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Abstract

Hospitals often set protocols based on well defined standards to maintain quality of
patient reports. To ensure that the clinicians conform to the protocols, quality as-
surance of these reports is needed. Patient reports are currently written in free-text
format, which complicates the task of quality assurance. In this paper, we present
a machine learning based natural language processing system for automatic quality
assurance of radiology reports on breast cancer. This is achieved in three steps: we
i) identify the top level structure of the report, ii) check whether the information un-
der each section corresponds to the section heading, iii) convert the free-text detailed
findings in the report to a semi-structured format. Top level structure and content
of report were predicted with an F1 score of 0.97 and 0.94 respectively using Sup-
port Vector Machine (SVM). For automatic structuring, our proposed hierarchical
Conditional Random Field (CRF) outperformed the baseline CRF with an F1 score
of 0.78 vs 0.71. The third step generates a semi-structured XML format of the free-
text report, which helps to easily visualize the conformance of the findings to the
protocols. This format also allows easy extraction of specific information for other
purposes such as search, evaluation and research.





vii

Acknowledgements
The past 8 months that I have been working on my master’s thesis, have been an
amazing experience for me. I learnt the skills to conduct research, write a research
paper and how to work collaboratively. This would not have been possible without
my supervisors. I would like to thank Maurice van Keulen and Christin Seifert for
being so supportive and helpful throughout the project, for all the brain-storming
discussions and critical feedback. Every time I had meetings with both of you, I
would always feel very motivated and encouraged. Maurice, thank you for always
creating a visualization out of the complex things and making it simpler. Christin,
thank you for all your detailed feedback, for sending me helpful websites and shar-
ing your books with me, so that I could understand something better. I would like
to thank Jorit van Rossen and Onno Vijlbrief for taking time to explain me the re-
lated knowledge from the medical domain and for labeling the reports. Thank you
for patiently answering my numerous questions and emails. I would like to thank
Jeroen Geerdink for setting up the system for my work, for the dataset, for always
helping me out with difficulties related to the hospital and for giving me an amazing
overview of the project on the very first day. It was a great pleasure working under
all of your supervision and I learnt a lot from all of you.

I would like to extend special thanks to my parents, my boyfriend, and my broth-
ers for always being there through this roller coaster ride. It would not have been
possible without your support. During the times that I would feel down, you were
always there to listen and motivate me through numerous video calls.

I would also like to thank my friends at the university, who helped me survive these
two tough years of masters, with some amazing get-together. Finally, I would like
to thank you, the reader, for taking time to read my thesis.





ix

Preface
This master thesis is divided into two parts. The first part consists of the research
paper on my master’s project, containing a concise overview of the work and the
important results. This research paper was a deliverable for the masters research
honours programme that I participated in and this paper was also submitted to a
workshop in a conference. The second part consists of a detailed appendix explain-
ing the things that could not be in the paper like an elaborate motivation and litera-
ture review, explanation of the models and more results.





xi

Contents

Declaration of Authorship iii

Acknowledgements vii

Preface ix

I Research Paper 1

II Master Thesis 13

1 Introduction 15
1.1 General Overview of Radiology . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Current Scenario and Problems Associated with it . . . . . . . . . . . . 15
1.3 Possible Solutions and Our Approach . . . . . . . . . . . . . . . . . . . 16
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Related Work 19
2.1 Introducing Radiology Reporting and its Qualities . . . . . . . . . . . . 19
2.2 Structured Reporting Initiatives . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Natural Language Processing in Radiology . . . . . . . . . . . . . . . . 22

2.3.1 Rule Based Approaches . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Machine Learning Approaches . . . . . . . . . . . . . . . . . . . 24

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 25
Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . 26
Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Theoretical Background 29
3.1 Machine Learning Overview . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Binary and Multiclass Classification . . . . . . . . . . . . . . . . 30
3.2.2 Sequence Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Machine Learning Algorithms for Classification . . . . . . . . . . . . . 31
3.3.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Conditional Random Field . . . . . . . . . . . . . . . . . . . . . 34

Linear Chain Conditional Random Field . . . . . . . . . . . . . 35
3.4 Radiology Reports on Breast Cancer . . . . . . . . . . . . . . . . . . . . 36



xii

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Methodology 41
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Heading and Content Identification . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Manual Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Features Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Term Frequency Text Representation . . . . . . . . . . . . . . . . 42
TF-IDF Text Representation . . . . . . . . . . . . . . . . . . . . . 43
Length of the Sentence . . . . . . . . . . . . . . . . . . . . . . . . 43
Symbol at the End of the Sentence . . . . . . . . . . . . . . . . . 43

4.2.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Naive Bayes (NB) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . 44
Random Forest (RF) . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.4 Training and Testing . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Automatic Structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Manual Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Hierarchical CRF with Combined Classes . . . . . . . . . . . . . 47

5 Experiments and Discussion 49
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Heading Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Content Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Automatic Structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusion 61
6.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 69



xiii

List of Figures

2.1 NLP pipeline (taken from [22]) . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Support Vector Machine showing maximum margin hyperplane (taken
from [34]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Diagram of relationship among Naive Bayes, Logistic Regression, HMM,
LC-CRF and general CRF (taken from [35]) . . . . . . . . . . . . . . . . 35

3.3 Linear Chain Conditional Random Field (taken from [18]) . . . . . . . 35
3.4 Mammography and ultrasound lexicon (taken from [45]) . . . . . . . . 37
3.5 Quadrant position of the breast (taken from [29]) . . . . . . . . . . . . . 38
3.6 BI-RADS assessment category and their description (taken from [45]) . 39

4.1 Example of annotated negative finding of a report . . . . . . . . . . . . 46

5.1 Confusion matrix heat map: Heading identification using SVM . . . . 51
5.2 Confusion matrix heat map: Content identification using SVM . . . . . 52
5.3 Normalized confusion matrix heat map: Automatic structuring base-

line model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Normalized confusion matrix heat map: Automatic structuring Model

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Normalized confusion matrix heat map: Automatic structuring Model

B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Error propagation through the classifiers at the 3 levels . . . . . . . . . 59
5.7 Automatic structuring: Comparison of the ground truth and the pre-

dicted labels by Model B of a sample report . . . . . . . . . . . . . . . . 59
5.8 Automatic structuring: Comparison of the ground truth and the pre-

dicted labels by Model B of another sample report . . . . . . . . . . . . 60





xv

List of Tables

4.1 Attributes in the dataset and their description . . . . . . . . . . . . . . . 41
4.2 Example of manual annotation of a radiology report for heading and

content identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 First, second and third level classes for automatic structuring . . . . . . 45

5.1 Performance of classifiers in terms of FM
1 scores for different feature

combinations for heading identification . . . . . . . . . . . . . . . . . . 51
5.2 Heading identification performance in terms of F1 scores . . . . . . . . 51
5.3 Content identification performance in terms of F1 scores . . . . . . . . 52
5.4 Performance of NB and SVM classifiers in terms of FM

1 scores for dif-
ferent feature combinations for content identification . . . . . . . . . . 53

5.5 Prediction of first level classes in terms of F1 score for the 3 models of
automatic structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Prediction of second level classes in terms of F1 score for the 3 models
of automatic structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.7 Global classes in the dataset and their F1 scores . . . . . . . . . . . . . . 55
5.8 Performance of the individual classifiers of Model A and B in terms

of FM
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58





1

Part I

Research Paper





Automatic Structuring of Breast Cancer Radiology
Reports for Quality Assurance

Shreyasi Pathak
University of Twente

Enschede, Netherlands
s.pathak@student.utwente.nl

Jorit van Rossen
Hospital Group Twente (ZGT)

Hengelo, Netherlands
j.vrossen@zgt.nl

Onno Vijlbrief
Hospital Group Twente (ZGT)

Hengelo, Netherlands
o.vijlbrief@zgt.nl

Jeroen Geerdink
Hospital Group Twente (ZGT)

Hengelo, Netherlands
J.Geerdink@zgt.nl

Christin Seifert
University of Twente

Enschede, Netherlands
c.seifert@utwente.nl

Maurice van Keulen
University of Twente

Enschede, Netherlands
m.vankeulen@utwente.nl

Abstract—Hospitals often set protocols based on well defined
standards to maintain quality of patient reports. To ensure that
the clinicians conform to the protocols, quality assurance of these
reports is needed. Patient reports are currently written in free-
text format, which complicates the task of quality assurance.
In this paper, we present a machine learning based natural
language processing system for automatic quality assurance of
radiology reports on breast cancer. This is achieved in three
steps: we i) identify the top level structure of the report, ii)
check whether the information under each section corresponds
to the section heading, iii) convert the free-text detailed findings
in the report to a semi-structured format. Top level structure
and content of report were predicted with an F1 score of 0.97
and 0.94 respectively using Support Vector Machine (SVM). For
automatic structuring, our proposed hierarchical Conditional
Random Field (CRF) outperformed the baseline CRF with an F1

score of 0.78 vs 0.71. The third step generates a semi-structured
XML format of the free-text report, which helps to easily visualize
the conformance of the findings to the protocols. This format also
allows easy extraction of specific information for other purposes
such as search, evaluation and research.

Index Terms—Quality Assurance, Automatic Structuring, Ra-
diology Reports, Conditional Random Field

I. INTRODUCTION

Medical reports are essential for communicating the findings
of imaging procedures with referring physicians, who further
treat the patients by considering these reports. Thus, medical
reports are very important for diagnosis of diseases, which
brings forward the need of their quality assurance.

To maintain the quality of reports, hospitals often set
well-defined protocols for reporting. For example, for breast
cancer radiology reporting, hospitals generally use the “Breast
Imaging-Reporting And Data System” (BI-RADS) [1], which
is a classification system proposed by American College of
Radiology (ACR), to represent the malignancy risk of breast
cancer of the patient. It was implemented to standardize re-
porting and quality control for mammography. The BI-RADS
lexicon provides specific terms to be used to describe findings.
Along with that, it also describes the desired report structure,
for example, a report should contain breast composition and

a clear description of findings. The rate of compliance with
these reporting standards can be used for quality assurance
and also to further measure clinical performance [2].

Conformance to reporting standards can be seen as a part
of assessing report clarity, organization, and accuracy [3], [4].
Quality assurance is currently mainly a manual process. Peer
review is used to assess report quality, mainly geared towards
accuracy of reports [5]. Yang et al. [6] used psychometric
assessment to measure report quality and analyzed parame-
ters like report preparation, organization, readability. Making
quality assurance systems automatic would reduce workload
of radiologists and make the process more efficient. To the best
of our knowledge, no system exists to automate this process.

Quality assurance is complicated due to the fact that report-
ing is done in free-text, narrative format. The inaccessibility
of narrative structure for computers makes it hard to analyze
if all the necessary information are present in the report.
Structured reporting templates can be introduced to force the
radiologists to stick to the reporting standards and improve
the quality of reports [7], [8]. However, a study [9] shows
that this type of system resulted in lower quality reports, as
it restricts the style and format of writing. Another method
can be automatic structuring of free-text reports after they
have been written, without additional technical burden on the
radiologists. Thus, the radiologists can concentrate more on
the task of interpreting images rather than structure of writing,
which helps in maintaining accuracy of the report content.

Thus, in this work, we follow the post-structuring paradigm.
We present an approach for automatic structuring of radiology
reports for quality assurance using machine learning. We
define quality of the report by how well the reports conform to
the reporting standards as set by ACR BIRADS. Concretely,
we (i) identify the top-level structure from the reports (hence-
forth, referred to as heading identification), (ii) verify if the
report contents are placed under the correct top-level headings
(referred to as content identification), and, (iii) automatically
convert the free-text report findings to a structured format for
making the task of comparison to well-defined protocols easier



(referred to as automatic structuring). For visualization and
further use, we generate a semi-structured XML format for the
automatic structuring (Table I). We focus on Dutch radiology
reports on breast cancer; for automatic structuring we focus
on findings from mammography imaging modality.

In the remainder of this paper, we first review structured
reporting initiatives and application of natural language pro-
cessing to radiology reports (Section II). Section III describes
the dataset. Our approach to heading and content identifica-
tion, and automatic structuring is detailed in Section IV. We
describe our experimental setup in Section V followed by
experimental results in Section VI. We discuss the implication
of our results and some future work in Section VII.

II. RELATED WORK

In this section, we will discuss structuring initiatives for
radiology reporting, followed by various natural language
processing techniques applied in radiology.

A. Structured Reporting Initiatives

Accuracy, clarity, timeliness, readability, organization are
some of the important factors for good quality of radiology
reporting [3], [4]. Sistrom and Langlotz [7] identified i)
language, ii) format as two key attributes for improving the
quality of a radiology report. Standardizing the language of the
report promotes common interpretation of the reports by the
radiologists through out the world. Breast Imaging Reporting
and Data System (BI-RADS) is a very successful attempt by
ACR at standardizing the language for breast cancer reporting
[1]. RadLex [10] is another attempt at standardizing disease
terminology, observation and radiology procedure. Structured
reporting further increases efficiency of information transfer
and referring clinicians can extract the relevant information
easily. Sistrom and Langlotz [7] clarified that structured re-
porting does not mean having a point-and-click interface for
data capture. They point out that it is rather a simple report
format that reflects the way radiologist and referring physician
sees the report and should not impose any restriction on the
radiologists. Radiological Society of North America (RSNA)
highlighted that structured reporting would improve clinical
quality and help in addressing quality assurance [4].

Though there has been a lot of discussion about the effect
of structuring on the quality of radiology report, not much
actual assessment was done until 2005. In 2005, Sistrom and
Honeyman-Buck [11] tested information extraction from free-
text and structured reports. It was found that both the free-
text and structured report resulted in similar accuracy and
efficiency in information extraction, but a post-experimental
questionnaire expressed clinicians’ opinion in favour of struc-
tured report format. Schwartz, Panicek, Berk, Li and Hricak
[8] reported that referring clinicians and radiologists found
greater satisfaction with content and clarity in structured
reports, but the clinical usefulness did not vary significantly
between the two formats. Whereas, a study by Johnson, Chen,
Swan, Appelgate and Littenberg [9], concluded that struc-
tured reporting resulted in a decrease in report accuracy and

completeness. The subjects were asked to use commercially
available structured reporting system (SRS), a point-and-click
menu driven software, to create the structured reports and they
found it to be overly constraining and time-consuming.

To summarize, past works have shown that firstly, structured
reporting and standard language are important for quality of
report. But structured reporting should be such that it should
not impose restriction on the radiologist. Secondly, structuring
reporting can help in addressing quality assurance.

B. Natural Language Processing in Radiology

Electronic health records (EHRs), like radiology reports,
increases the use of digital content and thus generates new
challenges in the medical domain. It is not possible for humans
to analyze this huge amount of data and extract relevant
information manually, so automated strategies are needed.
There are two types of techniques used in natural language
processing for processing data: i) rule-based and ii) machine
learning-based approaches.

In rule-based approaches, rules are manually created by
experts to match a specific task. Various rule-based systems
have been used for information extraction tasks in radiology
reports on breast cancer. Nassif et al. [12] developed a rule-
based system in 2009 to extract BI-RAD related features
from a mammography study. The system was tested on 100
radiology reports manually tagged by radiologists, resulting
in a precision of 97.7% and a recall of 95.5%. Sippo et al.
[13] developed a rule-based NLP system in 2013 to extract
the BI-RAD final assessment category from radiology reports.
They tested their system on >220 reports for each type of
study – diagnostic and screening mammography, ultrasound
etc. achieving a recall of 100% and a precision of 96.6%.

Machine learning (ML) approaches can learn the patterns
from data automatically given the input text sequence and
some labeled text samples. Hidden Markov Model, Conditional
random field (CRF) [14] are some of the ML approaches
used for sequence labeling. Hassanpour and Langlotz [15]
compared dictionary-based (a type of rule-based) model,
Conditional Markov Model and CRFs on the task of infor-
mation extraction from chest radiology reports, finding that
ML approaches (F1: 85.5%) performed better than rule-based
(F1: 57.8%). Torii, Wagholikar and Liu [16] investigated the
performance of CRF taggers for extracting clinical concepts
and also tested the portability of the taggers on different
datasets. Esuli, Marcheggiani and Sebastiani [17] developed
a cascaded 2-stage Linear Chain CRF model (one CRF for
identifying entities at clause level and another one at word
level) for information extraction from breast cancer radiology
reports. The cascaded system (F1: 0.873) outperformed their
baseline model of standard one level LC-CRF (F1: 0.846) on
500 mammography reports.

Hybrid approaches combine rule-based and machine
learning-based approaches. For example, Taira, Sodrland and
Jakobovits [18] developed a automatic structuring of free-
text thoracic radiology reports using some rule-based and
some statistical and machine learning methods like maximum



Clinical Data

s1: Verslag - Mammografie follow up bdz - 15-11-2016 09:50:00:
s2: Klinische gegevens:
s3: Screening ivm familiaire belasting mammacarcinoom ,

s4: Verslag:
s5: Mammografie t,o,v, 12/08/2016: Mamma compositiebeeld C, Geen
      wijziging in de verdeling van het mammaklierweefsel, Hierin beiderzijds
      geen haardvormige laesies, Geen distorsies, geen stellate laesies, geen
      massa's, bekende verkalking links, Geen clusters microkalk, geen
      maligniteitskenmerken,

s6: Conclusie:
s7: BIRADS-classificatie twee, Stationair beeld, Geen maligniteitskenmerken,

Title
Heading

Heading

Heading

Findings

Conclusion

Content 
Identification

Heading 
Identification

Fig. 1: Example of a breast cancer radiology report

entropy classifier. We want to develop a fully automated
system without any rule creation involved from experts, which
is why we will not follow hybrid approach.

In this work, we apply machine learning-based approaches
to avoid manual rule construction and use CRFs which have
been shown to provide high performance on sequence labeling.

III. CORPUS: RADIOLOGY REPORTS ON BREAST CANCER

According to BI-RADS [19], a breast cancer radiology
report should contain an indication of examination (clinical
data), a breast composition, a clear description of findings,
and a conclusion with the BI-RADS assessment category. For
our purpose of quality assurance of a report, we will consider
these things and annotate the reports accordingly.

We used a dataset consisting of 180 Dutch radiology reports
on breast cancer from 2012 to 2017 (30 reports per year).
Thus, the dataset contains variation in reports over the years.
The reports were gathered from a hospital in The Netherlands.
The reports were produced by dictation from trainee or con-
sultant radiologist, into an automatic speech recognition sys-
tem. These automatically generated reports are further cross-
checked with the dictation, by radiologists or secretary. The
reports are anonymized such that they do not contain patient
identity data like patient id, name, data of birth and address.
A sample report is shown in Fig. 1. The report has 3 sections,
namely Clinical Data, Findings and Conclusion. Clinical Data
contains clinical history of the patient including any existing
disease or symptoms. Findings consists of noteworthy clinical
findings (abnormal, normal) observed from imaging modalities
like mammography, MRI and ultrasound. Conclusion provides
a summary of the diagnosis and follow-up recommendations
and should necessarily contain a BI-RADS category. In the
report, these sections start with a heading describing the name
of the section, for example, Klinische gegevens (Clinical Data),
Verslag (Findings) and Conclusie (Conclusion) (see Fig. 1).
Reports from 2017 and 2016 (60 reports) additionally contain
a title. The dataset consists of both male and female breast
cancer reports; for automatic structuring, we focus on female
breast cancer reports.

For the first two sub-tasks of heading identification and
content identification, 180 reports were manually annotated
at the sentence-level by a trained expert. The reports were
split into sentences, where a sentence means start of a new
line, resulting in 1591 sentences in total. In Fig. 1, sentences
are indicated by the labels s1 to s7. For the first sub-task of
heading identification, sentences were labeled as heading (e.g.
s2, s4, s6), not heading (e.g. s3, s5, s7) and title (e.g. s1).
For the second sub-task of content identification, sentences
were labeled as title, clinical data (e.g. s2, s3), findings (e.g.
s4, s5) and conclusion (e.g. s6, s7). For the third sub-task of
automatic structuring of reports, we manually extracted the
mammography imaging modality findings from the findings
section of the report, which generated 108 mammography
findings. These were manually annotated by two radiologists
– a trainee (2 years of experience) and a consultant. Out of
108 reports, 18 reports were labeled collaboratively by both, 45
reports by the trainee and 47 by the consultant. After labeling,
these 45 reports and 47 reports were analyzed to highlight any
inter-annotator discrepancy, which were further resolved by the
annotators.

A 3-level annotation scheme at word-level was followed for
automatic structuring as shown in Fig. 2. CA-n in the diagram
will be explained in the approach (Section IV-C). At the first
level, the reports were annotated as:

• positive finding (PF): something suspicious was detected
about the lesion in the breast, which might indicate
cancer.

• negative finding (NF): nothing bad was found or absence
of specific abnormalities.

• breast composition (BC): density of the breast.
• other (O): text not belonging to the above.

After this first level of annotation, the PF were further anno-
tated into second level classes – mass (MS), calcification (C),
architectural distortion (AD), associated features (AF) and
asymmetry (AS). At the third level, mass was further annotated
as location (L), size (SI), margin (MA), density (DE), AF and
shape (SH). Calcification was further annotated as morphology
(MO), distribution (DI), SI, L and AF. Similar third level
annotation was done with AD, AF and AS. The same scheme
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Fig. 2: 3-level annotation scheme for automatic structuring of mammography findings
(Hierarchical Conditional Random Field Model A (Section IV-C2))

of second and third level annotation was followed for NF,
though they have different combination of classes (as shown
in Fig. 2). BC does not have any further levels of annotation.
Thus, complete label (global) of a token is a concatenation of
the labels at the 3 levels, resulting in 39 different labels. Our
dataset only had data for 34 labels. Our model can also be
applied to findings from other imaging modalities but it needs
to be trained on manually labeled data for those modalities.
Due to absence of labeled data from other modalities, we only
performed automatic structuring of mammography findings.

IV. APPROACH

In this section, we describe our approach for the three
sub-goals – heading identification, content identification, and
automatic structuring of findings from mammography study.

A. Heading Identification

a) Feature extraction: Reports were separated into sen-
tences as explained in Section III. The sentences were
separated into word-level tokens using regular expression
\b\w\w+\b, which means tokens with at least 2 alphanumeric
characters. Punctuations are always ignored and treated as
token separator. For example, a sentence like “Mammografie
t,o,v, 12/08/2016: Mamma compositiebeeld C” will generate
{mammografie, 12, 08, 2016, mamma, compositiebeeld} as
tokens. Only unigrams were taken as tokens and converted to
lowercase. The maximum document frequency was set such
that the terms occurring in more than 60% of the documents
will be ignored. Increasing the maximum document frequency
did not improve the performance, so most probably high
frequency non-informative words were removed.

Word List feature: A vocabulary was built using the unique
words generated after preprocessing. Each sentence is repre-
sented by a term vector, where TF-IDF score is used for the
tokens present in the sentence and a zero for absent tokens.

The length of the sentence and the symbol at the end of
sentence were also tested as features but they did not improve
performance and were not considered further.

b) Classifiers: Heading identification is a multiclass clas-
sification problem, where the sentences are to be classified into
one of the following classes: heading, not heading and title.
We trained a Multinomial Naive Bayes (NB), a linear Support
Vector Machine (SVM) and a Random Forest (RF) classifier 1.
For NB, Laplace smoothing was used. SVM was trained using
stochastic gradient descent and L2 loss. We used a maximum
tree depth of 10 and bootstrap sampling for RF classifier.

B. Content Identification

Content identification is a multiclass classification problem,
where the sentences are to be classified into title, clinical data,
findings and conclusion. We followed the same approach as
explained in Section IV-A.

C. Automatic Structuring

Our goal is to convert the free-text mammography find-
ings into a semi-structured XML format. An example of
this is shown in Table I, where the first column shows a
free-text mammography finding report and the second col-
umn shows the semi-structured XML version. Let X be a
mammography finding report, consisting of a sequence of
tokens, x=(x1,x2,..xt,..,xn) and the task is to determine a
corresponding sequence of labels y= (y1,y2,..yt,..,yn) for x.
This task can be seen as sequence labeling, which is a task of
predicting the most probable label for each of the tokens in
the sequence. In this task, the context of the token, meaning
labels of immediately preceding or following tokens, is taken
into account for label prediction. To achieve our goal, we used
a Linear-Chain Conditional Random Field (LC-CRF)2 [14],

1Classifiers were built using Python scikit-learn package
2We have used scikit-learn Python package, sklearn-crfsuite, implementa-

tion of LC-CRF



TABLE I: Example of structuring of free-text mammography finding

Free-text Report Structured Report
Mammografie t,o,v, 22/09/2016:
Mamma compositiebeeld C, Geen
wijziging in de verdeling van het
mammaklierweefsel, Hierin beiderzijds
geen haardvormige laesies, Geen
distorsies, geen stellate laesies,
geen massa’s, bekende verkalking
links, Geen clusters kalk, geen
maligniteitskenmerken,

〈report〉 〈O〉Mammografie t,o,v, 12/08/2016:〈/O〉
〈breast composition〉Mamma compositiebeeld C,〈/breast composition〉
〈O〉Geen wijziging in de verdeling van het mammaklierweefsel,〈/O〉
〈negative finding〉

〈mass〉Hierin 〈location〉beiderzijds〈/location〉 geen haardvormige laesies〈/mass〉
〈architectural distortion〉Geen distorsies,〈/architectural distortion〉
〈mass〉geen 〈margin〉stellate〈margin〉 laesies, geen massa’s, 〈/mass〉 〈/negative finding〉

〈positive finding〉
〈calcification〉bekende verkalking 〈location〉links〈/location〉
〈/calcification〉 〈/positive finding〉

〈negative finding〉
〈calcification〉Geen 〈distribution〉clusters〈/distribution〉
〈morphology〉microkalk,〈/morphology〉 〈/calcification〉〈/negative finding〉

〈O〉geen maligniteitskenmerken〈/O〉 〈/report〉

a supervised classification algorithm for sequence labeling.
In our models, LC-CRF considers the label yt−1 of the
immediately preceding token xt−1 for predicting the label yt
of the current token xt.

a) Data Preprocessing: Each report from the dataset of
108 mammography findings was split at punctuations {,().?:-
} (retaining them as tokens after splitting) and space, to
generate tokens, x, which were transformed according to the
IOB tagging scheme [20]. Here, B means beginning of an
entity, I means inside (also including end) of an entity and
O means not an entity. For example, as shown in Table I,
“Mamma compositiebeeld C,” labeled as breast composition
was transformed to [(mamma, B-breast composition), (com-
positiebeeld, I-breast composition), (C, I-breast composition),
(‘,’ , I-breast composition)], where each entry stands for (to-
ken, label IOB scheme). Each digit was replaced by #NUM for
the purpose of reducing the vocabulary size without removing
any important information.

b) Feature Extraction: Each extracted token, xt, is repre-
sented by a feature vector xt for LC-CRF, including linguistic
features of the current token, xt. and also features of the
previous token, xt−1, and the next token, xt+1. A feature
vector xt consists of the following 10 features for xt and the
same 10 features for xt−1 and xt+1 (a total of 30 features):

• The token xt itself in lowercase, its suffixes (last 2 and
3 characters) and the word stem.

• Features indicating if xt starts with a capital letter, is
uppercase, is a Dutch stop word or is punctuation. The
part-of-speech (POS) tag of xt and its prefix (first 2
characters).

Below, we describe the 3 models for automatic structuring:
1) Baseline Model: As baseline, we used one LC-CRF clas-

sifier, as described at the starting of Section IV-C, to predict
the complete label (concatenation of labels at the 3 levels)
of a token and as input to the classifier, we used the feature
vectors described in Feature Extraction (Section IV-Cb). For
example, the LC-CRF classifier will predict the tokens clusters
and microkalk as NF/C/DI and NF/C/MO respectively (see
Table I). The graphical representation of this model is shown
in Fig. 3a. Here, xt−1, xt, xt+1 are feature vectors of the
tokens in a sequence and their corresponding labels are yt−1,
yt, yt+1, shown as NF/C/O, NF/C/DI, NF/C/MO. The lines
indicate dependency on feature vectors xt, xt−1, xt+1 and
preceding label yt−1 for prediction of the label yt. Thus, in
this model, only one classifier is used to predict 34 labels.

2) Hierarchical CRF: We built a model using a three-level
hierarchy of LC-CRF classifiers, called model A, as shown
in Fig. 2. The model has 13 LC-CRF classifiers and all the
classifiers perform token-level prediction. One classifier (CA-
1) is at level 1 for classifying the tokens into the first level
classes. At level 2, there are 2 classifiers – one (CA-2) for

xt-2 xt-1  xt

PF/C/L NF/C/O NF/C/DI NF/C/MO yt+1

xt+1

links geen clusters microkalk

(a)

xt-2

yt+1

wt+1

zt+1

xt-1 xt+1xt

PF NF NF NF

C C C C

L O DI MO

links geen clusters microkalk

(b)

Fig. 3: Graphical representation of a) baseline CRF model and b) hierarchical CRF model, for input feature vectors xt−2 to
xt+1={links geen clusters microkalk}
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further classifying the tokens predicted as positive finding by
CA-1, another (CA-3) for negative finding tokens. At level 3,
there are 10 classifiers for further classification of tokens into
third level classes. For example, the tokens classified as PF
by CA-1 at level 1 and as MS by CA-2 at level 2, will be
sent to CA-4 classifier to further get classified as either L, SI,
MA, DE, SH or AF. The complete predicted label for each
token is the concatenation of its predicted classes at the three
levels. The graphical representation of this model is shown in
Fig. 3b. For example, for given feature vectors xt and xt+1 of
the tokens clusters and microkalk respectively and for given
classes at the same-level of the immediately preceding token,
the first level class predictions for both the tokens are NF.
The feature vector of these tokens are sent to NF classifier,
CA-3, for second level prediction, where they get classified as
C. Consequently, they are sent to the calcification classifier,
CA-10, where they get classified as MO and DI respectively.
Labels at each level are combined resulting in NP/C/DI and
NP/C/MO labels for the two tokens. The undirected lines are
dependency lines and directed lines are flow between the 3
levels (y, w, z). There is no dependency line between the
first two columns at the second level (w) as links goes to
PF and geen to NF classifier and two different classifiers are
independent of each other’s feature vectors and predicted class.

3) Hierarchical CRF with Combined Classes: As can be
seen in Fig. 2, every classifier at level 3, predicts location
as one of its classes. All the location classes describe similar
tokens like rechts, links, beide mamma. Thus, we build one
classifier for the similar classes instead of having different
classifiers. This will provide us with more training data for a
classifier. Fig. 4 shows the modified model with combined
classes having 9 classifiers. Henceforth, this is referred to
as model B and all classifiers in this model are referred to
as CB-n (n = 1, . . . , 9). We can see instead of having 11
classifiers that predict location (CA-n, n = 3, . . . , 13) in model
A, we have only one classifier CB-5 in model B. Analogously,
classifiers were aggregated for MA, MO, DI, AF and SI. All
the classifiers use LC-CRF and perform token-level prediction.
When classifying a token, classifiers might contradict each
other. Consider for example NF/MS: CB-5 and CB-6 are the

two classifiers predicting location, margin or other for the same
token. If the predictions are location by CB-5 and other by
CB-6, then location is selected (no contradiction). Similarly,
if both classifiers predict other, then the resulting class is other
(no contradiction). If the predicted class is location by CB-5
and size by CB-6, then the class with the highest a-posteriori
probability is selected.

V. EXPERIMENTAL SETUP

We used the F1 score to evaluate the performance of a
classifier on predicting different classes. The F1 score of a
class c1 is the harmonic mean of precision and recall of that
class and is defined as

F1 =
2TP

2TP + FP + FN

with TP being the number of true positives, FP - false positives
and FN - false negatives. As our problem is a multiclass prob-
lem, the TP, FN, FP of a class are calculated according to one-
vs-rest binary classification, where the class in consideration
is positive and all other classes are negative.

We also measured F1 score of the models on the entire
test set using micro-averaged and weighted macro-averaged
F1 (Fµ1 and FM1 ). Fµ1 was computed by calculating the TP as
sum over the TP of all the classes (same for FN, FP). FM1 was
calculated by computing the F1 scores of each class separately
and then averaging it. As, averaging gives equal weight to all
the classes, the fact that our classes have unequal number of
instances, is not taken into account. Thus, we used weighted
averaging for FM1 . FM1 and Fµ1 gave similar results, so we
only report FM1 scores in the rest of the paper.

We evaluated our classifiers at 3 levels: i) token-level (TL),
ii) partial phrase-level (PP), and iii) complete phrase-level
(CP). At the token-level, we consider all the token labels in
the dataset to calculate the TP, TN, FP, FN scores of a class.
At the partial phrase-level and the complete phrase-level, we
measure how well the classifier is performing in identifying
multi-token phrases. A complete match requires all the tokens
of the phrase to be correctly labeled. We consider a match
with Dice’s coefficient greater than 0.65 as a partial match. For
similarity calculation, we take the phrase from the ground truth



TABLE II: Heading and content identification and automatic structuring performance in terms of F1 scores

(a) Heading identification

Classes NB SVM RF #Instances
(Sentences)

Heading 0.96 0.96 0.88 540
Not Heading 0.98 0.98 0.94 991
Title 0.97 0.98 0.99 60
Avg (FM

1 ) 0.97 0.97 0.92 1591

(b) Content identification

Classes NB SVM RF #Instances
(Sentences)

Conclusion 0.89 0.92 0.90 413
Clinical Data 0.86 0.94 0.70 405
Title 0.89 0.99 0.91 60
Findings 0.88 0.94 0.82 678
Avg (FM

1 ) 0.88 0.94 0.81 1556

(c) Automatic structuring

Measures Baseline Model A Model B #Instances
(Tokens)

FM
1 (all) 0.71 0.78 0.78 4230

FM
1 (w/o O) 0.67 0.73 0.74 2813

FM
1 (w/o<10&O) 0.70 0.76 0.76 2649

and match with the corresponding predicted labels. Phrase-
level scores are important from the radiologists’ point of view.
They care about how well their phrases are matching. Table
IIIa shows 6 tokens, with their token-level labels (B-PF, I-PF
etc). A PF phrase starts at the B-PF and ends at the last I-
PF. For the NF phrase, the Dice’s coefficient is calculated as
2 ∗ 2/(3 + 3) = 0.66 > 0.65, resulting in a partial match. For
each class, we calculate the number of partial matches called
partial phrase accuracy (PP-Acc); how well the partial phrases
match by averaging the Dice’s coefficient for each match (PP-
Sim); the number of complete matches (CP-Acc); and the F1

scores for token-level matching (TL F1).
For heading and content identification, we evaluated NB,

SVM and RF models, using 5-fold cross validation on 180
reports. For automatic structuring, we built three different LC-
CRF models: the baseline model, Model A and Model B.
We evaluated our models using 4-fold cross validation on
108 mammography findings. For automatic structuring, we
evaluated the models on different combinations of classes
(Table IIc). ‘All’ means evaluation on all the 34 classes. ‘w/o
O’ means all the classes except the other (O) class at the
first level (33 classes). ‘w/o<10&O’ means classes excluding
O class and classes with instances<10. All codes associated
with this paper are available as open source3.

VI. RESULTS

In this section, we describe the results of heading and
content identification and automatic structuring.

A. Heading and Content Identification

Table IIa shows that headings were identified with a FM1
score of 0.96 both by SVM and NB and sentences which
were not headings were identified with a FM1 score of 0.98 by
SVM. For both heading and not heading classes, SVM and NB
performed better than RF. For title class, RF performed better.
Table IIb shows that the SVM performed better for predicting
the classes conclusion, clinical data, title and findings with a
FM1 scores of 0.92, 0.94, 0.99 and 0.94 respectively.

3https://www.dropbox.com/sh/y4czin4llue2t6w/AACqHRcC2pxg0zzg42Ju
PtQna?dl=0

B. Automatic Structuring

Table IIc compares the performance of our LC-CRF base-
line model to the hierarchical LC-CRF Models A and B.
Both, Model A and B (FM1 =0.78) outperformed the base-
line model (FM1 =0.71). No difference in performance was
observed within Model A and B. Without the not important
other (O) class, the model B has a FM1 of 0.74. On further
removing classes with instances<10, the FM1 score improves
from 0.74 to 0.76 for model B. This means that the classes
having instances less than 10 were not predicted well enough.
If we would have at least 10 instances for each class, then the
FM1 score could be expected to be around 0.76.

Table IIIb shows the performance of the classifier (CA-1
and CB-1) at the first level in predicting breast composition,
negative finding, positive finding. BC (TL F1=0.94) and NF
(TL F1=0.95) were identified better than PF (TL F1=0.87).
This is because PF contains varied vocabulary for describing
an abnormality, while NF contains specific terms like no pres-
ence of mass, calcification. BC is also described using specific
terms like “mamma compositiebeeld”. Token-level measure
is always better than complete phrase-level measure. Partial
phrase accuracy (PP-Acc) is at least as good as complete
phrase accuracy (CP-Acc). All the partial phrase matches in
BC and PF are complete matches except for NF. But even for
NF, the partial phrases have similarity of 0.99 (PP-Sim) with
the ground truth.

Table IV shows the performance obtained for the some of
the global classes. Overall, it can be seen that NF sub-classes
were predicted better than PF sub-classes, as most of the
NF sub-classes are described using specific tokens. Generally,
model A and B predicted PF sub-classes better than baseline.
BC, NF/AF/O, NF/C/DI, NF/MS/MA and NF/C/MO were pre-
dicted very well in all the models. Some classes were predicted
better in baseline – NF/MS/O, NF/MS/MA and PF/C/O. This
indicates that for these classes, the neighbouring global classes
of the baseline model may be informative during prediction.
Also, multi-level prediction increased the number of false
positives for a class, specially for classes with greater number
of instances. The effect of aggregated classifiers in model B

TABLE III: Token level and phrase level measures

(a) Tokens and phrases

bekende verkalking links geen clusters microkalk
true B-PF I-PF I-PF B-NF I-NF I-NF
predicted B-PF I-PF I-PF O B-NF I-NF
true PF phrase NF phrase

predicted PF complete phrase match NF partial phrase match

(b) Token and phrase level scores

Classes TL F1 PP-Acc CP-Acc PP-Sim #Tokens #Phrases
BC 0.94 0.93 0.93 1.00 622 99
NF 0.95 0.97 0.91 0.99 1101 118
PF 0.87 0.87 0.87 1.00 1090 87



TABLE IV: F1 measures of global classes for the 3 models of automatic structuring
Models BC NF/AF/O NF/C/O NF/C/DI NF/C/MO NF/MS/O NF/MS/MA PF/C/O PF/C/SI PF/C/L PF/MS/L PF/MS/MA PF/C/AF PF/AS/O
Baseline 0.89 0.96 0.81 0.98 0.95 0.93 1.00 0.45 0.00 0.50 0.30 0.53 0.00 0.00
Model A 0.94 0.96 0.76 0.98 0.91 0.88 0.96 0.37 0.00 0.44 0.40 0.72 0.18 0.58
Model B 0.94 0.96 0.81 0.99 0.97 0.89 0.97 0.37 0.22 0.60 0.47 0.70 0.00 0.56
#Instances 622 397 148 54 56 210 35 138 14 68 139 59 33 172

TABLE V: Error propagation through classifiers at the 3 levels

Measures Level2 A Level2 B Level3 A Level3 B
∆FM

1 0.05 0.04 0.17 0.16
#Instances 2191 2191 2093 2093

can be seen in NF/C/DI, NF/C/MO, PF/C/L, PF/MS/L and
PF/C/SI. As the aggregated classifiers were trained on all L,
DI, MO and SI in the dataset, it resulted in better prediction
of third level classes like L, SI, even with few instances (14
tokens of PF/C/SI). But aggregating classifiers also resulted
in loss of information about the context, which is reflected
through slightly lower performance in model B for classes
PF/MS/MA, PF/C/AF and PF/AS/O. Aggregating AF classifier
(CB-8) did not help in predicting any third level AF classes
in PF due to not much similarity in their descriptions.

Table V gives an indication on error propagation through
the classifiers at the 3 levels for Model A and B. ∆FM1 at a
level indicate the difference in FM1 of that level of classifiers
on predicted classes when given true classes from previous
level and when given predicted classes from previous level.
This can be interpreted as error made by the classifiers at the
previous level. Error made by level 1 (∆FM1 at level 2) is
not much significant as compared to error by level 2 (∆FM1
at level 3) as the latter is a combination of errors from both
level 1 and level 2 classifiers, while the former only considers
error from level 1.

VII. CONCLUSION AND FUTURE WORK

We have addressed three tasks for the purpose of quality
assurance of radiology reports: heading identification, con-
tent identification and automatic structuring using BIRADS
standard. Heading and content were identified with a FM1
score of 0.97 and 0.94 respectively using SVM. For automatic
structuring, hierarchical CRF (FM1 =0.78) performed better
than baseline CRF (FM1 =0.71), while Model A and B did not
show any significant difference.

From the point of view of quality assurance, heading
and content contribute to identification of the presence of
indication of examination, findings and conclusion. A post-
processing step can be performed to check if the content
corresponds to the correct heading. Automatic structuring is
used to check the presence of clear description of findings.
According to BI-RADS, findings should contain mass, cal-
cification, asymmetry, architectural distortion and associated
features. Our model structures the findings automatically into
these concepts, further generating a semi-structured XML
format. This provides a platform to check the presence of
important concepts. Another important information that must

be present in reports is breast composition. Our model predicts
breast composition with 0.94 F1 score.

As future work, the presence and quality of BI-RADS cate-
gory can be evaluated. Based on findings, BI-RADS category
can be predicted to check how well it was assigned. More
reports can be labeled to get more training data. Development
of a prototype and actual trial in clinical practice can be done.
The approach taken in this research can also be extended to
reports for other conditions, written in other languages.
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Chapter 1

Introduction

In this section, we give an overview of the field of radiology and problems associated
with the current way of radiology reporting. Then, we introduce our approach to
address the problems and explain the research questions associated with it.

1.1 General Overview of Radiology

Radiology is the science of diagnosing diseases using medical images. There are dif-
ferent imaging techniques like X-ray radiography, ultrasound, Magnetic resonance
imaging (MRI). The radiographer is assigned with the task of acquiring medical im-
ages through these techniques. The radiologist interprets the images produced by
the radiographer and writes a report listing his findings and diagnosis. The report is
then sent to the referring physician who diagnoses and treats patients by considering
these radiology reports.

1.2 Current Scenario and Problems Associated with it

The radiology reports are written by the radiologists currently in free-text format.
The contents of the report are written in a narrative style in the order and format as
deemed fit by the radiologist. Thus, absence of standardized structure in the reports
creates several problems, as listed below:

1. Difficulty in information extraction by radiologists as well as physicians.

2. Different writing styles of different radiologists makes readability of reports
hard for physicians.

3. Hard to assess quality of radiology reports and analyze how well the radiolo-
gists are conforming to the standards.

The problems listed above will be explained in detail in the following paragraphs.

The first problem listed above is difficulty in information extraction. Often, the radi-
ologists or the referring physicians need to find answer to questions, such as "What
initial symptoms were troubling patient X which required medical imaging?". To
answer this kind of question, the report has to be scanned through to find where the
initial symptoms have been listed. A more difficult and elaborate question can be,
"How many patients were diagnosed by breast tumor in their lower outer quadrant
of their right breast?". To answer this, the reports of all the patients need to be ana-
lyzed manually. According to radiologists, finding answer to these type of questions
get very difficult if the information in the reports are unstructured.
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The second problem is free-text writing styles decreases readability of reports. As
there is no strict structured format for writing the reports, the radiologists write the
report in their own structure. For example, in general, the indication/clinical data
part of the report are written at the beginning of the report. It may be that some
radiologists write the clinical data at the end of the report or may be they forgot to
write it at the beginning. This creates difficulty for the referring physician as he has
to search through the whole report to find the information he needs and adapt him-
self to different writing styles of different radiologists. This results in decrease of
readability, which further gives rise to reports not being read intensively and some
of the information in the reports remaining unused.

The third problem is free-text writing style makes it hard to assess quality of the
reports written by the radiologists. Among various things, quality of radiology re-
ports can be assessed by its structure, standardized use of language and how well
the radiologists are adhering to set reporting standards. For example, Breast cancer
radiology reports use "Breast imaging-reporting and data system"(BI-RAD), which
is a classification system proposed by American College of Radiology, to represent
the malignancy risk of breast cancer of the patient. It was implemented to standard-
ize risk assessment and quality control for mammography and to provide a general
understanding of the findings to non radiologists. BI-RAD lexicon lists the terms
that can be used to report different findings after analyzing medical images. Based
on these findings, the radiologist gives a BI-RAD assessment category (can be num-
bered from 0-6) at the conclusion of the report. Often the radiologists want to know
how correctly they are doing their job of assigning a BI-RAD score to a report. For
quality assurance purpose, it would be interesting to perform a check on whether
the BI-RAD assessment by the radiologists correspond to the prescribed standard.
Another important quality check is if the reports are following BI-RADS guidelines.
A study [13] done on 244 breast cancer imaging reports from 2004 reported that only
half of the reports were concordant with reporting standards. The least reported
variables were breast density (reported in 24% reports), lesion depth (37%), lesion
shape (55% for mammography) and location (59%). With the current free-text for-
mat, it is hard to analyze if all the necessary information are mentioned in the report
and how well the BI-RAD score given by the radiologist, corresponds with the find-
ings. This makes the quality assurance difficult in free-text format reports.

1.3 Possible Solutions and Our Approach

Out of the three problems discussed in Section 1.2, we decided to focus our work on
addressing the third problem - Quality assurance. According to literatures [16, 17],
quality of a radiology report can be assessed by its accuracy, timeliness, clarity, orga-
nization etc. For our project, quality assurance means how well the report conforms
with the well-defined protocols of radiology report writing and this in turn will help
in checking clarity, accuracy and organization. At the basis of this quality assurance,
we will be converting the free-text reports to a structured format for making the task
of comparison of reports to well-defined protocols easier.

Free-text reports can be converted to structured format using any of the following
two approaches. One of them is a pre-defined report structure provided to the radi-
ologists and asking them to write the reports according to it. This can be realized by
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developing a report structuring software which guides the radiologist during writ-
ing, thus restricting his style and format of writing. An already existing work [15]
shows that this type of system resulted in lower quality reports. Thus, this type of
guiding systems deteriorates the task of radiologists in interpreting the images.

Another approach is converting the free-text reports to structured format after the
reports have been written by the radiologists in their own style. This method does
not impose any particular structure of writing on the radiologists. A system can be
developed which takes free-text reports written by the radiologist and convert it to
a structured format automatically without involvement from the radiologist. Thus,
the radiologists can concentrate more on the task of interpreting images and listing
the findings rather than thinking how it should be written, which helps in maintain-
ing accuracy in the task of image interpretation.

For this project, we decided to adopt the second approach so as not to decrease
radiologist’s performance. To summarize, our aim is to develop a system which
will automatically structure the radiology reports for the purpose of quality assur-
ance and for our project, we focus on breast cancer reports. We will convert the
reports into a semi-structured format and not a table-of-contents structured format.
The difference between these two are that in semi-structured format, the informa-
tion present in the report are labeled and structured. Whereas, in table-of-contents
structured format, a table is constructed having entries for all possible information
that can be in a report. For each report, only those cells are filled up, corresponding
to which there is information in the report and other cells remain empty. Quality of
a breast cancer radiology report will be assessed according to ACR BI-RADS rules
[30]. The department of radiology at Hospital Group Twente (ZGT) provided with
the breast cancer radiology reports.

1.4 Research Questions

The main research question of our research is as follows:

“To what degree can we successfully conduct quality assurance of radiology reports using
machine learning algorithms?”

The main research question is divided into the following sub-research questions:

1. (RQ-1) How can we identify the most apparent top level structure from the report us-
ing machine learning?
The ACR BIRADS [30] mention that a report should contain indication of ex-
amination (clinical data), clear description of findings and a conclusion. We
performed heading identification to identify the top-level structure.

2. (RQ-2) How can we automatically verify if the information in the report has been
placed under the correct top level sections (from RQ-1)?
It was further be checked if the headings identified in RQ-1 contain the infor-
mation corresponding to the heading. This is needed, as it may sometimes
happen that the heading of clinical data is there but the content under it is of
findings. Thus, a check was done for the presence of mainly 3 sections – clinical
data, findings and conclusion.
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3. (RQ-3) To what extent can we automatically convert the free-text findings from the
report into a detailed structured format?
We took the findings section from the report and converted it to a structured
format for checking if the findings contain all the necessary information. The
findings section can have findings from different imaging modalities like mam-
mography, ultrasound and MRI. For this project, we only considered findings
from mammography. In consultation with the radiologists, a structure of the
mammography findings was developed based on ACR BI-RADS. Mammog-
raphy finding contains mass, asymmetry, calcification, architectural distortion
and associated features and our structure was created to identify these classes.

The rest of the thesis is organized as follows: Chapter 2 presents a elaborate literature
review about the work done on quality of radiology reports, structuring initiatives
taken and natural language techniques applied in radiology. Chapter 3 describes the
theoretical background of the machine learning algorithms and necessary knowl-
edge from domain of radiology reports. Chapter 4 presents the approach taken to
solve the research questions. As, most of it was already described in paper, it only
contains those parts that could not be written in the paper. The dataset has already
in explained in the paper and thus, part 2 of the thesis does not contain it. Chapter 5
has extra experiments that could not be in the paper and their implication. Chapter
6 provides with a short conclusion discussing the research questions.
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Chapter 2

Related Work

This section contains discussion of various literatures on evolution of radiology re-
porting and how the radiology reports can be analyzed by computer to extract mean-
ingful data out of it. Section 2.1 talks about the history of radiology reporting and the
expected quality of the reports. In Section 2.2, we discuss the structured report ini-
tiatives that have been taken till now and the viewpoint of the two reporting style –
free-text and structured. Section 2.3 talks about different methods developed for au-
tomatic analysis of radiology reports. It introduces natural language processing and
its two types of techniques used for processing the data – rule based and machine
learning based. Literatures using different types of machine learning approaches for
processing radiology reports have been discussed. There is also a short discussion
on deep learning techniques being used for processing radiology reports.

2.1 Introducing Radiology Reporting and its Qualities

Radiology reports are very essential for communicating the findings of imaging pro-
cedure with referring clinicians and patients. Based on these reports, the referring
clinician gets a better understanding of the patient’s condition and decides upon the
treatment. This importance of a radiology report leads to the need of their quality
assurance. The reports need to be concise, clear, understandable and also need to be
written correctly.

Wilhelm Rontgen, the discoverer of X-rays, published the earliest radiology report
called Ueber Eine Neue Art von Strahlen [27] in 1896. The importance of good
quality of radiology report was first recognized by Preston M. Hickey in 1922 [12].
Hickey wanted to assess the radiologists by looking at the quality of their radiol-
ogy reports. He suggested that each radiologist interested in seeking admission to
American Roentgen Ray Society (ARRS) will be required to submit 100 radiology
reports with their application. He stressed on the fact that a standardized nomencla-
ture should be used in writing radiology reports [12]. Qualities of a good radiology
report was summarized by Armas [1] in 1998. He listed 6 C’s namely clarity, correct-
ness, confidence, concision, completeness and consistency as characteristics of good
quality report.

In 2010, Pool and Goergen [23] did literature review to identify the important el-
ements of a high-quality radiology report. Their aim was to identify evidences that
talk about the content of radiology report and also determine the gaps among these
evidences so that it can be filled up by further research. To achieve this, they re-
viewed 25 published papers which consisted of study methodologies such as 1 ran-
domized controlled trial, 1 before-and-after study of interventions, 10 observational
studies, 12 surveys and 1 narrative review of the literature. They also reviewed 4
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guidelines of professional standards of radiology reports namely ACR, the Canadian
Association of Radiologists, the Royal College of Radiologists and Society of Inter-
ventional Radiology. They found out that existing guidelines had several weakness
related to scope, purpose, methods of development, stakeholder consultation etc.
and there was a lot of difference in the languages used to describe images, diagnos-
tic uncertainty. They also found that many survey participants preferred structured
or itemized style of radiology report, but not many studies exist about the effect of
report structure on its quality.

Another very recent paper published in 2017 talks about different ways that radi-
ologists can make the reporting more effective by just following some simple steps
[39]. It asks radiologists to organize their thoughts, be clear, take responsibility, close
the loop on incidental findings, make reports readable for patients and be an expert
consultant.

2.2 Structured Reporting Initiatives

There is active research going on related to improving quality of radiology report.
Sistrom and Langlotz [33] identified i) standard language, ii) structured format as
two key attributes for improving the quality of a radiology report. Standardizing the
language of the report promotes common interpretation of the reports by the radiolo-
gists through out the world. To bring standardization into effect, in 2006, Radiology
Society of North America (RSNA) created a lexicon called RadLex [19] which pro-
vides standard terminology for diseases, observation and radiology procedure. Each
term in RadLex also contains all its synonyms and other related terms.

It was further understood that increasing readability of radiology reports can be
attained by putting the information in a structured format. Structured format facili-
tates reuse and retrieval of report content both by human readers and information
systems. In the next paragraphs, we will see various literatures where the effects of
structured reporting have been studied.

In a research paper [25], Reiner, Knight and Siegel talk about the evolution of ra-
diology reports and different methods adopted in changing the free-text radiology
report to structured text. They proposed a graphical system that directly maps the
terminologies in the report to standardized lexicon RadLex. RSNA established a Ra-
diology Reporting Committee to promote best practices in radiology reporting. This
committee consisting of radiologists and imaging informatics experts conducted a
workshop in 2008 to address the issue about structured reporting and how it should
be adopted throughout radiology. The highlights of the workshop was published in
2009 by RSNA [17]. It stresses on the fact that structured reporting would help in re-
search, teaching and clinical quality improvement. It established a framework about
the contents of a radiology report such as administrative information, patient iden-
tification, clinical history, imaging technique, comparison, observations, summary
or impression and signature. This paper also discusses that structured reporting can
help in addressing quality assurance and subsequently lists the quality metrics that
can be derived from radiology report data.

Though there had been a lot of discussion about the effect of structuring on the
quality of radiology report, not much actual assessment was done until 2005. In
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2005, Sistrom and Honeyman-Buck [32] performed an experiment to test the accu-
racy and speed of the reviewers in extracting case-specific information from free-text
and structured report. A web-based testing mechanism was used to give radiology
reports to 16 senior medical students, who were asked to answer 10 multiple choice
questions on each of the 12 cases. Students were randomly assigned either free-text
or structured report. Three things were recorded while they answered the questions-
the number of questions answered correctly for each case, the time taken for each
case and the number of questions answered correctly per minute. At the end of the
test, it was found that both the free-text and structured report resulted in similar ac-
curacy and efficiency in information extraction. A post-experimental questionnaire
was also conducted where the subjects expressed an opinion in favour of the struc-
tured report format.

In another study conducted in 2009 by Johnson and his colleagues [15], it was re-
ported that structured reporting may be inferior to free-text reports. A cohort study
of structured radiology reporting was compared with conventional dictation reports
and the quality of the report was graded based on accuracy and completeness. The
study involved 16 resident radiologists in the control group and 18 in the interven-
tion group. The residents in the intervention group were asked to use commercially
available structured reporting system(SRS), a point-and-click menu driven software,
to create the structured format reports and the residents in the control group used
the free-text dictation format. It was concluded that the structured reporting resulted
in a decrease in report accuracy and completeness, which could in turn affect patient
care. Accuracy decreased from 91.5 to 88.7 and completeness decreased from 68.7 to
54.3 when using SRS. The residents also complained that SRS was overly constrain-
ing and time-consuming. It did not allow them to use desired content in the report.
Even then most of the residents commented that the idea of structured reporting is
appealing and good reporting skills and standardized terminology are important in
clinical practice.

Schwartz and his colleagues [28] did a similar study in 2011 to compare the con-
tent, clarity and clinical usefulness of conventional dictated radiology reports and
template-structured reports and their outcome differed from the study conducted
by Johnson [15]. Referring clinicians and radiologists found greater satisfaction with
content and clarity in structured reports, but the clinical usefulness graded using a
radiology report grading scale (PCOS) [26] did not differ significantly between the
two types of report.

Another recent study conducted in 2015 by Powell and Silberzweig [24] showed
evidence in favour of structured reporting. An online survey related to the develop-
ment and experience of structured reporting was sent to the members of Association
of University Radiologists and around 59.5% of the respondents reported to be sat-
isfied with structured reports. The study showed that many radiology departments
were experimenting with structured reporting and departments using structured re-
port format had less error in their reports. But many of the radiologists stated that
structured reporting had a lot of limitations like report formats are variable and com-
plex patient images may not properly fit into this structure.

In conclusion, from the above discussion, it can be noted that literatures suggest
structured reporting can help in quality assurance of reports. Literatures show that
though the radiologists did not like softwares imposing structured reporting on
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them while writing and addressed it as time-consuming and overly constraining, they
preferred structured format of reports over free-text.

2.3 Natural Language Processing in Radiology

Electronic health record (EHR), mostly in text and images format, is increasing the
use of digital content and thus generating lot of new challenges and opportunities in
the medical domain. These records contain a lot of information which can be used
to improve clinical care. It is not possible for humans to analyze these huge amount
of data and extract relevant information manually. Efficient and automated strate-
gies are required to aid humans in making the maximum utilization of the available
data and extract all relevant information. As discussed in the previous section, ra-
diology reports, a type of EHR, are usually written in unstructured free-text format.
This format of the report is not suitable for many computerized applications like au-
tomated quality assurance, clinical decision support and research. Thus, for many
years, there has been a lot of research going in the field of natural language pro-
cessing to automatically convert the reports to structured format so that automatic
identification and extraction of information becomes easier.

FIGURE 2.1: NLP pipeline (taken from [22])

Natural language processing (NLP) is analysis and synthesis of natural language
(text and speech) and is often related to the terms text mining and information ex-
traction as described by Hearst [11]. The use of NLP in biomedical domain and
also its current state has been summarized by Demner-Fushman in 2008 [6] and in
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2016 by Pons [22]. Demner-Fushman along with his colleagues reviewed the state
of NLP in computerized clinical decision support(CDS) that aims at helping health
care providers and public by providing easy access to information about the pa-
tient whenever needed. The authors state that though a lot of benefits and successes
were observed through CDS system, widespread use of CDS systems for natural
language processing research and daily practice was not observed for many years.
Most of the methods were targeted at specific goals and for specific information sys-
tems. For making NLP research a success, the systems need to be easily adapted to
meet new goals. The authors concluded that there is a renewed interest in NLP re-
search in medical domain and there has been some local successes related to it. Thus,
more NLP systems for CDS will develop and come into daily use. In a more recent
study conducted in 2016 [22], Pons and his colleagues identified 67 relevant publica-
tion related to how radiology is benefiting from NLP. The authors summarized the
methods and tools of NLP being applied into practical applications of radiology and
how well they were performing.

To convert the unstructured reports to structured format, several NLP steps (shown
in Fig 2.1) need to be taken which has been described well by Pons and his colleagues
[22]. As shown in the figure 2.1, after the features are extracted from text, there are
two types of techniques for processing these features - i) rule based approach and ii)
statistical approach (machine learning). In rule based, rules are manually created by
experts to match a specific task. Dictionary based is a special case of rule based ap-
proach where a lexicon is used to match terms from the text. In statistical approach,
machine learning algorithms are trained to automatically recognize pattern. This
statistical approach is also called statistical machine learning approach, but we will
refer this as machine learning in rest of our thesis. When rule based and machine
learning are combined together for processing the features it is called hybrid ap-
proach. In this approach, rules are generally used to improve the classification from
the automatic classifier.

Next we will talk about various research works using rule based and machine learn-
ing approaches.

2.3.1 Rule Based Approaches

One of the first natural language processor to be integrated with clinical information
systems was a rule based system called MedLee [8] [9]. It was developed in 1994 to
extract clinical information and present in a structured form and was initially used
to process radiology reports of chest cancer. MedLee has three stages of processing-
the first one being parsing of sentences based on semantic rules and grammar, the
second one is phrase standardization to reduce variation and the third one is encod-
ing, to map the concepts to a controlled vocabulary. The system was tested on 230
radiology reports and achieved a recall and precision of 70% and 87% respectively.

BI-RAD lexicon was developed for standardizing radiology reports for breast can-
cer. However, most reports suffer from inconsistency and missing data. To address
this issue, Nassif and his colleagues [21] developed a rule based system in 2009 to
extract BI-RAD related features from mammography study. The system consists of
3 steps-syntax analyzer for processing the input into sentences, concept finder to de-
tect BI-RAD concepts and negation detector checks for negation. The system was
tested on 100 radiology reports manually tagged by radiologists and it resulted in a



24 Chapter 2. Related Work

precision of 97.7% and recall of 95.5%.

Based on the findings from the breast imaging, a BI-RAD category is assigned to
each report representing the malignancy rate of the lesion. Extracting these BI-RAD
categories for structural reporting is an important task. Sippo and his colleagues
[31] developed a rule based NLP system in 2013 to extract BI-RAD final assess-
ment category from radiology reports. They tested their system on over 220 reports
for each type of study-diagnostic mammography, screening mammography, ultra-
sound, MRI etc. achieving a recall of 100% and precision of 96.6%.

Though rule based approach achieved very good results as shown in the above
work, it has a lot of limitations. It is difficult and time-intensive because it requires
many experts to model the rules carefully so as to fit all the possible cases. If some-
thing goes wrong in the rules, then it does not match any of the cases and accuracy
decreases by a huge margin. To fit more cases, old rules need to be extended and new
ones need to be created which ends up making the rules very complex and unman-
ageable. Most often the rules start contradicting each other. Additionally, rules need
to be changed based on the different types of hospital information systems involved
which decreases its scalability and also makes it cost-inefficient.

2.3.2 Machine Learning Approaches

In this section, we will talk about use of different machine learning algorithms in the
domain of radiology. The section starts with a brief overview of machine learning
and its applicability in radiology. This is followed by introduction of supervised ma-
chine learning where the algorithms are trained on labeled data. Supervised learning
subsection has three different paragraphs and each paragraph talks about a separate
algorithm. It starts with decision tree, followed by Maximum Entropy Model and fi-
nally in the last paragraph, Support vector machine (SVM) and Conditional Random
Field (CRF) are discussed. The next subsection talks about unsupervised learning,
where the algorithms are trained on unlabeled data. The section ends with discus-
sion on research work on Deep Learning.

Overview

Machine learning approach overcomes most of the limitations shown by rule based
approach. Built on statistical models, machine learning gives a system the ability to
learn from complex raw data and predict pattern in unknown data. In radiology,
machine learning has lots of applications like early diagnosis of disease, medical im-
age analysis, image reconstruction, language processing in reports etc.

Wang and Summer in their survey in 2012, discussed the use of machine learning
in radiology and looked into the previously mentioned applications [38]. The au-
thor summarized a few advantages of using machine learning in radiology-one of
them being labour saving. Due to increasing number of reports and images over
the years, the workload of radiologists is increasing and becoming too much for ra-
diologists to handle. Machine learning systems can be trained to identify complex
patterns and help radiologists with the labour intensive work, so that radiologists
can focus more on the high-level work. Another advantage is it was observed that
many machine learning system’s performance was comparable to humans and some
of them were performing as good as the expert radiologists. Machine learning can
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be used to gain new insights into the data for example which disease gains promi-
nence over a certain period of the year under what conditions. It is hard for humans
to look into huge amount of data and answer these types of questions.

Supervised Learning

One of the very early works of using machine learning approach in the domain of
radiology was performed in 1993 by Zigmond [44] who developed a software called
RadTRAC to monitor follow-up of the patients from the free-text chest X-ray reports.
He used dictionary based approach to identify findings related to malignancy from
the reports and used machine learning approach, called decision tree (CART), to cate-
gorize the reports into two categories-medical follow-up required versus no medical
follow-up required. The RadTrac system achieved a sensitivity of 90% and a speci-
ficity of 82% when tested on 470 radiology reports.

A more recent work done in 2013 was about extracting clinically important rec-
ommendation from radiology reports so that clinicians & other concerned persons
do not miss upon any important recommendations/advices suggested for the pa-
tients by the radiologists [40]. The authors developed a recommendation extraction
pipeline consisting of section segmentation, sentence segmentation and recommen-
dation extraction. They used UMLS in feature extraction stage to match the free-text
from the reports to concepts in UMLS and Maximum entropy model, a supervised
machine learning algorithm, for feature processing. The model was tested on 800 ra-
diology reports achieving an f-score of 0.758. This work is a continuation of another
work in 2011 [41] by the same authors where they address the same aim but using
rule based method to identify section boundaries whereas in this work, they used
Maximum entropy algorithm to identify section boundaries. The motivation of the
authors behind using machine learning for section identification was generalizing
the section identification rules, which were only specific to reporting style of their
institution in their 2011 work. Though the work of 2013 improved automation, the
former work using rule based achieved a better f-score (87%) than the latter work.

For named entity recognition, Conditional random field (CRF) [18] is usually used with
some variation by many researchers. Li and his colleagues [20] did a comparative
study between SVM and CRF for disease named entity recognition and concluded
that CRFs (f-score:0.86) outperformed SVMs (f-score:0.64). Torii [37] investigated
the performance of CRF taggers for extracting clinical concepts and also tested the
portability of this kind of tagger on different kinds of dataset. Along with CRF, the
authors also used dictionary look up from UMLS for matching concepts. A mas-
ter’s thesis work was conducted by Joost Timmerman [36] on structuring of free-text
radiology reports. He applied LC-CRF (Linear Chain CRF) for named entity recog-
nition and achieved an f-score of 89.3%. The next work will talk about cascaded
multi-stage systems, where CRF is used in multiple levels for multi-level named
entity recognition. Esuli and his colleagues [7] developed a cascaded 2 stages LC-
CRF, one stage CRF for identifying entities at clause level and another one at word
level. They also compared it with another approach-a confidence weighted ensem-
ble method that combines two types of classifier (standard token level LC-CRF and
the cascaded 2 stage classifier mentioned in the last line) and sums up their result
with equal weight. Their system was tested on 500 mammography reports and the
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former cascaded system performed slightly better (f-score:0.873) than the latter (f-
score:0.858). Both of their systems outperformed their baseline model of standard
one level LC-CRF (f-score:0.846).

Unsupervised Learning

One of the disadvantages of machine learning is requirement of labeled training cor-
pus for supervised machine learning. In unsupervised machine learning, no manual
annotation is required and the machine infers the hidden structure in data on its
own. In 2013, Zhang and Elhadad did a research on biomedical named entity recog-
nition using unsupervised approach which does not require annotated data, rules or
heuristics [43]. Their system performs entity detection using a noun phrase chunker
followed by a filter based on inverse document frequency and entity classification is
done using distributional semantics. They tested their system on i2b2 and GENIA
corpora and found that their system outperformed a dictionary matching approach.

Deep Learning

Recently, a lot of research has been going in the field of deep learning. Researchers
were applying deep learning to image analysis in the beginning which has now been
extended to text. For the first time, bidirectional LSTM CRF(Bi-LSTM-CRF) was ap-
plied on text data for sequence tagging by Huang and his colleagues [14]. The bidi-
rectional LSTM component helps in looking into the past and future features and
CRF looks into the sentence level tags. Their system achieved a f-score of 84.26% on
named entity recognition task tested on CoNLL2003 dataset. Another very recent
work was done in 2017 by a group from Stanford university, who used deep learn-
ing convolution neural network (CNN) for classifying free-text radiology reports
[4]. They applied their proposed method to extract pulmonary embolism findings
from thoracic computed tomography (CT) reports and compared it with a tradi-
tional NLP model, peFinder [3]. They observed that the CNN model (f-score:0.938)
outperformed the peFinder model (f-score:0.867).

2.4 Summary

As conclusion of the related work section, the following important things should be
noted:

1. Radiology reports need to be concise, clear and understandable for proper
communication of knowledge to the outside world and for proper diagnosis
of patients.

2. Structured reporting style is preferred over free-text style by many radiolo-
gists. But structured reporting should not be impose on the radiologists. Struc-
tured reporting should be such that it does not lower the accuracy of the re-
ports.

3. Two natural language processing approaches used for radiology reports anal-
ysis are rule based and machine learning. We use machine learning approach
for our purpose because in this approach, the algorithms are trained automati-
cally to recognize patterns unlike rule based system, where the rules are hand-
crafted by experts. We did not want to overburden the radiologists with the
task of rule creation.
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4. As seen from the literature, Conditional Random Field is the best performing
algorithm for sequence labeling and therefore, we use this algorithm in our
project.

5. In one very recent work, deep learning performed very well on radiology re-
ports, but deep learning models require a lot of data to get trained. Because of
availability of limited labeled data, we will not be able to use deep learning for
our task.
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Chapter 3

Theoretical Background

In this section, we give an overview of machine learning models used in this project.
We also give an overview of the radiology reporting standard for breast cancer.

3.1 Machine Learning Overview

Machine learning is a technique used to make the systems learn from the data, us-
ing statistical techniques without explicitly creating rules. Through various machine
learning algorithms, these trained systems are used to make predictions on the data.
There are two machine learning approaches – supervised and unsupervised. The
main difference between these two approaches is that in supervised learning, sys-
tems are trained from labeled data whereas in unsupervised, no labeled data are
provided. These approaches are explained in details in the next sub-sections.

3.1.1 Supervised Learning

Supervised learning has a input token (X) and a desired output variable (Y) corre-
sponding to it and an algorithm is used to learn a mapping function from X to Y
(Y=f(X)). The output variables are also known as labels or classes. The goal is to
optimize this mapping function (also known as inferred function) to create model to
be applied on unseen data to predict the output variables. During training, human-
labeled data of input (X)-output (Y) pairs are provided to optimize the inferred func-
tion f. Parameters of this function are learned from the already labeled input-output
pairs and this function is provided to unseen data for output variable prediction.
An optimal scenario is to produce a function which will correctly classify all unseen
data. Supervised learning can be grouped into classification problem and regression
problem. In classification problem, the output variable is a category (discrete value),
e.g. spam or not spam. In regression, the output variable takes continuous value e.g.
all decimal values in the range 0 to 100.

3.1.2 Unsupervised Learning

Unsupervised learning is a approach of training a system to infer the underlying
structure of data without training the system on labeled data beforehand. In this ap-
proach, since there are no labeled data, there is no straight forward way of evaluating
the accuracy of the model. Unsupervised learning can be grouped into clustering,
anomaly detection, association mining and latent variable models. In clustering, the
dataset is grouped according to similarity such that objects belonging to one group
are more similar to each other than objects in other group. In anomaly detection,
unusual data points in the dataset are automatically discovered. This can be used
in identifying fraudulent transactions. Association mining is used to discover rules
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that describe portions of the data. These rules can help in identifying items that fre-
quently occur in the dataset e.g. X and Y are often bought together in supermarket.
Latent variable models decomposes the dataset into multiple components or vari-
ables. It relates a set of observable variables to a set of latent variables and these
observable variables are estimated using the latent variables.

3.2 Classification Task

Classification is a task of identifying to which set of categories, a new observation
(input variable) belongs. For example, given a input sequence of email, x, the clas-
sification task will be to classify it into y ε ["spam", "not spam"]. The formula below
shows the classification task mathematically:

y∗ = arg max
y

P(y/x)

The label y with the maximum posterior probability is selected as the most probable
label for the input variable x. y* is the label with maximum posterior probability
and the final label assigned to x.
Classification task is a type of supervised learning problem. There are many su-
pervised learning algorithms used for this task like Naive Bayes, Support Vector
Machine, Random Forest, Conditional Random Field. These algorithms will be ex-
plained in Section 3.3. Binary and multiclass classification are the two types of clas-
sification problem, which are discussed next.

3.2.1 Binary and Multiclass Classification

In binary classification, the output variable is a set of 2 classes and an instance can be
classified into one of the two classes. For example, given symptoms of a patient, the
patient either has a disease or not. Here, the output variable consists of two classes
– has disease or no disease. Decision tree, SVM, naive bayes are some of the existing
binary classifiers.

When the output variable is a set of >2 classes, it is called multiclass classification.
Here, an instance can be classified into one of three or more classes. For example,
given some features of a fruit, the fruit can be orange, apple, grapes or mango. Mul-
ticlass classification should not be confused with multi-label classification, where
multiple classes need to be predicted for an instance. There are several methods to
handle multiclass classification, two of them are i) Transformation to binary ii) Ex-
tension from binary classification algorithms.

In transformation to binary, the multiclass classification is divided into multiple bi-
nary classification problem, which is further handled using one-vs-rest or one-vs-
one strategies. One-vs-rest involves training a binary classifier for each class that
learns to distinguish between that class (considered as positive class) and all the
other classes (considered as negative classes). At testing time, the confidence scores
from all the binary classifiers are calculated and the class with the highest score is se-
lected. One-vs-one strategy trains k(k-1)/2 binary classifiers, where k is the number
of the classes. Each classifier is trained to distinguish between two classes and at the
testing time, a voting scheme is applied, where the class with the highest number of
votes get selected.
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Another method to handle multiclass classification is extension from binary classifi-
cation algorithm. Many binary classification algorithms are naturally built to handle
multiclass classification like decision tree, naive bayes, neural networks. SVM is in-
herently a binary classification algorithm but some multiclass extensions have been
developed for SVM [5].

3.2.2 Sequence Labeling

Sequence labeling, a type of structured prediction, is task of assigning categorical
values to each member of a sequence of observed values. This can be seen as a
classification task for each member of the sequence. Depending on the problem, the
output class for each member of the sequence can be any item from a set of 2 or more
classes. Thus, sequence labeling is a type of binary or multiclass classification prob-
lem. An example can be part of speech tagging, where a part of speech like noun
phrase, verb phrase, is provided to each word in a sentence. In a sequence labeling
task, any classification algorithm mentioned in previous section can be used. But
to improve accuracy and for better prediction of labels, the labels of neighbouring
members in the sequence are taken into consideration while prediction. This helps in
predicting the best label sequence globally. For this purpose, some other algorithms
were developed for sequence labeling, which are Hidden Markov Model, Maximum
Entropy Markov Model and Conditional Random Field. These algorithms make a
Markov assumption, which means the choice of label of one word is directly depen-
dent on the labels of the adjacent words. It has been seen that Conditional Random
Field perform the best in sequence labeling task, so we will use this algorithm to
address one of our research questions. This algorithm is explained in detail in the
next section.

3.3 Machine Learning Algorithms for Classification

In this section, the supervised learning algorithms used in our project – Naive Bayes,
Support Vector Machine, Random Forest and Conditional Random Field are ex-
plained in detail.

3.3.1 Naive Bayes

Naive Bayes (NB) is a supervised learning algorithm based on Bayes theorem with
naive independence assumption between the features. The algorithm is modeled
such that it assigns class labels to problem instances by calculating the probability
of the class label given features of the problem instance. The naive independence
assumption is that the value of a feature is independent of the other features given a
class variable. For example, if a house is characterized by features like has windows,
a door and rooms, then Naive Bayes classifier assumes that the features – window,
door and room contribute independently to probability of something being a house,
irrespective of any correlation among the features. The Naive Bayes classifier is
modeled as a conditional probability problem,

p(Ck|x1, . . . , xn)

which means, the probability of a output class Ck given feature vector, x={x1, . . . , xn}.
C is a set of output with k possible classes, C={C1, . . . , Ck}. Using Bayes theorem, the
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conditional probability is decomposed as

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(3.1)

The terms in above equation are named as follows:

posterior =
prior× likelihood

evidence
(3.2)

The numerator of equation 3.1 is basically joint probability p(Ck, x1, . . . , xn).

p(Ck, x1, . . . , xn) = p(x1, . . . , xn, Ck)

= p(x1|x2, . . . , xn, Ck)p(x2|x3, . . . , xn, Ck) . . . p(xn−1|xn, Ck)p(xn|Ck)p(Ck)

(3.3)

Using Naive Bayes independence assumption,

p(xi|xi+1, . . . , xn, Ck) = p(xi|Ck) (3.4)

which makes equation 3.3 as,

p(Ck, x1, . . . , xn) = p(Ck)
n

∏
i=1

p(xi|Ck) (3.5)

Thus, the conditional probability of Naive Bayes classifier can be written as:

p(Ck|x1, . . . , xn) ∝ p(Ck, x1, . . . , xn)

=
1
Z

p(Ck)
n

∏
i=1

p(xi|Ck)
(3.6)

where Z is the evidence, p(x) = ∑k p(Ck)p(x|Ck).
After calculating the conditional probabilities of all the classes in C, the decision
of the most probable class for the feature vector is taken according to maximum a
posteriori (MAP) rule (Equation 3.7), which is the class with maximum probability.

ŷ = arg max
k

p(Ck)
n

∏
i=1

p(xi|Ck) (3.7)

The prior and the likelihood are two parameter of Naive Bayes classifier that needs to
be estimated. The prior is estimated in a simple way by making the classes equiprob-
able or weighing it based on the number of the samples of that class. The likelihood
is estimated based on distribution of features called event model of the classifier.
Some of the event models for discrete features are Bernoulli Naive Bayes and Multi-
nomial Naive bayes and for continuous feature, Gaussian Naive Bayes.

In Bernoulli, the features are represented as binary attribute. For example, for a
document, the word features are represented as whether the words occur or not oc-
cur in the document (1 for occur, 0 for not occur). In Multinomial, the word features
are represented by their number of occurrence in the document. For Gaussian, the
features are distributed according to Gaussian distribution. The likelihood probabil-
ity is calculated according to Normal distribution formula. In spite of the simplified
assumption of Naive Bayes, Naive Bayes works quite well in classification task like
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spam filtering and document classification [42].

3.3.2 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning algorithm for binary classi-
fication. Given a set of training examples belonging to one or the other of the two
classes, SVM trains a model to label a new data into any one of these two classes.
One class can be referred to as positive and the other as negative. SVM classifier
constructs a hyperplane that divides the positive and the negative classes. A good
separation is a hyperplane that has the largest distance from the nearest training
data of either class, as large distance corresponds to less generalization error of the
classifier. This creates a linear SVM classifier and the hyperplane is called maximum
margin hyperplane. Figure 3.1 shows the maximum margin hyperplane separating
the two classes of data.

FIGURE 3.1: Support Vector Machine showing maximum margin hy-
perplane (taken from [34])

Suppose the data looks like this (~x1, y1) . . . (~xn, yn), where xi is the data point
belonging to class yi (yi can only be -1 or 1). In a linear SVM, we want to find the
maximum margin hyperplane which divides the data point having class yi=1 from
the data point having class yi=-1. A hyperplane is defined as ~w.~x − b = 0, where
w is the vector perpendicular to the hyperplane, ~x = ~x1, . . . , ~xn is the feature vector
and b is the position of the hyperplane.

Linear SVM can be divided into two types – hard margin and soft margin. Hard
margin is used if the training data is linearly separable. Two parallel hyperplanes
are selected that separate the two classes and the distance between the hyperplanes
is as large as possible. In this case, the maximum margin hyperplane lies half way
between these two hyperplanes. The search for maximum margin hyperplane in
hard margin is modeled as the optimization problem of minimizing 1

2 ||w||2 subject
to yi(~w.~xi − b) ≥ 1. Soft margin is used when the data is not linearly separable. Soft
margin introduces a hinge loss function, max(0, 1− yi(~w.~xi − b)). If xi lies on the
correct side of the margin, then yi(~w.~xi − b) ≥ 1 and the hinge loss functions results
in zero. If the data xi is on the wrong side of the margin, then the following func-
tion is minimized, [ 1

n ∑n
i=0 max(0, 1− yi(~w.~xi − b))] + λ||~w||2. Nonlinear SVM is also

used for data which are not linearly separable, by applying kernel trick to maximum
margin hyperplane.

Once the SVM classifier is trained using the labeled data, the score for classifying
an unseen data (represented using feature vector, ~x) is calculated using the function
f (~x) = ~w.~x − b. The result of the function decides the class of the unseen data. If
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f (~x) > 0, then the ~x is labeled as positive class or else negative class. As SVM is a bi-
nary classifier inherently, for multiclass classification problem, techniques discussed
in Section 3.2.1 are used.

3.3.3 Random Forest

Random Forest (RF) is an ensemble of many decision trees, where each decision
tree is fitted on a random sub-sample of the training set and the model outputs
the class which is the the mode of the class output by individual tree. Random
forest model follows the idea of bagging or bootstrap aggregating, which means the
use of multiple classifiers to make a decision and ultimately choosing the class with
maximum votes. Construction of each tree in the random forest model is according
to the following algorithm. Let the number of training sample be N and number of
features be M. All the features are not used to construct the tree, rather, a random
selection of m features is done, where m < M. Only these m features are used
to calculate the best split at each node of the decision tree. A training set is built
by choosing N times with replacement from all N available training samples. This
is called bootstrap sample. Also, not all the bootstrap samples are used to build the
tree. About one-third of the bootstrap samples is left out to estimate the classification
error rate of the tree on the predicted classes and also to measure the importance of
the feature variable. This left out data is called out-of-bag (OOB) data. Unlike the
normal decision trees, each tree is fully grown and not pruned. After all the trees
are build and the forest is completed, a new sample can be classified by taking the
majority vote among all the tress in the forest (resembling the bootstrap aggregating
idea). Random forest learning is quite fast and it can handle a large amount of input
variables.

3.3.4 Conditional Random Field

Sequence labeling, as discussed before, is a type of problem where the sequence of
classes y=(y1, . . . , yn) has to be predicted given a sequence of observed feature vec-
tors, x=(x1, . . . , xn). Graphical models are used to model the dependencies between
the observed variables. A type of graphical model, called generative model, uses
joint probability distribution p(y,x) over x and y to model the problem. Ab example
of generative model is Hidden Markov Model. But, this approach has some lim-
itations. If we want to model using joint probability, then we have to model the
input features p(x), which has complex dependencies among them. Modeling the
dependencies among the features can make the problem intractable and ignoring
the dependencies results in reduced performance.

A solution to this problem is directly modeling the conditional probability p(y|x),
which is the only thing needed for classification. This is the approach taken by Con-
ditional Random Field (CRF) [18]. Conditional Random Field has the advantage that
the dependencies that occur in x play no role in the conditional model, so conditional
model has a much simpler structure than joint model. CRF was developed by John
Lafferty, Andrew McCallum and Fernando Pereira in the year 2001, as a framework
to build probabilistic models to segment and label sequence data, and a better alter-
native to the Hidden Markov Model (HMM) and Maximum Entropy Markov Model
(MEMM). CRFs take into account the context of the token, which means the classes
of neighbouring tokens. Ordinary classifiers like Naive Bayes base their prediction
only looking at features of single instances and not its surrounding labels. Thus,
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CRFs are preferred for structured predictions. CRFs provide several advantages
over HMM including the ability to relax strong independence assumptions made
in those models. CRFs also avoid the fundamental limitation of MEMM, that is bias
towards states with few successor states, known as label bias problem. Figure 3.2
shows how CRF is related to HMM, Naive Bayes and Logistic Regression.

FIGURE 3.2: Diagram of relationship among Naive Bayes, Logistic
Regression, HMM, LC-CRF and general CRF (taken from [35])

In the original paper [18], CRFs are defined as follows:
Let G=(V,E), E are edges, which are the cliques of the graph and V are the vertices
Y = (Yv)vεV , such that Y is indexed by vertices of the graph G.
Then, (X,Y) is a conditional random field in case, when conditioned on X, the random
variable Yv obey the Markov property with respect to the graph, p(Yv|X, Yw, w 6=
v) = p(Yv|X, Yw, w ∼ v), where w ∼ v means w and v are neighbours in the graph.

Thus, CRFs are undirected graphs that can be divided into X and Y disjoint set,
where X is the observed input features and Y is the output variable, from which con-
ditional probability p(X|Y) can be modeled. Since, conditional probability is used
to model CRF, CRFs belong to the class of discriminative models. A type of CRF is
called Linear Chain CRF, which will be described next.

Linear Chain Conditional Random Field

FIGURE 3.3: Linear Chain Conditional Random Field (taken from
[18])

Though, CRFs have arbitrary structure (general CRFs shown in Figure 3.2), there is a
type of CRF which supports sequence modeling, called Linear Chain CRF (LC-CRF)
(shown in Figure 3.3). These are used in text processing, bioinformatics and com-
puter vision. Given a sequence of text, X = (x1, . . . , xn), where xi is a token feature
vector and Y = (y1, . . . , yn) are the corresponding labels or classes, where yi is the
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label for feature vector xi. LC-CRFs model the conditional probability p(Y|X) ac-
cording to the following formula:

p(Y|X) =
1

Z(X)

|X|
∏
i=1

Ψu(yi, xi)
|X|−1

∏
i=1

Ψb(yi−1, yi, xi) (3.8)

where i is token number in the sequence, 1
Z(X)

is a normalizing factor to ensure that
the resultant value is a probability, Ψu are factors of feature vectors xi and label yi,
and Ψb are factors of feature vector xi and labels yi−1 and yi.

Z(X) = ∑
Y

|X|
∏
i=1

Ψu(yi, xi)
|X|−1

∏
i=1

Ψb(yi−1, yi, xi) (3.9)

Ψu(yi, xi) = exp ∑
k

θk fk(yi, xi) (3.10)

Ψb(yi−1, yi, xi) = exp ∑
h

θh fh(yi−1, yi, xi) (3.11)

In equations 3.10, 3.11, fk and fh are feature functions, fk depends on the observation
and label at current time step i and fh depends on the observation and label at cur-
rent time step i and also on label at previous time step i-1. θk and θh are the weights
of the feature functions.

Training and Testing
For training, θk and θh are the parameters to be estimated from the training data
and the conditional probability p(Y|X) needs to be maximized. In our project, we
used a quasi-Newton gradient descent method called the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) training algorithm for parameter estimation. As,
this algorithm is not the scope of study for this project, we will just give an outline
of the algorithm. L-BFGS uses an estimation to the inverse Hessian matrix to search
through variable space. To limit the use of computer memory, only the vectors which
represent the approximation of the matrix at a time are stored instead of the n x n
matrix, where n is the number of variables in the problem. The gradient of the en-
tire training set is computed using current weights and then batch update is done to
move in small steps towards the minimum along the computed gradient.

In testing, for a input sequence X, the most probable label sequence y* needs to be
found by taking that label which has the maximum conditional probability p(Y|X).
Generally, Viterbi algorithm is used to find the best label path in the model for a
sequence of input.

3.4 Radiology Reports on Breast Cancer

This section introduces to the medical domain of our project. We will provide with a
brief overview of the structure and elements present in a radiology report on breast
cancer, in accordance with ACR BI-RADS [30]. This section provides a basis for the
labeling scheme followed for our project. A person going through the diagnostic
process for breast cancer, may either have a benign lesion or a cancer. Radiology
reports and a further check up from the clinician informs the person about his con-
dition, which makes radiology reports quite important.
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The following elements should be present in a standard reporting process:

1. Indication for examination
This part contains the screening, diagnostic or follow-up of patient about either
a benign lesion or a cancer. This part should also contain the patient’s medical
history.

2. Succinct description of the overall breast composition
In BIRAD edition 2003, breast composition category was decided on the overall
breast density, resulting in 4 ACR categories – ACR category 1 (<25% fibrog-
landular tissue), category 2 ( 25-50% fibrogandular tissue), category 3 (50-75%)
and category 4 (>75%). In BIRAD edition 2013, the breast composition cate-
gories were changed to a, b, c and d.
a - The breast are almost entirely fatty.
b - There are scattered areas of fibroglandular density.
c - The breasts are heterogeneously dense, which may obscure small masses.
d - The breasts are extremely dense, lowering the sensitivity of mammography.

3. Clear description of important findings
This part of the report describes the important observations noted by the ra-
diologist from the images. Findings can occur from mammography study, ul-
trasound or Magnetic Resonance Imaging (MRI). Figure 3.4 gives an overview
of the mammography and ultrasound lexicon. We will discuss mammogra-
phy study in details because our project focuses on reports from mammogra-
phy. Note: The images produced by mammography study are called mammo-
grams. An abnormality in the breast can be referred to as a lesion.

FIGURE 3.4: Mammography and ultrasound lexicon (taken from [45])
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Mammography findings can be divided into the following 5 parts:

• Mass: It is a space occupying 3D lesion. It can have shape, margin, den-
sity.

• Calcification: These are calcium deposit within breast tissue, appearing as
white spots or flecks on a mammogram. This is described by morphology
and distribution.

• Architectural Distortion: When the normal mass is distorted with no def-
inite mass visible, then it called architectural distortion.

• Asymmetry: These are the findings that represent unilateral deposits of
fibroglandulair tissue not conforming to the definition of a mass.

• Associated features: These are seen with suspicious findings like masses,
asymmetry and calcification. They can be skin retraction, nipple retrac-
tion, skin thickening etc.

All the types of important findings above has an associated location, describ-
ing the area of occurrence in the breast. A location can be left, right or both
breasts. Within a breast, the position of the lesion can be described accord-
ing to clockface or quadrant notation e.g. upper outer quadrant, upper inner
quadrant. The quadrant position are described in the Figure 3.5.

FIGURE 3.5: Quadrant position of the breast (taken from [29])

4. Comparison to previous examinations if deemed important by the interpreting
physician
Comparison with previous examinations of the patient is assumed to be im-
portant to find out if the finding is stable or is changed. Comparison is not
important when the finding is inherently highly suspicious.

5. Assessment
A final assessment category known as BI-RADS category is necessary to cate-
gorize the findings according to malignancy rate. The BI-RADS category can
take any one of the values – 0, 1, 2, 3, 4, 5, 6, with 0 being benign to 6 being
most malignant. Figure 3.6 gives an overview of all the BI-RADS category and
their meaning.
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FIGURE 3.6: BI-RADS assessment category and their description
(taken from [45])

6. Management
This part contains the some management recommendations as a next step to
be taken. If suspicious abnormality is found, then the report should indicate
“biopsy should be performed in the absence of clinical contraindication”.

3.5 Summary

Naive Bayes, Support Vector Machine, Random Forest and Conditional Random
Field are some of the supervised machine learning algorithms used for any clas-
sification task. LC-CRFs are very useful for sequence labeling, which is a type of
classification task. Therefore, we will use these algorithms for our classification task
and sequence labeling. Radiology reports on breast cancer are structured accord-
ing to ACR BI-RADS guidelines and we will follow these guidelines to develop a
labeling scheme for our radiology reports.
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Methodology

The approach section in the research paper in part one already contains the method-
ology in detail. This section contains some extra information about the dataset, the
features used in heading and content identification task and some information about
the hierarchical Model B that is missing from the paper.

4.1 Dataset

5000 free-text radiology reports on breast cancer ranging over the years 2012 to 2017
were collected from the radiologists and innovation manager working at ZGT hos-
pital, Netherlands. The dataset collected consists of the following information:

TABLE 4.1: Attributes in the dataset and their description

Attributes Description Attributes Description

Geslacht Gender of the patient Gebdat
Date of birth
of the patient

Onderzdat Examination Date Verslag

Radiology report
containing
clinical data,
findings, conclusion

Conclusie
Conclusion of the
report – also contains
the BIRAD score

Omschr
Description of
procedure

Rontverrid
Reference number
to image

Onderznr Examination number

Code Code of procedure Omschr-kamer Room of examination

Indicatie Clinical Data Specialism
Type of physician
examining the patient

For our project, we will only work with the verslag (report) attribute which con-
tains the radiology report. The radiology report also contains the indicatie and con-
clusie attributes within it.

4.2 Heading and Content Identification

Heading identification is a multiclass classification problem, where the sentences are
to be classified into any one of the following classes: heading, not heading and title.

Content identification is a multiclass classification problem, where the sentences are
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to be classified into title, clinical data, findings and conclusion. Sometimes the report
contains a sentence mentioning the name of the radiologist who wrote the report.
Those sentences were labeled as names as they could not be put into any of the above
mentioned sections. For our task, the names class is not that important.

4.2.1 Manual Annotation

Out of 5000 reports, 180 reports were manually labeled for building the machine
learning models. The reports were separated into sentences by splitting at newline
(‘\n’) and manually annotated into three classes – title, heading and not heading for
heading identification and into five classes – title, clinical data, findings, conclusion
and names for content identification. Table 4.2 shows a sample report split into sen-
tences in column 1, column 2 shows the labels for heading identification (HI) and
column 3 shows labels for content identification (CI).

TABLE 4.2: Example of manual annotation of a radiology report for
heading and content identification

Sentences Labels(HI) Labels(CI)
Verslag - Mammografie follow up bdz
- 15-11-2016 09:50:00:

Title Title

Klinische gegevens: Heading Clinical Data
Screening ivm familiaire belasting
mammacarcinoom,

Not Heading Clinical Data

Verslag: Heading Findings
Mammografie t,o,v, 12/08/2016: Mamma
compositiebeeld C, Geen wijziging in de verdeling
van het mammaklierweefsel, Hierin beiderzijds
geen haardvormige laesies, Geen distorsies,
geen stellate laesies, geen massa’s, bekende
verkalking links, Geen clusters microkalk,
geen maligniteitskenmerken,

Not Heading Findings

Conclusie: Heading Conclusion
BIRADS-classificatie twee, Stationair
beeld, Geen maligniteitskenmerken,

Not Heading Conclusion

4.2.2 Features Used

Term Frequency Text Representation

After preprocessing, the words generated from the reports were used as features
for the classifiers. A vocabulary was built for all the unique words in the radiology
reports, after preprocessing, and each of the words was represented by a unique
number. A document-term matrix was created for all documents (sentences in our
case). A document-term matrix has the sentences as rows and all the unique words
in the vocabulary as columns. Each sentence is represented by how many times each
word in the vocabulary occurs in that title. Thus, the features for the classifier are
the distinct words, [w1, w2, .., wi, ..wn], with the frequency of occurrence of the word
wi, in the sentence as its value.
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TF-IDF Text Representation

Finding out the important words that represent a given category can be done in
many ways. The straight forward solution can be to count the number of terms
occurring in a given category and deciding the most frequent ones to be the words
that represent the category. This is the method that was followed in the previous part
(Term frequency text representation). However, this method doesn’t consider the
other categories. Here, TF-IDF is used which considers not only the term frequency
in the considered category but also in how many documents does the term occur.
TF-IDF is defined as

t f id f (tk, ci) = t f (tk, ci) ∗ log
(

C
d fi

)
(4.1)

where

• t f (tk, ci) denotes number of times term tk occurs in category ck

• d fi denotes the number of categories containing term i

• C denotes the total number of categories.

The TF-IDF basically is based a heuristic intuition that a word/term which occurs in
almost all the categories is not a good discriminator for any category, and should be
given less weight than one which occurs in few categories.
Thus, TF-IDF score was used instead of term frequency to represent each word fea-
ture. TF-IDF score was calculated for all the words that was generated after prepro-
cessing. Each word in the sentence was represented by their TF-IDF score, which
was used as feature to train the model. The words not present in the sentence was
given a value of zero.

Length of the Sentence

Another feature used for training the classifier is the base 10 logarithm of length of
the sentence. By length of the sentence, it means the number of words in the sen-
tence. It was observed that the headings are generally short sentences containing
one or two words whereas the sentences which are not heading are longer contain-
ing a lot of words. Thus, the length of the sentences may help in categorizing the
sentences.

Symbol at the End of the Sentence

The last symbol of each line was another feature for our classifier. The headings end
with a colon (:) usually and the rest of the sentences either end with a comma (,) or
just a letter. If the last symbol was colon, we denoted it by 1, otherwise 0.

Note: For the task of heading identification, all the above features were used. For the
task of content identification, only the TF-IDF text representation feature and length
feature were used. End of sentence symbol feature was not used, as sentences in two
different sections usually ends with similar symbol (‘,’), thus, not contributing any
unique feature to content identification problem.
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4.2.3 Classifiers

Three different classifiers were trained on our data and their performance was com-
pared.

Naive Bayes (NB)

We used Multinomial Naive Bayes classification algorithm to built our model, as
multinomial NB is useful for classification having discrete features like word fre-
quency/ TF-IDF in text classification. It uses Bayes theorem to calculate the proba-
bility of a class given the features of the data, with the assumption that the features
are conditionally independent. The training set was used to calculate the parame-
ters like likelihood probabilities and prior for our Naive Bayes model. Classification
of the sentences in the test set was done by using these parameters to calculate the
posterior probability of each class given the sentences in the test set. Further, the
class with the highest posterior probability was selected as the class for the sentence.
Laplace smoothing was used while calculating likelihood probability to handle un-
seen features in the test set. MultinomialNB, a sklearn python package was used for
building the model.

Support Vector Machine (SVM)

We used SVM classification algorithm to built another model. As SVM works by
finding a separation between hyperplanes of different classes of data, its learning
ability is independent of the dimensionality of the feature space. Thus, SVM works
well for text classification, which has high dimension feature space from huge vocab-
ulary size. For implementation of SVM, we used SGDclassifier from sklearn python
package. Linear SVM classifier with soft margin was used. Stochastic gradient de-
scent was used for updating the loss function and alpha, the constant that gets mul-
tiplied with regularization term was set as 0.001. Learning rate was set as optimal,
which uses the value of alpha to fix its value. To prevent overfitting, L2 regularizer
was used to shrink the model parameters towards zero vector. The seed of random
number generator for shuffling the data was set as 42 and maximum iteration over
the training data was set as 5. The rest of the parameters were set to default value.

Random Forest (RF)

A third model was built using Random Forest classifier. Random Forest is an en-
semble of decision trees, where each decision tree is fitted on a random sub-sample
of the training set. After the training phase is complete, a new data is classified by
taking the majority vote amongst all the trees. For implementation of Random For-
est, we used RandomForestClassifier from sklearn python package. The maximum
depth of the true was set as 10 and random state was set as 0. Bootstrap was set as
True to select sub-samples with replacement. All other parameters were set to their
default value.

4.2.4 Training and Testing

5 fold cross validation technique was used for training and testing the classifiers on
180 manually labeled reports. This technique was adopted because there were not
many manually labeled reports available, thus, the most efficient thing was to use all
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the available reports both for training and testing. The 5 fold cross validation tech-
nique divides the labeled dataset into 5 parts and uses 4 parts to train the classifier
and the remaining 1 part to test it. It repeats the same thing 5 times, each time taking
a different set of 4 parts of the dataset for training and the other 1 part for testing.
This helps in using the whole set of labeled data for training and testing but never
training and testing on the same part of data in the same iteration.

4.3 Automatic Structuring

Automatic structuring of free-text mammography findings is a sequence labeling
problem. The problem definition and all the other details are described in the paper.
Here, we explain a bit more about the manual annotation and the hierarchical model
B.

4.3.1 Manual Annotation

TABLE 4.3: First, second and third level classes for automatic struc-
turing

First Level Second Level Third Level
breast composition - -

positive finding

mass

location
margin
density
shape
size
associated features

calcification

location
morphology
distribution
size
associated features

asymmetry
location
size
associated features

architectural distortion
location
associated features

associated features location

negative finding

location

mass
location
margin

calcification
location
morphology
distribution

asymmetry location
architectural distortion location
associated features location

Based on the ACR BI-RADS guidelines, a 3-level annotation scheme was developed
along with two radiologists. The report was first annotated into positive finding,
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negative finding and breast composition, then the positive finding and negative find-
ing were annotate into mass, calcification, asymmetry, architectural distortion and
associated features. At the third level, these findings were annotated into classes
important for each of these findings. The complete class of a token is referred as
the global class, which is constructed by concatenating classes from each level. It is
represented as Class_Level1/Class_Level2/Class_Level3, where Class_Level1 is the
class of the token from level 1 and so on. Some tokens may not have a prediction at
the second or the third level, in which case the global class looks like Class_Level1 or
Class_Level1/Class_Level2. Table 4.3 shows classes which were used for annotation
at each level.

The first level and all the sub levels of each class have a other class, which takes
the tokens that do not belong to the rest of the classes at that level. For example,
the second level of negative finding has a other class along with mass, calcification,
asymmetry, architectural distortion and associated features. Figure 4.1 shows man-
ual annotation of the negative finding of a report. Not important words like ‘of’
(‘or’ in English) connecting classes like mass and architectural distortion are labeled
as other within negative finding. Note that, ‘of’ is not enclosed within a ‘O’ tag
(other) inside negative finding. Our annotation was such that if a token is not within
a tag at the second and third level, then it is assumed to be a other tag. But tokens
at the first level are explicitly annotated as ‘O’. At third level, positive finding has
associated features class under mass, calcification, asymmetry and architectural dis-
tortion. There is also another associated features class at the second level of positive
finding. The associated features class at the second level is a separate finding in it-
self and the associated feature at third level is observed in association with another
finding like mass, calcification, asymmetry and architectural distortion.

FIGURE 4.1: Example of annotated negative finding of a report

On inspection, some of the things found about the dataset are as follows:

1. All the classes at the 3 levels do not occur in every report. Generally, other and
breast composition occur in almost every report.

2. The order of appearance of the classes in the reports are not fixed, but breast
composition usually occur at the beginning, followed by positive finding and
then by negative finding. Many times, the position between positive finding
and negative finding get interchanged.

3. There may be multiple occurrence of a particular class in a report.

4. One token can have multiple tags at the same level, for example, the token
‘kalk’ can be associated with negative finding and also with positive finding.
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4.3.2 Hierarchical CRF with Combined Classes

This model, referred to as Model B, is already explained in the paper. Here, some
more details about the model will be given which could not explained in the paper.
The aggregated classifiers are given only that piece of text, which may contain the
class to be predicted by the aggregated classifier. It may not be that apparent which
higher level classes are passed to the aggregated classifiers in our model and the
results may vary if it is passed differently. This is why it is required to explicitly
mention it. The following part will explain which higher level classes are passed to
the aggregated classifiers:

• CB-5 (location) takes as input, tokens classified as positive finding and nega-
tive finding. This is because location can be found as a third level class within
all the second level classes of positive finding and negative finding. It can also
be found as a second level class with negative finding. So, basically, anything
classified as positive or negative finding, can have a location.
CB-5 could have also taken input differently, for example, tokens classified
as mass, calcification, architectural distortion, asymmetry and associated fea-
tures can be given as input. This would lead to different surrounding tokens
and thus a bit different prediction.

• CB-6 (margin) takes as input, tokens classified as mass, as both mass of positive
finding and negative finding have the class margin at the third level.

• CB-7 (morphology and distribution) takes as input, tokens classified as calci-
fication, as both calcification of positive finding and negative finding have the
class morphology and distribution at the third level.

• CB-8 (associated features) takes as input, tokens classified as positive finding
at the first level and mass, calcification, architectural distortion and asymme-
try at the second level. This classifier is not used to predict the associated
feature under negative finding class, as the associated feature under negative
finding is written very similarly in every report, leading to already very good
prediction. CB-8 is also not used to predict associated feature at the second
level under positive finding (PF/AF). The reason is we wanted to use PF/AF’s
context for its prediction. Also, we created the aggregated classifiers mainly to
predict the third level classes and as PF/AF is a second level class, we did not
used CB-8 for its prediction.

• CB-9 (size) takes as input, tokens classified as positive finding at the first level
and mass, calcification and asymmetry at the second level.
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Chapter 5

Experiments and Discussion

In this section, details about the experimental setup are discussed at first. This is fol-
lowed by results from heading and content identification and automatic structuring
of mammography findings. The paper in part 1 of this thesis already contains exper-
imental setup and some important results. These section only contains the results
not given in the paper and also extra information on experimental setup.

5.1 Experimental Setup

Evaluation metrics are required to evaluate how a classifier is performing. Confu-
sion matrix is generated for the each of the classifiers and the true positive (TP),
false positive (FP), false negative (FN) and true negative (TN) values for each class
are calculated. These values are used to calculate evaluation metrics, precision, recall
and F1 score. Precision (p) is a measure of the number of actually correct instances
among the instances identified as correct by the system. Recall (r) is a measure of the
number of actually correct instances classified by the system among all the correct
instances. F1 score of a class is the harmonic mean of precision and recall of that
class.

p =
TP

TP + FP

r =
TP

TP + FN

F1 =
2pr

p + r
=

2TP
2TP + FP + FN

TP, TN, FN and FP are binary classification concepts. As heading and content identi-
fication and automatic structuring are multiclass classification problem, these mea-
sures were calculated by following one-vs-rest binary classification, where the class
in consideration is positive and the rest of the classes are negative. The perfor-
mance of the classifier as a whole was calculated using microaveraged and weighted
macroaveraged F1 score.

Microaveraged F1 score (Fµ
1 ): It is calculated by summing over TP of all the classes

and dividing by the sum of TP, FN and FP of all classes. In the formula below, TPi is
TP of a class i and n is the number of classes.

2 ∗∑n
i=1 TPi

2 ∗∑n
i=1 TPi + ∑n

i=1 FPi + ∑n
i=1 FNi

(5.1)

Weighted Macroaveraged F1 score (FM
1 ): It is the weighted average of the F1 scores

of all the classes. In the formula below, wi and F1i are the weight and the F1 score of
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class i respectively.

n

∑
i=1

wi ∗ F1i (5.2)

5 fold cross validation was used for evaluating the models of heading identification
and 4 fold cross validation was used for automatic structuring. The FM

1 and Fµ
1 of

each fold were weighted averaged to get the performance of the models over all the
folds. The F1 scores reported in the rest of this section are the scores of cross valida-
tion.

Confusion matrix was generated by adding the TP, TN, FN and FP values of each
fold to get an overall confusion matrix for k fold cross validation. In this experiments
section, two types of confusion matrix were generated – confusion matrix without
normalization and confusion matrix without normalization. The former confusion
matrix is the normal one with the exact number of correctly and incorrectly pre-
dicted instances for all the classes. The latter confusion matrix is another version
of the former confusion matrix, where all the values in each row are divided by the
sum of all the values in that row (class support size). Henceforth, the former type
will be referred as confusion matrix and the latter will be referred as normalized con-
fusion matrix. Normalized confusion matrix is used when the exact TP, TN, FN and
FP values are not required, rather, a more visual interpretation of the misclassified
classes is needed. For heading and content identification results (Section 5.2), confu-
sion matrix without normalization was used and for automatic structuring (Section
5.4), normalized confusion matrix was used. The reason for the use of normalized
version for the latter case is that automatic structuring has 34 labels making the vi-
sualization of misclassified classes harder in the normal confusion matrix.

For automatic structuring, we compare performance of the classes at each level
for our baseline model, Model A and Model B. To elaborate, a global class of a to-
ken is designed as Class_Level1/Class_Level2/Class_Level3 as described in Chap-
ter 4. We compared performance of classes at level 1 (Class_Level1), at level 2
(Class_Level1/Class_Level2) and global class. Model A and B have different classi-
fiers at different levels like CA-1 at level 1 for Model A, CB-1 at level 1 for Model B,
unlike, the baseline model, which has only one classifier to classify the global class of
a token. Thus, to establish a comparison of Model A and B with the baseline model
for the performance of classes at first and second level, we separated the predicted
global class of baseline model into 3 parts – the first part as the predicted class of first
level (Class_Level1), the first and second part combined as the predicted class of sec-
ond level (Class_Level1/Class_Level2) and the global class. These comparisons are
shown in Section 5.4.

5.2 Heading Identification

We applied different combinations of the features to train our 3 models as shown in
Table 5.1. It can be seen that RF performs the best when word list and end of sentence
(EOS) symbol are used as features. SVM performs best with every combination of
features and NB performs best with only word list feature. TF-IDF representation of
word list was used as feature. All scores are shown in FM

1 .



5.2. Heading Identification 51

TABLE 5.1: Performance of classifiers in terms of FM
1 scores for differ-

ent feature combinations for heading identification

Features NB SVM RF
Word List 0.97 0.97 0.92
Word List+Length (log10) 0.93 0.97 0.94
Word List+EOS Symbol 0.95 0.97 0.95
All Features 0.91 0.97 0.94

Table 5.2 shows the performance of the 3 models for the task of heading iden-
tification using only word list feature. Heading and not heading classes were best
predicted by SVM and NB with an F1 score of 0.96 and 0.98 respectively. Title class
was best predicted by RF with an F1 score of 0.99. The performance of the model as
a whole is shown with FM

1 and Fµ
1 .

TABLE 5.2: Heading identification performance in terms of F1 scores

Classes NB SVM RF
#Instances
(Sentences)

Heading 0.96 0.96 0.88 540
Not Heading 0.98 0.98 0.94 991
Title 0.97 0.98 0.99 60
Avg (FM

1 ) 0.97 0.97 0.92 1591
Avg (Fµ

1 ) 0.97 0.97 0.92 1591

Figure 5.1 shows the heat map representation of confusion matrix for heading
identification using SVM and word list features. It can be seen that only 26 out of 540
heading instances were confused with not heading class, and most of the instances
of all the classes were correctly classified.
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FIGURE 5.1: Confusion matrix heat map: Heading identification us-
ing SVM
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5.3 Content Identification

Table 5.3 shows the performance of the 3 models on the task of content identification
using TF-IDF representation of the word list as the only feature. The classes conclu-
sion, clinical data, title and findings were predicted best by SVM with an F1 score of
0.92, 0.94, 0.99 and 0.94 respectively. Names class which is not that important for our
task, was predicted with an F1 score of 1.0 by SVM.

TABLE 5.3: Content identification performance in terms of F1 scores

Classes NB SVM RF
#Instances
(Sentences)

Conclusion 0.89 0.92 0.90 413
Clinical Data 0.86 0.94 0.70 405
Title 0.89 0.99 0.91 60
Findings 0.88 0.94 0.82 678
Names 0.79 1.00 0.00 35
Avg (FM

1 ) 0.87 0.94 0.80 1591
Avg (Fµ

1 ) 0.88 0.94 0.81 1591

Figure 5.2 shows the heat map representation of the confusion matrix for content
identification using SVM. Both the conclusion and clinical data classes were wrongly
predicted as findings in 44 and 25 out of their total instances respectively. This is
justified because conclusion, clinical data and findings describe a lot of things and
many of the words in these three may overlap, leading to the misclassification.
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FIGURE 5.2: Confusion matrix heat map: Content identification using
SVM

For the content identification task, we experimented with word list features rep-
resented in form of term frequency and TF-IDF, and length of the sentence feature
represented in terms of number of tokens and log to the base 10 of number of tokens.
Table 5.4 shows the performance in terms of FM

1 score for different combination of
these features. SVM shows the best performance (F1=0.94) for TF-IDF word features.
This is same as the average FM

1 for SVM shown in the Table 5.3.
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TABLE 5.4: Performance of NB and SVM classifiers in terms of FM
1

scores for different feature combinations for content identification

Features NB SVM
Term frequency 0.91 0.92
TF-IDF 0.87 0.94
Term frequency + Length 0.87 0.40
TF-IDF + Length 0.70 0.29
Term frequency + Length (log10) 0.91 0.92
TF-IDF + Length (log10) 0.80 0.92

It can be observed from the table that NB performs much better for term fre-
quency word list than for TF-IDF, whereas, SVM performs slightly better for TF-IDF
than term frequency. Another observation is SVM performs much worse than NB
when using the length feature together with word list. To explain this observation,
we have to first understand that, in very simple terms, a classifier performs an op-
timization problem on the function, y = f (x) = w1.x1 + w2.x2 + . . . + wn.xn, for
finding the best possible output y based on the features x1, x2, . . . , xn. Weights such
as w1, w2, . . . , wn are assigned to different features such that the function gets opti-
mized. In NB, the feature, xi, is a conditional probability of xi given a class, whereas,
in SVM, xi takes the actual value of the feature.

So, for SVM, if some features lie in the range of 0-1, then they have less impact
on f(x) than features which lie in the range of 100. For this reason, when using com-
bination of the length of the sentence (values in the range of 100), and the TF-IDF
(values in the range of 0-1) in SVM, the length factor dominates and results in low F1
score of 0.29. On replacing length by log10 of length, all the features values lie in the
same range and the F1 score improves to 0.92. In case of NB, the feature values are
conditional probabilities. So, irrespective of the range of the features, all the features
are converted to the same range of 0 to 1. For this reason, NB performance is not
affected as much as SVM performance when using length versus log10 of length.

5.4 Automatic Structuring

Model A and B outperformed the baseline model in predicting the global classes of
automatic structuring. The table comparing the performance of these models can be
found in the paper in part 1.

Table 5.5 shows the performance of the classes at the first level for the three models.
NF ad BC are predicted better than PF by all the models. Baseline model performs
much worse than model A and B in predicting PF class. CA-1 and CB-1 for both the
models are same, so their performance for the 4 classes are also same.

TABLE 5.5: Prediction of first level classes in terms of F1 score for the
3 models of automatic structuring

Classes Baseline Model A Model B
PF 0.49 0.87 0.87
NF 0.94 0.95 0.95
BC 0.89 0.94 0.94
O 0.78 0.86 0.86
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Table 5.6 shows the performance of the classes at the second level for the 3 mod-
els. All the sub classes of PF were predicted poorly in comparison with the sub
classes of NF. The PF sub classes were better predicted by the hierarchical models
than by the baseline model. NF sub classes were predicted well enough by all the
models. Positive finding classifiers CA-2 and CB-2 at level 2 for Model A and B are
similar and therefore, their F1 scores are also same. But the negative finding classifier
CA-3 and CB-3 are not similar for Model A and B, leading to different scores. The
baseline model failed to predict the PF/AF and PF/AS classes but the hierarchical
models successfully predicted the PF/AS class with 0.57 F1 score and very weakly
predicted PF/AF with a F1 score of 0.11. PF/MS was predicted best among all the PF
sub classes. There is a decrease in the overall PF sub classes prediction at the second
level in comparison to the PF prediction at the first level for Model A and B. This
shows even though PF class at the first level was predicted with good enough F1
score of 0.87, the PF classifiers at the second level did more errors in predicting the
second level PF classes. For the baseline model, as the global classes get predicted as
a whole, it can be interpreted that F1 score of 0.49 for PF classes at the first level was
because of the PF/MS and PF/C sub classes. Among all the NF sub classes at level
2, NF/AF class was predicted the best (F1=0.96) by the hierarchical models. From
the dataset, it was found that NF/AF had a very similar sentence in all the reports,
e.g.“Huid-subcutis geen bijzonderheden", leading to the high F1score. NF/L was at
least slightly predicted by Model B, as Model B has a aggregated location classifier
CB-5.

TABLE 5.6: Prediction of second level classes in terms of F1 score for
the 3 models of automatic structuring

Classes Baseline Model A Model B Instances
PF/MS 0.53 0.66 0.66 483
PF/C 0.46 0.58 0.58 311
PF/AD 0.00 0.00 0.00 16
PF/AF 0.00 0.11 0.11 67
PF/AS 0.00 0.57 0.57 30
NF/MS 0.92 0.92 0.89 262
NF/C 0.88 0.85 0.88 260
NF/AD 0.89 0.90 0.88 77
NF/AF 0.96 0.96 0.96 403
NF/AS - - - -
NF/L 0.00 0.00 0.20 10
NF/O 0.89 0.82 0.79 88

Table 5.7 shows the performance of the global classes for the 3 models along
with their instances. #Reports column stands for the number of reports consisting
of a class. #Phrases column shows the number of phrases of each class and a phrase
starts at a B-X and ends at a I-X, which precedes the start of another phrase B-Xi.
#Tokens contains the number of tokens belonging to a class and a phrase consists of
multiple tokens – Each B-X, I-X are tokens for class X. Class ‘O’ was not labeled as
B-X, I-X as phrase of ‘O’ is not important, that is why there is no entry for phrases
for class ‘O’. All F1 scores are token level scores.
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TABLE 5.7: Global classes in the dataset and their F1 scores

Classes #Tokens #Phrases #Reports Baseline Model A Model B
O 1417 - 108 0.78 0.86 0.86
BC 622 99 97 0.89 0.94 0.94
PF/MS/L 139 33 27 0.29 0.40 0.47
PF/MS/SI 86 23 22 0.67 0.66 0.69
PF/MS/MA 59 22 20 0.53 0.72 0.70
PF/MS/DE 2 1 1 0.00 0.00 0.00
PF/MS/AF 7 2 2 0.00 0.00 0.00
PF/MS/SH 3 3 3 0.00 0.00 0.00
PF/MS/O 187 70 27 0.48 0.52 0.47
PF/C/L 68 38 35 0.49 0.44 0.59
PF/C/SI 14 5 5 0.00 0.00 0.22
PF/C/MO 39 37 32 0.52 0.56 0.51
PF/C/DI 19 13 11 0.25 0.58 0.53
PF/C/AF 33 6 6 0.00 0.17 0.00
PF/C/O 138 68 38 0.45 0.37 0.37
PF/AD/L 0 0 0 - - -
PF/AD/AF 0 0 0 - - -
PF/AD/O 16 1 1 0.00 0.00 0.00
PF/AF/L 6 6 5 0.00 0.00 0.00
PF/AF/O 61 11 7 0.00 0.12 0.13
PF/AS/L 35 14 11 0.00 0.14 0.17
PF/AS/SI 5 2 2 0.00 0.00 0.36
PF/AS/AF 1 1 1 0.00 0.00 0.00
PF/AS/O 172 13 11 0.00 0.58 0.56
NF/MS/L 17 14 13 0.60 0.50 0.50
NF/MS/MA 35 35 35 1.00 0.96 0.97
NF/MS/O 210 113 61 0.93 0.88 0.89
NF/C/L 2 1 2 0.00 0.00 0.00
NF/C/MO 56 56 51 0.95 0.91 0.97
NF/C/DI 54 53 50 0.98 0.98 0.99
NF/C/O 148 100 62 0.81 0.76 0.81
NF/AD/L 0 0 0 - - -
NF/AD/O 77 46 43 0.89 0.88 0.88
NF/AF/L 6 7 5 0.13 0.30 0.39
NF/AF/O 397 71 63 0.96 0.96 0.96
NF/AS/L 0 0 0 - - -
NF/AS/O 0 0 0 - - -
NF/L 10 6 6 0.00 0.00 0.20
NF/O 88 46 31 0.89 0.82 0.79
Total/Avg 4229 1016 - 0.71 0.78 0.78

As can be seen from Table 5.7, PF/AD/L, PF/AD/AF, NF/AD/L, NF/AS/L and
NF/AS/O does not occur in our dataset and that is why the values corresponding
to them are 0. A part of this table is already in the paper and the important findings
have already been explained. So, it will not be repeated here. This table contains
some extra classes from the table in the paper and their F1 scores have the same in-
terpretation.
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Figures 5.3, 5.4, 5.5 shows the normalized confusion matrix heat map of global
classes for baseline model, Model A and Model B respectively. In baseline model
(Figure 5.3), it can be seen that most classes were misclassified as other class and
only BC and most NF classes were classified correctly. Some other noteworthy mis-
classification are NF/C/L was wrongly predicted as PF/C/L, as location (L) of both
NF and PF can be described in a similar manner. Similarly, PF/C/SI, PF/AS/SI were
wrongly predicted as PF/MS/SI, as size (SI) of MS, C and AS are always written in a
similar way in reports. So, size of calcification (C) and asymmetry (AS) were misclas-
sified with size of mass, as there were more instances of PF/MS/SI than PF/C/SI
and PF/AS/SI.

For Model A and B (Figures 5.4, 5.5), there were not many misclassification with
other class as tokens can only be misclassified into other class at the first level. In
Model A and B, PF/MS/L were misclassified as PF/C/L, whereas in baseline, it was
misclassified as other. Model B had more true positives than Model A and baseline
model had the lowest number of true positives.
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FIGURE 5.3: Normalized confusion matrix heat map: Automatic
structuring baseline model
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FIGURE 5.4: Normalized confusion matrix heat map: Automatic
structuring Model A
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FIGURE 5.5: Normalized confusion matrix heat map: Automatic
structuring Model B
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Confusion matrix of Model A (Figure 5.4) and B (Figure 5.5) are almost simi-
lar. Model A and B show high false negative for PF/C/O and PF/MS/O and the
classes which contribute to their high false negative value are PF/C, PF/AF, PF/AS
and PF/MS. PF/MS and PF/C have the maximum number of instances (483 and
311 respectively) among all the sub classes of PF. Therefore, whenever tokens of
the sub classes of PF are overlapping or not unique, they get predicted as PF/C/O
and PF/MS/O. Some other noteworthy observations between Model A and B are in
Model A, more NF/AF/L were getting misclassified as NF/AF/O than getting cor-
rectly classified, but in Model B, there were more true positives of NF/AF/L. Also,
Model A did not have any true positive of NF/L whereas Model B had some. Sim-
ilarly, PF/C/SI and PF/AS/SI had true positives in Model B. But Model A, did not
have any true positives for these classes and it misclassified PF/AS/SI as PF/AS/O.
This shows that there was misclassification at the third level for PF/AS. These ob-
servations prove that for Model B, aggregated classifiers of location and size helped
in better prediction of location and size at the third level.

On the other hand, aggregated classifier of AF did not work at all. PF/C/AF has
some true positive in Model A but none in Model B. This is because aggregated clas-
sifier for AF lost some information about its context, as the aggregated AF classifier
only had other class and AF class in its surroundings. Whereas, in Model A, AF class
are surrounded by distribution, morphology, location etc. during prediction, giving
more insight into the surrounding of AF class, leading to better prediction.

TABLE 5.8: Performance of the individual classifiers of Model A and
B in terms of FM

1

(A) Model A

Classifiers FM
1

CA-1 0.90
CA-2 0.70
CA-3 0.94
CA-4 0.76
CA-5 0.72
CA-6 -
CA-7 0.91
CA-8 0.84
CA-9 0.94
CA-10 0.98
CA-11 -
CA-12 0.98
CA-13 -

(B) Model B

Classifiers FM
1

CB-1 0.90
CB-2 0.70
CB-3 0.94
CB-4 0.98*
CB-5 0.95
CB-6 0.97
CB-7 0.95
CB-8 0.94*
CB-9 0.97

Table 5.8 gives an overview of the performance of the individual classifiers for
Model A and B. These FM

1 scores are scores on the predicted classes when true classes
from previous level are given. CA-1 and CA-2 of Model A are similar to CB-1 and
CB-2 of Model B, which is why they have same performance. As it can be seen, the
individual classifier performance for all the classifiers is quite good. The * mark in
CB-4 and CB-8 says that these scores are mainly based on ‘other’ class prediction by
these two classifiers. Shape and density failed to get predicted by CB-4 as there were
not many instances of shape and density. CB-8 failed to predict associated features
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and predicted only the other class. Thus, CB-8, the aggregated classifier for asso-
ciated features of PF/MS, PF/C, PF/AS, PF/AD was not a successful aggregated
classifier, as these AF classes were surrounded by other classes. Model A did better
prediction for AF class as Model A classifiers had information about their context
e.g. AF class in PF/MS had location, size, margin, density and shape as preceding
class.

L1 L2 L3text Predicted L1 Predicted L2

Predict L2

True L1 Predict L2

Predict L3

Predict L3
True L1/ 
True L2

Pred F1 Pred F1

True F1 True F1

Predict L1

F1

FIGURE 5.6: Error propagation through the classifiers at the 3 levels

Figure 5.6 shows the error propagation through the classifiers at the 3 levels. L1,
L2 and L3 stands for the classifiers the first, second and third level. Pred F1 at L2 is
the F1 score on predicted classes by L2 classifiers when given predicted classes from
L1. True F1 at L2 is the F1 score on predicted classes at L2 when given true classes
from L1. Similarly for L3, Pred F1 is the F1 score on predicted classes by L3 classifiers
when given predicted classes from L2 and L1 and True F1 is the F1 score on predicted
classes at L3 when given true classes from L1 and L2. The results corresponding to
this diagram are given in the Table V in the research paper.

FIGURE 5.7: Automatic structuring: Comparison of the ground truth
and the predicted labels by Model B of a sample report

Figure 5.7 shows comparison between the ground truth and predicted labels of
a sample report for the task of automatic structuring. A comparison software called
Beyond Compare [2] was used to compare the two XML reports. Figure 5.7 is a
screenshot of that software showing comparison of a sample report. The left column
shows the ground truth labeled report in XML format and right column shows the
predicted labeled report by the Model B classifier in XML format. The pink coloured
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lines highlight the mismatch between the two reports and the blue lines highlight
the matches. This figure gives a small idea of the mistakes that the classifier makes.
Similarly, Figure 5.8 also shows the same thing for another sample report. Here,
most of tokens were correctly predicted as can be seen. Only one positive finding
between the two negative findings got misclassified and combined with the negative
finding.

FIGURE 5.8: Automatic structuring: Comparison of the ground truth
and the predicted labels by Model B of another sample report
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Chapter 6

Conclusion

In this section, at first, we discuss to what degree our research questions mentioned
in Chapter 1 were answered and how. The main research question is explained fol-
lowed by the three sub research questions. There is a discussion section after this
which summarizes our work and the findings, and also lists the limitations of our
work. This chapter ends with a section on future work.

6.1 Research Questions

Main RQ: To what degree can we successfully conduct quality assurance of radiology re-
ports using machine learning?

ACR BI-RADS has set some protocols for radiology reporting on breast can-
cer. For the purpose of quality assurance, we developed a scheme related to
ACR BI-RADS to check if the reports produced by the hospitals conform to the
well-defined protocols. We successfully built machine learning models to de-
tect the presence of the reporting structure designed by ACR BI-RADS. Our
models can detect the presence of indication of examination (clinical data),
breast composition, clear description of findings and conclusion. We created a
semi-structured XML format for the findings such that important findings can
be clearly visualized. This semi-structured format can also be used for other
purposes like easy extraction of information and increased readability of re-
ports for clinicians. Our models were not used for actual trials in hospitals
to check how many reports are actually conforming to protocols. This can be
done through development of a prototype of our models. Our models only
check for the presence of the important entities of a report and not for the ac-
curacy of the content. Thus, quality assurance done in our project can help in
assessing report clarity and organization. Report accuracy can also be partially
assessed, but only from the perspective of the existence of a content and not its
verification.

Sub RQ-1: How can we identify the most apparent top level structure from the report using
machine learning?

The top level structure, most apparent from the report, involves identification
of the headings in the report. We predicted the heading, not heading and ti-
tle classes of a report with an F1 score of 0.98, 0.98 and 0.98 respectively using
SVM. The names of the headings provide with the information about the im-
portant top level sections in the report.
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Sub RQ-2: How can we automatically verify if the information in the report has been placed
under the correct top level sections?

The top level sections in a report are clinical data, findings and conclusion.
We predicted these sections with an F1 score of 0.94, 0.94 and 0.92 respectively
using SVM. These are also the names of the headings that can found in Sub RQ-
1. If a post-processing step is executed, then the sentence predicted as heading
in Sub RQ-1 can be matched with the predicted section of Sub RQ-2. If these
two information match, then we can say that the information in the report has
been placed under the correct top level sections (or precisely headings).

Sub RQ-3: To what extent can we automatically convert the free-text findings from the re-
port into a detailed structured format?

We build 3 CRF models for converting the free-text findings from mammog-
raphy study to semi-structured XML format. Our hierarchical models, Model
A and B outperformed our baseline model with an F1 score of 0.78 vs 0.71.
Breast composition, positive finding and negative finding were predicted with
an F1 score of 0.94, 0.87 and 0.95 respectively by Model A and B. Mass and
calcification were better predicted than asymmetry and associated features in
positive finding. In negative finding, all the classes were predicted with an F1
score>0.88 and associated features was predicted the best with an F1 score of
0.96.

6.2 Discussion

We developed a method for automatic structuring of Dutch free-text radiology re-
ports on breast cancer for quality assurance using machine learning algorithms. We
divided the method into 3 steps – i) identification of the sentences in the report as
headings, not headings and title (Heading identification), ii)identification of the con-
tent of the report as clinical data, findings and content (content identification), and
iii)finding a detailed structure of the mammography findings in the report and auto-
matically converting the unstructured mammography findings to a semi-structured
format (automatic structuring). The first two tasks used simple machine learning
classification algorithms like Naive Bayes (NB), Support Vector Machine (SVM) and
Random Forest (RF). The third task used an classification algorithm for sequence la-
beling called Linear Chain Conditional Random Field (LC-CRF).

The first task of heading identification achieved a high F1 score of 0.97 on TF-IDF
word list features using SVM classifier. Adding features such as log length and end
of sentence symbol did not change the F1 score of SVM classifier but improved F1
score of RF classifier (but did not result in a better score than SVM) and lowered F1
score of NB classifier. The second task of content identification achieved a high F1
score of 0.94 on TF-IDF word list using SVM classifier. Adding length (in terms of
number of tokens) as a feature hugely decreased the F1 score (F1 =0.29) and adding
log length just decreased it slightly (F1=0.92). For the third task of automatic struc-
turing, the hierarchical CRF models (Model A and B) outperformed the baseline CRF
model with F1 score of 0.78 vs 0.71.
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The first level classes, breast composition and negative finding got predicted bet-
ter than positive finding. We found out that breast composition and negative find-
ing classes had very specific way of describing themselves unlike positive finding,
which used varied vocabulary to describe the findings. This made the prediction for
positive finding harder than the other two.

Second level positive finding classes – mass and calcification were predicted better
than asymmetry, associated features and architectural distortion. This is because far
lesser training data was available for the latter classes than the former ones. Also, on
discussion with radiologists, it was understood that asymmetry findings are always
hard to understand. So, low score on asymmetry can be expected. As negative find-
ing class describes absence of abnormality, using specific words e.g. no presence of
mass or calcification, so, all the second level sub classes in negative finding – mass,
calcification, architectural distortion, asymmetry and associated features, were pre-
dicted very well.

All the third level sub classes for negative finding were predicted very well com-
pared to positive finding sub classes, due to better prediction of negative finding
classes at first and second level. Morphology, distribution and margin are some of
the third level sub classes with very high score. This is because morphology can be
described using very specific words like micro calcification and macro calcification,
distribution can be described using the specific word cluster and margin can be de-
scribed using specific words like stellate or star-shaped. Among all the third level
sub classes in positive finding, size and margin had the best results with F1 score of
0.69 and 0.70 respectively as these were the classes most easily recognizable due to
their specific format or words. Density and shape could not be recognized due to
very less training data (around 2 or 3 tokens). Both second level and third level sub
classes of associated features in positive finding was also very poorly recognized
due to very less number of training data available.

Hierarchical models, Model A and Model B, did not vary significantly in overall
performance. But, some classes were predicted better in Model B due to the use
of aggregated classifiers. These were those classes, with similar description in all
the groups and with less training data in each of these groups. So, the aggregated
classifiers for these classes resulted in a lot of training data from the groups with
that class, leading to better performance in Model B. Example of these classes are
location and size. On the other hand, for some classes, better performance in Model
A was observed than Model B. This is because information about the context of a
token is available to classifiers of Model A. In Model A classifiers, each token are
surrounded by various other classes in that group, for example, associated features
class is surrounded by distribution, morphology, location etc, in the group positive
finding/calcification, whereas, in Model B, the aggregated classifier for associated
features only had ‘other’ in its surrounding. Thus, the context resulted in better pre-
diction of some classes in Model A. Moreover, this observation was mainly found in
positive finding sub classes where there is more variability in the description of the
findings. Some examples of these classes are margin, morphology, distribution and
associated features at third level under positive finding.

In our baseline model, misclassification mainly consisted of non-other classes get-
ting wrongly predicted as other class. Similarly, in the hierarchical models, there
is not much misclassification with the global (first level) other class but with sub
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level other classes belonging to the same high level. For example, positive find-
ing/calcification/distribution get misclassified as positive finding/calcification/other.
From this, we can conclude that good quality reports (having non-other classes) may
be predicted to be of poor quality (having only other classes) but no poor quality re-
port will be predicted to be of good quality. Poor quality reports get predicted as
poor quality, as other class is never wrongly predicted as a non-other class by our
models. So, for the purpose of quality assurance, our aim to identify the poor quality
reports can be solved by our models.

Though, an analysis of how many reports conform to reporting standards was not
done for the scope of this project, a table in experiments chapter (Table 5.7) was pro-
vided showing the number of reports containing each class. This table showed that
shape and density of the mass existed in only 3 reports and 1 report respectively
out of 108 mammography reports. This shows that these were the two classes least
reported in the findings (a similar thing was also reported by Houssami et al. [13]
in 2004). Whether this was a mistake from the point of view of reporting or these
observation from the images were not important enough to be reported cannot be
said. Another point is that 97 out of 108 reports contained breast composition, which
is a lot more than only 24% reports containing breast composition as reported by
Houssami et al. [13]. But according to ACR BI-RADS guidelines, all reports should
contain a breast composition. These type of analysis can extended for quality assur-
ance as a future work.

The automatic structuring models developed in this thesis can help in making the
information in the reports searchable. The huge volume of information can be har-
vested and used for other research purposes, for example, for answering questions,
like, how many patients had lesions in their right breast? It will also become easier
for referring clinicians to read the report and gather the important information very
quickly. The referring clinicians can be given a standardized semi-structured visual-
ization of the reports and more importantly, the radiologists will not have to change
their style of writing for making the reports more readable.

To the best of our knowledge, the work done in this thesis has not been done be-
fore. A similar work was done by Esuli et al. [7], for information extraction from
mammography findings written in Italian, but they had only 9 classes. Their an-
notation structure was not hierarchical, but they used cascaded, two-stage CRF for
building their model. They had 500 labeled mammography reports (which is a lot
more than what we have) and they achieved better F1 score (0.873) than our model
on these 9 classes. In another work, Hassanpour and Langotz [10] applied CRF for
information extraction in chest CT radiology reports written in English. They had a
comparable number of reports to ours, i.e. 150 reports and 5 classes in their model.
They used 10 fold cross validation on 150 labeled reports, achieving a F1 score of
85.3%. We can say that though the F1 score of our models (0.78) are not as good
as the above models (0.87 & 0.85), we predict a far greater number of classes, with
much less training data. Increasing training might increase the performance of our
models as well.
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6.3 Limitations

This project has some limitations which are discussed next. The major limitation
is that no labeled dataset was already available for the task of automatic structur-
ing and they needed to be labeled manually by the radiologists at ZGT. The labeling
scheme developed for this purpose was extensive and time consuming and it is hard
for experts, such as radiologists, to find time to label huge number of reports for
training and validation of our models. So, due to time constraints, only 108 reports
could be labeled for building our model and the results shown in the thesis are for 4
fold cross validation, which means 27 reports as test set in each fold. This is a very
small number of test set and the results will vary if more labeled data set is available.
This small number of labeled reports may not be the most perfect representation of
all the reports on breast cancer produced by the radiologists at ZGT. Also, there
were no training data available for 5 classes out of 39 classes in our model – posi-
tive finding/architectural distortion/location, positive finding/architectural distor-
tion/associated features, negative finding/architectural distortion/location, nega-
tive finding/asymmetry/location and negative finding/asymmetry/other, and thus
these classes could not be trained.

For the task of automatic structuring, we randomly shuffled the mammography
findings. F1 scores in each fold did not vary much for the combination of shuffled
data used for this project. We also tested on other combinations of shuffled data,
where the results in each fold varied with lowest around 0.68 and highest around
0.82. The shuffled data used in this project was chosen to represent results when all
folds have around similar balance of classes.

Another limitation is that for automatic structuring, we only focused on findings
from mammography study. The findings section is the radiology report contains
findings from mammography study, ultrasound and MRI and findings from each
of these study have different structure. Training the system on all the types of find-
ings would mean developing a structure for each of the study and manually labeling
findings from each of the study by following the structure. Due to time constraint,
we only developed a structure for mammography study and trained models on it,
but the similar models like ours can be developed for other studies as well.

Another limitation is that the findings from the mammography study were man-
ually extracted from the radiology report. It will be easier if this process could be
automated by training the system to recognize the mammography findings. More
about this is explained in future work. Our project focuses on radiology reports on
breast cancer. Similar models can also be extended on radiology reports about other
conditions. Also, we focused on Dutch radiology reports and similar models can be
extended for other languages.

Another limitation is that two radiologists collaboratively annotated 18 reports and
separately annotated 45 reports each. Though, annotations were checked by a trained
expert to remove any inter-annotator discrepancies but some discrepancies may still
remain.

Due to predictions occurring at 3 levels in our model, our model has the problem
of error propagation. If the first level classifiers make an error, that gets propagated



66 Chapter 6. Conclusion

to the next level and makes the rest of the prediction by second and third level clas-
sifiers wrong. Our models do not contain a way to mitigate the error propagation.
One way of how this could be handled is discussed in future work.

Our project automatically structures the reports for the aim of quality assurance but
does not check the reports for quality assurance as an end result. The project can be
extended to check for quality in the reports produced by the ZGT.

6.4 Future Work

There are several possibilities that the research can be extended to. Some of these are
described in this section.

The three steps described above in the discussion section 6.2 are separate steps inde-
pendent of each other. These steps can be linked to each other and the whole process
can be made a automatic one. The headings identified at the first step, can be taken
as the top level sections of the report. These headings contain the names, clinical
data, findings and conclusion. In the second task, the clinical data, findings and con-
clusion can be predicted. Then, the headings of the first step can be compared with
the content (section) identification of the second task. If the name of the identified
headings match with the correct content, then it can be said that the headings corre-
spond to the correct sections and the report was written correctly.

For the content identification, instead of identifying only three classes – clinical data,
findings and conclusion, more classes can be predicted. For example, findings can
be divided into mammography, ultrasound and MRI. Conclusion can be separated
into conclusion and BI-RADS category. In summary, the classes to be predicted from
the whole report can be clinical data, mammography findings, ultrasound findings,
MRI findings, BI-RADS category and conclusion. This will help for the third step
i.e. automatic structuring. The section identified as mammography can be taken
as an input for the third task of automatic structuring. Then, no manual extraction
will be needed, assuming that section identification results in a near perfect accuracy.

Another possibility is the whole task of content identification can be seen as a se-
quence labeling problem and Conditional Random Field (CRF) can be used for pre-
dicting the sequence of the classes mentioned in previous paragraph. Automatic
structuring also can be extended for ultrasound by following the structure given by
ACR BI-RADS.

All the things described above can be combined to develop a prototype for qual-
ity assurance and this can be sent for clinical trial. This will help in checking how
many good quality reports a hospital is producing. If a report is not of the expected
quality, then the concerned radiologist can be asked to improve it. This will help
in monitoring the clinical performance of a hospital. Hospitals have a check list to
monitor if the reports produced by the hospital contain the items in the checklist and
checking the reports and filling up the checklist is usually done manually. Accord-
ing to the radiologists, automated way of filling up of checklist is unheard of. If our
models can be implemented in actual clinical scenario, then quality assurance of re-
ports and further filling up of checklist can be automated. This will be very helpful
for the hospitals.
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Another possibility is checking the presence of BI-RADS category and also predict-
ing it. ACR BIRADS states that a report must contain a BIRAD category indicating
the malignancy of the breast cancer. A BIRAD category can take a value from 0-6,
0 being benign and 6 being most malignant. The presence of this category is seen
in the conclusion section. For the purpose of quality assurance of reports, the check
that a report contains a BI-RADS category, is a must. Based on the findings section
listed in the report, the BIRAD category can also be predicted to see how well it
matches with the category assigned by the radiologists.

Further, the BI-RADS category assigned can be checked with the pathology reports,
which is the ultimate decision maker. If something gets confirmed through pathol-
ogy reports, then that is taken as the true result. On comparing the assigned BI-
RADS category with pathology outcome, it can be checked that how well the radiol-
ogists are doing the job of assigning a BIRAD category to the reports.

The models used in the project can also be improved such that their performance
increases. One method can be adding a positional feature to our models. The posi-
tion of a token in the report can contain valuable information in predicting a class
more accurately. For example, clinical data is always written at the beginning of the
report, followed by the findings and then the conclusion. Similarly, breast compo-
sition comes at the beginning of the mammography findings, then the positive or
negative finding. Thus, adding a feature, containing the position of the token, can
improve the accuracy. Esuli et al. [7] experimented with positional feature for the
task of information extraction from Italian radiology reports on breast cancer, using
CRF but they concluded that positional feature did not bring any substantial differ-
ence in the the performance of the model. Therefore, this is something that can be
experimented with.

Model A and B in our model has their own advantages and disadvantages as ex-
plained in the discussion section 6.2. The concept behind these two models can be
combined into one to make a model with advantages of both. Model A can predict
the classes by following the suggested hierarchical structure of the report. Aggre-
gated classifiers can also be used to predict classes as done in Model B. Then, for
each token, the probabilities of class prediction by both the models can be compared
and class with maximum conditional probability can be assigned to the token.

Another idea to improve prediction in our models is checking the class with the
second highest conditional probability. In the automatic structuring problem, it was
observed that many times, the correct class was the one with second highest con-
ditional probability. So, the idea is to pass both the highest probability class and
second highest probability class to the classifiers at the next level. For example, sup-
pose at the first level, a token has positive finding as the highest probability class
and negative finding as the second highest probability class at the first level, then
the token will be passed to both positive finding and negative finding classifier at
the second level for further prediction. At the end of passing through all the levels,
the overall probabilities of the global class at the 3 levels will be averaged for both
the best and second best predicted class and the combination with the highest prob-
ability will be assigned to the token as its global class.

A possible problem in this model is error propagation through all the levels. This
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can be addressed by using Factorial Conditional Random Field, a type of dynamic
CRF (or general CRF), in place of Linear Chain CRF. Factorial CRF is a combination
of multiple LC-CRFs, one for each output level. Factorial CRF jointly predicts classes
at all levels of hierarchy, thus helping to address the issue of error propagation.

Another analysis that can be done is related to inter annotator discrepancies. As
there were two radiologists annotating the reports separately, how well do their an-
notation match with each other can be analyzed. This can help in comparing human
error and machine made error. This idea was also implemented in Esuli et al. [7] and
accuracy measure by the systems were found to be higher than the inter annotator
agreement.

Similar models developed in this project can be extended to reports on conditions
other than breast cancer and written in different languages. It will be interesting to
see how the models perform in this scenario.
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