
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Analysis and Design of a
Dependability Manager

for Self-Aware System-on-Chips

Stephen A. Geerlings
M.Sc. Thesis
August 2018

Supervisors:
dr.ir. Hans G. Kerkhoff

dr. Ahmed M.Y. Ibrahim
ir. Jan Scholten

Telecommunication Engineering Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Summary

This thesis describes the analysis, design, implementation and validation of a De-
pendability Manager Core for Self-Aware System-on-Chips. This hardware is sup-
ported by a redesigned software toolchain to allow reuse of IEEE 1687 (IJTAG) net-
works. The Dependability Manager’s purpose is to be integrated into a large scale
System-on-Chip. It will increase dependability of the system using software-based
dependability applications. The application reuses IJTAG boundary scan test net-
works during lifetime to increase dependability of system.

Many hardware and software solutions have been developed to improve depend-
ability of System-on-Chips. The implementation of these solutions ranges from high
to low level and design reuse is constrained in general. As complexity rises and
manufacturing processes decrease over years, the industry must keep pace to guar-
antee correct functionality of their computer products. Hardware design is a long
process where reliability is a trade-off between risk and cost. Long lead times and
high prices of wafer manufacturing threatens the design cycle, where multiple iter-
ations improve the final product. A time-proven and universal platform for system
reliability will help future hardware designers to minimize design cost and time while
providing the same amount of reliability. This is the motivation behind the work in
this research; creating a standardized programmable core that has can manage re-
liability of a large scale system on chip.

This masters thesis constitutes the work for final graduation of the programme
Embedded Systems at University of Twente, the Netherlands. This research follows
a methodology for the design of an application specific instruction set processor. It
has been adapted to suit the purpose of this research. It consists of analysing the
application, creating a high level design and implementing and validating the hard-
ware and software separately. After which the two parts are combined and tested.
Previous research along with the IJTAG standard provide a background of the appli-
cation of a Dependability Manager. After the background information is presented,
this thesis moves to create a high level design for the hardware and software. These
sections are developed; the first as an RISC-V processor with memory mapped de-

iii

IV SUMMARY

vices for retargeting and interrupt management, the latter as a custom toolchain and
system drivers. The toolchain features a redesigned PDL compiler, similar to previ-
ous work, that creates an IJTAG framework to access the instruments in the network.
Reuse of available tools such as the C compiler, Antlr, and VHDL memory IP speeds
up the work. A Retargeting Engine for access to test networks and IJTAG interrupt
manager are implemented and incorporated into the processor. Drivers along with
a memory mapped IO system bus create a hardware abstraction layer that supports
portability. The software toolchain and hardware implementation are validated by
testing and eventually combined for a full integration test and quantification.

Hardware is emulated on an FPGA to show operation of a compiled program
while benchmark networks from the Bastion project are used to show the correct
operation of the PDL compiler. The retargeting engine is shown to operate on all
Bastion Basic benchmark networks. The interrupt manager is tested with a special
implementation of interrupt enabled network structures in a simple tree-network.

Although not perfect, the design of the dependability manager yields new ideas
and entices the urge to develop a usable and matured IP core for dependability.
The reuse of PDL scripts to generate a high level software framework makes them
portable between different architectures and devices. It is a huge step compared
to previous research into executing PDL in an embedded context. Practical issues
have been found with converting PDL to static C which can be overcome with fur-
ther research. The retargeting engine and interrupt manager have been validated
to operate within the context of this research. The implementation of both hardware
devices are tested and have been proven successful. The performance of the retar-
geting engine is adequate but can be improved with caching. The interrupt manager
operates according to its design and decreases the time for interrupt localisation
tremendously. The dependability manager processor is simplistic without pipelining
or caching. The dependability applications interface well with the generated PDL
software frameworks. The hardware abstraction layer makes the interrupt manager
and retargeting engine easily usable.

Stephen Geerlings
s.a.geerlings@alumnus.utwente.nl
s0201111

Contents

Summary iii

Glossary vii

1 Introduction and Problem Statement 1
1.1 Contributions . 2
1.2 Methodology . 3
1.3 Outline . 6

2 Related Work 7
2.1 Dependability Applications . 7
2.2 Dependability Management . 8
2.3 The IJTAG Standard . 10
2.4 Discussion . 19

3 Early Hardware/Software Codesign 21
3.1 Function of the Dependability Manager 21
3.2 Architectural Design Exploration . 26
3.3 Hardware design . 37
3.4 Software design . 44
3.5 Discussion . 45

4 Software: Building the Toolchain 47
4.1 PDL to C Framework Compiler . 48
4.2 Compiler Implementation . 60
4.3 Drivers . 63
4.4 Toolchain . 66
4.5 Discussion . 66

5 Hardware: Creating the Dependability Manager 71
5.1 Processor . 71
5.2 Retargeting Engine . 76

v

VI CONTENTS

5.3 Interrupt Manager . 82
5.4 TAP Control . 85
5.5 Validation of the Dependability Manager 87
5.6 Discussion . 92

6 Experimental Results 95
6.1 Performance of the Retargeting Engine 96
6.2 Performance of the Interrupt Manager 102
6.3 Performance of the Dependability Manager 104
6.4 FPGA Resource Usage . 105
6.5 Conclusion . 108

7 Conclusions & Future Work 111
7.1 Future Work . 113

References 115

Appendices

A CSU Timing Diagram 123

B Retargeting Engine Memory 125

C The Mingle Network 127

D Detailed Modelsim Testbenches 145

E How to 149
E.1 Access the IJTAG PDL Compiler Source? 149
E.2 Use the PDL2C framework compiler? 149
E.3 Access the Dependability Manager Source? 150
E.4 Use the RISC-V Compiler? . 150
E.5 Simulate the DM in ModelSim? . 150
E.6 Compile your own Dependability Application? 150
E.7 Emulate the DM with Quartus? . 152

Glossary

iApply Applies the group of write, read or scan operations that
has accummulated since the last iApply command.

iCall Calls a PDL procedure defined by iProc from another
procedure.

iProc Defines a procedure that can be called. A procedure is
a collection of commands.

iRead Read a value from a register in the test network dur-
ing the next iApply command. The command also can
compare the read value to an expected value.

iReset Enforces that the reset port becomes asserted and a
target is set to its ICL defined reset state.

iWrite Write a value to a register in the test network during the
next iApply command. Arguments are the register or
port as defined in the ICL specification and the value
that should be written.

AR-Stack Access Request Stack, a data structure of the retarget-
ing engine that tracks the access requests and adds a
new request on the stack if it is necessary to access a
register or SCB.

AV Access Vector, a bit string that is shifted into the IJTAG
network.

C The C programming language.
CSU Capture-Shift-Update, a process that captures data into

a TDR, shifts it out and updates the instruments with
data shifted in through the TAP.

DM Dependability Manager.

vii

VIII GLOSSARY

ESIB Extension of the SIB to store extra information as bit
flags, in this research an interrupt flag which signals
that the interrupt originated in the underlying segment.

ESIB L A leaf node in the ESIB tree, performs similarly but does
not open the segment below as those elements are not
’active’ due to the Select signal being low.

FPGA Field Programmable Gate Array, a reconfigurable hard-
ware capable of emulating digital integrated circuits.

gcc GNU C Compiler, the open source compiler for C that
is ported to an impressive range of targets.

H-Array Hierarchy Array, a data structure that shows the ICL de-
pendencies. It was introduced along with the traverse
and generate algorithm for creating access vectors for
IJTAG test networks.

HAL Hardware Abstraction Layer.

ICL Instrument Connectivity Language.
IJTAG Internal Joint Test Action Group develops the IEEE

1687 standard which is the successor of the JTAG stan-
dard.

IM H-Array Interrupt Management Hierarchy Array, a data struc-
ture that shows the network structure to locate interrupt
sources.

IMU Interrupt Management Unit, used for managing inter-
rupts coming from the extended IJTAG network.

IP Intellectual Property, a design for a component which
can be licensed and reused for implementation.

ISA Instruction Set Architecture, the collection of operations
a processor can perform and how they should be en-
coded.

ISR Interrupt Service Routine, a function or piece of soft-
ware that is executed when an interrupt is triggered by
an external event.

IVT Interrupt Vector Table, a structure that stores Interrupt
Vectors. These consist of an Interrupt Service Routine
pointer and metadata.

GLOSSARY IX

JTAG Joint Test Action Group, the group responsible for the
IEEE 1149 JTAG standard that allows test access of
chips via boundary scan.

LSU Load Store Unit, responsible for loading and storing
data between registers and the memory.

MIPS32 Instruction set based on the MIPS I and MIPS II instruc-
tion set and it also added some features of III, IV and V.
It was released next to a 64 bit version in 1999. It was
also used as a base in the previous research.

MMIO Memory Mapped Input/Output.

PDL Procedural Description Language, scripting language
defined by the IJTAG standard.

RE Retargeting Engine, a hardware device used for ac-
cessing the IJTAG network.

RISC Reduced Instruction Set Computer.
RISC-V RISC-V is an open instruction set architecture devel-

oped in academia and research and aimed at general
purpose computing.

RSN Reconfigurable Scan Network, e.g. a IJTAG test net-
work.

RV32I Base subset of the RISC-V instruction set architecture
that features 32-bit integer addition and logic, condi-
tional branching and jumping. It can be extended with
floating point operations, multiplication and subtraction
and other extensions.

ScanMux This network component of IJTAG acts as a switch. It
is controlled by a scanmux control bit (SCB) and has at
least two serial inputs and one output. It is a multiplexer
of the scan chain of the test network.

SCB The ScanMux Control Bit is the register that asserts or
deasserts a SIB.

X GLOSSARY

SIB The Segment Insertion Bit is a network component of
IJTAG to insert or skip a segment into the network, as
defined in standard IEEE-1687, it is also an entry type
in the H-Array.

SoC System-on-Chip.

TAP Test Access Port, an interface between the JTAG/IJTAG
connection and the network.

Tcl Tool Command Language.
TDR Test Data Register, a component of the test network

that stores data.

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware
Description Language.

Chapter 1

Introduction and Problem Statement

Scientific development has pushed the boundaries of chip production technology up
to its physical limits. The quest for higher clock speeds, lower power consumption,
better production yield and increasingly complex designs created a danger zone
where lifetime of chips is shortened and reliability is compromised. Dependability of
hardware, especially chips, is continuously threatened during lifetime as component
failures occur randomly. This thesis is a step towards new ideas for chip reliability
by managing chips during lifetime with software. By employing state of the art de-
pendability procedures running on an embedded processor and reusing novel IJTAG
test networks the chip can be monitored and dependability improved. Such a De-
pendability Manager (DM) combined with a PDL cross compiler has been created
for PDL based dependability procedures [1]. This work will extend the design with
a functional retargeting engine (RE) [2], support for interrupt servicing [3] and high
level language based dependability procedures.

Dependability procedures aim to improve the dependability of a system during
lifetime. This system can be anything from a multi-core server processor to a com-
plex mobile System on Chip (SoC). Dependability procedures exist on many layers
of a system from hardware to operating system. Their goal is making a system
more dependable but the procedures differ greatly in their methodology. Obviously,
dependability procedures need interaction with the system to operate. Data about
the system comes from sensors and other on-chip instruments and the output of the
procedure must be applied to the system. Dependability applications are currently
designed in an ad-hoc manner, often for scientific research. Reuse of these applica-
tions in consumer or industrial products is problematic. Reuse is a significant money
saver for chip designers and is encouraged by industry. Furthermore, dependability
procedures implemented in a high level language could be used among different
processors.

1

2 CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT

A new standard for internal instrument access is available since 2014. It improves
on the tried and tested JTAG standard which was first named ’Boundary Scan’ in the
IEEE 1149.1-1990 standard [4]. This boundary scan architecture meant to test the
interconnects of a chip but over time has grown to test access in general and it
became synonymous with JTAG. The new standard called IJTAG [5] employs a re-
configurable scan chain to access internal instruments via a test access port. Its
design goals are reusability and scalability meaning that instruments can be easily
added to the network during chip design. A test host can use the network to access
registers and instruments on the chip. However, usage of IJTAG is not limited to test-
ing, the network can be used during lifetime to access instruments and safeguard
correct functioning. An embedded processor would run a dependability procedure
and use a retargeting engine to access this special network.

Not all chips will benefit from a dependability manager as its addition, along with
the IJTAG network, incurs an overhead. The aim of the dependability manager is
to govern heterogeneous complex SoCs. Such a system would most likely be man-
aged by an operating system. The paradigm of a dependability manager hinges on
the division of tasks in layers; functionality and dependability. If the functional layer,
along with its operating system, undergoes some kind of fault then the dependability
layer will notice and mitigate the problem. This dependability layer may be certified
for use in vehicles or aircraft. Meanwhile the functional layer could undergo multi-
ple revisions and can still rely on the same level of dependability. Making the DM
feasible for as many chips as possible is a matter of costs. The overhead of a DM
must be small. On the other hand, the DM could become a separate packaged chip.
The design of scan networks enables the user to chain IJTAG devices on a printed
circuit board together and a single DM could manage them all. In theory, the DM can
be adopted to act as a separate IJTAG-programmer, i.e. a host-interface, to access
or program devices during development. However, this thesis focusses on the first
example; the DM as part of a large and complex SoC as in Fig. 1.1.

1.1 Contributions

The Dependability Manager (DM) is an embedded processor. It is designed for its
specific application and operation conditions. It functions to access the on-chip in-
struments via IJTAG, service interrupt requests from the on-chip instruments and
improve dependability through software. The embedded processor is an IP that
could be added to any IJTAG enabled processor design. Combined with a collection
of dependability procedures makes it a platform usable for industry to improve their

1.2. METHODOLOGY 3

Figure 1.1: Example System on Chip incorporating a DM reusing the IJTAG scan
network.

processors with small costs.

The product created in this research is the Dependability Manager IP along with
supporting software and drivers. The contributions of this research can be divided
into the following.

• Implementation of a RISC-V RV32I instruction set processor.

• Realisation of a PDL to C-framework compiler.

• Implementation of a reusable retargeting engine IP device for IJTAG networks.

• Implementation of an interrupt management unit for the RISC-V processor.

• Implementation of interrupt enabled IJTAG SIB and localisation algorithm in
the interrupt management unit.

1.2 Methodology

Development of an embedded system is a complex task. To manage the progress,
a design methodology [6] for Application Specific Instruction set Processor (ASIP)
is adopted which can be seen in Fig 1.2. Although the structure is beneficial, the

4 CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT

Figure 1.2: Design methodology and the products it yields, adapted for this
project [6].

framework is originally exemplified by developing an Digital Signal Processor (DSP).
The methodology has also been used in the previous work toward the DM [1]. The
intention of this research is to extend a general purpose microprocessor with the
retargeting engine and IJTAG IMU. Instead of creating a new application specific
instruction set, an RISC instruction set is carefully selected for the application, i.e.
the DM. In general, some steps in the methodology are unnecessary and skipped
while others are slightly modified for this project’s purposes.

The methodology starts with an analysis of the application. Not necessarily the
software that will be running on the core but also environment and reason behind
using the processor. What is its intended purpose? That will give an idea of what

1.2. METHODOLOGY 5

its abilities should be. This is formulated as a list of requirements. Design Space
Exploration (DSE) optimises the processor but takes time as developing and testing
a new design is arduous. Maintaining a ’Harvard’ architecture for the processor and
focussing on the retargeting engine should yield a better design in the time frame.

Selection of the instruction set is entangled with the processor architecture. Trade-
offs between them will bring them together. Development of an assembly emulator
is not a goal of this project and relates more to ASIP feature testing. If the instruction
set provides an assembly emulator it may be used to check the final design or test
programs beforehand. High Level Language Compiler generation/development is a
feature for ASIP production. The chosen instruction set architecture should provide
one for this project to keep everything in the time budget. PDL Compiler is required
to generate code that operates the Retargeting Engine. The HLL compiler and PDL
compiler need to be verified, this can for example be done with the aforementioned
assembly emulator to test the output.

The hardware development starts with designing an architecture around the cho-
sen instruction set. Incorporation of the other system components is also part of the
architecture. According to the methodology, a functional implementation can be
made in a high level language (HLL) before switching to a hardware description lan-
guage. This is similar to development of an emulator and as mentioned before not
a step toward the goal. It is beneficial for ASIPs to be emulated and checked before
further development [6]. For our architecture, it suffices to say that the algorithms
behind the Retargeting Engine (RE) and the Interupt Management Unit (IMU) are
already verified [2], [3]. The architecture implementation will create a base which
will be extended in the hardware acceleration development step. This will yield a RE
and IMU for IJTAG. The compiled programs, the base architecture and the exten-
sions will need to operate together; trade-offs will define their relationship.

Test benches are created for the different hardware components to verify their
behaviour. Annotation with Property Specification Language (PSL) is possible to
verify the design methodologically and formally. The final product is tested by exe-
cuting self-test programs in a VHDL simulator and an FPGA core. The retargeting
engine is applied to benchmark networks. The interrupt management unit is tested
and verified with an example network.

6 CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT

1.3 Outline

This thesis provides a literature study to gain in-depth knowledge about the field of
study. The state of the art in dependability applications is discussed in Chapter 2.
Retargeting and IJTAG is elaborated as further background for the reader. The
structure of this thesis follows the methodology. It starts with an early design stage
in Chapter 3. The purpose and application of a embedded processor is discussed
and dependability applications are analysed to gather knowledge about features
needed for their operation. This yields requirements and a discussion is held about
architectures, ISAs, programming languages and incorporation of PDL. This creates
a preliminary high level design of hardware and software that needs to be realised.
The work on the PDL toolchain and supporting software for the DM is described in
chapter 4. The work proceeds with the implementations of hardware in Chapter 5.
The operation of the DM is quantified in Chapter 6. The whole project gets a conclu-
sion in Chapter 7 where the designs are evaluated and omissions in this research
are considered ’future work’.

Chapter 2

Related Work

This chapter attempts to give an overview of the state of the art in dependability man-
agement in embedded systems. The scope is limited regarding dependability as the
subject is immense and generally found in many fields of engineering. This chap-
ter handles software-based dependability applications and hardware architectures
to support dependability applications. A background of boundary scan architecture
and test networks is provided as a fall-back for readers unfamiliar to the subject.

2.1 Dependability Applications

Dependability of a system is defined by its measure of reliability, availability, safety,
maintainability and integrity [7]. Dependability applications form a collection of soft-
ware algorithms made to increase these facets. Dependability applications can be
incorporated into operating systems or added to an embedded program. A crude
example is the screen saver feature in many desktop operating systems. The mov-
ing images presented by the screen saver avoided ’burn-in’ in old monitors. Current
versions of operating systems feature methods to dim or deactivate screens to save
energy and prolong battery life.

These small examples are easily understood but the field of increasing depend-
ability is interesting to say the least. Boundaries in engineering are pushed to get
the most out of hardware. This hardware is not always created equal since it is a
physical process [8]. Currently, in a process called ’binning’ the different tiers of
chips are separated and they are sold according to their quality. The way chips are
made creates a variability between devices. This is the first example of a depend-
ability application that will be presented in this work. The variability of devices can
be measured to adapt the operation of software on the device [9]. This increases
the yield of a silicon wafer but also increases the confidence that software can run

7

8 CHAPTER 2. RELATED WORK

on less-than-perfect devices.

The second example of dependability applications focusses on the reliability and
availability of systems. Dynamic Reliability Management continuously estimates the
future reliability of a chip based on its current state [10]. For example, a server is
bought and desired to run for at least 10 years. The amount of system degradation
can be calculated based on physical properties. Processors suffer under high tem-
peratures, voltages and current and a mean time to failure can be calculated based
on these numbers. If the probability that it will fail before 10 years has passed be-
comes too high the system needs to adapt and decrease temperature for example.
However, the system must take into account that it has a certain workload, and that
it will need to maintain a certain frequency to perform its job. Dynamic Reliability
Management in general steers the processor based on a model of confidence but
also needs to keep its workload in mind [11], [12].

2.2 Dependability Management

Dependable systems are ubiquitous. Bridges are ’over-engineered’ to withstand
the test of time and the design of the internet is primarily redundant to ensure its
functionality. Some special electronic systems are also designed to be dependable.
Examples of this are computer memory for servers with error correcting code. Other
examples are the RAD6000 [13] and LEON [14] processor designs which feature
ionizing radiation resistance for use in outer space. Rigorous testing under set cir-
cumstances tries to measure dependability of a device and to further improve the
design. When it has undergone all possible tests and gets certified it cannot be
changed easily. A new hardware revision takes months to produce new chips which
need to be recertified before it may be used in cars or planes. Avoiding the uncer-
tainty of new hardware has been a strategy in the Space Shuttle program at NASA,
who were still searching for 8086 chips in 2002, two decades after their first re-
lease [15].

The term ’Dependability Management’ is shorthand for a larger paradigm in em-
bedded systems or rather computer systems in general. Dependability management
does not only cover reliability of hardware but also the mitigation of degradation,
faults or failures. Hardware can be divided into layers; a functional layer for execut-
ing the intended purpose and a dependability layer that will enhance reliability and
safety and guarantees correct operation of the functional layer [16]. This last layer
will be controlled with a dependability manager, a simple resilient programmable
core that executes a Dependability Application. The dependability layer can be cer-

2.2. DEPENDABILITY MANAGEMENT 9

tified to give certainty to the developers of an application. And applications can
be tested to document their performance. A better design for an application could
quickly be tested and improved, thus functional revisions to the dependability layer
can be made more often.

A dependability manager for a Dependable Reconfigurable Many-Core Proces-
sor uses the Network-on-Chip interface to access cores in the chip [17]. Test vectors
are generated for the core under test and the response is evaluated. Both JTAG and
IJTAG can be used for communication through the dependability layer as it provides
a standardized access method for instruments. These test networks are also present
on many devices to find interconnect faults or to program the device. Reusing them
during lifetime is a cost-effective method to add a dependability layer to an existing
device [18].

An automated test coprocessor for JTAG was created for a MicroBlaze 32-bit
processor [19]. The coprocessor has a simple microprogrammed control path to
execute tests on the larger system through the boundary scan interface. The JTAG
operations on the network where analysed and a minimal command set was created
to support the test. Accessing JTAG from an embedded context has been done to
execute tests during lifetime. For this a JTAG controller has been built that executes
based on a FIFO queue [20]. This device could be reused to connect a DM to a
JTAG network.

The management of hardware within hardware has also taken a step with the
introduction of Intel’s Active Management Technology (AMT) which allows users to
manage systems remotely [21]. Computer systems can be activated or deactivated
with this daemon process within the hardware. The degradation and performance of
systems was also presented to the user to let him repair components where needed.
Among Intel’s line of products, the Intel Management Engine became well known
due to its far reaching access to the hardware of consumers [?]. The separate em-
bedded processor featured in many chips would be active even when a computer
was shut down [?]. Connecting to a central platform would be a great feature for
any Dependability Manager. It would allow companies to gain insight into the degra-
dation of devices, similarly to Intel AMT. Considering the rise of Internet-of-Things
(IoT) devices, this could become a reality.

This research is a continuation towards the concept of online IJTAG-based de-
pendability management [1]. The previous project created a compiler for PDL and a
MIPS32-based DM. The compiler is based on the Antlr4 framework for processing
programming languages [22]. The IJTAG standard specifies the syntax of ICL and

10 CHAPTER 2. RELATED WORK

PDL in a format, i.e. a grammar specification, supported by the Antlr4 parser gen-
erator. The compiler compiles a modified version of PDL along with Tcl to MIPS32
assembly. The DM featured an empty shell for the retargeting engine and did not
support the full MIPS32 instruction set. The future work suggested by the work
of Zakiy includes: ’test for different processor, adding remaining PDL commands,
cross compilation to other machines, and use of C libraries’. This research will take
advantage of the lessons learned.

2.3 The IJTAG Standard

IEEE 1687-2014 Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device [5], colloquially referred to as IJTAG is a new stan-
dard developed by the Internal Joint Test Action Group. It provides methodology to
access instruments within devices by reusing the Test Access Port (TAP), TAP Con-
troller and Boundary Scan Architecture defined in the earlier JTAG standard [4]. It
introduces a new version of the Procedure Description Language (PDL) along with
the Instrument Connectivity Language (ICL). These technologies will be explained
in this section to provide a background for the reader. Originally, the application of
boundary scan architecture was to detect errors during manufacturing. For example,
the scan cells can be used to probe signals to detect stuck-at faults on a printed cir-
cuit board. Since then, the use of JTAG has grown beyond testing. Among its uses
are programming devices, accessing internal registers and controlling the chip dur-
ing debugging. The role of JTAG has also grown in software design tools which can
automatically load and execute a program on a device via JTAG. The rise in func-
tionality, along with the rising hardware complexity prompted the development of the
new standard. Its goals were, amongst others, to tackle the size of test networks
and to support instruments with more functionality. The first was accomplished by
adding network structures that add hierarchy and compartmentalises the network
along with a description language that advocates reuse of network modules. The
second goal is handled with PDL, a programming language targeted at electronic
design automation and testing via the test network.

The philosophy behind the IJTAG standard is more descriptive rather than pre-
scriptive to allow different architectures to conform [5]. It’s scope is limited to discuss
the access to instruments without being specific about the instruments themselves.
It contains abstract notions of the test network which need to be realised by users
of the standard. Therefore, some gaps will need to be filled to operate IJTAG as
intended. An example of this can be found in IJTAG’s description of retargeting,
without giving a hint of how one should go about it.

2.3. THE IJTAG STANDARD 11

Listing 2.1: SIB module defined in ICL [23].

Module SIB_mux_pre {

ScanInPort SI;

CaptureEnPort CE;

5 ShiftEnPort SE;

UpdateEnPort UE;

SelectPort SEL;

ResetPort RST;

TCKPort TCK;

10 ScanOutPort SO {

Source SR;

}

ScanInterface client {

Port SI; Port CE; Port SE; Port UE;

15 Port SEL; Port RST; Port TCK; Port SO;

}

ScanInPort fromSO;

ToCaptureEnPort toCE;

20 ToShiftEnPort toSE;

ToUpdateEnPort toUE;

ToSelectPort toSEL;

ToResetPort toRST;

ToTCKPort toTCK;

25 ScanOutPort toSI {

Source SI;

}

ScanInterface host {

Port fromSO; Port toCE; Port toSE; Port toUE;

30 Port toSEL; Port toRST; Port toTCK; Port toSI;

}

ScanRegister SR {

ScanInSource SIBmux; CaptureSource SR; ResetValue 1’b0;

35 }

ScanMux SIBmux SelectedBy SR {

1’b0 SI;

1’b1 fromSO;

}

40 }

12 CHAPTER 2. RELATED WORK

SIB

toSI fromSO

 SI 0

1
SOSR

Figure 2.1: Abstract representation of a SIB, not all Scan Interface signals are
shown.

Table 2.1: Signals of a Scan Interface according to the IJTAG standard [5].
Signal Name Functionality
TCK (Clk) Clock signal for the test network. Elements operaate on the rising edge, except for the

update operation which is falling edge.
Reset Reset signal for the test network, active high.
CaptureEn Signals that data must be captured from an instrument into the TDR.
ShiftEn Signals that data must be shifted through the network.
UpdateEn Signals that all active TDRs must write their value to the instrument.
ScanIn (SI) Serial data into the test network.
ScanOut (SO) Serial data from the test network.
Select (Sel) Select signal that activates a Scan Interface and subsequent interfaces.

2.3.1 Reconfigurable Network Structures

There are different structures within the test network that are defined in the stan-
dard [5]. In general a Reconfigurable Scan Network (RSN) starts at the ’client in-
terface’ which connects to a ’host interface’. This network interface, referred to as
the Test Access Port (TAP) consists of signals which can be seen in Table 2.1. The
Instrument Connectivity Language (ICL) specification of a network or an instrument
contains modules and instances. A module can be seen as a box with signals going
in and out. Behaviour of the box and predetermined signals are specified with ICL
keywords. The module specification for the SIB in Fig. 2.1 is shown in Listing 2.1. A
module can be instantiated within the network specification.

The signals into the network are driven by the host interface. This done by the
’Test Access Port’-controller for the top-level Scan Interface. The signals are prop-
agated through the modules, this can be seen in Listing2.1. A SIB has input and
output signals, which are connected to Scan Interfaces ’below’ the SIB. The DM’s
TAP-controller will be connected to the top-level Scan Interface in this research.
TAP-controllers operate as state machines, normally controlled by the ’Test Mode

2.3. THE IJTAG STANDARD 13

Figure 2.2: Test Access Port controller state machine, figure taken from the IJTAG
standard [5].

Select’ signal. This state machine is shown in Fig 2.2. Its behaviour will be emulated
by the DM’s hardware. The state machine executes cycles of Capture-Shift-Update
(CSU-cycle) on the network to read and write data to the network. Most important
to remember, is the sequence from the Select-DR state. After parts of the network
are activated by selecting them, the subsequent Capture-DR state will read data
into the internal Test Data Register (TDR) of an instrument. The length and repre-
sentation of this data is dependant on the instrument and must be managed by the
retargeting tool. After capturing, the data will be shifted through the scan chain and
new data will be shifted in to the network at the same time. Of course, this happens
during the Shift-DR stage. This new data is then written to an instrument during the
Update cycle. There is always a Capture and Update stage, but the duration of the
Shift cycle differs based on the length of active scan path. This length defines the
size of the Access Vector (AV); the string of bits written to and read from the network.

Among the list of standard-defined network structures there are Test Data Reg-
isters (TDR), Segment Insertion Bit (SIB), ScanMux Control Bit (SCB) and Scan
Multiplexers (ScanMuxes). TDRs are included or excluded in the network based on
the configuration of the network. This configuration happens in the SIBs and in the
ScanMuxes of the network. SIBs feature their own SCB before or after the segment
that they control. A ScanMux relies on an external signal which is often connected

14 CHAPTER 2. RELATED WORK

Figure 2.3: Hierarchical IJTAG Scan Network using SIBs, taken from the IJTAG
standard [5].

to a SCB somewhere in the network. These structures offer the designer of a test
network more versatility, optimise the design for fast access and provide hierarchy
where needed. If no SIBs where placed in the hierarchical network of Fig 2.3 the
shortest access vector would always be 3 ∗ TDR.length. But with these structures
the access vector size is TDR.length+ 2 for the TDR connected to Instrument C.

The data in access vector needs to have a certain order to wind up at the right
place in the network. The data for the last element of the chain needs to be shifted
in first. A nibble-sized example TDR is shown in Fig 2.4. The figure also contains a
timing diagram of a CSU cycle along with the data in values (S0, S1..) and the data
out values (D0, D1..).

ICL features more than is discussed here but this will suffice as a base for the
remainder of this thesis. The design of ICL allows for many network configurations to
be created. The remainder of this research will rely on the Hierarchy Array (H-Array)
as a network specification. This data structure will be explained shortly.

2.3.2 Procedural Description Language

PDL is a language to be used in combination with IJTAG. The standard defines two
levels of PDL which are syntactically compatible with the Tcl language. Since most
Electronic Design Automation tools already support Tcl, it would reduce the effort
needed to adopt the new language. The purpose of PDL is to provide a standard-
ized language for manufacturers of IJTAG instruments. A smart sensor may need to

2.3. THE IJTAG STANDARD 15

(a)

(b)

Figure 2.4: Timing diagram of a CSU cycle on a TDR Scan Interface.

be initialised to operate. It could also feature a self-test. Writing the code for those
operations is error prone and tiring. An instrument designer can use PDL to write
driver software to operate the device. The user of the device can then reuse the
instrument and the code to quickly get up and running.

There are two levels of this language, namely PDL level-0 and PDL level-1. PDL
level-0 is static in nature while PDL level-1 is dynamic. PDL level-1 incorporates Tcl
which adds control flow to the language. Actually, when a file is deemed PDL level-
1 the tool may expect Tcl statements along the code. This incorporates high level
language components such as conditional branching in PDL. The base language is
shown in Table 2.2 while the extra features are shown in Table 2.3. The operation of
each command is discussed in Chapter 4.

PDL level-0 operates on the network with the ’scan commands’, the set of com-
mands that issue reads and writes on the network. iWrite is responsible for writing
to a register and iRead retrieves a value from a register. All scan commands are
queued in an iApply group until they are applied to the network. The subset of the
language is also responsible for procedures (iProc and iCall) which house these
operations.

PDL level-1 forms a bridge between PDL and Tcl by providing access to read

16 CHAPTER 2. RELATED WORK

Listing 2.2: ICL along with PDL level-0 and PDL level-1 commands. Taken from the
IJTAG standard [5].

ICL:

ScanRegister RegA [5:0] { ... } ;

ScanRegister RegB [5:0] { ... } ;

5 Alias lbits = RegA [1:0], RegB [1:0] ;

PDL:

iRead RegA ;

iRead RegB (3:0) 0xf ;

10 iApply ;

Tcl:

iGetReadData RegA -hex ; # returns a string representing

a hexadecimal number

15

iGetReadData RegB (3:1) ; # returns a string of 3 bits in binary

iGetReadData lbits -bin ; # returns a string of 4 bits in binary ,

none of which are ’x’, since all bits

20 # this alias refers to were iRead

data from a device and to support a conditional flow through a test. An example of
this can be found in Listing 2.2. The read data from a device can be used in Tcl
after retrieving it. The test may go a different way based on the returned data from
the network. Since this work will incorporate PDL in another high level programming
language, the Tcl interface and support seems superfluous. More on this can be
found in Chapters 3 and 4.

2.3.3 Structured Pattern Generation and Retargeting

The IJTAG networks are inherently master-slave and they need an entity to configure
and control them. Specifically, IJTAG networks require a process called ’retargeting’
that reconfigures the active scan path to access an instrument [5]. This process can
be compared with the operation of a railway-network; The railway’s switches need
to be set appropriately to get a train from point a to point b. This sounds simple, but
that is not all. In this case the order in which the switches are set matters; only the
train driver can set the switches; and he can only do it when he passed the switch.
At this point the analogy gets a bit vague. This subsection will try to explain the
problems surrounding retargeting and discuss different approaches to solve them.

Resolving the necessary values for SCBs and SIBs, given a target instrument,
is an active research subject since the arrival of the IJTAG standard. It is clear to
see which SIBs should be opened to access a register in a hierarchical configu-

2.3. THE IJTAG STANDARD 17

Table 2.2: The set of PDL level-0 commands.
Command Example
iPDLLevel iPDLLevel 0 version STD 1687 2014;

iPrefix iPrefix core2.cpu;

iRead iRead temp register 0b1234;

iWrite iWrite temp register 0b1234;

iApply iApply;

iReset iReset;

iScan iScan foo 4 -si 0b0101 -so 0b1x0x;

iOverrideScanInterface iOverrideScanInterface core2.cpu -capture off;

iOverrideScanInterface core2.cpu -update off;

iClock iClock foo;

iClockOverride iClockOverride foo -freqMultiplier 5;

iRunLoop iRunLoop 1000 sck foo;

iProcsForModule iProcsForModule foo namespace::core2 module;

iProc iProc foo { arg1 {arg2 1234}} {
... ;

}
iUseProcNameSpace iUseProcNameSpace foo namespace;

iCall iCall foo 12 34;

iMerge iMerge -begin;

iCall proc1;

iCall proc2;

iMerge -end;

iNote iNote -status "Important Message";

iNote -comment "Hello World";

iTake iTake temp register;

iRelease iRelease temp register;

iState iState temp register 0b1101110011;

iState SIB1 0b1;

Table 2.3: The set of PDL level-1 commands.
Command Examples
iGetReadData iGetReadData temp register hex ;

iGetMiscompares iGetMiscompares temp register hex;

iGetStatus iGetStatus clear;

iCall myProc;

set num fails [iGetStatus]

iSetFail iSetFail "Error: unexpected result" -quit

18 CHAPTER 2. RELATED WORK

ration, e.g. Fig. 2.3. For larger and more complex networks the problem forms a
large Boolean equation. However, the order in which the SIBs and SCBs are set
may matter in solving the equation. SAT solvers have been applied to perform re-
targeting [24]. When it is clear which SCBs need to be set, the next step will be to
determine how to get them in the active scan path. Solving this problem efficiently is
crucial for automatic access in increasingly larger scan networks [2], [5], [16], [24],
[25].

The approach using a SAT solver is applied in the research of Baranowski et
al. [24]. The work focusses on reduction of test time and robustness of a tool to
formally verify a network’s layout. The automatic pattern generation has been ap-
plied to benchmark networks and different experiments were held, for example to
reduce access time or to merge multiple concurrent access requests. The research
suggests that optimal pattern generation also implies taking care of closing the seg-
ments that are not needed any more.

The algorithm by Ibrahim for retargeting is based on an Access Request stack
and a Hierarchy Array [2]. The H-Array shows the dependency relation between
SIBs or ScanMuxes and their underlying instruments. This is done through the cre-
ation of a Selection Dependency Graph based on the ICL specification. The graph
representation is then translated to the H-Array [2], [26]. To start retargeting the net-
work, the access request stack is filled with one or multiple entries for instruments.
Basically, an access request is created for every iWrite and iRead in the iApply

group. If an SCB needs to be changed for access to an instrument, it is pushed on
the the stack of that instrument. If a SCB is on the active scan path, its new value
will be put in the access vector. This opens the necessary segments of the IJTAG
network and the instruments can be accessed. The work does not present a method
to close a segment of the network. This project will focus on the work of Ibrahim as
its ”execution model” is applicable in the embedded setting of the DM [2], [16], [25].

2.3.4 IJTAG Tools

Industry is currently working on adopting IJTAG in their products but many still rely
on regular JTAG. Fortunately, some development tools such as JTAG debuggers are
usable with IJTAG as they both use the same TAP control logic. At the moment of
writing, no chips can be found at suppliers like RS and Farnell boasting the new
IJTAG standard. This seems a Catch-22 where the development of tools and soft-
ware relies on people using IJTAG processors, while the usage of new technology
relies on the support of tools. Among the available resources for IJTAG are software

2.4. DISCUSSION 19

tools and benchmark networks (in PDL, ICL and VHDL) made available by the Bas-
tion project [23], [27]. These benchmarks contain ICL, VHDL, PDL and figures of
different IJTAG networks. Some of the networks are based on the popular ITC’02
benchmark collection [28]. One of the networks, the Mingle network, is a versatile
example that features all kinds of structures. This network has been used to test
the automatic generation of the H-Array from the Selection Dependency Graph [26].
The benchmark networks can be used to test all the operation of the Retargeting
Engine and PDL compiler.

Other tools that are available are aimed at the design of IJTAG compliant IP. Au-
tomatic generation of ICL and PDL based on hardware and automated testing of
developed IP are among the suites provided by different companies [29]–[31].

As mentioned, the previous work by Zakiy [1] offers a PDL compiler to MIPS32
assembly code. This compiler could be refurbished to fit the needs of this project.
However, the supported syntax of the compiler is an adapted version of PDL and
Tcl. Due to the nature of compiler generation with Antlr, it may be more feasible to
start from scratch.

2.4 Discussion

The surface of dependability management and dependability applications is barely
scratched by this brief deliberation of the subject but it gives an insight into what
should be expected. The information gained can be used in the next chapters to de-
sign the Dependability Manager. A background of IJTAG and boundary scan archi-
tecture is given to the reader which should suffice for understanding the remainder
of this report. Of course, all information concerning the subject can be found in the
IEEE standard [5].

20 CHAPTER 2. RELATED WORK

Chapter 3

Early Hardware/Software Codesign

This chapter will move through the first steps of the design methodology presented
in the work of Jain et al. [32], see Fig 1.2. The methodology begins with a design
phase analysing the problem, then combining hardware and software into a single
solution. After that it moves to separate the tracks for implementation. This chapter
explores the design space and creates a complete picture of the DM before moving
further with implementation.

3.1 Function of the Dependability Manager

The adopted methodology starts with an application analysis to gather information
about the domain of Dependability Management. This domain is characterized by
the dependability applications and the operation environment. There are different
dependability applications and some generalisations will be made to know what the
DM shall execute. The operation environment provides a setting in which the DM
will exist and hardware needs to be designed accordingly.

In Section 2.1 some examples of dependability applications are given. These
algorithms to manage dependability all need a form of input from sensors. To ac-
tively manage a system they also need an actuator. This is the definition of a control
system as shown in Fig. 3.1. A control system consists of a controller, sensors, and
actuators, see Fig 3.1. The system calculates the error between the setpoint and
the measured value (PV). This error value is then used to steer the actuators. Many
control algorithms exist for different purposes. Control systems are used in many
fields of engineering; one of the first examples is the use of a so-called Governor
on steam engines. It maintains a steady speed by managing the amount of steam
let into the engine [33], [34]. With the rise of digital systems came the control algo-
rithms. These are used to measure and actuate within milliseconds and they are the

21

22 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

(a) Control System (b) Using IJTAG

Figure 3.1: Similarity of a Control System and Dependability Manager using IJTAG.

driving force behind drones, rockets and industrial plants.

The dependability manager will also operate as a control system using sensors
and actuators in the IJTAG network. This is also shown in Fig 3.1. The setpoint
is stored in the DM or calculated as part of the dependability application. The in-
put and output of sensor and steering values is done by shifting values through the
IJTAG scan chain. The actuation rate of most dependability algorithms is low [10],
as seconds pass between updates. This makes the use of IJTAG as a means of
control system possible, at least for dependability applications. The clock speed for
JTAG and IJTAG is affected by multiple factors. Normally, JTAG programmers are
connected via a cable to the printed circuit board. The layout of the test access
network may cause a clock speed limitation due to signal propagation delay. Typ-
ical clock speeds for JTAG programmers is 1 to 50 MHz, the higher the speed the
more expensive the unit. To guarantee operation of control algorithms on the IJTAG
network, the following assumptions about it are made.

• Proper scan path optimisation to the required sensors and actuators.

• High throughput communication with the retargeting engine.

• A high availability of the IJTAG network.

• An average to high clock speed for the IJTAG network.

The usage of dependability applications is also bound by the information stored
in the network and the IJTAG-accessible actuators. A dependability application can-
not do anything without an actuator in the network. The IJTAG standard describes
a number of instruments which might be implemented into a core by chip manu-
facturers. Among that list are: PLL circuits, clock gate circuits, BIST engines, and

3.1. FUNCTION OF THE DEPENDABILITY MANAGER 23

instruments to support the process of binning processors. The research into em-
bedded instruments for IJTAG is ongoing and different instruments are adopted to
be used within the network. Temperature, current and potential difference (voltage)
sensors have been wrapped by an interface layer for IJTAG [1], [35]–[37]. The same
approach for sensors can be taken for actuators. Thus the usage of dependability
applications is limited by the need of these actuators in the test network.

Dependability is a measure of a system’s availability, reliability, maintainability,
integrity and security. A dependability application is defined as a software solution
to improve dependability of a system. A dependable system implies maintainability
of the system and by definition a dependability application needs to be maintainable
to ensure its purpose. To create some scope of the domain in which the DM will
operate different forms of dependability applications are discussed.

Variability Management Creating a processor in silicon is a physical process and
not all chips are made the same. Multiple units are made on one wafer and sub-
sequently cut into separate pieces, called a die. Each unit is then tested to finalize
the manufacturing process. This test will check if all cores are functional or what the
maximum sustained clock speed is. The chips are then sorted into separate bins [8],
[38]. These bins give the practice its name; binning increases the yield from a waver
as partially working cores can still be used.

The variability in the produced chips is a key issue in modern many-core proces-
sors. Binning is one of the options to mitigate the differences among processors and
improve yield. The processors are tested after manufacturing and are clocked and
configured accordingly. The variability among processors is not only noticeable after
manufacturing but also during lifetime as the degradation of chips is also a physical
process [9], [39]. The battery of a mobile phone or notebook computer will not keep
the same capacity over time and the amount of power it can deliver at a given time
will decrease. This has led to Apple under-clocking certain smart phones with a
software update as the battery could not supply the phone with power [40].

The degradation process also holds for processors which suffer performance
loss of their components over time. Eventually the component will not perform any
longer and this must be mitigated to avoid unwelcome surprises, i.e. graceful degra-
dation. The addition of embedded instruments to the processor enables Dynamic
Variability Management [9]. Current and voltage sensors can be used to measure
degradation of a signal path. The configuration of a system can be altered based
on measured data by the dependability application. The application could perform
the same measurements that the chip receives after production. The chip can also

24 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

be tested by executing benchmarks to check its operation [8]. The dependability
application then proceeds to (de)activate components that have degraded or it de-
creases clock speeds to allow correct operation of affected areas. This could hurt
performance of the system in general and some form of communication with the
functional layer could be beneficial [16].

Reliability & Availability Management Where the subject of the previous para-
graph simply accepted the reality of failing components, the field of Dynamic Re-
liability Management (DRM) tries to take it a step further. The physical process of
degradation has been mapped and analysed to provide models of the environmental
effects on degradation. These models are used to estimate the lifetime of a com-
ponent, i.e. the mean time to failure. The goal of Dynamic Reliability Management
is to give certainty that the component does not fail before reaching its lifetime goal
while executing a certain workload.

The DRM algorithm proposes to manage a SoC’s different failure modes by em-
ploying reliability models [10]. Temperature and voltage are the main causes of oxide
breakdown, a reaction where the gate oxide of a MOSFET fails. This, among other
failure modes of the semiconductors, are taken into consideration in the DRM algo-
rithm. The algorithm calculates total reliability by analysing the different blocks on
the chip. The workload of the device is also monitored and a gaussian distribution
is fitted to it. A confidence function is used to create an estimator for the remainder
of the work that needs to be executed in the chips lifetime. Knowing the proces-
sor’s utilisation and its intended lifetime lets the algorithm calculate the likelihood of
chip survival in those environmental conditions. The algorithm then steers the clock
frequency and voltages applied to the device to lower temperature and voltage. Al-
though this may reduce performance, the survival of the chip is guaranteed with a
higher certainty.

The algorithm’s calculations are extensive as the failure models, probability func-
tions, estimators feature summations over all the blocks and double integrals for
block reliability models. Although the research mostly focuses on the Oxide Break-
down Model, Electron Migration and Thermal Cycling are also included in calculating
the systems reliability. The research employs look-up-tables which store the values
of degradation models for certain parameters. The OBM model is based on voltage
and temperature which determine those parameters. These tables can be calcu-
lated beforehand. The remaining calculations for the workload estimation happen
on chip. Lastly, the dynamic frequency and voltage scaling module used to actuate
employs a proportional-integral-derivative (PID) controller.

3.1. FUNCTION OF THE DEPENDABILITY MANAGER 25

The algorithm is optimised with the look-up-table approach but features extensive
arithmetic to make proper decisions. The algorithm was validated with a simulated
approach but also was implemented and tested for 24 hours. The update interval
of the algorithm was 10 minutes as this should be enough on the long term. The
calculations for expected workload etc. should easily be performed within that time.

Fault Management Faults can occur at any time in a device. They are technically
defined as the cause of errors. If an error reaches the service interface and alters
the service it will result in a failure. Managing faults will limit the potential ensuing
damage of a failure. For example, a fault in the clock signal of a data bus may lead to
erroneously read values. These values may change the system behaviour and this
becomes a failure. An intermittent resistive fault instrument used to detect timing
issues can notify the DM that a fault occurred [35]. This notification can also hap-
pen with interrupt enabled IJTAG [3] which triggers a service routine to manage this
occurrence. The interrupt enabled IJTAG architecture allows automatic scan path re-
organisation to localize the interrupt. The test network configuration is not affected
after the interrupt. There are multiple strategies in fault handling for dependability [7]
based on the faults origin. Having a reactive system such as the interrupt manager
will aid the end user to manage notifications of the instrument without continuous
polling.

This concludes the application analysis and the research can move forward with
the information gained. Dependability applications improve reliability and availabity
amongst other features. The environment of the DM includes a instrument network
that provides information to a control algorithm. The network also contains self test
instruments and actuatrs. The algorithms range from simple to highly complex al-
though their execution is intermittent and they focus on the long term. In principle the
dependability layer will need to outlive the functional layer and it cannot continuously
execute. The speed and configuration of the IJTAG network also limits the sample
frequency of sensors in the network. Faults can occur at any time so an interrupt
driven approach for handling them makes sense. This leaves a simple design for a
microprocessor with interrupt management which should be able to perform most, if
not all, dependability applications.

26 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

3.2 Architectural Design Exploration

The general concept of a dependability application is sketched in the previous sec-
tion of this chapter. This section will continue with this input to explore the architec-
tural design space [32]. Questions about the high level language compiler, instruc-
tion set, and other architectural features needs to be answered. At the end of the
section, the interaction between software and hardware should be clear. This will
allow for independent implementation of the two according to the methodology.

The proposed DM is always part of a larger system, it has no use on its own. To
increase the cost-benefit ratio of adding a DM to a SoC the cost of the DM needs to
be kept low. This means a small sized processor for executing dependability appli-
cations. This is a starting point for the design exploration. A small processor means
a relatively simple instruction set, and less features will also ease implementation.
The choice of instruction set affects the choice for a high level language as not all
instruction sets are supported by all high level language compilers. Generally speak-
ing, gcc/g++ is most suitable as their target support is unrivalled for now. Although
our choice is limited multiple languages are evaluated for research purposes. The
selected language will need to interface with the Retargeting Engine and execute
PDL programs. PDL was translated to with custom coprocessor instructions in the
previous research [1]. This was done by a custom compiler. The design of the pro-
cessor and the retargeting engine needs to be considered when incorporating PDL.
The dependencies between al facets of the design space is showcased in Fig. 3.2.
The processor design and instruction set influence each other, e.g. the amount of
registers available to the ISA will need to be realised in the processor. The ISA and
high level language are coupled as a compiler will need to be available. The high
level language and PDL are coupled since the PDL will need to be executed from
the context of a dependability application. The high level language and processor
design do not affect each other due to the abstraction provided by the instruction
set and compiler. PDL incorporation and instruction set were coupled in previous
research as custom instructions were used to execute scan operations. This lim-
ited the ability of the PDL compiler to target other machines. This research will try
to decouple the execution of scan operations from the instruction set to increase
portability of dependability applications. This will simplify reuse of the PDL compiler
as well.

3.2. ARCHITECTURAL DESIGN EXPLORATION 27

Figure 3.2: Design choices for the DM affect each other.

3.2.1 Instruction Set Architecture

A massive amount of Instruction Set Architectures (ISA) have been designed and
implemented by processor manufacturers around the world. They are often reused
or extended over the years, and some are backward-compatible. Instruction sets
are classified, e.g. RISC, CISC, VLIW, based on features, size, functionality and
purpose. A suitable instruction set is needed for the DM that fits its particular func-
tionality, size and purpose. The instruction set is also required to feature an assem-
bler and compiler for a high level language. The decisions for high level language
and instruction set rely heavily on each other as can be seen in Fig. 3.2.

The work of Zakiy argues the use of MIPS (Microprocessor without Interlocked
Pipeline Stages) as instruction set in its dependability manager [1]. The MIPS series
architecture is chosen because the original MIPS I/R2000 ISA was published as an
openly available architecture by its creator John L. Hennesy. MIPS I is a RISC ISA
and the design features support for moving data to and from coprocessors. MIPS
Technologies has made multiple iterations of the MIPS architecture. The MIPS I has
been incorporated in the MIPS32 standard [41]. This ISA contains the full MIPS32
ISA which consists of multiple extensions, e.g. MIPS I, MIPS II, and this standard
remains under intellectual property protection.

The coprocessor-specific instructions, which are employed by the work of Za-
kiy [1] to operate the retargeting engine coprocessor, are introduced by the MIPS32
standard. Mixing these instruction sets (a subset of MIPS I and the coprocessor
specific from MIPS32) is a bad practice as high level language support becomes
compromised. Adding arbitrary instructions from one instruction set into the other
creates a non-standard instruction set. Compiler support for such an instruction set
is non-existent. However, since the project had a custom compiler, this was not an
issue [1].

28 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

These custom instructions also raise the question on how these they can be ex-
ecuted from the context of a high level language. The PDL-compiler automatically
converted iRead, iWrite, and iApply to coprocessor instructions [1]. This is not
an option as this new version will reuse an existing high level language compiler,
such as gcc. The coprocessor-specific instructions should be usable from a high
level language with inline assembly programming as shown in Fig. 3.3. This feature
allows a programmer to incorporate assembly for increased performance and direct
control of hardware. Some instruction sets like MIPS32 and RISC-V are extendible
for application specific purposes, and a RISC computer can be extended to become
an ASIP. This approach has the downside that the retargeting engine IP core will
become less portable, and thus usable in other projects as the design is tied to the
custom instruction set.

The approach of Zakiy’s design [1], i.e. the coprocessor-specific instructions for
the retargeting engine, affects the use of high level language. Not all high level lan-
guages allow for inline assembly programming or linking with custom machine code.
A different approach than the ASIP solution is found in the Memory-Mapped I/O
(MMIO) architecture and dedicated drivers for the retargeting engine and other DM
subsystems. In general, drivers connect high level software with low level hardware.
The MMIO architecture is further explained in subsection 3.3.

This leaves the choice for an ISA wide open. The results of the dependability
application analysis in subsection 3.1 reveal that a RISC instruction set should suf-
fice. High level language support is required for the ISA along with interrupt service
routine features. Most dependability applications are some form of control algorithm
so arithmetic must be supported. The high level language should also offer some
mathematical libraries for computations. Relevant candidate ISAs are reviewed to
find a suitable option. All discussed instruction sets are supported by gcc, so the
project can fall back on C/C++ as a high level language. The requirements for the
instruction set for the DM are drafted accordingly:

• The ISA must have high level language support, specifically a compiler for a
preferred programming language.

• The ISA must have arithmetic and control logic that supports the execution of
a compiled high level language program.

• The ISA must have memory operation support to enable the MMIO operation
of DM subsystems.

3.2. ARCHITECTURAL DESIGN EXPLORATION 29

• The ISA must have interrupt support to enable the execution of interrupt ser-
vice routines.

• The ISA should be considered RISC as this group features small and simple
hardware designs.

• The ISA should be available for use in this academical project without license
fees.

The amount of instructions in the ISA directly corresponds to the effort needed
to implement the processor. More instructions mean more work as design, imple-
mentation and validation of the processor is needed. However, if an architecture
offers extendible implementations for this project it may be worthwhile to consider
integrating it in this project.

The exploratory search into RISC architectures yielded the following candidates
which are briefly discussed and compared in Table 3.1. All the ISAs in the table
feature high level language support, arithmetic and control logic and memory oper-
ations, so this is left out of the table. The table shows the word size in bits of the
architectures, which typically corresponds to the register size for these ISAs. The
third column contains the amount of instructions in the instruction set. This is an
important factor for implementation and complexity of the hardware. Next to that are
the amount of general purpose registers. Finally a classification is given for the sup-
porting software. This column is denoted as ’Toolchain’ and more stars means the
supporting resources are better. It is a classification based on amount of resources,
software, emulators and other useful information surrounding the instruction set.
The table shows whether interrupts are supported and if the ISA is ’Open’, i.e. not
protected against use in this project.

RISC-V, pronounced ’risk-five’, is an instruction set constructed from different
base ISAs, e.g. rv64i for 64-bit or rv32i for 32-bit integer operations. The base set is
designed by incorporating the best features among different ISAs [42], [43]. RISC-
V is modularly designed with application specific extensions to the base instruction
set. The development is continuous and many of these extensions are not yet com-
plete. The default configuration for RISC-V is ’RV64G’ where the ’G’ stands for the
’IMAFD’ extensions together and it feature set is comparable to MIPS32 [43]. The
Rocket Chip Generator project offers a high level implementation in Scala of RISC-V
in a reconfigurable core [44]. The Scala files are then parsed by the Chisel3 com-
piler [45] to generate a Verilog implementation of the desired core. All these tools
are openly available for use but deemed too complex in the case of the DM as the

30 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

Figure 3.3: Example of inline assembly programming in C.

Table 3.1: Comparison of instruction set architectures.
ISA Bits Instr. Regi. Toolchain Interrupts Open
RV32I 32 50 32 FFFF X X [42]–[44]
MIPS I 32 112 64 FFF X [46]–[48]
MIPS32 32 177 64 FFF X [41], [47], [48]
OpenRISC 32 48 32 FF X X [49], [50]
OpenSPARC 64 140 640 FFFF X X [51]–[53]
MICO32 32 61 32 FFF X X [54], [55]
MMIX 64 134 256 F X [56]–[58]

author is unfamiliar with Verilog and Scala.

The requirements for this project are covered by the ’RV32EN’ extension, where
’E’ stands for the ’embedded’ base instruction set. This reduces the number of gen-
eral purpose registers from 32 to 16. It also drops the need for operations that
access the control status registers of the core. The ’N’ extension covers the abil-
ity to use user-level interrupts but both extensions are still in development. The
workaround here is implementing all the general purpose registers and only use
parts of the ’N’ extension. This means supporting the RV32I base instruction set.
Surprisingly it is possible to employ ’N’-operations such as uret from C if we rely on
inline assembly programming as can be seen in Fig 3.3.

MIPS I and MIPS32 are taken into consideration as it enables reusing previous
work into the Dependability Manager [1]. Toolchain support is also extensive as
MIPS is used in industry. However, implementing a MIPS32 compatible processor
is an arduous task considering the amount of instructions. It is possible to eliminate
part of that work by omitting the floating point coprocessor and using gcc with cor-
responding flags. Still Table 3.1 shows the amount of instructions when hardware
floating point operations are disabled. Adding that to the fact that MIPS is propri-
etary technology makes it a bad choice.

The OpenRISC project aims to deliver an open and free instruction set archi-
tecture together with tools and hardware. The OpenRISC has created a RISC ISA,

3.2. ARCHITECTURAL DESIGN EXPLORATION 31

accompanying simulator, hardware implementations and SoC design that feature
the OpenRISC 1000 (or1k) processor [49]. They have ported Linux to their ISA and
offer many tools to use the architecture [59]. Their ISA is also modular, the base
instruction set is called ORBIS32 and features the same benefits as RISC-V.

The OpenSPARC architecture is available for use but it is not suitable for this
project. It has a large amount of instructions and its 640 64-bit registers are certainly
too much. There are more suitable ISAs. SPARC stands for Scalable Processor Ar-
chitecture and is designed for data centers. OpenSPARC T1 was released as an
open version of the UltraSPARC T1 for educational purpose [51]. This architecture
complies with ARMv9 Level 1 and its features are described in Table 3.1. Presum-
ably it features an extensive toolchain as the UltraSPARC is used in industry and is
compatible with different operating systems. However, the amount of operations and
the required general purpose registers makes it unsuitable for an small embedded
environment.

The MICO32 RISC architecture has been made for use on Lattice Semiconduc-
tor FPGAs. The architecture software and hardware is available as source code
and features interrupts and external device support [54]. The available soft core is
implemented in Verilog. The device is feature rich and is ready for incorporation into
this project. However, unfamiliarity with Verilog is the main reason to avoid using this
architecture implementation.

The MMIX architecture was developed by Donald Knuth for educational pur-
poses. Support for the project by the community seems limited and only a hardware
implementation in Verilog is available. However, the incredible amount of registers
for an embedded system, lack of interrupt support and scarcity of tools and docu-
mentation make this a poor choice for this project.

The choice for an ISA affects the whole project. This section discussed a hand-
ful of suitable open alternatives in a sea of ISAs. After careful consideration the
RISC-V architecture is the preferred option to implement. Most architectures are not
available for use due to intellectual property protection. The ones that are available
have been compared. RISC-V stands out among the candidates due to its modular
design and incorporation of common features among different ISAs [43]. It’s sup-
porting software toolchain consists of GNU C and C++ tools [60], [61], a processor
emulator [44] and a configurable hardware generator based on Scala [44], [45].

32 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

3.2.2 High Level Language

This research is a continuation of the work towards the dependability manager [1].
The previous project had no support for a high level language. Proper integration of
a high level language compiler is an important feature in this work. The choice for
a high level language support for an embedded system is dictated by the instruction
set. Since this choice was already made we rely on the tools available. For the sake
of completeness this subsection discusses high level languages that can be used
to program dependability applications. Next to the compatibility of the programming
language with the instruction set, the suitability and supporting libraries of the lan-
guage are discussed. Rust, C/C++, Python and Java are evaluated as high level
languages regarding their support and limitations for running on targets.

Rust is a new concept programming language where memory and thread safety
is guaranteed [62]. It is syntactically similar to C++ but adds new mechanics to en-
sure its intended goal. All values in the system have an implicit owner upon creation
and are immutable unless otherwise specified. Current fully-supported targets for
rust are the x86 and x64 architectures while other targets are supported with limita-
tions [63]. There currently is no support for RISC-V, nonetheless, Rust would be a
great language for dependability applications considering its safety features.

C and C++ are often named in the same breath and are considered the industry
standard for programming embedded systems. C++’s object-oriented-programming
characteristic is an added layer of higher level functionality to C. The language is
considered mid-level as it lacks ease-of-use features present in modern high level
languages such as garbage collection. C is compatible with many targets due to
the design of its open source compiler that eases effort required for creating a cross
compiler. The RISC-V architecture also features a cross compiler [60] to create bare
metal code for the DM. Applications written in C are able to access memory locations
directly which enables the MMIO operation of the DM’s system devices. In general,
function attributes can be used to declare interrupt service routines although this
is not yet supported for RISC-V. Maintainability and readability of C applications
require an effort on the programmer’s part but adhering to code style conventions
mitigates this problem [64], [65].

Embedded Python has been employed to program system such as the DM by
running a minimal Python interpreter on the target [66]. This interpreter requires a
significant amount of hardware resources, i.e. the hardware available on a Rasp-
berry Pi [67] or a Beaglebone Black [68]. This CPython interpreter is a C application
that runs the Python code. Running it on the DM means compiling this interpreter for

3.2. ARCHITECTURAL DESIGN EXPLORATION 33

the chosen ISA. The Cython compiler translates Python to C code and then compiles
to a Python module usable from the Python environment or from a C application. A
dependability application can be made in Python and compiled to C and then com-
piled with a target-gcc [69].

Java is a popular programming language and supports many devices [70]. Java
is compiled to Java byte code and subsequently executed by the Java virtual ma-
chine. Any target that features a virtual machine is able to execute Java programs.
To support RISC-V an openly available virtual machine needs to be cross compiled,
such as Avian [71]. Java was not designed to allow MMIO partly due to the virtual
nature but some virtual machines feature direct access to memory nowadays [72].

The choice of ISA affect the high level language support tremendously. Python
and Java feature the same method of operation, albeit a virtual machine or an in-
terpreter, and both languages will require effort to run on the RISC-V ISA. Rust’s
benefits are enabled for certain targets, e.g. x86 and x64, but not (yet) supported for
the RISC-V architecture. This leaves the GNU gcc toolchain supplied by the RISC-V
developers. Using C for this project is beneficial as it is an industry-proven language
with a long successful history. It can run bare metal which reduces the code size
and improves the processing speed.

3.2.3 PDL Incorporation

Now the discussion between ISA and high level language support is completed a
design is needed to incorporate the PDL programs. First an introduction to and pre-
vious work on the PDL compiler will be given as it is a starting point for how the
programmer could use the DM. After a design is made to effectively use PDL speci-
fications from a high level point of view.

PDL, Procedure Description Language, is a programming language that enables
manufacturers of IJTAG products to offer usable programs with their instruments or
components. IJTAG tries to mitigate scalability issues of test networks by reducing
the workload on programmers when they want to operate the network as proces-
sors may incorporate tens to hundreds IJTAG instruments. Creating custom code
to configure and access each instrument is a cumbersome and error-prone method.
A PDL program provides tried and tested code bound to a specific instrument. The
retargeting tool interprets the programs and executes the read and writes to the in-
struments.

34 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

(a) (b)

Figure 3.4: Language recognizer generated from a grammar changes input file to
tree structure which is then walked. Custom code is called to perform
the necessary actions at each node. Figures taken from the Antlr4
Definitive Reference [73].

The work of Zakiy introduced a PDL compiler from one complete PDL/Tcl script
to an assembly program [1]. This compiler is based on the Antlr project which turns
a BNF syntax grammar specification into a usable Lexer, Parser and Walker for an
Abstract Syntax Tree (AST) [22], [73]. The Lexer will read a program and turn it into
a stream of tokens. This tokenstream is parsed and stored as a tree data structure.
This AST can then be walked by an observable TreeWalker object which calls func-
tions in an observer class upon entering and exiting a tree node. The process is
shown in Fig 3.4.

Zakiy’s syntax grammar specification incorporates Tcl next to the PDL syntax
in align with the IJTAG standard that defines that PDL level-1 programs may fea-
ture Tcl. However, Tcl is not a standardized language (reserved keywords may be
redefined) which introduces the problem that no grammar was available and had
to be reverse engineered. The IJTAG standard features an Antlr grammar for PDL
(and also one for ICL) language and was modified to parse a subset of Tcl [1]. Un-
fortunately during this process many concessions where made and the resulting
grammar could only be used to compile custom PDL code, iProc and iCall where
completely ignored. It was not able to compile BASTION benchmark files [27].

The intention of this research is to incorporate PDL in a usable method in a high
level language. A custom subset of PDL is not an option, it eliminates the benefits
that PDL has to offer. It was made to be compliant with Tcl interpreters and it could
incorporate Tcl commands if needed. Going forward we have two options as the
previous grammar does not suffice. The first option is to create a compiler for the
original PDL specification, i.e. use the non-modified grammar from the IJTAG stan-

3.2. ARCHITECTURAL DESIGN EXPLORATION 35

Figure 3.5: Steps of the GNU C compiler.

dard. The second option is to compile a Tcl interpreter for the DM and let it run PDL
files directly on the target. The normal Tcl interpreter (tclsh) program is too large to
fit on most embedded systems. A minimalistic interpreter such as Partcl [74], [75]
could be used, it is extendible with custom Tcl commands which would be the PDL
definitions and has been tested on an embedded system. The custom commands
would control the retargeting engine and the interpreter would be configured for
PDL. However the project is considered a ’toy project’ by its creator, would require
the whole dependability application to be written in Tcl and would be a far reach
from the previous work. This leaves the PDL compiler as remaining option.

Among the choices for compiler output are high level language, assembly, and
machine code. gcc uses these intermediate formats, see Fig. 3.5, and using these
formats eases the integration of PDL and C. Some form of interfacing is required for
using the PDL from the dependability application. So, basing the design on what
tools are available is a reasonable choice. Assembly (.s) and machine code (.o)
offer a complete control over the machine. However, compiling to assembly come
with challenges. Storing and loading of variables needs to be managed, includ-
ing the locations in memory. All administration of the machine needs to be done.
The PDL compiler itself will also be responsible for managing the symbols (function
and variable names) encountered in the PDL. Calling procedures in assembly must
be correct. And the output of the compiler must adhere to the standard for linker
files [76]. This is a tremendous amount of work compared to outputting high level
language code. Fig. 3.6 shows the ease of converting the PDL syntax to C. Although
this approach also has its challenges, the gcc compiler can manage the symbols,
calling structures, and system management. This approach will only require correct
parsing and symbol management of the PDL.

As discussed, Zakiy’s grammar differs tremendously from the actual PDL syn-
tax [1]. Zakiy’s PDL compiler also outputs MIPS32 assembly while this research will
use RISC-V as an open ISA. Rewriting the previous compiler is a hard task and due
to the wrong grammar and nature of Antlr4, i.e. generating the framework and pro-
viding method stubs, also a fruitless task. Implementing the compiler from scratch,

36 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

(a) (b)

(c) (d)

Figure 3.6: Two examples of how PDL can be converted to C.

by generating a new lexer and parser and filling the stubs, is necessary considering
the grammar differences. The ISA used in the previous work is hard-coded into the
compiler. The syntax specification is readily available from the IJTAG standard [5],
so generating a new compiler with Antlr is trivial.

The previous work mentions portability as an option for future work [1]. In order to
support any machine, and provide a hardware abstraction layer (HAL), a paradigm
shift is needed for the compiler. This HAL consists of two parts: the instrument PDL
library/framework and the retargeting engine drivers. To use the hardware effec-
tively from software a layer of ’driver’ software is created. This can also be seen
in Fig 3.6; iWrite and iRead are functions in the retargeting engine driver. If the
hardware changes, only the drivers will need to be updated to ensure the software
executes. The other part, the instrument PDL library, will be a translation of the PDL
file accompanying a instrument. The code in such a file is always contained in iProc

procedures and these are an excellent collection of methods or a framework for the
dependability application. Primarily because the procedures should contain relevant
tests or methods to extract data from an IJTAG device. The driver software will be
discussed in Section 4.3. The PDL instrument framework is elaborated here and in
Section 4.1.

3.3. HARDWARE DESIGN 37

Figure 3.7: High level system block diagram.

3.3 Hardware design

A high level design for the dependability manager is discussed in this section. The
application analysis showed no need for a specifically fast architecture. Recall that
updates in the control algorithm happen with seconds in between. The calculations
performed by the DM will be intermittent. Simplicity is at the core of the DM, to re-
duce implementation time and increase maintainability. Construction of performance
increasing technologies such as pipelining and branch prediction will remain out of
the scope of this project. The microprocessor will need multiple clock cycles per
instruction as it moves through its execution stages. The focus during implementa-
tion will be on the retargeting engine and interrupt management unit. These will be
necessary components to cope with the IJTAG networks.

An block diagram of the DM can be viewed in Fig. 3.7. The core component is a
microprocessor. Research into usable ISAs has yielded RISC-V as base instruction
set for this microprocessor. The ISA is comparatively small and can be extended in
future versions if needed. The microprocessor will use memory to store data and
instructions. A Harvard architecture would be better than a Von Neumann archi-
tecture as it protects the instruction space. If the execution of instructions would
be pipelined, Harvard also allows the separate fetching of instructions while the
data bus is busy. A brief research into bus protocols will help the implementation.
Reusing an existing popular protocol will aid in the adoption of the RE by others.

38 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

The previous work used MIPS32 coprocessors to house the retargeting engine.
Direct communication and specialized instructions were used to operate the RE.
The register space in the coprocessor is limited to 32 words which was used to
store TDR id and value. This research will implement the RE as a separate entity
with a standardized communication scheme, based on the system bus protocol. The
two parts of this strategy is the MMIO and driver paradigm. The registers of the RE
will exist in the memory space of the DM at fixed positions. The drivers will know
where to write the access requests and will control the RE with a dedicated register.

The IJTAG interrupt management unit will also be implemented in this research
and an interface with the microprocessor will be designed. A complicated architec-
ture will be avoided due to time constraints. The processor will need a jump address
and a signal for when it needs to jump. Returning from an interrupt will be handled
by the RISC-V uret instruction, although it is not strictly part of the base ISA.

The interrupt management unit and the retargeting engine will both communicate
with the IJTAG network. A dedicated TAP controller is needed to make sure the pro-
tocol is adhered to. This bus controller will synchronize the network, tap state (see
Fig. 2.2) and IJTAG master devices.

Communication with the functional layer may be a beneficial feature of the DM.
It allows error reporting to the operating system of the SoC. The implementation of
this communication will remain out of the scope of this research. The same holds
for routing external IJTAG signals through the DM to the instrument network, see
Fig.3.7. Thankfully, these components can be added to the hardware as an exten-
sion due to the nature of the DM’s design, i.e. the system bus and memory mapped
I/O devices.

3.3.1 Retargeting Engine

The retargeting engine is a hardware acceleration device in the DM responsible for
communication with the IJTAG network. It will reconfigure the network and read and
write values from the TDRs. Its design is based on an algorithm and data structure
for retargeting [2]. The operation of the retargeting engine is described here.

The retargeting engine receives access requests (AR) from the processor. These
requests contain an instrument id, a read/write flag and a value if it needs to be writ-
ten to the instrument. The retargeting engine stores these requests in a list of stacks,
each stack featuring the original AR as bottom element. These stacks are used dur-

3.3. HARDWARE DESIGN 39

ing the retargeting process where the Hierarchy Array (H-Array) is traversed. The
H-Array contains a structured list of the instruments in the IJTAG network. As the
reader might recall, these networks consists of Segment Insertion Bits, ScanMuxes
and Test Data Registers and these are the types encountered in the H-Array.

The network state or configuration is stored in the State Vector (SV). This is a
bit string containing current values of the ScanMux Control Bits (SCB), the registers
in the network controlling the ScanMuxes. The configuration forms the active scan
path, the current path through the scan network. In the H-Array, the segments in-
serted by a ScanMux have headers (I0 or I1) which are a representation of the state
of that ScanMux. This also holds for the SIB, which skips or includes a segment.
The segment headers store a reference to their SCB and store the amount of el-
ements in the H-Array segment. The SCBs in turn store a reference to a position
in the State Vector. The retargeting engine uses this data to execute the traverse
and generate algorithm. An example of a network along with its H-Array is shown in
Fig 3.8.

The goal of the algorithm is to reconfigure the network so that the requested in-
struments in the Access Request stack become part of the active scan path. The al-
gorithm generates the access vector during the traversal. Instruments are identified
by their position in the H-Array, this index is the instrument-id. When it encounters
a segment header, the state vector is checked based on the SCB that accompanies
the SIB or ScanMux. If the segment is in the active scan path, the algorithm enters
the segment and otherwise it will skip. When an non-active segment header is en-
countered during traversal a check is performed to see if a requested instrument lies
in the segment. This is achieved by checking if the instrument-id lies between the
current H-Array-pointer and the end of the segment. If so, the algorithm then adds
an access request to the stack of the requested instrument. This access request is
a write to the corresponding SCB and the value is based on the segment header.
ScanMuxes can have a ’0’ or ’1’ as desired value, while SIBs always require a ’1’ to
open.

When an SCB or TDR is encountered in the traversal algorithm, it checks to see
if the top of any stack contains that SCB- or instrument-id. If so, the access request
is popped of the stack and the desired value is added to the scan vector. For read
operations an extraction request is created and later used to extract the requested
value out of the incoming shifted bits.

After traversing the H-Array and generating the access vector the Retargeting

40 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

SIB_M10
I0_M21
I0_M32
R13

I1_M34
R25

SCB36
I1_M27
R28
R39

SCB210
SCB111

Index

(a) (b)

Figure 3.8: Example IJTAG network with H-Array [2].

Engine moves to the next state where the communication with then network hap-
pens. A CSU cycle is initiated and the access vector is shifted into the network. The
incoming bits are stored and shifted into a read buffer. After shifting the retargeting
process is started again. The retargeting engine is done when no access requests
are left on the stacks.

An example network can be seen in Fig. 3.8 along with its H-Array. The headers
are coloured along with their corresponding network segments. M1 can be seen as
a SIB and M2 and M3 are ScanMuxes. The current configuration (all ’0’ in the SCBs)
means the SIB is closed. There are different paths through the network as indicated
by the blue and red dotted lines. In order to configure the active scan path to the
blue line (access R2) multiple shifts are needed. First a ’1’ is shifted into SCB1 and
this opens M1. In the second cycle, a ’1’ is again shifted into SCB1 but SCB2, SCB3
and R1 have become part of the scan chain. M2 is already configured correctly and
the retargeting process therefore encounters the headers of M3. An access request
for SCB3 is added as the I1 M3 needs to be opened. The algorithm encounters
SCB3 later in the H-Array and the value is set in the access vector. To retarget the
network from this state to access R3 another cycle is needed which shifts a ’1’ into
SCB2.

The implementation of the retargeting engine algorithm can be realised with a
state machine. The retargeting engine can be idle, traversing and shifting. The retar-
geting engine should also be designed as IP, so that reuse is simplified. The control
of the retargeting engine will happen by ’starting’ it and monitoring its progress. This
can be done with a control and status register where specific bit fields are coupled
to a hardware function similarly to the instruction register of the processor controller.
Communicating the access requests to the retargeting engine will be done via some

3.3. HARDWARE DESIGN 41

Figure 3.9: Different modes in the extended SIB, taken from [3].

buffer. The drivers could also access the AR-Stack directly and put the request in the
right place on the stacks. It is also clear that storing the H-Array, Access Request
stack, Read Requests and the shift buffers will take a certain amount of memory.
Making these items configurable in size allows for an easy design space exploration
and optimised hardware configuration.

3.3.2 Interrupt Manager

The dependability manager will support interrupt features in its design. Normally,
an interrupt management unit (IMU) will handle all interrupts in a system, i.e. from
external signals, memory/arithmetic traps and peripheral interrupts. Interrupt man-
agers may feature interconnect fabric and masking that couples sources to service
routines. These devices are highly configurable to speed up the servicing of inter-
rupts.

The interrupt manager of the dependability manager will be simplistic; it’s main
goal will be localising and managing interrupts originating from the IJTAG network.
This is a new concept and not part of the IEEE IJTAG standard [3]. It adopts the
SIB and redesigns it to have three distinct modes, see Fig. 3.9. The first (Mode A)
is normal operation as described in Section 2.3. The second (Mode B) allows for
inclusion of novel flag registers into the scan chain at the retargeting tool’s discre-
tion. The last (Mode C), also referred to as ’localisation mode’, discards the SCBs
and TDRs from the scan chain and only includes the flag registers. There can many
different flags that all have a system-wide include and localisation signal. The first
allows for Mode B operations while the latter enables Mode C.

This research will focus on the implementations of the network structures and
the interrupt manager for only one type of flag. The interrupt manager is notified
of an interrupt with a flag propagation network and will localise the source of a flag
with a special inverted version of the H-Array, the IM H-Array. The network layout
plays a substantial role in the localisation process. Extended SIBs in a hierarchical
tree network are the backbone for the algorithm. An example network is shown in

42 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

Figure 3.10: An interrupt enabled IJTAG network. The flag propagation network is
shown in red. The colours of the IM H-Array correspond to segments in
the network. The use of ESIBs and ESIB L is discussed in Section 5.3

.

Fig. 3.10 along with its IM H-Array. The segments are coloured in the network and
in the IM H-Array representation. The flag is propagated through the red line. Each
extended SIB takes an input from the left and from below, these inputs are ORred
and propagated to the next SIB [3]. This starts the localisation algorithm which is
discussed in the next section.

3.3.3 Extending IJTAG for Interrupts

A part of this research is implementing the interrupt-enabled IJTAG SIB [3]. This re-
search will reuse the VHDL network structures provided by the BASTION project [23],
[27]. These will be adapted to operate according to the research into IJTAG fault lo-
calisation.

BASTION’s benchmark set feature 24 different networks with varying degrees
of ICL and VHDL specifications, example PDL files and structure diagrams. The
network VHDL implementations reuse a set of entities that represent different IJ-
TAG scan chain structures or instruments such as SIBs, multiplexers and SCBs or
TDRs. An interrupt enabled network consist of a flag propagation network, interrupt-
enabled SIBs and interrupt-generating TDRs. The hierarchical tree-layout that is
needed for fast localisation consists of SIBs with the instruments as leaves [3]. The
SIB implementation is extended with logic and control signals.

The control signals are used to configure the mode of the ESIB. It can be in nor-
mal operation mode (Mode A) where it behaves as a regular SIB and skips the extra

3.3. HARDWARE DESIGN 43

SO

from
F

from
SO

to
SI

SI

LocF SEL IncF

From
SIB
F

to F

SIB
SR F

0

1

0

1

0

1

Figure 3.11: Structural design of an Extended SIB.

flag, it can be configured to include some flags for diagnostics (Mode B) or it can be
used to localise the source of a flag (Mode C). This research focusses on the latter
mode for interrupt localisation while the same principles can be applied to add other
flags [3]. A detailed design diagram of a ESIB can be found in Fig. 3.11. The design
shows the ESIB’s segment control bit (SIB SR) and its flag register (F). The flag
register’s value is set during the capture state of the CSU cycle. An interrupt is prop-
agated through an or-gate network to the DM which configures the ESIBs to mode
C by setting the ’Select’ signal to logical low and the ’Loc F’ to logical high. This
means that the SIB SR register is omitted while the ’F’ register is added to the scan
chain. The ’F’ flag (note not the ’F’ register) controls whether the underlying network
is added to the scan chain, this also means an instrument must keep its interrupt
signal high until it has been serviced by the controller. Otherwise, localisation will fail.

Localisation is done by performing a CSU cycle, and as mentioned, the capture
phase stores the interrupt flag in a scan chain register. During shifting the values
of the ESIBs are received and used to traverse an interrupt based hierarchy array.
This IM H-Array is different from the one used in the retargeting engine. The entries
of this IM H-Array are ordered correspondingly to bits shifted out of the scan chain.
Reading a logical ’0’ means that the ESIB can be skipped, reading a ’1’ means that
we must ’enter’ the segment beneath the ESIB. The IM H-Array is traversed in this

44 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

Figure 3.12: Compilation of a dependability application.

manner until a TDR is encountered which will be the interrupt source. However, dur-
ing implementation it proved useful to add a leaf ESIB definition to the network and
IM H-Array. Because TDRs are not active if not selected, the regular ESIB would
propagate undriven signals. The leaf ESIB is considered as the interrupt source for
the underlying segment, which would be a single smart instrument.

3.4 Software design

So far, the supporting software for the project consists of a compiler for the RISC-V
instruction set. Incorporation of PDL will happen by transforming the scripts into a
framework which can be called upon. This instrument C library, or framework, will
consist of the iProc procedures from the PDL file. This generated code will can then
be used as a C library for a specific instrument network. The dependability applica-
tion will be linked to the framework, which in turn will incorporate a set of drivers for
the hardware of the dependability manager. The set of drivers and the framework
will be referred to as the dependability managers library.

The compilation flow is shown in Fig. 3.12. The generation of the H-Array is the
first step as it is required for the generation of the library. The instruments in the
network need to be known at compile time. The H-Array provides a structured map-
ping between instruments, their location in the network, and the ID in an Access

3.5. DISCUSSION 45

Request. The H-Array and its creation from a Selection Dependency Graph is part
of the research into the retargeting engine [2], [26]. The generation of a Selection
Dependency Graph by parsing the ICL has not yet been attempted and will not be
part of this research. The assumption is that a H-Array specification is available and
that it will be used as an input for the framework generation process. For example,
the names of the instruments can be replaced by their indexes. These indexes can
be used to issue iReads and iWrites.

The PDL compiler shown in Fig. 3.12 will take the instrument level PDL proce-
dures provided by the instrument manufacturer and turn it into a library in the chosen
high level language. The purpose of the framework is to provide the developer of
dependability procedures/applications an easy entry point for operating the IJTAG
network. The developer of the application can configure a device through the gener-
ated PDL library. This is based on the assumption that the manufacturer has created
such procedures in the provided PDL. Examples of that are iProcs for build-in-self-
test or initial configuration. The developer may also use the retargeting engine driver
to issue iReads and iWrite directly.

The software framework is joined with the DM specific drivers and compiled along
with the dependability procedure into a executable file for the DM. This file must then
be loaded into the DM simulator or synthesis tool to be used during the lifetime of
the system. Simple scripts can be made to achieve this.

3.5 Discussion

This chapter has discussed the preliminary design of the dependability manager
entirely. It starts with an analysis of some different dependability applications and
the suitability of IJTAG as a means to sense and actuate. It then works through
some design considerations of the previous work, how they apply in this next itera-
tion of the dependability manager and then addresses them accordingly. This works
aims to integrate PDL functionally in a high level language while previous work only
focussed on executing PDL programs on an embedded system. Finally a top-level
design is presented in the form of a block diagram (see Fig. 3.7) which separates the
Retargeting Engine and Interrupt Manager as separate system bus devices. These
devices will use an interface which enables reuse in different processor designs.
The software will consist of a toolchain converting the PDL to a high level language
that enables the same portability.

This chapter has outlined a plan for the separate Software and Hardware tracks

46 CHAPTER 3. EARLY HARDWARE/SOFTWARE CODESIGN

in the proposed methodology and provides details for the cooperation between the
two parts. This plan for the dependability manager coprocessor will be elaborated
in the next chapters.

Chapter 4

Software: Building the Toolchain

This chapter contains the software development part of this hardware-software code-
sign project. The methodology used in this research states that this must yield some
form of compiler for the ASIP in development. It was established that gcc will be the
main-compiler for the DM. However, incorporating PDL is one of the additions of this
research. A toolchain for the DM will be developed in this section for incorporating
PDL. It contains the PDL to C framework compiler. Along with the compiler comes
a set of drivers to create a HAL between the dependability application and the de-
pendability manager.

As discussed, the previous approach [1] to compile from PDL to MIPS32 assem-
bly directly was practical but made the compiler too rigid for reuse. For example,
the operation of loading data in the retargeting engine was specific for the MIPS32
machine. Furthermore, the grammar used to generated the compiler did not com-
ply to the IJTAG standard. This research uses the PDL grammar provided by the
standard [5]. C was chosen as an intermediary language so that the generated PDL
framework can be compiled to other targets which makes it reusable in the future.

The chapter starts with a research into the finer details of PDL operation. The
framework needs to use the H-Array data structure to identify instruments. Reso-
lution of the right instrument is done during runtime and this creates problems in a
static framework. Such concepts of the PDL language need to be converted to C
to reach a working concept of a framework compiler. This chapter then proceeds
with connecting the operations in the generated framework to the system compo-
nents using drivers. These drivers are implemented according to the design of the
hardware. All operations happen via Memory Mapped IO and drivers mostly revolve
around setting the right bit in the right place to start retargeting or enable interrupts.

47

48 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

4.1 PDL to C Framework Compiler

There is a need to incorporate PDL into the dependability application. Instruments in
the network can be configured for different testing purposes, e.g. a sensor may have
gain or resolution settings. Instrument manufacturers may supply PDL programs
along with their product. Since PDL is the de facto language for IJTAG instruments
it saves time and money to enable incorporation of these available scripts. In Chap-
ter 3 a discussion about different methods of PDL incorporation is held. Fig.3.12
shows the preliminary design of the toolchain. This section picks up the pace and
implements the PDL2C framework compiler. The resulting compiler will transform
PDL files to C files in order to be used with the dependability application.

PDL is a language which defines procedures for ICL modules. PDL is divided in
two sets; level 0 and level 1. All PDL level-0 commands exist within iProcs except
for the version declaration (iPDLLevel) and the iProcsForModule annotation. No
dedicated iProc is the entry point for the program and this is left for the creator of
the retargeting tool. The iProcs contain the commands for reading and writing (scan
operations) and can call other procedures with iCall. PDL level-1 commands are
used by the Tcl testing tool to access values; all commands in the PDL level-1 set
return some kind of String datatype. PDL is syntactically compatible with Tcl and
PDL level-1 files may also contain any Tcl operation. This research will drop the
PDL level-1 commands and will not compile Tcl commands as was done in Zakiy’s
work [1].

4.1.1 Namespacing in PDL and ICL

The nature of IJTAG lets developers be more concise in module reuse both in hard-
ware specification and software. ICL and PDL offer namespacing to match software
with a specific instrument in the network. This is due to the close interaction of both
languages but also the need for managing large scan networks. Although the com-
piler is designed with the H-Array in mind as network specification this subsection
will discuss namespaces in PDL and offer a design of how it should be when H-Array
generation becomes fully automatic.

A network starts with a single top level module, how this should be handled is left
to the user according to the IJTAG standard. Modules exist in a namespace and if
none is defined they exist in the ’root’ namespace. It is presumed that an instrument
in ICL is defined as a module. Instances always exist within a top-level module and
this creates a hierarchy. The entry point of a PDL program should be the iProc

4.1. PDL TO C FRAMEWORK COMPILER 49

defined for a top-level module. Subsequent iCall and iPrefix commands operate
within this module and influence the effective prefix. An iCall can target an instance
within a module. The procedure that is called should be defined for the module which
is that instance. This is annotated with the iProcsForModule command. An example
of this can be seen in Listing. 4.1 where Mingle is the top-level module. The iCall

targets a different instrument (WI1...WI7) while calling the same iProc.

The scan operations, e.g. iWrite, iRead, iScan, always target a register, port
or alias for one of those. The effective prefix determines the specific instrument in
the network. The same procedure can be called for different instances of a module.
This means that the same piece of PDL code is used for different instruments. The
intended instrument can only be found by following the calling sequence. This cre-
ates difficulties when creating a static PDL framework and makes mapping the scan
operations to the H-Array harder.

4.1.2 Namespacing Tree Solution

It is necessary to keep in mind that the framework uses the H-Array as a structural
model of the network. This abstraction contains TDR entries as addressable instru-
ments. During the creation of this linear array, the sense of namespacing defined in
the previous subsection is lost and no effort is made to allow the use of prefixes. In
this subsection a suitable approach for this problem is discussed.

The Mingle network is used as an example during this deliberation. A schematic
figure and the H-Array of this network is available in Appendix C. An entity diagram is
show in Fig 4.1 which gives insight in the namespacing and hierarchy of instruments.
The Mingle network contains eight instances of the WrappedInstr module, which is
a generic read-write instrument. There are also some SIBs and SCBs which have
addressable 1-bit ScanRegisters to configure the network. The last structure in the
network is a BypassRegister without any function. Consult Fig. C.1 in Appendix C
to view the complete network structure.

As mentioned, the effective prefix for an iProc can be set with an iCall and
extended by an iPrefix command. This dynamic movement through iCall names-
pacing creates challenges for generating a static framework. When you call an iProc

for a specific instance of a module, you have to know which specific instance you
were addressing. A work-around is to require every scan command to originate from
the root-prefix but this hinders the scalability of PDL. The dynamic namespacing en-
ables reuse of iProcs for multiple instances of the same module. Such an iProc

50 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

Mingle: <top-level entity>

WrappedInstr: WI1

SReg: reg8

SIB_mux_pre: SIB1

ScanRegister: SR

Instrument: I1

SIB_mux_post: SIBpost1

WrappedInstr: WI2

SReg: reg8

Instrument: I1

SIB_mux_post: SIBpost3

WrappedInstr: WI8

SReg: reg8

Instrument: I1

...

SIB_mux_pre: SIB2 SIB_mux_pre: SIB7
...

...

SCB: SCB1 SCB: SCB3
...

BypassReg: Void1

ScanRegister: SR ScanRegister: SRScanRegister: SR

ScanRegister: SR ScanRegister: SR

ScanRegister: SR ScanRegister: SR

ScanRegister: SR ScanRegister: SR

ScanRegister: SR

Figure 4.1: The hierarchy of entities in the Mingle module, similar instances of the
same module are omitted, a full entity tree can be seen in Fig C.2 in
Appendix C.

4.1. PDL TO C FRAMEWORK COMPILER 51

can be seen in Listing 4.1 for the Mingle network. The same procedure is called for
every instrument in the network. Without PDL’s ability to change the prefix, i.e. the
work-around, there would need to be a iProc for every instance of the module which
is not a good practice.

At closer scrutiny, namespacing in a test network is a tree structure with the root-
prefix as top-level parent node. The program starts at the top-level entity and an
iCall selects an entity by descending the tree and finding the right child. During
the execution of the iProc all subsequent iCalls are based on the tree node that
was selected. iPrefix may be used to descend further down the tree but will never
go up, i.e. towards a parent or the top-level node. The tree for the Mingle Network
is shown in Fig. 4.2. Returning from an iCall restores the prefix from before the
iCall; the correct tree node must be reselected. The flow of the program in List-
ing 4.1 is shown in the hierarchy tree representation of Fig.4.2. The order of iCalls
of the program in Listing 4.1 is also added to illustrate the difference in operation.
The jumps are also denoted in the comments of Listing4.1. Generation of this hier-
archy tree structure can be done from ICL but will sadly be out of the scope of this
research. It is best to design these mechanisms in a later stage where the H-Array
generation will also be implemented further.

This leaves the work-around as viable alternative for this project. The hierarchy
diagram in Fig. 4.1 shows the actual addressable items in blue; they are Scan-

Register ICL definitions. The PDL extract in listing 4.2 shows these registers as
target for the write operations. As it is, determining the target of a scan command
is straightforward as the command is issued from the root-prefix; the entire path to
the ScanRegister is given. Requiring the effective prefix to remain empty allows the
conversion of PDL to a static framework as the calling sequence does not influence
the instrument path any more. In order to map the scan command target to the H-
Array, the full path must be stored for every TDR.

This resolves a difficult part of the compiler. The solution that is employed is not
the best but it works. A tree structure to store the instrument hierarchy along with
their H-Array indices would be best for the generation of the framework. This struc-
ture would also be stored on the DM to allow retargeting for scalable networks and
reuse of provided PDL. However, as parsing ICL and H-Array generation remains
future work, so will the generation of this hierarchy tree.

52 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

Mingle

WrappedInstr:
WI1

SReg:
reg8

Instrument:
I1

ScanRegister:
SR

WrappedInstr:
WI2

SReg:
reg8

Instrument:
I2

ScanRegister:
SR

WrappedInstr:
WI3

SReg:
reg8

Instrument:
I3

ScanRegister:
SR

WrappedInstr:
WI4

SReg:
reg8

Instrument:
I4

ScanRegister:
SR

WrappedInstr:
WI5

SReg:
reg8

Instrument:
I5

ScanRegister:
SR

WrappedInstr:
WI6

SReg:
reg8

Instrument:
I6

ScanRegister:
SR

WrappedInstr:
WI7

SReg:
reg8

Instrument:
I7

ScanRegister:
SR

WrappedInstr:
WI8

SReg:
reg8

Instrument:
I8

ScanRegister:
SR

1

2

3 4 5 6

7

8

Figure 4.2: Mingle’s hierarchy tree, the SCB and SIBs are omitted. The flow through
the hierarchy tree of the PDL program in Listing 4.1 is shown in order.
A full hierarchy tree can be viewed in Appendix C, Fig. C.2.

4.1. PDL TO C FRAMEWORK COMPILER 53

Listing 4.1: PDL file for the Mingle network showing the use of prefixes during pro-
cedure calling.

iPDLLevel 0 -version STD_1687_2014;

iProcsForModule root:: Mingle;

5

iProc program_entry_point {}

{

Start at the top level entity

Refer to Fig. 4.2 for the jumps in the comments below

10

iCall WI1.write_to_wrapped_instrument; # Jump to child 1

iCall WI2.write_to_wrapped_instrument; # Jump 2

iCall WI3.write_to_wrapped_instrument; # Jump 3

iCall WI4.write_to_wrapped_instrument; # Jump 4

15 iCall WI5.write_to_wrapped_instrument; # Jump 5

iCall WI6.write_to_wrapped_instrument; # Jump 6

iCall WI7.write_to_wrapped_instrument; # Jump 7

iCall WI8.write_to_wrapped_instrument; # Jump 8

20 # End of program

}

iProcsForModule WrappedInstr;

25 iProc write_to_wrapped_instrument {}

{

Find scan -entity ’SR’ below child ’reg8 ’

iWrite reg8.SR 0bx11110000;

30 iWrite reg8.SR 0bx00001111;

iApply;

Return to the tree node at the moment of iCall

In this case the top level entity , i.e. the root.

35 }

54 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

Listing 4.2: Extract of the Mingle PDL file of the Bastion benchmark set [27]. All
iWrite commands originate from the root-prefix.

iPDLLevel 0 -version STD_1687_2014;

iProcsForModule root:: Mingle;

5

iProc all_scanregistes_in_one_iApply {} {

iWrite SIBpost1.SR 0b1;

iWrite WI1.reg8.SR 0bx10001110110111101100101100011010;

iWrite WI6.reg8.SR 0bx1110100001101001111011000011111;

10 iWrite SIBpost2.SR 0b1;

iWrite SIBpost3.SR 0b1;

iWrite Void1.SR 0b1;

iWrite WI5.reg8.SR 0bx11011111111100001000011100011110;

iWrite SIB7.SR 0b1;

15 iWrite WI4.reg8.SR 0bx1001011101011000001100000011101;

iWrite SIB6.SR 0b1;

iWrite SIB4.SR 0b1;

iWrite SIB5.SR 0b1;

iWrite SIB3.SR 0b1;

20 iWrite SIB2.SR 0b1;

iWrite WI2.reg8.SR 0bx100011001000110011101000011011;

iWrite SIB1.SR 0b1;

iWrite WI7.reg8.SR 0bx1000011110010110010100100000;

iWrite WI3.reg8.SR 0bx10110111011001111010100100011100;

25 iWrite WI8.reg8.SR 0bx10011100101111011101010000100001;

iWrite SCB1.SR 0b1;

iWrite SCB2.SR 0b1;

iWrite SCB3.SR 0b1;

iApply;

30 ...

4.1. PDL TO C FRAMEWORK COMPILER 55

4.1.3 Data Types

The scan operations within PDL intend to get bits in the right place. These bits are
handled as numbers and are expressed with decimal, hexacdecimal or binary nota-
tion. As PDL is created to be executed by a Tcl interpreter it is reasonable to assume
that their data types are similar. The IJTAG standard defines all PDL numbers as
’unsigned integers’ [5], expressed as decimal, binary or hexadecimal numbers. This
raises the question what the size of the integers should be. Tcl, on the other side,
stores most variables as Strings but integer computations were performed with the
C datatype long int up until Tcl version 8.5 1. This data type is 32 bits and this size
can be handled for accessing instruments. This means that iRead and iWrite can
provide a value with maximum size of 32 bits. If necessary, larger TDRs could be
split into multiple pieces to receive data. This would result in sequential entries in
the H-Array. For simplicity, this research determines that the maximum value size
for TDRs size will be 32 bits.

4.1.4 Handling PDL Code Annotations

This subsection contains a research into the language annotations provided by PDL
for the compiler. The standard does not differ between annotations and commands
but our proposed PDL will need to handle them differently. This subsection dis-
cusses the operations that do not directly affect the test network or the program flow.
The purpose of each command is evaluated and a proper solution in the framework
is discussed. This will yield a base for the drivers of the Retargeting Engine as they
will need to facilitate the behaviour of the commands.

iPDLLevel Every PDL file starts with this declaration to inform the retargeting tool
which version of PDL it is parsing. Because the original JTAG standard also defines
a set of commands which is dissimilar to the IJTAG standard. The compiler should
check the version of PDL and warn the user.

iProcsForModule This annotates the module for which the subsequent iProcs are
valid. The effective prefix of commands issued in those procedures will need to
target a instance of that specific module. Due to the work-around in namespac-
ing, only iProcs for the top-level entity should be allowed. This also implies proper
addressing when parsing the instrument paths of scan commands.

1https://www.tcl.tk/man/tcl/TclCmd/expr.htm

56 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

iPrefix This command adds to the effective prefix of the iProc. The prefix builds
a hierarchical path to target the instruments and registers in the network. When
calling a iProc the path is build with the iCall command. The iPrefix can add
to the path within the iProc and is the selected entity in the hierarchy tree is used
as base for the following scan commands. This command can be used within the
work-around as it just prepends paths to the scan commands. When converting
scan commands and resolving the instrument the latest iPrefix-path can be added
and the right instrument found. However, to be consistend with the desing of the
work-around, iPrefix will not be used and a warning will be generated.

iUseProcNameSpace This annotation defines the namespace to be used for subse-
quent iCalls in an iProc. This is necessary as iProcs may share the same name
in different namespaces. The namespace for an iProc can be defined as an option
for the iProcsForModule command. This option avoids name-conficts when us-
ing instruments from different manufacturers who are unaware of eachother’s iProc

names.

iNote This command is used to provide feedback to the user of the system. It dis-
plays a String. This command is not suitable in an embedded setting for dependabil-
ity management and will be skipped by the compiler. Off-course, in later revisions it
may be coupled with a printf command that can have its own defined output steam.

iClock This command defines a system clock that exists somewhere in the net-
work as a port. The clock needs to be in the ICL specification. This system clock
needs to be based on an available clock, such as a TAP’s regular clock signal. As
the parsing of ICL remains future work, this commands will be skipped by the com-
piler.

iClockOverride This command is used to override characteristics of a system
clock. The clock must be defined with the iClock command. This PDL function
enables the user to change the clock’s multiplier or divider compared to the source
clock, or the source clock itself can be replaced by a different clock port. Again, it
can be skipped to reach some state of a working compiler.

iMerge Merging of iCalls is possible with this command, effectively flattening the
program. Sections are marked by this command with a begin and end argument. In

4.1. PDL TO C FRAMEWORK COMPILER 57

essence, the application of scan commands is delayed and a larger iApply group
is formed. The standard allows for iMerge to be ignored, thus executing the iCalls
subsequently. As this behaviour implemented by default in the compiler, the com-
mand will be ignored; possibly still generating a warning.

iTake Takes control of a network instrument, i.e. a target of a scan command.
After taking control, one iWrite can be issued and applied before the instrument is
unavailable. Storing the ownership of a resource can be done in the H-Array or the
hierarchy tree structure.

iRelease Releases a network instrument that is taken by iTake.

iState The retargeting tool can use this statement to document the current state
of the test network. The tool may output a list of iState commands in a textfile which
can then be read by another tool. After reading the complete list, this second tool
should have a complete overview of the configuration of the network. It is safe to
assume that the compiler will not encounter such a command in PDL programs.

4.1.5 Converting PDL Commands

This part of the thesis describes the commands in PDL that operate directly on the
network and are of most interest to the correct functioning of the framework and the
Retargeting Engine.

iProc Almost all PDL commands exist within the definition of an iProc with the
iPDLLevel and iProcsForModule being the only exceptions. An iProc is defined for
an ICL module with the iProcsForModule command. However, the PDL grammar
does not require this definition for any iProc. An iProc is a wrapper for multiple
PDL commands and acts as a ’method’ for instances of a module. These proce-
dures can be executed by calling them with the iCall command. An iProc has a
unique name within its namespace which can be defined with the iProcsForModule

command. The method may feature parameters, which could have default values.
The command structures PDL into methods available to the programmer to control
the instrument network.

An entry point for the PDL program is not defined by the IJTAG standard and is
left for the implementer of the retargeting tool. The entry point of the dependability

58 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

application will naturally be the main method. An entry point in the PDL is not re-
quired for this project as the framework will be compiled as a static library. It will be
called upon by the dependability application, and the programmer decides where to
start in the framework.

The structure of PDL programs provided by the iProcs will be copied to the
framework. This makes the usage of the framework more natural for the end user,
he or she can decide what framework method to call from the dependability applica-
tion. This means a structured approach is needed to convert a iProc to a C function.
This is pretty straight forward as Fig. 3.6 in Chapter 3 has shown. There are a few
hurdles that need crossing; the first is that iProcs can be called on a module in-
stance or the top level instance, the second is that an iProc may feature default
values for its parameters.

This project uses a work-around for the first issue. All iProc will be defined for
the top-level module. The second issue is solved by automatically filling the param-
eters in the C framework if they are omitted in the PDL. The compiler stores the
iProc name and its parameter names and default values. These are then available
to complete the iCall and for the function prototype in the framework header file.
The iProc will become a C function with a void return type and as much int-typed
parameters as it originally had.

iCall The relation between iCall and iProc is a familiar paradigm for any pro-
grammer. iCalls are used to invoke execution of a iProc. If the procedure is de-
fined for a specific module, the iCall must provide a path to an instance of that
module. In this case, no path is needed due to the namespacing-workaround.

The iProc could have parameters that need to be supplied when it is called.
These parameters could have default values that are automatically supplied when
not provided by the call. The iCall will be converted into a regular C function call.
The compiler will provide missing default values where possible or will report an
error otherwise. Figure 3.6 illustrates the conversion of iCall and iProc better.

iRead This command takes two parameters, an instrument and an expected value.
The latter is used to compare with the result of the read operation. The number
of miscompares is stored by the retargeting tool and can be accessed from PDL
level-1. This is also the case for the read value. The iRead is stored within the iAp-

ply-group and executed when an iApply operation is encountered.

4.1. PDL TO C FRAMEWORK COMPILER 59

iWrite This command, like iRead also takes two parameters, an instrument and
a value that needs to be written to the instrument. The value is, like all numbers in
PDL, a unsigned integer. The last written value also needs to be stored. An iWrite

is added to the iApply-group and issues when the operations are applied to the
network.

iApply All operation that have accumulated are applied when an iApply is en-
countered. Commands between iApplys form a group. The order of executing the
iApply-group is not predetermined and left for the retargeting tool. When multiple
write commands are issued for an instrument the last one will be applied.

iReset The IJTAG client interface has an asynchronous reset port and this com-
mand uses that port. This resets the network, which also means its configuration
changes. The retargeting engine needs to cope with that change.

iScan The iScan operation can be used to shift data in and out of a black box
instrument in the network. Its parameters are the scan interface and the length; op-
tionally the in- and output vector can be defined in the command. iScans are also
part of the iApply group. The problem with the iScan is that it defines the length of
the access vector instead of relying on the TDR entry in the H-Array. iWrite and
iRead target a register or port in the network while the iScan targets a Scan Inter-
face, as seen in Table 2.1. There is no support for this in the H-Array.

iOverrideScanInterface This command can be used on scan interfaces which
support modification of the update and capture behaviour. The module’s ICL speci-
fication can define signals that can gate the control signals into the module. This is
definitely out of the scope of the current PDL compiler.

iRunLoop This commands issues a certain number of clock cycles to the network
without scanning data in or out. This can be used to wait on an instrument that
needs to configure itself. iRunLoop uses the TAP’s regular clock signal as reference
by default but can also use a previously defined system clock. Support for this
function in the hardware is not implemented, it can be added later but it is not a goal
of this research. It is therefore also not present in the drivers.

60 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

4.2 Compiler Implementation

The compiler is based on the Antlr4 project as discussed in Chapter 3. Antlr4 gen-
erates a parser for an the input file according to a grammar file [22], [73]. The
input is converted into a ParseTree which can be ’walked’ to operate on the data.
A regular TreeWalker as defined by Antlr4 will walk the tree in a certain order; first
the child-nodes and then the node itself. Listeners that observe the TreeWalker will
have user-defined enter and exit methods. These are called when a certain node
is encountered. A visitor class can also walk the ParseTree but the user will have
control over the order in which the children and node are visited. The visitor can
also define the type that is returned visiting the children In general, they offer more
control to the user.

It is also possible to override the basic TreeNode class with a user defined class.
The TreeNode contains context for the current node. Overriding enables easy ac-
cess to important user-defined objects such as the H-Array table and the iProc table.
The class that is used to construct the Tree is called PDLParseRuleContext and it
features access to the template engine, the H-Array and the encountered iProcs. A
Class Diagram is shown in Fig. 4.4.

The compiler consist of a main class that reads from a file and instantiates the
ParseTree along with a listener and a visitor, as can be seen in Fig. 4.3. The listener
is implemented to perform semantic checks on the input. The visitor class extends
the necessary methods in the base visitor class to generate the output of the com-
piler. They access the stored information, or context, in the PDLParseRuleContext
tree node. To illustrate: the responsibilities of checkers are handling the annota-
tions in Subsection 4.1.4 and the semantics of the commands, while the generator
is responsible for the operations described in Subsection 4.1.5, although there is no
strict border.

4.2.1 Checking the Input

Checkers are systems that can be employed to enforce the semantics of PDL. The
setup is designed to walk the tree with a standard TreeWalker object which is ob-
served by different Listener objects. A Checker is such a listener and its methods
are called when a certain node is entered or exited [73]. Multiple listeners can be
added in the same pass so each checker can have its own responsibility.

The compiler currently features one ’checker’ instance to manage the declaration

4.2. COMPILER IMPLEMENTATION 61

and calling of iProcs. Next to checking, the system also provides the generator with
necessary information such as the amount of parameters and default values of the
procedure. This is stored in the IProcTable which keeps a list of IProcEntry objects.
The table in turn is stored statically in the context tree nodes (PDLParseRuleCon-
text). When an iCall is encountered, the checker makes sure that the target pro-
cedure exists, and adds any necessary default arguments to the call. The checker
warns the user when a procedure is unknown or when the call is erroneous, i.e.
wrong amount of arguments.

4.2.2 Generating the Output

The generator is responsible for generating the framework code based on the input
program. After the ParseTree is walked and decorated by the checkers, the gen-
erator takes this annotated tree and uses the information stored in it to create the
output [73]. The generator is an extension of the PDLVisitor class. A visitor is used
to override the order in which the tree is traversed. The use of a visitor has as
downside that all code must be in the same class. This may lead to a single object
responsible for all the operations of the generator, but for now the code quality re-
mains manageable.

The class consist of several visit-methods as can be seen in Fig. 4.3 which
override methods in the base-class. For every ParseRule in the PDL grammar a
visit<Rule Name> method is automatically generated by Antlr4 in the Visitor base-
class. The grammar has been altered to extract important information from the input
stream among which the function names for example. This information is stored in
the ParseTree context nodes along with the information provided by the checkers.
Visit-functions gather this data and load a code-template with the template engine.
The template is then filled in and returned at the end of the function. Visit-functions
can visit the children of the node and in doing so receive the returned data of their
visit-function. In this manner, the Pdl source root node will receive the templates
from its Iproc def children, which in turn gets the rendered code from visiting any
PDL command. This could be an Iwrite def, which needs to parse the arguments
that are given to it. It does so by visiting its children which are an instrument path
and a PDL number. The instrument is searched in the H-Array based on the full path
text (remember the namespacing workaround) and the PDL number is parsed and
stored as an integer. This are then stored in the tree node, read by the Iwrite def,
put into a template and returned.

62 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

Figure 4.3: Antlr4 generated classes (in the blue arced box) are extended by a
checker and generator classes.

Figure 4.4: PDLParserRuleContext contains the instrument and procedure symbol
tables and is the base class for all tree nodes.

4.3. DRIVERS 63

4.2.3 Template Engine

The code generator class accesses the template engine via the PDLParseRuleCon-
text tree nodes. Using a template engine for any code generation is a good idea to
preserve syntax and layout of the output target. A template consists of a standard
piece of code with place-holders that need to be ’filled’ by the engine. This process
is called rendering a template. A header and code template in C is made for every
PDL command in the compiler. The generated code is returned through the tree and
rendered in the Pdl source root node to the output files.

4.2.4 Validation of the Compiler

As stated, this research uses the grammar that is part of the IJTAG standard [5].
This grammar is correct since it is part of the standard. Before proceeding, that
assumption was validated by generating a parser with Antlr and feeding this some
PDL files from the Bastion benchmark set [23], [27]. The generated syntax tree was
analysed by hand for correctness.

The development and addition of listeners to the parser was also checked. The
same benchmark PDL file was used for this purpose. The listeners store relevant
information for the compiler in the context class. The listeners also determine if an
instrument exists in the H-Array. This process was also checked by hand for the
benchmark file. Errors that are detected by the listeners where also checked by re-
moving instruments from the H-Array and removing iProcs from the file.

Using the template engine simplifies the validation of the output; every template
can be individually tested. The templates were validated checking them syntactically
with stubs as render context. These renders where checked by hand and compiled.
The templates are connected to the generator class. The whole code generation
process is then executed to see if the PDL was correctly translated to the frame-
work. This framework includes the original PDL as comment for easy reference and
manual testing. The framework is compiled and applied on the DM with success.

4.3 Drivers

The driver software form a Hardware Abstraction Layer between the DM and the
generated software framework. This layer allows for reuse of both the hardware
and software. It is a collection of software that is used by the dependability appli-
cation and the framework to gain access to the retargeting engine and the interrupt

64 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

manager. The DM itself also has some drivers to operate the LEDs, discussed in
subsection 5.5.6, from the application. Normally drivers exist between an operating
system and hardware. They form a HAL between the machine and the OS. They
would be compliant with the operating system and specific for the device. They reg-
ister the device but also allow communication between the OS and the device. In
this project the dependability application runs bare-metal on the DM and no operat-
ing system is used. The HAL and drivers are added to increase maintainability and
reusability.

4.3.1 Operating the Retargeting Engine

The retargeting engine features four registers and a large addressable memory mod-
ule. The memory contains the H-Array, Access Request Stack, the Returned Val-
ues and also the read extraction request stack, the latter being unimportant to the
dependability application. The registers consist of a Control register and a Status
register. The other registers are used to store the length of the H-Array and their
functionality can be expanded if needed.

The Control and Status registers are used to communicate with the Retargeting
Engine. The Status register is read only and has specific bit-fields mapped to a
certain status of the retargeting engine. If the engine is busy with communicating to
the network then a field reads a ’1’, if it is done, that field reads a zero. The Control
register works in the same way but is only writeable. If a ’1’ is written to a certain
field it will start the retargeting process.

The memory stores information necessary for retargeting such as the H-Array
and the access request stack. The whole memory is addressable as this eases
implementation. Before retargeting can happen the H-Array needs to be initialized.
The driver library has functions that automatically encodes an entry based on given
parameters. The instrument ids are available in the header file of the PDL frame-
work as preprocessor definitions and can be used to encode the H-Array which is
accessible as an array pointed to the right memory address.

The driver program has methods for issuing iWrites and iReads to the retar-
geting engine. They access the base of any Access Request stack and modify the
pointer of that stack. They also automatically switch to the next stack to store the
next Access Request.

After the iRead is applied to the network, the read values are also stored in the

4.3. DRIVERS 65

memory. PDL level-0 has no specific way to give access to those values so a simple
system is designed. The read values from the network are stored in an array with
the same size as the H-Array. The id of the instrument in the H-Array determines the
position of the value. The dependability application can read from the instrument by
reading from its position in the read values array.

4.3.2 Operating the Interrupt Manager

The interrupt manager is also connected to the system bus and uses the same mem-
ory mapped IO strategy to communicate. Driver software is made to easily configure
and operate the interrupt manager.

The interrupt manager features two accessible registers along with the interrupt
vector table (IVT). The registers comprise of a Active and Busy register although
the Busy register will not be very interesting from a software point of view. When
an interrupt is being serviced, the Busy register will feature a one on the ESIB L’s
position, based on its id in the IM H-Array. If one function handles multiple interrupt
sources, it may identify the instrument through this.

The active register handles which interrupt vectors are valid and primed for exe-
cution. An interrupt service routine is attached to an instrument but may be deacti-
vated for example when the normal program enters a critical point in the code. The
driver contain a function to activate/deactivate a single IVT entry or all of them at
once. An attached ISR must be activated before it can operate.

To register a function for a certain interrupt source, the driver has a function
called attachInterrupt. It takes the ESIB L-id in the IM H-Array and a handle of
a user defined function. The handle is stored in the Interrupt Vector Table in the
Interrupt Manager based on the entry pointed to in the IM H-Array. It is the user’s
responsibility to make sure that the interrupt function end with a uret command, dis-
played in Fig 3.3. This instruction notifies the hardware to return from the interrupt
elevation, restore the program counter and registers and resume normal operation.
The interrupt function may not feature parameters or a return type other than void

as well.

The design of the registers of the interrupt manager is lacking in scalability. For
example, the hierarchy array employed in the interrupt manager is not yet config-
urable in software, while it stores the connection between interrupt sources in the
network and their corresponding IVT entry. The amount of interrupt sources will

66 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

probably be substantially larger than the 32-bit active/busy registers so their flag-
ging strategy will not work. Resolving the IVT entry in hardware is easy due to the
fact that the IM H-Array stores the pointer to the IVT.

4.3.3 Operating the Dependability Manager

The remainder of the Dependability Manager is managed by a set of supporting
software. A library is made that contains a small self-test of the processor going
through all the instructions of RISC-V. The supporting software also contain meth-
ods to drive the states of output LEDs, discussed in subsection 5.5.6. They are
not useful for dependability management but very helpful to provide output during
testing. The dependability manager library also offers a method to a success state
and a failure state. These can be used to stop the program when the self-test fails.
They both show a distinctive pattern on the LEDs to show the programmer what hap-
pened. To aid the creation of the H-Array in the retargeting engine some functions
are made to encode entries. The driver for the DM is a collection of handy functions
aiding the programmer.

4.4 Toolchain

The steps to compile a dependability application are shown in Fig. 4.5. The H-Array
and PDL files are entered into the framework compiler which results into a collection
of methods available to the dependability application. The application contains the
entry point for the program and needs to include the header of the generated frame-
work. The framework in turn includes the drivers and they are cross compiled and
linked together. The object file created from the dependability application can then
be converted to a hexadecimal format for loading into the simulation and synthesis
tool. The RISC-V compiler is available online [60] and this project includes a simple
script for automatically executing the steps.

4.5 Discussion

The design, implementation and verification of the PDL2C compiler has been dis-
cussed in the relevant subsection. Automatic testing of the Antlr created parser is
difficult as it can only parse programs according to the specification. Antlr4 provides
a manual testing tool [73]. Errors in parsing are hard to simulate and check. Unit
testing of the compiler is not possible as creating token streams or ParseTrees is a

4.5. DISCUSSION 67

Figure 4.5: Compilation of a dependability application with drivers.

cumbersome and task without much to gain. Manually checking the input versus the
output is not ideal or gives any guarantees but it suffices for this research.

The remainder of the chapter focusses on the driver implementation which are
in itself quite simple. They need to write a certain bit to a certain address to operate
the devices on the system bus, see section5.1.2. When the whole processor is sim-
ulated it can be checked to see if the addresses are correct and the driver behaves
as it should.

A discussion must be held whether the compiler is now complete, good enough
or lacking in features. The research set out to automatically create a library from
a PDL file and it must be determined whether it was successful. This research
has omitted the incorporation of PDL level-1 commands and the support for Tcl.
The reasons for this are that the PDL level-1 commands are not suitable within an
embedded context as most deliver some kind of text information to the retargeting
tool. This information can be used along with the Tcl language to control the program
flow. The most applicable command of the language subset is iGetReadData which
extracts the last read or written value of to an instrument. Tcl incorporation has been
done but at the cost of supporting original version of PDL [1].

It is unwise to start drawing lines of what is supported and what not per command
as this would create confusion. It is better to state that this research supports PDL
level-0 commands which is concise and clear as specification. This step also elimi-
nates Tcl support. The need for program flow control and such elements is already
handled by the C programming language. This will create problems for developers

68 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

using PDL level-1 files. It should be addressed in future research by combining this
work (creating a C framework) and Zakiy’s work [1] (supporting Tcl) without breaking
the syntax requirements from the IJTAG standard.

Table 4.1: Realisation of PDL features in the compiler
Subject Function
Grammar Parse and compile PDL level-0 F

Parse and compile PDL level-1 and Tcl -
Parse H-Array and map instrument indexes F

Parse H-Array metadata to automatically generate initialisation code -
Parse and merge multiple files -

Namespacing Root-level namespacing of all instruments F

Dynamic namespacing based on Hierarchy Tree -
Checking Check that instrument exists in H-Array. F

Check that iProc is defined. F

Check parameters of iProc at iCall F

Check that iProcsForModule matches entity -
iProc Conversion to framework function F

Save iProc namespace -
Mapping to relevant modules in Hierarchy Tree -

iCall Calling the iProc framework function F

Parsing and passing the parameters F

Substitute default parameters of the iProc F

Apply the iUseProcNameSpace to calls -
iWrite Implemented in driver F

Call from framework to driver F

Identifying relevant H-Array instrument F

Parsing and passing the value as integer F

iRead Implemented in driver F

Call from framework to driver F

Identifying relevant H-Array instrument F

Parsing and passing the value as integer F

iScan Implemented in driver -
Call from framework to driver -

iApply Implemented in driver F

Call from framework to driver F

iRunLoop Not implemented in driver / RE -
Call from framework to driver F

Function stub added in driver F

iReset Call from framework to driver -
Function implemented in driver F

Implemented in Retargeting Engine F

To answer whether the compiler is done, its goal is discussed per feature. Ta-
ble 4.1 shows the features of the compiler that it could have and which are now
realised. It shows features that are explored in this research, that should be ex-
plored in the future research and the elements that are starred are featured in the
compiler. Some elements are not ready to be implemented as the H-Array spec-
ification falls behind and leaves out important information about the network. The
Hierarchy Tree that shows which entities exist within other entities is among that

4.5. DISCUSSION 69

necessary information. Some elements of PDL can be easily ignored as they do not
affect the Retargeting Engine currently.

Table 4.1 does not discuss the fate of the PDL commands that are not yet sup-
ported or are ignored by the compiler. iClock and iClockOverride are ignored as
there is no base in the H-Array for these operations. The compiler is unaware of
any clocks in the network other than the TAP clock. The iNote is ignored as there is
no output on the DM which can support a String representation. iMerge, iTake and
iRelease are removed in the same breath as the Hierarchy Tree is not available to
store the state of the instrument, no other threads are on the DM to access them and
the standard allows the merge of iCalls to be ignored. Lastly, the iState command
allows the sharing of the network state among different retargeting tools which will
not be the case for the DM.

The toolchain in Fig 4.5 shows the steps from PDL file to the executable. The DM
specific drivers can be replaced by drivers for any other target and the PDL library
would be still as useful. In future work the conversion from ICL to the necessary
data types will need to be handled. The generation of the H-Array [26] from a graph
representation misses relevant data such as segment length, although this should
not be hard to add. Parsing ICL to produce the selection dependency graph may be
a nice challenge for a group of graduate students. The hierarchy tree must also be
generated so dynamic namespacing can be supported.

70 CHAPTER 4. SOFTWARE: BUILDING THE TOOLCHAIN

Chapter 5

Hardware: Creating the
Dependability Manager

This chapter will discuss the realisation of the Dependability Manager. The de-
sign will consist of a simple processor for the RISC-V RV32I instruction set. Some
instructions that are barely used or are difficult to realise will be omitted (ebreak,
ecall, csrread). An instruction from the RISC-V N-extension is borrowed to sup-
port interrupts [42].

The processor features a controller and datapath structure with data registers
and an Arithmetic Logic Unit (ALU) which are configured by a controlling instance.
It is designed as a classic Von Neumann architecture where instructions and data
exist in the same memory space. The Load/Store Unit, instructed by the controller,
is responsible for loading data into the registers from the memory and vice versa.
Therefore it is also the System Bus master and enables communication with the
devices on the bus. The System Bus is extendible and this allows for easy adoption
of multiple devices. The default configuration of the DM sports a retargeting engine
and a interrupt manager. For testing purposes a LED driver instance is added to
provide easy feedback to the developer.

5.1 Processor

The processor consists of a ’datapath’ that houses the Registers, ALU and the Load-
/Store Unit. The Registers and ALU perform al computations while the LSU is re-
sponsible for fetching and storing the data between memory and registers. Any de-
vice can be connected to the LSU with the system bus. The system bus is designed
to use the Wishbone protocol [77]. The device will need to be assigned an address
space and need to operate with the protocol. The LSU only supports Wishbone’s

71

72 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

Figure 5.1: Detailed system block diagram.

Single Read and Single Write operations, which suffice in the context of this simple
processor. A block diagram of all the systems components can be viewed in Fig. 5.1.

The processor starts executing any program at the start address stored in hard-
ware. This start-address is configured in the compiler’s linker-script and this file has
been amended to begin at 0x0074. The program is stored in the dependability man-
ager’s main memory, which also serves as its random access memory. Although, if
realised within a SoC, it will need to become non-volatile for program storage.

5.1.1 Controller

The controller initiates all the actions of the devices within the processor. The ALU
is instructed what operation to perform and when, the LSU is requested to load
and store data and the registers are signalled to store results or provide their con-
tents. The controller takes the instruction that needs to be executed and decodes it
to execute the program one step at the time. It is kept simplistic to lessen the im-
plementation time, meaning no out-of-order execution or pipelining of instructions.
The controller moves through the states described below to start and finish every
instruction correctly. The PC is calculated with the ALU, which definitely slows the
processor down. Accessing the instruction memory with the system bus is also a
limitation to the design as it takes several cycles to retrieve a word from memory.
Improvements to the architecture will be discussed at the end of this chapter. The

5.1. PROCESSOR 73

cycles per instructions are discussed in section 6.3.

Fetch - Issue the retrieval of the next instruction.
Wait On Fetch - Wait on LSU to provide next codeword and signal ready.
Decode - Decode the instruction and configure the datapath.
Execute - Result of the ALU is available and needs to be stored.
Write - Result stored, prepare the update of the PC and manage branching.
UpdatePC - Calculate the PC and signal that it can be stored.
StorePC - Store the PC and go to the Fetch state.

The controller is responsible for decoding the instruction that it receives after the
fetch-state. The fetch of the next instruction is initiated by the controller and the
LSU signals when it is available on the instruction bus. The RISC-V instructions
supported by the processors can be seen in Fig 5.2. The instructions are listed in
distinct columns which will be discussed below. They will be familiar to the reader
due to the design of the ISA itself, it features the common operations among many
noteworthy architectures.

The processor has 32 general purpose registers with the register at address
zero tied to ’0’, which is quite common in processor design. These registers are
accessible to the ALU which operates on two inputs to produce a 32-bit output. The
operations it supports are in the leftmost two columns of Fig 5.2, namely ’Register’
and ’Immediate’. The register operations encode two input and one output opera-
tion. The immediate operations replaces the second input register with an immediate
value. For this, the second input of the ALU is multiplexed with the immediate bus
coming from the controller. This bus is also used by other instructions, most notably
LUI and AUIPC.

Unlike textbook instruction sets (such as MIPS I), RISC-V’s memory operations
combine a base address register and an immediate offset to specify a memory lo-
cation. The ISA also allows for direct manipulation of the Program Counter (PC)
through AUIPC. This needed to be accommodated in the design, the PC is added
to the registers to be directly accessible by the ALU. This was done instead of a
separate PC unit, in this way the datapath remains uniform. The LSU and registers
are also directly interfaced with the registers having 4 output buses (base address,
store-value, a-bus and b-bus) and two input buses (load-value and c-bus). The load
and store operations are byte-addressed and specify the word length. It also dis-
tinguishes between loading unsigned and signed bytes or half-words. The LSU is
responsible for sign-extending the values when dictated by the memory operation.

74 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

Since loading and store does not use the ALU, it is used freely to update the PC
while the processor waits for the memory operation to finish.

Among the control flow operations in the base instruction set are conditional
branches and jump statements. The branch operations load two register values into
the ALU to compare (signed or unsigned) and the resulting ALU status notifies the
controller to jump or not. The regular jump-and-link instructions always updates the
PC to the specified address and stores the next PC value in a register. The JALR
operation does the same but computes the jump address based on a base register
and an immediate value.

Two other operations introduce immediate values into the datapath. Load Upper
Immediate (LUI) uses the similarly named bus from the controller to store a value in
a register via the ALU. The Add Unsigned Integer and PC AUIPC instruction can be
used to create relative addresses based on the Program Counter, it adds an imme-
diate value to the PC and stores it in a register.

The arced column ’System’ is not (yet) implemented in the controller. The rea-
soning behind this is that the Control and Status Register (CSRxxx) instructions are
needed to address the processors internal registers, which the base RV32I set only
has 3 of, and the RV32e does not require. Note that the latter is not yet supported by
gcc and is designed to be used in embedded systems. The Fence (FENCE) instruc-
tions make sure memory operations are performed in order, while our processor
will always execute them in order. The External Call (ECALL) and External Break
(EBREAK) instructions are not clearly specified as they operate with an, as of yet,
unknown Application Binary Interface1. This interface allows two binary programs
to call to each other. This can be used to call operations in the operating systems
(such as starting threads, getting the system time or requesting memory space). The
RISC-V specification does not elaborate on this subject [42]. Only when a program
ends (main function returns) an ECALL is produced and this halts our implementation
of the processor.

The last instruction to discus, which is also arced, comes from the RV32n exten-
sion and is the User Interrupt Return URET instruction. This is used to signal that
the controller must return from an user-level interrupt function. It restores the stack
pointer and frame pointer from before the interrupt. A stack pointer is a common
feature used in memory addressing. The stack pointer may change within a function
as more variables need to be stored. The frame pointer helps as it remains stable

1https://en.wikipedia.org/wiki/Application binary interface

5.1. PROCESSOR 75

Interrupt

SystemControlMemoryImmediateRegister

ADDI

SLTI

ANDI

ORI

XORI

SLLI

SRLI

SRAI

LUI

AUIPC

SLTIU

ADD

SLT

SLTU

AND

OR

XOR

SLL

SRL

SUB

SRA

JAL

JALR

BEQ

BNE

BLT

BLTU

BGE

BGEU

LOAD

STORE

FENCE

FENCE.I

CSRRW

CSRRS

CSRRC

CSRRWI

CSRRSI

CSRRCI

ECALL

EBREAK

URET

Figure 5.2: The RISC-V RV32I set and the RISC-V N extension for interrupts.

in the function. This makes addressing in assembly easier, it is just as important
as the stack pointer. Returning from an interrupt also restores the program counter
from the shadow registers and lets the normal program flow from the point where
the interrupt occurred. It is imperative that an ISR function returns with the URET

statement shown in Fig 3.3 for the program to behave correctly.

5.1.2 System Bus

The system bus is implemented to allow simple memory access, no burst mode or
caching of data. The Wishbone protocol specifies Single Read and Single Write
operations, the signal timing diagrams for these are shown in Fig. 5.3. It is basically
a hand-shake protocol where a client device needs to acknowledge the write or read
operation. Devices are daisy-chained along the bus and they operate a ’relay or talk’
protocol based on the current address on the bus. If it is within their address space
they will need to answer to the master, otherwise they will relay the information along
the line. The master has complete control of the system bus signals but receives re-
quests from the controller to operate on the bus.

The processor architecture combines all the system components implemented
in VHDL. The memory, the LED driver, the retargeting engine and the interrupt man-
ager are instantiated and linked together. The address space of each component
is given at their instantiation. For example, the memory slave device is instantiated
and connected at the ’upstream’ side to the signals coming from the master. The
device also has a ’downstream’ bus that connects to the next device (LED driver).
The address space of the system bus devices is shown in Table 5.1.

76 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

(a) Read (b) Write

Figure 5.3: Single Cycle Read and Write operations according to the Wishbone B4
specification [77].

Table 5.1: Address space within the DM.
System Bus Device Start End
Main Memory 0x0000 0000 0x0001 0000

LED driver 0x000A 0000 0x000A 0004

Retargeting Engine 0x000B 0000 0x000B 2000

Interrupt Manager 0x000C 0000 0x000C 0100

The main memory slave entity houses the main memory which is filled with pro-
gram data for simulation and FPGA emulation. The memory uses a generated
volatile SD-RAM IP from Altera to employ the dedicated memory cells in the used
FPGA (Cyclone IV). This yields a large program space for simulation and emulation,
the same IP is also employed for storage within the Retargeting Engine only smaller.
The DM is configured with 32KB of storage space for programs, comparable to the
flash memory of an Arduino Uno. However, this space is also used as Random
Access Memory (RAM). This memory system will need to be replaced when the
dependability manager is realised in silicon as part of a SoC.

5.2 Retargeting Engine

The retargeting engine is responsible for the configuration of the IJTAG test net-
work. The RE’s ’execution model’ [2], [16], its method of operation, is implemented
in VHDL. Previous work by Zakiy featured a shell to incorporate the retargeting en-
gine and devised a method to communicate with and control it [1]. This research’s
implementation has been added within this shell to validate Zakiy’s work. How-
ever, due to reasons described in Chapter 3, Zakiy’s DM implementation has been
dropped. The retargeting engine was added as a system bus device to the pro-
cessor. Implementation of the retargeting engine is focussed on the realisation on

5.2. RETARGETING ENGINE 77

Retargeting Engine Memory

IJTAG SO

IJTAG SI

AR Indices

Shift Buffer Length

HArray Index

AR Stack Offset

HArray

AR Stacks

Read Values

Read Requests

Retargeting
Process

Shift Process

System Bus
ProcessAddress

Data In

Data Out

Cycle

Ack

Write Enable

System Bus In

RE Status

RE Control

Current AR Stack

Shift Out Buffer

Shift In Buffer

Address

Data In

Data Out

Cycle

Ack

Write Enable

System Bus Out
Relay or Talk

Mux

Word Length

Word Length

State Vector

Figure 5.4: Detailed block diagram of the Retargeting Engine.

an Altera FPGA. It’s design is modular, see Fig5.4, to allow replacement of certain
components. This will ease the work for realisation on another FPGA or in Silicon.
This section will describe the construction of the retargeting engine IP.

A block diagram of the RE IP is shown in Fig. 5.4. It shows the registers, the
memory and the shift buffers. The processes in the architecture are communica-
tion according to the system bus protocol, the retargeting process that traverses the
H-Array and generates the access vector (AV), and the shift process that shifts the
access vector into the test network.

The System Bus communication process is used to respond to the master when
requested to. MMIO allows a program to write a value directly to a register or mem-
ory cell within the retargeting engine. The control and status registers are used by
the retargeting engine driver software to initiate retargeting and communication with
the network. The retargeting engine memory entity is also mapped and is used to
store access requests and to load read values from the network. It is a generated
Altera SD-RAM IP similar to the main memory, it has an extra access port compared
to main memory to allow simultaneous communication for the System Bus process
and the Retargeting process. Using this memory IP takes advantage of the features
of the FPGA. However, it will need to be replaced by a different memory system
when the DM is realised. A map of the memory and its usage is shown in Fig.B.1 in

78 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

HArray Type Pointer Length

TDR 0xXX TDR Length

SCB 0xXX State Vector Pointer

SIB / I0 / I1 SCB Pointer Segment Length

31 24 23 16 15 0
HArray Entry

Segment Control Bit

Test Data Register

Segment Header

Figure 5.5: Encoding of H-Array entries.

Appendix B.

The Retargeting process uses the H-Array stored in the memory of the RE. Note
that this is a different memory device than the previously described main memory.
The H-Array contains references to all the test network structures and test data reg-
isters. An encoding is made for the entries in the H-Array. The most significant byte
in a H-Array entry is reserved for the entry type, either SIB, I0, I1, SCB or TDR. It
is trivial that these types can be encoded with 3 bits, so using 8 is a waste. This
encoding has a practical nature to allow simple debugging in simulation and driver
creation. An argument can be made that an I1 and SIB operate similarly (a SIB is a
ScanMux with an null-segment) and that an encoding of 2 bits should suffice. The
encoding of the entries is shown in Fig. 5.5. The segment header entries (SIB, I0, I1)
store a pointer to the segment control bit entry and the length of the segment. The
SCB stores a pointer to the State Vector, a register that stores the last written value
of a SIB or SCB. This is the network’s state. A TDR stores its length, necessary to
correctly generate the access vector.

The next piece of crucial information for retargeting is the Access Request Stack
(AR-Stack). This structure contains the original Access Request at the base of the
stack, position zero. The stacks can be observed in Fig B.1 in Appendix B in the
memory of the retargeting engine. The size and amount of stacks is adjustable with
parameters which is why not the full amount of memory is used by the retargeting
engine. When a segment header in the H-Array is encountered the state of the
segment is retrieved from the State Vector. The State Vector is implemented as a
register with the same length as the maximum H-Array size. Then it is determined
if there is an Access Request at the top of any stack that needs to access this seg-
ment. This can be determined easily for every Access Request by checking if the
instrument ID of the request is between the current H-Array index and the end of the
segment. If so, a request is added to the top of the stack with the relevant SCB as
its target.

5.2. RETARGETING ENGINE 79

0 0 0 0 -10AR Indexes Remaining AR Indexes, pointing to top of AR Stack or -1 if empty
310 5 6

(a) Stack pointers at start of iApply

0 3 2 -1 1 0 -11 ... -1 -1 -1 -1 -1AR Indexes
Corresponding Stack 0 7 27 31

0 4 2 -1 1 0 -11 ... -1 -1 -1 -1 -1AR Indexes

0 4 2 -1 0 0 -11 ... -1 -1 -1 -1 -1AR Indexes

Access Request added to stack

Access Request satisfied and removed from stack

-1 4 2 -1 0 0 -11 ... -1 -1 -1 -1 -1AR Indexes

Access Request satisfied and stack finished

(b) Operations on stack pointers

-1 -1 -1 -1 -1 -1 -1-1 ... -1 -1 -1 -1 -1AR Indexes
Corresponding Stack 0 7 27 31

(c) Retargeting done as stacks are empty.

Figure 5.6: Stack Pointers used to keep track of Access Request Stacks.

If an SCB or TDR is encountered during the traversal of the H-Array it means
that it is in the active scan path. Again, all the tops of the stacks are checked to see
if they contain that instrument, i.e. the current H-Array index. If so, the value in the
access request is shifted into the shift buffer in case of a write, and otherwise a read
request is added to the memory to later extract data from the incoming bit stream.

Stack pointers keep track of the Access Request stacks. These are vital when
passing through all the tops of the stacks. A ’-1’ shows that a stack is empty, oth-
erwise the pointer points to the top of the respective stack. Fig. 5.6 showcases the
operations on the stack pointers to influence the actual Access Request stacks. The
retargeting process repeats itself until all stack pointers are showing ’-1’. A stack
pointer is an integer ranging from -1 to max stack size, which default is configured
as 7. This configuration requires 4 bits per stack.

The state vector is accessed during the traverse and generate process. The
state vector is displayed in Fig 5.7. This process creates the next access vector by
going through the H-Array which is guided going in or skipping the segment based
on their header entries. The state vector keeps track of the last written values to the
SCBs, which control a header. Those H-Array entries keep a pointer to a place in
the state vector. During the traverse and generate function new values will be shifted
to the SCBs which are stored in the New State Vector. When a CSU cycle occurs,
the New State Vector is copied to the current State Vector. Old, unchanged values

80 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

1 0 0 0 0 0 10 ... 0 0 0 0 0State Vector (SV)
State Vector Pointer in SCB 0 7 60 64

1 1 0 0 0 0 10 ... 0 0 0 0 0New State Vector

Update State Vector after Retargeting

New SCB Value determined
during Retargeting to

 open or close
corresponding segment

Old value copied
from SV if no
corresponding

Access Request exists

Figure 5.7: State Vector, the current state is updated when the new values are
shifted into the network.

are preserved. This bit-vector is then used for the next traversal of the H-Array.

To better describe the flow of the algorithm that accesses the network to read and
write data to instruments a flow chart is created in Fig. 5.8. From the Idle state the
RE receives a signal that in needs to start retargeting. The H-Array is then traversed
from the first element until the last based on the H-Array length register. It loads an
entry from the network representation from the memory and checks its type. In all
cases it will start loading the relevant tops of the stacks from memory based on the
stack pointers. In the Process AR state it may store a new one at the top of a stack
or pop one of the stack if it is performed on the network, see Fig. 5.6. If the algorithm
reaches the end of the H-Array it will signal to the shift process to start interaction
with the network. After shifting the values it will loop through any Read Requests
present in the memory. These are then extracted and the values stored at the right
memory place based on the index of the instrument in the H-Array. If the stacks are
not empty at that point, the retargeting engines starts a new iteration of the process
until all access requests are satisfied.

Fig. 5.9 shows a nice feature of the retargeting engine concerning the traverse
and generate process. The structure and ordering of the H-Array allows simplified
generation of the outgoing shift buffer. Note that in the figure, the shift out buffer
will be send to the SI TAP pin and shift in buffer is filled with data from the SO tap
pin. Since the last element of the network needs to be filled by the bit shifted into
the network at the first clock cycle, the buffer can be created by going through the
H-Array and shifting the buffer to the left. The final element of the example H-Array
will take the rightmost place in the buffer. This place is shifted at the first clock cycle
into the network if the buffer is shifted out to the right.

The read requests are a different kind of request. They are generated by the

5.2. RETARGETING ENGINE 81

Process
TDR

Process
Segment
Header

Process
SCB

Load SCB
Entry

Load AR

Process AR

Shift

Setup Shift

Finish

Extract
Read from
Shift Buffer

Number
 of Stacks x

Load AR

Number
 of Stacks x

Process AR

Load AR

Process AR

False

Save Read
Request

True

Number
 of Stacks x

Idle

Start
Retargeting

Load Next
HArray
Entry
(I++)

I < Harray
Size

Process
HArray
Entry

Entry
 Type? TDR Entry

SCB Entry

SIB,
I0 or I1 Entry

True

Finish
Retargeting

I < Reads

Finish Read

False

False

All Active
Access Requests Checked

Start Signal Recieved

True

Report Status
 Retargeting Done

Save Read
Value to
Memory

Read?

Figure 5.8: Flow Chart describing the steps taken by the retargeting engine for gen-
erating an Access Vector, Shifting it into the network and extracting the
Read Values.

82 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

SCB1

SCB2

...

Some Instrument

...

TDR 1

Example HArray

Direction of
Retargeting

(a)

SO

Last value
added
during

retargeting

LSb

LSb

Least
Significant

bit

Some InstrumentMSb

Some Instrument MSbSCB1 TDR1

First
Shifted
Value

Last
Shifted
Value

XXXX

SCB1TDR1 SISCB2

SCB2

Most
Significant

bit

XXXXShift Out Buffer

Shift In Buffer

Shift Out Buffer
Construction during Retargeting

is done by shifting

...

......

...

(b)

Figure 5.9: Traverse and Generate the Shift Out Buffer, the order in which values
arrive affect the extraction of Read Values.

retargeting engine to extract a word from the incoming bit stream. The shift in buffer
is filled with the last element of the network which arrives at the first clock cycle. By
shifting to the left every clock cycle the received data from an TDR is in reversed
order. This is solved during the handling of the read requests. The read request
stores the place where a TDR is in the incoming bit stream. The length of the TDR
is also stored in the read request. As can be seen in Fig.5.9, the order in which the
values arrive matters. The value is extracted and put in the correct order in the read
values memory space. The encoding of a read request can be seen in Fig. B.1 in
Appendix B.

This section described the implementation of the retargeting engine. Using the
memory and state machine led to a very rigid design that can access large IJTAG
networks. The retargeting engine can be configured with parameters, so testing a
different design was simple, see section 6.4.

5.3 Interrupt Manager

This section is not a research into interrupt managers but rather an elaboration of
the implementation of the IJTAG extension for interrupt enabled instruments along
with a subsystem of the DM to locate and issue interrupts for the processor. This
extension for IJTAG is designed by Ibrahim [3] and realised and tested in this work.
However, there are other methods in research to enable interrupts in IJTAG networks
which are not covered in this work.

5.3.1 Locating Interrupts

Specialized test networks are needed to locate interrupt sources to avoid polling-
based localisation. Polling would be an inefficient strategy as it would occupy net-
work resources and takes large amounts of access time depending on the network

5.3. INTERRUPT MANAGER 83

SI SO

F

ESIB_L3 ESIB_L6 ESIB_L7 ESIB_L4 ESIB_L5

ESIB1 ESIB2

ESIB0

1

1 0

0 0

1

0 0

(a)

ESIB0
ESIB2

ESIB_L7
ESIB_L6
ESIB1

ESIB_L5
ESIB_L4
ESIB_L3

ES
IB
_L
3

ES
IB
_L
5

ES
IB
_L
6

ES
IB
_L
7

1
0

1
0
0
1

1
1

1
0

1
1

1
1

0
1

1

0
1
2
3
4
5
6
7

Index

ES
IB
_L
4

1
0
1

1
0

(b)

Figure 5.10: Simple Interrupt Network along with its IM H-Array. The columns show
the scan vectors when an interrupt originates from the leaf ESIB.

topology. The work by Ibrahim designed specialized Extended SIBs and validated
a purely hierarchical tree layout of the network to provide optimal access time [3].
The design of the ESIB is explained in subsection 3.3.3, and is shown in Fig. 3.11.
In short, it is a SIB that contains one or more flag registers and has three modes
of operation; as a normal SIB, in diagnostic mode and in localisation mode. The
latter includes the flag registers and opens the underlying segment according to the
flag value. This research implemented the ESIB based on the network structures
provided by the Bastion benchmark set [23].

The ESIB were added to a network based on the design in Fig. 3.10. This de-
sign is not part of the Bastion set [23] and will be referred to as the Simple Interrupt
Network or Simple network. During development it was found that leaf nodes in the
network had a difficult position. During normal operation all the network structures
are activated by the Select signal of the TAP. The network structures in the work of
Ibrahim [3] rely on an inactive Select signal to function. Although not present in the
Simple Network, unaltered network structures would prevent the extended interrupt
network from functioning. This created the situation where normal TDRs would ruin
the efforts of the extended SIB by not shifting the bits through. Later, it was discov-
ered that a purely hierarchical network implied that only ESIBs would be accessed.
The idea of leaf nodes stuck due to the fact that they do not open their segment
when a flag is active. This mitigated the problem that unselected/inactive TDRs in-
troduced.

An encoding was made for the entries of the IM H-Array in the interrupt manage-
ment unit. The encoding is shown in Fig. 5.11. The network data structure used
for localising interrupts contains ESIBs, ESIB L and TDR. Compared to the previ-
ous work of the interrupt management unit, the ESIB L takes the place of the TDR

84 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

ETDR 0xXX TDR Length

ESIB 0xXX Segment LengthExtended Segment Header

Extended Test Data Register

ESIB_L IVT Pointer Segment LengthExtended Segment Header Leaf

31 24 23 16 15 0

Figure 5.11: Encoding of IM H-Array entries.

Figure 5.12: Detailed block diagram of the Interrupt Manager.

as the work states that when a TDR is encountered the interrupt is localised. The
localisation is done by moving the network to localisation mode using the extending
signals for interrupt management. When the whole network is in that mode it stores
the interrupt flag it receives from its children in a register which is included in the
scan path. In fact, it is the only included register. The interrupt manager then moves
to shift out the flags in these registers. Fig.5.10 shows such a network and the val-
ues of the registers of the ESIBs. The figure also shows the relation between the
received vector and the instrument that created the interrupt. If a segment header
reads a ’0’ the segment is skipped as the interrupt did not originate there. If a ESIB
leaf instance read a ’1’ then it has created the interrupt, otherwise its brother on
the same level or an segment below. The interrupt manager for IJTAG networks is
shown in Fig.5.12. It features registers for controlling the device and a IM H-Array
and an Interrupt Vector Table. The first is used during localisation and the latter
stores the function pointers of the interrupt service routines.

5.3.2 Servicing Interrupts

The art of servicing interrupts is well researched and many excellent schemes ex-
ist to manage multiple source levels, pre-emptive schedulers and masking interrupt
vectors to quickly get from the signal to execution of the intended interrupt service

5.4. TAP CONTROL 85

routine. The strategy of this research is simplistic in nature as implementing new
ways to manage interrupts is not part of the scope. However, due to the state of
development tools for the RISC-V architecture, a smart solution is needed to incor-
porate interrupt service routines without full compiler support.

This limited support means that an interrupt service routine is defined as a regu-
lar function in C without return type and parameters. The compiler takes into account
that a function needs room on the stack to execute. The stack-pointer, frame-pointer,
return address, program counter, thread pointer and global pointer are used by the
compiler to manage the program flow. Shortly after a function is called the stack-
pointer is amended to reserve space for any return value and the local variables.
This is fine when calling a function as it creates the stack space and removes the
space before returning. This also means that many nested functions can be called,
at least until the stack limit is reached. However, the processor must be notified
when an ISR returns. Using the regular return instruction (Jump And Link using the
return address general purpose register), would break because that return register
would not be filled by entering an ISR. It would also prevent nested function calls in
the ISR.

To mitigate the issue the URET instruction is borrowed from the RV32n exten-
sion. This instruction notifies the processor that the program returns from an inter-
rupt. The processor is designed with special shadow-registers for the management-
registers (Stack Pointer, Frame Pointer, Program Counter etc.) that are used by the
compiler. When an ISR is entered their values are copied into the shadow registers.
An ISR finishes with the URET instruction. The URET signals that the original program
flow must be restored and all values are copied from the shadow into the actual
registers. For this to go well, an interrupt service routine can only be initiated in the
fetch stage of the controller. Otherwise an instruction runs the risk of being executed
twice. Although this solution works it is a shame that it is not very expendable. When
an interrupt is being serviced, no other interrupt (with possibly a higher priority) can
be serviced. When the RISC-V compiler will support the interrupt extension better
solutions can be found, for example storing the management-register-values on the
stack space. This will enable pre-emptive interrupt servicing.

5.4 TAP Control

The IJTAG interrupt manager and the retargeting engine operate on the same test
network simultaneously. Since IJTAG networks follow the master-slave principle in
hardware engineering, it is a good practice to have a dedicated master for the net-

86 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

Figure 5.13: Timing diagram of TAP negotiation.

work. It cannot be that both the IMU and the RE try to control the network at the
same time. It is also not allowed to digress from the Test Access Port state diagram
shown in 2.2. When a CSU cycle is started it must be finished. It is also necessary
that the network state, maintained by the RE, is accurate. When a CSU is aborted
while the RE believes it has been applied, an incorrect network state is the result.
This needs to be managed, the simplest approach is finishing every CSU that is
started. The design of the ESIB allows switching between mode A and mode C,
see Fig. ??. Managing this will remain out of the scope of this research. Finally, it is
also important that the shifting of bits happens synchronously across all the devices,
meaning that the first bit read is also intended as the first bit from the network.

An extra device is added to the design of the DM that has complete control of
the Test Access Port. The TAP Control entity in the dependability manager receives
a request from the RE or the IMU that they want to shift data through the scan net-
work. A handshake protocol acknowledges the request and the TAP Control moves
to the Capture state. At the same time the requesting devices gets a signal that the
Shift will happen starting at the next rising edge of the clock. The SI and SO signals
from the requesting device is connected to the SI and SO of the Test Access Port.
The end of the access vector is also signalled to the TAP control by the requesting
device. This lets the controller move to its next internal state and issue the Update
state accordingly.

This handshake protocol is visible in Fig 5.13. The timing diagram shows the sys-
tem clock and the TCK generated based on the system clock. The TAP Controller
contains a clock divider to manage the clock at which the IJTAG network operates.
As it is not entirely clear what the speed criteria will be for IJTAG, this divider allows
the engineer to change this. A device that wants to access the TAP will request
this from the controller. After which an acknowlegdement will be sent. When the
requesting device is ready to shift, this is signalled to the controller. The controller
will move through the TAP FSM, see Fig.2.2, and signal when the ’SHIFT-DR’ state
is reached. The TAP controller and device will be synchronised based on the TCK.
When the device is finished with the IJTAG network, it will deactivate its request.

5.5. VALIDATION OF THE DEPENDABILITY MANAGER 87

The TAP Control maintains a priority between the devices. It can also be ex-
tended to manage the external IJTAG signals hinted at in the high level design
(Fig 1.1 and Fig. 3.7). However, this creates problems as the RE and the external
retargeting tool both store the network state. This can be solved by giving external
access to the state vector. The state vector can be part of the IJTAG addressable
registers within the dependability manager. A protocol can then be defined that
states the length of the access vector when a switch occurs and what the bits in
the state vector mean. The same protocol opens the underlying scan network pre-
viously controlled by the RE. At the end the external tool can alter the state vector
based on its alterations and relinquish control back to the DM. Another approach is
to reset the scan network when control is handed over. This will revert the network
state to its original setting but this may also affect instruments and their TDRs within
the network.

5.5 Validation of the Dependability Manager

The validation section of the Software chapter focussed on the correct implemen-
tation of the compiler, the drivers and the operation of the toolchain. Most of this
is checked by hand along with tools such as objdump. This section will validate
the last section of the dependability manager; the hardware. Test benches aid in
development of several components of the dependability manager as they provide
a meaningful . Not all entities were subjected to a unit test. These simple entities
would take too much time and effort and this section would become long-winded and
boring. Four major systems of the dependability manager were The test benches
provided necessary input for the unit-under-test, but the output was checked manu-
ally.

5.5.1 Controller Test Bench

The controller was constructed as one of the first parts of the processor. It is re-
sponsible for steering all the components and a correct implementation would be a
solid base for the remainder of the work on the datapath. The test bench contains
the unit-under-test and a clock mechanism. When the controller requests the fetch
of a new instruction, the next one is loaded on the instruction bus. The test bench
contains one instruction of each column in Fig 5.2 which covers most operations of
the controller. To clarify, loading two registers for an addition is handled in the same
manner as loading two registers for a subtraction, only the ALU operation code dif-
fers. The waveform of the test can be found in Fig. 5.14. After debugging, the test

88 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

Figure 5.14: Controller Test Bench.

bench showed that the controller moved through all its designed states and outputs
the right control signals for the datapath.

5.5.2 System Bus Test Bench

To develop and check the Wishbone bus implementation, a test bench was created
that housed the System Bus Master entity along with a System Bus Slave entities.
The slave devices had a memory range assigned two them and the master was
requested to read and write to those addresses by the test bench. It was validated
with simulation of the test bench that the Single Read and Single Write operations of
the Wishbone protocol operated correctly. The waveform can be found in Fig. 5.15.
The memory request is accompanied by an immediate address and a offset reg-
ister value. The system bus master calculates the resulting address and operates
the Wishbone Bus. The test bench switches between reading and writing so both
operations can be checked. It can be seen in the waveform that the Wishbone Cy-
cle is high for 3 cycles instead of 2 (see Fig 5.3). The system bus is created to be
flexible and this is incorporated in the slave device. It delays its response by a clock
cycle and this behaviour was also needed for the system bus devices with the Altera
Memory IP. These devices took extra time to interface with the memory which takes
at least two clock cycles. The system bus slave process is later incorporated into
the Retargeting Engine, Interrupt Management unit and the other two System Bus
devices.

5.5.3 Retargeting Engine Test Bench

The retargeting engine was in development as a separate component and had an
accompanying test bench. The test bench created a clock but nothing further and
had the Retargeting Engine as a unit-under-test. Its correct operation was verified
with ModelSim while the initial Access Request stack, H-Array and relevant param-

5.5. VALIDATION OF THE DEPENDABILITY MANAGER 89

Figure 5.15: System Bus Test Bench.

eters hard-coded into the architecture. The retargeting engine relies on the H-Array
VHDL-package, which contains functions to encode and decode the data-types and
structures. This package also stores different test network H-Arrays, among which
is the minimal test network used in the paper of Ibrahim [2]. The stand-alone test
bench can be viewed in Fig. D.1. Notice that UpdateEn signal from the TAP has a
small error which was resolved. The access request stacks can also be observed in
the waveform.

The test bench was used during debugging until the retargeting engine operated
correctly. ModelSim allows access to all signals in a VHDL design. The generation
of access vectors was checked along with the amending of the state vector, manag-
ing the AR-Stacks and the stack pointers and filling and shifting of the shift buffer. A
test vector was shifted as an input into the device to test the extraction of data from
the shift buffer. The retargeting engine has also been added to the coprocessor-
wrapper in the design of Zakiy [1]. The access request buffer that the wrapper has
was connected to the retargeting engine. The scan commands from the program
are loaded into the retargeting engine one by one. The test program was altered to
address actual TDRs in the network. The network was the small example network
from Ibrahim [2], and the scan vectors were checked manually. The network was
hard-coded into the VHDL design, but the access request and scan command are
loaded dynamically. The program ran successfully as can be seen in Fig D.2.

The final version of the retargeting engine (with memory and TAP handshake)
was tested via a full system test, described later on in section6.1. This was easier
than creating a test bench that interfaced with the retargeting engine via the system

90 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

bus. Since the system bus and processor were reliable, the retargeting engine could
be fed commands and data. The memory block, state machines and access request
stacks could be observed along with output that was generated.

5.5.4 Interrupt Manager Test Bench

The interrupt manager is tested with a standalone test bench containing the Simple
network shown in Fig. 5.10. The test bench generated an interrupt for ESIB 3 to 7,
the leaf nodes of the network. The Interrupt Manager is observed during this test
bench to make see if it resolves the right interrupt source, and locates the proper
interrupt vector. The waveform for the 5 localisation operations is in Fig.D.3. The
IM H-Array of the Simple network is hard-coded into the interrupt manager in the
current hardware revision. After locating the source, the interrupt manager either
signals an interrupt to the controller or it dismisses it based if the interrupt vector
is not activated. This means that only the localisation is tested, since none of the
interrupt vectors are activated. This also validated the ESIB implementation as a full
implementation of the Simple network was used to create the localisation vector.

5.5.5 Dependability Manager Simulation

Before the FPGA emulation is done, a simulation is performed of the entire depend-
ability manager processor. During simulation, all facets of the coprocessor can be
observed; at least all signals in and between the entities. ModelSim is used to sim-
ulate the processor, which is in a wrapper entity along with a IJTAG test network
and a clock generation circuit. The controller entity also outputs the instruction and
the states in a human-readable form. The program counter, registers and LEDs also
help with under-standing the flow of the program. Test programs are loaded from the
loaders folder. The dependability manager can be started with different run archi-
tectures. These VHDL architectures configure the loader-file and other parameters.
The execution of a test application can be followed closely with this approach, for an
example see Fig. 6.4 in section 6.3. The disassembly, created with objdump, creates
a clear image of the program being tested.

5.5. VALIDATION OF THE DEPENDABILITY MANAGER 91

Figure 5.16: Detailed block diagram of the LEDs used for output of information.

5.5.6 Dependability Manager Emulation

The dependability manager was emulated with the Mingle network on an FPGA.
Some form of output was needed to display the status of the test. The board offers
many GPIO pins and eight LEDs which where connected to the last system bus
device to be discussed; the LED driver. A block diagram of the device can be seen
in Fig 5.16. It shows a simple device containing one read-write register connected
to the system bus. The register maps its values directly to the output pins of the
FPGA, which in turn are connected to the LEDs of the DE0-Nano FPGA develop-
ment board, shown in 5.17. The DE0-Nano needs to be used along with Quartus to
compile the design and program the board. The programming is not persistent by
default, meaning that it needs to be re-uploaded when power is removed from the
board.

The LED driver system bus device was also validated during the ModelSim simu-
lation described in the previous section. The LEDs offer a 256 different combinations
as output to the user. They are memory mapped and a driver is created to write an
integer or to turn a specific on or off. The first test of the dependability manager was
a simple blink project. It is an executabel that does not use the retargeting engine
or the interrupt management unit. It is a program that executes all instructions in the
instruction set and reports its status via the LEDs. After the complete system test
a Fibonacci sequence will be calculated recursively and shown on the LEDs. After
that it moves to a success state which shows a decorative sequence on the LEDs.

Chapter6 will continue with the quantification of the retargeting engine and the
interrupt manager. It also discusses the use of a logic analyser to check the output

92 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

Figure 5.17: DE0-Nano FPGA development board, picture from Terasic [78].

of the retargeting engine.

5.6 Discussion

The DM is based on a processor that is implemented for this research partly based
on another implementation of the RISC-V architecture [79]. It was a challenge but a
worthwhile experience. However, during writing of this thesis the existence of Qsys,
also know as the Platform Designer, by Altera [80] came to light. Initially, I believed
the use of these tools to be too expensive but Altera provides many of them for re-
duces prices for academic purposes. This tool creates processors with customizable
properties regarding size and complexity. The processors are based on the Nios2
ISA and could have saved much time and effort. The RISC-V processor that was
created as a base for the DM is still a viable option. The current DM architecture
allows modification, customisation and optimisation of the hardware to work towards
a smaller and lighter processor where a Qsys generated core would be less flexible.
However, a Nios2 core would have much more features available such as instruction
caching, interrupt management and a programmer available via USB. It could have
been worthwhile to research the suitability of this architecture instead of dismissing
it too soon.

The implemented core provides no caching, pipelining or out of order execution,
and this affects efficiency. It is almost a textbook example of a RISC processor

5.6. DISCUSSION 93

with some exceptions. The performance per clock cycle can be improved greatly
by adding more complexity to the design. One of the options is to separate the in-
struction memory and RAM memory; basically moving from a Von Neumann to a
Harvard architecture. This allows caching and pre-fetching of the next instruction
even when the system bus is occupied with writing data. The next step after that
would be pipelining as it is almost a guarantee that the clock could be reduced while
maintaining performance. A lower clock speed could aid the lifetime of the DM and
in essence make it more likely to outlive the functional layer. For pipelining to oc-
cur, the datapath elements must be more separate. The implementation reuses the
ALU to calculate the next Program Counter value and this also prevents pipelining.
Chapter6 will further discuss the efficiency and possible improvements.

The design of the retargeting engine moved through different versions. The ad-
dition of a memory IP block was prompted by the emulation on an FPGA. Using
registers to store the H-Array, AR-Stack, and read values would not have fit on the
Cyclone IV. Checking the Access Requests needed to be done one-by-one to re-
duce the design size. Also the extraction of data from a large shift buffer increased
the design size past its boundaries. Adding the memory, and doing operations se-
quentially made the retargeting engine slower but feasible. Some optimisations are
made to save clock cycles; for example not fetching empty stacks. Another speed
improvement would be to access memory while the retargeting process continues.
The retargeting engine has been proven in Zakiy’s DM [1] as well as our iteration of
the DM. If the dependability manager’s architecture is changed again, it should not
be difficult to adapt the retargeting engine with another bus protocol.

The retargeting engine uses its memory heavily. When a TDR is encountered in
the H-Array, every non-empty AR-Stack is checked. This means loading the access
requests, one-by-one, from the top of the stacks. An improvement would be to have
a cache for the top access requests, or at least the instrument-id that they target.
This would make checking the AR-Stack faster and the H-Array can be traversed
in less time. Another improvement would be to separate the generation of the shift
buffer and the shifting. The next access vector could be created while the current
one is being shifted into the network.

The interrupt manager was implemented but only tested on one network. The im-
proved network structures are also proven by testing on the network. Unfortunately,
the network size is smaller than those used in previous research [3]. Implementing
a larger network would have cost time and effort, and frankly, should be automated.
The interrupt manager has been shown to work and it resolved all different interrupt

94 CHAPTER 5. HARDWARE: CREATING THE DEPENDABILITY MANAGER

sources. Chapter6 tests the interrupt manager further.

The validation of the design was a success. The test benches of the separate en-
tities helped tremendously as a kind of test-driven development. The test benches
were only created with a test pattern generator. They lacked a response evalua-
tor, which could have enable automated testing. Creating these test benches would
have been incredibly cumbersome. ModelSim is a valuable tool to troubleshoot the
implementation, especially when the design grows and becomes more complex.
Emulating the design on an FPGA was a rewarding experience that has proven the
capability of the dependability manager.

Chapter 6

Experimental Results

The final part of the methodology is a verification and validation of the product. The
dependability manager is a processor with a retargeting engine and a interrupt man-
agement unit. The operation of the retargeting engine and interrupt manager will be
quantified separately. The processor itself will also be analysed. This will happen
as a complete system test; the test program is loaded into the dependability man-
ager which will be connected to a Bastion benchmark network. The ’Basic’ set of
networks are chosen as their VHDL implementation is available. To test the interrupt
manager, this research will rely on the simple network described in Fig 5.10 in the
previous chapter. The retargeting engine is tested for single reads and writes and for
iApply groups of multiple reads or writes. This approach has been taken before for
simulating the principle of the retargeting engine [?]. The clock cycles needed for the
traverse and generate algorithm are counted, as well as the cycles needed for shift-
ing the access vector. The extraction cycles are counted for the read commands.
The target instrument for the read and write operations are chosen randomly.

After the results of the retargeting engine are discussed, the focus is shifted to
the interrupt manager. It is tested to quantify the time it takes to load an ISR after an
interrupt flag is present. Two tests are performed on the simple network, one where
there is no other activity on the IJTAG bus, and one where random single writes are
performed. The cycles needed to gain access to the IJTAG bus and to localise the
interrupt are amongst the results, along with the time from flag to ISR request, and
the time until the processor returns from the ISR.

Finally some general statistics of the processor are shown and some system
components are discussed during simulation to see how they operate. The statistics
can be used to determine how to increase the efficiency of the processor. The
processor is also emulated on an FPGA and a logic analyser is used to verify its
operation.

95

96 CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.1: Parameters for Retargeting Tests.
Network H-Array TDRs Test I Test II Test III

iApply iWrites iReads iApply iWrites iReads iApply iWrites iReads
Mingle 38 8 / 4 200 100 100 200 400 400 200 400 400
BasicSCB 41 5 / 3 200 100 100 200 300 300 200 300 300
TreeFlat 49 22 / 10 200 100 100 200 1000 1000 200 1000 1000
TreeFlatEx 218 63 / 10 1000 500 500 200 1000 1000 200 1000 1000
TreeBalanced 161 45 / 10 1000 500 500 200 1000 1000 200 1000 1000
TreeUnbalanced 96 35 / 10 1000 500 500 200 1000 1000 200 1000 1000
TDRs in total / TDRs per iApply group for Test II and III.

6.1 Performance of the Retargeting Engine

The retargeting engine is implemented according to the flowchart in Fig. 5.8. It con-
sists of three main phases; the retargeting, shifting and extracting. The retargeting
is also known as ’traverse and generate’ [2]. The retargeting engine was connected
to the test networks listed in Table 6.1. The H-Array definitions for these networks
where made by hand according to the ICL definitions. They were implemented using
the developed libraries and included in the test program. Each network was subju-
gated to three test: random single reads and writes, random read and write-groups
and random read and write groups while resetting the network. Resetting the net-
work reverts all the SIBs and SCBs to their initial value, which means the segments
were closed.

Table 6.1 shows the amount of reads and writes performed in each test. The
reads and writes were divided equally over the iApply groups. The table shows the
length of the H-Array, the amount of Test Data Registers and the amount of registers
that were randomly selected for each iApply group. The dependability manager was
clocked at 50MHz and the TAP controller was used to generate a TCK of 0.96MHz.
This error was discovered when all the tests were finished; it was supposed to be
1MHz. This error has slightly affected the test results in the ’Shifting’ columns. It
should not matter for this discussion as the time needed for shifting grows linear with
the length of the Access Vector (AV), which is also added to the tables. The tests on
the ’TreeUnbalanced’ network were performed with a faster clock speed of 5MHz.
This range in frequency is assumed to be used in industry. Using IJTAG networks
at higher clock speeds may require more power. The maximum clock speed is
limited to the physical speed of the longest combinational path in the network. In
this chapter it is assumed that the networks are built to accommodate the speed of
an off-chip IJTAG controller. The on-chip retargeting engine may perform at higher
speeds than an IJTAG programmer, if the IJTAG network supports these speeds.

The Clock Cycles (CC) displayed in Tables 6.3, 6.4 and 6.5 are based on the
50MHz system clock. Using different TCK speeds explores the time needed for

6.1. PERFORMANCE OF THE RETARGETING ENGINE 97

Figure 6.1: Writing 0x81 to WI1, see Table 6.2.

shifting versus retargeting. This time is linear to the length of the access vector; ev-
ery bit in the access vector takes 50 Clock Cycles when the TCK speed is 1Mhz (52
at 0.96MHz). The TAP control synchronisation takes 1 to 50 cycles. The Capture
state and Update state at the beginning and end of each CSU again take 50 cycles.

The benchmark networks used for this research differ in structure in multiple
ways. Mingle is a collection of SIBs and ScanMuxes with 8-bit TDRs. BasicSCB
consists only of ScanMuxes and also has 8-bit TDRs. TreeFlat is a tree structure of
SIBs where almost all of them are on the same level. It has a ScanMux to bypass
the tree and have all the 8-bit instruments as long scan chain. The next network
starts to get more serious with larger and differently sized TDRs. The TreeFlatEx
network reused modules from the ITC’02 benchmarks in a flat tree structure. All
these modules exist on the same level in the tree. TreeBalanced is again a tree
structure but with more depth. The tree is balanced as its name suggests, meaning
that the ITC’02 modules are spread across a branching tree. Most of the nodes in
the tree have 2 or 3 child nodes. The last network contains huge TDRs with lengths
of up to 2625 bits. The tree structure is lopsided; having many large modules at
one side of the tree whilst having almost none on the other side. Drawings of all
the networks are available online [27], the Mingle network is displayed in Fig C.1.
The use of ScanMuxes or SIBs and the structure influences the length of the access
vector for reaching an instrument. As described in section 5.2, SIBs are not closed
by the retargeting engine unless it is instructed to. This results in segments in the
active scan chain that might not be necessary.

It is interesting to look at an example of the operation of the retargeting engine
before the test results are discussed. A simulation waveform created with Modelsim
is shown in Fig. 6.1. The waveform shows vital variables within the retargeting en-
gine such as its state machine and AR-Stack pointers. It also shows the operation

98 CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.2: Retargeting of one iWrite and one iRead of WI1 on the Mingle network.
Retargeting (CC) Shifting (CC) Extracting (CC) AV Description

iApply 1
CSU 1 158 186 - 2 Open SIB2 to access segment of WI1
CSU 2 293 327 - 4 Put ’1’ in SCB2 to access SCB1
CSU 3 401 427 - 6 Put ’1’ in SCB1
CSU 4 402 426 - 6 Close SCB2 to access WI1
CSU 5 285 699 - 11 iWrite to WI1

iApply 2
CSU 1 286 674 5 11 iRead from WI1

Refer to the waveform in Fig. 6.1 and the Mingle network in Fig C.1.

of the TAP controller and IJTAG bus activity. There are six CSU cycles present in
the figure which correspond to the rows in Table 6.2. The waveform also shows the
network structures (TDRs, SIBs and SCBs) of the Mingle network. The retargeting
engine is instructed to perform two iApplys during the test, one to write to the in-
strument and one to read from it. The device retargets the network by writing to the
SCBs and SIBs as shown in Table 6.2. The instrument remains in the scan chain
after the write is performed, that is why the read requires less retargeting of the net-
work. The table show clock cycles needed for retargeting and shifting, and it shows
the length of the access vector for each CSU cycle. The time needed for retargeting
is dependant on the amount of segments that need to be traversed. The shifting
time grows linearly with the access vector, and it is influenced by the chosen IJTAG
clock. The execution of the read request takes 5 clock cycles. These are needed to
check for read requests (1), to load the read request from memory (2) and to store
the read value back in the memory (2).

As mentioned, three test were performed on the ’Basic’ set of benchmark net-
works. Before the tests could be done, the retargeting engine needed validation.
After all, the H-Arrays of the networks were created by hand from the ICL files and
drawings online [27]. Furthermore, the VHDL versions of the networks were used
which might differ from the ICL files. To validate both the H-Array and the VHDL im-
plementation provided by Bastion, all instruments in the network underwent a read
after write test. All tests were performed using Modelsim. The WrappedInstruments,
as they are called, were added to the ModelSim waveform. The WrappedInstrument
entity has a ScanRegister connected to the scan chain. The instrument copies the
value from the ScanRegister if its most significant bit is ’1’ during a CSU update.
This value persists and can be captured. Either the ScanRegister or the internal
register of the WrappedInstruments were monitored. The created H-Array and used
VHDL performed well and the quantification tests could be performed.

The first test consists of single writes and single reads at randomly chosen in-

6.1. PERFORMANCE OF THE RETARGETING ENGINE 99

Table 6.3: Retargeting Test I, random reads and writes, no reset.
Network CSU Access Vector Retargeting CC Shifting CC Extraction CC

± ± 5 4 ± 5 4 ± 5 4 ± η

Mingle 1.51 43.29 2 51 654.90 158 750 2358.75 212 2785 5.00 100
BasicSCB 1.57 34.37 7 37 738.55 406 804 1896.81 464 2057 5.00 100
TreeFlat 1.53 88.71 2 101 748.92 164 1032 4719.54 191 5385 5.00 100
TreeFlatEx 1.12 4748.60 14 5102 5555.86 1094 5876 247035.35 847 265437 5.00 500
TreeBalanced 1.16 4964.04 1 5220 3956.49 80 4176 258237.69 150 271573 5.00 500
TreeUnbalanced 1.03 40470.69 2 41887 2645.05 158 2750 485675.88 50 502677 5.00 500
Average number of CSU Cycles needed per iApply, the Access Vector length, Retargeting cycles, Shifting cycles and cycles needed for Extracting read values.

struments. Table 6.3 shows the test results on the six networks. The average (±),
minimum (5) and maximum (4) are displayed to give an intuitive image of what is
happening. Retargeting, Shifting and Extracting are measured as the clock cycles
needed for ’Traverse and Generate’, the shifting of the access vector and the re-
trieval of read values from the incoming shifted bits. The average number of CSU
per iApply is in the second column, when this value approaches 1 it means that the
target instrument is in the active scan chain more often. During the tests, the retar-
geting engine is never instructed to close a SIB and eventually they are all opened.
This means eventually the RE only needs one CSU to access any instrument. This
behaviour is also visible in Table6.2: 5 CSU cycles to open access the instrument,
and 1 when it is already in the scan path. The networks that contain mostly SIBs,
i.e. TreeBalanced, TreeUnbalanced and TreeFlatEx, show this behaviour even more.
Although less CSU cycles may seem favourable, the opened segments increase
the time needed for retargeting and shifting. Less segments in the H-Array can be
skipped during retargeting as they are open. An open segment increases the length
of the access vector which is exacerbated by the relatively slow TCK frequency. The
extraction of read values is consistent. A single read value extraction takes 5 cycles,
just like the example discussed earlier. The extraction clock edges are counted for
access vectors that contain required values from instruments, so not every CSU cy-
cle.

The second test uses iApply groups of multiple access requests. The size of
these groups can be found in Table 6.1. The performance of the retargeting engine
is shown in Table 6.4. Grouping of scan operations allows the retargeting engine to
apply multiple commands at the same time. The order in which this happens is not
relevant. More CSU cycles are used per iApply to retarget the network to access all
the instruments in the group. The length of the access vector grows to its maximum
size similarly to the first test as no SIBs are closed. This reflects in its average and
in the statistics for the shifting of the access vector. The cycles needed to traverse
and generate the access vector is similar to the first test. This may look strange as
more reads and writes are applied. There are two reasons that may explain this.

100 CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.4: Retargeting Test II, random read groups, write groups, no reset.
Network CSU Access Vector Retargeting CC Shifting CC Extraction CC

± ± 5 4 ± 5 4 ± 5 4 ± 5 4 η

Mingle 2.23 43.43 2 51 699.17 185 861 2364.71 190 2785 9.74 5 17 183
BasicSCB 2.75 34.88 7 37 761.13 448 871 1922.50 463 2057 8.69 5 13 156
TreeFlat 2.75 93.99 2 101 896.44 245 1469 4995.85 204 5385 21.14 5 37 200
TreeFlatEx 1.70 5058.89 14 5102 6487.17 1607 7769 263167.52 828 265437 30.94 5 41 668
TreeBalanced 1.49 4989.50 1 5220 4621.55 125 5471 259562.22 139 271573 41.00 41 41 100
TreeUnbalanced 1.47 40439.47 2 41887 3051.72 239 3619 404418.02 48 418898 41.00 41 41 100
Average number of CSU Cycles needed per iApply, the Access Vector length, Retargeting cycles, Shifting cycles and cycles needed for Extracting read values.

Table 6.5: Retargeting Test III, random read groups, write groups, with reset.
Network CSU Access Vector Retargeting CC Shifting CC Extraction CC

± ± 5 4 ± 5 4 ± 5 4 ± 5 4 η

Mingle 6.81 16.47 2 51 553.48 185 845 963.06 186 2771 6.93 5 17 270
BasicSCB 6.77 13.09 7 30 675.32 406 882 786.15 446 1693 7.32 5 13 190
TreeFlat 4.68 42.40 2 89 805.01 245 1447 2312.26 186 4761 21.10 5 41 199
TreeFlatEx 4.62 752.44 14 2831 3487.23 1607 5343 37725.17 779 141663 18.62 5 41 227
TreeBalanced 8.00 814.42 1 3921 1654.10 125 3793 42459.49 134 203974 12.20 5 29 363
TreeUnbalanced 8.67 9204.11 2 28789 1712.28 239 2704 92064.43 40 287916 10.43 5 37 424
Average number of CSU Cycles needed per iApply, the Access Vector length, Retargeting cycles, Shifting cycles and cycles needed for Extracting read values.

The first is that most segments are opened in both tests and need to be traversed.
The second is that there are more CSU cycles performed in the second test and the
measured clock cycles are averaged over the amount of CSU cycles. The minimum
and maximum for retargeting are higher in the second test, especially for the larger
iApply groups. This is because more AR-Stacks need to be checked when an in-
strument entry is encountered during retargeting. The extraction of read values is
not as consistent as multiple read requests can be performed per iApply. The CSU
cycles that accessed an instrument with read requests is shown in the last column
(denoted by η). All accessed instruments were in the scan chain for TreeBalanced
and TreeUnbalanced. This resulted in all 10 read requests being handled in the
same CSU cycles; 1 clock cycle to check and 4 cycles per read request. This is
likely since the instruments selected by the ScanMux of TreeBalanced (Module 5)
where not used for the iApply groups. TreeUnbalanced has no ScanMuxes at all
and all its SIBs were opened.

The third test is the same as the second test but the network is reset after ev-
ery iApply. The results of the third test can be found in Table 6.5. Resetting the
network closes SIBs and also resets the state vector. Compared to the second test,
this decreases the average length of the access vector, but it increases the amount
of CSU cycles. The extra CSU cycles are needed to re-open the required segments
of the network. The retargeting time is also less per CSU as most segments are
closed and can be skipped. Effectively, the difference between test II and III is sim-
ilar to the two iApply operations displayed in the example; Table 6.2. Test III starts

6.1. PERFORMANCE OF THE RETARGETING ENGINE 101

Figure 6.2: 3-Bit ScanMux present in TreeFlatEx and TreeBalanced.

with a closed network (iApply 1) while test II can retarget from the current network
state (iApply 2). The performance is somewhat better compared to test II although
it is heavily influenced by the network structure and the length of the access vector.
The time needed for retargeting per CSU is lower but more CSU cycles are needed.
More cycles are used per iApply for retargeting. The same thing happens when
read requests are handled; more CSU cycles but less time used per CSU.

Some difficulties were encountered during the tests. Modelling an n-bit ScanMux
as multiple 1-bit ScanMuxes in the H-Array was suggested when the retargeting en-
gine was first introduced [2]. Unfortunately, this creates a new problem for the re-
targeting engine. Module 5 in the TreeBalanced and TreeFlatEx networks contains
such a ScanMux, see Fig. 6.2. The division of the SCB into multiple 1-bit registers
created temporal issues between them. A temporal conflict occurs when two instru-
ments are on the AR-Stack that need conflicting configuration of two or more SCBs.
The SCB in Fig. 6.2 is modelled as three SCBs; scb0, scb1 and scb2. To access
SR1 and SR2 simultaneously different things need to happen. First scb0 is ’0’, so
the retargeting engine enters the segment and adds write ’1’ to scb2 to access SR1.
But the retargeting engine also wants to open the other segment to access SR2 and
a write ’1’ to scb1 is added. These two writes are popped of their AR-Stacks, the
CSU cycle applies the changes and the retargeting happens again. Now both the
instruments are still not in the active scan chain. The network state shows ’011’
and the retargeting engine adds writes (one to create ’010’ and the other to create
’001’) to the AR-Stack. The resulting network state is ’000’ and the problem iterates.
These temporal issues are mitigated in new research into the retargeting engine us-
ing SCB chaining trees [25]. During tests II and III, only one of the scan registers of
Module 5 was added to an iApply group to prevent these occurrences.

Another issue with the Bastion scan networks and the realisation of the retar-
geting engine is the size of the TDRs. A maximum size was chosen for test data
based on the description of PDL level-1 in the IJTAG standard [5]. The design of
the H-Array, AR-Stack and the retargeting engine is based on the assumption that
TDRs are 32 bits or less. Most of the TDRs in the used benchmark network had

102 CHAPTER 6. EXPERIMENTAL RESULTS

TDRs with a length more than that. The retargeting engine was modified for testing
purposes to pad the value with ’0’. The extraction of read values was also adapted
to manage these larger values and only the least significant part was extracted to
be stored in the memory. This is not desirable. A fix would be to use multiple TDR
entries in the H-Array to emulate a larger TDR, but this is not scalable. To use large
TDRs, the retargeting engine needs to change. An access request should at least
store a pointer to memory, along with more information such as the length and index
within the TDR.

Optimal scan pattern generation remains a difficult problem. The access vector
needs to be minimised and the creation of the access vector must not take long. The
retargeting engine traverses and generates the access vector quickly, but makes no
effort to shorten the access vector. The retargeting engine can be used by the user
to close segments but this does not happen automatically. The access vector is
observed to continuously grow in a SIB based network until the maximum length is
reached. No algorithms have been proposed to close SIBs. The temporal issue has
been mitigated in research [25] but has not been implemented in this work.

6.2 Performance of the Interrupt Manager

The interrupt manager for IJTAG networks was developed in this research. Normally
IJTAG networks do not support interrupts and the instruments need to be polled con-
tinuously. There are multiple strategies, currently in research, to add interrupts to the
scan chain architecture. This research implemented one of them; an interrupt man-
ager and an interrupt enabled SIB [3]. This section will test the effectiveness of the
chosen architecture, and determine the time needed to handle an interrupt flag. The
interrupt manager is designed to share the IJTAG bus with the retargeting engine
through the TAP controller. This creates a small overhead and delay when handling
an interrupt. The test, ran on the Simple network, is designed to show the behaviour
of the interrupt enabled IJTAG network.

The test is executed on the Simple network, which was introduced in section5.3.
The hierarchical tree network contains 5 interrupt sources at its leaves. The network
is smaller than those used in previous research [3]. The goal is to ensure the cor-
rect operation of the interrupt manager, and to check the assumptions made about
the localisation time. All the measurements are expressed in system clock cycles,
and the IJTAG TCK is again set to 1MHz. The network could operate at higher fre-
quencies. The interrupt manager first waits for bus control, which is measured. The

6.2. PERFORMANCE OF THE INTERRUPT MANAGER 103

Table 6.6: Interrupt Manager Test I.
Interrupt Source Waiting (CC) Localisation (TCK) Flag to ISR Request (CC) ISR Request to Return (CC)
Source ± 5 4 ± ± 5 4 ± 5 4
ESIB L3 1.00 1 1 8.0 406.50 382 431 54.06 49 59
ESIB L4 1.00 1 1 7.0 356.47 332 381 53.99 49 59
ESIB L5 1.00 1 1 6.0 306.63 282 331 54.02 49 59
ESIB L6 1.00 1 1 6.0 306.68 282 331 53.90 49 59
ESIB L7 1.00 1 1 5.0 256.79 232 281 54.00 49 59

localisation through the IJTAG bus is the next step. The last two measurements are
total time from flag to ISR request, and total time to finalize the ISR request. During
the test, instruments in the network will generate an interrupt at their leaf node. The
localisation will occur and the next interrupt will be generated at a different instru-
ment. The time of the interrupts is randomized and only one interrupt is active at
the same time. The measurements are collected of 250 interrupts per instruments.
A different ISR, from the test program, is coupled to interrupt vector. The routines
are similar, empty functions that only contain a return-from-interrupt command. The
retargeting engine is inactive during the test. The instruments in the Simple network
are 8-bit sized TDRs. Along with the SIBs, this creates a maximum access vector
length of 48 bits. However, with the IJTAG enabled network structures, the longest
access vector during localisation is 6 bits.

The results of the test are shown in Table 6.6. The test shows almost no over-
head for waiting on IJTAG TAP control. The localisation happens as fast as the
IJTAG bus clock speed allows. The length of the localisation vector is based on
the position of the specific instrument in the network. These vectors can be found
in Fig 5.10 in section 5.3. The localisation cycles correspond to the length of the
vector for each instrument. The servicing of the ISR takes roughly the same time as
the first test, and for each interrupt source. The time needed is roughly 55 cycles.
During the tests, the DM executes an ’empty’ interrupt service routine. It contains a
minimum of 4 instructions; 3 to manage the stack pointer, present at each function,
and 1 to return from the interrupt.

This concludes the analysis of the interrupt manager. The localisation of inter-
rupts works as expected. The layout of the network decides the length of the access
vector. This is directly coupled to the shifting time, which is determined by the TCK
speed. Localisation occurs between 250 and 400 cycles while a polling strategy
would require at least 2500 clock cycles to check every instrument in the Simple
network. A higher TCK frequency would reduce the cycles needed but the length of
the access vector would not change. The TAP controller handles request from the
retargeting engine and interrupt manager well.

104 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.3: Localisation of ESIB L4 with TCK at 25MHz.

6.3 Performance of the Dependability Manager

This section is dedicated to a brief analysis of the performance of the dependabil-
ity manager. The system consists of the core processor, which is connected to
the retargeting engine and interrupt manager via the system bus. The dependabil-
ity manager has no caching strategies, and the Wishbone bus implementation only
supports single reads and writes. Table 6.7 shows the states of the controller and
the percentage of time spend in them. The controller moves through these RISC-
like states to execute the instructions. The results were gathered during Test II of
the interrupt manager in the previous section. The last column shows the cycles
needed per instruction. Normally any register-to-register calculation takes 12 cy-
cles, but load and store operations wait for the value to be stored and take a cycle
longer.

Table 6.7: Percentage of cycles spend in controller states.
Fetch Start ISR Wait on Fetch Decode IR Execute Write Back Update PC Store PC CC per Instruction
7.67% 0.04% 47.18% 7.67% 7.67% 7.67% 14.43% 7.67% 12.93

The lack of advanced memory architectures reduces the efficiency of the de-
pendability manager. The fetching of instructions from the main memory takes
47.18% of the time. The system bus takes time to communicate and in addition to
that, the memory IP block also takes 2 clock cycles to produce output. The controller
waveform is shown in Fig 6.4 along with the system bus master. The fetch delay
be improved by cache prefetching of the instructions [81]. Most of the instructions
will not affect the program counter, so the next instruction could already be loaded.
The single read/write operations of the Wishbone bus can be improved with burst
reads/writes [77]. This will facilitate the prefetching of instructions. The program
counter is stored in the datapath and uses the ALU to increment itself. This takes

6.4. FPGA RESOURCE USAGE 105

Figure 6.4: Operation of the controller and system bus master.

an extra state compared to traditional RISC architecture [81]. A dedicated program
counter unit could aid, although some instructions directly calculate on the program
counter. The final addition to this collection of improvements would be to implement
the controller as a pipelined architecture. This would require more storage elements
between the datapath components but would also dramatically improve the Cycles
per Instruction (on average).

The design of the dependability manager was simplistic. The results in this sec-
tion are not unexpected. There are more improvements that could be made to the
processor. The impact of these improvements must be measured, which would
decide whether they have the intended effect. It is clear that the Dependability Man-
ager correctly executes high level language programs. These programs are exe-
cuted within a reasonable time frame. Improving the speed of the processor may be
necessary for calculation-heavy dependability applications.

6.4 FPGA Resource Usage

Quartus Prime Lite Edition 17.1 has been used to compile the designs for emula-
tion on a DE0-Nano development board. This board contains a Cyclone IV FPGA,
and is shown in Fig.5.17. The design passed the timing analysis of Quartus and was
latch-free. After compilation, Quartus was used to program the board, along with the
contents of the Main Memory. This is provided by reading the contents of an ihex
file, named dm system memory xxxxx.hex. The LEDs are used during tests on the
development board to provide feedback. Just like the simulations, the Dependability
Manager processor is instantiated in a wrapper entity, but this time with a clock di-
vider process. This process is added to reduce the 50 MHz clock frequency of the
DE0-Nano to other lower frequencies. It was unnecessary since the timing analysis

106 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.5: Setup used to gather emulation test.

Figure 6.6: Data gathered with logic analyser.

was successful. The wrapper entity has a clock input, two inputs for buttons and 8
output ’pins’ for the LEDs. Later on, the GPIO header was also included and the
TAP connections have been mapped to it. A test setup was created by connecting a
logic analyser to the GPIO header of the DE0-Nano. A waveform was created with
the logic analyser, see Fig. 6.6. The example from Table 6.2 was continuously ran
on the Mingle network. The wrapper entity of the emulation also contains one of
the IJTAG network entities to communicate with the retargeting engine or with the
interrupt management unit. This was, off-course, based on which test was executed.

The compilation results of Quartus are shown in Table 6.8. It shows the different
design entities of the dependability manager along with their respective resource us-
age. The resources are expressed as Logic Cells (LC), Dedicated Logic Registers
(DLR) and Memory Bits. The basic building block of Altera FPGAs are Logic Ele-
ments. They can be configured in normal mode or arithmetic mode. The memory
bits can be used with the Altera Memory IP. The LC and DLR are probably related
to the modes of the logic elements but no more information given about them [82].
The FPGA was an Altera Cyclone IV EP4CE22F17C6N; it contains 22000 logic ele-

6.4. FPGA RESOURCE USAGE 107

Table 6.8: FPGA resource usage of Dependability Manager in Quartus.
Entity LC DLR Memory Bits
fpga dm main 12.556 3.722 294.912

dm main processor:unit under test 12.283 3.502 294.912
dm main control:control 393 129 -
dm system bus master:memory manager 809 177 -
dm main registers:registers 2.179 1.056 -
dm main alu:alu 645 33 -
dm main alu in mux:b mux 677 0 -
dm system bus slave:slave ram memory 198 76 262.144
dm system bus leds:slave leds 17 12 -
dm retargeting engine:retargeting engine 6.790 1.352 32.768
dm main interrupt manager:interrupt manager 811 612 -
dm tap control:ijtag tap control 42 21 -

Mingle:mingle 272 220 -

Simple:simple 196 144 -

ments and 594Kb of memory. It is hard shed a light on the resource usage. Devices
from different manufacturers cannot be compared easily with each other [83]. The
numbers here are also not reflective of the eventual design size in silicon. However,
it is good to take a look and see where some improvements can be made in the
design, and to explore different parameters.

It becomes clear from Table 6.8 that the entities which store data require most
logic cells to be emulated. This concerns the retargeting engine, registers, and the
interrupt manager. This is also the reason that the Altera Memory IP is used as
the ram memory. It is unclear why the b mux takes such an amount of resources:
it is only a 32-bit asynchronous multiplexer. The interrupt manager also requires
storage for the interrupt hierarchy array and interrupt vector table. The retargeting
engine is the largest entity in the design. The memory bits it uses are because of
the Memory IP that is used to store the H-Array, AR-Stack and read values. Without
this the design would not fit the FPGA. A brief design exploration is held to deter-
mine the factors that affect its resource usage. The retargeting engine is designed
with 4 parameters that affect the design. They are shown in Table6.9 along with the
resource usage measured. The default instantiation of the device is: 32 AR-stacks
with 8 entries each, 256-bit shift buffer, and a H-Array with 64 entries. The shift
buffer has the most influence on the design size. Shifting and extracting the values
takes a large amount of resources. There are actually two buffers; one to create
the access vector during traverse-and-generate, which is copied to the actual buffer
for shifting. This was intended to parallelise generating and shifting the access vec-
tor, which was never implemented unfortunately. Also, the shift buffer operates at
a slower clock speed (TCK) than the rest of the system. Hypothetically, this allows
the buffer to be stored in memory. The next value to be shifted could be loaded well

108 CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.9: FPGA resource usage of RE entity in Quartus.
LC DLR LC DLR LC DLR LC DLR

Shift Buffer Size: 128 256 512 1024
4.364 966 6.790 1.352 12.514 2.122 22.636 3.660

AR-Stacks: 8 16 32 64
6.445 1.248 6.605 1.284 6.790 1.352 7.212 1.484

AR-Stack Size: 8 12 16 24
6.790 1.352 6.873 1.391 6.865 1.385 6.967 1.424

H-Array Size: 32 64 128 256
6.672 1.283 6.790 1.352 7.027 1.485 7.438 1.746

before it is needed, but extracting read values would take more time. The amount of
stacks is the next most influential factor. This is likely due to amount of stack pointers
needed, which are integers bound by the stack size (-1 to stack size). Increasing the
other parameters does not affect the design as much, mostly because the data is
stored in the memory block. The size of this memory block is not altered for the tests.

The FPGA resource statistics give some insight into the size and complexity of
each component. The numbers are not reflective of the actual hardware size if the
dependability manager is made into silicon. Unfortunately, the processor was not
compiled to a silicon design. This was not possible due to the use of the Altera IP.
Because of this, there is also no information available about the power usage or
maximum clock speed. The design exploration shows that the retargeting engine
could be optimised to allow larger shift buffers. The current design fits the relatively
small FPGA and it can operate at the 50MHz clock speed. The usage of Memory IP
allowed the large high-level programs to be stored on the FPGA.

6.5 Conclusion

This chapter contains the test results of the retargeting engine and interrupt man-
ager. It also discusses the efficiency of the dependability manager’s processor in
terms of speed and size. The results of the simulations are as expected. The retar-
geting happens quickly and the created access vectors are correct. The retargeting
engine is tested on six benchmark networks. Their structure and size also affect
the time needed to retarget. The major issues with the retargeting engine are that it
does not automatically close SIBs. This increases the average access vector length.
The second issue is that it cannot resolve temporal conflicts between SCBs. Fur-
thermore, its design is not able to handle TDRs larger than 32 bit. However, these
issues were known at the time of implementation and ongoing research will hope-
fully resolve them.

6.5. CONCLUSION 109

The interrupt manager localises the interrupt sources as fast as possible. The
interrupt flag architecture of the ESIB creates a small, efficient scan chain for locali-
sation. The slower clock speed of the TCK determines the time at which the network
can be accessed, so shorter, optimized access vectors help tremendously. Sharing
the IJTAG bus with the retargeting engine introduces long wait times for interrupt
localisation. This cannot be mitigated as CSU cycles cannot be aborted according
to the IJTAG specification.

The dependability manager was designed to be simple and maintainable. It fea-
tures no pipelined architecture and its controller is based on the classic RISC state
machine. The processor takes almost half of its time to load the next instruction.
This can definitely be improved by instruction cache prefetching. Pipelining the de-
pendability manager may be necessary for calculation intensive dependability pro-
cedures.

The dependability manager was successfully emulated on an Altera Cyclone IV
FPGA along with the Mingle and Simple IJTAG network. The resources were pre-
dominantly used by the entities that store data. Different parameters were tried for
the retargeting engine, and this gave some insight in the determining factors. The
length of the shift buffer influences the design size the most.

The picture becomes pretty clear after these measurements. The retargeting
engine and interrupt manager operate as expected and this reflects in the quantifi-
cation. The dependability manager works well but there are many improvements
that could be made. These advanced improvements were not feasible within the
scope of this research project.

110 CHAPTER 6. EXPERIMENTAL RESULTS

Chapter 7

Conclusions & Future Work

This work started with a goal to create a dependability manager coprocessor for IJ-
TAG enabled System-on-Chips. The DM needed to execute self-awareness depend-
ability applications which aim to manage the hardware degradation, allow dynamic
reliability management or handle faults in hardware. Any software that increases
dependability of a System-on-Chip or a Processor is considered a dependability ap-
plication. The hardware that is used or reused to enable dependability management
is part of a dependability layer, separate from the functional layer. The role of the
DM is to provide a reusable platform that supports a large library of dependability
applications, along with a uniform method of access to instruments in the depend-
ability layer of a System-on-Chip or processor. The dependability layer uses the
IJTAG network to write and read data to and from the instruments. A processor is
made that support communication with this network.

After the background of the research field, the high level design of the DM is
presented. This design starts with an application analysis discussing several de-
pendability applications. The analysis shows that in general sampling frequency is
very low, applications act as software based controllers and that a generic processor
design can support the applications. The hardware design of the processor should
be as small as possible to reduce the overhead of incorporating a DM in a SoC.
The use of PDL to access instruments happens at such a speed that an application
specific instruction set is not necessary. The extension of the instruction set, as in
the previous dependability manager [1], can be replaced with a Memory Mapped
IO interface to the retargeting engine. The choice of instruction set is redone and
RISC-V is selected due to its size, extensions and the fact that MIPS32 is not open
for use. Among the base instruction sets of RISC-V is also a reduced instruction set
aimed at embedded systems which could be used in the future.

There are multiple ways to incorporate PDL into high level languages, for exam-

111

112 CHAPTER 7. CONCLUSIONS & FUTURE WORK

ple using a PDL interpreter or conversion to another programming language. The
latter is implemented and the choice for a high level language, namely C, is made
to allow cross compilation to many different targets. The previous work only targets
MIPS32 assembly and is based on a modified version of PDL [1]. In essence, the
compiler in this research converts the procedure files to a C framework, this is pos-
sible as almost all PDL level-0 code exists within the confines of a iProc procedure.
As high level languages will be used for dependability applications, the need to ex-
ecute Tcl and PDL level-1 programs fades. However, PDL level-1 files, along with
Tcl, may need to be converted in future work. The new PDL compiler is extendible
through the template engine and the HAL. Procedure files in PDL level-0 suffice to
issue scan commands to the network and to retrieve values from the instruments.

To ease the job of the programmer, this work provides a software toolchain aimed
at generating the PDL framework, compiling drivers for the hardware, linking de-
pendability software to the framework and drivers and compiling the entire appli-
cation to a format ready to use in simulation and FPGA emulation. The framework
compiler is based on the Antlr4 project which allows automatic generation of parsers
and interpreters. The Antlr4 tool needs a grammar specification of the PDL language
and this is provided by the IJTAG standard. The compiler, build in Python, parses
the PDL program and uses a template engine to generate C code. An overview is
given in section 4.5 of the features of PDL supported by the implementation. Not
all features are implemented due to the limited time available in this project. Among
those features are the namespacing that is present in PDL programs. A tree-design
is given as to how future work could handle this, as ICL to H-Array parsing is still a
missing link in the IJTAG toolchain. The compiler was successfully tested with Bas-
tion benchmark PDL files [23] together with a generated H-Array specification [26].

The framework relies on driver files for the Retargeting Engine. This driver soft-
ware forms a Hardware Abstraction Layer that allows easy reuse of the Retargeting
Engine IP on a different platform, using a different Retargeting Tools or cross com-
pilation of the framework to other targets. The driver supports assisted generation
of the H-Array and has method stubs for iRead, iWrite and iApply, the operations
supported by the Retargeting Engine. The driver keeps track of the data structures
suchs as the H-Array and the AR-Stack. It also features a memory mapped mapped
return values array that can be used to extract the last read value of an instrument.

The base for the dependability manager is a RISC-V processor designed in
VHDL. It is a simple Von Neumann-design with no instruction pipeline or caching.
Hardware devices can be added as slaves of the system bus via Memory Mapped

7.1. FUTURE WORK 113

IO. The processor features the Retargeting Engine designed by Ibrahim [2] to al-
low communication with the instrument network. This retargeting engine generates
access vectors based on the current configuration of the network. It keeps track
of access requests in multiple stacks to execute in the scan commands in parallel.
The retargeting engine uses the hierarchy array as a network representation which
easily shows the instruments in the active scan path. The retargeting process is
implemented as a large state machine.

The processor also features a novel interrupt manager for IJTAG networks [3].
This research has also modified the SIB structure provided by the Bastion project to
enable interrupt propagation in the scan network. The interrupt manager operates
on strictly hierarchical tree networks and a simple example network is implemented
in VHDL to test the interrupt localisation and servicing. The device is also memory
mapped and a driver is created to attach interrupt service routines to a specific in-
strument. The interrupt manager allows the activation and deactivation of interrupt
service routines to temporarily disable interrupts and this is also supported by the
drivers.

The final step of the methodology used in the research asks that the complete
system needs validation. Before that, the separate components of the DM are put to
the test. The compiler was validated separately by using benchmark PDL files and
parsing them to the C framework. This framework was compiled successfully and
manually checked that it provided the necessary functionality. The drivers where
also created, checked manually with GCC tools, and used in a complete system
integration test to make sure that they operate on the system bus devices correctly.
The processor and system devices are bench tested separately and finally the whole
processor design was simulated with Modelsim and later emulated on an FPGA. The
system ran a full instruction set test succesfully and three different programs where
made to test the system. One to show output of the LEDs and check the operation of
the Memory Mapped IO, one that uses the Mingle network from the benchmark set
to check reading and writing to the network. It also executes the converted PDL test
file of the benchmark set. The last uses the interrupt enabled simple test network to
show output to the LEDs.

7.1 Future Work

After these integration tests the operation of the DM and its software has been
proven. However, there are still some goals to be met to create a successful De-

114 CHAPTER 7. CONCLUSIONS & FUTURE WORK

pendability Management Platform.

A concious effort to optimize the size and design of the DM. At the beginning
of this thesis it is mentioned that the incorporation of the DM is only viable if its
design size is small compared to the functional layer. This research has made little
attempt to create as small a design as possible. Optimizing the design should be
focussed on the realisation in Silicon. This research took a best-effort approach
regarding processor hardware emulation on an FPGA. The design of the retargeting
engine is already minimized by using a state machine with multiple clock cycles for
loading and storing data in a dedicated memory IP. Furthermore, the DM features
no build-in-self-test or error correcting hardware. These techniques could improve
its resilience and reliability. In order for the DM be effective, it should be more robust
than the hardware it is supposed to be checking.

Implement the remainder of the PDL language features into the PDL2C com-
piler. The compiler design is described clearly in this report so that it can be reused
in future work. The use of templates and separate listeners/generator classes pro-
vides a usable base to continue the framework compiler. As discussed, an important
subset of PDL level-0 functions is implemented but to reach a level of maturity, the
full language must be usable. This also includes full support of the namespacing of
instruments as a Hierarchy Tree combined with the H-Array.

Converting the ICL specification to a usable H-Array and Hierarchy Tree. The
process of converting a network specification to a H-Array is cumbersome and error-
prone. It is also a large omission in the toolchain, that currently is based on a H-Array
file without any meta-data. The Hierarchy Tree specification can also be tackled in
the same process and it can store references to instruments in the H-Array. An ef-
fort is already made [2], [26] but the conversion of ICL to the selection dependency
graph is not yet realised.

To conclude, the idea behind the Dependability Manager is a goal worth reach-
ing. Reusing the already available IJTAG test network on a chip for life time reli-
ability management and continuous testing will increase system dependability at a
low price. A large openly available collection of tried-and-tested dependability ap-
plications could become usable by many engineers for a single platform. System
reliability and dependability in general may become further standardised and more
transparent to the end-user.

Bibliography

[1] M. F. Zakiy, “Hw-sw co-design of an on-chip ijtag dependability processor,”
August 2016. [Online]. Available: http://essay.utwente.nl/70623/

[2] A. Ibrahim and H. G. Kerkhoff, “Analysis and design of an on-chip retargeting
engine for ieee 1687 networks,” in 2016 21th IEEE European Test Symposium
(ETS), May 2016, pp. 1–6.

[3] ——, “Efficient utilization of hierarchical ijtag networks for interrupts manage-
ment,” in 2016 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), Sept 2016, pp. 97–102.

[4] “IEEE standard for test access port and boundary-scan architecture,” IEEE,
Tech. Rep., May 2013.

[5] “IEEE standard for access and control of instrumentation embedded within a
semiconductor device,” IEEE, Tech. Rep., Dec 2014.

[6] D. Liu, Embedded DSP Processor Design: Application Specific Instruction Set
Processors. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2008.

[7] A. A. Ucla, A. Avizienis, J. claude Laprie, and B. Randell, “Fundamental con-
cepts of dependability,” 2001.

[8] D. Cheng and S. K. Gupta, “Ppb: Partially-working processors binning for max-
imizing wafer utilization,” in 2015 IEEE 33rd VLSI Test Symposium (VTS), April
2015, pp. 1–6.

[9] P. Mercati, F. Paterna, A. Bartolini, L. Benini, and T. S. Rosing, “Dynamic vari-
ability management in mobile multicore processors under lifetime constraints,”
in 2014 IEEE 32nd International Conference on Computer Design (ICCD), Oct
2014, pp. 448–455.

[10] C. Zhuo, D. Sylvester, and D. Blaauw, “Process variation and temperature-
aware reliability management,” in 2010 Design, Automation Test in Europe Con-
ference Exhibition (DATE 2010), March 2010, pp. 580–585.

115

http://essay.utwente.nl/70623/

116 BIBLIOGRAPHY

[11] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for lifetime
reliability-aware microprocessors,” in Proceedings. 31st Annual International
Symposium on Computer Architecture, 2004., June 2004, pp. 276–287.

[12] P. Mercati, A. Bartolini, F. Paterna, T. S. Rosing, and L. Benini, “Workload and
user experience-aware dynamic reliability management in multicore proces-
sors,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),
May 2013, pp. 1–6.

[13] R. Berger, L. Burcin, D. Hutcheson, J. Koehler, M. Lassa, M. Milliser, D. Moser,
D. Stanley, R. Zeger, B. Blalock, and M. Hale, “The rad6000mc system-on-chip
microcontroller for spacecraft avionics and instrument control,” in 2008 IEEE
Aerospace Conference, March 2008, pp. 1–14.

[14] J. Andersson, M. Hjorth, F. Johansson, and S. Habinc, “Leon processor devices
for space missions: First 20 years of leon in space,” in 2017 6th International
Conference on Space Mission Challenges for Information Technology (SMC-
IT), Sept 2017, pp. 136–141.

[15] W. J. Broad, “For parts, nasa boldly goes . . . on ebay - the new york times,”
https://www.nytimes.com/2002/05/12/us/for-parts-nasa-boldly-goes-on-ebay.
html, (Accessed on 08/19/2018).

[16] A. Ibrahim, “Test standards reuse for structured and cost-efficient dependability
management of system-on-chips,” Ph.D. dissertation, University of Twente, 4
2018, iDS Ph.D Thesis Series No. 18-461 ISSN: 2589-4730.

[17] H. G. Kerkhoff and X. Zhang, “Design of an infrastructural ip dependability man-
ager for a dependable reconfigurable many-core processor,” in 2010 Fifth IEEE
International Symposium on Electronic Design, Test Applications, Jan 2010,
pp. 270–275.

[18] A. Ibrahim and H. G. Kerkhoff, “A cost-efficient dependability management
framework for self-aware system-on-chips based on ieee 1687,” in 2017 IEEE
23rd International Symposium on On-Line Testing and Robust System Design
(IOLTS), July 2017, pp. 1–2.

[19] U. I. Gebremeskel and J. M. M. Ferreira, “A microprogrammed control path ar-
chitecture for an embedded ieee 1149.1 test coprocessor,” in Design of Circuits
and Integrated Systems, Nov 2014, pp. 1–6.

[20] C. J. Cabral, “Design and implementation of an ieee 1149.7-compliant cjtag
controller for debug and trace probe,” December 2012. [Online]. Available:
https://repositories.lib.utexas.edu/handle/2152/19988?show=full

https://www.nytimes.com/2002/05/12/us/for-parts-nasa-boldly-goes-on-ebay.html
https://www.nytimes.com/2002/05/12/us/for-parts-nasa-boldly-goes-on-ebay.html
https://repositories.lib.utexas.edu/handle/2152/19988?show=full

BIBLIOGRAPHY 117

[21] “Intel active management technology,” https://www.intel.com/content/www/
us/en/architecture-and-technology/intel-active-management-technology.html,
(Accessed on 08/19/2018).

[22] T. Parr, “Antlr,” http://www.antlr.org/, (Accessed on 03/22/2018).

[23] A. Tertov, A. Jutman, S. Devadze, M. S. Reorda, E. Larsson, F. G. Zadegan,
R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of ieee 1687 bench-
mark networks,” in 2016 IEEE International Test Conference (ITC), Nov 2016,
pp. 1–10.

[24] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Reconfigurable scan
networks: Modeling, verification, and optimal pattern generation,” ACM Trans.
Des. Autom. Electron. Syst., vol. 20, no. 2, pp. 30:1–30:27, Mar. 2015. [Online].
Available: http://doi.acm.org/10.1145/2699863

[25] A. Ibrahim and H. Kerkhoff, “Structured scan patterns retargeting for dynamic
instruments access,” in 2017 IEEE 35th VLSI Test Symposium (VTS). IEEE,
4 2017.

[26] F. Mansvelder, “Graph based automatic generation of an on-chip model for ijtag
networks,” 2017.

[27] “Bastion - board and soc test instrumentation for ageing and no failure found,”
http://fp7-bastion.eu/index.php, (Accessed on 03/16/2018).

[28] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of benchmarks for
modular testing of socs,” in Proceedings. International Test Conference, 2002,
pp. 519–528.

[29] “Scanworks ijtag test — asset intertech,” https://www.asset-intertech.com/
products/ijtag-test, (Accessed on 05/28/2018).

[30] “Tessent ijtag - mentor graphics,” https://www.mentor.com/products/
silicon-yield/products/ijtag, (Accessed on 05/28/2018).

[31] “Siliconaid ijtag tool suite,” http://www.siliconaid.com/IJTAG services.html, (Ac-
cessed on 05/28/2018).

[32] M. K. Jain, M. Balakrishnan, and A. Kumar, “Asip design methodologies: survey
and issues,” in VLSI Design 2001. Fourteenth International Conference on VLSI
Design, 2001, pp. 76–81.

[33] “Centrifugal governor - wikipedia,” https://en.wikipedia.org/wiki/Centrifugal
governor, (Accessed on 08/20/2018).

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-active-management-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-active-management-technology.html
http://www.antlr.org/
http://doi.acm.org/10.1145/2699863
http://fp7-bastion.eu/index.php
https://www.asset-intertech.com/products/ijtag-test
https://www.asset-intertech.com/products/ijtag-test
https://www.mentor.com/products/silicon-yield/products/ijtag
https://www.mentor.com/products/silicon-yield/products/ijtag
http://www.siliconaid.com/IJTAG_services.html
https://en.wikipedia.org/wiki/Centrifugal_governor
https://en.wikipedia.org/wiki/Centrifugal_governor

118 BIBLIOGRAPHY

[34] J. C. Maxwell et al., “I. on governors,” Proceedings of the Royal Society of
London, vol. 16, pp. 270–283, 1868.

[35] H. G. Kerkhoff, G. Ali, H. Ebrahimi, and A. Ibrahim, “An automotive mp-soc fea-
turing an advanced embedded instrument infrastructure for high dependability,”
2017 International Test Conference in Asia (ITC-Asia), pp. 65–70, 2017.

[36] H. G. Kerkhoff, G. Ali, J. Wan, A. Ibrahim, and J. Pathrose, “Applying ijtag-
compatible embedded instruments for lifetime enhancement of analog front-
ends of cyber-physical systems,” in 2017 IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC), Oct 2017, pp. 1–6.

[37] A. Ibrahim and H. G. Kerkhoff, “ijtag integration of complex digital embedded
instruments,” in 2014 9th International Design and Test Symposium (IDT), Dec
2014, pp. 18–23.

[38] L. Zhang, Y. Han, Q. Xu, and X.-W. Li, “Defect tolerance in homogeneous
manycore processors using core-level redundancy with unified topology,” pp.
891–896, 03 2008.

[39] J. R. Black, “Electromigration: A brief survey and some recent results,” IEEE
Transactions on Electron Devices, vol. 16, no. 4, pp. 338–347, Apr 1969.

[40] “iphone slow and batteries: What’s going on with apple’s batteries, and how to
get them replaced — the independent,” https://www.independent.co.uk/infact/
iphone-slow-apple-battery-replacement-cost-price-how-to-explained-latest-a8159826.
html, (Accessed on 08/20/2018).

[41] Imagination, “Mips architecture for programmers volume ii-a: The mips32
instruction set manual,” https://www.mips.com/products/architectures/mips32/,
(Accessed on 03/14/2017).

[42] “Specifications - risc-v foundation,” https://riscv.org/specifications/, (Accessed
on 03/14/2018).

[43] “Risc-v genealogy - risc-v foundation,” https://riscv.org/risc-v-genealogy/, (Ac-
cessed on 03/14/2018).

[44] K. Asanovi, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,
H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim,
J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou,
D. A. Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman,
“The rocket chip generator,” EECS Department, University of California,

https://www.independent.co.uk/infact/iphone-slow-apple-battery-replacement-cost-price-how-to-explained-latest-a8159826.html
https://www.independent.co.uk/infact/iphone-slow-apple-battery-replacement-cost-price-how-to-explained-latest-a8159826.html
https://www.independent.co.uk/infact/iphone-slow-apple-battery-replacement-cost-price-how-to-explained-latest-a8159826.html
https://www.mips.com/products/architectures/mips32/
https://riscv.org/specifications/
https://riscv.org/risc-v-genealogy/

BIBLIOGRAPHY 119

Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[45] “freechipsproject/chisel3: Chisel 3,” https://github.com/freechipsproject/chisel3,
(Accessed on 03/14/2018).

[46] “Befehlssatz.pdf,” http://ti.ira.uka.de/TI-2/Mips/Befehlssatz.pdf, (Accessed on
03/14/2018).

[47] “Mips32 architecture for programmers volume ii: The mips32 instruction set,”
https://www.cs.cornell.edu/courses/cs3410/2008fa/MIPS Vol2.pdf, (Accessed
on 03/14/2018).

[48] “Using the gnu compiler collection (gcc): Mips options,” https://gcc.gnu.org/
onlinedocs/gcc/MIPS-Options.html, (Accessed on 03/14/2018).

[49] “Openrisc - openrisc,” https://openrisc.io/, (Accessed on 03/14/2018).

[50] “Openrisc 1200 soft processor — realtime embedded,” http://www.rte.se/
blog/blogg-modesty-corex/openrisc-1200-soft-processor, (Accessed on
03/14/2018).

[51] “Overview of opensparc resources,” http://www.oracle.com/technetwork/
systems/opensparc/index.html, (Accessed on 03/12/2018).

[52] “Opensparc t1,” http://www.oracle.com/technetwork/systems/opensparc/
opensparc-t1-page-1444609.html, (Accessed on 03/14/2018).

[53] “Sparcv9,” https://cr.yp.to/2005-590/sparcv9.pdf, (Accessed on 03/14/2018).

[54] L. Semiconductor, “Latticemico32 processor - lattice semiconduc-
tor,” http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/
IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx, (Accessed on
03/14/2018).

[55] “wyvernsemi/mico32: Latticemico32 instruction set simulator project,” https://
github.com/wyvernSemi/mico32, (Accessed on 03/14/2018).

[56] D. E. Knuth, “Knuth: Mmix,” https://www-cs-faculty.stanford.edu/∼knuth/mmix.
html, (Accessed on 03/14/2018).

[57] ——, “fasc1.pdf,” http://mmix.cs.hm.edu/doc/fasc1.pdf, (Accessed on
03/14/2018).

[58] “Using the gnu compiler collection (gcc): Mmix options,” https://gcc.gnu.org/
onlinedocs/gcc/MMIX-Options.html, (Accessed on 03/14/2018).

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://github.com/freechipsproject/chisel3
http://ti.ira.uka.de/TI-2/Mips/Befehlssatz.pdf
https://www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf
https://gcc.gnu.org/onlinedocs/gcc/MIPS-Options.html
https://gcc.gnu.org/onlinedocs/gcc/MIPS-Options.html
https://openrisc.io/
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.oracle.com/technetwork/systems/opensparc/index.html
http://www.oracle.com/technetwork/systems/opensparc/index.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
https://cr.yp.to/2005-590/sparcv9.pdf
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx
https://github.com/wyvernSemi/mico32
https://github.com/wyvernSemi/mico32
https://www-cs-faculty.stanford.edu/~knuth/mmix.html
https://www-cs-faculty.stanford.edu/~knuth/mmix.html
http://mmix.cs.hm.edu/doc/fasc1.pdf
https://gcc.gnu.org/onlinedocs/gcc/MMIX-Options.html
https://gcc.gnu.org/onlinedocs/gcc/MMIX-Options.html

120 BIBLIOGRAPHY

[59] “openrisc,” https://github.com/openrisc, (Accessed on 03/14/2018).

[60] “riscv/riscv-gcc,” https://github.com/riscv/riscv-gcc, (Accessed on 03/16/2018).

[61] “Binutils - gnu project - free software foundation,” https://www.gnu.org/software/
binutils/, (Accessed on 03/12/2018).

[62] “The rust programming language,” https://www.rust-lang.org/en-US/, (Ac-
cessed on 03/16/2018).

[63] “Rust platform support the rust programming language,” https://forge.rust-lang.
org/platform-support.html, (Accessed on 03/16/2018).

[64] “Misra - the motor industry software reliability association,” https://www.misra.
org.uk/, (Accessed on 03/16/2018).

[65] “Jpl institutional coding standard,” https://lars-lab.jpl.nasa.gov/JPL Coding
Standard C.pdf, (Accessed on 03/16/2018).

[66] “Embeddedpython - python wiki,” https://wiki.python.org/moin/
EmbeddedPython, (Accessed on 03/16/2018).

[67] “Raspberry pi teach, learn, and make with raspberry pi,” https://www.
raspberrypi.org/, (Accessed on 08/21/2018).

[68] “Beagleboard.org - black,” https://beagleboard.org/black/, (Accessed on
08/21/2018).

[69] “Interfacing with external c code cython 0.28 documentation,” http://cython.
readthedocs.io/en/latest/src/userguide/external C code.html, (Accessed on
03/16/2018).

[70] “Java se development kit 8 - downloads,” http://www.oracle.com/technetwork/
java/javase/downloads/jdk8-downloads-2133151.html, (Accessed on
03/16/2018).

[71] “Readytalk/avian: Avian is a lightweight virtual machine and class library
designed to provide a useful subset of java’s features, suitable for building
self-contained applications.” https://github.com/ReadyTalk/avian, (Accessed on
03/16/2018).

[72] “Java write directly to memory,” https://www.mkyong.com/java/
java-write-directly-to-memory/, (Accessed on 03/16/2018).

[73] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf,
2013.

https://github.com/openrisc
https://github.com/riscv/riscv-gcc
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
https://www.rust-lang.org/en-US/
https://forge.rust-lang.org/platform-support.html
https://forge.rust-lang.org/platform-support.html
https://www.misra.org.uk/
https://www.misra.org.uk/
https://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf
https://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf
https://wiki.python.org/moin/EmbeddedPython
https://wiki.python.org/moin/EmbeddedPython
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://beagleboard.org/black/
http://cython.readthedocs.io/en/latest/src/userguide/external_C_code.html
http://cython.readthedocs.io/en/latest/src/userguide/external_C_code.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://github.com/ReadyTalk/avian
https://www.mkyong.com/java/java-write-directly-to-memory/
https://www.mkyong.com/java/java-write-directly-to-memory/

BIBLIOGRAPHY 121

[74] “Partcl - a tiny command language,” https://zserge.com/blog/tcl-interpreter.html,
(Accessed on 03/22/2018).

[75] “zserge/partcl: Partcl - a micro tcl implementation,” https://github.com/zserge/
partcl, (Accessed on 03/22/2018).

[76] “Gcc, the gnu compiler collection - gnu project - free software foundation (fsf),”
https://gcc.gnu.org/, (Accessed on 03/16/2017).

[77] “Wishbone :: Opencores,” https://opencores.org/howto/wishbone, (Accessed
on 04/12/2018).

[78] “Terasic - all fpga main boards - cyclone iv - de0-nano development and ed-
ucation board,” https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=
English&CategoryNo=139&No=593&PartNo=3, (Accessed on 05/30/2018).

[79] D. M. Merten, “maikmerten/riscv-tomthumb: A small risc-v rv32i core written
in vhdl, intended as testbed for my personal vhdl learning,” https://github.com/
maikmerten/riscv-tomthumb, (Accessed on 03/16/2018).

[80] “Introduction to qsys,” https://www.altera.com/support/training/course/
oqsys1000.html, (Accessed on 05/31/2018).

[81] M. Murdocca and V. Heuring, Computer Architecture and Organization: An
Integrated Approach. Wiley, 2007. [Online]. Available: https://books.google.
nl/books?id=yUQ AQAAIAAJ

[82] “Logic elements and logic array blocks in cyclone iv devices, cyclone iv device
handbook volume 1, chapter 2.” https://www.altera.com/en US/pdfs/literature/
hb/cyclone-iv/cyiv-51002.pdf, (Accessed on 06/03/2018).

[83] “Fpga logic cells comparison,” http://ee.sharif.edu/∼asic/Docs/fpga-logic-cells
V4 V5.pdf, (Accessed on 06/03/2018).

https://zserge.com/blog/tcl-interpreter.html
https://github.com/zserge/partcl
https://github.com/zserge/partcl
https://gcc.gnu.org/
https://opencores.org/howto/wishbone
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=593&PartNo=3
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=593&PartNo=3
https://github.com/maikmerten/riscv-tomthumb
https://github.com/maikmerten/riscv-tomthumb
https://www.altera.com/support/training/course/oqsys1000.html
https://www.altera.com/support/training/course/oqsys1000.html
https://books.google.nl/books?id=yUQ_AQAAIAAJ
https://books.google.nl/books?id=yUQ_AQAAIAAJ
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51002.pdf
https://www.altera.com/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51002.pdf
http://ee.sharif.edu/~asic/Docs/fpga-logic-cells_V4_V5.pdf
http://ee.sharif.edu/~asic/Docs/fpga-logic-cells_V4_V5.pdf

122 BIBLIOGRAPHY

Appendix A

CSU Timing Diagram

This appendix contains some reference for the IJTAG scan elements. The first is
a functional circuit diagram in Fig. A.1. The second is a timing diagram of a CSU
cycle in Fig. A.2. Together they allow scanning of data through the boundary scan
interface.

Figure A.1: The logic within a scan register taken from the IJTAG standard [5].

123

124 APPENDIX A. CSU TIMING DIAGRAM

Figure A.2: CSU timing diagram taken from the IJTAG standard [5].

Appendix B

Retargeting Engine Memory

This appendix contains an overview of the memory used by the Retargeting Engine,
see Fig B.1. The memory is an IP block from Altera that enables use of the dedicated
memory cells of the FPGA. Its size is 1024 words of 32 bit, of which roughly half is
used by the retargeting engine. The data-structures of the retargeting engine are
parametrised to allow different sizes for testing purposes. The data types are always
the size of a data-word so access is to the data is easier. The retargeting engine data
is memory mapped with byte addresses to the system bus. The memory contains
the H-Array with 64 entries, 32 AR-Stacks which hold 8 spaces, 64 Read Requests
spaces and Read Values at the same size of the H-Array.

125

126 APPENDIX B. RETARGETING ENGINE MEMORY

Remainder of HArray Entries

HArray Base: 0

63

AR_Stack 0

Stack Size amount of Access Requests
8 words of 32 bit

Total of 32 AR_Stacks

AR Stack Base: 64

AR_Stack 1

Stack Size amount of Access Requests
8 words of 32 bit

Word Address: Decimal Byte Address: Hexadecimal

Read Request Base: 320

72

319

Remainder of Read Requests

Remainder of Read Values

Read Values Base: 384
383

447

0x0000

0x00FC
0x0100

Retargeting Engine Memory: 32 bit wide

0x04FC

0x0500

0x05FC
0x0600

0x06FC

Remainder of
 Implemented Retargeting Engine Memory

not used, but retargeting engine data structures are parameterized
and expansion is possible.

xxxx

xxxx

448

1023

0x0700

0x0FFC

0x0120

TDR 0xXX TDR Length
SCB 0xXX State Vector Pointer

SIB / I0 / I1 SCB Pointer Segment Length

Read/Write HArray ID Value

Read/Write HArray ID Value

xxxx HArray ID TDR LengthShift Buffer Pointer
xxxx HArray ID TDR LengthShift Buffer Pointer

Read Value of HArray entry at 0
Read Value of HArray entry at 1

Figure B.1: Memory used by the Retargeting Engine, accessible via the System
Bus.

Appendix C

The Mingle Network

This appendix contains resources related to the Mingle network from the Bastion
benchmark test networks available online [23], [27].

Figure C.1: A schematic overview of the network layout taken from the Bastion
benchmark set [27].

127

128 APPENDIX C. THE MINGLE NETWORK

Listing C.1: Newly created PDL file for the Mingle network.
PDL file for the Mingle Bastion Benchmark network.

Stephen Geerlings

iPDLLevel 0 -version STD_1687_2014;

5

iProcsForModule root:: Mingle;

iProc iwrite_to_instrument { write_instrument value} {

10 iWrite $write_instrument $value;

iApply;

}

iProc iread_from_instrument { read_instrument } {

15 iRead $read_instrument ;

iApply;

}

iProc start_up { } {

20 iWrite WI_1 11;

iWrite WI_6 22;

iWrite WI_5 33;

iWrite WI_4 44;

iWrite WI_2 55;

25 iWrite WI_7 66;

iWrite WI_3 77;

iWrite WI_8 88;

iApply;

30 }

iProc check_start_up { } {

iRead WI_1 11;

iRead WI_2 22;

35 iRead WI_3 33;

iRead WI_4 44;

iRead WI_5 55;

iRead WI_6 66;

iRead WI_7 77;

40 iRead WI_8 88;

iApply;

}

45 iProc read_write_test { instrument} {

iCall iwrite_to_instrument $instrument 0xAA;

iCall iread_from_instrument $instrument;

}

129

Listing C.2: Generated header file for the framework.
i f n d e f PDL_HARRAY_DEFINITIONS

def ine PDL_HARRAY_DEFINITIONS

/∗∗
∗ This is a generated header file and library for executing PDL on the Dependability

↪→ Manager Core
5 ∗ University of Twente, 2018

∗ Stephen Geerlings
∗ s.a.geerlings@alumnus.utwente.nl
∗/

10 # def ine SIB_1 (0)

def ine I0_SCB3 (1)

def ine SIB_5 (2)

def ine WI_5 (3)

def ine SIB_6 (4)

15 # def ine WI_6 (5)

def ine SCB_6 (6)

def ine SCB_5 (7)

def ine I1_SCB3 (8)

def ine SCB_POST3 (9)

20 # def ine SIB_POST3 (10)

def ine WI_7 (11)

def ine SIB_7 (12)

def ine WI_8 (13)

def ine SCB_7 (14)

25 # def ine SCB_SCB3 (15)

def ine SCB_1 (16)

def ine SIB_2 (17)

def ine I0_SCB2 (18)

def ine I0_SCB1 (19)

30 # def ine VOID_1 (20)

def ine I1_SCB1 (21)

def ine WI_1 (22)

def ine I1_SCB2 (23)

def ine SCB_SCB1 (24)

35 # def ine SIB_3 (25)

def ine SCB_POST1 (26)

def ine SIB_POST1 (27)

def ine WI_3 (28)

def ine SCB_POST2 (29)

40 # def ine SIB_POST2 (30)

def ine WI_4 (31)

def ine SCB_3 (32)

def ine SIB_4 (33)

def ine WI_2 (34)

45 # def ine SCB_4 (35)

def ine SCB_SCB2 (36)

def ine SCB_2 (37)

void iwrite_to_instrument(i n t , i n t);
50 void iread_from_instrument(i n t);

void start_up ();

void check_start_up ();

void read_write_test(i n t);

55 /∗∗
∗
∗ End of header
∗ Enjoy!
∗

60 ∗/
end i f

130 APPENDIX C. THE MINGLE NETWORK

Listing C.3: Generated code file based on Listing C.1 (1/2).

/∗∗
∗ This is a generated library for executing PDL on the Dependability Manager IP Core
∗ University of Twente, 2018

5 ∗ Stephen Geerlings
∗ s.a.geerlings@alumnus.utwente.nl
∗/

include "../ dm_lib/dm_re_lib.h"

10 # include "mingle_pdl.h"

/∗∗
∗ Autogenerated function
∗∗/

15 void iwrite_to_instrument(i n t write_instrument , i n t value)

{

/∗∗ iWrite $write_instrument $value ∗∗/
iWrite(write_instrument , value);

/∗∗ iApply ∗∗/
20 iApply ();

}

/∗∗
∗ Autogenerated function

25 ∗∗/
void iread_from_instrument(i n t read_instrument)

{

/∗∗ iRead $read_instrument ∗∗/
iRead(read_instrument);

30 /∗∗ iApply ∗∗/
iApply ();

}

/∗∗
35 ∗ Autogenerated function

∗∗/
void start_up ()

{

/∗∗ iWrite WI_1 11 ∗∗/
40 iWrite (22, 11);

/∗∗ iWrite WI_6 22 ∗∗/
iWrite(5, 22);

/∗∗ iWrite WI_5 33 ∗∗/
iWrite(3, 33);

45 /∗∗ iWrite WI_4 44 ∗∗/
iWrite (31, 44);

/∗∗ iWrite WI_2 55 ∗∗/
iWrite (34, 55);

/∗∗ iWrite WI_7 66 ∗∗/
50 iWrite (11, 66);

/∗∗ iWrite WI_3 77 ∗∗/
iWrite (28, 77);

/∗∗ iWrite WI_8 88 ∗∗/
iWrite (13, 88);

55 /∗∗ iApply ∗∗/
iApply ();

}

131

Listing C.4: Generated code file continued (2/2).

/∗∗
∗ Autogenerated function
∗∗/

5 void check_start_up ()

{

/∗∗ iRead WI_1 11 ∗∗/
iRead(22);

/∗∗ iRead WI_2 22 ∗∗/
10 iRead(34);

/∗∗ iRead WI_3 33 ∗∗/
iRead(28);

/∗∗ iRead WI_4 44 ∗∗/
iRead(31);

15 /∗∗ iRead WI_5 55 ∗∗/
iRead(3);

/∗∗ iRead WI_6 66 ∗∗/
iRead(5);

/∗∗ iRead WI_7 77 ∗∗/
20 iRead(11);

/∗∗ iRead WI_8 88 ∗∗/
iRead(13);

/∗∗ iApply ∗∗/
iApply ();

25

}

/∗∗
∗ Autogenerated function

30 ∗∗/
void read_write_test(i n t instrument)

{

iwrite_to_instrument(instrument , 170);

iread_from_instrument(instrument);

35 }

/∗∗
∗ End of library
∗ Enjoy!

40 ∗
∗/

132 APPENDIX C. THE MINGLE NETWORK

Listing C.5: PDL file for the Mingle network from the Bastion project [23], [27].

Date: 08 _01_2018 17:58 _51

Version: 1_10_17

Generated by Testonica Lab tools

5

Modified to allow integration with identifiers in HArray

Stephen Geerlings

#

For example:

10 # ICL Path -> HArray ID

WI1.reg8.SR -> WI_1

SIBpost1.SR -> SCB_post1

SIB7.SR -> SCB_7

#

15

iPDLLevel 0 -version STD_1687_2014;

iProcsForModule root:: Mingle;

20 iProc all_scanregistes_in_one_iApply {} {

iWrite SCB_post1 0b1;

iWrite WI_1 0bx10001110110111101100101100011010;

iWrite WI_6 0bx1110100001101001111011000011111;

iWrite SCB_post2 0b1;

25 iWrite SCB_post3 0b1;

iWrite Void_1 0b1;

iWrite WI_5 0bx11011111111100001000011100011110;

iWrite SCB_7 0b1;

iWrite WI_4 0bx1001011101011000001100000011101;

30 iWrite SCB_6 0b1;

iWrite SCB_4 0b1;

iWrite SCB_5 0b1;

iWrite SCB_3 0b1;

iWrite SCB_2 0b1;

35 iWrite WI_2 0bx100011001000110011101000011011;

iWrite SCB_1 0b1;

iWrite WI_7 0bx1000011110010110010100100000;

iWrite WI_3 0bx10110111011001111010100100011100;

iWrite WI_8 0bx10011100101111011101010000100001;

40 iWrite SCB_scb1 0b1;

iWrite SCB_scb2 0b1;

iWrite SCB_scb3 0b1;

iApply;

iRead SCB_post1 0b1;

45 iRead WI_1 0bx10001110110111101100101100011010;

iRead WI_6 0bx1110100001101001111011000011111;

iRead SCB_post2 0b1;

iRead SCB_post3 0b1;

iRead Void_1 0b1;

50 iRead WI_5 0bx11011111111100001000011100011110;

iRead SCB_7 0b1;

iRead WI_4 0bx1001011101011000001100000011101;

iRead SCB_6 0b1;

iRead SCB_4 0b1;

55 iRead SCB_5 0b1;

iRead SCB_3 0b1;

iRead SCB_2 0b1;

iRead WI_2 0bx100011001000110011101000011011;

iRead SCB_1 0b1;

60 iRead WI_7 0bx1000011110010110010100100000;

...

133

Listing C.6: PDL file continued (2/3).
iRead WI_3 0bx10110111011001111010100100011100;

iRead WI_8 0bx10011100101111011101010000100001;

iRead SCB_scb1 0b1;

iRead SCB_scb2 0b1;

5 iRead SCB_scb3 0b1;

iApply;

}

iProc one_scanregister_per_iApply {} {

10 iWrite SCB_post1 0b1;

iApply;

iRead SCB_post1 0b1;

iApply;

iWrite WI_1 0bx10001110110111101100101100011010;

15 iApply;

iRead WI_1 0bx10001110110111101100101100011010;

iApply;

iWrite WI_6 0bx1110100001101001111011000011111;

iApply;

20 iRead WI_6 0bx1110100001101001111011000011111;

iApply;

iWrite SCB_post2 0b1;

iApply;

iRead SCB_post2 0b1;

25 iApply;

iWrite SCB_post3 0b1;

iApply;

iRead SCB_post3 0b1;

iApply;

30 iWrite Void_1 0b1;

iApply;

iRead Void_1 0b1;

iApply;

iWrite WI_5 0bx11011111111100001000011100011110;

35 iApply;

iRead WI_5 0bx11011111111100001000011100011110;

iApply;

iWrite SCB_7 0b1;

iApply;

40 iRead SCB_7 0b1;

iApply;

iWrite WI_4 0bx1001011101011000001100000011101;

iApply;

iRead WI_4 0bx1001011101011000001100000011101;

45 iApply;

iWrite SCB_6 0b1;

iApply;

iRead SCB_6 0b1;

iApply;

50 iWrite SCB_4 0b1;

iApply;

iRead SCB_4 0b1;

iApply;

iWrite SCB_5 0b1;

55 iApply;

iRead SCB_5 0b1;

iApply;

iWrite SCB_3 0b1;

iApply;

60 iRead SCB_3 0b1;

...

134 APPENDIX C. THE MINGLE NETWORK

Listing C.7: PDL file continued (3/3).
iApply;

iWrite SCB_2 0b1;

iApply;

iRead SCB_2 0b1;

5 iApply;

iWrite WI_2 0bx100011001000110011101000011011;

iApply;

iRead WI_2 0bx100011001000110011101000011011;

iApply;

10 iWrite SCB_1 0b1;

iApply;

iRead SCB_1 0b1;

iApply;

iWrite WI_7 0bx1000011110010110010100100000;

15 iApply;

iRead WI_7 0bx1000011110010110010100100000;

iApply;

iWrite WI_3 0bx10110111011001111010100100011100;

iApply;

20 iRead WI_3 0bx10110111011001111010100100011100;

iApply;

iWrite WI_8 0bx10011100101111011101010000100001;

iApply;

iRead WI_8 0bx10011100101111011101010000100001;

25 iApply;

iWrite SCB_scb1 0b1;

iApply;

iRead SCB_scb1 0b1;

iApply;

30 iWrite SCB_scb2 0b1;

iApply;

iRead SCB_scb2 0b1;

iApply;

iWrite SCB_scb3 0b1;

35 iApply;

iRead SCB_scb3 0b1;

iApply;

}

40 iProc start_test {} {

iCall all_scanregistes_in_one_iApply;

iCall one_scanregister_per_iApply;

}

135

Listing C.8: Generated header file for the Mingle PDL.
i f n d e f PDL_HARRAY_DEFINITIONS

def ine PDL_HARRAY_DEFINITIONS

/∗∗
∗ This is a generated header file and library for executing PDL on the Dependability

↪→ Manager Core
5 ∗ University of Twente, 2018

∗ Stephen Geerlings
∗ s.a.geerlings@alumnus.utwente.nl
∗/

10 # def ine SIB_1 (0)

def ine I0_SCB3 (1)

def ine SIB_5 (2)

def ine WI_5 (3)

def ine SIB_6 (4)

15 # def ine WI_6 (5)

def ine SCB_6 (6)

def ine SCB_5 (7)

def ine I1_SCB3 (8)

def ine SCB_POST3 (9)

20 # def ine SIB_POST3 (10)

def ine WI_7 (11)

def ine SIB_7 (12)

def ine WI_8 (13)

def ine SCB_7 (14)

25 # def ine SCB_SCB3 (15)

def ine SCB_1 (16)

def ine SIB_2 (17)

def ine I0_SCB2 (18)

def ine I0_SCB1 (19)

30 # def ine VOID_1 (20)

def ine I1_SCB1 (21)

def ine WI_1 (22)

def ine I1_SCB2 (23)

def ine SCB_SCB1 (24)

35 # def ine SIB_3 (25)

def ine SCB_POST1 (26)

def ine SIB_POST1 (27)

def ine WI_3 (28)

def ine SCB_POST2 (29)

40 # def ine SIB_POST2 (30)

def ine WI_4 (31)

def ine SCB_3 (32)

def ine SIB_4 (33)

def ine WI_2 (34)

45 # def ine SCB_4 (35)

def ine SCB_SCB2 (36)

def ine SCB_2 (37)

void all_scanregistes_in_one_iApply ();

50 void one_scanregister_per_iApply ();

void start_test ();

/∗∗
∗

55 ∗ End of header
∗ Enjoy!
∗
∗/
end i f

136 APPENDIX C. THE MINGLE NETWORK

Listing C.9: Generated code file based on Listing C.5 (1/6).

/∗∗
∗ This is a generated library for executing PDL on the Dependability Manager IP Core
∗ University of Twente, 2018

5 ∗ Stephen Geerlings
∗ s.a.geerlings@alumnus.utwente.nl
∗/

include "../ dm_lib/dm_re_lib.h"

10 # include "mingle_pdl.h"

/∗∗
∗ Autogenerated function

15 ∗
∗∗/
void all_scanregistes_in_one_iApply ()

{

/∗∗ iWrite SCB_post1 0b1 ∗∗/
20 iWrite (26, 1);

/∗∗ iWrite WI_1 0bx10001110110111101100101100011010 ∗∗/
iWrite (22, 2396965658);

/∗∗ iWrite WI_6 0bx1110100001101001111011000011111 ∗∗/
iWrite(5, 1949627935);

25 /∗∗ iWrite SCB_post2 0b1 ∗∗/
iWrite (29, 1);

/∗∗ iWrite SCB_post3 0b1 ∗∗/
iWrite(9, 1);

/∗∗ iWrite Void_1 0b1 ∗∗/
30 iWrite (20, 1);

/∗∗ iWrite WI_5 0bx11011111111100001000011100011110 ∗∗/
iWrite(3, 3757082398);

/∗∗ iWrite SCB_7 0b1 ∗∗/
iWrite (14, 1);

35 /∗∗ iWrite WI_4 0bx1001011101011000001100000011101 ∗∗/
iWrite (31, 1269569565);

/∗∗ iWrite SCB_6 0b1 ∗∗/
iWrite(6, 1);

/∗∗ iWrite SCB_4 0b1 ∗∗/
40 iWrite (35, 1);

/∗∗ iWrite SCB_5 0b1 ∗∗/
iWrite(7, 1);

/∗∗ iWrite SCB_3 0b1 ∗∗/
iWrite (32, 1);

45 /∗∗ iWrite SCB_2 0b1 ∗∗/
iWrite (37, 1);

/∗∗ iWrite WI_2 0bx100011001000110011101000011011 ∗∗/
iWrite (34, 589511195);

/∗∗ iWrite SCB_1 0b1 ∗∗/
50 iWrite (16, 1);

/∗∗ iWrite WI_7 0bx1000011110010110010100100000 ∗∗/
iWrite (11, 142173472);

/∗∗ iWrite WI_3 0bx10110111011001111010100100011100 ∗∗/
iWrite (28, 3077024028);

55 /∗∗ iWrite WI_8 0bx10011100101111011101010000100001 ∗∗/
iWrite (13, 2629686305);

/∗∗ iWrite SCB_scb1 0b1 ∗∗/
iWrite (24, 1);

/∗∗ iWrite SCB_scb2 0b1 ∗∗/
60 iWrite (36, 1);

...

137

Listing C.10: Generated code file continued (2/6).
/∗∗ iWrite SCB_scb3 0b1 ∗∗/
iWrite (15, 1);

/∗∗ iApply ∗∗/
iApply ();

5 /∗∗ iRead SCB_post1 0b1 ∗∗/
iRead(26);

/∗∗ iRead WI_1 0bx10001110110111101100101100011010 ∗∗/
iRead(22);

/∗∗ iRead WI_6 0bx1110100001101001111011000011111 ∗∗/
10 iRead(5);

/∗∗ iRead SCB_post2 0b1 ∗∗/
iRead(29);

/∗∗ iRead SCB_post3 0b1 ∗∗/
iRead(9);

15 /∗∗ iRead Void_1 0b1 ∗∗/
iRead(20);

/∗∗ iRead WI_5 0bx11011111111100001000011100011110 ∗∗/
iRead(3);

/∗∗ iRead SCB_7 0b1 ∗∗/
20 iRead(14);

/∗∗ iRead WI_4 0bx1001011101011000001100000011101 ∗∗/
iRead(31);

/∗∗ iRead SCB_6 0b1 ∗∗/
iRead(6);

25 /∗∗ iRead SCB_4 0b1 ∗∗/
iRead(35);

/∗∗ iRead SCB_5 0b1 ∗∗/
iRead(7);

/∗∗ iRead SCB_3 0b1 ∗∗/
30 iRead(32);

/∗∗ iRead SCB_2 0b1 ∗∗/
iRead(37);

/∗∗ iRead WI_2 0bx100011001000110011101000011011 ∗∗/
iRead(34);

35 /∗∗ iRead SCB_1 0b1 ∗∗/
iRead(16);

/∗∗ iRead WI_7 0bx1000011110010110010100100000 ∗∗/
iRead(11);

/∗∗ iRead WI_3 0bx10110111011001111010100100011100 ∗∗/
40 iRead(28);

/∗∗ iRead WI_8 0bx10011100101111011101010000100001 ∗∗/
iRead(13);

/∗∗ iRead SCB_scb1 0b1 ∗∗/
iRead(24);

45 /∗∗ iRead SCB_scb2 0b1 ∗∗/
iRead(36);

/∗∗ iRead SCB_scb3 0b1 ∗∗/
iRead(15);

/∗∗ iApply ∗∗/
50 iApply ();

}

/∗∗
55 ∗ Autogenerated function

∗
∗∗/
void one_scanregister_per_iApply ()

{

60 /∗∗ iWrite SCB_post1 0b1 ∗∗/
iWrite (26, 1);

...

138 APPENDIX C. THE MINGLE NETWORK

Listing C.11: Generated code file continued (3/6).
/∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead SCB_post1 0b1 ∗∗/
iRead(26);

5 /∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite WI_1 0bx10001110110111101100101100011010 ∗∗/
iWrite (22, 2396965658);

/∗∗ iApply ∗∗/
10 iApply ();

/∗∗ iRead WI_1 0bx10001110110111101100101100011010 ∗∗/
iRead(22);

/∗∗ iApply ∗∗/
iApply ();

15 /∗∗ iWrite WI_6 0bx1110100001101001111011000011111 ∗∗/
iWrite(5, 1949627935);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead WI_6 0bx1110100001101001111011000011111 ∗∗/
20 iRead(5);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite SCB_post2 0b1 ∗∗/
iWrite (29, 1);

25 /∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead SCB_post2 0b1 ∗∗/
iRead(29);

/∗∗ iApply ∗∗/
30 iApply ();

/∗∗ iWrite SCB_post3 0b1 ∗∗/
iWrite(9, 1);

/∗∗ iApply ∗∗/
iApply ();

35 /∗∗ iRead SCB_post3 0b1 ∗∗/
iRead(9);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite Void_1 0b1 ∗∗/
40 iWrite (20, 1);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead Void_1 0b1 ∗∗/
iRead(20);

45 /∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite WI_5 0bx11011111111100001000011100011110 ∗∗/
iWrite(3, 3757082398);

/∗∗ iApply ∗∗/
50 iApply ();

/∗∗ iRead WI_5 0bx11011111111100001000011100011110 ∗∗/
iRead(3);

/∗∗ iApply ∗∗/
iApply ();

55 /∗∗ iWrite SCB_7 0b1 ∗∗/
iWrite (14, 1);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead SCB_7 0b1 ∗∗/
60 iRead(14);

...

139

Listing C.12: Generated code file continued (4/6).
/∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite WI_4 0bx1001011101011000001100000011101 ∗∗/
iWrite (31, 1269569565);

5 /∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead WI_4 0bx1001011101011000001100000011101 ∗∗/
iRead(31);

/∗∗ iApply ∗∗/
10 iApply ();

/∗∗ iWrite SCB_6 0b1 ∗∗/
iWrite(6, 1);

/∗∗ iApply ∗∗/
iApply ();

15 /∗∗ iRead SCB_6 0b1 ∗∗/
iRead(6);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite SCB_4 0b1 ∗∗/
20 iWrite (35, 1);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead SCB_4 0b1 ∗∗/
iRead(35);

25 /∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite SCB_5 0b1 ∗∗/
iWrite(7, 1);

/∗∗ iApply ∗∗/
30 iApply ();

/∗∗ iRead SCB_5 0b1 ∗∗/
iRead(7);

/∗∗ iApply ∗∗/
iApply ();

35 /∗∗ iWrite SCB_3 0b1 ∗∗/
iWrite (32, 1);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead SCB_3 0b1 ∗∗/
40 iRead(32);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite SCB_2 0b1 ∗∗/
iWrite (37, 1);

45 /∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead SCB_2 0b1 ∗∗/
iRead(37);

/∗∗ iApply ∗∗/
50 iApply ();

/∗∗ iWrite WI_2 0bx100011001000110011101000011011 ∗∗/
iWrite (34, 589511195);

/∗∗ iApply ∗∗/
iApply ();

55 /∗∗ iRead WI_2 0bx100011001000110011101000011011 ∗∗/
iRead(34);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite SCB_1 0b1 ∗∗/
60 iWrite (16, 1);

...

140 APPENDIX C. THE MINGLE NETWORK

Listing C.13: Generated code file continued (5/6).
/∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead SCB_1 0b1 ∗∗/
iRead(16);

5 /∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite WI_7 0bx1000011110010110010100100000 ∗∗/
iWrite (11, 142173472);

/∗∗ iApply ∗∗/
10 iApply ();

/∗∗ iRead WI_7 0bx1000011110010110010100100000 ∗∗/
iRead(11);

/∗∗ iApply ∗∗/
iApply ();

15 /∗∗ iWrite WI_3 0bx10110111011001111010100100011100 ∗∗/
iWrite (28, 3077024028);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead WI_3 0bx10110111011001111010100100011100 ∗∗/
20 iRead(28);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite WI_8 0bx10011100101111011101010000100001 ∗∗/
iWrite (13, 2629686305);

25 /∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead WI_8 0bx10011100101111011101010000100001 ∗∗/
iRead(13);

/∗∗ iApply ∗∗/
30 iApply ();

/∗∗ iWrite SCB_scb1 0b1 ∗∗/
iWrite (24, 1);

/∗∗ iApply ∗∗/
iApply ();

35 /∗∗ iRead SCB_scb1 0b1 ∗∗/
iRead(24);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite SCB_scb2 0b1 ∗∗/
40 iWrite (36, 1);

/∗∗ iApply ∗∗/
iApply ();

/∗∗ iRead SCB_scb2 0b1 ∗∗/
iRead(36);

45 /∗∗ iApply ∗∗/
iApply ();

/∗∗ iWrite SCB_scb3 0b1 ∗∗/
iWrite (15, 1);

/∗∗ iApply ∗∗/
50 iApply ();

/∗∗ iRead SCB_scb3 0b1 ∗∗/
iRead(15);

/∗∗ iApply ∗∗/
iApply ();

55 }

141

Listing C.14: Generated code file continued (6/6).
/∗∗
∗ Autogenerated function
∗
∗∗/

5 void start_test ()

{

all_scanregistes_in_one_iApply();

one_scanregister_per_iApply();

10 }

/∗∗
∗
∗ End of library

15 ∗ Enjoy!
∗
∗/

142 APPENDIX C. THE MINGLE NETWORK

M
ingle

W
rappedInstr:

W
I1

SR
eg:

reg8
Instrum

ent:
I1

ScanR
egister:

SR

W
rappedInstr:

W
I2

SR
eg:

reg8
Instrum

ent:
I2

ScanR
egister:

SR

SIB_m
ux_pre:

SIB1

ScanR
egister:

SR

SIB_m
ux_post:

SIBpost1

ScanR
egister:

SR

SC
B:

SC
B1

ScanR
egister:

SR

BypassR
eg:

Void1

ScanR
egister:

SR

SIB_m
ux_pre:

SIB2

ScanR
egister:

SR

SIB_m
ux_pre:

SIB3

ScanR
egister:

SR

SIB_m
ux_pre:

SIB4

ScanR
egister:

SR

SIB_m
ux_pre:

SIB5

ScanR
egister:

SR

SIB_m
ux_pre:

SIB6

ScanR
egister:

SR

SIB_m
ux_pre:

SIB7

ScanR
egister:

SR

SIB_m
ux_post:

SIBpost1

ScanR
egister:

SR

SIB_m
ux_post:

SIBpost1

ScanR
egister:

SR

W
rappedInstr:

W
I3

SR
eg:

reg8
Instrum

ent:
I3

ScanR
egister:

SR

W
rappedInstr:

W
I4

SR
eg:

reg8
Instrum

ent:
I4

ScanR
egister:

SR

W
rappedInstr:

W
I5

SR
eg:

reg8
Instrum

ent:
I5

ScanR
egister:

SR

W
rappedInstr:

W
I6

SR
eg:

reg8
Instrum

ent:
I6

ScanR
egister:

SR

W
rappedInstr:

W
I7

SR
eg:

reg8
Instrum

ent:
I7

ScanR
egister:

SR

W
rappedInstr:

W
I8

SR
eg:

reg8
Instrum

ent:
I8

ScanR
egister:

SR

SC
B:

SC
B2

ScanR
egister:

SR

SC
B:

SC
B3

ScanR
egister:

SR

Figure
C

.2:
The

fullhierarchy
tree

ofthe
M

ingle
netw

ork.

143

0
1
2
3
4
5
6
7
8
9

10
11

Index

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

SIB_1
I0_SCB3

SIB_5
WI_5
SIB_6
WI_6

SCB_6
SCB_5

I1_SCB3
SCB_POST3
SIB_POST3

WI_7
SIB_7
WI_8

SCB_7
SCB_SCB3

SCB_1
SIB_2

I0_SCB2
I0_SCB1
VOID_1
I1_SCB1

WI_1
I1_SCB2

SCB_SCB1
SIB_3

SCB_POST1
SIB_POST1

WI_3
SCB_POST2
SIB_POST2

WI_4
SCB_3
SIB_4
WI_2

SCB_4
SCB_SCB2

SCB_2

Figure C.3: The H-Array generated for the Mingle network [26].

144 APPENDIX C. THE MINGLE NETWORK

Appendix D

Detailed Modelsim Testbenches

This chapter contains some detailed figures of Modelsim test benches discussed in
section 5.5.

145

146 APPENDIX D. DETAILED MODELSIM TESTBENCHES

Figure
D

.1:
TestB

ench
ofthe

initialretargeting
engine

im
plem

entation.

147

Fi
gu

re
D

.2
:

Te
st

B
en

ch
of

th
e

in
iti

al
re

ta
rg

et
in

g
en

gi
ne

in
co

rp
or

at
ed

in
to

th
e

co
pr

oc
es

so
r-

w
ra

pp
er

as
de

si
gn

ed
by

Za
ki

y
[1

].

148 APPENDIX D. DETAILED MODELSIM TESTBENCHES

Figure
D

.3:
TestB

ench
ofthe

interruptm
anagerw

ith
the

S
im

ple
netw

ork.

Appendix E

How to

This part of the Appendix tries to help anyone trying to reuse parts of this work. The
tools needed encompass Altera Quartus, Modelsim by Mentor Graphics, Python3,
GCC, Github and maybe Antlr4.

E.1 Access the IJTAG PDL Compiler Source?

The code of the PDL2C compiler is stored in a private repository at Github. Ac-
cess can be requested by email or through Github. The link below points to the
repository’s wiki. The compilers directory has multiple folders, input programs can
be stored in the input folder to be parsed. Note that the compiler relies on some
Python3 packages which will need to be installed locally through Pythons package
manager. The requirements can be found in the aptly named pip requirements file.

https://github.com/stephengeerlings/IJTAG-PDL-Compiler/wiki

E.2 Use the PDL2C framework compiler?

After you are sure that you have Python3 installed along with all the packages in the
requirements file, you are ready to start compiling your own framework. As input you
must provide a PDL file along with a H-Array file with the same name. Examples are
present in the input folder. The compiler, PDL2C.py, can then be run using Python
along with the name of the file, e.g. mingle pdl, you want to compile.

149

https://github.com/stephengeerlings/IJTAG-PDL-Compiler/wiki

150 APPENDIX E. HOW TO

E.3 Access the Dependability Manager Source?

The hardware design files of the dependability manager are also stored in a private
repository at Github. Access can be requested in the same manner, email or via
Github. The link below points to the repository’s wiki. The repository also contains
the Retargeting Engine IP and Interrupt Manager code. The software folder con-
tains the projects used for validation and the synthesis contains images ready to be
programmed to the DE0-Nano FPGA.

https://github.com/stephengeerlings/IJTAG-Dependability-Manager/wiki

E.4 Use the RISC-V Compiler?

Go to the excellent tutorial made by the RISC-V project. The url is stated below. It
can be used to build and install the GCC compiler for RISC-V. On Linux distributions
this is easily accomplished, on Windows 10 the Bash on Ubuntu for Windows is a
nice tool to have a Linux shell on your PC.

https://github.com/riscv/riscv-gnu-toolchain

E.5 Simulate the DM in ModelSim?

To successfully compile and run the Dependability Manager on Modelsim the user
must create a project in ModelSim. The VHDL in the folder design contains all the
files that together create a DM. The list of files needed is shown in Listing E.1. To
load a program into the memory it is important that you move the dm system memory.hex

that you have created into the ModelSim project folder. After that it should be possi-
ble to simulate the tb dm main entity.

E.6 Compile your own Dependability Application?

After you have installed the RISC-V GCC and are sure that Python3 is on the path,
the compile.sh file can be used to create a dependability application loader file.

https://github.com/stephengeerlings/IJTAG-Dependability-Manager/wiki
https://github.com/riscv/riscv-gnu-toolchain

E.6. COMPILE YOUR OWN DEPENDABILITY APPLICATION? 151

Listing E.1: List of the files that are needed in the Modelsim and Quartus projects.

./ design/DM_Main_ALU.vhd

./ design/DM_Main_Processor.vhd

./ design/DM_Main_Registers.vhd

5 ./ design/dependability_manager.vhd

./ design/dm_harray_pkg.vhd

./ design/dm_instruction_memory.vhd

./ design/dm_interrupt_manager.vhd

./ design/dm_interrupt_manager_pkg.vhd

10 ./ design/dm_main_alu_in_mux.vhd

./ design/dm_main_alu_out_mux.vhd

./ design/dm_main_alu_pkg.vhd

./ design/dm_main_base_pkg.vhd

./ design/dm_main_control.vhd

15 ./ design/dm_main_control_pkg.vhd

./ design/dm_main_ir_decode.vhd

./ design/dm_retargeting_engine.vhd

./ design/dm_retargeting_engine_improved_arch.vhd

./ design/dm_retargeting_engine_memory.vhd

20 ./ design/dm_system_bus_leds.vhd

./ design/dm_system_bus_master.vhd

./ design/dm_system_bus_pkg.vhd

./ design/dm_system_bus_slave.vhd

./ design/dm_system_memory.vhd

25 ./ design/dm_tap_control.vhd

./ design/ijtag/Instruments.vhd

./ design/ijtag/Interrupt/ExtendedInstruments.vhd

./ design/ijtag/Interrupt/ExtendedSIB.vhd

./ design/ijtag/Interrupt/Simple/simple.vhd

30 ./ design/ijtag/NetworkStructs.vhd

./ design/ijtag/Primitives.vhd

./ design/runs/run_basicscb_re1.vhd

./ design/runs/run_basicscb_re2.vhd

./ design/runs/run_basicscb_re3.vhd

35 ./ design/runs/run_blink.vhd

./ design/runs/run_mingle_demo.vhd

./ design/runs/run_mingle_re1.vhd

./ design/runs/run_mingle_re2.vhd

./ design/runs/run_mingle_re3.vhd

40 ./ design/runs/run_simple_difficult.vhd

./ design/runs/run_simple_dm.vhd

./ design/runs/run_simple_interrupt.vhd

./ design/runs/run_treebalanced_re1.vhd

./ design/runs/run_treebalanced_re2.vhd

45 ./ design/runs/run_treebalanced_re3.vhd

./ design/runs/run_treeflat_ex_re1.vhd

./ design/runs/run_treeflat_ex_re2.vhd

./ design/runs/run_treeflat_ex_re3.vhd

./ design/runs/run_treeflat_re1.vhd

50 ./ design/runs/run_treeflat_re2.vhd

./ design/runs/run_treeflat_re3.vhd

./ design/runs/run_treeunbalanced_re1.vhd

./ design/runs/run_treeunbalanced_re2.vhd

./ design/runs/run_treeunbalanced_re3.vhd

152 APPENDIX E. HOW TO

E.7 Emulate the DM with Quartus?

The instructions for the simulation of the DM also apply to the Altera Quartus en-
vironment. A new project can be started and the code of the project can be im-
ported into the project. The program that will run on the DM must be moved the
dm system memory.hex into the Quartus project folder. After providing the pinout to
the Clock, Reset and other pins that it the fpga dm main needs it should be possible
to compile and emulate the entity.

	Summary
	Glossary
	Introduction and Problem Statement
	Contributions
	Methodology
	Outline

	Related Work
	Dependability Applications
	Dependability Management
	The ijtag Standard
	Discussion

	Early Hardware/Software Codesign
	Function of the Dependability Manager
	Architectural Design Exploration
	Hardware design
	Software design
	Discussion

	Software: Building the Toolchain
	PDL to C Framework Compiler
	Compiler Implementation
	Drivers
	Toolchain
	Discussion

	Hardware: Creating the Dependability Manager
	Processor
	Retargeting Engine
	Interrupt Manager
	TAP Control
	Validation of the Dependability Manager
	Discussion

	Experimental Results
	Performance of the Retargeting Engine
	Performance of the Interrupt Manager
	Performance of the Dependability Manager
	fpga Resource Usage
	Conclusion

	Conclusions & Future Work
	Future Work

	References
	csu Timing Diagram
	Retargeting Engine Memory
	The Mingle Network
	Detailed Modelsim Testbenches
	How to
	Access the ijtag PDL Compiler Source?
	Use the PDL2C framework compiler?
	Access the Dependability Manager Source?
	Use the riscv Compiler?
	Simulate the DM in ModelSim?
	Compile your own Dependability Application?
	Emulate the DM with Quartus?

