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Abstract

Mobile malwares are malicious programs that target mobile devices, which are an increasing
problem. This is reflected by the rise of detected mobile malware samples per year. Addition-
ally, the number of active smartphone users is expected to grow, stressing the importance of
research on the detection of mobile malware.

Detection methods for mobile malware exists, although methods are still limited and
incomprehensive. In this paper, we propose detection methods that use device information
such as the CPU usage, battery usage, and memory usage for the detection of 10 subtypes
of Mobile Trojans. The focus of this paper is the Android Operating System (OS) as it is
dominating the mobile device industry with an 80 per cent market share.

This research uses a dataset containing device and malware data of 47 users for an entire
year (2016) to create multiple mobile malware detection methods. By using real-life data this
research provides a realistic assessment of its detection methods. Additionally, using this
dataset we examine which features, i.e. aspects, of a device, are most important in detecting
(subtypes of) Mobile Trojans. The performance of the following machine learning classifiers
are assessed: Random Forest, K-Nearest neighbour, Naïve Bayes, Multilayer perceptron, and
AdaBoost. All classifiers are assessed using a 4-fold cross-validation with holdout method.
Additionally, the hyperparameters of all classifiers are tuned with the use of a GridSearch.
Furthermore, we assess performances of classifiers when one model is trained for all subtypes
of Mobile Trojans, and when separate models are trained for each subtype of Mobile Trojans.

Our results show that the Random Forest classifier is most suited for the detection of
Mobile Trojans. The Random Forest classifier achieves an f1 score of 0,73 with an False Positve
Rate (FPR) of 0.009 and False Negative Rate (FNR) of 0.380 when one model is created to
detect all 10 subtypes of Mobile Trojans. Furthermore, our research shows that the Random
Forest, K-nearest neighbour classifier, and AdaBoost classifiers achieve, on average, an f1
score > 0.72, an FPR of <0.02 and an FNR <0.33, when models are created separately for each
subtype of Mobile Trojans. Moreover, we examine the usability of the different detection
methods. By assessing multiple metrics such as the model size and training times, we analyse
whether the methods can be deployed locally on devices. Lastly, we examine the cost and
benefits, for businesses, associated with deploying self-made detection methods.
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Chapter 1

Introduction

Nowadays smartphones have become an integral part of life, with people using their phone in
both their private and professional life. There is an estimated of 2.6 billion active smartphone
users globally at the time of writing, and this number is expected to grow by one billion
by 2020 [1]. The rise in smartphone users has also led to an increase in malicious programs
targeting mobile devices, i.e. mobile malware. Criminals try to exploit vulnerabilities on
smartphones of other people for their own purposes. Additionally, over the past years
malware authors have become less recreational-driven and more profit-driven as they are
actively searching for sensitive, personal, and enterprise information [2].

Academic work is mainly divided into dynamic analysis and static analysis of mobile
malware. Dynamic analysis refers to the analysis of malware during run-time, i.e. while the
application is running. Static analysis refers to the analysis of malware outside run-time,
e.g. by analysing the installation package of a malware. Dynamic analysis has advantages
over static analysis but methods are still imperfect, ineffective, and incomprehensive [3].
An important limitation is that most studies developed malware detection methods based
on analysis in virtual environments, e.g. analysis on a PC, instead of real mobile devices.
An increasing trend is seen in malware that use techniques to avoid detection in virtual
environments, thereby making methods based on analysis in virtual environments less
effective than methods based on analysis on real devices [2]. Moreover, we found that most
methods are assessed with i) malware running isolated in an emulator, and ii) malware
running for a brief period. This kind of assessment does not reflect the circumstances of a
real device with for example different applications running at the same time. Therefore, most
research does not provide a realistic assessment of detection performances of their detection
methods due to their unrealistic circumstances.

This paper compares the performance of multiple mobile malware detection methods,
with real-life circumstances, on the detection of 10 different mobile malware types. The focus
of this paper is on Android devices as this platform is dominating the mobile device industry
with a market share of more than 80 percent [4]. The Sherlock dataset by the Ben-Gurion
University [5] is used, containing malware data and device data of 47 users throughout the
year 2016. At the moment of writing, no other research is known to us that used data with
this high amount of real life users over a period of this extend. The malware data are logs of
actions taken by different subtypes of Mobile Trojans, i.e. malware showing benign behaviour
and performing hidden malicious actions. The device data are logs of system metrics of the
devices, e.g. CPU usage, memory usage, battery usage. Tracking the system metrics did not
require any adjustments to the Android Operating System (OS) such as rooting, i.e. adjusting
the OS to allow for kernel-level control. This allows the detection methods of this research
to be used on the majority of Android devices, as more than 95% of the Android devices
are unrooted [6]. The dataset is used to train the following machine learning classifiers: i)
Random Forest, ii) Naïve Bayes, iii) K-nearest neighbour, and iv) Multilayer Perceptron. The
classifiers are trained to predict, given the system metrics of a device at a given moment,
whether a Mobile Trojan is executing benign or malicious actions on a device. Taking the
aforementioned real-life approach, this research provides a realistic assessment of detection
methods and valuable knowledge on detecting mobile malware on real devices.
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1.1 Research questions

This research uses the following main research question to address the current limitations of
dynamic detection methods:

M.Q. 1 How can we improve the dynamic detection of Mobile Trojans using hardware and software
features (not requiring any root permissions), based on real-life data?

The main research question is formulated based on an extensive literature research which is
described in Sections 2.4 and 2.5. The findings of the literature research lead to the following
four focus areas: i) dynamic detection ii) Mobile Trojans, iii) hardware and software features,
features not requiring any root permissions, and iv) real-life data. The focus on dynamic
detection is chosen because of its advantages over static analysis, which are described in
Section 2.4.1. Mobile Trojans are the most prevalent malware type on Android devices and is
therefore chosen; more on this can be found in Section 2.1.1. Hardware features and software
features, not requiring any root permissions, are chosen because these features are present in
the dataset used in this research. Additionally, as stated in the introduction of this Section,
focusing on features not requiring any root permissions allows the detection methods of this
research to be used on the majority of Android devices. Lastly, the focus on real-life data
allows for i) realistic assessment of detection methods and ii) valuable insights on detecting
mobile malware on real devices.

The following sub-questions are formulated to help answer the main research question:

S.Q. 1 How do different machine learning techniques such as Random Forest, K-Nearest Neighbour,
Naïve Bayes, and Multilayer Perceptrons, perform in detecting Mobile Trojans?

The Random Forest, K-Nearest Neighbour, and Naive Bayes classifiers showed the most
promising results in the literature that was consulted for this research. Neural networks,
though scantily researched for the detection of mobile malware, show promising results[7].
Therefore, Neural Networks will be examined in this research together with the aforestated
classifiers. Related works on dynamic mobile malware detection and the performances of
the classifiers in these works can be found In Section 2.5. The answer to S.Q.1 is described in
Chapter 6.

S.Q. 2 What software and/or hardware features, that do not require root permissions, are the most
crucial for the detection of Mobile Trojans?

Mobile devices are limited in resources such as battery, CPU, and RAM capacity. Therefore
examining which features are the most crucial in the detection of mobile malware, and which
features can be excluded, improves the efficiency of the detection models. Additionally, the
answer to this sub-question provides insights in which features are important in the detection
of different subtypes of Mobile Trojans. Because these feature insights are drawn from real-life
data, the findings reflect real-life circumstances rather than (clean) laboratory environments.
The answer to S.Q.2 is described in Section 6.

S.Q. 3 What is the usability of these different classifiers on a real device?

This sub-question focuses on the usability of the different classifiers, given the aforemen-
tioned resource limitations. Usability refers to the system resource consumption (e.g. battery
usage, RAM usage) of the different detection models. Usability from a business perspective is
also analysed in S.Q.3. The costs and benefits for a business, associated with using, or not
using, self-made mobile malware detection methods are examined. The usability regarding
resources and the business usability are described in Chapter 7.
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1.2 Research method and report structure

A research method is devised to answer the research questions in a structured manner. This
research methodology is based on CRISP-DM, a widely used data science methodology [8].
This paper is organized according to the research methodology shown in Figure 1.1. The
research methodology and the report structure is described below.

Data 
preparation

Modelling
Results
analysis

Usability
analysis

Domain 
understanding

Data 
understanding

FIGURE 1.1: Research methodology

Domain understanding
This phase is needed to understand the domain of mobile malware. Relevant literature on
mobile malware detection is found during this phase. Additionally, the impact of mobile
malware on businesses is analysed. Furthermore, recent industry developments in mobile
malware detection methods are examined. Chapter 2 contains the findings of this phase.

Data understanding
The dataset used in this research is provided by an external party. Therefore this phase is
required to understand the content of the dataset provided. The dataset content is explored
with the use of multiple visualisations such as histograms. This phase also consists of
verifying the data quality. Chapter 3 contains the findings of this phase.

Data preparation
Multiple preparation steps are needed to construct a dataset that can be used for the creation
of detection models. Chapter 4 describe the steps taken during this phase.

Modelling
This phase consists of selecting machine learning techniques, setting up experiments, and
training and testing of the machine learning techniques. Chapter 5 describes the steps taken
during this phase.

Results analysis
The results of the experiments and feature analysis are collected and documented during this
phase. This phase presents the results needed to answer the sub-questions S.Q.1 and S.Q.2.
Chapter 6 contains the findings of this phase.

Usability analysis
This phase consists of analysing the usability of the detection models. The usability of de-
tection models on real devices is analysed, using multiple metrics such as the training and
testing times of classifiers. Additionally, the business usability of the detection models is
examined with a cost-benefit analysis. This phase results in the answer to S.Q.3. Chapter 7
describes the findings of this phase.

Then Chapter 8 discusses the results of Chapters 6 and 7, and the limitations of this
research. Lastly, Chapter 9.1 concludes with the answers to the research questions and
suggest potential future work on this research.
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Chapter 2

Background

Each subsection of this chapter describes the necessary background knowledge for a specific
subsection of this thesis, to understand its content. The related subsections are shown in
Figure 2.1.

Data 
understanding

Data 
preparation

Modelling Results Usability

Mobile 
threats

Chapter:

Subsection:

Background
section:

Malware 
probe

Selection
ml techniques

ML 
classifiers

Cost-benefit 
analysis

Business 
relevancy

Related
works

Discussion

Detection
methods

FIGURE 2.1: Background chapter overview

2.1 Mobile threats

Mobile malware differs from traditional (PC) malware. Below, the most relevant differences
are listed based on [2].

• Mobile devices cross physical and network domains exposing them to more malware
such as mobile worms. This kind of malware uses the physical movement of devices in
order to propagate across networks.

• Most mobile devices have high application turnover due to the high availability of apps.
• The input methods of mobile devices increase the complexity of analysis. Touch com-

mands such as swiping and tapping allow for more different input commands than
the traditional mouse and keyboard input. This complicates the analysis of all possible
input commands.

• Mobile devices are resource limited with for example a limited battery, CPU, and RAM
capacity.

• Mobile devices are susceptible to a wide array of vulnerabilities due to their different
ways of connecting to the outside world and the different types of technologies they
use. Different connection methods such as Wifi, GPRS, 3G, Bluetooth, make the device
more vulnerable. Additionally, the different technologies such as the camera, speaker,
make the mobile device more susceptible to vulnerabilities through for example the
drivers of these technologies.

The next section describes the different types of mobile malware.
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2.1.1 Mobile malware types
To categorize the different mobile malware threats, this research uses the malware type classi-
fication of Google [9], shown in Table 2.1. This Table shows only the malware types examined
in this research.

Malware type Malicious behaviour description

Trojan Appears benign but performs malicious activity without user’s knowledge.

Adware Shows advertisements to the user in an unexpected manner, e.g. on the home screen.

Denial of service (DOS) Executes, or is part of, a cyber-attack (DOS attack) without user’s knowledge.

Hostile downloader Not malicious itself but downloads malware.

Phishing Appears trustworthy and requests user authentication credentials, but sends the data to a third party.

Privilege escalation
Breaks the application sandbox or changes access to core security-related features, therefore 
compromising the integrity of the system.

Ransomware
Takes partial or complete control of system and/or data and asks for a payment to release control 
and/or data.

Spyware Transmits sensitive data off the device.

*The adware type is not included in the Google classification as it ‘does not put the
device at risk’[6]. This research however, does include this type because adware performs

unwanted behaviour on a device and is therefore malicious.

TABLE 2.1: Malware classification

The actual distribution of the different types of malware is hard to estimate as detection
numbers of Antivirus (AV) vendors rather reflect the efficacy of its detection methods than
the actual distribution. However, using different sources helps in giving an impression of the
Android malware ecosystem. Figure 2.2 shows the distribution of different types of malware
according to the latest security report of Google [9] (left) and of the latest security report by
Kaspersky [10] (right). Although Kaspersky uses a different terminology, both figures show
the Trojan type being the most common malware. Note that malware types are not mutually
exclusive.
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FIGURE 2.2: Malware type distribution according to Google [9] (left) and Kasper-
sky [10] (right)

2.1.2 Android security
Android is an open-source platform for mobile devices. Applications for Android are written
in Java and compiled to Dalvik bytecode. An application can also contain native libraries,
which can be invoked from the Java code. To install an application, the application needs to
be in the form of a signed APK package. This package contains different files belonging to the
application. The AndroidManifest file in the APK package describes the different permissions
required by the applications. Permissions are required by an app to access sensitive APIs.
These sensitive APIs allow the application to access system resources such as Bluetooth
functions, location data, SMS or MMS functions, and data functions. Once installed, the
application runs in an Application Sandbox as a separate process with a unique user ID. By
default, applications cannot read any files of other applications but can only use interprocess
communication mechanisms to communicate with each other. These mechanisms and a more
elaborate description of the Android framework is given in Appendix D.
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2.2 Machine learning classifiers

The definition for machine learning used throughout this research is: “the complex compu-
tation process of automatic pattern recognition and intelligent decision making based on
training sample data” [11]. A more general definition of machine learning is “the process
of applying a computing-based resource to implement learning algorithms” [11]. Based on
different books on machine learning [11][12][13][14], the basic theory of the different Machine
Learning techniques used in this research is described in this section.

Three categories of learning algorithms are: supervised learning, unsupervised learning,
and semi-supervised learning. In supervised learning, the goal is to create a model which
predicts y based on some x, given a training set consisting of examples pairs of (xi, yi). Here
yi is called the label of the example xi. When y is continuous, the problem at hand is called
a regression problem, and when y is discrete the problem at hand is called a classification
problem. Throughout this research, the focus is on supervised learning as we try to detect
whether a device described by some features x, contains malware that is performing malicious
actions. In this case, the prediction value y takes the value 1 if a malicious application is
performing malicious actions on the device and 0 if no malicious actions are performed on the
device. The next Section describe the machine learning classifiers used in this research. Then
Section 2.2.6 describes the metrics used to evaluate classifiers. Lastly, Section 2.2.7 describes
the challenges of using machine learning to create mobile malware detection methods.

2.2.1 Random Forest

x1

x2 x3

x4 x5

B M MB

x7

B M

x6

B M

< 1 > 1

< 2 > 2 < 4 > 4

< 1 > 1 < 4 > 4 < 2 > 2 < 3 > 3

FIGURE 2.3: Example of Decision Tree

The Random Forest (RF) classifier is an ensemble
classifier that uses multiple decision tree classi-
fiers to classify test instances. An example of a
decision tree is shown in Figure 2.3.

A major disadvantage of decision trees is their
instability. Decision trees are known for high
variance and often a small change in the data
can cause a large change in the final tree. Ran-
dom Forests try to reduce the variance of decision
trees by taking multiple decision tree classifiers
to classify testing instances. Then, classification
is done using a majority vote among all the deci-
sion trees. Some advantages of Random Forest are i) it overcomes overfitting ii) it can deal
with high-dimensional data. Disadvantages include i) accuracy depends on the number of
trees ii) it is sensitive to an imbalanced dataset [3].

2.2.2 Naïve Bayes
Naïve Bayes (NB) is a statistical classifier that uses Bayes’s theorem to predict the probability
of given query instance belonging to a certain class. Bayes’s theorem, also called Bayes’s rule,
calculates the probability of a hypothesis H being true, given some evidence e, according to
the following formula:

P(H|e) = P(e|H) ∗ P(H)

P(e)

where
P(H|e) denotes the posterior probability of H, conditioned on e
P(e|H) denotes the posterior probability of e conditioned on H
P(H) denotes the prior probability of H
P(e) denotes the prior probability of e

The classifier is called naïve because it assumes conditional independence, making the com-
putation of the above formula less computationally expensive; especially for datasets with
many features. Although Naïve Bayes assumes conditional independence, it performs well in
domains where independence is violated [14]. Advantages of Naive Bayes are: i) high speed
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ii) insensitive to irrelevant feature data iii) simple and mature algorithm. A disadvantage is
that it requires the assumption of independence of features [3].

2.2.3 K-Nearest Neighbour

x1

x
2

C1= M

C2= B

FIGURE 2.4: Example of K-Nearest
Neighbour Classification

The K-nearest neighbour (KNN) is a distance-based clas-
sifier. Distance-based classifiers generalise from training
data to unseen data by looking at similarities between
training instances. Given a query instance q, the classifier
finds the k training instances, the closest in distance to
the query instance q. Subsequently, it classifies the query
instance using a majority vote among the k neighbours.
The distance from the query instance to its training in-
stances can be calculated using different metrics such as
the Euclidean distance, Minkowski distance, or Manhatten
distance. An example of the k-nearest neighbour classifi-
cation is given in Figure 2.4.

Advantages of KNN are [3]: i) high precision and ac-
curacy ii) non-linear classification iii) no assumption of
features. The disadvantages are i) it is sensitive to unbal-
anced sample set, ii) it is computational expensive.

2.2.4 Artificial neural networks
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FIGURE 2.5: Example of an Artificial Neural
Network

Artificial neural networks (ANN) is a machine-
learning model that uses a structure of nodes,
i.e. artificial neurons, to classify testing instances.
These nodes are connected to each other by di-
rected links. An ANN consists of an input layer,
some hidden layers, and an output layer. Every
directed link between neurons has some numeric
weight shown as wij in the example ANN, shown
in Figure 2.5. These numeric weights are used
in the activation function of each node. This ac-
tivation function is used to determine the output
of a node. Different learning algorithms can be
used to determine the number of hidden layers,
the number of neurons, and the weights between the neurons. Some of the most popular are
feed-forward back-propagation and radial basis function networks. This research uses the
Multilayer Perceptron (MLP) classifier which is a class of ANN that uses backpropagation for
learning.

2.2.5 AdaBoost
Adaptive boosting (AdaBoost or Ada) is, like the Random Forest classifier, an ensemble
classifier. AdaBoost uses multiple training iterations on subsets of the dataset to boost the
accuracy of a (weak) machine learning classifier. The machine-learning classifier is first
trained on a subset of the dataset. Then all training instances are weighted, with any sample
not correctly classified in the training set being weighted more, thereby having a higher
probability of being chosen in the training set of the next iteration. Likewise, any sample
correctly classified is weighted less. This process is repeated until the set maximum number
of estimators is reached. AdaBoost is known for offering accurate machine-learning classifiers
[11]. However, a disadvantage of AdaBoost is that it is a greedy learning, i.e. offering
suboptimal solutions. In this research, AdaBoost is used with (standard) decision trees.
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2.2.6 Evaluation classifiers
Different performance metrics exist to evaluate a classifier. The most basic performance
metrics are summarized in a confusion matrix. The design of a confusion matrix is shown in
Table 2.2.

Predicted class
Malicious Benign

Actual
Class

Malicious True Postive
(TP)

False
Negative
(FN)

Benign
False

Positive
(FP)

True
Negative
(TN)

TABLE 2.2: Confusion Matrix

The confusion matrix shows how many malware instances were correctly classified as
being malware (TP), how many malware instances were missed (FP), how many benign
instances were correctly classified as being benign (TN), and how many benign classes were
incorrectly classified (FN).

Other metrics and their formula are shown in Table 2.3. These metrics use the metrics
shown in Table 2.2. A frequently used metric is the accuracy of a malware, defined by the
percentage of correct predictions (TP + TN), of the total predictions (TP + TN + FP + FN).
This metric, however, might not reflect the performance of a classifier well. In a skewed
dataset, that is a dataset containing more of one class than the other, high accuracy can be
achieved by always predicting the majority class. For example in a dataset consisting of 90%
malicious actions and 10% benign actions, always predicting malicious actions results in an
accuracy of 90%. In the case of a skewed dataset, the performance metrics Precision (PPV)
and/or Recall (TPR), reflect the performance of a classifier more realistic. The harmonic mean
of the Precision and Recall are reflected in the f1 score (F-score with α = 1).

Metric Formula

Accuracy TP+TN
TP+TN+FP+FN

True Positive Rate (TPR) TP
TP+FN

False Positive Rate (FPR) FP
FP+TN

True Negative Rate (TNR) TN
TN+FP

Precision (PPV) TP
TP+FP

F-score (F-measure) (1 + α2)( PPV∗TPR
α2(PPV+TPR) )

TABLE 2.3: Performance Metrics

2.2.7 Automated detection
Two relevant challenges of using machine learning to create mobile malware detection meth-
ods are: i) the use of imbalanced datasets and ii) concept drift. Both concepts are described
below.

Imbalanced dataset
Cybersecurity data is skewed most of the times, containing more benign data than malicious
data. This results in a few challenges while training and testing machine learning classifiers.
First, standard machine learning techniques are often biased towards the majority class in
an imbalanced dataset [11]. Hence, standard metrics such as the accuracy do not reflect the
actual performance of a model well [11]. In a skewed dataset containing 95% benign examples
and 5% malicious examples, an accuracy of 95% might be the result of the classifier predicting
benign labels 100% of the time. This research addresses this challenge by using metrics that
take into account the skewness of a dataset, such as the f1 score which is the harmonic mean
between the True Postive Rate and True Negative Rate.



10 Chapter 2. Background

Concept drift
The inability of detection models, trained on older malware, to detect new rapid evolving
malware, is called concept drift [15]. A way to overcome this issue is to continuously retrain
the models, based on new information.

2.3 Business relevancy

The increasing adoption of mobile devices in the workplace, rise in mobile cyber attacks on
businesses, and recent legislation, show that mobile security in the workplace is becoming
more relevant for businesses. These developments are described in more detail below.

1. Increasing adoption of mobile devices in the workplace:
A recent industry study on the adoption of mobile devices in the workplace shows that nearly
80% of the employees are using a mobile device for business purposes [16].

2. Rise in mobile cyber attacks on businesses:
A recent industry study surveying 588 IT security professionals from the Global 200 compa-
nies in the U.S. report that 67 per cent of the respondents said it was certain or likely that
their organization had a data breach as a result of a mobile device used by an employee [17].
Another study from a cybersecurity company securing 500 devices of 850 organization show
that 100 per cent of the organization experienced at least one mobile malware attack from
July 2016 to July 2017.

3. Increased legislation on personal data protection:
A recent development increasing the importance of mobile security in the workplace is the
recent General Data Protection Regulation (GDPR), enforced since May 25, 2018. This regula-
tion controls the "processing by an individual, a company or an organisation of personal data
relating to individuals in the EU" [18]. A recent study by Gartner predicts that by 2019, 30 per
cent of organizations will face "significant financial exposure from regulatory bodies due to
their failure to comply with GDPR requirements to protect personal data on mobile devices"
[19][20].

To view how the detection methods in this research fit with the cybersecurity-related activities
of business, the cybersecurity framework of The National Institute of Standards and Tech-
nology (NIST) [21] is used (shown in Figure 2.6). This framework help businesses manage
cybersecurity-related risks. In this Section the framework is used to show in which activities,
the detection methods of this research provide business value. Section 7.2 then describes a
cost-benefit analysis of the created detection models from a business perspective.

• Recovery planning
• Improvements
• Communication

• Asset Control
• Awareness
• Data security
• Information Protection Processes
• Maintenance
• Protective technology

• Anomalies and events
• Security continious Monitoring
• Detection processes

• Response planning
• Communication
• Analysis
• Mitigation
• Improvements

• Asset management
• Business environment
• Governance
• Risk Asessment
• Risk Management 

Strategy

Cybersecurity
Framework

Recover Protect

Respond Detect

Identify

FIGURE 2.6: NIST Cybersecurity framework

The Cybersecurity framework of NIST identifies five main functions to manage cybersecurity-
related risks. The detection methods created in this research fit within the detect category.
This category is described as: ’develop and implement appropriate activities to identify the
occurrence of a cybersecurity event’. Note that this research limits itself to only this category
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and is not concerned with any of the other categories such as the protection, or recovering of
mobile malware threats.

2.4 Mobile malware detection methods

There are numerous ways to detect mobile malware on smartphones. The taxonomy used in
this research is a combination of the taxonomy of [3] and [22], and shown in Figure 2.7.

Mobile malware detection characterization

Type of 
detection 
(ToD)

Type of 
monitoring

(ToM)

Type of 
identifaction

(ToI)

Granularity
of detection

(GoD)

Place of 
monitoring

(PoM)

Place of 
identication

(PoI)

Place of 
Analysis

Static Dynamic

Hardware

Hybrid

Software Firmware Others

Anomaly Signature Specification

Per app
Per groups 

of apps
Per device

Distributed Local Cloud

FIGURE 2.7: Mobile malware detection taxonomy

Figure 2.7 shows that detection methods are classified depending on the way the methods
are designed. Below, the characterizations of the detection methods and their brief description
is described.

Characterization Description

Type of detection The approach taken to collect features by the detection method.

Type of monitoring The features being monitored / analysed by the detection method.

Type of identification The way malware is identified by the detection method.

Granularity of detection How fine or coarse, data is being analysed by the detection method.

Place of monitoring

Where the different steps of the detection method take place.Place of identifcation

Place of analysis

TABLE 2.4: Mobile malware detection characterization description

2.4.1 Type of detection
The biggest differentiation in mobile malware detection methods is made regarding the
approach to collect features [3]. There are three approaches to collect features: i) static, ii)
dynamic, and iii) hybrid. Static methods try to detect malware without executing applications.
In contrast, dynamic methods execute the application, and analysis occurs during run-time. A
combination of static and dynamic analysis is called a hybrid approach. The biggest limitation
to static analysis is that this type of analysis is susceptible to obfuscation techniques that
remove or limit access to the code of malware. Additionally, other techniques such as the
injection of non-java code, network activity, and the modifications of objects during runtime,
are only visible at run-time. These limitations make them less effective towards zero-day
vulnerabilities [2]. The limitations of static analysis can be solved using dynamic analysis
methods, as these analyse applications during run-time. Drawbacks of dynamic analysis are
that these methods are mostly accompanied with high false positive rates and are heavy on
system resources [3]. Additionally, there are some drawbacks when dynamic analysis is done
with the use of virtual environments, more on this in the paragraph below, describing the
place of monitoring. Because static analysis is less effective on zero-day attacks and recently
more Android malware samples are using techniques to prevent effective static analysis [2],
this research focuses on the dynamic analysis of mobile malware.
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2.4.2 Type of monitoring
The type of monitoring is defined by the features used within a mobile malware detection
method. These features act as an input to the analysis of the detection method. Features
can be categorized into three classes: i) hardware, ii) software, and iii) firmware. Hardware
features are features that can be monitored and are specific to a device, e.g. battery, CPU,
and memory features. Software features are characteristics that can be monitored during
the run-time of software or by examining the software package, e.g. permissions, privileges,
and network traffic. Firmware features are features from programs using read-only memory.
Most firmware features require rooting privileges in the Android OS.
Table 2.5 shows an overview regarding the features used in dynamic mobile malware detec-
tion methods. This table is made using a recent literature review on dynamic mobile malware
detection methods [3] and was consulted during the preliminary literature research of this
research. During the preliminary literature research, few articles were found that focused on
hardware features. Therefore, additional literature was searched on detection methods using
hardware features. These articles are described in Section 2.5.

Category Feature Papers
Hardware Battery [23], [24], [25]

CPU [23], [24], [26]
Memory [23], [24], [26]

Software Permissions [24], [26], [27], [28], [29], [30], [31]
Network Traffic [32], [33], [34], [35]
Information Flow [36], [37]
Covert Channel [38]

Firmware System Calls [24], [28], [39], [40], [41], [42], [43], [44], [45], [46]
API [28], [31], [39], [43], [47]
Library [48]

Others Irrelevant Bad terms [49]
Topology Graph [50]
Run-time behavior [30], [45]

TABLE 2.5: Dynamic detection feature usage overview

2.4.3 Type of identification
The detection methods can also be characterized on the principle which guides the identifica-
tion.

Signature-based detection
This type of detection, also known as misuse-based detection, uses signatures to identify
malware. In static detection, these signatures can be, for example, binary patterns or snippets
from software code. In dynamic detection, these signatures can be a pattern of behaviour.
Known malware is used to extract patterns, and to form signatures for detection. Then these
known signatures are used to detect malware. This type of detection is especially useful for
known malware but less effective against zero day-attacks [3]. The process of signature-based
detection method is shown in Figure 2.8. This figure illustrates an example of a signature-
based detection model that uses snippets from software code as signatures.

Figure 2.8 shows that a signature-based detection model has an underlying signature database.
This database contains signatures of malware. In this example, the different signatures con-
tain three snippets of malicious software code, shown as three different squares next to the
signature names. As an input, this example detection model takes the complete code of a
software. This complete code is, in this example, separated into different parts, resulting in
10 snippets of software. These 10 snippets are compared to the different signatures in the
database. If 3 out of 10 snippets match any signature from the example database, the example
detection model identifies the application as malicious. In the example figure, signature
2 matches with the input software snippets, and therefore the app is identified as being
malicious. There are two important issues with signature-based detection method. One is
that any malicious app can only be identified if the signature is already known and thus in the
signature database. Therefore it is less effective for detecting zero-day attacks. Additionally,
the detection method can easily be bypassed if the malware authors slightly change their app,
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FIGURE 2.8: Signature-based detection method

in this case by changing the software code, therefore changing the signature of the app [2].

Anomaly-based detection
This type of detection is based around normal and anomalous behaviour. The former being
behaviour which falls within the usual behaviour and the latter being behaviour differing
from the normal behaviour. This type of detection is suitable for detecting zero day-attacks,
however, they are also prone to false positives. Rare legitimate behaviour can be viewed as
malicious by this type of detection. The process of anomaly-based detection method is shown
in Figure 2.9

Normal Profile Input

Anomaly?

Yes No

Malicious Benign

FIGURE 2.9: Anomaly-based detection method

Figure 2.9 shows that the detection method needs a profile of normal behaviour. Using this
profile, the detection method checks whether any input is similar to this normal behaviour. In
the figure, the normal behaviour is shown in a graph as some function over time. This graph
can, for example, represent the CPU usage over time. In this case, the normal behaviour
shows that CPU usage gradually declines and increases over time. The input, shown on the
right in the figure, shows that the CPU usage has a spike. If this spike is higher than some
given threshold, the input is flagged as an anomaly.

Specification-based detection
This is another type of anomaly-based detection method. It predefines authorized behaviours
(specification), which are a certain set of rules that are allowed. Any behaviour not adhering
to these rules is assumed to be malicious. One limitation is that it is nearly impossible to com-
prehensively and correctly create all the allowed rules [3]. The process of specification-based
detection method is shown in Figure 2.10.
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FIGURE 2.10: Specification-based detection method

In Figure 2.10, a rule set of three rules is used as an example. These three rules are actions
allowed by applications. In this example, applications can turn on the camera, take a picture,
and access the SD-card. This can be an example of a simple Camera app. The input comes in
the form of actions. Assuming that the three rules in the rule set are the only ones defined,
the input in Figure 2.10 would be flagged as malicious. This is because the first two actions in
this example are allowed but the third action is not.

2.4.4 Granularity of detection
This categorization refers to the approach taken to handle the collected data during analysis.
Malware detection methods can treat data from different applications separately (per app),
per groups of apps, or per device. When the malware is a stand-alone application, treating
the data per app results in good performance. However when malware is distributed and
malicious activity is performed using multiple apps, treating the data per group of apps is
more useful. Lastly, for certain types of malware such as rootkits, it could be useful to monitor
the device as a whole.

2.4.5 Place of monitoring, identification and analysis
The place of monitoring, identification and analysis can differ between different malware
detection methods. These activities can take place distributed, locally or in the cloud. When
any of these activities are done in a distributed manner, multiple (trusted) devices are col-
laborating to achieve tasks within that activity. Locally refers to any activity taking place on
the device itself. Lastly, the activities can take place in the cloud. Monitoring and analysing
malware on phones require lightweight approaches as the resources on most devices are
limited. Cloud solutions can help alleviate the aforementioned problem.
Emulators or virtual devices are used heavily by researchers for the monitoring, identification
and/or analysis of malware [51]. These virtual environments are of relatively low cost and are
more attractive for automated mass analysis which is commonly used with machine learning.
However, using virtual environments to emulate devices can hinder effective detection of
malware. Over the past years, there has been an increase in malware using methods to
evade detection when being run in virtual environments [2] [52]. Some malware can detect
and evade emulated environment by for example identifying missing phone identifiers and
hardware. Other methods include, but are not limited to, the need for user input, measuring
emulated scheduling behaviour, or running at odd times.
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2.5 Related works

Related papers on dynamic malware detection using hardware features are found using a
systematic literature research. The process of the systematical literature research is shown
schematically in Appendix B. An overview of the papers found are shown in Table 2.6. This
Table includes this paper for comparison. Section 2.5.1 describes the most important findings
per paper. Developments in mobile security are examined to augment the knowledge on
recent developments in mobile malware detection methods. The industry developments are
described in Section2.5.2.
To the best of our knowledge, this research is the first in using data spanning a complete year
of +45 real devices for the creation of mobile malware detection methods.

Article Features Training and testing Performance
Ref Year Dynamic Static Benign Malw. Platform Classifiers Acc TPR FPR

[53] 2012 Various (14) 40 4Cust 2 Devices
BN, Histo, J48,
Kmeans, LR,
NB

0.809 0.786 0.475

[24] 2013
Bat, Binder,
CPU, Mem,
Netw

Perm 408PS 1330Ge,VT VE + Monkey BN, J48, LR,
MLP, NB, RF 0.813 0.973 0.310

[26] 2013 Binder, CPU,
Mem 408PS 1130Ge, VT VE + Monkey

RF, BN, NB,
MLP, J48, DS,
LR

1.000 -
√

MSE
=0.02

[54] 2013 CPU, Net,
Mem, SMS 30PS 5Cust Device NB, RF, LR,

SVM - 0.990 0.001

[23] 2014 Bat, CPU,
Mem, Netw

PS 3Cro 12 Devices Gaussian Mix-
ture + LDCBOF ≈1 ≈1 ≈0

[55] 2014 Bat, Time,
Loc - 2Cust 11 Devices Std dev ≈1 - ≈0

[56] 2014 Bat Sens. Act. Device J48, LB, RF - - -
[57] 2016 SC, SMS, UP MD PS 2800 3 Devices 1-NNeigh. - 0.969 0.004
[38] 2016 Bat 7Cust 1 Device NN, DT - >0.85 -
[58] 2016 CPU, Mem 940PS 1120Ge VE + Monkey LR - 0.855 0.172

[59] 2016 CPU, Mem,
SC 1709PS 1523Dr VE + Monkey Kmeans + RF 0.670 0.610 0.280

[60] 2016 CPU, Mem,
Net, Sto 1059PS 1047Dr VE + Monkey RF 0.995 0.820 0.007

[61] 2017 CPU, Mem,
Net 0 <5560Dr VE + Monkey C-SVM 0.820 - -

This
Pa-
per

2018
CPU, Bat,
Mem, Net,
Sto

10Cust 10Cust 47 Devices RF, NB, KNN,
MLP, AdaBoost 0.96 0.65 0.01

Bat battery, BN Bayesian Network, Cr Crowdroid [62], Cust Custom, Dr Drebin [63], DS Decision
Stump, DT Decision Tree, Ge Malware Genome Project [64] , Histo Histogram, Kmeans K Means Clus-
tering, LDCOF Local Density Cluster Based Outlier Factor, Loc Location, LR Logistic Regression, Mem
memory, MD metadata, MLP MultiLayerPerceptron, NB Naive Bayes, Netw network, NN Neural Net-
work, NNeighbour Nearest Neighbour, Perm permissions, PS Play Store, RF Random Forest, Std dev
Standard Deviation, Sto storage, SVM Support Vector Machine, SC system calls, UP user presence,

VE Virtual Environment, VS VirusShare[65] VT VirusTotal[66]

TABLE 2.6: Related works

2.5.1 Academic works
A highly cited paper is by Shabtai et al. published in 2011 [53]. The authors designed a
behavioural malware detection framework for Android devices called Andromaly. As fea-
tures for this detection framework, they used 14 different categories of features resulting
in a total of 88 collected features. The 14 different feature categories were: touch screen,
keyboard, scheduler, CPU load, messaging, power, memory, applications, calls, processes,
network, hardware, binder, and led. They used 40 benign applications and 4 self-developed
malware applications. The 4 self-developed malware applications were a DOS Trojan, SMS
Trojan, Spyware Trojan, and Spyware malware. 4 different experiments were run, differing
in the device on which the model was trained and evaluated, and differing in which benign
and malicious applications were included in the training set. To train their detection model,
the following classifiers were used: Bayesian Network, J48, Histogram, K-means, Logistic
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Regression, and Naïve Bayes. In the two experiments in which they used the same device for
the training and testing of their model, the J48 decision tree classifier performed the best. In
the first experiment, all benign and malicious applications were included in the training set,
resulting in a TPR of 99% and an FPR of 0%. In this experiment, the training set was 80% of
the total dataset and the testing set was 20% of the total dataset. The second experiment did
not include all the benign and malicious applications in the training set, leading to a TPR of
91% and an FPR of 11%. In this experiment, the training set contained 3 of the 4 malicious
applications and 3 of the 4 benign applications. The remaining malicious application and
benign application were used for the testing set. In the two remaining experiments the device
on which the model was tested, differed from the training device. For both experiments, the
Naïve Bayes classifier performed the best. Including all benign and malicious applications
in the training set led to a TPR of 91.3% and an FPR of 14.7%. The training set was created
with the all feature vectors from one device. The testing set consisted of all the feature vectors
from another device. Not including all the applications in the training set resulted in a TPR
of 82.5% and an FPR of 17.8%. In this experiment, the training set consisted of the feature
vectors of the 3 malicious applications and 3 benign applications from one device, and the
testing test consisted of the feature vectors of the remaining malicious and benign application
of another device.
Andromaly showed the potential of detecting malware based on dynamic features using
machine learning, compared different classifiers, and used data collected from real devices
for the training of its detection model. It also tested its robustness by experimenting with
changing the training device from the testing device, and by not including all applications in
the training set. The paper, however, is relatively old and much has changed regarding the
malware ecosystem since 2012. Furthermore, Andromaly showed promising results but the
False Positive Rates of all their four models were relatively high.

In [24], published in 2013, the authors propose a framework named STREAM, which
was developed to enable rapid large-scale validation of mobile malware machine learning
classifiers. Their framework used 41 features which were collected every 5 seconds from
different emulators running in a so-called ATAACK cloud. The feature categories used were
Binder, Battery, CPU, Memory, Network, and Permission features. The emulator used the
Android Monkey application to simulate pseudo-random user behaviour such as touches on
the touchscreen. To evaluate their detection model, the authors used a Random Forest, Naïve
Bayes, Multilayer Perceptron, Bayes Network, Logistic Regression, and a J48 classifier. For
their training set, they used 408 popular applications from the Google Play Store and 1330
malware applications from the Malware Genome Project database[64], and the VirusTotal
database [66]. As the testing set, they used 24 benign applications from the Google Play Store,
and 23 malware applications from the Malware Genome Project database, and the VirusTotal
database. The best performing classifier was the Bayesian Network which had an accuracy of
81.26% with a TPR of 97.30% and an FPR of 31.03%.
This paper showed the potential of using dynamic features although the FPR for all their
tested classifiers were relatively high. Additionally, this research ran applications separately
for 90 seconds and made use of a virtual environment in the form of an emulator with
user-like behaviour created by the Android Monkey tool. This lowers the confidence that the
model would perform the same when evaluated on a real device with a real user.

In [26], published in 2013, an anomaly-based detection method is proposed which uses
application behaviour features. This research used the dataset produced by the research of
[24], mentioned in the previous paragraph. This dataset contained feature vectors from 408
popular applications from the Google Play store and 1330 different malicious applications
from the Malware Genome Project and VirusTotal database. Only the Binder, CPU, and
Memory features were used because, after evaluation of the dataset, the authors noticed
the Battery and Network features being the same throughout the whole dataset. Another
adjustment to the dataset was the balancing of the feature vectors with a technique called
SMOTE. This was done because the benign feature vectors were under-sampled compared to
the malicious feature vectors, due to the inclusion of only 408 benign applications compared
to 1330 malware applications. The research used the Random Forest, Bayesian Network,
Naive Bayes, MultiLayerPerceptron, J48, Decision Stump, and Logistic Regression classifiers.
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Only the performance results are shown for the different Random Forest classifiers with
different parameters. The authors used a 5-fold cross validation for the training and testing
of their classifiers. The best performing classifier had 160 trees, used 8 different features, and
had a tree depth of 16. This resulted in an accuracy of 99.9857% and a root MSE of 0.0183%.
Only 2 False Positives were measured during this experiment.
This paper shows the potential of using dynamic features and Random Forest Classifiers.
However, as this paper makes use of the dataset by Amos [24] it is sensitive to the same
limitations; thus it is not known how this model would perform on a real device with a real
user.

In [54], published in 2013, the authors evaluated different machine learning classifiers for
their detection model. Their model used 10 features related to memory, network, CPU, and
SMS for their detection model. 30 normal applications and five malware applications were
used, however, the source of these applications is unmentioned. The malware applications
were a Spyware, a Hostile Downloader, a Root1, Spyware, and two Trojan Spyware applica-
tions. The benign and malicious applications were run on a real device but it is unknown
how and how long the features were collected from these devices. To reduce the size of their
feature set, the authors used the Information Gain algorithm. The features left over were
related to the Memory, Virtual Memory, SMS, and CPU usage. The classifiers Naïve Bayesian,
Logistic Regression, Random Forest, and SVM were evaluated. The training and testing
were done with a ten-fold cross-validation. The best performing classifier was the Random
Forest classifier with a TPR of above 98.8% for the different families of malware, and an FPR
below 1%. This research shows the potential of using dynamic features but due to the lack of
description of the feature collection, it is unknown how reliable the performance evaluations
are. Additionally, only 5 different malware applications were tested.

In [23], published in 2014, multiple hardware features are taken for the use of anomaly-
based detection of mobile malware. The features collected were CPU, memory, battery,
amount of connection requests, and ICMP requests. Data from 12 smartphones was collected
with the use of an application called Data Collector. These smartphones contained the most
popular software in the Android market as benign application and three malware developed
by [62] as malware. A Gaussian Mixture Model with a Cluster-Based Local Outlier Factor
was used for their detection model. This model resulted in an FPR of almost zero and a TPR
of almost 100%. This research shows the potential of using a Gaussian Mixture Model with
user behavioural features for the detection of mobile malware, however, no description of
the feature collection has been stated. This makes it hard to estimate the reliability of the
performance evaluations. Additionally, only three different types of malware were used in
this research.

In [25] the authors describe two techniques for detecting malware based on individual
power consumption profiles, time, and location. This research has further been refined in
[55] where they propose three power-consumption based techniques based on improved
data. Both studies show that malware can be detected using power consumption based
detection techniques with low False Positive Rates. Their first technique described in [55]
uses location-specific power profiles of users. The reasoning behind creating such profiles
was that users would be expected to use their device differently depending on their current
location, and this would thus lead to different power consumption profiles. The technique
was evaluated using over 10 users which ran two simulated malware. The first simulated
malware was an SMS Spam malware and the second simulated malware was a Root Spyware.
First, location-based power profiles were made for the users with devices not containing any
simulated malware. Then by running simulated software and checking for anomalies in the
location-based power profiles, the detection model would detect malware on the devices.
An anomaly was reported whenever the power consumption would differ a certain amount
of sigma outside of the normal power consumption. No complete results were mentioned
albeit for the subset of 11 users, using one location, and a sigma of 2.5, a TPR of 100% was
achieved with an FPR of 1.5%. The second technique was based on time-based power profiles.
With this technique, different power profiles were made depending on the time of the day.

1a root malware attempts to gain system-level privileges
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The reasoning behind this experiment was that users would be expected to use their device
differently, and thus having a different power consumption profile, depending on the time of
day. In the paper, results for two phones are described where the time profiles are based on
blocks of six hours, resulting in four different time periods per day. For a sigma of 2.5%, a
TPR of 43.7% and an FPR of 1.7% was achieved. The third technique combines created power
profiles based on both location and time. A TPR of 82.7% and an FPR of 1% was achieved,
based on results from two users, three different locations, and four different time periods
The above-described research shows the potential of using location- and time-based power
profiles for the detection of mobile malware. However, results are only shown for a small
subset of users, making it hard to determine the actual performance of the detection models.
Additionally, only two types of simulated malware were used for the detection model, making
it hard to estimate how the detection model would perform on other types of mobile malware.

In [56], published in 2014, the authors examined the possibility of detecting sensitive
activities with the use of power consumption measurements. Sensitive activities such as
turning the screen on or off, enabling GPS/Wifi, enabling voice recorder, and more where
examined. Data was collected using a physical measurement device for the battery level
of a real mobile device. The classifiers evaluated were J48, LogitBoost, and Random Forest.
No overall performance results are stated but they are given for the Wifi, GPS and Touch
classifications. All three classifications had a True Positive Rate of more than 84% with the use
of a window size, for the power measurement, of 4000 mSec. The False Positive Rate is not
given but the Precision is given. For all classifications, the precision was more than 85% with
a window size of 4000 mSec. The research was not focused on detecting specifically malware
but the potential of using the power measurement to detect different sensitive activities was
shown.

In [57], published in 2016, the authors improved their model from their earlier research
[67] from 2012. In 2012 they designed an anomaly detection model named MADAM. The
first version from 2012 used system calls, user presence, and SMS features. The second
version added a static analysis of application packages. The newest version of the detection
method consists of three modules namely the: App Risk Assessment, a Global Monitor, and a
Per-App Monitor. The App Risk Assessment evaluates the app during install by analysing the
metadata of the app. Whenever the app is evaluated as risky, it is added to a Suspicious list
and it will be continuously monitored by the Per-App Monitor. The Global Monitor tracks the
behaviour of the device during run-time by keeping track of the User Activity, Critical APIs,
and System Calls. To detect malicious behaviour, two classifiers have been trained to detect
malicious behaviour. The first classifier analyses the behaviour of the device on a short-term,
and the second classifier analyses the behaviour of the device on a long term. Both classifiers
were trained on a real device without malware, to recognise genuine behaviour. Malicious
behaviour is artificially created by creating feature vectors that differ significantly from the
genuine behaviour. This allows the detector to detect zero-day malware. The different clas-
sifiers trained and tested were the K-Nearest Neighbour Classifier, the Linear Discriminant
Classifier, Quadratic Discriminant Classifier, Multi-Layer Perceptron, Parzen Classifier, and
Radial Basis Function. The performances of these different classifiers are not mentioned but
the authors state that the 1-Nearest Neighbour achieved the best classification results. The
Per-App monitor is a signature-based detection method that analyses applications put on the
Suspicious list. The signatures were created based on seven malicious behavioural patterns
being: text messages sent by a non-default messaging app, text messages sent to numbers
not in the user contact list, high number of outgoing message per period of time, high num-
ber of process per app, excessive foreground time for non-interacting and administrator
app, unauthorized installation of new apps, unsolicited kernel level activity of background
app. To evaluate the TPR, the detection framework has been tested against 2,800 malicious
applications from the Malware Genome Project, Contagio[68], and VirusShare[65] dataset
resulting in around 2800 different malware applications. These datasets contained Botnet,
Installer, Trojan, Ransomware, Rootkit, SMS Trojan, and Spyware malware families. How
long the different malware applications were run was not mentioned. Also, it is unknown
whether the same device was used for the training and testing of the classifiers. The FPR
has been evaluated using three real devices with three different level of usage intensity and
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three different numbers of applications installed. The light usage device contained only 26
native apps, was mostly on standby, and only used for phone calls and text messages. The
medium usage device contained 54 applications, used the device normally although no new
apps were installed. The high usage device started with 52 applications, installed 91 new
apps, and used his phone as often as possible. The framework achieved a TPR of 96% with
their framework and a False Positive rate of less than 0.004%. Furthermore, they detected
some zero-day attacks which were undetected by multiple Antivirus Software at that time.
Additionally, the performance overhead of the used model is low. As the detection model
used system calls as a feature, the detection model needed root permissions.
MADAM showed a high TPR and low FPR with low-performance overhead for their frame-
work. The performance of their model was assessed on real devices differing the usage
intensity over a period of one week, indicating that the performance results reflect real-life
circumstances. A factor limiting the applicability of the framework is its requirement for root
permissions as System Calls were used as features.

In [38], published in 2016, the authors used artificial intelligence tools to detect malware
based on covert channels. This type of malware uses advanced mechanisms to bypass security
frameworks and to extract information. A covert channel is created as a communication
channel in order for two colluding applications to extract personal information. An example
would be that one application called CCSender has access to sensitive data but does not have
permissions to send this over a network. Using the covert channel, this application can then
send information to another app, named CCReceiver in this example, who does have access to
the network. This covert channel is used such that the communication is hidden. The covert
channel can take different forms. For example, the CCSender can change the volume settings
and the CCReceiver keeps track of any changes in the volume settings. With eight levels
of volumes, this results in three bits per iteration of information. Seven self-made android
Covert Channel malware applications were used in the research of [38]. Every malware
used a different type of covert channel. The channels used in the research were: 1) type of
intent, 2) file lock, 3) system load, 4) volume settings, 5) Unix socket discovery, 6) file size, 7)
memory load. The detection was based on two levels of energy consumption measurements.
First, a high-level energy consumption measurement was used with a modified version of
PowerTutor. This application measured the energy consumption per process running on
the system. Second, a middle-level energy consumption was used that measured energy
consumption based on the current and voltage values stored in the /sys folder. Based on
past values of consumptions in a clean system, without malware, a regression model was
created to predict future behaviour. Any power consumption deviating disproportionately
from this expected behaviour would be classified as anomalous. Additionally, a classification
based model was used, using a set of energy-related features. This classification based model
used data from the feature set during the presence and absence of colluding applications. To
test their detection model the authors made use of Neural Networks and Decision Trees. The
detection models were run on two different smartphones, both being in an idle state. The
best performing classifier was the classification-based Neural Network. It was able to detect
all seven colluding apps with an accuracy of more than 85%. No false positive information
was stated.
The paper showed the potential of using battery features for the detection of malware using
covert channels. The accuracy, however, was relatively low compared to other malware
detection systems. Also, no FPR information was stated making it hard to estimate its real
potential. Furthermore, the data was only collected from phones being in an idle-state and
with applications running separately, making it hard to estimate the performance results of
phones being in use by real users.

In [58], published in 2016, the authors used the memory usage and CPU usage as features
for the dynamic detection of mobile malware. Their model was based on 1220 malware
applications from the Malware Genome Project dataset. The 952 benign application were
popular applications download from the Google Play store. Memory and CPU usage were
tracked by running every application separately for 10 minutes in an Android emulator.
The emulator was fed with user-like input by the Monkey application. Their initial feature
set consisted of 57 features and the optimized feature set only contained 7 features. The
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classification algorithm used was linear Logistic Regression with the use of a sliding window
technique. For the training set, they used 571 benign applications from the Google Play store,
and 727 malware applications from the Genome project. The test set contained 275 benign
applications and 304 malware applications. Lastly, they used a validation set of 94 benign
applications and 89 previously unseen malware applications. Previously unseen in this case
means that the malware applications were neither in the training set nor the testing set. For
the creation of the detection model, the window length, the threshold of the number of mal-
ware records contained in each window, and the number of checks differed. Their findings
show that CPU and memory usage features in combination with Logistic regression and a
simple sliding window technique can be used for the detection of malware. However, their
best malware detection model, having a TPR of 95.7% of the malware, showed a relatively
high false positive rate of around 25%. The detection model having the highest F-measure
achieved a TPR 85.5% and an FPR of 17.2%.
This paper showed the potential of using the memory usage and CPU usage as features for
the dynamic detection of mobile malware. However, the detection model showed relatively
high false positive rates. Furthermore, by using an emulator with the Monkey application it
is hard to estimate whether the performance results would be the same on real devices with
real user input.

In [59], published in 2016, the researchers used features related to System Calls, Mem-
ory usage, and CPU usage. They traced three values for the CPU feature: i) CPU total, ii)
CPU user, and iii) CPU kernel. As memory features, they monitored three types of memory
consumption: i) memory consumption by the Dalvik Virtual Machine, ii) native memory
usage, and iii) total memory usage. Per type of memory consumption, five features were
extracted: i) total proportional set size, ii) the shared RAM, iii) the private RAM, iv) the Heap
allocation, and iv) the Heap free. Benign apps were downloaded from the Google Play store
and malicious applications were collected from the Drebin dataset [63]. The applications
were run for 10 minutes in an Android emulator and features were collected every two
seconds. The emulator was fed with user-input from the Monkey application. As detection
models, they first used a K-means clustering algorithm to cluster apps based on similarity
of memory and CPU usage. Then they used a Random Forest Classifier on every cluster
that classified the applications based on their System Calls. For the training, they used 1000
benign applications and 1000 malware applications. The best performing model was the
classifier with the 7-means clustering algorithm and a Random Forest classifier of 50 trees. It
had an accuracy of 67% and an FPR of 28%.
This paper showed the potential of using System Calls, Memory, and CPU features for the
detection of malware. However, due to the use of an emulator with the Monkey application,
it is unknown whether the performance results would be the same for real devices with real
user input. Also, the performance is relatively low compared to other detection methods.
Furthermore, this detection method needs root permission as it uses System Calls as features.

In [60], published in 2016, the authors used features related to CPU, Memory, Storage
and Network for their detection model. Benign applications were downloaded from the
Google Play store and malicious applications were downloaded from the Drebin dataset. The
applications were run for 60 seconds in an Android emulator with the use of the Monkey
application. They used Random Forest classifier with different types of parameters. They
used the features raw and with a transformation called Discrete Cosine Transformation.
Furthermore, the authors changed the granularity of the detection method by either taking
all the features, only the global features, or only the features of the application under analysis.
The classifier using the global features was the best performing classifier. It was trained with
a ten-fold cross-validation. This classifier had an accuracy of 99.52% and an FPR of 0.74%.
This research paper showed the potential of using CPU, Memory, Storage, and Network
features for a detection model. The malicious applications and benign applications were all
evaluated separately in an emulator with the Monkey Application for a brief time, making it
hard to estimate whether the performance results would be the same on a real device used by
a real user.
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In [61] the authors used Support Vector Machines to create a detection model based on re-
source metrics of mobile phone devices. These resource metrics (features) were CPU, Memory
and Network usage. The features were monitored system-wide and application-specific. They
used the Drebin dataset for the malicious applications. It is unknown how many malware
applications were included in their research as they took a subset of the Drebin dataset, not
mentioning the amount. However, as the Drebin dataset consists of 5560 malware applica-
tions, the amount of malware applications used in this research is less than 5560. An emulator
was used for the training on of their model. This emulator was fed with simulated user input
events from the application Monkey. The classifier used was a C-SVM with a radial basis
function kernel. Their detection model achieved an accuracy of 82 per cent. The False Positive
rates are unknown but the precision of the model range from 10% to 90% depending on the
malware family.
This paper shows the potential of the use of hardware features such as CPU, memory, and
network usage. The model performed relatively bad, based on their high FPR, in comparison
with the other detection methods. Furthermore, this paper used an emulator with the appli-
cation Monkey, making it susceptible to the earlier mentioned limitations of the usage of an
emulator.

In summary, it has been shown that using hardware features might be an effective way of
detecting malware on mobile devices. The Naive Bayes, K-Nearest Neighbour, and Random
Forest classifiers seem the most promising. Most recent papers have based their detection
model on emulators and user-like input from the application Monkey making it hard to
estimate their performances on real devices with real users. Additionally, most papers have
only run the benign and malicious applications for a few minutes meaning that any malware
showing malicious behaviour after a few minutes, would not be detected. Furthermore, a
limited amount of research has shown high-performance results.

2.5.2 Industry developments
The recent industry developments on mobile malware detection are briefly described in this
section to get a complete view of the state of the art of mobile malware detection methods.
The focus is on the developments by Google, as this is the developer of the Android software.
The statements below are based on the most recent security report of Google [6].

Dynamic Analysis
Google uses different techniques to check whether an application might perform malicious
behaviour before this application is allowed to be published in the Google Play store. One
technique includes performing a dynamic analysis on the applications. Only from 2016,
Google started adding automated event injections to emulate for example user-input. This
is what the Monkey application does as well, as mentioned in different papers described in
Section 2.5.1. This improvement led to a three-fold increase in the number of apps flagged as
potentially malicious. Google runs the applications in virtual environments and attempts to
detect anti-cloaking techniques. These anti-cloaking techniques are ways to hinder analysis
in virtual environments.

SafetyNet Integration
Google uses SafetyNet to identify apps and other threats throughout the Android ecosystem.
SafetyNet uses security information from different devices such as security events, logs, and
configurations. In 2014, Google focused on the detection of applications trying to abuse
SMS. In 2016 it integrated its data with the Anomaly Correction Engine to focus on rooting
applications. Later in 2016, the combination of the ACE and SafetyNet has been used to
identify applications that make devices stop working.

Anomaly Correction Engine
Since late 2015, Google started monitoring changes in key device security indicators. Google
combines the information across a large number of devices to predict which applications
cause security changes on a device. The precision of the ACE detecting rooting apps in May
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2016 was over 90% according to Google.

Additional Machine Learning researches
In 2016, Google analysed applications based on their installation patterns. Using a semi-
supervised machine learning approach, Google tried to automatically group apps based on
install patterns. Google described that it used document analysis and clustering techniques to
group PHAs. It is unknown which documents were analysed. Using a clustering algorithm it
was able to detect new variants of existing PHA families, detect inconsistencies in previous
reviews, and suggest classifications for previously unseen apps based on which cluster an
application was the closest to.

Other Antivirus solutions
Altough Google describes good performance results, a recent comparison of different An-
tivirus solutions shows a low detection rate of malware by Google [69]. Figure 2.11 shows the
accuracy of different popular Antivirus solutions. The False Positive Rates of all antivirus
solutions is 0%. This figure shows that Google Play Protect has a low accuracy in comparison
with the most popular Antivirus solutions. Unfortunately, the inner workings of these differ-
ent Antivirus applications are unknown. Furthermore, it is unknown which specific malware
applications were used to evaluate the performances of the different Antivirus solutions in
Figure 2.11. Research has shown that Antivirus solutions can easily be bypassed by different
obfuscation methods [2]. However, this conclusion is based on relatively old research papers
from 2012 to 2014. Whether Antivirus solutions are still easily bypassed is unknown to us at
the moment of writing.
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Chapter 3

Data Understanding

This chapter describes the dataset used throughout this research. Figure 3.1 shows the activi-
ties and their planned output for the data understanding phase. These activities are described
in the following different sections. Section 3.1 describes how the dataset was created and how
it was collected. Section 3.2 describes the basic characteristics of the dataset such as the data
types and the number of data points. Section 3.3 describes the data exploration phase with
tables, charts, and other visualisation tools to better understand the content of the dataset.
Section 4.2 describes the data cleansing process.

Data 
collection

Data 
preprocess.

Data 
description

Data 
exploration

Data quality
verification

Raw
dataset

Readable
dataset

Overview
dataset 
content

Dataset 
statistics

Data 
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Output:

FIGURE 3.1: Data understanding activities and output

3.1 Data collection

The dataset [5] used throughout this research is provided by the Ben-Gurion University. This
dataset was created by providing 50 volunteers with a Samsung Galaxy S5, which contained
software to track device metrics, e.g. battery usage, CPU usage, memory usage. The device
also contained a self-written malware that simulated different malware types every month
and that logs of its actions taken. The dataset thus consists of device metrics data and mal-
ware data. A record of the device metrics dataset includes a specific device’s values for its
device metrics, the associated sampling timestamp, and an associated userid. A record of
the malware dataset includes details of the actions taken by the malware application, the
associated sampling timestamp and an associated userid. The volunteers were instructed to
use the smartphone as their sole device for at least two years. and they consented to both
the device tracking and the installation of the malware application. Additionally, they were
instructed to use the malware application at least once every few days for a few minutes.
The malware application (a Mobile Trojan) appeared benign although behaved maliciously,
hence could be used as a normal app. Section 3.2.1 describes the malware application and its
behaviour in more detail.

A timeline of the dataset creation is shown in Figure 3.2. This Figure shows that 11 malware
versions were run in total. Version 10 was not the installation of malware albeit a simulation
of device theft. An important event is the tracking of additional device metrics after malware
version 5, which is also shown in Figure 3.2. As a result of the additional tracking, the dataset
contains more data on the malware versions after version 5 than before version 5; more on
this in Section 3.2.2.
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FIGURE 3.2: Timeline of dataset creation

3.2 Data description

The dataset is divided into 13 different probes. A probe is a grouping of multiple sensors that
shared the same sample interval. For example system metrics, being part of the T4 probe
were recorded every 5 seconds and are therefore joined in one probe.
Of the 13 probes, 6 probes are pull probes which recorded sensor data every fixed interval.
Of the 13 probes, 7 probes are push probes which recorded sensor data as soon as new
information arrived. For example, the SMS probe recorded a new SMS message immediately
after the arrival of an SMS message.
The content, number of fields, and a description of the pull probes and push probes are shown
respectively in Table 3.3 and Table 3.4.

Probe
Sample 
interval

Content
Nr. 

fields
Description

T0 24 hrs

Telephone info 15 Information on the current telephony configuration.

Hardware info 6 The device’s hardware configuration.

System info 5 Kernel, SDK, baseband, and general information.

T1 60 sec.

Location 15 Location(anonymized via clustering), speed, and accuracy.

Cell tower 5 Cell tower ID, type, and reception info.

Device status 14 Brightness, volume levels, orientation, and modes.

Wifi scan 4 Identifiers, encryption, frequency, and signal strength.

Bluetooth scan 9 Identifiers, device class (type), parameters, and signal strength.

T2 15 sec.

Accelerometer 51
Stats on 800 samples captured 4 seconds at 200Hz.Linear

accelerometer
51

Gryoscope 51 For each respective axis: mean, median, variance.

Orientation 9 covariance between axis, middle sample.

Rotation vector 12 FFT components and their statistics.

Magnetic field 51 A subset of these features is extracted from the orientation, rotation, 
and barometer sensors.Barometer 16

T3 10 sec.
Audio 21 Statistics over 5 seconds.

Light 3 Luminosity

T4
(System)

5 sec.
Global app stats 98 Info on CPUs, memory, network traffic, IO interrupts, and WiFi AP

Battery 14 Configuration and statistics on power consumption and temperature.

Apps 5 sec. Local app stats 70
For each running application: stats on CPU, memory and network 
traffic, Linux level process information from the system /proc folder.

Adjusted from Table 9 in [5]

FIGURE 3.3: Overview pull probes
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Probe Content
Nr. 

fields
Description

App packages
App install, 
update, removal

11
Log off when applications are installed, updated, or removed: provides 
the app’s version, hash of the APK, and list of permissions.

Broadcast Broadcast intents 3
All Android broadcast intents (events): changes in password, Bluetooth, 
network, RSSI, app packages, wallpaper, volume.

Call log Calls 5
Address, when, duration, outgoing or ingoing, and an indication if 
number is from user’s contacts.

Moriarty
(Malware)

Malware actions
Malware sessions

6 All clues left by the Moriarty malware agent.

SMS log SMSes 5
Address, when, outgoing or ingoing, and an indication if number is from 
user’s contacts and if the content contains a URL.

Screen status Screen on/off 2 Log off when the screen turns on or off

User presence User present 1
Android USER_PRESENT intent log: a record of when the user begins 
interacting with the device.

Adjusted from Table 8 in [5]

FIGURE 3.4: Overview push probes

As described in Section 2.4.2, this research uses hardware features for the creation of mo-
bile malware detection methods. Therefore, we selected the following probes: T4 probe, Apps
probe, and Moriarty probe. These probes are highlighted in green in Tables tab:pullprobes
and 3.4. For easier and faster reference, they are respectively referred to as: System probe,
Apps probe, and Malware probe.

The sizes of the selected probes are shown in Table 3.5. Note here that the total size of
the Apps probe is more than 1 TB, but the selected size is 9.9 GB. This reduction in size is
because the Apps probe is filtered to contain only the data of the malware application. For
this research, this is the only relevant data of the Apps probe. The three selected probes are
described in more detail below.

Malware System Apps

Total

Size(GB) 0.11 100.00 >1,000.00

Nr. columns 9 130 58

Nr. rows 1,091,644 156,644,389 4,635,675,997

Selected

Size(GB) 0.11 100.00 9.9

Nr. columns 9 130 58

Nr. rows 1,091,644 156,644,389 34,985,575

FIGURE 3.5: Relevant probe sizes

3.2.1 Malware probe

Feature 
category

Nr. 
feats

Action 2

Session 3

Other 3

Total 8

TABLE 3.1: Malware
probe features

The malware probe tracked data of the self-written malicious applica-
tion installed on the devices of the volunteers. Each malware probe’s
record is a log of the action taken by the user’s malware application.
The log contains details about the action and session. Additionally, the
log contains other features, such as the malware version and times-
tamp.

Each malware version resembled a subtype of Mobile Trojan, there-
fore the malware versions showed benign behaviour and malicious
behaviour. In total, 11 different malware versions were included. These
malware versions are shown in Table 3.2. This table shows the benign
behaviour, malicious behaviour (as described by [5]), the malware type (with the taxonomy
of Section 2.1.1), a description of its actions, and the real malware on which the malware was
based. Important to note is that each time data was transmitted by the malware application,
the data was scrambled prior to sending to protect the privacy of the users.

The malware application started in either a benign or malicious session. Within a benign
session, solely benign actions were performed. In a malicious session, the malware performed
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Ver.
Benign
behaviour

Malicious
behaviour

Malware
type

Description
Malware 
sample

1 Game Contact theft Spyware
Steals, encrypts, and transmits all contact stored on 
device.

SaveMe/
SocialPath

2 Web browser
General 
spyware

Spyware
i) Spies on location and audio, or ii) spies on web traffic 
and web history.

Code4hk/
xRAT

3
Utilization
widget

Photo theft Spyware
Steals photos that are taken and in storage,
and takes candid photos of the user.

Photsy/
Phopsy

4 Sports app
SMS bank 
thief

Spyware

Captures and reports immediately on SMSs that contain 
codes and various keywords. Volunteers periodically enter 
one of our
websites, enter their phonenr. and then enter a code 
which we respond to them via SMS

Spy.
Agent.SI

5 Game Phishing Phishing
Makes fake shortcuts and notifications to
login to Facebook, Gmail, and Skype.

Xbot

6 Game Adware Adware Gathers information and places ads, popups and banners.

7 Game Madware

Spyware, 
Adware,
Hostile
downloader

Gathers private information and places shortcuts, 
notifications, and attempts to install new applications.

8
Lock-
screen

Ransomware Ransomware
Performs either: 1) lock screen
ransomware, or 2) crypto ransomware.

Simplocker.A/
SLocker

9
File 
Manager

Click-jacking
Privilege 
escalation

Tricks the user to activate accessibility
services to then hijack the user interface.

Shedun
(GhostPush)

10 Device theft

11
Music 
Player

Botnet DOS
Either performs: 1) DDoS attacks on
command, or 2) SMS botnet activities

Tascudap.A/
Nitmo.A…

12
Web media. 
player

Recon. Infiltr. Other
Maps the connected local network and searches for files
and vulnerabilities.

TABLE 3.2: Malware versions in the malware probe

both benign and malicious actions. The choice of the malware app to start in a benign or
malicious session differed per malware type. Three different modes were identified during
data exploration. Version 1 and 11, alternated every session between benign and malicious
(mode i). Version 2, 6, and 7 changed to benign after two malicious sessions (mode ii). Lastly,
Version 4, 5, and 8, were continuous in a malicious session (mode iii). After the malware
application was started for the first time, the session type was stochastically determined. In
the case of mode i, the probability of starting in a benign session was 1/2. In mode ii, the
probability of starting in a benign session was 1/3. In mode iii, the probability of starting in a
benign session was 0. A state diagram illustrating the aforementioned state changes is shown
in Figure 3.6. Lastly, Versions 3 and 12 changed every day, being the fourth identified mode.
This mode is not included in Figure 3.6 as it behaves the same way as mode i, except that the
malware app checks for the mode of the last day, instead of the mode of the last run.

Mode I Mode II Mode III

Malicious
session

Benign
session

Inactive & 
not ran
before

𝑠𝑡𝑎𝑟𝑡() &
𝑃 𝑋 = 𝑏𝑒𝑛𝑖𝑔𝑛

Inactive

𝑠𝑡𝑎𝑟𝑡() &
𝑃 𝑋 = 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

𝑠𝑡𝑎𝑟𝑡() &
𝑙𝑎𝑠𝑡𝑅𝑢𝑛
= 𝑚𝑎𝑙

𝑠𝑡𝑜𝑝() 𝑠𝑡𝑜𝑝()

𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛()

Inactive & 
not ran
before

Inactive

𝑠𝑡𝑎𝑟𝑡()

𝑠𝑡𝑜𝑝()

𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛()

𝑠𝑡𝑎𝑟𝑡()

Malicious
session

𝑠𝑡𝑎𝑟𝑡() &
𝑙𝑎𝑠𝑡𝑅𝑢𝑛
= 𝑚𝑎𝑙 Malicious

session

Benign
session

Inactive & 
not ran
before

𝑠𝑡𝑎𝑟𝑡() &
𝑃 𝑋 = 𝑏𝑒𝑛𝑖𝑔𝑛

Inactive

𝑠𝑡𝑎𝑟𝑡() &
𝑃 𝑋 = 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

𝑠𝑡𝑎𝑟𝑡() &
𝑙𝑎𝑠𝑡𝑅𝑢𝑛𝑎
= 𝑚𝑎𝑙,𝑚𝑎𝑙

𝑠𝑡𝑜𝑝() 𝑠𝑡𝑜𝑝()

𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛()

𝑠𝑡𝑎𝑟𝑡() &
𝑙𝑎𝑠𝑡𝑅𝑢𝑛𝑠
= 𝑚𝑎𝑙,𝑚𝑎𝑙

FIGURE 3.6: States of malware application in dataset
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3.2.2 System probe

Feature 
category

Nr. 
feats

Battery 15

CPU 18

I/O interrupts 27

Memory 38

Network 13

Storage 14

Wifi 2

Other 3

Total 130

TABLE 3.3: System
probe features

The system probe (T4 probe), tracked global device data every five
seconds. The feature categories that were tracked are battery, CPU,
network, memory, I/O interrupts, and storage. The number of features
per feature category is shown in Table 3.3. The other feature category
contains the following features: probe version, timestamp, and user
id features. Each record of the system probe is a log of the user’s
global device data at a given time. The device data is taken from the
/proc/ folder. Important to note here is that only 41 of 130 features,
were tracked from the start of month 1. These features are called the
Basic features. After month 5, 89 additional features (advanced Linux
features) were tracked. These features are called the Advanced features.
The advanced features are thus not available for malware version 1
until 5, as these were run before month 5. For a complete description
all features of the System probe, see Appendix E.

3.2.3 Apps probe

Feature 
category

Nr.
feats

App cpu 13

App info 4

App memory 17

App network 4

App process 16

Other 4

Total 58

TABLE 3.4: Apps
probe features

The App probe recorded app data at every fixed time interval for each
application installed on the device. As stated before, for this research,
the only relevant data is the app data of the malware application. Each
record of the apps probe is a log of the user’s (malware) app data at
a given time. The app data is taken from the /proc/ folder.
Important to note here is that, just as the Systems probe, the Apps
probe contains Basic features and Advanced features. After month
5, 13 additional Linux fields were tracked. These features are called
Advanced features from hereon and the other 35 are called Basic fea-
tures. For a complete description of all features of the Apps probe, see
Appendix F.

3.3 Data exploration

To verify the data quality of the probes and to understand the content of the datasets, the
probe datasets are explored individually before the data integration phase. This phase is
called the Data exploration I phase. An important finding during the exploration of the
Malware dataset is the distribution of data among the different malware types. The malicious
actions are overrepresented in the Malware dataset. Roughly 90 per cent of the malware data
points are malicious actions and 10 per cent are benign data points. To have a representative
dataset, i.e. a dataset reflecting real-life circumstances, the dataset is balanced to include
fewer malicious data points and more benign data points. This process is described in Section
4.4.
The next Sections focus on the Data exploration II phase, which was performed after the
data integration phase. This exploration is on the final dataset used for the training and
testing of the detection models. For easier reference and to keep the structure logical, the
Data exploration II phase, that took place after data integration, is reported in this Section.

3.3.1 Data distribution
An important finding of the second data exploration phase, is the difference in distribution
of data per user as can be seen in Figure C.1. Some users are overrepresented in the dataset.
This might suggest that some models are biased towards overrepresented users in the dataset.
To overcome this issue, multiple testing modes are used, as described in Section 5.2.4

Another important finding is the difference in distribution of data over time. Figure 3.8
shows more data in months 1, 2, 6, and 7. This indicates that more data is available for
malware versions 1, 2, 6, and 7 in comparison with the other malware versions.
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FIGURE 3.7: Data distribution of users
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FIGURE 3.8: Data distribution over time

Lastly, the Figure 3.9 shows the distribution of malware versions per action type. As
expected from the distribution of data over time (Figure C.2), more data is avilable for mal-
ware versions 1, 2, 6, 7 than the rest of the malware versions. To assess the performance of
classifiers on seperate malware types, multiple training modes are used and described in
Section 5.2.3.
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Malware version
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FIGURE 3.9: Data distribution of malware version per action type

3.3.2 Correlations in dataset
Figure 3.10 shows the top 10 highest (Pearson) correlation coefficients between action types
and features (left) and malware session types and features (right). The postfix _mor_app
is used for features from the Apps probe; the other features are from the System probe.
For a description of the features please refer to Appendices F and E. The correlations were
calculated by taking the binary value of the action type or session type string. The malicious
string was set to a 1 and the benign string was set to a 0. Figure 3.11 shows the top 10 lowest
(Pearson) correlation coefficients between malware actions and features (left) and malware
sessions and features (right) The shown features might indicate the relative importance of
these features for the detection of malicious actions and sessions.
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FIGURE 3.10: Top 10 highest correlation coefficients of action type and features
(left) and session type and features (right)
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Chapter 4

Data Preparation

This chapter describes how the data was prepared for the modelling phase. Figure 4.1 shows
the activities and their output, for the data preparation phase. Section 4.1 describes which
data rows and columns were selected for this research. Section 4.2 describes the data cleansing.
Section 4.3 describes how multiple data sources were integrated to create a dataset suitable
for modelling. Section 4.4 describes the balancing of the dataset. Lastly, Section 4.5 describes
how the data was formatted to allow the training and testing of different machine learning
classifiers.

Data 
integration

Data 
selection

Data 
cleansing

Dataset 
scope

Clean 
dataset

Activity:

Output:
Basic 

dataset

Data 
balancing

Data 
formatting

Realistic
distributed
datasets

Datasets 
formatted
for tools

Advanced

dataset

FIGURE 4.1: Data preparation activities and output

Note here that the data integration phase leads to two different datasets. One dataset, the
Basic dataset, contains data from the entire year of 2016. The other dataset, the Advanced
dataset, only contains data from 2016 Q3 and Q4. As described in Sections 3.1, additional
columns were added to the System and Apps probe from the start of Q3. Therefore, data for
these columns are only available from the start of Q3. The data integration phase is described
in more detail in Section 4.3.

4.1 Data selection

The data selection is based on the relevance of items (i.e. rows) and attributes (i.e. columns)
for the training and testing of different machine learning classifiers.

Relevant items
All rows from the year 2016 are selected because rows of this year contain both device data
and malware data. From the malware probe, all rows containing data of malware version
11 are dropped. This version contains data of simulated device theft and is therefore not a
malicious program.

Relevant attributes
Columns that are empty are dropped. The only column containing no data is connected_wifi_
ssid column. No other columns are dropped during this phase to enable the data integration
process. Some columns that should not be included in the experiments are needed for the
data integration process. For example: the userid or timestamp of a record need not be included
in the experiments. However, these columns are needed to join the probe datasets. Therefore
the columns are selected during the experiment designs, as described in Section 5.2.5
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4.2 Data cleansing

Data imperfections are resolved during the data cleansing process. This implies resolving
i) missing data ii) data errors iii) measurement errors iv) coding inconsistencies v) and bad
metadata.

4.2.1 Resolving missing data
Every column of the different probes is explored by retrieving basic statistical summaries, as
described in Section 3.3. The amount of missing data per column is identified using the count
of the columns included in these statistical summaries. Rows containing any missing data are
dropped. No method is chosen to replace the missing data to minimize the adjustments to
the original datasets.

4.2.2 Resolving data errors
Data errors refer to data that was entered incorrectly, usually due to typographical errors
made in entering data.
Data errors are identified in two ways: i) all column statistics are reviewed to check for
anomalies ii) column rules are set to check for errors in data. Based on the column statistics,
no anomalies were found in the datasets that indicated any data errors.
Column rules are set per numerical columns to check whether a value is within an expected
range. For example, the value for the battery level column is expected to be within a 0 to 100
range. The numerical columns and their rules are shown in Table 4.1. Additionally, possible
values for string columns were identified. The possible values, the column, and the probe
belonging to the column are shown in Table 4.2.

Rule System columns Apps columns

𝑖 ∈ [0, 1] battery_invalid_charger
𝑖 ∈ [0, 2] battery_chargetype
𝑖 ∈ [0, 10] battery_health

𝑖 ∈ [−19, 20] - nice

𝑖 ∈ [0, 100]
battery_level, battery_scale, cpu_0, cpu_1, 

cpu_2, cpu_3, total_cpu
rt_priority, cpu_usage

𝑖 ∈ [−1800, 1800] battery_current_avg

𝑖 ∈ [0,∞] Remaining numerical columns Remaining numerical columns

TABLE 4.1: Rules for numerical columns of datasets
Possible values Malware columns System columns Apps columns

“Benign”, “Malicious” actionType, sessionType - -
𝑒𝑛𝑑𝑠𝑊𝑖𝑡ℎ "GHz" ,
𝑒𝑛𝑑𝑠𝑊𝑖𝑡ℎ("MHz")

- cpuhertz -

“D”, “R”, “S”, “T”, “X”, “Z” - - state

TABLE 4.2: Rules for string columns of datasets

4.2.3 Resolving measurement errors
Measurement errors refer to data that is entered correctly but is based on an incorrect mea-
surement scheme.
Measurement errors are identified by reviewing column statistics to check for anomalies.
No measurement errors were found for none of three probe datasets.

4.2.4 Resolving coding inconsistencies
Coding inconsistencies refer to inconsistencies between the meaning of a field and the mean-
ing stated in a field description.
Coding inconsistencies are identified by reviewing column statistics to check for anomalies.
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No coding inconsistencies were found for none of three probe datasets.

4.2.5 Resolving bad metadata
Bad metadata refers to a mismatch between a value and the documentation.
Bad metadata was found for the System probe. The documentation described one data
schema, i.e. column structure, for the System probe. However, while reading the dataframes,
two different data schemas were found. This issue was resolved by reading the dataset two
times. Once with the first data schema, and once with the other data schema. During the
first reading, the rows not conforming to the first data schema were dropped. During the
second reading, the rows not conforming to the second data schema were dropped. Then, the
resulting dataframes were joined to create the new System dataset. A detailed description of
the solution is described in Appendix A.

4.3 Data integration
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FIGURE 4.2: Trade-off data inclusion and threshold

Three different probes are used throughout
this research. The integration of these probes
leading to the Basic dataset and Advanced
dataset are shown in Figure 4.3. The Ba-
sic dataset is a dataset containing data with
only Basic features. As described in Section
3.2, data from Q1 until and including Q4 of
2016 is available for these features. The Ad-
vanced dataset is a dataset containing data
with both the Basic and Advanced features.
As described in Section 3.2, data from Q3
until and including Q4 is available for these
features.

Figure 4.3 shows that the System and
Malware probe are cleaned before joining them on the userid and timestamp. For the Systems
probe, the relevant features, i.e. columns, are selected before cleaning. For the Basic dataset,
the relevant features are the Basic features and for the Advanced dataset, the relevant features
are the Basic and Advanced features. The selection of relevant features is needed for the
creation of the Basic dataset because the data cleansing process would otherwise remove all
rows from Q1 and Q2. These rows contain null values for the Advanced features, which the
data cleansing process removes. The selection of the relevant features is performed for the
Advanced dataset for consistency.

After the cleaning of the Malware and System probes, the two probes are joined on the
userid and timestamp. The userid must be an exact match. The timestamp, however, does not
need to be an exact match because few exact matches exist. The Malware probe executed
specific actions at random time intervals, whereas the System and Apps probe recorded data
every 5 seconds. To increase the amount of data after joining, the timestamp of the Systems
and Apps probe need to be within a certain positive threshold of the Malware timestamp. A
threshold of five seconds is chosen as 82 per cent of the data is matched with this threshold.
The trade-off between data inclusion and threshold is shown in Figure 4.2.

After joining the Malware and System probe, the resulting dataframe is joined with a
cleaned Apps probe on the userid and timestamp, using the same 5-second threshold. Before
joining, a selection of relevant features is performed for the Apps probe for similar reasons as
the System probe. The data integration process leads to two datasets, i.e. the Basic dataset
and Advanced dataset. Section 5.2.2 describes and compares both datasets.

After integration, the file size of the datasets are no longer excessive and can, there-
fore, be stored in memory. Therefore, the PySpark dataframes are transformed into Pandas
dataframes. Nevertheless, the data is stored and used on the Hadoop cluster as an optimal
use is made of distributing the training and testing of machine learning classifiers. This is



34 Chapter 4. Data Preparation

Malware

System

Clean 
dataset

Clean 
dataset

Apps

Clean 
dataset

Join on userid
and timestamp

Join on userid
and timestamp

Basic 
dataset

Select 
fs1 & fs2 
columns

Select 
fs1 & fs2 
columns

Malware

System

Clean 
dataset

Clean 
dataset

Apps

Clean 
dataset

Join on userid
and timestamp

Join on userid
and timestamp

Advanced
dataset

Select 
fs4 & fs5 
columns

Select 
fs4 & fs5 
columns

Data integration
Basic dataset

Data integration
Advanced dataset

FIGURE 4.3: Data integration overview

described in Chapter 5.

4.4 Data balancing

As described in Section 3.3, the Malware dataset is overrepresented by malicious datapoints
with around 90 per cent of the rows describing malicious actions. In real life, however,
malicious applications and therefore the malicious actions performed, are relatively low com-
pared to benign applications. Therefore, to better reflect real-life circumstances, the dataset
is balanced to include fewer malicious actions and more benign datapoints. Two ways to
balance the data are: i) increasing benign datapoints ii) decreasing malicious datapoints. The
latter requires no addition of (artificial) data and is therefore chosen. The dataset is balanced
by downsizing the number of malicious datapoints per malware type until 90 per cent of
the rows are benign actions and 10 per cent is malicious. The malicious datapoints that are
removed, are chosen at random.

4.5 Data formatting

The machine learning package Sci-kit learn is used for the training and testing of the machine
learning classifiers. This package requires all categorical features to be numerical. Therefore
the target label actiontype with values benign and malicious have been transformed into binary
values. A zero value represents a benign action and one value represents malicious actions.
Additionally, the columns with a string datatype are transformed using a OneHotEncoder.
More on this in Section 5.2.5.
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Chapter 5

Modelling

This chapter describes the modelling phase of this research. During this phase, the dataset is
used for the training and testing of malware detection models. Figure 5.1 shows the activities
and their output in the modelling phase. The activities are described in the following sections.
Section 5.1 describes the selection of the different machine learning techniques. Section 5.2
describes the experiment setups. Section 5.3 describes how the machine learning techniques
were used to train and test different classifiers. Lastly, Section 5.4 describes additional experi-
ment performed, which were run after evaluation of the earlier experiments.

Training
and testing

Selection ML 
techniques

Experiment 
design

Classifier
selection

Experiment 
design

Activity:

Output:
Basic 

dataset

Evaluation
Additional
experiments

New 
experiment 

designs

Improved
models
results

Advanced

dataset
Model 
results

FIGURE 5.1: Modelling activities and output

5.1 Selection machine learning techniques

Based on previous studies on dynamic malware detection, described in Section 2.5, the most
promising machine learning techniques are selected. The Random Forest, Naïve Bayes and
K-Nearest Neighbour classifiers showed the highest performance in the actual malware
detected (TPR) and low amount of false flags (FPR and FNR). Additionally, recent research
on the use of Neural Networks for the detection of mobile malware has shown promising
results. Therefore, this study uses Random Forest, Naive Bayes, K-Nearest Neighbour, and
Neural Network classifiers for the detection model.

5.2 Experimental design

An overview of the experiments is shown in Table 5.1. This figure shows that the experiments
are grouped per classifier, dataset, featureset, training mode, and testing set. These different
groupings are described below. First, the target label of the classifiers is described.

Classifier Dataset Featuresets
Training 

mode
Testing
mode

RF | NB | KNN | MLP | Ada Basic | Advanced fs1 | fs2 | fs3 | fs4 | fs5 | fs6 all Normal holdout

RF | NB | KNN | MLP | Ada Basic | Advanced fs1 | fs2 | fs3 | fs4 | fs5 | fs6 permwtype Normal holdout

RF | NB | KNN | MLP | Ada Basic | Advanced fs1 | fs2 | fs3 | fs4 | fs5 | fs6 all Unknown device

RF | NB | KNN | MLP | Ada Basic | Advanced fs1 | fs2 | fs3 | fs4 | fs5 | fs6 permwtype Unknown device

TABLE 5.1: Experiments overview
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5.2.1 Label
Labels refer to the target label that the classifier tries to predict. Two potential labels exist for
the detection of mobile malware: i) action type, ii) session type. Action type describes whether
an action is benign or malicious and session type describe whether a session is benign or
malicious. Actions belong to a specific session. Session types are fixed at the launch of the
malware app. As described in Section 3.2.1, within benign sessions, only benign actions are
performed and within malicious sessions, both benign and malicious actions are performed.
The action types and session types are transformed to binary values, as classifiers require
numerical values instead of string values. Therefore, a benign value for session types or action
types are transformed to a zero, and a malicious value for sessiontypes or actiontypes are
transformed to a one.

Experiments with both labels are run, although the focus is on action types. Action types
are more preventive than session types. A model detecting malicious actions can immediately
detect malware and countermeasures can be taken. A model detecting malicious sessions can
only detect malware after the malicious behaviour already took place.

5.2.2 Datasets
As described in Section 4.3, two datasets are used for the training and testing of the classifiers.
A comparison of both datasets is shown in Figure 5.2. This Figure shows that the Basic dataset
is 3.7 times larger than the Advanced dataset. This is because the Advanced features were
only available after 2016 (Q2). Additionally, the Basic dataset contains more different malware
types than the Advanced dataset. For these reasons, the results of the Basic dataset are more
relevant than the results of the Advanced dataset.

Dataset Basic Advanced

Size (MB) 21.4 11.41

Total rows 28.821 7.850

Total columns 103 204

Malware types v1 – v12  (exc. v10) v5 – v12  (exc. v10)

Possible
featuresets

fs1 – fs3 fs1 – fs6

FIGURE 5.2: Datasets overview

5.2.3 Training mode
Training mode refers to how the training of the classifiers is performed. Two different training
modes are used throughout this research. The first training mode, called all, uses the complete
dataset to train one classifier model. The second training mode, called peruser, trains a classi-
fier model per user resulting in 47 different models. The second training mode, permwtype,
trains the classifier models per malware type, resulting in 10 different models. The different
training modes are shown graphically in Figure 5.3.

5.2.4 Testing mode
Testing mode refers to how the testing of the classifiers is performed. Two testing modes
are used throughout this research. Both testing modes use an x percentage of the data for
training and the remaining 1-x percentage of the data for testing. In the normal holdout testing
mode, the training and testing data is sampled at random. In the unknown device testing mode,
the testing data contain data of devices that are not in the training data. The unknown device
testing mode is used to simulate a situation in which no data is yet available for a certain
device. In that case, a model trained on from data of other devices might be a potential
solution. Testing the models on data of other devices also helps to remove the potential bias
of the model on a specific device. Note here that only the testing on the test set is adjusted,
not the testing on the validation set during cross-validation. The cross-validation method is
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Training mode
All

Training mode 
Per mwtype

Input Output Input Output

…

m1

m2

m12

… …

m1

FIGURE 5.3: Training modes overview

described in Section 5.3. Adjusting the testing of the validation set is suggested for future
research. More on this in Section 9.2

5.2.5 Featureset
Featureset refers to which features were used in the training and testing of the classifier.
Six featuresets are used to train and test the classifiers. The featuresets are divided into
Basic featuresets and Advanced featuresets, referring respectively to the features available
before month 5 of 2016, and the features available after month 5 of 2016. An overview of the
different featuresets is shown in Figure 5.4. Featuresets 1 and 4, i.e. Basic global features, and
Advanced global features, include global device features from the System probe. Featureset 2
and featureset 5 include Apps features from the Apps probe. Featuresets 3 and featuresets 6
combine the Global and Apps features. As noted in Section 5.2.2 no malware data is available
of featureset 4, 5, and 6, for malware version 1, 2, 3, 4, and 5.

All metadata features, such as timestamps or malware versions, are removed from all
featuresets. From the remaining features, the string features are transformed using a One-
HotEncoder. This transformation creates a new binary column for each possible value of
a string column. For example: the feature state has five possible values: R, S, D, T, Z. The
OneHotEncoder transforms this feature into five new columns: state_R, state_S, state_D, etc.
For each row, the columns with the actual state have one value and, and the other columns
have a zero value. The specific features per featureset are shown in Appendix H.

Featureset
Basic global

(fs1)
Basic app

(fs2)
Basic comb.

(fs3)
Adv. global

(fs4)
Adv. app

(fs5)
Adv. comb.

(fs6)

Total features 33 41 74 123 53 176

Features
Battery, 
CPU, 

Netw. traffic,

App CPU, 
App Memory, 
App Netw. 

Traffic,
App process

fs1 features + 
fs2 features

Battery, 
CPU, 

Netw. traffic,
I/O 

Interrupts,
Processes,
Storage

App CPU, 
App Memory, 
App Netw. 

Traffic,
App process.
+ add. App 

CPU
+ add. App 

Memory
+ add. App 

process

fs4 features + 
fs5 features

FIGURE 5.4: Featuresets overview

5.3 Training and testing

Each classifier is trained and tested according to the experiment setups shown in Table 5.1. A
4-fold cross-validation is used to train the dataset. Herein, the dataset is divided into four
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parts of equal size. For each training and testing iteration (i.e. a fold) one part is used as a
validation set and the remaining three parts are used as a training set. The validation set is
changed in each fold. After the four folds, the performance metrics are averaged to get the
performance of a model. Subsequently, the test set, containing data that the model has not
seen before, is used to get the actual performance of a model. A schematic overview of the
cross-validation method and the holdout method is shown in Figure 5.5

Dataset

(Cross) validation set

Test setTrainingTrainingTrainingValidation

TrainingTrainingValidationTraining

TrainingValidationTrainingTraining

ValidationTrainingTrainingTraining
Avg. 

metrics
Best model

Test set

Actual 
performance

FIGURE 5.5: Schematic view of cross validation method and hold-out method

Using a GridSearch, different hyperparameters are tested for each model. In a GridSearch,
each combination of hyperparameter setting in a search space is tested. After the GridSearch,
the best model is chosen based on one performance metric. In this research, the f1_score is
chosen for the selection of the best model. This metric is often used in research [3] and is a
harmonic mean of the precision and recall of a performance. These two metrics are normally
a trade-off of each other, and a high score indicates a good balance between these two metrics.
The search space for the hyperparameter settings per classifier is shown in Table 5.2.

Classifier Parameter Search space

AdaBoost Nr. estimators [5, 10, 20, 50, 100, 200, 400]

Random Forest

Nr. trees [3, 5, 10, 20, 40, 80, 160, 320]

Maximum depth tree [3, 5, 10, 20, 40, 80, 160, 320]

Maximum features [3, 5 10, 20, 40, 60, 80, 100, 120, 140, 171]

Naïve Bayes Alpha [0.1, 0.2, 0.3, .., 2.0]

K-nearest neighbours Nr. neighbours [1, 3, 7, 11, 21, 31, 61[

Multilayer Perceptron
Nr. layers [5, 10, 15, 25, 45, 70]

Layer size (nr. nodes per layer) [5, 10, 15, 25]

TABLE 5.2: Search space per classifier of GridSearch (AdaBoost is described in
Section 5.4)

The detection models are built using a server cluster with a Hadoop File System (HDFS).
The HDFS is used to manage the storing, replication and retrieval of data. The cluster consists
of 55 nodes with each 32 GB RAM and 12 cores. It uses Hadoop Yarn for job scheduling and
monitoring. PySpark 2.2.0 is used to process the dataset. A distributed implementation of the
machine learning classifiers of the package Scikit-learn is used to train and test the detection
models. This distributed implementation, called Spark Sklearn, is adjusted to provide and
log more information during the execution of experiments. Lastly, Jupyter is used to allow
for relative easy script debugging. An overview of the environments and tools used can be
seen in Figure 5.6.

Jupyter & Python

Spark Sklearn Scikit-learn

Apache Spark

Hadoop Yarn

Hadoop HDFS

High-level programming

Machine learning

Data processing

Job scheduling

Data storage

FIGURE 5.6: Data analysis environment and tools
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5.4 Additional experiments

After the initial experiment setups, additional experiments were defined. First of all, a re-
cursive feature elimination with cross-validation method was used to tune the number of
features for the classifier models. Additionally, an AdaBoost (Ada) classifier was used to
analyse the performance of a boosted ensemble classifier. The results of the experiments
namely showed a good performance of the Random Forest classifier. The search space for the
hyperparameter tuning of Ada is [5, 10, 20, 50, 100, 200, 400] for the hyperparameter number
of estimators. Below, the recursive feature elimination method is described in more detail.

In recursive feature elimination with cross-validation (RFCV) the classifier is first trained
and tested on the complete featureset according to the cross-validation method described in
Section 5.3. Subsequently, the least important feature is removed and the classifier is trained
again on the reduced featureset. This is repeated until one feature remains. The feature
importance can be retrieved from any classifier that calculates feature coefficients or feature
importances. In this research, the Random Forest classifier is used to determine the feature
importance, as this classifier showed relatively good performance in the experiment results.
The feature importance depends on the hyperparameters set in the Random Forest. Therefore,
the RFCV is first performed with the Random Forest classifier, as is shown in Figure 5.7. This
Figure shows that the feature importances are retrieved from the best performing model,
i.e. model performing the best on the cross-validation set. Subsequently, the least important
feature is removed and the Random Forest classifier is trained and tested on the reduced
dataset. This process is repeated until one feature remains.

Dataset

(Cross) validation set

TrainingTrainingTrainingValidation

TrainingTrainingValidationTraining

TrainingValidationTrainingTraining

ValidationTrainingTrainingTraining
Avg. 

metrics
Best model

Feature 
importances

Eliminate least
important feature

Start training and
testing again

Actual 
performance

Test set

Test set

FIGURE 5.7: Recursive feature elimination with cross-validation for Random
Forest

The features are ranked according to the iteration in which they were dropped. The feature
dropped at the beginning is ranked last, and the feature remaining last is ranked first. The
feature ranking is saved and used in the RFCV method of the remaining classifiers (NB, KNN,
MLP, Ada). The RFCV method of these classifiers is shown in Figure 5.8. This Figure shows
that these classifiers use the feature ranking calculated during the RFECV of the Random
Forest classifier to determine which feature to drop. The feature with the lowest ranking is
dropped after an iteration.

Note here that the feature ranking is calculated per experiment setup of the RF classifier,
i.e. per dataset, training mode, testing mode, and featureset.
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Dataset

(Cross) validation set

TrainingTrainingTrainingValidation

TrainingTrainingValidationTraining

TrainingValidationTrainingTraining

ValidationTrainingTrainingTraining
Avg. 

metrics
Best model

Feature ranking 
from RFCV of 
Random Forest

Eliminate feature with
lowest ranking

Start training and
testing again

Actual 
performance

Test set

Test set

1
2
3

FIGURE 5.8: Recursive feature elimination with cross-validation for the remain-
ing classifiers
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Chapter 6

Results

This chapter describes the results of the experiments. An experiment setup refers to one
experiment consisting of a specific classifier, training mode, testing mode, featureset, number
of features selected, and hyperparameter search space. All results in this Chapter are shown
for the best1 number of features, i.e. the number of features leading to the highest f1 score
for a particular experimental setup. Additionally, the results in this Chapter are only shown
for the basic featuresets. As noted before, the advanced featuresets are only applicable to the
advanced dataset that consists of fewer data points and fewer malware types. Therefore we
focus on the basic dataset with basic featuresets.

In this chapter, when comparing classifier performances, colours are added to give a quick
insight into relative differences between classifiers and are not meant to show whether a
classifier is performing good or bad. Nevertheless, from here on in this Chapter, we will refer
to high scores if the classifier has an f1 score above 0.7 (highlighted green in the Figures of
this Section), medium scores if a classifier has an f1 score between 0.5 and 0.7 (highlighted
orange in the Figures of this Section), and low scores if a classifier has an f1 score below 0.5
(highlighted red in the Figures of this Section).

Note that all statements in this Chapter regarding statistical significance are based on a
McNemar test (α < 0.05) [70] between models. The test is used to compare performances of
machine learning classifiers on test sets. More on this in Section 8.2.3. The results of these
tests are shown in Appendix J.

Section 6.1 compares the performances of classifiers. All results in Section 6.1 are shown
for training mode all. Section 6.2 describes the performance of classifier for training mode
permwtype.

6.1 Performance per classifier

This Section describes the performances of the classifiers for training mode all testing mode
normal holdout. Subsections 6.1.1 - 6.1.5 describe the performances of the classifiers in detail.
Subsection 6.1.6 compares the performances per classifiers and presents the main findings of
the current Section.

6.1.1 Random Forest
The performance of RF for different featuresets and testing modes is shown in Table 6.1. This
Table shows the following:

1. RF has the highest f1 score of >0.72 with featureset 2 and featureset 3. The differences
between featuresets 2 and 3 are not statistically significant. This suggests that adding
global features to app features does not result in a different performance, compared to
only using app features.

2. The performance difference for the f1 score between the testing modes normal holdout
and unknown device is statistically significant and above 0.15 for all featuresets, indicating
that all classifiers have a lower performance when tested on new devices than if tested
on same devices from the training set.

1hereafter, best always means best with regards to the highest f1-score
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3. The performance of RF with featureset 1 is lower than with the other featuresets, for
both testing modes normal holdout and unknown device, suggesting that the RF classifier
with global features are not useful in detecting malicious actions of malware.

4. All False Positive Rates are below 0.1.
5. All False Negative Rates are above 0.34, suggesting that most models incorrectly classify

a malicious action as benign more often than vice versa.

Best Random Forest classifier (training = all)

Testing mode Normal holdout Unknown device

Featureset
fs1 

(Basic global)
fs2 

(Basic apps)
fs3 

(Basic combined)
fs1 

(Basic global)
fs2 

(Basic apps)
fs3 

(Basic combined)

best nr. features 24 29 10 28 6 8

Accuracy 0.922 0.958 0.959 0.888 0.918 0.925

F1 score 0.422 0.730 0.722 0.249 0.562 0.561

FPR 0.022 0.013 0.009 0.052 0.057 0.043

FNR 0.670 0.346 0.380 0.776 0.362 0.423

Nr. trees 5 320 320 40 3 3

Max. depth tree 320 40 20 40 20 10

Max. features 24 10 3 28 5 8

TABLE 6.1: Performance of different classifiers on test set for testing mode
normal holdout and unknown device (the highest f1 score of all featuresets for a

particular testing mode is highlighted green)

The performances of the cross-validation results over the hyperparameter search space is
shown in Figure 6.1, 6.2, and 6.3, for respectively the parameters number of trees, maximum
depth, and maximum features. These performances are shown for the test results of the cross-
validation folds for the featuresets with the best number of features, as shown in Table 6.1.
The best values for all hyperparameters are shown in Table 6.1. The Figures below show the
following:

1. Increasing the number of estimators from 3 to 320 trees improves the f1 score of the
models by <2% for all featuresets. This suggests that although the best performing
model (with featureset 2 for training normal holdout) uses 320 trees, fewer trees may
have similar results.

2. Increasing the maximum depth from 3 to 320 improves the f1 score of the models by
<25% on average for all featuresets. On average, the best performance is reached at a
depth of 40 and 20, for featureset 2 and featureset 3 respectively.

3. Increasing the maximum features considered per split from 3 to (n) (number of features)
improves the f1 score of the models by 5% on average for all featuresets.
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FIGURE 6.1: Number of estimators influence on performance for training mode is
all and testing mode is normal holdout
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FIGURE 6.2: Maximum depth influence on performance for training mode is all
and testing mode is normal holdout
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FIGURE 6.3: Maximum features influence on performance for training mode is all
and testing mode is normal holdout

Note here that each dot in the above Figures represents an average performance of a classifier
over the complete search space, with one hyperparameter value being fixed and showed on
the x-axis. The standard deviation of the performances is too small to appear in the above
Figures.

RF with Featureset 2 and featureset 3 have similar results. Featureset 3 has the fewest number
of features and is, therefore, more suitable for analysing the most important features for
detecting malicious actions of malware. The features included in RF with featureset 2 are
shown in Table 6.2. This Table shows that 10 features are sufficient for detecting malicious
actions of malware.

Features

dalvikprivatedirty_mor_app otherpss_mor_app

dalvikpss_mor_app rss_mor_app

importance_mor_app stime_mor_app

num_threads_mor_app utime_mor_app

otherprivatedirty_mor_app vsize_mor_app

TABLE 6.2: Features included in best RF featureset 3 model.
(ordered by feature ranking from top to bottom, left to right)

6.1.2 K-nearest neighbour
The performance of the K-nearest neighbour classifier for different featuresets and testing
modes is shown in Table 6.3. This Table shows the following:

1. KNN has the highest f1 score of >0.67 with featureset 2 and featureset 3. The differences
between featuresets 2 and 3 are not statistically significant. This suggests that adding
global features to app features does not result in a different performance, compared to
only using app features.

2. The performance difference in the f1 score between the testing modes normal holdout and
unknown device is statistically significant and above 0.15 for all featuresets, indicating
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that all classifiers have a lower performance when tested on new devices than if tested
on same devices from the training set.

3. The performance of KNN with featureset 1 is lower than with the other featuresets, for
both testing modes normal holdout and unknown device, suggesting that the RF classifier
with global features are not useful in detecting malicious actions of malware.

4. All False Positive Rates are below 0.06.
5. All False Negative Rates are above 0.32, suggesting that most models incorrectly classify

a malicious action as benign more often than vice versa.

Best K-nearest neighbour classifier (training = all)

Testing mode Normal holdout Unknown device

Featureset
fs1 

(Basic global)
fs2 

(Basic apps)
fs3 

(Basic combined)
fs1 

(Basic global)
fs2 

(Basic apps)
fs3 

(Basic combined)

best nr. features 26 13 9 30 4 11

Accuracy 0.897 0.944 0.946 0.824 0.917 0.910

F1 score 0.356 0.674 0.688 0.202 0.537 0.522

FPR 0.048 0.029 0.028 0.126 0.053 0.061

FNR 0.674 0.336 0.320 0.732 0.415 0.407

k (nr. neighbours) 1 1 1 1 31 1

TABLE 6.3: Performance of different classifiers on test set for testing mode
normal holdout and unknown device (the highest f1 score of all featuresets for a

particular testing mode is highlighted green)

The performances of the cross-validation results over the hyperparameter search space for k is
shown in Figure 6.4. These performances are shown for the test results of the cross-validation
folds for the featuresets with the best number of features, as shown in Table 6.3. The best
values for k hyperparameters is also shown in Table 6.3. Figure 6.4 shows the following:

1. Overall, increasing the number of neighbours considered, decreases the f1 score of
models for all featuresets.

2. The best number of neigbours to consider with training mode all is 1 for all featuresets.
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FIGURE 6.4: K influence on performance for training mode is all and testing
mode is normal holdout

KNN with Featureset 2 and featureset 3 have similar results. Featureset 3 has the fewest
number of features and is, therefore, more suitable for analysing the most important features
for detecting malicious actions of malware. The features included in KNN with featureset
2 are shown in Table 6.4. This Table and Table 6.2 show that KNN with featureset 3 uses
the same features as RF with featureset 3, excluding feature stime, which is present in the
RF model and not in the KNN model. Note here that KNN uses the feature ranking of RF
for feature selection with RFCV. From here on no specific features of featuresets are shown
for the performance of the remaining classifiers, as the NB and MLP classifier show low
performance.
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Features

rss_mor_app otherpss_mor_app

utime_mor_app dalvikprivatedirty_mor_app

dalvikpss_mor_app num_threads_mor_app

otherprivatedirty_mor_app vsize_mor_app

importance_mor_app

TABLE 6.4: Features included in best KNN featureset 3 model.
(ordered by feature ranking from top to bottom, left to right)

6.1.3 Naïve Bayes
The performance of the Naïve Bayes for different featuresets and testing modes is shown in
Table 6.5. This Table shows the following:

1. NB has the highest f1 score of >0.34 with featureset 2 and featureset 3. The differences
between featuresets 2 and 3 are not statistically significant. This suggests that adding
global features to app features does not result in a different performance, compared to
only using app features.

2. The performance difference between the testing modes normal holdout and unknown
device is statistically significant and above 0.1 for all featuresets, indicating that all
classifiers have a lower performance when tested on new devices than if tested on same
devices from the training set.

3. The f1 score of NB with featureset 1 is zero with an FNR of 1, indicating that these
NB models only predict benign labels. This suggests that the NB classifier with global
features are not useful in detecting malicious actions of malware.

4. All False Positive Rates are below 0.1.
5. All False Negative Rates are above 0.75, suggesting that most models incorrectly classify

a malicious action as benign more often than vice versa.

Best Naïve Bayes classifier (training = all)

Testing mode Normal holdout Unknown device

Featureset
fs1 

(Basic global)
fs2 

(Basic apps)
fs3 

(Basic combined)
fs1 

(Basic global)
fs2 

(Basic apps)
fs3 

(Basic combined)

best nr. features 31 33 64 31 29 61

Accuracy 0.913 0.920 0.919 0.917 0.898 0.902

F1 score 0.000 0.343 0.351 0.000 0.259 0.278

FPR 0.000 0.015 0.017 0.000 0.040 0.037

FNR 1.000 0.760 0.748 1.000 0.785 0.772

Alpha 0.5 1.6 0.4 1.3 1.9 1.7

TABLE 6.5: Performance of different classifiers on test set for testing mode
normal holdout and unknown device (the highest f1 score of all featuresets for a

particular testing mode is highlighted green)

The performances of the cross-validation results over the hyperparameter search space for
alpha is shown in Figure 6.5. These performances are shown for the test results of the cross-
validation folds for the featuresets with the best number of features, as shown in Table 6.5.
The best values for alpha is also shown in Table 6.5.
Figure 6.5 shows that the smoothing parameter has a small influence on the f1 score of the
NB models with overall less than 0.1% difference between alpha settings.
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FIGURE 6.5: Alpha influence on performance for training mode is all and testing
mode is normal holdout

6.1.4 Multilayer Perceptron
The performance of MLP for different featuresets and testing modes, is shown in Table 6.6.
This Table shows the following:

1. MLP has the highest f1 score of (0.567) with featureset 3. The differences between
featuresets 2 and 3 are statistically significant. This suggests that adding global features
to app features results in a different performance, compared to only using app features.

2. The performance difference between the testing modes normal holdout and unknown
device is statistically significant for all featuresets except featureset 2.

3. The f1 score of MLP with featureset 1 (training mode normal holdout) is zero with an
FNR of 1, indicating that these MLP models only predict benign labels. This suggests
that the MLP classifier with global features are not useful in detecting malicious actions
of malware.

4. All False Positive Rates are below 0.04.
5. All False Negative Rates are above 0.53, suggesting that most models incorrectly classify

a malicious action as benign more often than vice versa.

Best Multilayer perceptron classifier (training = all)

Testing mode Normal holdout Unknown device

Featureset
fs1 

(Basic global)
fs2 

(Basic apps)
fs3 

(Basic combined)
fs1 

(Basic global)
fs2 

(Basic apps)
fs3 

(Basic combined)

best nr. features 32 28 62 28 4 7

Accuracy 0.913 0.937 0.940 0.917 0.920 0.917

F1 score 0.000 0.493 0.567 0.114 0.490 0.000

FPR 0.000 0.007 0.014 0.007 0.040 0.000

FNR 1.000 0.648 0.546 0.935 0.533 1.000

Nr. layers 5 10 5 10 15 10

Nr. nodes per layer 25 25 15 10 15 15

TABLE 6.6: Performance of different classifiers on test set for testing mode
normal holdout and unknown device (the highest f1 score of all featuresets for a

particular testing mode is highlighted green)

The performances of the cross-validation results over the hyperparameter search space for the
number of layers and number of nodes per layer is shown in Figures 6.6 and 6.7 respectively. These
performances represent the test results of the cross-validation folds for the featuresets with
the best number of features, as shown in Table 6.6. The best values for the hyperparameters
are also shown in Table 6.6. The hyperparameter Figures show that overall, an increase in the
layer depth coincides with a decrease in the f1 score of the MLP models. An increase in the
layer size appears to positively affect the f1 score of MLP models. Again, it must be noted
that the above statements are regarding average performances, as the findings are based on
the average performance over all cross-validation folds, and over all parameter settings of
the grid search. Therefore, a particular combination of hyperparameter settings might result
in a better performance than expected based on the hyperparameter analysis.
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FIGURE 6.6: Number of layers influence on performance for training mode is all
and testing mode is normal holdout
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FIGURE 6.7: Number of nodes per layer influence on performance for training
mode is all and testing mode is normal holdout

6.1.5 AdaBoost
The performance of Ada for different featuresets and testing modes, is shown in Table 6.7.
This Table shows the following:

1. Ada shows the highest f1 score of >0.6 with featureset 2 and featureset 3. The differences
between featuresets 2 and 3 are not statistically significant. This suggests that adding
global features to app features does not result in a different performance, compared to
only using app features.

2. The performance difference between the testing modes normal holdout and unknown
device is not statistically significant among featuresets, e.g. Ada with featureset 2 does
not perform differently for testing mode normal holdout than for testing mode unknown
device.

3. The performance of Ada with featureset 1 is lower than with the other featuresets,
for both testing modes normal holdout and unknown device. This suggests that the Ada
classifier with global features are not useful in detecting malicious actions of malware.

4. All False Positive Rates are below 0.04.
5. All False Negative Rates are above 0.42, suggesting that most models incorrectly classify

a malicious action as benign more often than vice versa.
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Best AdaBoost classifier (training = all)

Testing mode Normal holdout Unknown device

Featureset
fs1 

(Basic global)
fs2 

(Basic apps)
fs3 

(Basic combined)
fs1 

(Basic global)
fs2 

(Basic apps)
fs3 

(Basic combined)

best nr. features 26 25 43 29 28 44

Accuracy 0.922 0.943 0.945 0.923 0.944 0.926

F1 score 0.226 0.595 0.610 0.207 0.583 0.563

FPR 0.003 0.012 0.013 0.005 0.013 0.042

FNR 0.868 0.522 0.502 0.878 0.528 0.423

Nr. estimators 400 400 400 400 400 50

TABLE 6.7: Performance of different classifiers on test set for testing mode
normal holdout and unknown device (the highest f1 score of all featuresets for a

particular testing mode is highlighted green)

The performances of the cross-validation results over the hyperparameter search space for
the number of estimators is shown in Figure 6.8. These performances are shown for the test
results of the cross-validation folds for the featuresets with the best number of features, as
shown in Table 6.5. The best values for number of estimators is also shown in Table 6.7.
Figure 6.8 shows that the number of estimators increase the performance of the AdaBoost
classifier. The maximum performance does not seem to be reached with the maximum
number of estimators in the search space.
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FIGURE 6.8: Number of estimators influence on performance for training mode is
all and testing mode is normal holdout

6.1.6 Comparison classifiers
An overview of the performances of the classifiers for testing mode normal holdout is shown
in Table 6.8. This Table shows the following:

1. RF with featureset 2 has the highest f1 score of 0.73 with featureset 2 and 0.72 with
featureset 3. This indicates that the RF classifier is better suited for detecting malicious
actions than other classifiers.

2. NB has an f1 score of <0.35 for all featuresets. This suggests that the Naïve Bayes
classifier is not useful for detecting malicious actions of multiple malicious applications
on multiple devices.

3. All classifiers have an f1 score <0.42 with featureset 1. This suggests that global features
are not useful in detecting malicious actions.

4. RF with featureset 3 uses 10 app features (App CPU, App Memory, App Process) to
detect malicious actions of malware, suggesting that 10 app features are sufficient in
detecting malicious actions of mobile malware. These 10 features are shown in Table
6.2.

5. All classifiers have a higher FNR than FPR. This indicates that most models incorrectly
classify a malicious action as benign more often than vice versa.
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Classifier Ada RF KNN NB MLP
B

e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 26 25 43 24 29 10 26 13 9 31 33 64 32 28 62

Best accuracy 0.922 0.943 0.945 0.922 0.958 0.959 0.897 0.944 0.946 0.913 0.920 0.919 0.913 0.937 0.940

Best f1 score 0.226 0.595 0.610 0.422 0.730 0.722 0.356 0.674 0.688 0.000 0.343 0.351 0.000 0.493 0.567

Best FPR 0.003 0.012 0.013 0.022 0.013 0.009 0.048 0.029 0.028 0.000 0.015 0.017 0.000 0.007 0.014

Best FNR 0.868 0.522 0.502 0.670 0.346 0.380 0.674 0.336 0.320 1.000 0.760 0.748 1.000 0.648 0.546
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Battery X X X X X X X X

CPU X X X X X X X X

I/O Interrupts

Memory X X X X X X X X

Network traff. X X X X X X X X

Storage

Wifi

App CPU X X X X X X X X X X

App memory X X X X X X X X X X

App netw. traff. X X X X X X X X

App process X X X X X X X X X X

TABLE 6.8: Best models of classifiers for training mode all and testing mode normal
holdout

6.2 Performance per malware type

6.2.1 Version 1 - Spyware - contacts theft

Spyware – contacts theft

Benign app Game

Malware type Spyware

Description
Steals, encrypts, and 
transmits all contact stored 
on device.

Total nr. rows 1520

TABLE 6.9: Overview malware ver-
sion 1

An overview with key details of malware version 1 is
shown in Table 6.9. Malware version 1 was a puzzle game
that stole contacts stored on a device. While running in
a malicious session, the malware application stole, en-
crypted, and transmitted contacts to a remote server every
20 seconds. Each session, the malware application changed
its session type from benign to malicious or vice versa. As
described in Section 3.2.1, all malware applications per-
form only benign actions in benign sessions, and perform
both benign actions and malicious actions in malicious
sessions.

Figure 6.9 shows the count of actions per actiontype. This Figure shows the differences
between malicious actions and benign actions taken by malware type 1. Note here that
the action App Mode change refers to the user pausing or resuming the application. For a
description of the other actions, refer to the documentation of the SherLock dataset2.
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FIGURE 6.9: Distribution of actions of malware version 1 per actiontype

2http://bigdata.ise.bgu.ac.il/sherlock/
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The performances of the classifiers on malware version 1 is shown in Figure 6.10. This Table
shows the following:

1. The best performing classifier is Ada with featureset 3, having the only f1 score above 0.7.
This indicates that global and app features combined are useful in detecting malware
version 1.

2. KNN with featureset 1 uses 1 feature regarding network traffic (traffic_totalrxbytes) to
achieve an f1 score of 0.455, where RF with featureset 1 needs 29 features for an f1 score
of 0.49, suggesting that KNN is more efficient regarding feature usage in detecting
malware version 1.

3. NB has a low f1 score (<0.5) for all featuresets, indicating that NB is not useful in
detecting malware version 1.

4. The Multilayer Perceptron has an f1 score of 0 because it only predicts benign actions
for all featuresets, resulting in an FNR of 1 and FPR of 0. This indicates that MLP is not
useful in detecting malware version 1.

Classifier Ada RF KNN NB MLP

B
e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 19 15 49 29 20 73 1 17 38 18 38 67 24 39 58

Best accuracy 0.914 0.931 0.947 0.918 0.921 0.931 0.921 0.914 0.901 0.908 0.908 0.888 0.908 0.908 0.908

Best f1 score 0.480 0.618 0.704 0.490 0.571 0.571 0.455 0.536 0.500 0.000 0.364 0.320 0.000 0.000 0.000

Best FPR 0.036 0.036 0.025 0.033 0.043 0.025 0.022 0.047 0.062 0.000 0.029 0.051 0.000 0.000 0.000

Best FNR 0.571 0.393 0.321 0.571 0.429 0.500 0.643 0.464 0.464 1.000 0.714 0.714 1.000 1.000 1.000
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Battery X X X X X X X X X

CPU X X X X X X X X X

I/O Interrupts

Memory X X X X X X X X X

Network traff. X X X X X X X X X X

Storage

Wifi

App CPU X X X X X X X X X X

App memory X X X X X X X X X X

App netw. traff. X X X X X X X X X X

App process X X X X X X X X X X

TABLE 6.10: Feature categories included in best models of classifiers for malware
version 1

The best performing model, with the least number of features, is the AdaBoost classifier with
featureset 2. The features included in this model are shown in Table 6.11. This Table shows
that 49 global and app features are useful in detecting malicious actions of a mobile (Contact)
Spyware malware version.
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Features

totalmemory_freesize cpu_0 utime_mor_app traffic_mobiletxbytes

uidrxbytes_mor_app dalvikprivatedirty_mor_app uidtxpackets_mor_app pgid_mor_app

othershareddirty_mor_app battery_voltage traffic_totalwifirxbytes traffic_totalrxpackets

traffic_totalwifitxbytes rss_mor_app traffic_totalwifitxpackets ppid_mor_app

uidtxbytes_mor_app cstime_mor_app totalmemory_used_size nativeprivatedirty_mor_app

stime_mor_app otherprivatedirty_mor_app cpu_1 traffic_totalwifirxpackets

total_cpu traffic_mobiletxpackets cmaj_flt_mor_app start_time_mor_app

totalmemory_total_size traffic_totaltxpackets num_threads_mor_app state_mor_app_R

battery_level cpu_3 vsize_mor_app cutime_mor_app

cpu_usage_mor_app dalvikshareddirty_mor_app traffic_totaltxbytes

traffic_totalrxbytes battery_temperature traffic_mobilerxpackets

pid_mor_app dalvikpss_mor_app cpu_2

otherpss_mor_app uidrxpackets_mor_app nativeshareddirty_mor_app

TABLE 6.11: Features included in best AdaBoost featureset 2 model.
(ordered by feature ranking from top to bottom, left to right)

6.2.2 Version 2 - Spyware - general

Spyware – general

Benign app Web browser

Malware type Spyware

Description
i) Spies on location and 
audio, or ii) spies on web 
traffic and web history.

Total nr. rows 6635

TABLE 6.12: Overview malware ver-
sion 2

An overview with key details malware version 2 is shown
in Table 6.12. Malware version 2 was a web browser that
spied on the user in two ways. In malicious session 1, the
malware applications spied on the location or audio of
the user. In malicious session 2, the malware application
spied on the web traffic and web history of the user. The
malware application changed its session type each session
in the following order: benign, malicious 1, malicious 2.

Figure 6.10 shows the count of actions per actiontype.
This Figure shows the differences between malicious ac-
tions and benign actions taken by malware type 2. Note
here that the action ON DOWN refers to the user touching any screen object of the browser,
e.g. a URL.
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FIGURE 6.10: Distribution of actions of malware version 2 per actiontype

The performances of the classifiers on malware version 2 is shown in Table 6.13 for training
mode all and testing mode normal holdout. This Table shows the following:

1. The RF classifier has a high f1 score (>0.94) for featuresets 2 and 3. The difference in
performance between these two featuresets is not statistically significant, suggesting
that adding global features to app features does not result in a different performance,
compared to only using app features.

2. The difference between KNN with featureset 3 and RF with featureset 2 (or 3) are not
statistically significant. This suggests that 8 app features are sufficient for detecting
malicious actions of a (general) Spyware malware version. These features are shown in
Table 6.14
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3. All classifiers have a high f1 score for featureset 2, indicating that app features are useful
in detecting malware version 3.

4. NB and MLP predict a benign label for all test instances with featureset 1, leading to
an FNR of 1. This indicates that NB and MLP with global features are not useful in
detecting malicious actions of malware version 3.

Classifier Ada RF KNN NB MLP

B
e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 26 25 44 12 39 27 14 8 13 10 28 61 29 22 16

Best accuracy 0.961 0.989 0.983 0.966 0.992 0.987 0.946 0.989 0.989 0.902 0.947 0.951 0.902 0.988 0.983

Best f1 score 0.780 0.944 0.911 0.802 0.956 0.932 0.698 0.944 0.945 0.000 0.703 0.735 0.000 0.938 0.912

Best FPR 0.012 0.003 0.004 0.005 0.001 0.003 0.019 0.001 0.003 0.000 0.019 0.021 0.000 0.007 0.005

Best FNR 0.292 0.085 0.131 0.300 0.077 0.108 0.369 0.100 0.077 1.000 0.362 0.308 1.000 0.062 0.123
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Battery X X X X X X X X

CPU X X X X X X X X X

I/O Interrupts

Memory X X X X X X X X X X

Network traff. X X X X X X X X X

Storage

Wifi

App CPU X X X X X X X X X X

App memory X X X X X X X X X X

App netw. traff. X X X X X X X

App process X X X X X X X X X X

TABLE 6.13: Feature categories included in best models of classifiers for malware
version 2
Features

importance_mor_app utime_mor_app rss_mor_app cpu_usage_mor_app

lru_mor_app dalvikprivatedirty_mor_app stime_mor_app othershareddirty_mor_app

TABLE 6.14: Features included in best KNN featureset 2 model.
(ordered by feature ranking from top to bottom, left to right)

6.2.3 Version 3 - Spyware - photo theft

Spyware – photo theft

Benign mode Utilization widget

Malware type Spyware

Description

Steals photos that are 
taken and in storage, and 
takes candid photos of the 
user.

Total nr. rows 1715

TABLE 6.15: Overview malware ver-
sion 3

An overview with key details malware version 3 is shown
in Table 6.15. Malware version 3 was a system monitor app
that spied on the photos of a device. In a malicious session,
the malware app checked every 5 minutes whether a new
picture was taken and if so, sent it to a remote server. When
the device was connected to wifi, the malware application
checked for new photos and sent these photos every hour,
regardless of whether it was in a malicious session. The
malware application changed its session type every day.

Figure 6.11 shows the count of actions per actiontype.
This Figure shows the differences between malicious ac-
tions and benign actions taken by malware type 3. As noted before, the action App Mode
Change refers to the user pausing or resuming the application.
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FIGURE 6.11: Distribution of actions of malware version 3 per actiontype

The performances of the classifiers on malware version 3 is shown in Table 6.16. This Table
shows the following:

1. RF has a high f1 score (>0.76) for featuresets 2 and 3. The difference in performance be-
tween these two featuresets is not statistically significant, suggesting that adding global
features to app features does not result in a different performance for RF, compared to
only using app features.

2. Ada has a high f1 score (>0.71) for featuresets 2 and 3. The difference in performance
between these two featuresets is not statistically significant, suggesting that adding
global features to app features does not result in a different performance for Ada,
compared to only using app features.

3. The difference between KNN featureset 3 and RF featureset 2 is not statistically signifi-
cant, suggesting that 5 features are sufficient for detecting malicious actions of a mobile
(photo) Spyware malware version. These features are shown in Table 6.17. This Table
shows that only app features are used.

4. MLP has an f1 score of 0 for featureset 2 and 3 because it only predicts benign actions,
resulting in an FNR of 1 and FPR of 1.

5. MLP has a low f1 score of (<0.38) for all features, suggesting that MLP is not useful in
detecting malicious actions of malware version 3.

6. NB has a low f1 score (<0.0) for all featuresets, suggesting that the NB is not useful in
detecting malicious actions of malware version 3.

Classifier Ada RF KNN NB MLP

B
e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 24 16 50 21 32 45 31 24 5 10 25 58 29 38 25

Best accuracy 0.930 0.953 0.962 0.933 0.965 0.962 0.904 0.950 0.956 0.901 0.898 0.898 0.913 0.901 0.901

Best f1 score 0.455 0.714 0.764 0.511 0.793 0.764 0.267 0.679 0.727 0.000 0.000 0.000 0.375 0.000 0.000

Best FPR 0.000 0.006 0.000 0.003 0.003 0.000 0.016 0.003 0.003 0.000 0.003 0.003 0.016 0.000 0.000

Best FNR 0.706 0.412 0.382 0.647 0.324 0.382 0.824 0.471 0.412 1.000 1.000 1.000 0.735 1.000 1.000
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Battery X X X X X X X X X

CPU X X X X X X X X X

I/O Interrupts

Memory X X X X X X X X X

Network traff. X X X X X X X X X

Storage

Wifi

App CPU X X X X X X X X X X

App memory X X X X X X X X X X

App netw. traff. X X X X X X X X X

App process X X X X X X X X X X

TABLE 6.16: Feature categories included in best models of classifiers for malware
version 3
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Features

otherpss_mor_app dalvikprivatedirty_mor_app otherprivatedirty_mor_app

start_time_mor_app stime_mor_app

TABLE 6.17: Features included in best KNN featureset 3 model.
(ordered by feature ranking from top to bottom, left to right)

6.2.4 Version 4 - Spyware - SMS

Spyware - SMS

Benign app Sports app

Malware type Spyware

Description

Captures and reports 
immediately on SMSs that 
contain codes and various 
keywords. 

Total nr. rows 190

TABLE 6.18: Overview malware ver-
sion 4

An overview with key details malware version 4 is shown
in Table 6.18. Malware version 4 was a pedometer app that
read SMSes in the background and sent the message to a
remote server when it contained keywords such as code,
verification, and authentication. This malware version was
always in a malicious session type and listened to SMS
messages in the background.

Figure 6.12 shows the count of actions per actiontype.
This Figure shows the differences between malicious ac-
tions and benign actions taken by malware type 4. As
noted before, the action App Mode Change refers to the user
pausing or resuming the application.

App 
Mode

 ch
ang

e

Gam
e st

are
d

Gam
e en

d

Gam
e st

art

Appl
icat

ion
 sta

rted

Appl
icat

ion
 en

d
Help

Sen
d to

 ser
ver

Cont
act

s

Moria
rty

 sta
rt

Moria
rty

 en
d

Error

action

0

250

500

750

co
un

t

actiontype
benign
malicious

FIGURE 6.12: Distribution of actions of malware version 4 per actiontype

The performances of the classifiers on malware version 1 is shown in Table 6.19. This table
shows the following:

1. RF with featureset 1 performs the best of all classifiers but has a medium f1 score of 0.5.
2. All other models have a low f1 score, suggesting that all models are ineffective at

detecting malicious actions of malware version 4.
3. 12 out of 15 models have the same FPR and FNR.
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Classifier Ada RF KNN NB MLP
B

e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 5 10 11 28 22 17 5 1 1 28 14 10 33 17 14

Best accuracy 0.921 0.921 0.921 0.947 0.921 0.921 0.921 0.921 0.921 0.921 0.921 0.921 0.921 0.921 0.921

Best f1 score 0.400 0.400 0.400 0.500 0.400 0.400 0.400 0.400 0.400 0.000 0.400 0.400 0.000 0.400 0.400

Best FPR 0.029 0.029 0.029 0.000 0.029 0.029 0.029 0.029 0.029 0.000 0.029 0.029 0.000 0.029 0.029

Best FNR 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 1.000 0.667 0.667 1.000 0.667 0.667
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Battery X X X

CPU X X X X X

I/O Interrupts

Memory X X X X X

Network traff. X X X X X

Storage

Wifi

App CPU X X X X X X X X X X

App memory X X X X X X X X

App netw. traff.

App process X X X X X X X X

TABLE 6.19: Feature categories included in best models of classifiers for malware
version 4

The best performing model, with the least number of features, is the RF classifier with feature-
set 1. The features included in this model are shown in Table 6.20. Due to the low performance
of the model, no findings regarding relevant features for detecting malware version 4 can be
drawn.

Features

traffic_totalrxbytes traffic_totalwifitxpackets battery_plugged cpu_2

traffic_totalrxpackets battery_current_avg battery_scale cpu_3

traffic_totaltxbytes battery_health battery_status total_cpu

traffic_totaltxpackets battery_icon_small battery_temperature totalmemory_freesize

traffic_totalwifirxbytes battery_invalid_charger battery_voltage totalmemory_max_size

traffic_totalwifirxpackets battery_level cpu_0 totalmemory_total_size

traffic_totalwifitxbytes battery_online cpu_1 totalmemory_used_size

TABLE 6.20: Features included in best RF featureset 1 model.
(ordered by feature ranking from top to bottom, left to right)

6.2.5 Version 5 - Phishing

Phishing

Benign app Game

Malware type Phishing

Description

Makes fake shortcuts and 
notifications to login to 
Facebook, Gmail, and 
Skype.

Total nr. rows 3465

TABLE 6.21: Overview malware ver-
sion 5

An overview with key details malware version 5 is shown
in Table 6.24. Malware version 5 was an Angry Birds game
that posted phishing attempts. Every two days the appli-
cation added different shortcuts (Facebook, Skype, and
Gmail) on the home screen of the user its device. Each
shortcut leads to an app which contained a fake login
screen. When the user entered his username and password,
the details were sent to a remote server. The malware ap-
plication was always in a malicious session type. Figure
6.13 shows the differences between malicious actions and
benign actions taken by malware type 5. Note here that
the action App Mode Change can be either malicious or benign, in contrast to the other malware
versions described before. The benign App Mode Change refers to a mode change within the
benign version of the malware, i.e. the game. The malicious App Mode Change refers to a mode
change within the malicious app of the malware, i.e. the installed fake Facebook, Gmail, or
Skype. The action View Mode Change refers to the user changing the view within a game, e.g.
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transitioning from viewing levels to viewing the actual game.

View
 Chan

ge

App 
Mode

 Chan
ge

Post 
Notif

icat
ion

Sen
din

g D
ata

Sho
rtcu

t T
app

ed

Add 
Sho

rtcu
t

Notif
icat

ion
 Tapp

ed

action

0

500

1000

1500

co
un

t

actiontype
benign
malicious

FIGURE 6.13: Distribution of actions of malware version 5 per actiontype

The performances of the classifiers on malware version 5 is shown in Table 6.22. This Table
shows the following:

1. KNN with featureset 2 has the highest f1 score of >0.92 for featureset 2 and featureset
3. The difference in performance between these two featuresets is not statistically
significant, suggesting that adding global features to app features does not result in a
different performance for KNN, compared to only using app features.

2. All classifiers have a low f1 score with featureset 1, indicating that global features are
not effective at detecting malicious actions of malware version 5.

3. All classifier have a higher f1 score with featureset 2 than with featureset 3, but this
difference is not statistically significant. This suggests that adding global features to
app features does not result in a performance difference, for all classifiers, compared to
only using app features.

4. NB has a medium or low f1 score for all featuresets, indicating that NB is not useful in
detecting malware version 5.

Classifier Ada RF KNN NB MLP

B
e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 25 15 55 8 18 18 5 7 9 16 30 46 26 16 14

Best accuracy 0.932 0.988 0.984 0.949 0.988 0.986 0.918 0.991 0.987 0.919 0.958 0.958 0.926 0.987 0.984

Best f1 score 0.447 0.927 0.897 0.588 0.927 0.911 0.412 0.946 0.920 0.000 0.688 0.688 0.215 0.920 0.903

Best FPR 0.016 0.005 0.005 0.006 0.005 0.008 0.033 0.005 0.008 0.000 0.008 0.008 0.003 0.008 0.009

Best FNR 0.661 0.089 0.143 0.554 0.089 0.089 0.643 0.054 0.071 1.000 0.429 0.429 0.875 0.071 0.089
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Battery X X X X X X X X

CPU X X X X X X

I/O Interrupts

Memory X X X X X X X X

Network traff. X X X X X X X

Storage

Wifi

App CPU X X X X X X X X X X

App memory X X X X X X X X X X

App netw. traff. X X X X X X X X

App process X X X X X X X X

TABLE 6.22: Feature categories included in best models of classifiers for malware
version 5

The best performing model, with the least number of features, is the KNN classifier with
featureset 2. The features included in this model are shown in Table 6.23. This Table shows
that 7 app features are sufficient for detecting malicious actions of a mobile Phishing malware
version.



6.2. Performance per malware type 57

Features

dalvikpss_mor_app dalvikprivatedirty_mor_app rss_mor_app cpu_usage_mor_app

utime_mor_app priority_mor_app vsize_mor_app

TABLE 6.23: Features included in best KNN featureset 2 model.
(ordered by feature ranking from top to bottom, left to right)

6.2.6 Version 6 - Adware

Adware

Benign app Game

Malware type Adware

Description
Gathers information and 
places ads, popups and 
banners.

Total nr. rows 7940

TABLE 6.24: Overview malware ver-
sion 6

An overview with key details malware version 6 is shown
in Table 6.24. Malware version 6 was a game (Chase
Whisply). At the start of a malicious session, the mal-
ware application displayed advertisements and gathered
the following information on device info, sim card details,
and list of installed apps. Then, every 15 seconds the app
sampled location coordinates from the network, mobile
network information, or list of running application. The
malware application changed its session type in the fol-
lowing sequence: benign, malicious, malicious.

Figure 6.14 shows the count of actions per actiontype. This Figure shows the differences
between malicious actions and benign actions taken by malware type 6.
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FIGURE 6.14: Distribution of actions of malware version 6 per actiontype

The performances of the classifiers on malware version 6 is shown in Table 6.25. This Table
shows that all models have a low f1 score and a high FNR, meaning that all models mostly
predict a benign label. This suggests that all models are not effective in detecting malware
version 6.
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Classifier Ada RF KNN NB MLP

B
e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 24 18 36 23 7 55 1 11 6 27 30 66 33 30 62

Best accuracy 0.908 0.911 0.906 0.901 0.895 0.901 0.887 0.889 0.887 0.909 0.911 0.908 0.911 0.911 0.911

Best f1 score 0.076 0.194 0.186 0.233 0.271 0.270 0.268 0.352 0.297 0.000 0.027 0.027 0.000 0.000 0.000

Best FPR 0.007 0.011 0.017 0.028 0.039 0.030 0.049 0.057 0.053 0.001 0.001 0.004 0.000 0.000 0.000

Best FNR 0.958 0.880 0.880 0.831 0.782 0.796 0.768 0.662 0.732 1.000 0.986 0.986 1.000 1.000 1.000
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Battery X X X X X X X X

CPU X X X X X X X X

I/O Interrupts

Memory X X X X X X X X

Network traff. X X X X X X X X X X

Storage

Wifi

App CPU X X X X X X X X X X

App memory X X X X X X X X X X

App netw. traff. X X X X X X X X X

App process X X X X X X X

TABLE 6.25: Feature categories included in best models of classifiers for malware
version 6

The best performing model, with the least number of features, is the KNN classifier with
featureset 2. The features included in this model are shown in Table 6.26. Due to the low
performance of the model, no findings regarding relevant features for detecting malware
version 6 can be drawn.

Features

otherpss_mor_app uidrxbytes_mor_app num_threads_mor_app uidtxbytes_mor_app

dalvikpss_mor_app othershareddirty_mor_app rss_mor_app stime_mor_app

utime_mor_app cpu_usage_mor_app vsize_mor_app

TABLE 6.26: Features included in best KNN featureset 2 model.
(ordered by feature ranking from top to bottom, left to right)

6.2.7 Version 7 - Spyware, Adware, Hostile downloader

Hostile downloader

Benign app Game

Malware type Hostile downloader

Description

Gathers private 
information and places 
shortcuts, notifications, 
and attempts to install 
new applications.

Total nr. rows 5205

TABLE 6.27: Overview malware ver-
sion 7

An overview with key details malware version 7 is shown
in Table 6.27. Malware version 7 was a game (Collider),
that had two malicious modes: malicious1, and malicious2.
In malicious1, the app downloaded a file and then gath-
ered information on account details, location coordinates,
and phone number. In malicious2, the app posted adver-
tisements in the notification bar, posted phishing shortcuts
on the home screen, played a voice advertisement every 6
phone calls, and presented Google Play installation pages
of random apps every 8th time the user interacted with its
device.

Figure 6.15 shows the count of actions per actiontype. This Figure shows the differences
between malicious actions and benign actions taken by malware type 7. As noted before, the
action View Mode Change refers to the user changing the view within a game, e.g. transitioning
from viewing levels to viewing the actual game.
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FIGURE 6.15: Distribution of actions of malware version 7 per actiontype

The performances of the classifiers on malware version 7 is shown in Table 6.28. This Table
shows the following:

1. The RF classifier has the highest f1 score (>0.84) for featuresets 2 and 3. The difference
in performance between these two featuresets is not statistically significant, suggesting
that adding global features to app features does not result in a different performance
for RF, compared to only using app features.

2. All classifiers have a low f1 score with featureset 1, indicating that global features are
not useful in detecting malware type 7.

3. NB and MLP with featureset 3 have high f1 scores for featureset 3, suggesting that
NB and MLP with global and app features combined, are useful in detecting malware
version 7.

4. No statistical difference is found between featureset 2 and featureset 3 of classifiers
(except for MLP), indicating that adding global features to app features does not result
in a performance difference, for all classifiers, compared to including only app features.

Classifier Ada RF KNN NB MLP

B
e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 23 24 14 20 9 18 33 9 9 30 16 17 28 9 10

Best accuracy 0.908 0.966 0.965 0.908 0.976 0.973 0.888 0.964 0.964 0.906 0.944 0.948 0.907 0.907 0.967

Best f1 score 0.333 0.813 0.804 0.351 0.857 0.843 0.339 0.793 0.793 0.020 0.678 0.700 0.000 0.000 0.813

Best FPR 0.024 0.015 0.014 0.026 0.003 0.006 0.053 0.012 0.012 0.002 0.023 0.021 0.000 0.000 0.012

Best FNR 0.753 0.216 0.237 0.732 0.227 0.227 0.691 0.268 0.268 0.990 0.371 0.351 1.000 1.000 0.237
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Battery X X X X X X X

CPU X X X X X

I/O Interrupts

Memory X X X X X X X

Network traff. X X X X X X X

Storage

Wifi

App CPU X X X X X X X X X X

App memory X X X X X X X X X X

App netw. traff. X X X X X

App process X X X X X X X X X X

TABLE 6.28: Feature categories included in best models of classifiers for malware
version 7

The best performing model, with the least number of features, is the RF classifier with fea-
tureset 2. The features included in this model are shown in Table 6.29. This Table shows
that 9 app features are useful in detecting malicious actions of a mobile Spyware / Adware /
Hostile downloader malware version.
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Features

dalvikprivatedirty_mor_app num_threads_mor_app priority_mor_app

dalvikpss_mor_app otherprivatedirty_mor_app rss_mor_app

importance_mor_app otherpss_mor_app utime_mor_app

TABLE 6.29: Features included in best RF featureset 2 model.
(ordered by feature ranking from top to bottom, left to right)

6.2.8 Version 8 - Ransomware

Ransomware

Benign app Lock-screen

Malware type Ransomware

Description
Performs either: 1) lock 
screen ransomware, or 2) 
crypto ransomware.

Total nr. rows 170

TABLE 6.30: Overview malware ver-
sion 8

An overview with key details malware version 8 is shown
in Table 6.30. Malware version 8 was a lock screen applica-
tion, that performed either i) lockscreen ransomware or ii)
crypto ransomware. The documentation on this malware
version is missing from the SherLock website. Therefore
no exact details can be given on its behaviour. However,
based on the specific actions, shown in Figure 6.16, we
deduce that lockscreen ransomware refers to the malware
application blocking the lockscreen unless a ransom (in
this case, assumed fictional because the data collection was
voluntary) is paid. The crypto ransomware is assumed to
encrypt files or folders unless a (fictional) ransom is paid. As the malware application was
based on the wild malware Simplocker, we also assume that the user was tricked into enabling
accessibility permissions for the malware application.

Figure 6.16 shows the count of actions per actiontype. This Figure shows the differences
between malicious actions and benign actions taken by malware type 8. As noted before,
the action View Mode Change refers to the user changing the view within the application. We
assume that this is, for example, the application transitioning from lock screen to home screen.
However, due to the missing documentation, we are unable to verify this.

View
 Chan

ge

Encr
ypt

ing
 Fold

er

Sen
din

g D
ata

Scr
een

 Lock
ed

File 
Encr

ypt
ion

action

0

50

100

150

co
un

t

actiontype
benign
malicious

FIGURE 6.16: Distribution of actions of malware version 8 per actiontype

The performances of the classifiers on malware version 8 is shown in Table 6.31. This Table
shows the following:

1. The best performing classifier is Ada with a perfect score for featureset 2 and 3.
2. All classifiers have a low f1 score with featureset 1, indicating that global features are

not useful in detecting malware type 8.
3. Most classifier (3 out of 4) have a high f1 score with featureset 3, indicating that a

combination of global and app features are useful in detecting malware type 8.
4. KNN has a higher f1 score than RF for all featuresets and uses fewer features. KNN

uses only memory features of the application, indicating that this feature category is
useful in detecting malware type 8.
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Classifier Ada RF KNN NB MLP
B

e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 13 19 14 26 33 28 5 4 4 10 25 33 11 34 38

Best accuracy 0.912 1.000 1.000 0.912 0.971 0.971 0.941 0.971 0.971 0.912 0.912 0.941 0.088 0.971 0.971

Best f1 score 0.400 1.000 1.000 0.000 0.800 0.800 0.500 0.857 0.857 0.000 0.000 0.500 0.162 0.800 0.800

Best FPR 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.032 0.000 0.000 0.000 1.000 0.000 0.000

Best FNR 0.667 0.000 0.000 1.000 0.333 0.333 0.667 0.000 0.000 1.000 1.000 0.667 0.000 0.333 0.333
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Battery X X X X X

CPU X X X X X X X

I/O Interrupts

Memory X X X X X X X X

Network traff. X X X X

Storage

Wifi

App CPU X X X X X X X X

App memory X X X X X X X X X X

App netw. traff. X X X X X X X

App process X X X X X X X X

TABLE 6.31: Feature categories included in best models of classifiers for malware
version 8

The best performing model, with the least number of features, is the AdaBoost classifier with
featureset 3. The features included in this model are shown in Table 6.32. This Table shows
that solely using 14 app features can be sufficient in detecting malicious actions of a mobile
Ransomware malware version.

Features

rss_mor_app dalvikpss_mor_app start_time_mor_app num_threads_mor_app

dalvikprivatedirty_mor_app stime_mor_app priority_mor_app pid_mor_app

vsize_mor_app otherprivatedirty_mor_app ppid_mor_app

otherpss_mor_app utime_mor_app dalvikshareddirty_mor_app

TABLE 6.32: Features included in best Ada featureset 3 model.
(ordered by feature ranking from top to bottom, left to right)

6.2.9 Version 9 - Privilege escalation, Spyware

Privilege escalation

Benign mode File Manager

Malware type Privilege escalation

Description

Tricks the user to activate 
accessibility services to 
then hijack the user 
interface.

Total nr. rows 1345

TABLE 6.33: Overview malware ver-
sion 9

An overview with key details malware version 9 is shown
in Table 6.33. Malware version 9 was a game (React), that
tricked the user to grant accessibility permissions to steal
information about the actions of the users. When the ac-
cessibility permissions were granted, the application gath-
ered data on the actions such as clicks and keystrokes.
When connected to wifi, and in a malicious session, the
malware application sent the gathered data to a remote
server hourly. The malware application stayed in a ma-
licious session once the accessibility permissions were
granted.

Figure 6.17 shows the count of actions per actiontype. This Figure shows the differences
between malicious actions and benign actions taken by malware type 9.
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FIGURE 6.17: Distribution of actions of malware version 9 per actiontype

The performances of the classifiers on malware version 9 is shown in Table 6.34. This Table
shows the following:

1. The best performing classifiers are RF with featureset 2 or 3, and KNN with featureset 2.
The differences between these performances are not statistically significant.

2. All classifiers, except NB have a high f1 score with featureset 3, indicating that a
combination of global and app features are useful in detecting malware type 9.

3. All classifiers have a low or medium f1 score with featureset 1, indicating that global
features are not useful in detecting malware type 9.

4. Combining global and app features only leads to an improvement for the MLP classifier.
This difference is statistically significant.

Classifier Ada RF KNN NB MLP

B
e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 17 11 34 23 31 10 1 19 5 10 39 65 33 34 57

Best accuracy 0.922 0.974 0.985 0.926 0.989 0.989 0.892 0.989 0.974 0.907 0.918 0.941 0.907 0.941 0.985

Best f1 score 0.488 0.844 0.913 0.545 0.936 0.936 0.525 0.936 0.844 0.000 0.421 0.652 0.000 0.742 0.923

Best FPR 0.025 0.004 0.000 0.029 0.000 0.000 0.082 0.000 0.004 0.000 0.020 0.025 0.000 0.057 0.012

Best FNR 0.600 0.240 0.160 0.520 0.120 0.120 0.360 0.120 0.240 1.000 0.680 0.400 1.000 0.080 0.040
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Battery X X X X X X X X

CPU X X X X X X X X

I/O Interrupts

Memory X X X X X X X X

Network traff. X X X X X X X X

Storage

Wifi

App CPU X X X X X X X X X X

App memory X X X X X X X X X X

App netw. traff. X X X X X

App process X X X X X X X X

TABLE 6.34: Feature categories included in best models of classifiers for malware
version 9

The best performing model, with the least number of features, is the RF classifier with fea-
tureset 3. The features included in this model are shown in Table 6.35. This Table shows that
10 app features are useful for detecting malicious actions of a mobile Privilege escalation /
Spyware malware type.
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Features

traffic_mobiletxbytes dalvikprivatedirty_mor_app stime_mor_app

battery_level dalvikpss_mor_app utime_mor_app

battery_voltage otherpss_mor_app

total_cpu rss_mor_app

TABLE 6.35: Features included in best RF featureset 3 model.
(ordered by feature ranking from top to bottom, left to right)

6.2.10 Version 11 - DOS

DOS

Benign mode Music Player

Malware type DOS

Description
Either performs: 1) DDoS 
attacks on command, or 2) 
SMS botnet activities

Total nr. rows 655

TABLE 6.36: Overview malware ver-
sion 11

An overview with key details malware version 11 is
shown in Table 6.36. Malware version 11 was a mu-
sic player, that sent UDP packets based on instructions
from a remote server. When the remote server sent
a special message, the malware application sent UDP
packets as fast as possible for a whole minute to the
client it was instructed to send to. The malware session
type thus depended on the instructions from the remote
server.

Figure 6.18 shows the count of actions per actiontype. This Figure shows the differences
between malicious actions and benign actions taken by malware type 11.
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FIGURE 6.18: Distribution of actions of malware version 11 per actiontype

The performances of the classifiers on malware version 9 is shown in Table 6.37. This Table
shows the following:

1. The best performing classifiers are RF with featureset 1, 2 or 3, and KNN with featureset
1, 2, or 3. The differences among these performances are not statistically significant.

2. All classifiers, except MLP, have a high f1 score, indicating that all classifiers, except
MLP, are useful in detecting malware type 11.

3. KNN has a high f1 score with only one network traffic feature (traffic_totaltxpackets),
suggesting that this feature is useful in detecting malware version 11.
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Classifier Ada RF KNN NB MLP

B
e
st

 m
o
d
e
l

Featureset fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Best nr. features 25 5 27 19 11 21 1 6 6 14 37 35 33 15 16

Best accuracy 0.977 0.977 0.977 0.985 0.985 0.985 0.985 0.985 0.985 0.962 0.962 0.977 0.870 0.870 0.870

Best f1 score 0.909 0.903 0.909 0.938 0.938 0.938 0.938 0.938 0.938 0.828 0.828 0.903 0.000 0.000 0.000

Best FPR 0.009 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Best FNR 0.118 0.176 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.294 0.294 0.176 1.000 1.000 1.000
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Battery X X X X X X X X

CPU X X X X X

I/O Interrupts

Memory X X X X X X

Network traff. X X X X X X X X X X

Storage

Wifi

App CPU X X X X X X X X X

App memory X X X X X X X X X X

App netw. traff. X X X X X X X X X X

App process X X X X X X X X X X

TABLE 6.37: Feature categories included in best models of classifiers for malware
version 11

The best performing model, with the least number of features, is the KNN classifier with
featureset 1. The features included in this model are shown in Table 6.38. This Table shows
that one feature, traffic_totaltxpackets is useful in detecting malicious actions of a mobile DOS
application. This feature describes the number of transmitted packets.

Features

traffic_totaltxpackets

TABLE 6.38: Features included in best KNN featureset 1 model.
(ordered by feature ranking from top to bottom, left to right)

6.2.11 Comparison classifiers per malware type
The performance of the classifiers per malware type, i.e. training mode permwtype, is described
in this Section. Table 6.39 shows an overview of the performance per classifier per malware
type and featureset. Note here that the performances are shown for the best number of
features and the best hyperparameter settings per classifier. The number of features is based
on the RFCV method described in Section 5.4.
Table 6.39 shows the following:

1. RF has the highest f1 score for 5 out of 10 malware types.
2. KNN has the highest f1 score for 5 out of 10 malware types.
3. Ada has the highest f1 score for 4 out of 10 malware types 3.
4. Ada has a high f1 score (>0.7) for out 8 of 10 malware types.
5. RF has a high f1 score for 7 out of 10 malware types.
6. KNN has a high f1 score for 7 out of 10 malware types.
7. NB has a high f1 score for 2 out of 10 malware types.
8. MLP has a high f1 score for 5 out of 10 malware types.
9. All classifiers have a low f1 score for malware type 4 (Spyware SMS) and 6 (Adware).

3some performances are the same leading to a draw, hence to more than 10 highest f1 scores.
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Mw
type AdaBoost Random Forest

K-nearest
Neighbour

Naïve Bayes
Multilayer
perceptron

Test
set

acc. f1 fpr fnr acc. f1 fpr fnr acc. f1 fpr fnr acc. f1 fpr fnr acc. f1 fpr fnr
nr.

rows

1 0.947 0.704 0.025 0.321 0.931 0.571 0.025 0.500 0.901 0.500 0.062 0.464 0.888 0.320 0.051 0.714 0.908 0.000 0.000 1.000 304

2 0.983 0.911 0.004 0.131 0.987 0.932 0.003 0.108 0.989 0.945 0.003 0.077 0.951 0.735 0.021 0.308 0.983 0.912 0.005 0.123 1327

3 0.962 0.764 0.000 0.382 0.962 0.764 0.000 0.382 0.956 0.727 0.003 0.412 0.898 0.000 0.003 1.000 0.901 0.000 0.000 1.000 343

4 0.921 0.400 0.029 0.667 0.921 0.400 0.029 0.667 0.921 0.400 0.029 0.667 0.921 0.400 0.029 0.667 0.921 0.400 0.029 0.667 38

5 0.984 0.897 0.005 0.143 0.986 0.911 0.008 0.089 0.987 0.920 0.008 0.071 0.958 0.688 0.008 0.429 0.984 0.903 0.009 0.089 693

6 0.906 0.186 0.017 0.880 0.901 0.270 0.030 0.796 0.887 0.297 0.053 0.732 0.908 0.027 0.004 0.986 0.911 0.000 0.000 1.000 1588

7 0.965 0.804 0.014 0.237 0.973 0.843 0.006 0.227 0.964 0.793 0.012 0.268 0.948 0.700 0.021 0.351 0.967 0.813 0.012 0.237 1041

8 1.000 1.000 0.000 0.000 0.971 0.800 0.000 0.333 0.971 0.857 0.032 0.000 0.941 0.500 0.000 0.667 0.971 0.800 0.000 0.333 34

9 0.985 0.913 0.000 0.160 0.989 0.936 0.000 0.120 0.974 0.844 0.004 0.240 0.941 0.652 0.025 0.400 0.985 0.923 0.012 0.040 269

11 0.977 0.909 0.009 0.118 0.985 0.938 0.000 0.118 0.985 0.938 0.000 0.118 0.977 0.903 0.000 0.176 0.870 0.000 0.000 1.000 131

x̅ 0.963 0.749 0.010 0.304 0.961 0.736 0.010 0.334 0.954 0.722 0.021 0.305 0.933 0.492 0.016 0.570 0.940 0.475 0.007 0.549 568

s 0.030 0.260 0.011 0.275 0.032 0.241 0.013 0.251 0.037 0.237 0.022 0.256 0.028 0.304 0.016 0.282 0.042 0.435 0.009 0.425 531

TABLE 6.39: Performance of different classifiers
( f1 score < 0.5 = red, 0.5 =< f1 score =< 0.7 = orange, f1 score > 0.7 = green,

bold text = best classifier for that particular malware type )

The feature categories included in the featuresets of the best models of classifiers per malware
type are shown in Table 6.40. This Table shows whether one or more features of a feature
category is present in the best featuresets. This Table shows the following:

1. 6 out of 10 malware versions are best detected using only app features.
2. Malware version 4 (Spyware SMS) is best detected using only global features. However,

note that the f1 score for Spyware SMS is the lowest of all malware versions. Hence,
best refers to the best classifier, and not the actual performance.

3. Malware version 11 (DOS) is best detecting using only one global feature regarding
network traffic.

4. Malware version 1 and 9 (Spyware contacts theft and Privilege Escalation / Hostile
downloader) is best detected using both the app and global features.

5. None of the classifier includes I/O interrupts, Storage, or Wifi features for any of the
malware versions.

Note that Table 6.40 shows the feature categories present in the model with the least
number of features of the best performing model per malware type, i.e. for a given malware
version. From all classifiers with similar performances as the best classifier of that malware
version, the classifier with the least number of features is chosen. Similar refers to perfor-
mance results that do not differ statistically significant. The classifier with the least number of
features is chosen because this reflects best which features are relevant for detecting specific
malware types.
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Mwtype 1 2 3 4 5 6 7 8 9 11

B
es

t 
m

od
el

Best classifier Ada KNN RF RF KNN KNN RF Ada RF KNN

Best featureset fs3 fs2 fs2 fs1 fs2 fs2 fs2 fs3 fs3 fs1

Best nr. features 49 8 5 28 7 11 9 14 10 1

Best f1 score 0.70 0.94 0.73 0.50 0.95 0.35 0.86 1.00 0.94 0.94

F
ea

tu
re

s 
ca

te
go

ri
es

 i
n
 b

es
t 

fe
at

u
re

se
t

Battery X X X

CPU X X X

I/O Interrupts

Memory X X

Network traffic X X X X

Storage

Wifi

App CPU X X X X X X X X

App memory X X X X X X X X

App network traffic X X

App process X X X X

TABLE 6.40: Feature categories included in classifiers with the least number of
features per malware type.
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Chapter 7

Usability

This Section analyses the usability of the classifiers on real devices. Usability in this Section
refers to the extent in which the classifiers can be deployed on a real device. This Section
does not examine whether the classifiers or detection methods are useful in detecting real-life
malware on real devices; for this analysis see Section 8.2. The main factors influencing the
usability of the classifiers are: i) model size, ii) train/test time, and iii) memory usage. Low
metrics for these values reflect low storage requirements (model size) and computational
requirements (train/test time and memory usage). In Section 7.1, we assume that models
are deployed locally, i.e. the models are implemented on devices. Therefore, it requires
lightweight methods regarding the aforementioned metrics. Additional design choices
during the implementation of a classifier affect the usability. These are analysed in the last
paragraph and include monitoring frequency, (re)training interval, and place of analysis.
Section 7.2 analyses the usability of self-made detection methods from a business perspective.
This analysis examines multiple options for business regarding mobile security and the
deployment of self-made detection methods.

7.1 Usability local deployment

The metrics of the best models of the classifiers are analysed on a PC with 2.3 G GHz, 2 cores,
and 8GB RAM. The number of cores and RAM do not reflect the cores and RAM available on
mobile devices. However the model metrics can be compared with each other by running
them within the same environment. Consequently, any metric described in this Section does
not describe actual model performance on a mobile device. These are solely used to estimate
and compare the usability of the described detection models.

The model size, train/test time, and memory usage for training mode all and testing mode
normal holdout are shown in Figure 7.1. When a model has relative low values for any of the
metrics in comparison to other models we call it a lightweight model, hence requiring less
resources. In this Section, the differences in resource consumptions are described and some
suggestions are provided to reduce the resource consumptions of models. A deeper analysis
might be performed on the optimization of resource consumption by altering the number of
features, although for sake of simplicity and time we will keep these numbers fixed.

Lastly, in this Section we focus on the training mode all.
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Metrics shown for classifiers with the following hyperparameter settings for respectively (fs1, fs3, fs3): Ada: n_
estimators = (400, 400, 400), RF: n_estimators (5, 320, 320), max_depth = (320, 40, 20), max_features = (24, 10, 3), KNN:

k = (1, 1, 1), NB: alpha = 0.5, 1.6, 0.4, MLP: nr_layers = (5, 10, 5), nr_nodes_per_layer = (25, 25, 15)

FIGURE 7.1: Resource metrics per classifier model for training mode all and testing mode normal holdout
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Random Forest
The best performing RF classifiers are RF with featureset 2 (number of features: 29) and RF
with featureset 3 (number of features 10). Figure 7.1 shows that the RF models have a relative
large model size of >40 MB. The training time of RF is also relative high with >30 seconds for
featureset 2 and >12 seconds for featureset 3.

The hyperparameters can be adjusted in order to decrease the space and time needed
for the RF model. The hyperparameter analysis, presented in Section 6.1.1 suggests that the
number of estimators has a small influence on the performance of RF. As each estimator
represents a decision tree, reducing the number of estimators is expected to reduce the space
and time requirement of the RF model. In order to quantify this, additional experiments were
run with different numbers of estimators for featureset 2. These experiments keep the number
of features, the maximum depth, and maximum features fixed. The impact of the number of
features on the metrics is shown in Figure 7.2. This Figure shows that similar performances
are achieved with less number of trees. This finding suggests that the RF classifier can be
optimized to use less space and computational resources without loss of performance.
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FIGURE 7.2: Influence of nr of estimators on resource metrics and f1 score. Top
row = featureset 2, bottom row = featureset 3

K-nearest neighbour
The best performing KNN classifiers are KNN with featureset 2 (nr. of features: 13) and KNN
with featureset 3 (nr. of features 9).
Figure 7.1 shows that the best performing KNN classifiers have a relatively large model size
of >12 MB. The training time of KNN is relatively small compared to the other three classifiers.
This can be explained by the fact that the model of KNN consists of: i) a search tree (KDTree)
to search for the nearest neighbour in the training set, and ii) all training instances of the
training set. This leads to a relatively large model size. Additionally, during testing, the
nearest neighbour must be searched for in the complete training set leading to relative long
testing times. An increase in the number of training instances will, therefore, coincide with a
decrease in the usability of the KNN model.

To decrease the space and computational power needed for the KNN model, the hyperpa-
rameters cannot be adjusted. The number of neighbours to consider has the smallest value of
1 for all featuresets. The nearest neighbour computation algorithm can be adjusted to reduce
the resource requirements of the KNN model. The influence of this algorithm has not been
examined due to time constraints.

AdaBoost
The best performing Ada classifiers are Ada with featureset 2 (nr. of features 25) and Ada
with featureset 3 (nr. of features 43). Figure 7.1 shows that the best performing Ada classifiers
have relative small model sizes of <1 MB. Ada and RF are both classifiers that use decision
trees, hence the relative small size of Ada suggest that it uses less complex decision trees than
RF. The training time of Ada is similar to the training times of RF. This suggests that although
the decision trees in Ada are smaller, the complexity of the boosting algorithm leads to higher
training times. The testing times of Ada are relatively low compared to other classifiers and
may be explained by the creation of small decision trees after boosting.

The hyperparameters can be adjusted to decrease the space and computational power
needed for the AdaBoost model. However, the hyperparameter analyses, presented in Section
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6.1.5 suggests that the number of estimators has a large influence on the performance of
Ada. Reducing the number of estimators may reduce the resource consumption of the model,
although at the expense of model performance. Therefore, no further analysis is performed
on the reduction of resource consumption of AdaBoost.

NB and MLP
Figure 7.1 shows that the NB models are relatively small and have relative small training and
testing times. NB and MLP are excluded from further analysis due to low performance.

Training permwtype
Figure 7.3 shows the resource metrics, summed over all 10 malware types, for training mode
permwtype and testing mode normal holdout. For Peak RAM(MB) the average is shown instead
of the sum. Comparing Figure 7.1 with Figure 7.3, we see that the total training and testing
times for all models increase when 10 separate models are trained for each malware type,
in comparison to when deploying one model for all 10 malware types. This suggests that
deploying separate models per malware type decreases the usability of the detection method.
This problem increases when more than 10 malware types are analysed and included in a
detection method. Hence, detection methods with separate models per malware type are
most likely unusable on real devices.
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FIGURE 7.3: Resource metrics per classifier model summed over all malware
types, for training mode permwtype and testing mode normal holdout. (Note:

Peak RAM (MB) is shown as an average)

Other factors influencing usability
Other important factors influencing the usability of the detection methods are: i) place
of analysis/ identification, ii) granularity of detection, iii) (re)training frequency, and iv)
monitoring frequency.

In the analysis of the previous Section, we assume that models are deployed locally.
However, the place of analysis and identification (as described in Section 2.4), can also be in
the cloud. In that case, the training of models (analysis), and/or the detection of malware
(identification) can take place in the cloud. This alleviates devices from resource-intensive
computations, which are described in the previous Section.

The granularity of detection, i.e. per-app data monitoring or global device data monitoring,
also influence the usability of the models. Featureset 1, throughout this research, examined
the device globally, and featureset 2 examined the device per-app. Monitoring a device
per-app requires more data retrieval than monitoring the device globally. Therefore, methods
that monitor a device globally are more lightweight. This issue is described in more detail in
Section 8.2.

Lastly, the monitoring frequency of features influences the usability of models. Continuous
monitoring of features allows the real-time detection of malware. However, continuous
monitoring is resource intensive. To increase the usability of models, an optimum threshold
between timely detection and resource requirements must be made. This research’s dataset
contained data that was monitored at a 5 second time interval, so no analysis could be
performed on this trade-off.
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7.2 Cost-benefit analysis

As described in Section 2.3, mobile malware is an issue of increasing importance for busi-
nesses. This Section attempts to quantify this issue by examining the costs and benefits
associated with mobile security. Three options are calculated for dealing with mobile security
in businesses. These options are: i) doing nothing about mobile security, ii) developing
in-house mobile security solutions, and iii) outsourcing mobile security. Other options such
as the training of employees on mobile security, setting rules and policies regarding mobile
device use, encrypting devices etc1 are excluded from analysis.
The three options are simplified by excluding business factors such as the company’s size,
market, sector, strategy etc. All calculations below are assuming an average business of
250 employees, in which all employees in a business are using a mobile device for business
purposes, e.g. calling, mailing, agenda, etc.

A recent whitepaper on mobile security [17] describes the current average situation of
mobile security in businesses and the costs associated with mobile cyber attacks. This recent
white paper is used as a starting point for the calculations of the cost and benefits of the three
options. Note here that we only take into consideration the costs, as we assume that the
benefits are avoidance of costs.

The next Sections describe the assumptions and calculations per option. Section 7.2.1 first
describes the current average situation. The analysis of the current situation provides us with
numbers on defence costs, direct costs, and indirect costs. Defence costs, in our calculations,
are any costs associated with securing mobile devices. Direct costs and indirect costs are
described in Section 7.2.1.

7.2.1 Average current situation
The numbers for calculating the current average situation are taken from a recent white paper
called ‘The economic risk of confidential data on mobile devices in the workplace’ [17] by the
Ponemon institute2. The findings of the white paper are based on a survey amongst 588 IT
and IT security professionals employed in Global 2000 companies. The following numbers
are drawn for the white paper:

1. 3% (1,723 devices) of the employees’ mobile devices are believed to be infected with
malware at any point in time” (the average company in the survey had 83,844 devices).

2. 26% of the infected devices are investigated (on average 448 devices).
3. The average costs per mobile malware attack is $9,485.

In the white paper above, the average costs per mobile malware attack are calculated
as follows: first, the average total direct costs ($3,530,240) and indirect costs ($12,812,017),
associated with the investigation of the 448 devices are summed. Then the sum is divided by
the total 1,723 devices infected.

In the white paper, the average total direct costs are calculated by summing the following
costs: i) IT helpdesk including replacement ii) diminished productivity or idle time, and iii) IT
security support including investigation and forensics. These costs are extrapolated from the
estimations given in the survey responds. The costs per infected device is shown in Figure
7.4.

1For additional options, refer to the literature on managing cybersecurity risks such as [71] and [72].
2The Ponemon institute refers to itself as “an independent research and education institute focused on issues

affecting the management and security of sensitive information about people and organizations”
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FIGURE 7.4: Direct costs per device associated with a mobile cyberattack

In the white paper, the average total indirect costs are calculated taking the potential max-
imum loss (PML), associated with a mobile cybersecurity attack, of the following costs: i)
cost of data loss or breach ii) cost of non-compliance iii) lost or diminished reputation. The
PMLs, in the white paper, are based on estimations given in the answers of a survey question
that asked for an estimation of the aforementioned costs of a worst-case scenario. The PML
is multiplied in the white paper by the perceived likelihood of occurrence (PLO), of the
worst case scenario, per annum. The PLO is estimated at 9.8% and was extrapolated from
the replies on the surveys. The multiplication of PML by PLO results in an estimated of
$12,812,018 of indirect costs. Note here that the indirect costs are not related to the number of
mobile malware attacks. Lastly, the average annual budget for mobile security is estimated at
$4,368,000 in the white paper.

From the above calculations, we will use the following numbers for our calculations in
the next Sections:

1. The average mobile devices being infected at any point in time is 3%.
2. The direct costs per mobile malware attack is $7,880.
3. The average likelihood of a worst-case scenario occurring is 9.8%.
4. The average annual budget for mobile security per employee is $52 ($4,368,000 average

annual mobile security budget / 53,844 average employees in companies of the survey).
Note here that in the white paper, only the total average annual mobile security budget
is given. We calculate a per employee number ourself.

5. The average indirect costs, in a worst-case scenario, associated with at least one mobile
malware attack is 2,428 dollars per employee ($130,734,870 / 53,844 employees3. Note
here that in the white paper, only the total indirect costs are given. We calculate a per
employee number ourself.

The average defence costs, i.e. costs associated with securing mobile devices, the direct
costs, and indirect costs are shown in Table 7.1 per company size. The company sizes are
shown for small, medium, and large-sized companies (respectively with less than 50, between
50 and 250, and more than 250 employees). The employee numbers per size are based on the
taxonomy of the European Commission on internal market, industry, entrepreneurship and
SMEs [73]

1. Total defence costs = $52 * number of employees
2. Total direct costs = (3% of the number of devices infected) * 7.880 direct costs per device
3. Total indirect costs = $2,428 * number of employees * 9.8% likelihood

Company
(size)

Employees
Total 

defense costs ($)
Total 

direct costs ($)
Total 

indirect costs ($)
Total costs

($)

Small <50 < 4,056 < 12,608 < 11,897 < 28,562 

Medium
50 

-
250

4,056
-

20,281

12,608
-

63,040

11,897
-

59,487

28,562
-

142,808

Large >250 > 20,281 > 63,040 > 59,487 > 142,808

Avg. survey 53,844 4,368,000 13,577,303 12,812,017 30,757,320

TABLE 7.1: Cost overview current average situation

3For simplicity we assume that the number of employees is equal to the number of mobile devices used in a
business
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7.2.2 Option 1 - Do nothing
The first option consists of doing nothing with mobile security. The costs associated with this
are shown in Table 7.2. The costs are calculated as follows:

1. Total defence costs = $0 * number of employees
2. Total direct costs = (30% of the number of devices infected) * 7,880 direct costs per device
3. Total indirect costs = $2,428 * number of employees * 18,6% likelihood

The defence costs are zero because this option implies doing nothing about mobile security.
For the direct costs, we assume that the number of infected devices rises to 30%. This number
is guesstimated, based on the high prevalence of mobile malware as described in Section
2.3. We assume that the that the likelihood of a worst-case scenario doubles when nothing is
done about mobile security. This assumption is again based on the high prevalence of mobile
malware.

Company
(size)

Employees
Total 

defense costs ($)
Total 

direct costs ($)
Total 

indirect costs ($)
Total costs

($)

Small <50 - < 118,200 < 23,795 < 141,995 

Medium
50 

-
250

-

118,200
-

591,000

23,795
-

118,973

141,995
-

709,973

Large >250 - > 591,000 > 118,973 > 709,973

Avg. survey 53,844 - 127,287,216 25,624,035 152,911,251

TABLE 7.2: Cost overview option 1, doing nothing

7.2.3 Option 2 - In-house development
The second option consists of developing mobile security solutions in-house. The costs
associated with this option are shown in Table 7.3. The costs are calculated as follows:

1. Total defense costs = 50% of investment in mobile security solution for maintenance.
2. Total direct costs = (15% of number of devices infected) * 7,880 direct costs per device
3. Total indirect costs = $2,428 * number of employees * 9.8% likelihood

The defence cost consists of maintaining an in-house security solution. We assume that
the maintenance costs are 50% of the total investments costs of the in-house security solution.
A rule of thumb for maintenance costs of mobile applications is 20% of the investment costs
of creating the mobile application [74][75][76]. Given that a mobile security application is
more complex than a normal application, we double this percentage to 40%. We add 10%
additional maintenance costs for any server requirements to manage the devices remotely.

The investments costs are calculated by assuming that a team of 7 cybersecurity specialists
are required to work 6 months on developing the mobile security solution. Given an average
estimated salary of $58,08 dollar per hour [77], this results in $382,183 costs for the salary of
the specialists. Lastly, we add 50% of the salary costs for any additional expenses such as
dataset purchase, distributed data solutions, and implementation costs. The salary costs +
additional expenses result in a total of $573,274 investments costs. Maintenance costs are thus
estimated at $286,637 per year.

For the direct costs, the percentage of devices infected is estimated to be 15%. This number
is based on the observation that most literature work described in Section 2.5.1 was able to
create a detection model with a TPR of 0.85, thus an FNR (number of undetected malware) of
15%. We, therefore, assume that a group of 7 cybersecurity specialist achieve the same FNR in
6 months.

For the indirect costs, the likelihood of a worst-case scenario is assumed to be the same
as the average solution. The percentage of devices is lower than doing nothing, but 15% of
the malware is assumed to go undetected. Therefore we keep the likelihood the same as the
current average situation.
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Company
(size)

Employees
Total 

defense costs ($)
Total 

direct costs ($)
Total 

indirect costs ($)
Total costs

($)

Small <50 < 286,637 < 59,100 < 5,949 < 351,686 

Medium
50 

-
250

286,637
-

404,562

59,100
-

295,500

5,949
-

29,743

351,686
-

729,805

Large >250 > 404,562 > 295,500 > 29,743 > 729,805

Avg. survey 53,844 798,200 63,643,608 6,406,009 70,847,817

TABLE 7.3: Cost overview option 2, in-house development mobile security
solutions

7.2.4 Option 3 - Outsource
The costs associated with this are shown in Table 7.4. The costs are calculated as follows:

1. Total defense costs = $203 * number of employees
2. Total direct costs = (0.015% of number of devices infected) * 7,880 direct costs per device
3. Total indirect costs = $2,428 * number of employees * 4.5% likelihood

The defence costs are based on the yearly cost per device of a popular mobile device manage-
ment service (MDM) 4. With MDM, businesses can outsource their mobile security. These
services provide software to monitor, manage, and securing employees’ mobile devices [78].
To calculate the direct costs, we assume that the number of devices infected is at least 50%
less than the current average situation. This number is based on the observation that 40%
of the companies in the above white paper, use some kind of MDM. We assume that most
malware attacks occur due to the lack of MDM. Therefore, we assume that if 100% of the
companies used some kind of MDM, the number of infected devices would be at least 50%
less. Using the same logic, the likelihood of the worst-case scenario is excepted to be at least
50% less than the current average situation.

Company
(size)

Employees
Total 

defense costs ($)
Total 

direct costs ($)
Total 

indirect costs ($)
Total costs

($)

Small <50 < 10,140 < 3,940 < 5,949 < 20,029 

Medium
50 

-
250

10,140
-

50,700

3,940
-

19,700

5,949
-

29,743

20,029
-

100,143

Large >250 > 50,700 > 19,700 > 29,743 > 100,143

Avg. survey 53,844 10,919,563 4,242,907 6,406,009 21,568,479

TABLE 7.4: Cost overview option 3, outsource mobile security

7.2.5 Conluding remarks
Figure 7.5 shows an overview of the findings of the cost-benefit analysis. This Figure shows
the costs associated with the current average situation and the three options described above.
Note again that these numbers are shown for an average company of 250 employees and
specifics of the sector, market, strategy etc. of the company are not included in the analysis.

Based on our cost-benefit analysis, in-house development of mobile security solutions has
the highest cost compared to the other options. These costs are mainly due to the high defence
costs coming from the maintenance of the mobile security solutions. Option 2 has similar high
costs as option 1, due to the high direct and indirect costs from the increased likelihood of a
mobile cyberattack. Lastly, option 3 has the lowest costs due to the relatively low defence costs
(compared to maintaining an own mobile security solution), and the decreased likelihood of
a mobile cyberattack.
Which option to choose depends on numerous factors such as:

1. Company size
2. Company sector/market

4https://www.air-watch.com/pricing
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3. Confidentiality of information shared within business
4. Knowledge of employees on cybersecurity etc.

Based on our example of 250 employees, our analysis shows that outsourcing mobile
security has the lowest total costs. In the cost-benefit analysis, we assumed an average
company without taking into consideration the many factors such as a company’s size and
market. Each specific company should therefore carefully consider their decision based on
these many factors.

Costs Amount $

Defense 20,281

Direct 63,040

Indirect 59,487

Total 142,808

Costs Amount $

Defense 404,562

Direct 295,500

Indirect 29,743

Total 729,805

Costs Amount $

Defense 50,700

Direct 19,700

Indirect 29,743

Total 100,143

Costs Amount $

Defense -

Direct 591,000

Indirect 118,973

Total 709,973

Average sitation Do nothing In-house Outsource

1 32

FIGURE 7.5: Costs-benefit analysis overview for a company with 250 employees
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Chapter 8

Discussion

This Chapter discusses the main findings of the Results presented in Chapter 6 and this
research’s limitations.

8.1 Results discussion

This Section discusses the main findings of Chapter 6. The findings are reported as following
i) classifier performance and ii) important features.

8.1.1 Classifier performance
High performance RF for training mode all
The best RF model with training mode all is RF with featureset 2, containing 29 app features,
and showed an f1 score of 0.730, an FPR of 0.013, and an FNR of 0.346 (i.e. TPR of 0.654).
Similar results, i.e. results with no statistically significant difference to the best RF model, are
achieved with featureset 3 that showed an f1 score of 0.722, an FPR of 0.009, and an FNR of
0.380 (i.e. TPR of 0.620). A TPR of 0.62 is relatively low compared to other studies on the
dynamic detecting of mobile malware, which showed TPRs between 0.61 and 1 (see Section
2.5.1 for a complete comparison).

In contrast to [24][58][60], with TPRs between 0.82 and 0.97, our study used data from
real-life users instead of virtual environments for the training and testing of detection meth-
ods. The use of real-life data for the training of models may have led to lower performance
due to the additional noise included in our dataset (see paragraph Overall high FNR). How-
ever, performances are hard to compare as [24][58][60] reflect performance results of their
detection methods under lab-like environments, i.e. with the use virtual environments, and
our performances reflect performances of detection methods under real-life circumstances.

Other studies, using real devices for training and testing of models, based their perfor-
mance on apps running isolated for 10 minutes [24], device in idle state [38] or unknown
circumstances [54][23]. One study that used real devices under real-life circumstances for the
assessment of their detection method is [57]. In that study, the researchers created a multi-level
framework (called MADAM) that showed high performance (TPR 0.97, FPR 0.005). MADAM
requires root permissions as it used System Calls for the detection of malware. In contrast
to MADAM, this present study’s detection methods do not require any root permissions.
Furthermore, MADAM used both dynamic and static features, in contrast to this present
study that used only dynamic features. Lastly, MADAM is a detection method consisting of
multiple architectural blocks that monitor different aspects of the device, in contrast to this
present study that does not consist of a complex architecture.

High performance RF, KNN, Ada for training mode permwtype
In this research, RF and KNN, showed good performances (f1 scores on average above 0.7)
when separate models were trained per malware versions (training mode permwtype). These
findings are in line with earlier studies that found good performances for RF [26][54][60] and
KNN [57] on the detection of mobile malware. The performance of Ada was not found in
earlier studies.
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MLP overall varying performance
In this research, MLP did not show good performances in training mode all. Additionally, it
showed good performance (f1 score >0.7) for 50% of the malware versions, and bad perfor-
mances (f1 score <0.5) for the remaining 50% of the malware version. Therefore, MLP had
a varying performance and may be less useful in detecting mobile malware. This does not
necessarily imply that Neural Networks, in general, are useless in detecting mobile malware.
This present study only examined MLP with a limited search space. Tuning MLP or using
more advanced Neural Networks may improve the performance.

NB overall relative low performance
In this research, NB showed overall low performance (f1 score <0.5). Other studies [53][24]
showed good performances for NB, hence the results of this present study are inconsistent
with earlier studies. This may be due to the additional noise included in our dataset, although
further research is needed to examine the cause.

Similar results for Ada with different testing modes
All classifiers, except Ada, show worse performances when tested on new devices (testing
mode unknown device), than if tested on the same devices (testing mode normal holdout). Most
studies do not provide information on the testing mode, thus testing modes of other research
cannot be compared to our study. Our results suggest that Ada may be more suitable when its
purpose is to first build a detection method with a subset of users and subsequently use this
detection method to protect other users. This approach is more scalable since new users can
be protected with an already existing detection method. Otherwise, the model needs to be re-
trained constantly for every new user. Ada with featureset 2 and testing mode unknown device
had an f1 score of 0.583 and an FPR of 0.013 and an FNR of 0.528. The relatively low perfor-
mance of Ada calls for more research on improving models to detect malicious actions of new
devices, given the larger scalability of these models. Some suggestions are given in Section 9.2.

Low performance on Spyware SMS and Adware
Performances on the detection of malware version 4 (Spyware SMS) and 6 (Adware) were
low (f1 score < 0.5). The dataset used for training and testing contained 190 records for
malware version 4. The low performance on the detection of Spyware SMS may, therefore,
be due to the small number of training instances. The training and testing dataset contained
7940 records for malware version 6. Therefore, the low performance is most likely not a
result of insufficient training instances. More research is needed to find the cause for the low
performance of the classifiers on malware version 6.

Perfect score on Ransomware
Ada showed a perfect score for malware version 8 (Ransomware). The dataset used for
training and testing contained 170 records for malware version 8. Ada did not show a low
performance although it was trained on a low number of training instances. The perfect score
on the Ransomware is hard to explain. Given the low number of testing instances, it is hard
to estimate whether this performance is the same on larger test sets.

FNR higher than FPR
Ín this research, the FNR (undetected malicious actions) was overall higher than the FPR
(benign actions labelled as malicious) . In other studies that we examined during our literature
research, the FPR is overall higher than the FNR. This may be due to the difference in the
distribution of malicious and benign datapoints. In our research, the dataset contained 90%
benign datapoints and 10% malicious data points. As most models are biased towards the
majority class, the FNR is expected to be higher than the FPR in our case. In other studies
the distribution of malicious and benign datapoints used are often 50/50 or a majority of
malicious datapoints, resulting in equal FPRs and FNRs, or higher FPRs than FNRs. This
stresses the importance of presenting both FPR and FNR values in research, which are not
presented in all examined studies.

Overall high FNR
In this research, all detection methods showed relatively high FNR (f1 score > 0.3). A high
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FNR implies a high number of malicious actions are undetected. This high FNR may have
different causes. Many features in the featureset are influenced by many factors, as the fea-
tures describes devices that are running multiple applications simultaneously. For instance,
the priority, the CPU allocation, and the memory allocation of the Malware app depend on
other applications running parallel to it. Therefore, the features in the dataset do not solely
reflect the (type of) action of the Malware app, but also the device’s state at a given moment.
This may result in excessive noise for the classifiers to accurately detect malicious actions of
the Malware app. Another possible cause may be the due to similar influences of malicious
actions and benign actions on the analysed features. Therefore, the classifiers may not be able
to distinguish sufficiently between malicious actions and benign actions.

8.1.2 Important features
Global features relative low performance
In this research, all models with App features showed an overall high performance (>0.7
f1 scores) compared to Global features (<0.4 f1 scores). Therefore, only examining a device
globally does not result in good detection performance. Other studies with features similar
to our Global features [24][26][54][23][60] found high performances (TPR > 0.8) with Global
features. All these studies used virtual environments instead of real devices. Additionally,
the apps in [24][26][60] were run isolated for a maximum of 90 seconds. Therefore, our
data contains more noise compared to the datasets used in [24][26][60]. The difference in
performance results may be due to this additional noise. This suggests that the performance
results of the research that used Global features may be too optimistic. The remaining studies
examined in our research did not provide a clear description on whether Global or App
features were used, so no comparison can be made.

No improvement of performance by combining App features and Global features
In this research, all models with a Combined featureset (App features and Global features)
had similar results, i.e. no statistically significant difference, as the models with only App
features. This suggests that Global features add little value to detection methods. This may
be because Global features are influenced by many factors of the device at a given moment,
e.g. running applications or processes. This may suggest that Global features do not capture
the behaviour of the Malware app sufficiently.

App CPU, App Memory, and App Process important features
The RF model with featureset 3 and training mode all contained CPU, Memory, and Process
features, suggesting that these feature categories are important in detecting malicious actions
of malware. The same three categories were found in 7 out of the 10 best models for training
mode permwtype.

8.2 Limitations

The limitations of this study are described below. They are divided as limitations imposed by
the i) dataset, ii) detection method, and iii) statistical analysis.

8.2.1 Dataset
All detection methods in this research are created using the same dataset. The limitations
caused by using this particular dataset are listed below:

1. All devices in the dataset are Samsungs Galaxy S5. Therefore, it is unknown how the
models perform when used on other devices.

2. All malware types in the dataset were written for the purpose of this research. This limits
the findings of the research due to two reasons. First of all the self-written malware was
adjusted for this research, As described in Section 3.2.1, before the malware probe sent
any data to a server, the data was scrambled to ensure the privacy of the volunteers
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of the research. It is possible that this scrambling influenced the features analysed
in the research. As a result, it is possible that this research’s detection models are
biased towards detecting scrambling actions, limiting its efficacy on real wild malware.
Secondly, ii) it is unknown whether real malware executes the same way as the self-
written malware. Although the behaviour of the self-written malware is based on wild
malware types, the implementation of the self-written malware may differ from real
wild malware. It is therefore unknown whether similar detection performances are
achieved on wild malware.

3. The dataset contained a low number of data points for malware version 4 and 6. This
limits the conclusions drawn from these malware version’s results.

8.2.2 Detection method
The detection methods of this research share characteristics that may limit their performance
or applicability. The limitations imposed by this is listed below:

1. All detection methods in this research are signature-based detection methods. As
described in Section 2.4.1, signature-based models identify malware based on signatures,
e.g. a pattern of behaviour. In this research, the signature of a malicious action is a
record of feature values for some given featureset. This signature may be different for
other (wild) malware types. Therefore it is unknown whether similar performances are
achieved on other (wild) malware types or other versions of the same malware type.

2. All detection methods in this research use RFCV as a feature selection method. This
method allows for feature reduction, but RFCV is a greedy search strategy. Therefore any
solutions for the optimal number of features found are sub-optimal, as local optimums
are found with RFCV.

3. All detection methods using App features require data collection of all applications
running on an application. In our research, we discarded data from other applications
as we knew which application was malicious. However, in real-life circumstances,
the malware application is unknown. Therefore, although App features show better
performance than Global features, they are more resource intensive than Global features
as all applications need to be monitored. A suggestion for this issue is described in 9.2

8.2.3 Statistical analysis
All models in this research are tested once using cross-validation with a hold-out method.
The statistical significance of differences between models is analysed using a McNemar
test (α < 0.05). This test is suitable for comparing machine learning performances when
comparing test set performances [70] and has a low Type I error (false positive errors).
However, as [70] noted this statistical analysis is limited by two issues. Both issues arise
because only the test set is taken into consideration by the statistical test. This results in the
following issues: i) any variability in the training set is not accounted for, and ii) we must
assume that differences observed in the test set are similar to the differences observed in the
training set.
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Conclusion

Section 9.1 concludes this research by providing the answers to the this research’s research
questions. Lastly Section 9.2 provides suggestions for future research to improve the per-
formances of dynamic detection methods of mobile malware. Additionally, suggestions are
provided to overcome this research’s limitations.

9.1 Conclusion

This Section summarizes the answers to the sub-questions and main research question pro-
posed in Section 1.1.

S.Q. 1 How do different machine learning techniques such as Random Forest, K-Nearest Neighbour,
Naïve Bayes, and Multilayer Perceptrons, perform in detecting Mobile Trojans?

The performances of the AdaBoost, Random Forest, K-Nearest Neighbour, Naïve Bayes, and
Multilayer Perceptrons are examined and described in Section 6.1. The results of this research
show that the Random Forest classifier is most suitable for detecting Mobile Trojans when one
model is used that is trained on multiple subtypes of Mobile Trojans. This classifier achieves
an f1-score of 0.73 with an FPR of 0.009 and an FNR of 0.380. Random Forest, AdaBoost and
K-nearest-neighbour show high performances when separate models are trained on each
subtype of Mobile Trojan with an average f1-score of >0.72, FPR of <0.02 and FNR of <0.33.
The remaining classifiers (Naïve Bayes and Multilayer Perceptron) showed relatively low
performance overall.

S.Q. 2 What software and/or hardware features, that do not require root permissions, are the most
crucial for the detection of Mobile Trojans?

Multiple featuresets are examined in this research, making a distinction between global device
features and features related to an application. When using one model for the detection of
multiple subtypes of Mobile Trojans, 10 app features related to the memory usage, process
information, and CPU usage of the app, are sufficient for detecting malicious actions. Ad-
ditionally, app features in general showed the best performance for detecting 7 out of 10
malware versions, compared to global device features.

S.Q. 3 What is the usability of these different classifiers on a real device?

The usability of the different classifiers is examined in Section 7. This Section showed that the
best performing model, RF with featureset 2 is relatively large and has long train and test
times. However, this Section showed that the usability of the RF model can be optimized
by adjusting hyperparameters, e.g. number of estimators, without loss of performance. The
KNN classifier is less scalable than other classifiers when the training set increases in size.
Lastly, this Section showed that the usability depends on design choices during the implemen-
tation of these classifiers. The models can be implemented in the cloud, alleviating the mobile
device of resource-intensive tasks compared to local deployment. Other design options, such
as the (re)training interval and monitoring frequency, affecting the usability of the detection
methods are also described in Section 7.
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M.Q. 1 How can we improve the dynamic detection of Mobile Trojans using hardware and software
features (not requiring any root permissions), based on real-life data?

Using the answers to the sub-questions, the main research question can be answered as
follows. The dynamic detection of Mobile Trojans can be improved by:

1. focusing on AdaBoost, Random Forest or K-nearest neighbour classifiers,
2. with features related to applications, instead of global device features,
3. and by carefully considering different design choices during the implementation of the

detection methods to optimize usability on real devices.

Additionally this research provided:

1. valuable knowledge on which features are important to detect different subtypes of
Mobile Trojans,

2. an extensive analysis of the influence of hyperparameters on the performance of multi-
ple classifiers,

3. and a global cost-benefit analysis of multiple mobile security options for businesses.

All findings of this research are based on real-life data. Therefore all assessment of detec-
tion methods is shown for real-life circumstances, increasing this research’s contribution to
practice.

9.2 Future work

Future research is necessary to i) improve the performances of this research’s detection
methods and ii) overcome this research’s limitations. Some suggestions are provided below:

1. Future research can focus on improving False Negative Rates as this research’s detec-
tion methods show relatively high FNR. As Random Forest and AdaBoost showed
relative high performance, other (boosted) ensemble classifiers can be examined such
as GradientBoosting [79].

2. More research is needed to improve the performance of detection methods on new
devices, i.e. devices not included in the training set, as this increases the scalability of
detection methods. Detection methods may be improved by dividing users into separate
groups during cross-validation and to exclude (multiple) group(s) from the validation
set. This can help the tuning of classifiers to detect new users since hyperparameters
are selected for their performance on new users.

3. Future research can improve dynamic detection methods by analysing real wild mal-
ware samples to improve the efficacy of the methods on the detection of real malware
in order to overcome the limitation imposed by the use self-written malware.

4. Further research is encouraged to increase the sample size to improve the efficacy and
applicability of the methods. This research analysed 10 different samples of Mobile
Trojans.

5. Future research can examine whether time series analysis may improve the detection
methods. This research’s detection methods analyse dynamic features by individually
assessing these values, without considering these value prior in time. Therefore, the
absolute values of features are analysed. With time series analysis, relative values can
be used which may improve the detection methods, as is suggested by the results of
[58].

6. Future research is encouraged to optimize the resource requirements of detection
methods using App features. As described in Section 8, monitoring App features of
all applications installed on a device is resource intensive. Research to decrease these
resource requirements is needed. A suggestion may be to only monitor applications
that require sensitive permissions, e.g. access to SD card or access to contacts, as was
implemented in the framework of [57].
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Appendix A

System preprocessing

The dataset was preprocessed to allow the reading and analysis of the different probes. To
read the dataset, PySpark requires a data schema with column names and column data type.
The data schemes were provided with the dataset, however the data schema was not correct
for all rows of the T4 probe. Therefore an additional preprocessing was needed for the T4
probe. The preprocessing steps are shown in Figure XX. This figure shows that in order to
get the correct dataset t4df_final, the method read_t4df is called four times on four different
combinations of input files. The read_t4df method uses two data schemas and the T4 probe
data as input. One data schema is the data schema as provided with the dataset. The other
data schema was found as a header in the csv file of quarter 4 2016. The read_t4df method then
tries to first read the complete csv file with data schema 1, and drops all rows not conforming
to this data schema. The resulting dataframe is called part1_df. Then it tries to read the
complete csv files with the data schema 2, and again drops all rows not conforming to this
dataschema. This resulting dataframe is called part2_df. The two partial dataframes (part1_
df & part2_df ) are then joined together and returned by the method read_t4df. The read_t4df
method is called with all four csv files and these files are joined together to create the final T4
dataframe. This dataframe is exported as a csv file and used throughout the research as the
T4 probe dataset.
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csv
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csv
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csv

schema1

schema2
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join() t4df_final
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Read_t4df
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FIGURE A.1: T4 preprocessing steps





85

Appendix B

Literature review method

FIGURE B.1: Literature Review Method
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Appendix C

Data exploration I

This appendix includes the findings of the first data exploration. First the general findings of
all three probes used in this research are described. Then the probes are described seperately.

General findings
An important finding of all three probes, is the difference in distribution of data per user as
can be seen in Figure C.1. Some users are overrepresented in the dataset. The ranking of the
users based on the amount of data seems to be the same for the Malware and the System
probe. However, this is not the case for the Apps probe. The cause for this is unknown. The
distribution of the users for the final dataset is described in Section 3.3
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FIGURE C.1: Data distribution of users

Another important finding is the difference in distribution of data over time. As can be
seen in Figure C.2, both the Malware probe and Apps probe have a peak around months 3
and 4, and months 9 and 10. This indicates that more actions were performed by malware
versions 3, 4, 9, and 10, in comparison with the other malware versions.
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FIGURE C.2: Data distribution over time

Malware dataset findings
An important distribution in the Malware dataset is the distribution of data among the
different malware types. As described in the previous Section, malware types 2, 3, 8 and 9,
are overrepresented in the dataset. Figure C.3 shows the distribution of malicious and benign
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actions and sessions, per malware type.
This Figure shows that malicious actions are overrepresented in the Malware dataset. Roughly
90 percent of the Malware data points are malicious actions and 10 percent are benign data
points. To have a representative dataset, i.e. a dataset reflecting real-life circumstances, the
dataset is balanced to include fewer malicious data points and more benign data points. This
process is described in Section 4.4.
Appendix X describes the other findings of the exploration of the Malware dataset.
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FIGURE C.3: Actions and sessions distribution per malware type

System and Apps dataset findings
The System and Apps dataset consist of more than 80% of numerical columns. The column
descriptions indicate that some columns might be highly correlated as they describe the same
value in another metric. For example: the traffic_mobilerxbytes column describes the network
traffic received via a mobile network in bytes, and the traffic_mobilerxpackets describes the
network traffic received via a mobile network in packets. Figure C.4 shows the correlation
heatmaps for a subset of the Network and Memory feature categories. As expected, some
columns are highly correlated due to the aforementioned reason. This might suggest that
features can be removed without affecting the performance of classifiers. In the case of the
Naïve Bayes classifier, the removal of features might improve the performance as the naivety
of the classifier assumes no correlation amongst features. The correlation heatmaps of the
other features and of the Apps probe are shown in Appendix X.
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Appendix D

Android framework

Android is an open-source platform for mobile devices. The Android Framework can be
seen in Figure D.1. The different layers are described below and are based on the publicly
available information provided by Google regarding the Android platform [80][81][82] and a
recent paper on Android security [2].

FIGURE D.1: Android Framework

Applications
This layer consists of the different applications on an Android device. These applications can
either be pre-installed or user-installed.

Android Framework/ Application Framework / Java API Framework
This framework is used by applications developers and provides different APIs for applica-
tions to call.

Native Libraries
Native libraries writtin in C and C++ are used by many core android system components
and services, such as ART and HAL. Some of these native libraries are accessible via Java
framework APIs.

Android Runtime
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This part consists of core libraries and either virtual machines in the form of Dalvik or ART.
Applications are ran as separate processes in different virtual machines.

Hardware Abstraction Layer (HAL)
This layer provides a standard interface for the different hardware components of the device,
such as the camera, speaker, keypad etc. This layer is used in order to get the hardware
capabilities to the higher-level Java API framework.

Linux Kernel
The foundation of the Android platform is the Linux kernel. Android uses this kernel with a
few adjustments for it to work effectively on a mobile embedded platform.

Android security mechanisms
Android provides different ways to secure its platform. The security features can be subdi-
vided as security features in the Linux kernel, and application security features.

D.0.0.1 Kernel security features

The key security features of the Linux kernel are listed below with a short description.

The Application Sandbox
Different application resources are identified and isolated using the Linux user-based protec-
tion. This is done by running every Android application as a separate process and assigning
it a unique user ID (UID). By default, the kernel-level Application Sandbox does not allow
different applications to interact with each other. As this security feature is in the kernel, the
layers above make use of this Application Sandbox.

System Partition and Safe mode
Android’s kernel, operating system, libraries, application runtime, application framework
and applications are stored in the system partition. This partition is read-only. Additionally a
device can be booted in Safe Mode, allowing third-party applications only to launch when
manually launched by the device owner.

Filesystem permission
This feature ensures that files cannot be altered or read by other users. As stated before every
application is run as its own users, thus files created by one application cannot be read or
altered by another application.

Verified boot
This security mechanism checks during booting whether the device still in the same state as it
was last used.

D.0.0.2 Application security features

The key security features of Android applications are listed below with a short description.

Android Permission model
Applications can by default only access a limited range of system resources. Applications
can access more system resources via APIs, however it needs permission for some sensitive
APIs. This security mechanism is therefore also known as Permissions. The sensitive APIs
being protected are camera functions, location data, bluetooth functions, telephone functions,
SMS/MMS functions, and network/data connections. The permissions an application re-
quires are stated in a file called the manifest file. This file is used during the installation of an
application and users are prompted during the installation whether they want to accept an
application accessing the defined resources.
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Interprocess communication
Android allows for different ways of interprocess communications. The mechanisms for these
communications are: binders, services, intents, and contentproviders.
Binders allow for remote procedure calls. In the case of applications it allows for applications
to use methods of other applications.
Services are bodies of code running on the background. Other components can bind to a
service and invoke methods on it via remote procedure calls. For example, the media player
can be a service which keeps on running even when the music app is not longer running.
Intents are intention message objects. An application can have the intention of for example
displaying a web page. Then an intent instance is created and handed to the system. The
system can then locate which application or code can run this intent (in this case a browser
application).
ContentProviders allow access to data on the device via data storehouses. Contentproviders
is used for applications to expose data of its own or to access data of other applications.

Application signing
Applications need to be signed by the developer. The Package Manager verifies that an
application being installed is properly signed with the certificate included in the installation
package.

Application verification
This is an option on Android 4.2 and later for users to have applications be evaluated by an
application verifier before installation.





93

Appendix E

System features

Feature Type
Feature cat-
egory Description

userid string the user ID to whom this sample belongs to.

uuid int Unix timestamp in milliseconds of when this event occurred.

version string
The current version of the SherLock collection agent running on the
device.

traffic_
mobilerxbytes int Network

Number of Bytes received over mobile data since the last activation of
the T4 probe (a value of -1 indicates that this is the first sample since
boot).

traffic_
mobilerxpackets int Network

Number of Packets received over mobile data since the last activation
of the T4 probe (a value of -1 indicates that this is the first sample
since boot).

traffic_
mobiletxbytes int Network

Number of Bytes transmitted over mobile data since the last activation
of the T4 probe (a value of -1 indicates that this is the first sample
since boot).

traffic_
mobiletxpackets int Network

Number of Packets transmitted over mobile data since the last activa-
tion of the T4 probe (a value of -1 indicates that this is the first sample
since boot).

traffic_
totalrxbytes int Network

Number of Bytes received over all networks since the last activation of
the T4 probe (a value of -1 indicates that this is the first sample since
boot).

traffic_
totalrxpackets int Network

Number of Packets received over all networks since the last activation
of the T4 probe (a value of -1 indicates that this is the first sample
since boot).

traffic_
totaltxbytes int Network

Number of Bytes transmitted over all networks since the last activation
of the T4 probe (a value of -1 indicates that this is the first sample
since boot).

traffic_
totaltxpackets int Network

Number of Packets transmitted over all networks since the last activa-
tion of the T4 probe (a value of -1 indicates that this is the first sample
since boot).

traffic_
totalwifirxbytes int Network

Number of Bytes received over Wi-Fi since the last activation of the T4
probe (a value of -1 indicates that this is the first sample since boot).

traffic_
totalwifirxpackets int Network

Number of Packets received over all networks since the last activation
of the T4 probe (a value of -1 indicates that this is the first sample
since boot).

traffic_
totalwifitxbytes int Network

Number of Bytes transmitted over Wi-Fi since the last activation of
the T4 probe (a value of -1 indicates that this is the first sample since
boot).

traffic_
totalwifitxpackets int Network

Number of Packets transmitted over Wi-Fi since the last activation of
the T4 probe (a value of -1 indicates that this is the first sample since
boot).

traffic_
timestamp string Network DateTime indicating when the traffic was calculated.

battery_
charge_type int Battery A value indicating the method of charging.



94 Appendix E. System features

battery_
current_avg int Battery

Average battery current in microamperes, as an integer. Positive
values indicate net current entering the battery from a charge source,
negative values indicate net current discharging from the battery. The
time period over which the average is computed may depend on the
fuel gauge hardware and its configuration.

battery_health int Battery
A value that indicated the current health of the battery (e.g., good, hot,
over voltage,. . . )

battery_icon_
small int Battery

The resource ID of a small status bar icon indicating the current battery
state

battery_
invalid_
charger int Battery Indication if the charger is invalid.

battery_level int Battery The current battery level (0-100)

battery_online bool Battery An indication if the battery is operational.

battery_
plugged bool Battery An indication if the battery is plugged in.

battery_present string Battery An indication if the battery is in the device.

battery_scale int Battery The maximum battery level.

battery_status int Battery the current status constant.

battery_
technology string Battery The technology of the current battery.

battery_
temperature int Battery The current battery temperature in tenths of a degree Centigrade.

battery_
timestamp string Battery A DateTime indicating when the battery statistics were sampled.

battery_voltage int Battery current battery voltage in millivolts.

cpuhertz int CPU
the current clock speed of the CPU taken from
proc/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

cpu_0 int CPU CPU utilization of core #0 in percentage.

cpu_1 int CPU CPU utilization of core #1 in percentage.

cpu_2 int CPU CPU utilization of core #2 in percentage.

cpu_3 int CPU CPU utilization of core #3 in percentage.

total_cpu int CPU Total CPU utilization in percentage.

totalmemory_
freesize int Memory Memory free in the Android heap.

totalmemory_
max_size int Memory Max memory avalaible in the Android heap.

totalmemory_
total_size int Memory Total memory in the Android heap.

totalmemory_
used_size int Memory Total memory used in the Android heap.

memtotal int Memory
Total amount of usable RAM, in kibibytes, which is physical RAM
minus a number of reserved bits and the kernel binary code.

Memfree int Memory The amount of physical RAM, in kibibytes, left unused by the system.

buffers int Memory The amount, in kibibytes, of temporary storage for raw disk blocks.

cached int Memory The amount of physical RAM, in kibibytes, used as cache memory.

swapcached int Memory

The amount of memory, in kibibytes, that has once been moved into
swap, then back into the main memory, but still also remains in the
swapfile. This saves I/O, because the memory does not need to be
moved into swap again.

active int Memory
The amount of memory, in kibibytes, that has been used more recently
and is usually not reclaimed unless absolutely necessary.

inactive int Memory
The amount of memory, in kibibytes, that has been used less recently
and is more eligible to be reclaimed for other purposes.

active_anon int Memory

The amount of anonymous and tmpfs/shmem memory, in kibibytes,
that is in active use, or was in active use since the last time the system
moved something to swap.
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inactive_anon int Memory
The amount of anonymous and tmpfs/shmem memory, in kibibytes,
that is a candidate for eviction.

active_file int Memory
The amount of file cache memory, in kibibytes, that is in active use, or
was in active use since the last time the system reclaimed memory.

inactive_file int Memory
The amount of file cache memory, in kibibytes, that is newly loaded
from the disk, or is a candidate for reclaiming.

unevictable int Memory

The amount of memory, in kibibytes, discovered by the pageout code,
that is not evictable because it is locked into memory by user pro-
grams.

mlocked int Memory
The total amount of memory, in kibibytes, that is not evictable because
it is locked into memory by user programs.

hightotal int Memory
The total amount of memory, in kilobytes, that is not directly mapped
into kernel space.

highfree int Memory
The free memory, in kilobytes, that is not directly mapped into kernel
space.

lowtotal int Memory
The total amount of memory, in kilobytes, that is directly mapped into
kernel space.

lowfree int Memory
The free memory, in kilobytes, that is directly mapped into kernel
space.

swaptotal int Memory The total amount of swap available, in kibibytes.

swapfree int Memory The total amount of swap free, in kibibytes.

dirty int Memory
The total amount of memory, in kibibytes, waiting to be written back
to the disk.

writeback int Memory
The total amount of memory, in kibibytes, actively being written back
to the disk.

anonpages int Memory
The total amount of memory, in kibibytes, used by pages that are not
backed by files and are mapped into userspace page tables.

mapped int Memory
The memory, in kibibytes, used for files that have been mmaped, such
as libraries.

shmem int Memory
The total amount of memory, in kibibytes, used by shared memory
(shmem) and tmpfs.

slab int Memory
The total amount of memory, in kibibytes, used by the kernel to cache
data structures for its own use.

sreclaimable int Memory The part of Slab that can be reclaimed, such as caches.

sunreclaim int Memory The part of Slab that cannot be reclaimed even when lacking memory.

kernelstack int Memory
The amount of memory, in kibibytes, used by the kernel stack alloca-
tions done for each task in the system.

pagetables int Memory
The total amount of memory, in kibibytes, dedicated to the lowest
page table level.

commitlimit int Memory
The total amount of memory currently available to be allocated on the
system based on the overcommit ratio.

committed_as int Memory

The total amount of memory, in kibibytes, estimated to complete the
workload. This value represents the worst case scenario value, and
also includes swap memory.

vmalloctotal int Memory
The total amount of memory, in kibibytes, of total allocated virtual
address space.

vmallocused int Memory
The total amount of memory, in kibibytes, of used virtual address
space.

vmallocchunk int Memory
The largest contiguous block of memory, in kibibytes, of available
virtual address space.

msmgpio_cpu0 int
IO Inter-
rupts

Accumulative interrupts for the msmgpio component. Interrupts on
CPU #0.

msmgpio_
sum_cpu123 int

IO Inter-
rupts

Accumulative interrupts for the msmgpio component. Interrupts on
CPUs #1, #2, #3.

wcd9xxx_cpu0 int
IO Inter-
rupts

Accumulative interrupts for the wcd9xxx component. Interrupts on
CPU #0.

wcd9xxx_sum_
cpu123 int

IO Inter-
rupts

Accumulative interrupts for the wcd9xxx component. Interrupts on
CPUs #1, #2, #3.

pn547_cpu0 int
IO Inter-
rupts

Accumulative interrupts for the pn547component. Interrupts on CPU
#0.
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pn547_sum_
cpu123 int

IO Inter-
rupts

Accumulative interrupts for the pn547component. Interrupts on CPUs
#1, #2, #3.

cypress_
touchkey_
cpu0 int

IO Inter-
rupts

Accumulative hardware interrupt count of back button presses. Inter-
rupts on CPU #0.

cypress_
touchkey_
sum_cpu123 int

IO Inter-
rupts

Accumulative hardware interrupt count of back button presses. Inter-
rupts on CPUs #1, #2, #3.

synaptics_
rmi4_i2c_cpu0 int

IO Inter-
rupts

Accumulative hardware interrupt count for the touch screen (a sin-
gle gesture may incur many interrupts –e.g., x y coordinate change).
Interrupts on CPU #0.

synaptics_
rmi4_i2c_sum_
cpu123 int

IO Inter-
rupts

Accumulative hardware interrupt count for the touch screen (a sin-
gle gesture may incur many interrupts –e.g., x y coordinate change).
Interrupts on CPUs #1, #2, #3.

sec_headset_
detect_cpu0 int

IO Inter-
rupts

Accumulative hardware interrupt count for head set detection. Inter-
rupts on CPU #0.

sec_headset_
detect_sum_
cpu123 int

IO Inter-
rupts

Accumulative hardware interrupt count for head set detection. Inter-
rupts on CPUs #1, #2, #3.

flip_cover_
cpu0 int

IO Inter-
rupts

Accumulative hardware interrupt count for head set detection. Inter-
rupts on CPU #0.

flip_cover_
sum_cpu123 int

IO Inter-
rupts

Accumulative hardware interrupt count for head set detection. Inter-
rupts on CPUs #1, #2, #3.

home_key_
cpu0 int

IO Inter-
rupts

Accumulative hardware interrupt count of home key presses. Inter-
rupts on CPU #0.

home_key_
sum_cpu123 int

IO Inter-
rupts

Accumulative hardware interrupt count of home key presses. Inter-
rupts on CPUs #1, #2, #3.

volume_down_
cpu0 int

IO Inter-
rupts

Accumulative hardware interrupt count of volume down button
presses. Interrupts on CPU #0.

volume_down_
sum_cpu123 int

IO Inter-
rupts

Accumulative hardware interrupt count of volume down button
presses. Interrupts on CPUs #1, #2, #3.

volume_up_
cpu0 int

IO Inter-
rupts

Accumulative hardware interrupt count of volume up button presses.
Interrupts on CPU #0.

volume_up_
sum_cpu123 int

IO Inter-
rupts

Accumulative hardware interrupt count of volume up button presses.
Interrupts on CPUs #1, #2, #3.

companion_
cpu0 int

IO Inter-
rupts

Accumulative hardware interrupt count of companion occurrences.
Interrupts on CPU #0.

companion_
sum_cpu123 int

IO Inter-
rupts

Accumulative hardware interrupt count of companion occurrences.
Interrupts on CPUs #1, #2, #3.

slimbus_cpu0 int
IO Inter-
rupts Accumulative interrupt count on the slimbus. Interrupts on CPU #0.

slimbus_sum_
cpu123 int

IO Inter-
rupts

Accumulative interrupt count on the slimbus. Interrupts on CPUs #1,
#2, #3.

function_call_
interrupts_
cpu0 int

IO Inter-
rupts

Accumulative software interrupt count on function calls. Interrupts
on CPU #0.

function_call_
interrupts_
sum_cpu123 int

IO Inter-
rupts

Accumulative software interrupt count on function calls. Interrupts
on CPUs #1, #2, #3.

cpu123_intr_
prs int

IO Inter-
rupts Accumulative interrupt count on the intr_prs element.

tot_user int CPU The number of normal processes executing in user mode.

tot_nice int CPU The number of niced processes executing in user mode.

tot_system int CPU The number of processes executing in kernel mode.

tot_idle int CPU The number of twiddling thumbs.

tot_iowait int CPU The number of waiting for I/O to complete.

tot_irq int CPU The number of servicing interrupts.

tot_softirq int CPU The number of servicing softirqs.

ctxt int CPU The total number of context switches across all CPUs.
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btime int CPU The time at which the system booted, in seconds since the Unix epoch.

processes int CPU

The number of processes and threads created, which includes (but is
not limited to) those created by calls to the fork() and clone() system
calls.

procs_running int CPU The number of processes currently running on CPUs.

procs_blocked int CPU
The number of processes currently blocked, waiting for I/O to com-
plete.

connectedwifi_
ssid int Wifi The salted hash of the connected Wi-Fi access point’s SSID.

connectedwifi_
level int Wifi The reception level of the connected Wi-Fi access point (RSSI).

internal_
availableblocks int Storage Avalaible blocks in internal storage.

internal_
blockcount int Storage Number of blocks in internal storage.

internal_
freeblocks int Storage Free blocks in internal storage.

internal_
blocksize int Storage Block size in internal storage.

internal_
availablebytes int Storage Avalaible Bytes in internal storage.

internal_
freebytes int Storage Free Bytes in internal storage.

internal_
totalbytes int Storage Total Bytes in external (SD card) storage.

external_
availableblocks int Storage Avalaible blocks in external (SD card) storage.

external_
blockcount int Storage Number of blocks in external (SD card) storage.

external_
freeblocks int Storage Number of blocks in external (SD card) storage.

external_
blocksize int Storage Block size in external (SD card) storage.

external_
availablebytes int Storage Avalaible Bytes in external (SD card) storage.

external_
freebytes int Storage Free Bytes in external (SD card) storage.
external_
totalbytes int Storage Total Bytes in external (SD card) storage.
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Apps features

Feature type
Feature Cat-
egory description

userid string Metadata the user ID to whom this sample belongs to.

uuid int Metadata Unix timestamp in milliseconds of when this event occurred.

applicationname string Metadata The name of the sampled application described in this record.

cpu_usage double App_CPU

The percent of CPU utilization normalized to a constant CPU clock
speed. Note that this data field has been depreciated. It is recom-
mended to use the stime, utime, cstime, cutime fields to measure the
app’s activity.

packagename string App_Info
The Android package name of this app (e.g.,
com.example.helloandroid)

packageuid int App_Info The UID identifier of this app’s package.

uidrxbytes int
App_
Network

Bytes received by this application since the last time the T4 probe was
activated (approximately 5 seconds on average –compare uuids for
accuracy). If this is the first sample since boot, then the value is -1.

uidrxpackets int
App_
Network

Packets received by this application since the last time the T4 probe
was activated (approximately 5 seconds on average –compare uuids
for accuracy). If this is the first sample since boot, then the value is -1.

uidtxbytes int
App_
Network

Bytes transmitted by this application since the last time the T4 probe
was activated (approximately 5 seconds on average –compare uuids
for accuracy). If this is the first sample since boot, then the value is -1.

uidtxpackets int
App_
Network

Packets transmitted by this application since the last time the T4 probe
was activated (approximately 5 seconds on average –compare uuids
for accuracy). If this is the first sample since boot, then the value is -1.

cguest_time int App_CPU Guest time of the process’s children, measured in clock ticks.

cmaj_flt int
App_
Memory

The number of major faults that the process’s waited-for children have
made.

cstime int App_CPU
Amount of time that this process’s waited-for children have been
scheduled in kernel mode, measured in clock ticks.

cutime int App_CPU

Amount of time that this process’s waited-for children have been
scheduled in user mode, measured in clock ticks. This includes guest
time, cguest_time (time spent running a virtual CPU).

dalvikprivatedirty int
App_
Memory The private dirty pages used by dalvik heap.

dalvikpss int
App_
Memory The proportional set size for dalvik heap.

dalvikshareddirty int
App_
Memory The shared dirty pages used by dalvik heap.

guest_time int App_CPU
Guest time of the process (time spent running a virtual CPU for a
guest operating system), measured in clock ticks.

importance int
App_
Process

The relative importance level that the system places on this process
(details). For example, background, foreground, service, sleeping,
. . . etc.

importancereasoncodeint
App_
Process The reason for importance, if any (details).

importancereasonpidint
App_
Process

For the specified values of importanceReasonCode, this is the process
ID of the other process that is a client of this process (details).
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lru int
App_
Memory

An additional ordering within a particular Android importance cate-
gory, providing finer-grained information about the relative utility of
processes within a category (details).

nativeprivatedirty int
App_
Memory The private dirty pages used by the native heap.

nativepss int
App_
Memory The proportional set size for the native heap.

nativeshareddirty int
App_
Memory The shared dirty pages used by the native heap.

num_threads int App_CPU Number of threads in this process.

otherprivatedirty int
App_
Memory The private dirty pages used by everything else.

otherpss int
App_
Memory The proportional set size for everything else.

othershareddirty int
App_
Memory The shared dirty pages used by everything else.

pgid int
App_
Process

pid int
App_
Process The process ID of this process.

ppid int
App_
Process The PID of parent process.

priority int App_CPU

(Explanation for Linux 2.6) For processes running a real-time schedul-
ing policy (policy below; see sched_setscheduler(2)), this is the
negated scheduling priority, minus one; that is, a number in the range
-2 to -100, corresponding to real-time priorities 1 to 99. For processes
running under a non-real-time scheduling policy, this is the raw nice
value (setpriority(2)) as represented in the kernel. The kernel stores
nice values as numbers in the range 0 (high) to 39 (low), corresponding
to the user-visible nice range of -20 to 19.

rss int
App_
Memory

Resident Set Size: number of pages the process has in real memory.
This is just the pages which count toward text, data, or stack space.
This does not include pages which have not been demand-loaded in,
or which are swapped out.

rsslim int
App_
Memory Current soft limit in bytes on the rss of the process.

sid int
App_
Process The process’s session ID.

start_time int
App_
Process

The time the process started after system boot. In kernels before Linux
2.6, this value was expressed in jiffies. Since Linux 2.6, the value is
expressed in clock ticks.

state string
App_
Process

Current state of the process. One of "R (running)", "S (sleeping)", "D
(disk sleep)", "T (stopped)", "T (tracing stop)", "Z (zombie)", or "X
(dead)".

stime int App_CPU
Amount of time that this process has been scheduled in kernel mode,
measured in clock ticks.

tcomm string
App_
Process An associated string with the executable’s name.

utime int App_CPU

Amount of time that this process has been scheduled in user mode,
measured in clock ticks. This includes guest time, guest_time (time
spent running a virtual CPU, see below), so that applications that
are not aware of the guest time field do not lose that time from their
calculations.

vsize int
App_
Memory Virtual memory size in bytes.

version_code int App_Info

An integer used as an internal version number for the Android app.
This number is used only to determine whether one version is more
recent than another, with higher numbers indicating more recent
versions. This is not the version number shown to users (details).

version_name string App_Info
A string used as the version number shown to users. This setting can
be specified as a raw string or as a reference to a string resource.

sherlock_
version string Metadata

The current version of the SherLock collection agent running on the
device.
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tgpid int
App_
Process

The ID of the foreground process group of the controlling terminal of
the process. -1 if the process is not connected to a terminal.

Flags string
App_
Process

the internal kernel flags holding the status of the socket (e.g.,
00010000).

Wchan string
App_
Process

This is the "channel" in which the process is waiting. It is the ad-
dress of a location in the kernel where the process is sleeping. The
corresponding symbolic name can be found in /proc/[pid]/wchan.

exit_signal int
App_
Process Signal to be sent to parent when we die.

minflt int
App_
Memory

The number of minor faults the process has made which have not
required loading a memory page from disk.

cminflt int
App_
Memory

The number of minor faults that the process’s waited-for children
have made.

majflt int
App_
Memory

The number of major faults the process has made which have required
loading a memory page from disk.

startcode int
App_
Process The address above which program text can run.

endcode int
App_
Process The address below which program text can run.

nice int App_CPU
The nice value a value in the range 19 (low priority) to -20 (high
priority).

Itrealvalue int App_CPU

The time in jiffies before the next SIGALRM is sent to the process
due to an interval timer. Since kernel 2.6.17, this field is no longer
maintained, and is hard coded as 0.

Processor int App_CPU CPU number last executed on.

rt_priority int App_CPU

Real-time scheduling priority, a number in the range 1 to 99 for pro-
cesses scheduled under a real-time policy, or 0, for non-real-time
processes.
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Malware features

Feature type
Feature Cat-
egory description

userid string metadata the user ID to whom this sample belongs to.

uuid int metadata Unix timestamp in milliseconds of when this event occurred.

version string metadata The version of Moriarty this clue belongs to.

action string action The general action being performed by the Moriarty agent.

actionType benign, malicious action The intent of the action being performed.

details string action

Details on the action performed. This field may contain addi-
tional information. The format of this field is: <details> (<data
field>,. . . );<data value>;. . . e.g.: “Successful send to server(duration

sessionID int session The ID for the on going session to which this clue belongs.

sessionType benign, malicious session The intent of the ongoing session.

behavior string session

Sometimes sessions may overlap (e.g. benign game playing and a
spyware service). This field help segregate overlapping sessions and
identify their intents.
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Appendix H

Featureset overview

fs1 fs2 fs3

userid userid fs1 + fs3
uuid uuid

version applicationname
traffic_mobilerxbytes cpu_usage

traffic_mobilerxpackets packagename
traffic_mobiletxbytes packageuid

traffic_mobiletxpackets uidrxbytes
traffic_totalrxbytes uidrxpackets

traffic_totalrxpackets uidtxbytes
traffic_totaltxbytes uidtxpackets

traffic_totaltxpackets cguest_time
traffic_totalwifirxbytes cmaj_flt

traffic_totalwifirxpackets cstime
traffic_totalwifitxbytes cutime

traffic_totalwifitxpackets dalvikprivatedirty
traffic_timestamp dalvikpss

battery_charge_type dalvikshareddirty
battery_current_avg guest_time

battery_health importance
battery_icon_small importancereasoncode

battery_invalid_charger importancereasonpid
battery_level lru
battery_online nativeprivatedirty

battery_plugged nativepss
battery_present nativeshareddirty
battery_scale num_threads
battery_status otherprivatedirty

battery_technology otherpss
battery_temperature othershareddirty
battery_timestamp pgid

battery_voltage pid
cpuhertz ppid
cpu_0 priority
cpu_1 rss

cpu_2 rsslim

cpu_3 sid

total_cpu start_time

totalmemory_freesize state

totalmemory_max_size stime

totalmemory_total_size tcomm

totalmemory_used_size utime

FIGURE H.1: Features included per featureset (fs1 - fs3)
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fs4 fs5 fs6

userid swapcached home_key_sum_cpu123 userid tgpid fs4 + fs5

uuid active volume_down_cpu0 uuid Flags

version inactive
volume_down_sum_cpu

123
applicationname Wchan

traffic_mobilerxbytes active_anon volume_up_cpu0 cpu_usage exit_signal

traffic_mobilerxpackets inactive_anon
volume_up_sum_cpu12

3
packagename minflt

traffic_mobiletxbytes active_file companion_cpu0 packageuid cminflt

traffic_mobiletxpackets inactive_file companion_sum_cpu123 uidrxbytes majflt

traffic_totalrxbytes unevictable slimbus_cpu0 uidrxpackets startcode

traffic_totalrxpackets mlocked slimbus_sum_cpu123 uidtxbytes endcode

traffic_totaltxbytes hightotal
function_call_interrupts

_cpu0
uidtxpackets nice

traffic_totaltxpackets highfree
function_call_interrupts

_sum_cpu123
cguest_time Itrealvalue

traffic_totalwifirxbytes lowtotal cpu123_intr_prs cmaj_flt Processor

traffic_totalwifirxpackets lowfree tot_user cstime rt_priority

traffic_totalwifitxbytes swaptotal tot_nice cutime

traffic_totalwifitxpackets swapfree tot_system dalvikprivatedirty

traffic_timestamp dirty tot_idle dalvikpss

battery_charge_type writeback tot_iowait dalvikshareddirty

battery_current_avg anonpages tot_irq guest_time

battery_health mapped tot_softirq importance

battery_icon_small shmem ctxt importancereasoncode

battery_invalid_charger slab btime importancereasonpid

battery_level sreclaimable processes lru

battery_online sunreclaim procs_running nativeprivatedirty

battery_plugged kernelstack procs_blocked nativepss

battery_present pagetables connectedwifi_ssid nativeshareddirty

battery_scale commitlimit connectedwifi_level num_threads

battery_status committed_as internal_availableblocks otherprivatedirty

battery_technology vmalloctotal internal_blockcount otherpss

battery_temperature vmallocused internal_freeblocks othershareddirty

battery_timestamp vmallocchunk internal_blocksize pgid

battery_voltage msmgpio_cpu0 internal_availablebytes pid

cpuhertz msmgpio_sum_cpu123 internal_freebytes ppid

cpu_0 wcd9xxx_cpu0 internal_totalbytes priority

cpu_1 wcd9xxx_sum_cpu123 external_availableblocks rss

cpu_2 pn547_cpu0 external_blockcount rsslim

cpu_3 pn547_sum_cpu123 external_freeblocks sid

total_cpu cypress_touchkey_cpu0 external_blocksize start_time

totalmemory_freesize
cypress_touchkey_sum_

cpu123
external_availablebytes state

totalmemory_max_size
synaptics_rmi4_i2c_cpu

0
external_freebytes stime

totalmemory_total_size
synaptics_rmi4_i2c_su

m_cpu123
external_totalbytes tcomm

totalmemory_used_size
sec_headset_detect_cpu

0
utime

memtotal
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cached home_key_cpu0 sherlock_version

cached home_key_cpu0 sherlock_version

FIGURE H.2: Features included per featureset (fs4 - fs6)
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Ada (training = all, testing = normal holdout)

fs1 fs2 fs3

totalmemory_total_size rss_mor_app rss_mor_app

totalmemory_used_size utime_mor_app utime_mor_app

battery_voltage otherprivatedirty_mor_app dalvikpss_mor_app

battery_temperature dalvikprivatedirty_mor_app otherprivatedirty_mor_app

traffic_totaltxbytes importance_mor_app importance_mor_app

total_cpu otherpss_mor_app otherpss_mor_app

totalmemory_freesize dalvikpss_mor_app dalvikprivatedirty_mor_app

traffic_totalrxbytes num_threads_mor_app num_threads_mor_app

battery_level vsize_mor_app vsize_mor_app

cpu_0 stime_mor_app stime_mor_app

traffic_totaltxpackets dalvikshareddirty_mor_app traffic_totalrxbytes

cpu_2 cpu_usage_mor_app dalvikshareddirty_mor_app

cpu_3 uidtxbytes_mor_app totalmemory_used_size

traffic_totalwifitxbytes othershareddirty_mor_app cpu_usage_mor_app

battery_current_avg start_time_mor_app othershareddirty_mor_app

traffic_totalrxpackets pid_mor_app total_cpu

cpu_1 uidrxbytes_mor_app uidtxbytes_mor_app

traffic_mobilerxbytes pgid_mor_app totalmemory_freesize

traffic_totalwifirxbytes lru_mor_app traffic_totaltxbytes

traffic_mobiletxbytes uidtxpackets_mor_app start_time_mor_app

totalmemory_max_size ppid_mor_app battery_voltage

traffic_totalwifitxpackets nativeprivatedirty_mor_app totalmemory_total_size

battery_icon_small priority_mor_app battery_temperature

traffic_mobiletxpackets uidrxpackets_mor_app pid_mor_app

traffic_totalwifirxpackets cstime_mor_app uidrxbytes_mor_app

traffic_mobilerxpackets ppid_mor_app

battery_level

cpu_0

totalmemory_max_size

traffic_totalwifitxbytes

traffic_totaltxpackets

cpu_2

cpu_3

lru_mor_app

uidtxpackets_mor_app

nativeprivatedirty_mor_app

priority_mor_app

cpu_1

traffic_totalrxpackets

pgid_mor_app

traffic_mobiletxbytes

cstime_mor_app

traffic_totalwifirxbytes

FIGURE I.1: Features included in best performing Ada models
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RF (training = all, testing = normal holdout)

fs1 fs2 fs3

traffic_mobilerxbytes cpu_usage_mor_app dalvikprivatedirty_mor_app

traffic_mobiletxbytes uidrxbytes_mor_app dalvikpss_mor_app

traffic_mobiletxpackets uidrxpackets_mor_app importance_mor_app

traffic_totalrxbytes uidtxbytes_mor_app num_threads_mor_app

traffic_totalrxpackets uidtxpackets_mor_app otherprivatedirty_mor_app

traffic_totaltxbytes cmaj_flt_mor_app otherpss_mor_app

traffic_totaltxpackets cstime_mor_app rss_mor_app

traffic_totalwifirxbytes dalvikprivatedirty_mor_app stime_mor_app

traffic_totalwifitxbytes dalvikpss_mor_app utime_mor_app

traffic_totalwifitxpackets dalvikshareddirty_mor_app vsize_mor_app

battery_current_avg importance_mor_app

battery_icon_small importancereasonpid_mor_app

battery_level lru_mor_app

battery_temperature nativeprivatedirty_mor_app

battery_voltage nativepss_mor_app

cpu_0 nativeshareddirty_mor_app

cpu_1 num_threads_mor_app

cpu_2 otherprivatedirty_mor_app

cpu_3 otherpss_mor_app

total_cpu othershareddirty_mor_app

totalmemory_freesize pgid_mor_app

totalmemory_max_size pid_mor_app

totalmemory_total_size ppid_mor_app

totalmemory_used_size priority_mor_app

rss_mor_app

start_time_mor_app

stime_mor_app

utime_mor_app

vsize_mor_app

FIGURE I.2: Features included in best performing RF models

KNN (training = all, testing = normal holdout)

fs1 fs2 fs3

totalmemory_total_size rss_mor_app rss_mor_app

totalmemory_used_size utime_mor_app utime_mor_app

battery_voltage otherprivatedirty_mor_app dalvikpss_mor_app

battery_temperature dalvikprivatedirty_mor_app otherprivatedirty_mor_app

traffic_totaltxbytes importance_mor_app importance_mor_app

total_cpu otherpss_mor_app otherpss_mor_app

totalmemory_freesize dalvikpss_mor_app dalvikprivatedirty_mor_app

traffic_totalrxbytes num_threads_mor_app num_threads_mor_app

battery_level vsize_mor_app vsize_mor_app

cpu_0 stime_mor_app

traffic_totaltxpackets dalvikshareddirty_mor_app

cpu_2 cpu_usage_mor_app

cpu_3 uidtxbytes_mor_app

traffic_totalwifitxbytes

battery_current_avg

traffic_totalrxpackets

cpu_1

traffic_mobilerxbytes

traffic_totalwifirxbytes

traffic_mobiletxbytes

totalmemory_max_size

traffic_totalwifitxpackets

battery_icon_small

traffic_mobiletxpackets

traffic_totalwifirxpackets

traffic_mobilerxpackets

FIGURE I.3: Features included in best performing KNN models



Appendix I. Features overview 109

NB (training = all, testing = normal holdout)
fs1 fs2 fs3

totalmemory_total_size rss_mor_app rss_mor_app
totalmemory_used_size utime_mor_app utime_mor_app

battery_voltage otherprivatedirty_mor_app dalvikpss_mor_app
battery_temperature dalvikprivatedirty_mor_app otherprivatedirty_mor_app
traffic_totaltxbytes importance_mor_app importance_mor_app

total_cpu otherpss_mor_app otherpss_mor_app
totalmemory_freesize dalvikpss_mor_app dalvikprivatedirty_mor_app
traffic_totalrxbytes num_threads_mor_app num_threads_mor_app

battery_level vsize_mor_app vsize_mor_app
cpu_0 stime_mor_app stime_mor_app

traffic_totaltxpackets dalvikshareddirty_mor_app traffic_totalrxbytes
cpu_2 cpu_usage_mor_app dalvikshareddirty_mor_app
cpu_3 uidtxbytes_mor_app totalmemory_used_size

traffic_totalwifitxbytes othershareddirty_mor_app cpu_usage_mor_app
battery_current_avg start_time_mor_app othershareddirty_mor_app
traffic_totalrxpackets pid_mor_app total_cpu

cpu_1 uidrxbytes_mor_app uidtxbytes_mor_app
traffic_mobilerxbytes pgid_mor_app totalmemory_freesize

traffic_totalwifirxbytes lru_mor_app traffic_totaltxbytes
traffic_mobiletxbytes uidtxpackets_mor_app start_time_mor_app

totalmemory_max_size ppid_mor_app battery_voltage
traffic_totalwifitxpackets nativeprivatedirty_mor_app totalmemory_total_size

battery_icon_small priority_mor_app battery_temperature
traffic_mobiletxpackets uidrxpackets_mor_app pid_mor_app

traffic_totalwifirxpackets cstime_mor_app uidrxbytes_mor_app
traffic_mobilerxpackets nativepss_mor_app ppid_mor_app

battery_online cmaj_flt_mor_app battery_level
battery_status nativeshareddirty_mor_app cpu_0

battery_charge_type importancereasonpid_mor_app totalmemory_max_size
battery_plugged cutime_mor_app traffic_totalwifitxbytes
battery_health state_mor_app_S traffic_totaltxpackets

importancereasoncode_mor_app cpu_2
state_mor_app_R cpu_3

lru_mor_app
uidtxpackets_mor_app

nativeprivatedirty_mor_app
priority_mor_app

cpu_1
traffic_totalrxpackets

pgid_mor_app
traffic_mobiletxbytes

cstime_mor_app
traffic_totalwifirxbytes
nativepss_mor_app
traffic_mobilerxbytes

uidrxpackets_mor_app
traffic_totalwifitxpackets

cmaj_flt_mor_app
traffic_mobiletxpackets

nativeshareddirty_mor_app
traffic_totalwifirxpackets

battery_current_avg
traffic_mobilerxpackets

importancereasonpid_mor_app
cutime_mor_app
state_mor_app_S

importancereasoncode_mor_app
battery_icon_small

battery_status
battery_online

state_mor_app_R
battery_plugged

battery_charge_type
state_mor_app_D

FIGURE I.4: Features included in best performing NB models
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MLP (training = all, testing = normal holdout)

fs1 fs2 fs3

totalmemory_total_size rss_mor_app rss_mor_app
totalmemory_used_size utime_mor_app utime_mor_app

battery_voltage otherprivatedirty_mor_app dalvikpss_mor_app
battery_temperature dalvikprivatedirty_mor_app otherprivatedirty_mor_app
traffic_totaltxbytes importance_mor_app importance_mor_app

total_cpu otherpss_mor_app otherpss_mor_app
totalmemory_freesize dalvikpss_mor_app dalvikprivatedirty_mor_app
traffic_totalrxbytes num_threads_mor_app num_threads_mor_app

battery_level vsize_mor_app vsize_mor_app
cpu_0 stime_mor_app stime_mor_app

traffic_totaltxpackets dalvikshareddirty_mor_app traffic_totalrxbytes
cpu_2 cpu_usage_mor_app dalvikshareddirty_mor_app
cpu_3 uidtxbytes_mor_app totalmemory_used_size

traffic_totalwifitxbytes othershareddirty_mor_app cpu_usage_mor_app
battery_current_avg start_time_mor_app othershareddirty_mor_app
traffic_totalrxpackets pid_mor_app total_cpu

cpu_1 uidrxbytes_mor_app uidtxbytes_mor_app
traffic_mobilerxbytes pgid_mor_app totalmemory_freesize

traffic_totalwifirxbytes lru_mor_app traffic_totaltxbytes
traffic_mobiletxbytes uidtxpackets_mor_app start_time_mor_app

totalmemory_max_size ppid_mor_app battery_voltage
traffic_totalwifitxpackets nativeprivatedirty_mor_app totalmemory_total_size

battery_icon_small priority_mor_app battery_temperature
traffic_mobiletxpackets uidrxpackets_mor_app pid_mor_app

traffic_totalwifirxpackets cstime_mor_app uidrxbytes_mor_app
traffic_mobilerxpackets nativepss_mor_app ppid_mor_app

battery_online cmaj_flt_mor_app battery_level
battery_status nativeshareddirty_mor_app cpu_0

battery_charge_type totalmemory_max_size
battery_plugged traffic_totalwifitxbytes
battery_health traffic_totaltxpackets
battery_scale cpu_2

cpu_3
lru_mor_app

uidtxpackets_mor_app
nativeprivatedirty_mor_app

priority_mor_app
cpu_1

traffic_totalrxpackets
pgid_mor_app

traffic_mobiletxbytes
cstime_mor_app

traffic_totalwifirxbytes
nativepss_mor_app
traffic_mobilerxbytes

uidrxpackets_mor_app
traffic_totalwifitxpackets

cmaj_flt_mor_app
traffic_mobiletxpackets

nativeshareddirty_mor_app
traffic_totalwifirxpackets

battery_current_avg
traffic_mobilerxpackets

importancereasonpid_mor_app
cutime_mor_app
state_mor_app_S

importancereasoncode_mor_app
battery_icon_small

battery_status
battery_online

state_mor_app_R
battery_plugged

FIGURE I.5: Features included in best performing mlp models
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McNemar test statistics

Normal holdout Unknown device

fs Testing fs1 fs2 fs3 fs1 fs2 fs3 

fs1
Normal
holdout

fs2 X

fs3 X

fs1
Unknown 

device

X X

fs2 X X

fs3 X X

FIGURE J.1: McNemar test results (alpha < 0.05) for Ada (X indicates statistical
significant difference)
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fs1
Normal
holdout

fs2 X

fs3 X

fs1
Unknown 

device

X X

fs2 X X

fs3 X X X

FIGURE J.2: McNemar test results (alpha < 0.05) for RF (X indicates statistical
significant difference)
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FIGURE J.3: McNemar test results (alpha < 0.05) for KNN (X indicates statistical
significant difference)
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FIGURE J.4: McNemar test results (alpha < 0.05) for NB (X indicates statistical
significant difference)



112 Appendix J. McNemar test statistics

Normal holdout Unknown device

fs Testing fs1 fs2 fs3 fs1 fs2 fs3 

fs1
Normal
holdout

fs2 X

fs3 X X

fs1
Unknown 

device

X

fs2 X

fs3 X

FIGURE J.5: McNemar test results (alpha < 0.05) for MLP (X indicates statistical
significant difference)

Class. fs Ada RF KNN NB MLP

fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Ada
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fs2

fs3 X

RF

fs1
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fs3

KNN

fs1

fs2 X

fs3 X

NB

fs1 X X

fs2 X X

fs3 X X X X X

MLP

fs1

fs2
X X

fs3 X X X X X

FIGURE J.6: McNemar test results (alpha < 0.05) for malware version 1 (X
indicates statistical significant difference)

Class. fs Ada RF KNN NB MLP

fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Ada
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fs2 X

fs3 X

RF

fs1 X X

fs2 X X X

fs3 X X

KNN

fs1 X X X X X X

fs2 X X X

fs3 X X X

NB

fs1 X X X X X X X X X

fs2 X X X X X X X X X

fs3 X X X X X X X

MLP

fs1 X X X X X X X X X X X

fs2
X X X X X X X X X X X

fs3 X X X X X X X X X X X

FIGURE J.7: McNemar test results (alpha < 0.05) for malware version 2 (X
indicates statistical significant difference)
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Class. fs Ada RF KNN NB MLP

fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3 fs1 fs2 fs3

Ada

fs1

fs2

fs3 X

RF

fs1

fs2 X

fs3 X

KNN

fs1 X X X X X X

fs2 X

fs3 X

NB

fs1 X X X X X X X X

fs2 X X X X X X X X

fs3 X X X X X X X X

MLP

fs1 X X X X X X X X

fs2
X X X X X X X X X

fs3 X X X X X X X X

FIGURE J.8: McNemar test results (alpha < 0.05) for malware version 3 (X
indicates statistical significant difference)
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FIGURE J.9: McNemar test results (alpha < 0.05) for malware version 4 (X
indicates statistical significant difference)
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fs3 X X X X X X X X

FIGURE J.10: McNemar test results (alpha < 0.05) for malware version 5 (X
indicates statistical significant difference)
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Class. fs Ada RF KNN NB MLP
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X X X X
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FIGURE J.11: McNemar test results (alpha < 0.05) for malware version 6 (X
indicates statistical significant difference)
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fs3 X X X X X X X X X X
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fs2 X X X X X X X X

fs3 X X X X X X X X X

FIGURE J.12: McNemar test results (alpha < 0.05) for malware version 7 (X
indicates statistical significant difference)
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Class. fs Ada RF KNN NB MLP
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FIGURE J.13: McNemar test results (alpha < 0.05) for malware version 8 (X
indicates statistical significant difference)

Class. fs Ada RF KNN NB MLP
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FIGURE J.14: McNemar test results (alpha < 0.05) for malware version 9 (X
indicates statistical significant difference)
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