity of the electricity grid and at the same time cause the user
as little inconvenience as possible. Within Allego, a team is working on a smart charging platform
in which it will be possible to determine the optimal charging behaviour on the basis of available
capacity and desired demand.

In addition, Allego works closely with other market parties to ensure standardization in the rapidly
evolving EV market. In recent years, in this way, together with ELaadNL and various manufactur-
ers of charging stations and other market parties, a standardization of the communication between
charging station and backend has been ensured by means of OCPP [10]. Currently, Allego is working
on European research projects with manufacturers of EVSEs and vehicles to improve communica-
tion with vehicles. Among other things, ISO 15118 is used for this purpose, which ensures that
the communication is better secured by means of certificates. The participation in such research
projects is important to improve standardization in the market. Currently the research projects are
not focused on direct communication between EV and the CPO. It is focused on the communication
between EV and charger and the communication between charger and CPO.



2
The Analysis Phase

In the Analysis Phase, the EV domain is discussed in more detail. Various existing and new data
sources are discussed and the existing and future services within the Allego backend are described.
Based on this analysis, use cases and requirements have been drawn up that the software architec-
ture for vehicle data must meet. Finally, this chapter discusses related solutions within and outside
the EV domain.

7
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2.1. Domain
2.1.1. Electric Vehicles
An Electric Vehicle (EV) is a vehicle that is powered by one or more electric motors with rechargeable
battery packs. Due to tax advantages, the Plug-in Hybrid (PHEV) was very popular in the Nether-
lands. However, as from 2017, the tax rules have changed and the number of PHEVs has decreased
[11]. In table 2.1 the number of registered electric cars and buses is given.

Table 2.1: Number of registered electric vehicles according to RDW (Dutch Road Admission Authority) [12]

31-12-2015 31-12-2016 31-12-2017 31-06-2018 31-07-2018
Passenger car (EV) 9.368 13.105 21.115 29.210 30.237
Passenger car (PHEV) 78.163 98.903 98.217 97.946 97.950
Bus 94 168 296 327 352

Based on these numbers, we see a considerable increase in the number of full electric cars (EV). In
the case of electric buses, it is clearly noticeable when the new concessions start, often in Decem-
ber.
In order to show the efficiency of electric vehicles, a comparison to conventional vehicles can be
made. In figure 2.1 a comparison between battery powered electric vehicles, fuel cell vehicle and a
conventional vehicle is given. In order to make the comparison as fair as possible all the vehicles
use 100% renewable energy in this example. The efficiency of the whole chain from Well-to-Wheel is
much higher with electric vehicles compared to conventional or hydrogen vehicles [13]. Beside the
efficiency of electric vehicles, another important advantage is the zero emission during operation
based on the usage of renewable electricity.
This comparison is based on the GREET1 (Greenhouse Gases, Regulated Emissions and Energy use
in Transportation) model [14] which evaluates energy and mission impact for different fuel types.
It allows to evaluate the efficiency of different types of vehicles. Figure 2.1 is based on a research
focused on cargo transport but the GREET-software shows that other vehicles have the same char-
acteristics.

Figure 2.1: Comparison efficiency Well-To-Wheel, based on Ambel et all. [13]

1https://greet.es.anl.gov/
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2.1.2. Electric Vehicles in Public Transport
In recent years, various pilot projects have been carried out experimenting with electric buses in
public transport. One of these projects is the electric fleet in Eindhoven which is used by Transdev
as a pilot project for the operation of a fleet electric buses. Transdev is a large bus operator in France
which also is the owner of Connexxion, an important bus operator/public transport operator/you
name it in the Netherlands. An increasing number of municipalities are setting ambitious political
targets for an emission-free public transport system. A goal in The Netherlands is that all new buses
in 2025 in The Netherlands fulfill the zero emission norm.[11] In addition to this, the region Brabant
has the ambition for zero emission public transport in 2025. This means that not only new buses
but also existing buses in 2025 need to be zero emission [15].
In The Netherlands electric buses are used in a regular transport schedule in Eindhoven, Limburg
and on the Waddeneilanden (Schiermonnikoog, Vlieland, Terschelling and Ameland)[16]. The Am-
sterdam Meerlanden concession, started in 2018, has the largest fleet of electric buses in Europe.
This fleet consist of a total of 118 fully electric buses [17]. With the electric vehicles available to-
day, the entire operation depends on complex relationships between operation, electric vehicle and
charger infrastructure.

Energy Consumption
A very relevant aspect in the operation of a full electric public transport service is the energy con-
sumption of the buses. The energy consumption of an electric bus depends on the size of and weight
of the bus. In table 2.2, an overview is given from a test to five different types of electric buses in
Slovenia in 2015 [18].
The different vehicles are developed for their own purposes; as an example we take the Siemens
Rampini, which has a low range per charge. This can be explained by the fact that this vehicle is
developed for in motion charging. As a result, only a small battery pack is required for this vehicle.

Table 2.2: Energy consumption of electric buses in Slovenia

Type Length
Passenger
capacity

Range
per charge

Average
Consumption

Remarks

SOR EBN 10.5 10.5 m 85 152km 0.8 kWh/km
Electric energy only for driving,
diesel heating

AMZ CitySmile 10E 10 m 85 170km 1.1 kWh/km Operated without passengers

SKD Stratos LE 30E 6.9 m 30 150km 0.5 kWh/km
Electric energy only for driving,
diesel heating

Siemens Rampini 7.7 m 46 60km 1.3 kWh/km
In motion charging
(panthograph)

Skoda Perun 12 m 81 140km 1.3 kWh/km

While a conventional bus is able to run a complete shift without having to refuel, this is not possible
with electrically powered vehicles. It is therefore important that the charging infrastructure provides
the best possible support for the operation of the timetable.

Charging Models in Public Transport
To charge electric buses there are several charging models that can be used.

• Depot Charging
Static charging in the depot during breaks and at night. Charging is possible with up to 150kW.
The vehicles will be charged during the night to have range for the next day. For depot charg-
ing several connection methods to the charging station can be used: a cable with connector
or an pantograph.
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• Opportunity Charging
Static charging on-route during the day, usually up to 500kW. With this mode an electric bus
can charge during short stops on the route. This on-route charging is usually conducted
through a pantograph which connects the bus to the charging station.

• In Motion Charging
Charging a bus powered by electricity obtained from an overhead cable. This is the way of
charging used by the trolleybuses in Arnhem. The standard trolley buses have no battery
pack, new models make it possible to drive small distance without overhead contact line. This
makes it possible to drive to surrounding areas without overhead contact line without major
modifications to the existing infrastructure [19]. Currently Allego is not involved in projects
with in motion charging.

For the existing projects with electric buses in public transport a mix of these models is often ap-
plied. During the night the PTO makes use of depot chargers. In order to have a full battery pack at
the start of the operation the buses have the whole night to charge.
In addition to the depot chargers opportunity chargers are installed for the operation during the
day. The electric buses can charge on-route. In a 15 minute break the buses can charge to continue
their route during the day. With this technology the size of the battery packs can be decreased in
order to meet the requirements during the day.

In Eindhoven, for example, the fast chargers (Opportunity Charging) have a socket that is capa-
ble of charging at 300kW.
In the Allego backend we can find charging sessions that illustrate this. A session from 11-12-2017
at 10:36 shows us that in 24 minutes the charger used 114.724 kWh to charge the bus. At the start of
this charging session the state of charge of the vehicle was 4%, at the end of the session 94%. Effec-
tively the average power is 201.658 kW during this charging session. With an average consumption
of 1 kWh / km it is possible to continue the route for another 100km. In Eindhoven there are buses
which drive more than 340 km a day [17]. With opportunity charging sessions during the day, it is
possible to run the timetable successfully.

An illustration of the charging model is given in figure 2.2 . This is an illustration from Heliox, the
manufacturer of the EVSE in Eindhoven. The illustration shows opportunity charging on route and
depot charging at night.
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Figure 2.2: Illustration of the Heliox charging infrastructure [20]

In the night the buses are charged with an 50 kW charger in the depot (Depot Charging). In order
to be able to charge all vehicles, there is a demand for smart charging (Smart Fleet Charging). The
goal of Smart Charging is to optimize the charging sessions with the adjustment of the provided
output of a specific charger based on available capacity and charging requirements. During the day
opportunity chargers (Opportunity Charging) are used in order to recharge the buses on route. With
a backend (Connected Services) all the chargers (depot and opportunity) can be monitored. Session
information and exceptions are stored here. Technical assistance can be provided if irregularities are
discovered in the backend. (Charger Care)

2.1.3. Standarization in the EV-domain
In the EV-domain, there is a wide variety of different standards. Moreover, there are many different
parties involved in charging an electric vehicle. ELaadNL, a Dutch knowledge and innovation center
for electric mobility, has developed several models for the communication between the different
parties in the EV-landscape in terms of standardization. The different models are focused on the
charging infrastructure and how to communicate between the different parties. At this moment
there is no universal standard for the communication between OEM and CPO [21]. This can be
explained by the fact that until now there was no need for direct communication between CPO and
the vehicle. With the advent of new services for which live vehicle data is necessary, data must
be exchanged between the vehicle and third parties such as a CPO. Figure 2.3 and 2.4 show the
different standards between the parties involved in charging an electric vehicle. For the integration
of vehicle data, the vehicle, charging station and charge point operator are especially important.
Communication between Electric Vehicle Supply Equipmen (EVSE) and CPO is based on the OCPP-
protocol.
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Figure 2.3: Electric Vehicle Landscape - 15118 model [21]

Although there is no direct communication between the vehicle and the CPO, the CPO obtains in-
formation via the EVSE. ISO15118 is a communication protocol for communication between the EV
and the EVSE. With this protocol process as authentication, authorization, information exchange
and billing are managed in a user-friendly way. Figure 5 gives an overview of a charging model in
which ISO15118 plays an important role. Communication from the EV/OEM to the CPO is in this
case only possible through the EVSE.

Figure 2.4: Electric Vehicle Landscape - ConnectedCarModel [21]

Another model defined is the Connected Car Model in which the EV communicates with a backend
of the vehicle OEM. Through this backend it is possible to provide connections to other parties.
This model is illustrated in figure 2.4. In this model, a vehicle is connected when in contact with the
manufacturer’s platform. This is to make software updates and data exchange possible.

Currently Allego works together with vehicle and EVSE OEMs to support the ISO 15118 model. Cur-
rently more and more vehicles become connected with the backend of the OEM of the vehicle, so in
the future it will be possible to connect to a connected car platform.

2.2. Market Requirements
In the tenders for the electric buses and infrastructure, the combination of vehicle data with charg-
ing station data is often mentioned. Below are a number of examples of input provided from tenders
and market consultations.
These are tenders and consultations for services in the EV-domain. These market requirements are
the starting point for new services.
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• "We will require to create Smart Charging profiles ourselves in our Energy management Sys-
tem" - tender VHH Hamburg Q3 2018)

• "We have to offer a customer portal for white label customers with integrated bus and charger
data" - VDL 2017/2018

• "We need an integrated e-bus solution; we appreciate what ViriCity offers and would look for
comparable systems, chargers and services" - BSAG possible tender Bremen 2019

• "We require a performance system which can predict Energy consumption and remaining
range. This requires intelligent route and topographical energy and power monitoring and
GPS input data" - tender Freiburg April 2018

• "The system availability of assets and related to vehicles will be measured with the backend
provided by the supplier" - tender VHH Hamburg

• "Central overview for service on vehicle and assets is in that way more important‘ We would
not opt for separation of IT systems" - BVG Berlin

• "We expect an integration with our operational busline management to determine delays and
critical vehicles" - market consultation 2019 RET

• "We are going to develop a depot management system for electic buses but want to support
an open interface to charging backends." - consultant PSI, Berlin (German Tenders)

• Prefers the Viricity solution simple monitoring both asset and vehicle, based on experience
with the way fleet data is handled - Osnabrück tender won by Schaltbau/Viricity

Based on this, Allego intends to develop services with integrated vehicle data. These services must
be in line with the current service provision and the future wishes of customers.
Beside these market requirements Allego business sees opportunities in the future for the expansion
of extra services related to e-mobility and vehicle data. These requirements in combination with
several workshops with the public transport team, discussions with customers, and partners have
resulted in the services described in the next section.

2.3. Services
Based on the findings from the market, various services have been put together based on input from
the Transport as a Business team (TaaB) from Allego. These services can improve their current of-
fering to customers. This relates to the improvement of the core business of Allego and on the other
hand to an expansion of the product portfolio. Although this research does not aim to develop the
various (new) services, it is good to have insight into the services that will make use of vehicle data.
This helps to develop the platform for the integration of vehicle data, as the services will use the
platform that has been developed to obtain and process the vehicle data.

The services related to vehicle data are divided into the following categories.

Insight Give the customer insight in their assets and operations. For charging stations Allego
already offers the tools to give customers insights. The Allego backend manages the charge sta-
tions and corresponding sessions. For a Transport-as-a-Business-customer it is important to have
insight into the vehicles. For these customers it is important that the operation of their vehicles can
continue, even if a charger malfunctions. The first step is to give customers insights into vehicles,
chargers and the impact on the operation. Based on this, a number of services have been defined:
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• Location Management Information about state of depots and charger locations

• Vehicle Management State of a vehicle

• Operation Management Insight into the operation (timetable)

Adapt With the combination of vehicle and charging data, it is possible to respond to unforeseen
situations. For example, by giving a vehicle priority while charging if it is delayed according to the
timetable. These services make it possible for an operator to adapt early, so that as little negative
impact on the operation as possible can be realized. There are several models available in literature
which can be used to improve and predict the behavior of electric vehicles. [22]. For the batteries,
there are models to predict the state of charge available. [23] [24]

• Smart Charging Smart Charging helps to support more chargers in the existing en-
ergy infrastructure by adapting the power output to the available
power.[25].

• Active Monitoring Active Monitoring is currently used by Allego to monitor their charg-
ers. With vehicle data Allego would be capable to offer monitoring
for vehicles as well, but more importantantly, Allego could use vehi-
cle data to improve the current offering by combining the data.

• Charger Reservation Reservation of chargers can help to improve the number of sup-
ported vehicles with equal charging infrastructure [26].

Efficiency When reflecting on the performance using the data that is gathered via various chan-
nels, it is possible to determine whether it would have been possible to do better; to gain a higher
efficiency if other choices had been made. For this, analytical services could be developed in the
efficiency service category.

• Predict Failures Predict when a vehicle or charger will stop working as expected.

• Analysis Vehicle Get overview of the historic performance of a vehicle with the help
of BI dashboards.

• Analysis Chargers Improve the existing analysis of chargers by adding vehicle data (for
example to determine the root causes of failures).

These services will be elaborated on in the following paragraphs. The goal of each of the services is
given and a minimum viable product is described. Also explained is what vehicle data is required
for the service.

2.3.1. Location Management
The purpose of this service is to provide insight into daily operations at the locations of chargingsta-
tions and buses. In a depot, it is important to gain insight into the vehicles that are currently being
charged, the vehicles that are stationary and the vehicles that are on their way to the depot.
Currently, in the evening, an employee manually checks the depot to ensure that all vehicles are
correctly connected. By providing insight into the current status of the deposit, this becomes super-
fluous.
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MVP A map of the depot/location that shows the chargers and the vehicles in an integrated
overview.

Data For this service a minimum requirement is the availability of the position of a vehicle.

2.3.2. Vehicle Management
Vehicle Management is a service which helps operators to get insight into the vehicles and their
history. The current state of the vehicle is represented here. Based on this the operator can inspect
vehicles remotely in a control-room without physical access to the vehicle.
This service can also help the to have a service and maintenance track record for a vehicle.

MVP Display the current state of a vehicle. Showing the measurements available from
different datasources

Data SOC, State, Range, Charging moments.

2.3.3. Operation Management
This service provides insight into the impact on the operation. If, for example, a charger is defective,
this can have an impact on the operation. However, when all services work well together, it may also
be possible to compensate for this by redirecting vehicles to another charger or using the released
grid capacity on other chargers. When the actual operation is in danger, it must be made clear with
the help of this service. It is not a problem if the bus has a critical battery value if it is near an
(available) charger.

MVP Combination overview of chargers (faulted, occupied) and the vehicle state.

Data Charger data, Vehicle State based on interpretations of vehicle data.

2.3.4. Active Monitoring
Active Monitoring is a service which is currently offered by Allego for their charging stations. Based
on real life data the system detects the state of the charging station. When a charging station does
not have a connection with the Allego backend an automated reset is performed. A charger can also
be faulted. For example during the charging session or a defect component in the charger. Some-
times the root cause of a faulted charger is not the charger itself but the connected vehicle. With
the combination of vehicle-data and charger-data the Active Monitoring process can be improved.
Active Monitoring for vehicles can be added to the system in a later stage. With an active monitoring
system for vehicles, the up-time of vehicles can be monitored and when necessary field engineers
can be called upon to solve the problem.

MVP Monitor if a vehicle provides data as expected

Data The MVP will check if the datasources from vehicles provide data. In the first phase the
required data are dataupdates (any kind).

2.3.5. Smart Charging
Smart charging is a valuable service in the future, since net capacity is limited and the demand from
electric vehicles continues to increase. In order not to overload the grid, Allego could build a service
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to support ’Smart charging’. This service would take various parameters as input and generate a per-
sonal charging profile for every specific connected vehicle, that takes into account local availability
of power, external inputs and constraints given by the EV-driver.

MVP Exchange vehicle data with the smart charging solution currently in development
within Allego.

Data Arrival time, Estimated Departure Time, Vehicle Information, SoC at arrival, Grid con-
straints.

2.3.6. Charger Reservation
For a Public Transport operator, it is important that a charger is available when a vehicle needs to
charge. In the current implementations the installed chargers are dedicated for use by the public
transport customer. However, there are new requests for multimodal chargers. This means that a
charger can be used by cars, taxis, vans, buses and trucks. In the current backend it is possible to
configure when a charger is available for which user group (public/private). With the integration
of vehicle data it become possible to get a better indication of the charging demands of connected
vehicles. A bus operator can make use of multimodal-chargers when the system makes sure that the
charger is available when a bus needs to charge.

MVP In the first phase manual reservation of the charger should be possible (by the opera-
tor), this could be automated based on predictions in the future.

Data Arrival time, Estimated Departure time

2.3.7. Prediction
Based on the available vehicle data it should be possible to predict vehicle state. Based on environ-
mental conditions and the data from the vehicle it should be possible to predict arrival and depar-
ture times.
The predictions made in this service can be used as a input for other services. Not for all vehicles
all information is available. Based on the information that is available a prediction could be made
for the missing information. For example the SoC can be predicted based on the driven route and
historical information.

MVP Predict arrival and departure times, Prediction of SoC

Data Historical data for arrivals and departures in combination with SoC.

2.4. Actors
2.4.1. Business Actors
From a business perspective, there are several actors involved in the process of retrieving vehicle
data. These parties should work together to enable successful integration of vehicle data.

• Charge Point Operator (CPO)
The Charge Point Operator (CPO) is responsible for a network of charge points in a certain
geographical area. It maintains the charge poles both physically and digitally. It provides the
infrastructure for the charging process. The CPO wants to extend the current platform with
vehicle data in order to improve current services. Beside this vehicle data can help to extend
the business and improve the market position of the CPO.
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• Vehicle Manufacturer (OEM)
The Vehicle Manufacturer produces a electric vehicle. In addition to the development and
production of vehicles, a vehicle OEM is often engaged in service and maintenance. This
manufacturer is therefore not always willing to work together to share vehicle data. It is im-
portant to clarify the practical application of vehicle data exchange. For a manufacturer, the
main focus here is on improving the availability of the entire infrastructure. After all, if a bus
is unable to charge it (for whatever reason), the OEM will be indirectly blamed for this.

• Fleet Owner
The fleet owner is the owner of the vehicles. In the traditional setup with fuel buses, a vehicle
can be refuelled only once all day long. When electric vehicles are used, they are charged
several times during the day. This ensures that the fleet owner wants and needs to have much
more insight into the current status of his fleet. After all, a small disruption can have major
consequences.

• E-driver
The e-driver is the driver of the electric vehicle. In the scope the e-driver are the bus drivers
of public transport busses. In the future it could be possible that a e-driver is a driver of car
who is also the owner of that car. He than can opt-in to exchange vehicle data with the CPO in
order to improve his/her charging experience.

• Equipment Manufacturer
The Equipment Manufacturer is the party that develops a tracking device. Depending on the
situation, a third party device is required to extract vehicle data from the vehicle. In the ideal
world, this actor is not required and the feed data is obtained directly from the fleetowner
or vehicle OEM. However, it is not always possible to enter into direct cooperation with a
vehicle OEM. In addition, the fleetowner does not always have the necessary vehicle data at
his disposal. A tracking device can be placed in order to obtain vehicle data. This is where
the Equipment Manufacturer is positioned, this is the company that produces the tracking
device.

2.4.2. Software architecture
In the scope of the software integration there are two types of actors involved, providers and con-
sumers.

• Provider
A provider is an actor that supplies vehicle (related) information. All the different datasources
are a data provider for the software architecture. A data update from a provider leads to an
update in the platform. Such an update could lead to several sequential actions.

• Consumer
A consumer is an actor that is able to receive data from the platform. It is able to respond on
the actions. An example of a typical consumer is the Smart Charging Service which retrieves
information from the platform in order to be able to adapt the charger behavior on the vehicle
status.

A data source is typically a provider of data. However it is possible that a data source also responds
on updates from the platform and acts as a consumer. A example of a data source that can also act
as a consumer is
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2.5. Data Sources
In order to get an as complete as possible picture of the vehicle, data from multiple sources must
be combined. This section contains a number of data sources that would be suitable for providing
relevant vehicle information.
In the ideal world, the information can be obtained directly from the source. There would then
have to be a direct exchange of information with the vehicle. Currently, there are initiatives to facili-
tate such data exchange[8]. Also, some initiatives are developing plug-and-play retrofit devices and
backends for vehicle information. [27] However, there is not yet an unequivocal way of steering this.
Within the Public Transport sector, the ITxPT consortium is working hard to standardize IT systems
so that they can fit together properly. [27]

This section provides more information about the current protocols and possibilities for exchanging
data.In the first phase of this study, we looked at various solutions for obtaining vehicle data. These
solutions are described in broad outline in Appendix A.

2.5.1. Government provided information: OpenData
In the context of OpenData, there are various sources within Europe that offer some information
with regard to public transport. Within the Netherlands, the NDOV-loket provides information with
regard to the timetable and the live positions of vehicles in operation. By using these publicly avail-
able data sources, it is possible to determine at least the position of vehicles and use this as input in
the data integration platform.

2.5.2. Vehicle OEM provided information
(r)FMS protocol
The Fleet Management System Standard (FMS) is a combined standard (data protocol and hard-
ware standard) defined by manufacturers of trucks and busses to give third parties access to vehicle
data. With this interface it is possible to retrieve information from the ECUs without direct connec-
tion to the CAN bus. The bus OEMs involved in this project are: Daimler Buses, MAN Truck & Bus,
Scania CV, Volvo Bus Corporation, CNH IrisBus and VDL Bus International. Currently, Allego uses
both VDL and Volvo buses on their chargers. However, in the near future, more mixed fleets will be
created in which different OEMs will jointly use the charging infrastructure.
The FMS standards for trucks and buses are developed in 2004. A common connector is added in
2009. This makes it possible to for third parties to gather information from vehicles with a manufac-
ture independent solution. Version 4 of the FMS documentation, released on 13-10-2017 contains
measurements which are important in the EV domain. Most important is the “Hybrid Battery Pack
Remaining Charge” which gives the SoC of a vehicle. With the FMS protocol it is necessary to have
a device physical connected to the bus in order to retrieve the data from the bus and send this to
a server. Since most of the buses already are connected vehicles the industry has developed a new
extension to the existing standard in order to make it possible to retrieve information through the
server of an OEM. This new standard is called rFMS (remote Fleet Management System). In figure
2.5 the two different versions of the FMS-standard are illustrated. This figure shows schematically
how the data is linked to the Allego cloud.
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Figure 2.5: rFMS and FMS connection in relation with the Allego Cloud

In addition to the connection between the vehicle and the vehicle’s OEM, PTOs often also use ve-
hicle data in their planning systems. They make use of on-board computers such as the devices
from Groeneveld ICT for monitoring their fleet on the one hand, and on the other hand to be able to
communicate with the drivers. The FMS and rFMS interface are examples of a standardized proto-
col defined by the OEMs. However not all manufacturers have a FMS interface and these standard
is developed by West European manufacturers. The current EV market for buses and large goods
vehicles also other OEMs are involved. For example the Chinese BYD has several buses in operation
in the Netherlands.

Car Connectivity Consortium
The Car Connectivity Consortium tries to build a Car Data Ecosystem [28]. This consortium earlier
developed MirrorLink which is a standard for the integration of Android smartphones into the in-
fotainment system of the vehicle. With the Car Data Model they try to create a universal standard
to exchange vehicle data [8]. This model is mainly interesting for the future where multiple par-
ties would like to retrieve information from the vehicle. As illustrated in figure 2.6 a standardized
interface could help to extract data in a universal way.
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Figure 2.6: CCC Car Data model

Allego as Charge Point Operator is a player in the Service Industry field and is in this case a data
receiver. The universal model is not developed yet but could be in the future a way to extract data
from the vehicle with for example mobile apps and integration with the databank of the OEM.

2.5.3. Tracking Device provided infomation
There are different manufacturers of tracking devices. These devices are are connected to the vehicle
and send positional data but also vehicle data to a external server. During this research we have
made use of a Teltonika tracking device which can be connected to the vehicles can-bus and or fms-
bus in order to retrieve information from the vehicle. It communicates with a server with a socket
connection where the device connects to a configurable endpoint where it sends its updates to.

2.5.4. CPO Platform provided information
The existing backend platform from Allego gathers information about vehicles in order to support
the charging process. This information can be used to build up the internal vehicle representation.
For example, during the loading session, the course of the State of Charge can be read out at certain
charging points. In addition, it the charger location is for used chargers is fixed. This existing data
can be used to determine the position of the vehicle during a charging session.

2.5.5. Environmental information
In addition to information directly related to the vehicle, data sources that provide additional infor-
mation are also important. This may include conditions that may affect the operation of the bus.
Examples of this are:

• Weather Data
Various open sources such as the KNMI in the Netherlands provide detailed information on
current weather conditions [29]. These conditions can be important for e.g. range-estimation.

• Traffic Information
The Dutch government published a database for the current situation on the road, both actual
and historical. This is done by the NDW, the National Data Warehouse for Traffic Information.[30]
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This information can be used by the road authorities to redirect traffic with route information
panels and other traffic management instruments. The historical record of real-time traffic
data can be used to generate traffic analysis. Based on this historic models combined with for
example the energy consumption of electric vehicles a model can be developed in order to
determine the expected energy consumption. This data sources can be very useful for predic-
tive analysis. The NDW database contains the following data: traffic flow, realized travel time,
estimated travel time, traffic speed and vehicle classes.

2.6. Scenarios
This section describes different scenarios for vehicle data. The aim is to provide support for this
type of scenario within the final platform. These scenarios were created by analyzing the different
data sources and services.

2.6.1. Combination of data
A typical scenario for the integration of vehicle data is combining different datasources which are
delivering the same data. A example of a use case for this scenario is the determination of the vehi-
cle location in a depot. Based the GPS location from a tracking device it is not possible to determine
the exact location.
However, when a vehicle is loading, the exact location of the vehicle is known. This makes it possible
to determine the location more accurately than using the GPS position.

In the future, sensors could be added to the depots in order to accurately measure where vehicles
are located. This would form a new data source that is more accurate than the data from both the
charging station and a GPS tracking device.

2.6.2. Data delivery
Not all datasources are delivering information continuously. For example the NDOV-loket only gives
data about a vehicle if the vehicle is in operation. In this case ’in operation’ means that it is con-
nected to a line. The chargers only deliver information about vehicles if they are connected to a
charger. Many of the data sources used are therefore not capable of constantly providing informa-
tion. Within the platform it must be possible to process these data sources anyway.

2.6.3. Fetch other data
Based on incoming data, other data can be fetched from other data sources. This mainly ensures
that relevant extra measurements can be retrieved. Based on the current position, additional data
can be retrieved. A number of examples of concrete applications are given below:

• Weather data
Based on a location update of a vehicle, weather information can be retrieved. This weather
information can be used to predict, for example, the battery capacity of a vehicle. After all, its
performance depends on temperature [31].

• Traffic
Road conditions make it possible to make more accurate predictions about the expected delay
and thus the estimated time of arrival at a loader.

• Geocode
Based on a position, additional information about the location can be retrieved. With the aid
of geocoding it is possible to obtain a textual representation of the location.
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The retrieval of additional data from other sources can help to achieve a more complete vehicle
status that allows various services in the Allego platform to respond.

2.7. Requirements
In order to give a clear overview of the expectation to the software architecture that is developed
in this thesis, requirements have been defined. The requirements cover both functional and non-
functional aspects of the software product that is to be the result of the design and implementation
phases in this research.
The requirements here are developed based on the current scope of the services and datasources
which are supported by the platform. Based on discussions with customers, partners and internal
guidelines for new developments within Allego these requirements are drawn up.

2.7.1. Functional Requirements

1. The system should provide a mechanism to install a new data source.

2. The system should provide a mechanism to combine data from different data sources related
to one vehicle.

3. The system should provide a mechanism to deal with conflicting data from different data
sources.

4. The system should provide a mechanism to dynamically respond on incoming data depend-
ing on the vehicle.

5. The system should provide a mechanism to keep track of historic vehicle data.

6. The system should provide a mechanism for other services to retrieve vehicle updates.

2.7.2. Non Functional Requirements

1. The system should be scalable, to support thousands of vehicles at the same time.

2. The system must make use of the Microsoft Azure Platform.

3. The system should be designed in such a way that it is high-available. Downtime seriously
effects business.

The requirements are verified in the Validation Phase of this research on page 47.

2.8. Related Work
2.8.1. Architectural Patterns
Middleware
For the integration of different in/output streams a middleware architecture can be used. Middle-
ware is applied as an abstract layer between, for example, an operating system and various software
applications. [32].
One application that has common ground is the use of middleware in sensor networks where differ-
ent types of hardware are linked and integrated. [33] Usually middleware focuses on the integration
of several different systems into a single system. In the case of vehicle data for Allego, it is not nec-
essary to connect to a single system, but multiple data sources must be connected to multiple ser-
vices. Within the platform to be developed, certain principles of middleware will come back. One
can think, for example, of the way in which abstraction takes place within a middleware solution.
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Rule Engine
In recent years, software solutions have been made possible by means of Model-Driven Engineer-
ing (MDE) [34]. By means of a graphical interface it is possible to build applications in this way. An
example of a software system that makes this possible is Mendix, where users can build their appli-
cation visually. [35]
Following on from this, there are several standards that make it possible to define rules when inter-
acting between different software systems. Think of BPEL and biztalk, for example. BPEL is focussed
on Web Services and is designed to orchestrate the flow of a business process. [36]
With BPEL it is possible for business analists to define processes in BPMN which can be converted
to executable BPEL. Both Mendix and BPEL ensure that business users can be more involved in the
development process. However, they do not facilitate the actual integration of different data sources
and services. . These standards are very powerful and comprehensive, but are mainly intended to
allow well-defined applications to talk to each other. A business-user needs to be trained in order to
be able to create new rules.

Binding Pattern
A binding pattern is used in recent developments. Different services are linked together so that new
resources can be added during runtime. In practice, this pattern is applied within home automation
(see section 2.8.4) but also within the Azure Cloud platform for calling up/triggering serverless code.
In addition, there are platform specific solutions such as OSGi [37] which, based on the dynamic
component model, allow components to be added and bind to the platform during runtime.

2.8.2. Smart Connected Product
The integration of external data into a CPO platform can be seen as the development of a smart
connected products. For the development Porter and Heppelmann describe “The new technology
stack”[38].
When adding vehicle data to the existing backend, there are multiple datasources. This deviates
slightly from the scenario described by Heppelman et All. However, many principles are still easy to
apply. For example the capabilities for smart connected products match the Goals (Insight, Adapt,
Efficiency) of Allego:

• Monitoring: with sensors it is possible to monitor the condition of the product, it’s environ-
ment and it’s operation and usage.

• Control: software in the product cloud enables the control of product functions and the pe-
nalization of the user experience.

• Optimization: based on the monitoring and control capabilities the product performance
can be enhanced and predictive diagnostics for service and repair becomes possible.

• Autonomy: with the combination of monitoring, control and optimization it become possible
to create a full autonomous product.

In the existing backend a product (the charging pole) is made smarter by adding connectivity to it.
When vehicle data is added, a new smart connected product is created. However, information can
also be transferred here, the charging point functions as a source of information for the vehicle and
vice versa.

2.8.3. Allego
Within the existing infrastructure within Allego, a number of applications can be found that perform
tasks for chargepoints that can also be found within the vehicle integration platform.
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• Active Monitoring
In the implementation of active monitoring for Allego the platform monitors incoming mes-
sages and checks if the message flow is as expected. Responding to data within vehicle data
shows similarities with the monitoring of charging points within the current infrastructure.
In addition, Active Monitoring is a relatively new service for Allego, partly because of which
a lot of serverless components have been used to guarantee scalability. For this project, we
therefore looked at the structure of Active Monitoring.

• Communicator
The communicator takes care of all the communication with charge points. The communi-
cator is the entry point for charge points in the IT landscape. When a service in the platform
needs to send data to a charge point this data is sent via the communicator. With the vehicle
data multiple new communicators for the different protocols are designed.

2.8.4. Home Automation
Within the home automation market, there are a number of solutions that make it possible to com-
bine different systems. These principles can also be applied to vehicle data. Status updates from
a vehicle are comparable to status updates from home automation devices. This is the reason that
it is interesting to see the solutions in the home automation market. A number of the solutions for
home automation will be discussed in this section.

OpenHab is a platform which helps to connect different protocols for home automation in order
to be able to control a smart home from one central point. It ensures that the different stand-alone
systems can communicate with each other [39]. For this purpose, an abstraction layer is used that
ensures that a light with protocol x can be controlled through protocol y. With this platform it is also
possible to have certain actions take place when arriving at a certain location.
Although the domain of vehicle data is very different from that of home automation, there are also
similarities. Within the new platform to be developed, we want to be able to respond to events from
different data sources. In addition, the type of data being treated is very similar; the battery status of
a vehicle is not much different than a temperature status in a smart home. OpenHab can be used for
home automation, but also for security networks. For example, OpenHab is used to read out smart
meters. [40].

In general, OpenHab’s architecture (see figure 2.7) is built around a service bus. Each specific com-
munication protocol has its own binding that ensures the translation between protocol and plat-
form. Each binding can send a status update to the event bus from which the OpenHab repository
then responds. When a light needs to be switched on, a command is placed on the event bus. The
binding can control the lamp in question and takes this command and ensures that the correct sig-
nal is sent to the light bulb.
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Figure 2.7: Overview of the OpenHab architecture [41]

Another service that is often used for automating tasks is IFTTT. IFTTT is a web-based service which
let users create, customize and enable chains of conditional statements, which are triggered by ex-
isting webservices.[42]
This service shows similarities with the objectives around the integration of vehicle data. After all,
we want to respond to incoming events.
The IFTTT model has already been applied to the integration of various home automation applica-
tions by Vorapojpisut [43]. This same principle can be used to integrate different sources of vehicle
data. The basic principle behind IFTTT is simple, but it will not always be enough. This is because it
is not possible to combine the input from multiple data sources [44]. With Zappier as a alternative
for IFTTT it becomes possible to create a chain of actions performed on a data update. This allows
to handle more complex situations.
Another example of the combination of different sources in a single platform is Homey, a devel-

opment by the Dutch start-up Athom. This device makes it possible to connect to different home
automation sources. With a simple flow editor end-users are able to define flows which are per-
formed when a certain action occurs. For example put the lights on when someone comes home.
Figure 2.8 gives a example of the floweditor.
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Figure 2.8: Homey flow editor

Apple, Google and Amazon are also entering this market, each with their own product making it
possible to combine different smart applications. A voice assistant is used to assist the user in oper-
ating his/her devices [45].

2.8.5. Microservice Architecture
Krylovskiy made a design for a Smart City Internet of Things Platform with a microservice architec-
ture [46]. There are similarities between such an application and that of vehicle data integration. In
both cases, data of different kinds is combined in one platform. In the case of test data, this con-
cerns different types of vehicles, but also different organizations that provide the vehicle data. As
a result, a multitude of different protocols are used. A wide range of sensors must be connected
within the application of a smart city. The platform developed by Krylovskiy deals with a changing
IoT environment which is able to adopt new technologies an requirements over time. In order to
adapt to a microservice architecture new technologies are used. In order to create a scalable solu-
tion serverless components are used. [47]
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The Design Phase

In this phase the proposed solution for a model to integrate vehicle data into an existing backend is
described and modeled. Based on the different data sources and services from the analysis phase a
design is made. The different elements of this design are discussed in this phase.

27
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3.1. Architecture
As the analysis phase has shown, there are many different extraction methods to obtain vehicle data.
Unfortunately, it is currently not yet possible to enforce a single standard within the market. In the
future, there will always be a mix of different standards and protocols. . In order to deal with this, an
architecture has been developed that makes it possible to integrate different data sources into one
backend system. This abstraction layer makes it easier to replace or add a data source.
Within this section the architecture will be discussed. This architecture is the result of a combina-
tion of multiple real-life applications in other application areas (Homey, IFTTT, Sensor networks)
and the application of existing patterns such as microservices and middleware solutions. None of
the existing solutions can be directly applied to the integration of vehicle data, but their principles
can be used.
The Allego backend is developed based on a microservice architecture. An overview of this architec-
ture is given in Appendix ??. This principle is used by designing the architecture for the integration
of vehicle data. Several (micro)services in the architecture need vehicle data which is provided by
other microservices. Each data source has its own microservice connector and each service in the
platform has its own connection to the vehicle data service.

Figure 3.1 gives an overview of the integration of various internal and external services. Based on
the platform it is possible to combine a variety of data sources. For this, we introduce the concept
of a Binding. This is the same concept as already used by Azure Functions [48] and OpenHab [39].
Each data source has its own Binding. By means of the PathEngine it is possible to process the data
dynamically. Dynamic means that the data can be treated differently for different vehicles. It is pos-
sible for users to configure the steps to be taken. As a result, business rules can be added by business
users. More about the structure and responsibilities of a binding and the PathEngine are discussed
in the next sections.

Figure 3.1: Overview of the system architecture

3.1.1. Binding
A binding is an independent software service that can communicate with third parties, devices and
other services (for instance in the Allego-backend). Examples of these third parties and devices are
NDOV-loket, the vehicle OEM or a tracking device. The concept of bindings will also be applied
to other data sources in the implementation phase. A binding always contains four types of parts:
the communicator, trigger, action and registration. These parts are explained in the following para-
graphs.
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Connector
The connector module takes care of all the communication from and to the data source. The con-
nector module has been developed specifically for each protocol. Based on the protocols investi-
gated a number of generic principles can be distinguished.
For the communication use can be made of push and pull based models:

• Push In a push-based protocol, the external party will notify its update when it is
available. Based on this, the message will be further processed. The vehicle
data from the NDOV-loket is a example of a push based protocol.

• Pull In a pull-based protocol, the connector checks the availability of new data at
fixed intervals and retrieves it when available. An example of a pull-based
protocol is the GTFS-standard. Files are updated on a server, they can period-
ically be pulled from this server.

A push-based protocol has an advantage over pull-based protocols. With a pull-based protocol a
binding uses resources to periodically check for new updates from the data source. This means
the system will also check (and use resources) when no new data is available and thus consume
resources unnecessarily. However, the Allego platform is often only a consumer of data and can
therefore exert relatively little influence on the way data is sent by data providers.

The communication of a connector can take place according to the following principles:

• One way Data updates only take place from the external party towards the backend
platform.

• Bi-directional With bi-directional communication it is possible to send data back to the
sending party. This can include acknowledgments as well as commands that
need to be executed. This could involve feedback to the driver or even inter-
vention in the operation.

It depends on the goal of a binding if a bi-directional data connection is necessary. When we want
to influence behavior in the vehicle, a bi-directional connection is necessary.

Within the current set of different connectors, a number of different communication protocols can
be distinguished.

• Socket When using a socket, a direct connection is established with the external
party. This method is often used in tracking devices. When configuring such
a device, it is possible to specify a server address to which the connection will
be made. There is thus a direct connection which can be communicated in
two directions.

• HTTP There are several protocols based on HTTP. Examples of this are implementa-
tions in which use is made of a SOAP. For vehicle data, this applies, for exam-
ple, to the rFMS protocol in which an API is available on the basis of HTTP for
exchanging data.

• PubSub The publisher/subscriber model allows an end user to subscribe to new data
updates. When an update is available it will be pushed to the subscriber.

Most of the time a binding is dependent of the protocol specification for a certain communication
protocol. However a socket or pubsub connection are statefull. There are more challenges to make
this kind of connections scalable.

For every new binding it depends on the protocol specification how the communication is handled.
Therefore new bindings will have their own connector with the datasource.
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Trigger
A trigger is a part of the binding which gives a vehicle/data update to the path engine from where
it can be sent to the rest of the platform. When a data update is received, it is transformed into the
right format and then sent as an event on basis of which the platform is able to react.

A trigger works according to the principle of Fire-and-Forgot, which means that a trigger sends an
update to the rest of the platform and does not check if and how the message is handled. In the de-
veloped design it is possible that no reaction on a trigger is necessary. With the triggers a universal
EventStream is created which is handled by the core application.

The trigger types have been defined during the development of a new binding. A type defines which
data elements are available. In addition, in this configuration it is indicated what the object type
is that this trigger is about. A trigger can, for example, relate directly to the vehicle but also to, for
example, a certain bus line.

Action
An action can be used in a path (described later) to convert or respond to data based on a certain
trigger. Two different types of actions can be distinguished: the commands and functions:

• Command A command is a one-way process. The action accepts input but does not pro-
vide any feedback. Examples of commands: sending an email, sending a text
message or updating a vehicle characteristic (e.g. low battery = true).

• Function In addition to input, a function also has output values. An example of a func-
tion is checking the current weather on the basis of vehicle position. The cur-
rent weather can be retrieved from the weather-binding. The weather-binding
is responsible for whether or not to cache weather data.

Registration
A binding itself has the responsibility to register with the core application. The purpose of this is
that the core application knows which bindings (and thus which triggers and actions) are available.
The following characteristics are included in the registration of a binding:

• Dependencies Defines the other bindings on which this binding depends. For example, if the
binding defines a standard path that performs actions in other bindings.

• Triggers Defines the triggers generated by this application. The expected outputs are
defined for each trigger.

• Actions Indicates the actions that can be performed by the binding. An action can
have inputs and/or outputs that are defined in this configuration.

• Paths The paths are installed during registration of the binding defining the stan-
dard flows. A binding for a datasource will provide a path to define a standard
flow for data updates. While a service subscribes with a flow on updates in
vehicle state.

In order to keep registered in the core system a binding needs to re-register itself. The timeout for
the registration can be defined on initial registration. A critical binding must re-register itself for
example every minute.
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3.1.2. Core
Paths
In order to be able to process and respond to vehicle data, a path can be defined. A path is a chain
of actions that follows a trigger. These actions can lead to subsequent actions being influenced or
even no longer being carried out. In figure 3.2 a simple example of a Path is given.

Figure 3.2: Example of a trigger flow

• When (Trigger) A path is activated when a binding update causes a trigger to be sent
to the system. Each path starts with a certain trigger on basis of
which the next steps are executed. The example path in the figure
below reacts to an update of the State of Charge of the vehicle.

• Do (Action) An action that retrieves the current SoC norm from the vehicle ser-
vice. This makes it possible to have a dynamic standard that differs
per vehicle and even changes during the day.

• If (Action) An action that returns a single Boolean value can be used as an if
statement. The rest of the Path will only be continued if the con-
dition is met. In the example below, the State of Charge must be
smaller than the norm. This standard has been dynamically raised
in the previous action.

• Do (Action) A follow-up action can be informing the end user via email. In addi-
tion, the vehicle’s battery status can be adjusted to ’Critical’. Based
on this last change it is possible that another Path is triggered.

As the example described demonstrated, it is possible to carry out several actions in a row and use
them to create a chain (path).
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3.1.3. Contracts
The communication between a binding and the core platform is defined in a contract. This contract
specifies the format for the messages exchanged. This contract can be seen as a internal protocol.
This protocol defines also the available types of measurements. Comparable to the primitive types
in a programming language.

3.1.4. Repository
The repository keeps track of all triggers, actions and paths available in the platform. Based on this
the available triggers and actions new paths can be added to the system.

• Paths
• Triggers
• Actions

The basis for this repository is a DocumentDatabase in which the registered bindings are registered.
A binding has the responsibility to register itself in the core repository. The uninstallation of bind-
ings is handled by the repository to disable the binding when the binding has stopped sending a
registration request.

3.1.5. PathEngine
The PathEngine ensures that the correct Paths are executed on the basis of an incoming Trigger.
When a Trigger arrives from the Repository, the correct paths are requested, which are then executed
(independently of each other). The PathEngine ensures that incoming messages are processed cor-
rectly. This is done in the order defined in a Path. This ensures that processes are carried out in
the correct order. An action gives feedback to the PathEngine after which follow-up actions can be
carried out. Figure 3.3 gives a schematic overview of the PathEngine.

Figure 3.3: Overview of path engine

3.2. Receive data from datasource
Figure 3.4 gives the standard dataflow for incoming data. The process starts when a binding receives
or fetches a data update from the data source. This data update is formatted according to the pro-
tocol from the data source. It is converted within the binding so that the core platform can process
it correctly. Within the core platform, the repository retrieves which actions must be carried out
to correctly process the incoming message. These messages are then outputted. An action always
gives a response back to the core platform. However, it is also possible that an action may change
the status. This ensures that a new data update takes place, which is processed independently by
the platform.
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Figure 3.4: Process incoming data

In figure 3.4 a binding is splitted into a consumer section and a provider section. The provider
connects to the datasource to receive data updates. These updates are send to the core platform as
a Trigger. The consumer section receives a request from the core platform and handles that request.
In the consumer section actions registered in the platform are handled.

3.3. Approaches to vehicle data integration
For the integration of vehicle data different approaches are considered in order to force actions are
performed in a certain sequence. These different approaches are visualized in figure 3.5.

• Messageflow
Messages are sent directly from the trigger event to the appropriate action. From there the
message is sent directly to the next action. The advantage of this approach is that there is di-
rect communication between the different actors in the system. However, all the actors in the
platform must be aware of the other actors and their location. Furthermore every trigger must
know the which actions are performed. This introduces new synchronization challenges.

• Orchestration
With a orchestration component all the messages are send to one or (when scaled up) multiple
instances which are handling the incoming messages.
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• PathEngine With the PathEngine approach for every message (trigger) a new instance is started.
This instance is responsible to process that message (trigger). By making use of serverless
components it is possible to develop a scalable solution. The result of a action can be routed
back to the appropriate PathEngine. When there are multiple Paths based on one trigger dif-
ferent instances of the PathEngine are started up in order to process the Path in parallel.

Figure 3.5: Approaches for message routing

In this thesis we have chosen the PathEngine approach as the most appropriate approach in order to
create a scalable system. Because multiple instances of the PathEngine are initialized in a dynamic
way, the entire platform is not dependent on one single orchestration instance. This would create
an undesirable dependency. In addition, not all of the different services that need to communicate
with each other need to know the exact location and sequence or the actions to be followed. This
makes it possible to manage the order in which certain actions based on new data are carried out.
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The Implementation Phase

The developed and described solution from the design phase is developed as a proof of concept. In
this phase specific implementation choices are discussed. This leads to a prototype which can run
in a scalable Microsoft Azure cloud-environment.

35
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4.1. Platform & Techniques
4.1.1. Place in existing architecture
The platform is divided into two parts. The bindings that communicate with (external) services and
the core platform which is able to respond on messages from different bindings.

Bindings that are coupled to existing or new services in the backend platform should be placed in
line with these new services. This means that a binding for SmartCharging should be placed inside
the SmartCharging project. Bindings which communicate with external parties should be placed in
the communication module. The communication with external parties takes place there.

4.1.2. Platform
The prototype is developed in C#/.NET and runs on the Azure Cloud platform. We have not specifi-
cally chosen for Azure; Amazon’s and Google’s cloud would have provided the same benefits. Azure
was selected because Allego has chosen it as the main platform for future developments.
Microsoft employees give support to Allego’s IT-developers to develop new solutions in Azure.
Using a cloud solution a scalable solution can be created. The Azure cloud platform provides many
services as PaaS (Platform as a Service). Within PaaS the infrastructure is managed by the system’s
provider. They determine how the application infrastructure works. [49]

4.1.3. Serverless
In the implementation phase when available for the purpose serverless components are used. By
using serverless components, it is possible to create a scalable architecture.
The Azure platform ensures that the various applications scale well. This section explains a number
of components used in the implementation.

Function as a Service
Azure Functions is a technology that makes it possible to execute code in a serverless architecture.
Azure Functions is not entirely unique here; Google and Amazon also have techniques to run code
without having to take a server into account. [48] Since the Azure Platform is used within Allego,
Azure Functions is a logical choice.
An Azure Function can listen to events on a eventbus and then execute code. Since the Azure Plat-
form ensures that the right computing power and memory is made available, a scalable system is
created.
An Azure Function is invoiced on the basis of actual consumption. Most of the architecture de-
scribed can be developed using Azure Functions. An exception to this are the bindings that use a
statefull connection method. This may include client/server sockets and pubsub based communi-
cation.

In order to make such connections as scalable as possible, the communication module is kept as
small as possible in these cases. In these cases, the communication module places messages on an
internal service bus, where they can then be processed by a separate function. This ensures that a
single communication module is able to handle more traffic. After all, a message only needs to be
forwarded. If this is insufficient to be able to process the data, a load balancer can be used to route
traffic to various instances of the communication module, after which the data will come together
again in the rest of the platform.
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Messaging
For the messaging between different components in the architecture EventHubs and ServicesBusses
are used. This PaaS components help to set up a scalable architecture.
An EventHub helps to handle event based messages on a huge scale. Multiple apps or devices are
sending event to an Event Hub. Different consumers can read from the EventHub concurrently at
their own rate. Figure 4.1 gives overview of multiple senders and consumers on one EventHub.

Figure 4.1: EventHub [50]

A ServiceBus is a message queue on which the sender places a message which the receiver can con-
sume at its own pace. A service bus is a choice when Request/Reply Messages or Command Mes-
sages are implemented. In figure 4.2 a simple service bus queue visualized.

Figure 4.2: ServiceBus [50]

When a message is sent to another service, the expected response address can be defined in the
request message. This mechanism helps to create a scalable platform where at run time the desti-
nation of a message is determined.
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4.2. Core Functionality
The core functionality is implemented with several independent components that are connected to
each other in order to be able to process incoming data. For every incoming message a new instance
of the PathEngine is initiated.

Figure 4.3: Components for the core functionality

4.2.1. TriggerQueue
For the input of Trigger events to the core platform a EventHub is used. From here several Function
Apps are handling the incoming data and process them.

4.2.2. TriggerDispatcher
The TriggerDispatcher captures incoming events. The dispatcher then checks in the repository
whether and which actions should be taken on this incoming message. If several separate Paths
have been defined, they will be performed in parallel with each other, each with its own instance of
the PathEngine.

4.2.3. PathEngine
The PathEngine is the central component in the system. When the PathEngine is activated by the
TriggerDispatcher, all actions within the path are performed in sequential order.

Normally, an Azure Function is stateless. In order to ensure that the actions be carried out in the
correct order, the principle of Function Chaining is applied.
This is an extension to the standard implementation that makes it possible to put together long-
term functions.
This principle has been applied for the PathEngine. For each incoming message, the follow-up ac-
tions are checked. Next, these actions are carried out by means of Durable Functions.
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4.2.4. Repository
A repository keeps track of all the applicable paths and actions. When the core platform receives a
Trigger from a binding based on this repository it is determined what would happen.
There could be a Path that responds on a update in the State of Charge to check if it is below a certain
threshold. This Path is saved to the repository and on a update of the State of Charge it is executed
by the path Engine.

4.2.5. ServiceBus
A servicebus is used for the direct communication between a binding and the core platform. This
servicebus has two topics which are used for different purposes:

• Registration
The registration of a new binding into the platform. A binding needs to register itself to core
platform. This registration should be done with some regularity. The expiration time must be
specified for the initial registration. If a binding does not register again, it will be deactivated.

• ActionResponse
An action gives a response on this topic. Together with this response the instanceid of the
PathEngine is given. With this instance id the PathEngine can ensure that it continues with
the subsequent actions.

4.2.6. Interface
End-users want to have control over what will happen after an update (Trigger). In this phase a
simple interface is developed which helps end-users to define Paths themselves. They can react on
a data update perform certain actions. With this interface it is possible to apply an action only to
certain vehicles (filtered with a condition). A screenshot of this mockup interface is shown in figure
4.4.

Figure 4.4: PathEditor Interface

In order to connect vehicles to datasources this interface is not necessary since all the default paths
are configured during installation of a new binding.
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With this interface it is possible to work out new scenarios in which the same technology can be
used. For example, where a path can be defined that sends an email to the operator at a critical
State or Charge.

4.3. Contracts
Contracts are used for the exchange of data between a binding and the core platform.
In this way, a universal way of data exchange is created. A contract is modelled by means of a C#
class that is used by the software to transform the data into json.
The process of serializing and deserializing within C# is easy to perform, allowing messages to be
sent in a universal format. By using separate contracts, both the core engine and a binding can
communicate with each other in an unequivocal manner.

During the implementation phase, various contracts were developed that simplify communication.

4.3.1. Types
In order to exchange measurements between bindings standard measurement types are defined.

Simple Types
Simple Types are the classes for measurements which are comparable to the primitive types in pro-
gramming languages. However in order to be able to exchange the information and serialize and
de-serialize the measurements to json the simple types are explicitly defined.

• String A textual representation of a measurement. A example is the driver name.

• Number A number which can be used for calculations. A number is comparable to a
double in programming languages.

• Switch A switch represents a true/false value. It can be used for the representation of
a state of a physical switch.

Complex Types
Complex Types are a combination of multiple simple types. Multiple measurements that are logi-
cally grouped together.

• Position A position is a type which contains a latitude and a longitude. Both of these
subtypes are numbers.

• Group A group is a type which contains a list of other types. With this type it is possi-
ble to create a tree of measurements which are kept together.

In the future more ComplexTypes can be added to the system to make abstractions of real-world
objects. For example a battery can be combined in a ComplexType in such a way that a battery
always contains information about its capacity, health, degree of charge, etc.

4.3.2. Distribution
The contracts are shared between the core application and the bindings. Therefore the communi-
cation protocol is defined in a separate package. This package can be used as a dependency in the
implementation of a binding.

For the distribution of this package NuGet is used. By using NuGet it is possible to easily update
the protocol in all components that need to communicate with the platform. Figure 4.5 gives a
overview of the NuGet principle where the project is packaged as assembly-files which are uploaded
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to a NuGet host. Allego has it’s own nuGet-private host which is used for this package. Then the
NuGet package is used in the implementations.

Figure 4.5: NuGet flow from project to dependency

4.4. Defined Bindings
In the implementation phase, a number of different applications were worked out. The following
bindings have been designed for this purpose. The purpose of these bindings is to show how differ-
ent data sources are combined in order to obtain a good representation of the vehicle.

The following bindings were formulated during the implementation phase:
• NDOV
• GTFS-RT
• Teltonika
• VehicleState
• BingMaps

In the following sections a short explanation will be given for each binding.

4.4.1. NDOV
A binding for the communication with the dutch NDOV-loket. This binding receives updates from
a central server which are send to the platform as trigger events. This data source delivers data from
the dutch buses. The data is available through a ZeroMQ interface. This allows to subsribe to data
updates that are pushed by the NDOV-server when available. To subscribe to a ZeroMQ queue a
small application is developed which receives the data updates and sends them to a EventBus for
further processing. Figure 4.6 gives a overview of the components in the implementation of the
NDOV binding.
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Figure 4.6: Azure Components in NDOV-binding

The Allego backend receives the data from the NDOV-server. The information on the NDOV server
comes from the PTO (Public Transport Organizer) which receives the data from the vehicle or uses
a third party solution for the data extraction. The binding is responsible to subscribe to a topic on
the NDOV server to retrieve data updates. When a data update is received this update is placed on
an EventBus. The data is then converted into a Trigger that can be collected by the Core platform.
In order to be able to provide the platform-wide vehicle number for Triggers, the NDOV connection
builds up an internal mapping table itself. This does, however, require that changes in vehicle num-
bers and carrier are passed on to the binding. For this purpose, a Path is defined during installation
which ensures that changes in carrier and vehicle number are passed on.

During the installation of this binding several default paths are configured. It is possible to sub-
sequently define separate paths for specific groups of vehicles in order to determine the behaviour
of the vehicle.

The NDOV-binding has the following characteristics:
package Allego.Avi.Binding.NDOV
depends on Allego.Avi.Binding.VehicleState
actions Carrier update, VehicleNumber update
triggers Arrival, Departure, On-Route, Off-route,
paths Listen to data update (evco) from VehicleState

Listen to data update (carrier) from VehicleState
Arrival-trigger to VehicleState
Departure-trigger to VehicleState
On-Route-trigger to VehicleState
Off-route-trigger to VehicleState

4.4.2. GTFS-RT
A binding to retrieve realtime positions of vehicles. The GTFS standard is an international standard.
In the developed binding the data is fetched from a third party server. The protocol is pull-based
which means that the binding has the initiative to request data at specified services.
The binding is developed in such a way that multiple different GTFS-feeds can exist next to each
other. In a local configuration the different sources are defined.
The GTFSRT binding is developed in such a way that no Virtual Machine is necessary for the op-
eration. With the usage of different Azure Functions that are linked together with a service bus, a
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scalable binding is created. This is in line with the requirement drawn up for the scalability of the
entire platform.

The GTFSRT-binding has the following characteristic:
package Allego.Avi.Binding.GTFSRT
depends on Allego.Avi.Binding.VehicleState
actions -
triggers PositionUpdate
paths listen to data update (evco) from VehicleState

listen to data update (cpo) from VehicleState
send dataupdate to VehicleState

4.4.3. Teltonika
A binding which is used for the connection of Teltonika tracking devices to the platform. These
tracking devices are built into the vehicle and connected to the CAN bus in order to send up-to-date
vehicle information. This information can then be processed in the core platform. Figure 4.7 shows
the components of this binding.

Figure 4.7: Azure Components in Teltonika-binding

The Teltonika-trackingdevice is built into the vehicle. The device establishes a connection with the
platform using a server socket in order to send data updates. A TeltonikaServer has been created
for this purpose, which the devices can connect to. This server has been deliberately kept as small
as possible. This is done to ensure that the binding is as scalable as possible. One or more virtual
machines are required to communicate with devices. The final processing of incoming messages is
scalable by using Azure Functions.

It is also possible to send commands to the tracking device. On the basis of these commands, a
relay can be sent to the bus. For example, when working with the bus OEM, it is possible to restart
a charging session. In the current setup, only a reset command is included. This is because this
tracking device is currently not built into a moving vehicle. However, this binding does show the
possibilities of two-way communication.

The Teltonika-binding has the following characteristics:
package Allego.Avi.Binding.Teltonika
depends on Allego.Avi.Binding.VehicleState
actions Reboot
triggers PositionUpdate
paths Listen to data update (mac-adress) from VehicleState
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Position-trigger to VehicleState
Soc-trigger to VehicleState

4.4.4. VehicleState
The VehicleState binding is an important binding for the operation of the system as intended. This
binding gets input from other bindings which are processed and saved as an internal vehicle state.
Since this binding gives the internal representation of a vehicle, a DataUpdate-Trigger from this
binding means the state of the vehicle is changed. For example a DataUpdate from measurement
‘position’ is independent from the datasource used to retrieve the position from the vehicle.

The VehicleState-binding has the following characteristics:
package Allego.Avi.Binding.VehicleState

depends on -
actions DataUpdate
triggers DataUpdate
paths -

In order to manage priorities of different data sources a priority is given to a certain data update.
This meets the requirement to offer a solution for conflicting data (Functional Requirement 3). The
VehicleState binding will determine based on the priority which input from the different sources is
the current value for a vehicle.
For example the position update from the NDOV-loket has a higher priority than the GTFS-datasource.
This can be configured vehicle/group based by configuring a new Path.

4.4.5. Bing Maps
A simple binding that connects with the Bing Maps api. This binding is an example of a binding
that does not have triggers. This binding can be invoked when a path is triggered from another
binding. In the example of Bing Maps an address can be found by coordinates. In this way, data can
be retrieved in a universal way. Figure 4.8 gives a overview of the components in this binding.

Figure 4.8: Azure Components in NDOV binding

This binding listens to requests from the core platform. A call is then made to the Bing Maps API.
The advantage of this setup is that when the Bing API changes only the binding needs to be adjusted.
The different services that depend on this will then operate as usual.

The BingMaps-binding has the following characteristics:
package Allego.Avi.Binding.BingMaps
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depends on -
actions Geocode, Distance
triggers -
paths -

4.5. Overview
In this implementation phase, the various defined concepts have been worked out. The appropriate
techniques of the Azure Platform have been applied in this respect. This has resulted in a complete
design.
Figure 4.9 shows the packages from this implementation phase. Looking back at figure 1.1, we see a
number of parallels here. Both the Allego Services and sources of third parties have been integrated
with each other with a binding. The core platform (green) provides integration between vehicle data
extraction (orange) and services (blue).

Figure 4.9: Overview of packages in the prototype





5
The Validation Phase

In the validation phase the developed architecture is validated. This validation was carried out by
means of an expert validation. In addition, the feasibility of adding new services and data resources
in the future was tested.

47
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5.1. Requirements
In this phase the validation of the framework is performed based on the requirements defined in
the analysis phase. An explanation for every requirement is given.

5.1.1. Functional Requirements

1. The system should provide a mechanism to install a new data source.
The system provides a way to install new datasources without having to reboot/restart other
components. A new datasource can be added to the core platform to register itself and tell
which data it provides and which action it has.

2. The system should provide a mechanism to combine data from different data sources re-
lated to one vehicle. The developed VehicleState binding provides a mechanism to save the
vehicle state based on priorities. By defining default or customized paths for a certain binding
it is possible to set the priority of new data.

3. The system should provide a mechanism to deal with conflicting data from different data
sources.
Based on the priorities it is possible to determine which data should be used from the different
datasources. Currently a basic priority system is defined however when this needs improve-
ment than a new version of the VehicleState binding could be developed. For example a TTL
can be added to improve the mechanism which deals with conflicting data.

4. The system should provide a mechanism to dynamically respond on incoming data de-
pending on the vehicle.
The system is designed in such a way that all vehicles can have different behavior based on
incoming data. This is implemented by the definition of a Path. With the installation of a new
binding a default Path is defined, for specific vehicles an other path can be added. Further-
more the system is able to respond on a certain state and perform actions based on this.

5. The system should provide a mechanism to keep track of historic vehicle data.
In the current platform all the historical data related to the vehicles is saved in a database.
theoretically this data is available for other services, but at this moment there is no interface /
mechanism to provide this data to other services.

6. The system should provide a mechanism for other services to retrieve vehicle updates.
Services which want to retrieve vehicle data from the system must create a binding to the
system. This binding acts as a consumer and will receive dataupdates when the VehicleState
is changed. When a third party service wants to listen to the raw data from other bindings it
can subscribe to this data as well.

5.1.2. Non Functional Requirements

1. The system should be scalable, to support thousands of vehicles at the same time.
The architecture of the system is designed in such a way that all the individual components
are scalable. In the current setup there are some limitations in number of messages that can
be processed by the servicebus [50]. The current setup is able to process all data available
through the NDOV loket.

2. The system must make use of the Microsoft Azure Platform.
During the design of the architecture and the implementation of this architecture the func-
tionalities of the Microsoft Azure Platform are used. By using serverless technologies from
this platform it is possible to create a scalable solution.
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3. The system should be designed in such a way that it is high-available. Downtime seriously
effects business.
The architecture is designed in such a way that all the components are loosly coupled. This
means that the malfunction of a component does not influence the whole system. However
when a individual component does not work as expected endusers can notice this because
they do not receive data updates. By making use of a existing platform with standard compo-
nents it is possible to detect failures in a early state and automatically apply a failback mech-
anism. In the Azure Stack it is possible to monitor services and processing times to guarantee
and monitor uptime.

5.2. Expert Validation
During the final project several meetings were held with experts to validate the design. This is an
iterative process in which in the beginning the focus was primarily on various workshops with the
business team. Then, at an early stage, there was consultation with architects to discuss various
ideas and alternatives. In the end, an expert meeting took place on 21 June at which the developed
architecture and principles were discussed in detail.

During the final project, the following experts were involved for the validation of the developed
architecture:

• Jeroen Quakernaat Architect at Allego
• Michiel van Schaik Architect at Microsoft
• Maarten van Sambeek Prinicipal Consultant at NAVARA
• Remco Tjeerdsma Product Owner / Software Engineer at Allego
• Tim Smal Scrummaster at Allego
• Mattheo van der Molen Project Manager Public Transport at Allego
• Frank Verhulst Team Lead - Transport as a Business at Allego

During the expert meetings several topics are discussed. Each topic is elaborated below in the fol-
lowing steps:

• What The subject of this topic/what is being discussed?
• Why Why is this topic interesting in the context of vehicle data integration?
• How How was this topic taken into account during the final project?
• Experts What is the outcome of the expert meetings?
• Conclusion How does this affect the model?

5.2.1. Scalability
What Check that the platform is designed to be scalable.

Why From the start, it was important to develop a scalable platform. At the moment, the
e-mobility market is still relatively small. However, once strong growth is expected, it is
necessary for the developed platforms to be able to grow along with it.

How A traditional platform uses software that runs on certain assigned hardware. This
platform may be virtualized. A load balancing method can be used to ensure that the
platform remains scalable. The chosen setup for the integration of vehicle data makes
use of serverless components. This means that it is possible to run the platform on a
cloud environment that ensures that the application is automatically scaled. When
little data enters the platform, few resources will be used. When the data intensity
increases, the platform will automatically scale up.
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Experts It is clear to the experts that the architecture was designed with a view to find a scalable
solution. By using the components that the Azure platform offers. In addition, the way
in which different data sources are connected (as a separate software service) ensures
that less scalable components do not directly affect the rest of the platform.
For the experts it is clear that the scalability of an individual software binding depends
on the developer of this binding. It is therefore important to set up new data sources in
a scalable way in the future.
The core functionality of the platform currently has domain knowledge. As a result, it
is conceivable that in the future changes will have to be made to the core when new
data sources or services have to be opened up. According to the experts, it should be
possible to validate input and output, for example by means of JSON schemes. This
would ensure that the core functionality is more universally applicable. Not only on
vehicles, but also, for example, on charging stations.
The current architecture is based on heartbeats to detect whether certain data sources
are still available. The experts note that this may cause scalability problems because
this needs to be kept up to date.

Conclusion With the design and implementation of the architecture scalability is taken into
account. This is sufficient for the first application of the architecture. The solutions
proposed by the experts can be implemented within the model without the need to
adjust the basic principles.



5.2. Expert Validation 51

5.2.2. Extensibility
What Checking the extensibility of the developed architecture. Is it possible to support new

data sources and services?

Why As the analysis phase has shown, it is not possible to use only one protocol for the
integration of vehicle data. To deal with this, the developed platform must be able to
handle multiple different data sources in order to be able to provide different services
with data. As a result, it is necessary to be able to easily open up new services.

How The system is designed in such a way that it is extensible. New datasources can
be added to the system without a restart of other components. The architecture is
designed in such a way that the different components are able to communicate with
each other with the help of standards datatypes. The input and output to the rest of
the platform is defined. The in and output to the data source is binding specific. This
makes it possible to communicate with different types of protocols and end-points.

Experts The principle of using a binding as an abstraction layer between the various data
sources is experienced by the experts as a good choice. This helps to be able to support
different types of protocols and communication methods. The experts suggested that
generic data names could be registered in the register in order to avoid a jumble of
different variations on the same measurement value. For example, the state of charge
can be recorded through different bindings, but the same type of measured value is
involved. By using a generic registry it is possible to increase the extensibility of the
platform. It is a great added value that new bindings can be added to the system during
run-time. This allows new services to be linked without interfering with other services.

Conclusion The developed architecture makes it possible to open up different data sources to a
variety of services.
Based on the feedback from experts, it is possible to develop the platform in order to
increase the extensibility of the platform.
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5.2.3. Security
What How is security addressed in the architecture?

Why The security aspect is becoming increasingly important. However, the focus of this
project has been from the beginning to come up with a solution for the integration of
vehicle data.

How Within the project, the assumption has been made that the different services in the
platform can trust each other. The entire platform is a closed box within which new
software cannot simply be installed. Nevertheless, the platform developed could not
support authentication and authorization.

Experts In order to be able to apply the principle properly, security mechanisms still need to
be built in. Currently, the source of incoming events is not checked. Theoretically, this
can be used to create a malicious binding that appears as another binding. Within the
current design, the assumption is made to trust the other software services within the
platform. However, there are conceivable methods in which the identity of a binding
can be better guaranteed by exchanging certificates and/or tokens. According to
the experts, it would be useful to develop a method that enables authentication and
authorization between the different services.
This security aspects are also important to protect the vehicle data which is gathered.
Since this data can tell something about the vehicle and its user it is important to
secure and encrypt the data. Also to comply with the new GDPR regulation.

Conclusion Although the security aspect has not been an important area of attention from the
start, it is necessary to look at security considerations before such an architecture can
be applied practically.

5.2.4. Process
What This topic looks at the definition of the requirements and use cases and the way in

which the architecture has been developed.

Why To see how the process went and whether there are any requirements missing that had
impacted the result.
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How During the process, the main focus was on developing a solution for data integration.
An iterative process was used, in which new insights ensured that the model was
adapted from time to time.
In addition, the approach has also changed during the project. Initially based on
a single tracking device for the input of vehicle data, the study has shown that a
combination of different data sources will always be required to provide a complete
overview of the situation.

Experts The requirements and use cases developed are in line with the internal guideliness
within Allego. However, it is clear that a number of requirements are not defined but
were indirectly taken into account during the process. Although the requirements are
not always S.M.A.R.T. defined, the architecture developed does fit in. Allego has gained
the insight that there is not only one data source that can be accessed in order to obtain
all vehicle data.

Conclusion The tracability of the requirements and use cases could have been better, the final
result meets the wishes of Allego. With the developed architecture it is possible to
access and display various data sources in an interface.

5.2.5. Alternative Approaches
What The architectural design in relation to alternative approaches in literature and real life

applications.

Why During this study, a new methodology was developed for the processing of vehicle
data. Within this step, alternative methods to integrate vehicle data are discussed with
the experts.

How Within the process, we mainly looked at other application areas where the same
problem applies to money. That is, that different data sources want to communicate
with each other. For data integration, a middleware solution is often used. These
middleware solutions enable multiple data sources to communicate with a single
system. The final solution is strongly based on the IFTTT-model.

Experts The experts note that the pattern used is often used. Not only for end applications,
but also within Microsoft’s cloud platforms, for example. The experts indicate that it
is very similar to the way Azure Functions deals with different inbound and outbound
services. In addition, the parallel with Microsoft Flow is drawn almost immediately,
giving end-users the opportunity to connect different data sources with the aid of a
graphical interface.
Since data often originates from IOT devices, it could be possible to make more use of
existing techniques within the Azure Cloud Platform. For example, the Azure IOT-Hub
can be used for communication with external devices.

Conclusion The architecture purposed is a combination of different approaches. The application
of existing models to the domain of vehicle data is very valuable. The suggestions made
by the experts can be used as a supplement to the model set up in this thesis.
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5.2.6. Usability
What Is the developed architecture practically applicable for the integration of vehicle data?

Why For Allego it is important to have an application that can be used for the integration of
vehicle data. Within this topic, the usability of the developed architecture within Allego
will be examined.

How The architecture has been developed on the basis that there are different combinations
of data sources for vehicles. The data sources used depend on the type of vehicle and
the type of concession. The platform has also been developed with this in mind.
However, initially only a few customers will use vehicle data. this can be explained
by to the fact that the exchange of vehicle data currently requires investments in an
additional tracking device or links to the vehicle manufacturer’s backend.
As a result, it is particularly interesting for a number of large organizations such as
PTOs and lease companies to set up an integration with vehicle data. This means that
in the first instance the platform can be slightly overkill. With the expected growth
and diversity of vehicles and customers, combining different data sources becomes
increasingly important.

Experts The graphical interface is seen by the experts as an added value. This interface shows
the possibilities of responding to incoming data at bus/group level.
At the moment, there is mainly a direct demand for vehicle data for the application of
Smart Charging. If only this application is considered, the developed platform may be
slightly overkill. It is then easier to send the data directly to the Smart Charging service.
Although the platform was initially developed for vehicle data, the experts also see
possibilities for, for example, charging data. The architecture has been designed in
such a way that it is possible to react dynamically in which the different bindings com-
plement each other and thus ensure that a single system-wide value of a measurement
is created. Within charging stations, the problem now arises that different services all
do their own interpretation on the incoming data, which results in different definitions
for, for example, an offline charging station. The architecture as it is set up for vehicle
data can help in this.

Conclusion During this project, it became clear that integrating vehicle data is more complex than
connecting a single data source. In this way, the project mainly contributed to gaining
insights into the possibilities for the integration of vehicle data.
The applied architecture is useful for reacting dynamically to incoming data. Now
applied to vehicle data, in the future also for other objects, such as loaders and parking
sensors.
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5.3. Business Scenario
In order to validate if the solution developed during the final project fits the needs of the business,
together with Maurits Doetjes and Mattheo van der Molen a design for the MVP of Vehicle Services
is created, see figure 5.1. This is a new service which needs to be developed, the current mockup
is based on the input of this report (see Location Service in Analysis Phase). This service aims to
provide insight into vehicles and their location. This makes it possible for end customers to gain
insight into their vehicles. The first graphic design is used to see if the developed architecture can
successfully support such a service. Based on the designed screens an indication of the data re-
quired for this service can be made. Based on this, the data providers (which result in bindings) are
determined. For all the developed screens see Appendix ??.

Figure 5.1: Mockup for vehicle services

For this service there is input required for the measurements described below. For every measure-
ment, the data providers that can be used for these measurements are specified. The measurements
and the data sources are summarized in table 5.1.

• Busnumber
It is possible to retrieve the bus number from various datasources such as Charging Services
and the NDOV-loket.

• Linenumber & Omloopnumber
The extraction of the current line number is only possible with the integration of data sources
such as NDOV and GTFS. Based on standardization of in vehicle systems such as on-board
computers it can be possible to extract this information from the vehicle itself. At the moment
it is possible to connect to on-board computers, however, each manufacturer of on-board
computers has its own protocol for it. However, the ITxPT consortium is working on a better
exchange of data for different systems within pubic transport [27].
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• Position
Several datasources have information about the current position of a vehicle. Where the
NDOV-loket only gives the position of buses which are currently active on a certain busline
a tracking device can deliver this information always. Also the charging services can help to
determine the location of a vehicle. Based on the charger location the location of a bus can be
determined.

• SoC
The extraction of the SoC for a vehicle is possible with a physical device on the bus. A tracking
device can extract the state of charge from the CAN-bus of the vehicle. It is more desirable
if data can be exchanged directly with the vehicle OEM. Allego has now started working with
vehicle OEMs to enable the exchange of data. It is actually not desirable to install a new (con-
nected) device in the vehicle. The aim is therefore, together with market parties, to look for
the most efficient possible exchange of data.

• Bus State
Based on the different datasources the system should determine the bus state. For example
the charging services notificies the platform when a vehicle is charging. Charging / Driving /
Parking

• Time to charge
The current set of data sources do not deliver a time to charge. But based on the current
SoC, the position and route information such as linenumber a prediction can be made to
determine the expected time to charge. When in the future charging schedules are exchanged
this prediction can be replaced with the planned time.

• Time since charge
Based on the data available from charging services the time since last charge can be calcu-
lated. Technically the last charging time will be saved in a database from where on request the
time since charge can be calculated.

• Charging moments today
To get insight in the charging moments today integration of charging service data is needed.
The Vehicle Location Service is responsible to save this data in the appropriate format.

Table 5.1: Measurements and the data-providers for MVP - Vehicle Location Services

Measurement NDOV Tracking Device Prediction Charging Service
Busnumber yes yes no yes
Linenumber yes no no no
Omloopnumber yes no no no
Timetable yes no no no
Postition yes yes no yes
SoC yes yes no no
Bus State yes no no no
Time to charge no no yes no
Bus State yes no no yes
Charging moments today no no no yes

All in all, it is possible to support this new service with the help of the architecture that has been
developed. Current data sources can support such a service. The architecture developed is the



5.3. Business Scenario 57

bridge between the various data sources and the final service. In order for this data integration to
run smoothly, a new binding needs to be created that subscribes to the various data updates.
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6.1. Conclusions
Within this study, a solution is developed in four phases for the integration of vehicle data into the
existing backend for the management of charging stations.
The aim of this research was to develop a solution for the integration of vehicle data. The differ-
ent chapters deal with the research questions from chapter 1 by means of the four phases (Analy-
sis, Design, Implementation and Validation). Finally, this section provides answers to the research
questions.

6.1.1. RQ 1 - What is the current state-of-art in EV charging solutions and data integra-
tion?

In recent years, there has been strong growth in the application of e-mobility. Consumers as well
as companies use EV-charging solutions. It is crucial for commercial parties to have insight into
their operations and vehicles. In the EV domain, various protocols have been developed for com-
munication between the parties involved in the charging process. Until now, there was no need for
the exchange of data between the vehicle and a backend. However, with the expected growth, it is
necessary to optimize the charging behavior in order to be able to support large quantities of cars
with a relatively small network. This optimization can consist of adjusting the available amount of
power as well as assigning a suitable charger. Vehicle data can contribute to this optimization. This
vehicle data can be used for current demands as well as for building predictive models. There is no
universal standard for the real-time exchange of data between vehicle and third parties. Based on
different manufacturer and project specific solutions it is possible to obtain vehicle data.
During the analysis phase of this research we looked at middleware systems and solutions in other
domains. Many of the principles for abstraction and the application of rules have been used in the
architecture developed during this research.

6.1.2. RQ 2 - What elements are required to set up a system for the integration of vehicle
data?

There is a wide variety of data sources and services that want to make use of them.
Ideally, communication between vehicle and service parties should be standardized. Such a stan-
dardization will reduce the number of protocols required to be able to access vehicle data. However,
there will always be different protocols and data sources.
During this project the different data sources are connected to services within the platform with a
kind of connector, called a Binding. This binding allows a data source to communicate with (ex-
isting and new) services. In order to integrate vehicle data, both a producer and a consumer are
required. Producers are generally the data sources and consumers are the software services that will
use vehicle data.

6.1.3. RQ 3 - How can we combine data from different sources?
During this research, an architecture has been developed that helps to combine different data sources.
Different data sources can complement each other in order to obtain a complete picture of the vehi-
cle. By separating the communication with specific data sources into a separate software service, it
is possible to set up a scalable platform. The internal exchange of data takes place in a standardized
format.
Also when different data sources that contradict each other, the data can be processed. Incoming
data can be cleaned up and and based on a priority-system data from different sources with the
same measurement for the same vehicle can be processed.
With this framework it is possible to handle different datasoures. Different datasources for one ve-
hicle. But also different datasources for the same measurement for different vehicles.
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6.1.4. RQ 4 - How can we develop an architecture that is able to deal with future growth?
The platform has been developed in such a way that future growth is possible. This could include
adding new data sources or applications of vehicle data. During this study, only a limited number
of protocols fell within the scope. However, new protocols can be added to the platform without
directly affecting the existing data sources.
In addition, during the design and translation to Azure components, the creation of a scalable solu-
tion was taken into account. By using serverless components, it is possible for the platform to grow
in line with the growth in connected vehicles.

6.1.5. RQ 5 - What lessons can be learned evaluating the developed architecture?
The developed architecture makes it possible to react dynamically to vehicle data from different
sources. The way in which data updates can be used in an IFTTT-like way in order to initiate ac-
tions within the platform is considered very valuable. Developing new data sources still requires
some development work, so in the future we will also have to look at which data sources need to be
opened up. In addition, this architecture is especially useful when there are multiple data sources
that need to communicate with multiple different services. When only one service requires certain
data, it is better to apply a middleware solution. The main goal of the architecture is to integrate
vehicle data, but an important result is to be able to react dynamically to incoming messages (both
internal and external).
In order to be able to apply the developed architecture successfully in practice, additions will have
to be made. This is mainly related to practical aspects such as manageability and security. These
additions and extensions are mainly the result of the expert validation and are further elaborated in
the future work section.

This has resulted in the development of an architectural setup that enables Allego to deal with the
integration of vehicle data in a both scalable and flexible way. The four phases in this thesis together
form the answer to the main research question “What architectural setup would provide both scal-
able and flexible solutions for integration of vehicle data?” by giving a definition of a architectural
platform which supports the existing backend to integrate vehicle data to improve current business
and extend the market position of Allego.
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6.2. Discussion
This section lists a number of cases that may have had an impact on the outcome of this research.

6.2.1. Middleware
An often mentioned alternative to integrating vehicle data is the application of a middleware layer.
A middleware layer has the ability to combine multiple different sources within a system. In this way
an abstraction layer is created. However, the challenge in this case is that the data has to be shared
with a variety of applications. In addition, there must be different responses to incoming data on
the basis of the vehicle concerned. However, concepts such as data mapping and transformation do
return. The developed solution can actually be seen as a combination of a middleware architecture
in which events can be used to react dynamically to incoming (and outgoing) activities.
It is in particular the combination of IFTTT-like solutions such as Homey, Zappier, OpenHab and
the abstraction and mapping methods of middleware solutions that make it possible to integrate
vehicle data with this solution.

6.2.2. Cloud Platform
During the development of the architecture, Microsoft Azure was the target platform from the start
as a target platform. However, a split has been made between the design and implementation. In
principle, the design could also be implemented on other cloud platforms. The concepts used such
as an event bus and serverless computing are also possible in the cloud environments of Amazon
and Google [51]. The way in which the different data sources are combined by means of Bindings
and a central PathEngine can therefore be applied perfectly.

6.2.3. Standardization
During this research, we looked at a way of bringing together different protocols and integrating
them into software architecture. However, each of these protocols does require development and
maintenance. From the perspective of Allego as a data consumer it is desirable that the data ex-
change is standardized. Just as Allego has argued for a standardization in the communication be-
tween EVSE and CPO (OCPP) and CPO and MSP (OCPI), it would be good if a standardization in the
communication between EV and third party is initiated. In this case Allego is the third party.

It is good to set up a new standard that makes it possible to communicate with all (connected)vehicles,
but here we need to look at a standard that is supported by at least a major part of the market. Oth-
erwise, the problem will be exacerbated by the creation of a new standard which will be applied by
a small part of the market.
When developing a new standard, however, it should be noted that a new protocol must replace
other protocols. The cartoon in 6.1 illustrates the potential risk.
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Figure 6.1: XKCD: Standards [52]

When standardization is applied in a proper manner, there will be less fragmentation in different
protocols. However, there will always be different protocols. The architecture developed offers a
solution for this.

6.2.4. Customers
It is important to work together with customers in order to unlock vehicle data. In addition, there
must be a clear goal for customers to share data. In today’s market, parties do not just want to ex-
change data. Companies realize that data is a valuable asset [53].
Partly because of this, no customers where willing to share their vehicle data with us for this re-
search. However, when Allego can demonstrate the added value of the integration of vehicle data,
this helps to find pilot customers for this.
It is important to find a customer who is willing to share the available data as soon as possible in
order to be able to setup a pilot. The Transport as a Business team is aware of this and is looking at
the possibilities for cooperation.

6.2.5. Existing Platforms
During the research topics phase, existing solutions for the integration of vehicle data were exam-
ined. The solution finally developed cannot be compared with the existing solutions, see also ap-
pendix A. The solutions in this appendix are based on a one type of device that is connected to a
specific cloud platform. The solution developed during this research makes it possible to combine
multiple data sources.
Allego wants to be able to connect many different vehicles. In order to make this possible, it is nec-
essary not to depend on one way to unlock vehicle data. The developed platform therefore offers
the possibility to access data in a universal way by means of various Bindings.
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6.3. Future work
This section discusses the future work resulting from this project. This concerns both practical work
that has to be carried out before the platform can be applied successfully and further research that
can be carried out in the field of data integration and analysis.

6.3.1. Security & Privacy
When setting up the architecture, the security aspects within the platform were not taken into ac-
count. On the one hand, this concerns the security between the various components in the plat-
form. For this purpose, certificates and encryption that are already offered by the Azure cloud plat-
form as standard can be used [54]. In addition, it is also important to look at the security in the
communication between IoT devices and the cloud platform. Although this is the responsibility of
the individual bindings, this is a recurring theme. Both existing literature (e.g. Chandu et all. [55])
and developments within Allego in the area of loaders, for example, can be taken into account.
In the case of charging stations, the possibility of securing them with certificates instead of a se-
cured VPN tunnel is currently being examined. In connection with the EU General Data Protection
Regulations, among other things, it has become increasingly important to secure IoT-data. [56]. Af-
ter all, the data collected from individual vehicles or devices can also be seen as personal data. This
is therefore an aspect that needs to be further investigated.

6.3.2. Version Management
Besides the development of new bindings, in the future also bindings will be updated. For the time
being, the responsibility for compatibility lies with the developer. However, a mechanism for this
can be developed in order to make it more automated. For example, continuous deployment solu-
tions. But another point of research could be to dynamically determine the impact on an updated
binding. After all, when the defined Triggers and Actions change, this may have an impact on the
services that depend on a Binding.

6.3.3. Universal application - Binding Pattern
The structure set up in this thesis has proved to be very useful for the integration of vehicle data.
This pattern is often applied in practice and may have a number of additional areas of application.
During this thesis it was specifically applied to one domain. However, it would be useful to develop
the concept in such a way that it can be applied to several domains. More generic solutions for a
secure IoT solution can be considered. [57]
The binding pattern as set up for vehicles can easily be applied to other assets. For Allego the most
important other asset is the charging station. Further research can look to the implementation of
the platform developed in this research for IoT devices in general.

6.3.4. Other Markets
The research was initiated from within the Public Transport market. Within this market, there is a
demand from operators to gain insight into their fleet and operations. However, the same principle
can also be applied to other market segments. When an ecosystem is developed which allows to ex-
change data between vehicles and third parties, there will be great opportunities for Allego. A owner
of a vehicle can choose to share his personal vehicle data, such as position and state of charge. With
this data Allego can improve the service they are offering.
This can be done in a similar way to the permissions that users can give to apps on their smart-
phones. Ideally, the user installs an Allego app in his vehicles multimedia system. This app then
ensures that its charging experience is improved. This can be done, for example, by referring the
user to an available charger in good time and reserving this charger in advance. Google has ap-
plied for a patent on such a permission system to exchange data between different apps [58]. Such
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a structure could also be set up for this purpose.

Currently, the integration of vehicle data is seen as a product only for the public transport mar-
ket. However, it would be much more valuable to see the broader scope of application. As a CPO,
Allego will not be providing a complete planning tool for Public Transport or other markets. Allego
can, however, stay close to their core and provide information about the entire charging process. For
example, it can be very interesting for lease companies to combine information about their vehicles
with charging information. But it is not only within the EV domain that the platform developed is
interesting. Insurers would also like information about the insured vehicles and their behaviour on
the road [59]. In the Netherlands, for example, ANWB offers discounts on car insurance when you
purchase an OBD-connector.

6.3.5. Practical Usability
In order to be able to apply the developed architecture practically for testimonials within Allego,
there are still a number of practical issues that need to be solved.

• Historic data
The current design is based on the exchange of real-time data. Events that come in are pro-
cessed immediately. When a binding within the Platform registers itself, it may want to re-
trieve historical data.
Although the data of the different data sources is now being stored, it is not possible to obtain
this data in a universal way. It would be an idea to be able to ’play’ the historical event stream
in the future. This means that a new service can connect to the platform and then indicate
the time from which this data must be forwarded.

• Implementation framework
In order to speed up the development process for making a connection for new data sources
and services, it is advisable to develop a framework on the basis of which the implementation
of a new binding can take place. This framework can then be used as dependency, in the same
way as contracts are shared now, so that a developer does not have to worry about sending and
receiving messages from the framework.

• Bindings
In addition to the integration of vehicle data with the services in the cloud platform, the devel-
oped architecture can also be used as an application for end-users. An example is that users
can define their own Paths themselves via a graphical interface. A example of this scenario is
already given in the implementation phase of this thesis.
By defining new paths, a user can easily be informed of changes to the vehicle. In order to
make the system practically applicable for this purpose, however, a number of Bindings still
need to be developed. This could include sending an email or sending text messages. This
allows end-users to configure in an IFTTT-like way what happens when there is a change in
vehicle status. The core architecture supports this kind of use cases.

• Specification of contracts
This final project has mainly ensured that an architecture in which services and data sources
are loosely coupled. One of the most important results is the principle that can be applied for
this purpose. However, there is still some work to be done in further developing the commu-
nication between the Bindings and the core platform (PathEngine).
In order to be applied in a practical way, the way in which information is exchanged must be
improved. this applies in particular to for the defined Types, by defining a wider range of dif-
ferent types it is easier for a developer to develop a new binding. Furthermore, the installation
process needs to be improved.
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• Services
New services can be developed on the basis of vehicle data. Prediction models can be devel-
oped on the basis of historical data, making it possible, for example, to reserve charging sta-
tions dynamically baed on a combination of historical behaviour and current circumstances.
In this way, vehicle data can ultimately ensure that the experience of EV-drivers is improved.
New big data and machine learning techniques can help to improve existing services.
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A
Existing Platforms

There are several real world solutions which integrate vehicle data into an online platform for fur-
ther analysis/monitoring. In this chapter examples of these solutions are given and are discussed
shortly. The purpose of this chapter is to give an overview of the different type of solutions there are
out there.

A.1. Viriciti
Viriciti is company which has a main focus on monitoring electric buses and optimize the opera-
tion. It gives PTO’s insights in their EV’s and their operations. This means that viriciti with their
solution can collect and analyze all data from the CAN bus in the vehicle. Based on planning infor-
mation, this can be linked to driver and route to gain insight into individual performance. The use
of cruise control, brake pedal, air conditioning, etc. are elements which are considered.

Figure A.1: Viriciti - the datahub

Datahub
A hardware device developed by Viriciti which helps
them to gather vehicle data from electric vehicles.
This hardware device is illustrated in A.1. The de-
vice streams data from multiple CAN buses real-time
to the cloud. This can connect with internet through
onboard ethernet, WiFi or with a 4G connection. Be-
side this it has a hardware interface with several
analog and digital in and outputs and a GPS an-
tenna.

Docker
The datahub of Viriciti is a solution which uses Docker technology for their implementation. They
call it AppLayer. With this AppLayer it is possible to build apps in almost every programming lan-
guage. In a Meetup they have shown that this runs on docker and how they manage the platform.
The box itself runs on Docker technology with several containers on top. This containers can be up-
dated through a cloud solution. It is possible for third parties to develop several apps on top of the
Viriciti platform for example to develop a passenger counting system which uses sensors connected
to the hardware box. Since the datahub connects to the internal CAN-bus of a vehicle all data avail-
able here (measurements, commands) is available in the Viriciti cloud platform. Examples include
State of Charge (SoC), brake position, battery temperature, etc. The information that is available as
standard depends on the bus manufacturer. After all, the data must be placed on the can bus.
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A.2. Microsoft Connected Vehicle
The Microsoft Connected Vehicle Platform provides a set of services built on top of the Microsoft
Azure infrastructure. It is designed for OEM’s of vehicles to create connected vehicle experiences.
The Microsoft Connected Vehicle Platform is a combination of different components from Microsoft
Azure. For Microsoft the current focus lies on vehicle OEMs. However the cloud components of the
Connected Vehicle Platform could be interesting for a third party as well.

For the connected platform several key areas are defined:

• Telematics and Predictive Services - Telematics are the core function of a connected vehi-
cle platform. Based on Azure IoT hub a scalable solution can be build. With the predictive
services of predictive analysis of the gathered data can be performed.

• Productivity and Digital Life - Technologies like Skype and Cortana can help end user to im-
prove their experience in the vehicle. For example voice-control to reduce distraction while
being on the road.

• Connected Advanced Driver Assistance Systems (ADAS) - With the combination of real-time
road and environment information the safety and performance can be improved. Can be
integrated into an autonomous driving system.

• Advanced Navigation - Make it possible to customize the navigation based on end-users
habits. With personalized routing and dynamic location based services the traditional nav-
igation experience can be improved.

• Customer Insights and Engagement - With better insights into customers behavior the rela-
tionship can be improved with the integration of CRM and brand loyalty.

The Microsoft Connected Vehicle Platform is a tailor made solution. It an agile platform that starts
with Microsoft technologies. The platform is targeted on businesses who want to accelerate in a
connected car platform. Renault-Nissan is a OEM that develops in cooperation with Microsoft a
connected car platform based on Microsoft Connected Vehicle for their new connected vehicles.

A.3. ANWB Connected

Figure A.2: The ANWB Connected dongle with
the mobile interface

A recently launched product from the ANWB which
makes it possible to read Vehicle data through the OBD
connector in passenger cars. This device collects data
from cars to make them connected. A.2 shows a market-
ing image from the ANWB website.

With ANWB Connected it is possible to monitor driver be-
havior and give an advice how to save fuel. This behavior
is monitored with a built-in accelerometer. It is possible
to read out error codes and a breakdown can prevented
by monitoring these error codes. With a car that is not
connected the garage can read out these error codes with
a physical connection. For an end user it is possible to register trips in the ANWB connected app to
register the driven kilometers for the dutch tax authorities. The ANWB integrated the ANWB Con-
nected service to ANWB services such as their insurance and the ANWB Wegenwacht. You can get a
discount on your car insurance with the usage of the ANWB connected.
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The ANWB connected dongle is a plug-and-play device which makes it easy for end-users to in-
stall in their vehicle. This example shows an easy-to-use solution. Although our research initially
focused on electric buses, it is interesting to look at solutions for passenger cars. In addition, a
plug-and-play solution for commercial vehicles would exist in the ideal world.

A.4. OpenMatics
OpenMatics is a platform for vehicle telematics. They offer both hardware and software. With their
on-board unit, they work together with OEM’s to integrate these into their vehicles.
The software is based on the Microsoft Azure stack on which they develop different apps to get
insights into the vehicle data gathered with their hardware devices. They allow third-parties to de-
velop Apps for their platform in order to extend the functionality.
The architecture of this solution is more or less similar to the architecture of Viriciti.

A.5. TrustTrack
TrustTrack is a platform developed by Ruptela, a manufacturer of tracking devices. This platform
makes it possible to track vehicles and see the status of these vehicles. Depending on the tracker
configuration different types of information can be send to their own software solution or a cloud
server of a third party. A.3 shows the TrustTrack interface. One car is shown on the map with avail-
able information of the vehicle concerned.

Figure A.3: Screenshot of the TrustTrack-interface
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