
Temporal Causal Discovery and
Structure Learning with

Attention-Based Convolutional
Neural Networks

Master’s Thesis by

Meike Nauta

August 2018

Graduation Committee
Dr. Christin Seifert
Dr.ir. Maurice van Keulen
Dr. Doina Bucur

University of Twente
Enschede, The Netherlands

iii

Preface

This graduation project was an unpredictable but exciting journey that resulted in two di↵erent research
projects, both on the topic of causal discovery and structure learning from observational data. This thesis
presents the results of both projects to obtain the Master’s degree in Computer Science.

My first research project resulted in a paper named ‘LIFT: Learning Fault Trees from Observational
Data’, that got accepted at the 15th International Conference on Quantitative Evaluation of SysTems1

(QEST), that will be held from September 4-8 2018 in Beijing. This paper can be found on page 51 of this
thesis. My main contribution however is the report of my second research project, called ‘Temporal Causal
Discovery and Structure Learning with Attention-Based Convolutional Neural Networks’, which starts on
page 1 of this thesis. In the following paragraphs, I will give a chronological overview of my graduation
process that explains how I ended up with two di↵erent research projects.

My first research project started as part of the course ‘Research Topics’, which is intended to serve as a
preliminary investigation for the final graduation project. I decided to join SEQUOIA2, a project funded by
the Dutch STW that studies smart maintenance optimization for railroads by deploying machine learning
techniques as well as fault tree analysis. A fault tree graphically models probabilistic causal chains of events
that end in a global system failure. Since constructing a fault tree was largely a manual process, I chose to
study the possibility to machine-learn a fault tree from observational data.

Since the decision tree is a tree formalism that is commonly machine-learnt from data, decision tree
learning algorithms appeared to be a natural starting point for the design of a fault tree learning algorithm.
However, I soon found out that decision trees model only correlations which would not provide root causes
for faults. Since a fault tree needs to model causal relationships, I got into the topic of Causal Discovery
that aims to discover causal relationships from observational data. At the end of the course, I had designed
and implemented a causal discovery algorithm that could successfully learn a static fault tree. In my paper
I not only present this algorithm, but I also introduce formal definitions for all elements in a fault tree.

Together with my supervisor dr. Doina Bucur and SEQUOIA project leader prof.dr. Mariëlle Stoelinga,
we decided that is was worthwhile to improve (and shorten) the paper such that it could be submitted to a
conference. Since I already finished the Research Topics course, I spent the first 180 hours (±6 ECTS) of
my final graduation project (credited for 30 ECTS in total) improving both the paper and the algorithm.
In collaboration with Doina that wrote the main part of the related work section, and with the feedback
of Mariëlle, the paper got accepted at the International Conference on Quantitative Evaluation of SysTems
(QEST).

After finishing this paper, I wanted to stay in the causal discovery domain but switched from learning
fault trees to learning more generic causal graphs. Furthermore, whereas my fault tree algorithm was mainly
based on statistics, I decided to change my scope to deep learning. Neural networks and their state-of-the-art
performance in many classification and prediction tasks sparked my interests. Since most existing causal
discovery methods use statistical measures, I had to be creative on how to apply deep learning for causal
discovery. I very much enjoyed the design part of my project where I had to think out-of-the-box. I also
learnt all kinds of deep learning techniques and causality jargon that I didn’t know about before.

Thanks to the critical yet valuable feedback of Doina Bucur, Christin Seifert, Maurice van Keulen and
Yannick Donners, I have written a report that presents a deep learning framework based on attention-based
convolutional neural networks that can successfully construct a temporal causal graph by discovering causal
relationships in time series data. I am looking forward to continuing the research on this topic during my
upcoming PhD at the University of Twente.

- Meike Nauta
August 2018

1
http://www.qest.org/qest2018/

2
http://fmt.cs.utwente.nl/research/projects/SEQUOIA/

v

Contents of this Master’s Thesis

Temporal Causal Discovery and Structure Learning

with Attention-based Convolutional Neural Networks 1

LIFT: Learning Fault Trees from Observational Data 51

Temporal Causal Discovery and Structure Learning with
Attention-Based Convolutional Neural Networks

Meike Nauta, m.nauta@alumnus.utwente.nl

Abstract

We present the Temporal Causal Discovery Framework (TCDF), a deep learning framework that learns a
causal graph structure by discovering causal relationships in observational time series data. TCDF uses
attention-based convolutional neural networks to detect correlations between time series and subsequently
performs a novel validation step to distinguish causality from correlation. By interpreting the internal pa-
rameters of the convolutional networks, TCDF can also discover the time delay between a cause and the
occurrence of its e↵ect. Our framework can learn both cyclic and acyclic causal graphs, which can include
confounders and instantaneous e↵ects. The graph reduction step in TCDF removes indirect causal relation-
ships to improve readability of the constructed graph. Using the representational power of deep learning,
TCDF removes idealized assumptions upon the data that existing, usually statistical, causal discovery meth-
ods make. Experiments on actual and simulated time series data show state-of-the-art performance of TCDF
on discovering causal relationships in continuous, noisy and (non-)stationary time series data. Furthermore,
we show that TCDF can circumstantially discover the presence of hidden confounders. Our broadly appli-
cable framework can be used to gain novel insights into the causal dependencies in a complex system, which
is important for interpretation, explanation, prediction, control and policy making.

1

2

Contents

1 Introduction 4

2 Background 7
2.1 Temporal Causal Discovery . 7
2.2 Deep Learning for Temporal Causal Discovery . 7
2.3 Causal Structure Learning and its Challenges . 9

3 Related Work 11
3.1 Temporal Causal Discovery Methods . 11
3.2 Causal Discovery Methods based on Deep Learning . 14

4 Temporal Causal Discovery Framework 15
4.1 Correlation Discovery with AD-DSTCNs . 15

4.1.1 Temporal Convolutional Network . 17
4.1.2 Discovering Self-causation . 17
4.1.3 Multivariate Causal Discovery . 17
4.1.4 Activation Functions . 18
4.1.5 Residual connections . 19
4.1.6 Dilations . 20
4.1.7 Attention Mechanism . 21
4.1.8 Correlation Discovery . 21

4.2 Causal Validation . 22
4.2.1 Attention Interpretation . 23
4.2.2 Causal Quantitative Input Influence . 23
4.2.3 Dealing with Hidden Confounders . 24

4.3 Delay Discovery . 26
4.4 Graph Construction and Reduction . 27

4.4.1 Causal Strength Estimation . 27
4.4.2 Graph Reduction . 28

5 Experiments 29
5.1 Evaluation Measures . 29

5.1.1 Evaluation Measure for Discovered Causal Relationships 29
5.1.2 Evaluation Measure for Discovered Delays . 30
5.1.3 Evaluation Measure for CQII e↵ectiveness . 31

5.2 Comparison with Existing Approaches . 31
5.3 Experiment 1: Simulated Financial Time Series . 32

5.3.1 Data . 32
5.3.2 Results and Discussion . 34

5.4 Experiment 2: Non-stationary Simulated Financial Time Series 36
5.4.1 Data . 36
5.4.2 Results and Discussion . 37

5.5 Experiment 3: Non-linear Simulated Financial Time Series 38
5.5.1 Data . 39
5.5.2 Results and Discussion . 39

5.6 Experiment 4: Hidden Confounders . 41
5.6.1 Data . 41
5.6.2 Results and Discussion . 41

5.7 Experiment 5: Prices of Dairy . 42
5.7.1 Data . 42
5.7.2 Results . 43
5.7.3 Discussion . 44

6 Interpretation of Discovered Causality 45

7 Conclusions and Future Work 46

3

Summary of Notation

Notation Meaning
X Dataset containing N time series all having the same length T , with N � 2 and T � 2.
Xi The ith row in dataset X corresponding to one time series of T time steps, with 0 < i N .
X̂i Predicted time series for Xi.

X�i All time series in X except Xi.
Xt

i Value of time series Xi at time step t, with 0 < t T .
X̂t

i Predicted value for Xt
i .

Ni Attention-based Dilated Depthwise Separable Temporal Convolutional Network
(AD-DSTCN) that receives X as input and outputs X̂i.

G Temporal causal graph with a set of vertices and edges (V,E), denoting the causal relation-
ships between time series in X and their delays.

G Complement of G.
vi Vertex in V representing time series Xi.

ei,j Directed edge in E from vi to vj .
E(G) Set of edges in G.
d(ei,j) Delay corresponding to edge ei,j denoting the number of time steps between the occurrence

of cause Xi and the occurrence of e↵ect Xj .
s(ei,j) Causal strength score of cause Xi on e↵ect Xj .

p = hvi, ..., vji Path from vertex vi to vertex vj .
|p| Length of a path p = hvi, ..., vji, defined by the number of edges between vi and vj .

d(p) Delay of a path p = hvi, ..., vji, defined as the sum of delays of all edges in p.
GG Temporal causal graph denoting the ground truth causal relationships and their delays.
GF Temporal causal graph denoting the full ground truth causal relationships and their delays,

which contains an edge ei,j for each directed path from vi to vj in GG.
GL Temporal causal graph that is learnt by a causal discovery method.
K Kernel size of an AD-DSTCN.
L Number of hidden layers in an AD-DSTCN.
R Receptive field of a Convolutional Neural Network.
c Dilation coe�cient.
f Dilation factor (i.e. step size), which equals cl for layer l.
� Learning rate of a neural network.
ai Attention vector ai = [a1,i, a2,i, ..., ai,i, ..., aN,i].

ai,j Attention score denoting how much Nj attends to input time series Xi.
Wi The kernel weights of Ni.
⌧i Threshold to select the attention scores in ai for causal validation.
hi Attention vector ai to which our HardSoftmax function is applied.

hi,j Attention score ai,j to which our HardSoftmax function is applied.
G List of gaps [g0, ..., gN�1] denoting the gaps between an ordered list of attention scores.
gi Gap at position i in G, denoting the value di↵erence between two attention scores.
↵i Learnable parameter used in the PReLU activation function in network Ni.

F(x) Function applied by a convolutional layer to transform input x to F(x).
o Output of a convolutional layer after the activation function is applied.

Pi Set of potential causes for time series Xi.
Ci Set of true causes for time series Xi.
L Loss of a network, i.e. the error between Xi and X̂i.

LG Loss of a network when the real input distribution for CQII is used.
LI Loss of a network when the intervened distribution for CQII is used.

✏d(ei,j) The error of an incorrectly learnt delay, calculated as the distance from the ground truth
delay to the learnt delay relative to the receptive field.

µ✏ Average error of all incorrectly learnt delays.
TP, FP Set of True Positives, resp. False Positives.
TN, FN Set of True Negatives, resp. False Negatives.

4

1 Introduction

What makes a stock’s price increase? What influences the water level of a river? Although machine learning
has been successfully applied to predict these variables, most machine learning models cannot answer those
questions. Existing machine learning models make predictions on the basis of correlations alone, but corre-
lation does not imply causation [Kleinberg, 2015]. Measures of correlation are symmetrical, since correlation
only tells us that there exists a relation between variables. In contrast, causation is usually asymmetrical and
therefore tells us the directionality of a relation between variables. For example, since height is correlated
with age, age is also correlated with height. Only a causality measure can conclude if either age causally
influences height, or that height has a causal influence on age. It could also be that, although height and age
are correlated, there is no causal relationship between these variables. Correlation which is not causation
often arises if two variables have a common cause, or if there is a spurious correlation such that the values
of two unrelated variables are coincidentally statistically correlated.

Predictive models, e.g. decision trees and neural networks, do not make a distinction between correlation
and causation and only learn correlations to increase their prediction accuracy [Nauta et al., 2018]. The
relationships learnt by the model may be unstable if they are not causal, such that the model might stop
working in the future. This will lead to wrong predictions, which is undesired if these predictions are used
for decision making. If a model would learn causal relationships, we can make more robust predictions. In
addition to making forecasts, the goal in many sciences is often to understand the mechanisms by which
variables come to take on the values they have, and to predict what the values of those variables would be if
the naturally occurring mechanisms were subject to outside manipulations [Spirtes, 2010]. Those mechanisms
can be understood by discovering causal associations that explain the relationship between and occurrence
of events. Knowledge of the underlying causes allows us to develop e↵ective policies to prevent or produce
a particular outcome [Kleinberg, 2013].

The traditional way to discover causal relations is to manipulate the value of a variable by using in-
terventions or real-life experiments. In an experimental setting, all other influencing factors of the target
variable can be held fixed, such that it can be tested if a manipulation of a potential cause changes the target
variable. However, such experiments and interventions are often costly, too time-consuming, unethical or
even impossible to carry out. With the current advances in sensoring and Internet of Things, the amount
of observational data grows extensively, allowing us to reveal (hypothetical) causal information by analysing
this observational data, known as causal discovery [Zhang et al., 2017]. Causal discovery aims to help in
interpreting data and formulating and testing hypotheses, which can be used to prioritize experiments and
to build and improve theories or simulation models. Furthermore, causal discovery from observational data
can be used to ensure the validity of experimental results that are often collected in restricted laboratory
settings.

In this report, we focus on causal discovery from time series data, as the notion of time facilitates the
discovery of the directionality of a causal relationship. After all, a cause generally happens before the e↵ect.
Many algorithms have been developed in the last years to discover causal relationships from multivariate tem-
poral observational data, particularly in the area of graphical causal modeling [Singh et al., 2018]. However,
these usually statistical measures tend to rely on idealized assumptions that rarely hold in practice. Exist-
ing approaches assume that the time series data is linear, stationary or without noise [Runge et al., 2017],
[Huang and Kleinberg, 2015]. Furthermore, many methods assume that the underlying causal structure has
no (hidden) common causes, is acyclic or does not have instantaneous e↵ects [Budhathoki and Vreeken, 2018],
[Entner and Hoyer, 2010]. Furthermore, existing methods are only designed to discover causal associations,
and they cannot be used to predict a variable’s value based on these discovered causal variables.

We suggest to use Deep Learning for causal discovery, since Deep Neural Networks (DNNs) achieve
state-of-the art performance in many classification and prediction tasks. DNNs are able to discover com-
plex underlying phenomena by learning and generalizing from examples without knowledge of generaliza-
tion rules, while having a high degree of error resistivity making them almost insensitive to errors in a
dataset [Müller et al., 2012]. Moreover, DNNs that combine linear and nonlinear feature transformations
are able to capture long-term temporal correlations, in contrast to conventional linear or nonlinear predic-
tive models [Müller et al., 2012].

5

€ 0.00

€ 0.50

€ 1.00

€ 1.50

€ 2.00

€ 2.50

€ 3.00

€ 3.50

jan-17 feb-17 mrt-17 apr-17 mei-17 jun-17 jul-17 aug-17 sep-17 okt-17 nov-17 dec-17 jan-18 feb-18 mrt-18 apr-18 mei-18 jun-18 jul-18 aug-18

Milk Butter Cheese

(a) Input

B C

M

1 3

(b) Output

Figure 1: The plot (left) shows a fictive history of the prices of milk, butter and cheese. The data suggests
that the price of milk causes the price of butter (with a delay of 1 month) and the price of cheese (with a
delay of 3 months). Our framework receives the dairy prices as input and discovers the causal relationships
and their delays to construct a temporal causal graph (right) showing the causal relationships and their
delays between the prices of milk (M), butter (B) and cheese (C).

More specifically, in this report we present the Temporal Causal Discovery Framework (TCDF) that uses
deep learning to:

1. Discover causal relationships in time series data,

2. Discover the time delay between cause and e↵ect of each causal relationship,

3. Learn a temporal causal graph based on the discovered causal relationships with delays.

Our ambition is to provide a unified approach that exploits the representational power of deep learning
and does not require any strong assumption on the data or underlying causal structure, in contrast to existing
approaches.

For example, given a history of the prices of milk, butter and cheese, our framework could detect the
causal relationships between these dairy products. Since milk is an ingredient of butter and cheese, the data
should suggest that the price of milk causes the price of butter and that the price of milk causes the price
of cheese. Furthermore, a change in the price of milk will probably be reflected in the price of butter resp.
cheese with a certain delay. Figure 1 (left) shows a simple example containing fictive prices of milk, butter
and cheese. It can be seen that the data suggests that the price of milk causes both the price of butter
(with a delay of 1 month) and the price of cheese (with a delay of 3 months). Based on a dataset containing
dairy prices, our framework can discover these causal relationships and their delays and can then visualize
its findings in a temporal causal graph as shown in Figure 1 (right).

Thus, we require a dataset X containing N time series of the same length. These time series can be
anything, from stock prices and weather data to water levels and heart rates. The goal is to discover the
causal relationships between all N time series in X, including the delay between cause and e↵ect, and model
this in a temporal causal graph.

Our framework, called Temporal Causal Discovery Framework (TCDF), consists of N convolutional
neural networks, where each network receives all N observed time series as input. One network is trained to
predict one time series. Thus, the goal of the jth network Nj is to predict each time step of its target time
series Xj 2 X based on past values. While a network performs supervised prediction, it trains its internal
parameters using backpropagation.

We suggest to use these internal parameters for unsupervised causal discovery and delay discovery. More
specifically, TCDF applies a successful explanation-producing method, attention mechanisms, to extract
explanations from each network [Gilpin et al., 2018]. An attention mechanism in network Nj enables Nj to
focus on a subset of its inputs. This allows us to learn to which time series the network attends to when
predicting the target time series Xj . Since neural networks can only learn correlations instead of causation,
the attended time series will be at least correlated with the predicted time series Xj and might have a causal
influence on Xj .

6

After training the attention-based convolutional networks, TCDF distinguishes causation from correlation
by applying a causal validation step. In this validation step, we intervene on a correlated time series to test
if it is causally related with a predicted target time series. Each discovered time series that proves to be
causal is included in a temporal causal graph that graphically shows the causal relationships between all
time series.

In addition, we present a novel method to extract the learnt time delay between cause and e↵ect of
each relationship from a network by interpreting the network’s internal parameters. TCDF then constructs
a temporal causal graph in which both the discovered causal relationships and the discovered delays are
included.

The rest of this report is organized as follows. Section 2 provides background information on temporal
causal discovery with deep learning, and causal structure learning. Section 3 gives an overview of the exist-
ing, usually statistical, temporal causal discovery methods and presents the recent advances in non-temporal
causal discovery with deep learning. Subsequently, Section 4 presents our Temporal Causal Discovery Frame-
work (TCDF) based on attention-based convolutional neural networks. Our framework is evaluated on both
simulated time series data and actual data in Section 5. Section 6 discusses some well-known issues that one
should be aware of when interpreting the results of a causal discovery method. The conclusions, including
future work, are discussed in Section 7.

7

2 Background

This section provides background information on temporal causal discovery (Section 2.1), gives a global
overview on how deep learning can be used for temporal causal discovery (Section 2.2) and discusses the
most important challenges faced by causal structure learning methods (Section 2.3).

2.1 Temporal Causal Discovery

Causality has been an important concept for decades, as it is important for interpretation, explanation,
prediction, control and policy making. Although the notion of causality has shown to be evasive when trying
to formalize, we assume that a causal relationship should comply with two aspects [Eichler, 2012]:
1) Temporal precedence: the cause precedes its e↵ect,
2) Physical influence: manipulation of the cause changes its e↵ect.

The first assumption can only be validated when the time steps of all time series in the dataset are
physically aligned (i.e. time step t for one time series corresponds in the real world to time step t for another
time series). Using temporal data with the temporal precedence assumption also allows for delay discovery,
meaning that a model does not only detect the existence of a causal relationship but also the time delay
between cause and e↵ect.

The second aspect is usually defined in terms of interventions. Since a cause is a way of bringing about an
e↵ect, it can be understood in terms of how the probability or value of the e↵ect changes when manipulating
the cause. More specifically, an observed time series Xi is a cause of another observed time series Xj if
there exists an intervention on Xi such that if all other time series X�i 2 X are held fixed, Xi and Xj are
associated [Woodward, 2005]. However, such controlled experiments in which other time series are held fixed
may not be feasible in for example stock markets and many other time series applications. In those cases,
researchers may be reluctant to test for physical influence. Another possibility, which is applied by TCDF,
is to intervene on Xi while assuming that all other time series X�i 2 X behave as usual.

2.2 Deep Learning for Temporal Causal Discovery

The following paragraphs present some background information on the main concepts of our Temporal Causal
Discovery Framework: Convolutional Neural Networks, Attention Mechanisms and the Causal Quantitative
Input Influence.

Convolutional Neural Networks for Time Series Prediction A Convolutional Neural Network is a
type of feed-forward neural network, consisting of a sequence of convolutional layers. A convolutional layer
of a CNN limits the number of connections to only some of the input neurons by sliding a kernel (a weight
matrix) over the input and at each time step it computes the dot product between the input and the kernel.
The kernel will then learn specific repeating patterns in the input series to forecast future values of the target
time series. Intuitively, these learnt patterns denote correlations (and possibly causal relations) between the
input series and the target output series which is important for causal discovery.

Until recently, Recurrent Neural Networks (RNNs), and in particular the Long-Short Term Memory unit
(LSTM), were regarded as the default starting point to solve sequence learning. Because RNNs propagate
forward a hidden state, they are theoretically capable of having infinite memory [Bai et al., 2018]. However,
long-term information has to sequentially travel through all cells before getting to the present processing cell,
causing the well-known vanishing gradients problem [Bengio et al., 1994], [Glorot and Bengio, 2010]. Other
issues with RNNs are the high memory usage to store partial results and the impossibility of parallelism
which makes them hard to scale and not hardware friendly [Bai et al., 2018].

RNNs are therefore slowly falling out of favor for modern convolutional architectures for sequence data.
Convolutional Neural Networks (CNNs) are already successfully applied for sequence to sequence prob-
lems that need to convert sequences from one domain to sequences in another domain, including machine
translation ([Gehring et al., 2017]) and image generation from text ([van den Oord et al., 2016]). However,
although sequence to sequence modeling is related to our time series problem, the nature of those sequences
is too dissimilar to apply the same architectures. The main di↵erence is that in the aforementioned models,
the entire input sequence (including “future” states) is used to predict each output which does not satisfy the

8

causal constraint that there can be no information ‘leakage’ from future to past. Furthermore, observational
time series data usually contains only one repetition of the time series instead of observing a sequence several
times. Convolutional architectures for time series are still scarce but recently successfully applied to finan-
cial time series. [Borovykh et al., 2017] created a deep convolutional model for noisy financial time series
forecasting and [Binkowski et al., 2017] presented a deep convolutional network for predicting multivariate
asynchronous time series.

Attention Mechanism Recently, there has been a surge of work in explaining deep neural networks. One
approach is to create an explanation-producing system that is designed to simplify the representation of its
own behavior [Gilpin et al., 2018]. One successful explanation-producing method is the so-called attention
mechanism. An attention mechanism (or ‘attention’ in short) equips a neural network with the ability
to focus on a subset of its inputs. The concept of ‘attention’ has a long history in classical computer
vision, where an attention mechanism selects relevant parts of the image for object recognition in cluttered
scenes [Walther et al., 2004]. Only recently attention has made its way into deep learning. The idea of
today’s attention mechanism is to let the model learn what to attend to based on the input data and what
is has learnt so far. Besides the increased accuracy by using attention, an important advantage is that it
gives us the ability to interpret and visualize where the model attends to. This allowance of interpretability
is why we propose attention mechanisms as a way to discover correlations.

Causal Validation To distinguish causation from correlation, we apply a causal validation step in which
we intervene on the correlated time series to test the Physical influence assumption mentioned in Section
2.1. Only the time series that satisfy this constraint are considered to be causal and are included in the
temporal causal graph.

Since we only use observational data and will not physically intervene in a system to do experiments,
we apply the Causal Quantitative Input Influence (CQII) measure of [Datta et al., 2016] to allow for causal
reasoning. This measure models the di↵erence in the “quantity of interest” between the real input distribution
and an intervened distribution for a specific “input variable of interest”. This hypothetical intervened
distribution is constructed by retaining the marginal distribution over all other inputs and sampling the
input of interest from its prior distribution. In this way, the influence of an input can be quantified by
measuring the di↵erence between the quantity of interest of the real input distribution and the intervened
distribution.

As an example, the authors consider the case where an automated system assists in hiring decisions for
a moving company [Datta et al., 2016]. Suppose that the input features used by this classification system
are Weight Lifting Ability and Gender. These variables are positively correlated with each other and with
the hiring decisions made. In this example, the “quantity of interest” is the fraction of positive classification
for women. To test for the influence of gender on positive classification for women, CQII replaces every
woman’s field for gender with a random value. This value replacement is the ‘intervention’ used to construct
the intervened distribution. To check for a causal association, the classification outcome based on the
real input distribution is compared with the classification outcome of the intervened distribution where each
gender field has a random value. If the intervention leads to a significant change in the classification outcome,
then Gender is causally associated with positive classification.

We propose to use CQII for causal discovery with deep learning, such that both the temporal precedence
requirement and the physical influence requirement are satisfied. Details about the implementation of CQII
in TCDF are described in Section 4.2.2.

9

1 3
X1 X2 X3

4

(a) X1 directly causes X2

with a delay of 1 time step,
and indirectly causes X3

with a total delay of
1 + 3 = 4 time steps.

1 2

4
X2 X3

X1

(b) Feedback loop between
X1, X2 and X3 with a
delay of 2, resp. 4 resp 1

time steps.

3 X1 X2
1

(c) Self-causation of X1

that repeatedly, with an
interval of 3 time steps,

causes X2 with a delay of 1
time step.

3

1 4

X2 X3

X1

(d) X1 is a confounder of
X2 and X3 with a delay of

1 resp. 4 time steps.

Figure 2: Temporal causal graphs showing causal relationships and their delays between cause and e↵ect.

2.3 Causal Structure Learning and its Challenges

Structure learning is a model selection problem in which one estimates a graph that summarizes the depen-
dence structure in a given data set [Drton and Maathuis, 2017]. In addition to performing temporal causal
discovery which lists the causal relationships between observed time series, TCDF will perform temporal
causal structure learning in which the discovered causal relationships between time series are visualized by
a causal graph. This provides an intuitive understanding of the interrelations among the time series.

The starting point for causal graphical modeling is usually a directed graph in which an edge ei,j pointing
from vertex vi to vertex vj represents a causal relationship from cause Xi to e↵ect Xj . The graphs learnt
by non-temporal i.i.d. structure learning methods include a vertex for each variable in the used dataset. For
the modeling of temporal structures, there are two visualizations methods, which we call local and global
graphical methods.

Local temporal causal structure learning methods (e.g. [Peters et al., 2013], [Entner and Hoyer, 2010])
make an adaptation to the i.i.d. approach by replicating the set of variables by the number of time steps
such that a vertex represents one time step in one time series Xi. When no instantaneous e↵ects are
discovered, such learnt graphs will be acyclic by design. The lack of cycles follows from the temporal
precedence assumption, such that an edge from an early time vertex cannot a↵ect the past and will therefore
always point to a later time vertex.

On the other hand, global graphical methods (e.g. [Budhathoki and Vreeken, 2018], [Jiao et al., 2013])
show that time series Xi causes time series Xj without taking a specific time step t into account . In such
a learnt graph, a vertex denotes a time series Xi instead of referring to a specific time step in Xi, which
is comparable to a discovered graph by non-temporal i.i.d. structure learning methods in which a vertex
corresponds to an i.i.d. variable. The acyclicity restriction does not apply here, since feedback loops and
self-causation may be allowed. For better readability and the discovery of global causal relationships, our
framework constructs a graph where a vertex denotes a time series.

More formaly, in the directed causal graph G = (V,E), vertex vi 2 V represents an observed time series
Xi and each directed edge ei,j 2 E from vertex vi to vj denotes a causal relationship where time series Xi

causes an e↵ect in Xj . Furthermore, we denote by p = hvi, ..., vji a path in G from vi to vj . The length of a
path (counted as the number of edges) is denoted as |p|.

In our temporal causal graph, every edge ei,j is annotated with a number d(ei,j), that denotes the time
delay between the occurrence of cause Xi and the occurrence of e↵ect Xj . An example of a simple temporal
causal graph is shown in Figure 2a. The sum of the delays of all edges in path p is denoted as d(p). The
goal of this study is not only to perform temporal causal discovery, but also to learn a temporal causal graph
from observational time series data.

However, structure learning methods are posed with major challenges when the underlying causal model
is complex. First of all, the method should be able to distinguish direct causes from indirect causes (Fig.
2a). Vertex vi is seen as an indirect cause of vj if ei,j 62 G and if there is a path p = hvi, ..., vk, vji 2 G
with |p| � 2. Pairwise methods, i.e. methods that can only find causal relationships between two variables,
are often unable to make this distinction and will include both ei,j (the grey edge in Fig. 2a) and ek,j
in their graph G, thus resulting in an incorrect inference [Hu and Liang, 2014]. In contrast, multivariate
methods take all remaining variables into account to correctly distinguish between direct causality and

10

indirect causality [Papana et al., 2016], such that only ek,j would be included in their graph G.
Secondly, it is relevant to correctly infer instantaneous causal e↵ects, where the delay between cause

and e↵ect is 0 time steps. Neglecting instantaneous influences can lead to misleading interpretations of causal
e↵ects [Hyvärinen et al., 2008]. In practice, instantaneous e↵ects mostly occur when cause and e↵ect refer
to the same time step that cannot be causally ordered a priori because of a too coarse time scale.

Moreover, it is important that a causal structure learning method does not rely on the idealized assump-
tion that a directed graph should be acyclic. Since real-life systems may exhibit repeated behavior, there
can be feedback loops (Fig. 2b) or self-causation (Fig. 2c) [Kleinberg, 2013].

Lastly, the presence of a confounder, a common cause of at least two variables, is a well-known challenge
for structure learning methods (Fig. 2d). Although confounders are quite common in real-world situations,
they complicate causal discovery since the confounder’s e↵ects are correlated with each other but they are
not causally associated. Especially when the delays between the confounder and its e↵ects are not equal, one
should be careful to not incorrectly include a causal relationship between the confounder’s e↵ects (the grey
edge in Fig. 2d). Going back to the milk price example from the Introduction, a machine learning model
might incorrectly learn that the price of butter causes the price of cheese, since the delay between milk price
(X1) and butter price (X2) is lower than the delay between the milk price and cheese price (X3) because of
the long storage period of cheese.

It gets more complicated when such a confounder is not observed or measured, called a hidden (or
latent) confounder. Although it might not even be known if or how many hidden confounders exist in the
causal system, it is important that a structure learning method can hypothesise the existence of a hidden
confounder to prevent learning an incorrect causal relation between its e↵ects.

11

3 Related Work

Many di↵erent causal discovery algorithms have been developed to learn a causal graph from observational
data. These algorithms are principally used to discover hypothetical causal relations between variables, in
the context of other relevant or irrelevant variables. Most causal discovery methods construct a causal graph
based on statistical tests. Pathways in the graph correspond to probabilistic dependence, and graphical non-
adjacencies imply independence. These methods usually assume that the data satisfies the Causal Markov
Condition, meaning that every variable in the dataset is independent of its non-e↵ects conditional on its
direct causes [Malinsky and Danks, 2018].

Literature distinguishes two common approaches to e�ciently discover a causal graph structure given
non-temporal i.i.d. (independent and identically distributed) observational data: score-based methods and
constraint-based methods [Malinsky and Danks, 2018]. Score-based methods iteratively optimize a causal
structure by scoring a specific structure on the basis of some measure of model fit, and return the causal
structure with the best score. In contrast, constraint-based methods rule out all causal structures that are
incompatible with a foreknown list of invariance properties, and return the set of causal graphs that imply
exactly the (conditional) independencies found in the data [Kalisch and Bühlmann, 2014].

Temporal data present a number of distinctive challenges and can require quite di↵erent causal search
algorithms [Malinsky and Danks, 2018]. Since there is no sense of time or prediction in the usual i.i.d.
setting, causality as defined by the i.i.d. approaches is not philosophically consistent with causality for time
series, as temporal data should also comply with the ‘temporal precedence’ assumption [Quinn et al., 2011].
Furthermore, an important di↵erence is that in practice temporal observational data contains only one
repetition of the time series instead of observing every variable several times [Peters et al., 2017].

For the scope of this chapter, we will introduce di↵erent categories for temporal causal discovery and give
a selective overview of recent causal discovery algorithms for time series data in Section 3.1. We refer the
reader to [Kalisch and Bühlmann, 2014] for an extensive review of non-temporal causal structure learning
methods for non-temporal data. A more recent survey for non-temporal causal discovery techniques is
[Singh et al., 2018] in which the authors present a comparative experimental benchmarking.

In Section 3.2, we propose the introduction of a new category for temporal causal discovery: Deep
Learning. To the best of our knowledge, there does not yet exist a deep learning model for temporal causal
discovery. However, we discuss some recent causal discovery methods for non-temporal observational data
that use deep learning techniques.

3.1 Temporal Causal Discovery Methods

Table 1 shows recent temporal causal discovery models, categorised in five di↵erent approaches and assessed
along various dimensions. Each approach is discussed in more detail in the paragraphs below Table 1. The
table only reflects some of the most recent approaches for each type of model, since the amount of literature
is very large.

Features The subcolumns in the ‘Features’ column in Table 1 denote if the algorithm can deal with
confounders and cyclic graphs (i.e. feedback loops and self-causation), and if it can measure instantaneous
e↵ects, delay between cause and e↵ect and the causal strength of a causal relationship. We consider causal
strength as being some kind of quantitative measure that indicates how strongly one time series influences
another.

Data The subcolumns in the ‘Data’ column in Table 1 denote if the algorithm can deal with specific
types of data, namely multivariate, continuous, non-stationary, non-linear and noisy data. Stationarity is a
common assumption in many time series techniques, meaning that the joint probability distribution of the
stochastic process does not change when shifted in time [Papana et al., 2014]. Furthermore, some models
require discrete data and cannot handle continuous values. Note that one may choose to discretize continu-
ous variables, but di↵erent discretizations can yield di↵erent causal structures. Furthermore, discretization
can also make non-linear causal dependencies di�cult to detect [Malinsky and Danks, 2018].

12

C
on

fo
u
n
d
er
s

H
id
d
en

C
on

fo
u
n
d
er
s

C
y
cl
ic
it
y

In
st
an

ta
n
eo
u
s

D
el
ay

C
au

sa
l
S
tr
en

gt
h

M
u
lt
iv
ar
ia
te

C
on

ti
n
u
ou

s

N
on

-S
ta
ti
on

ar
it
y

N
on

-L
in
ea
ri
ty

N
oi
se

Algorithm Method Features Data Output
↵(c, e)
[Huang and Kleinberg, 2015]

Causal Sig-
nificance

3 7 3 3 3 3 7 3 7 7 7 Causal relationships,
delay and impact

CGC [Hu and Liang, 2014] Granger 7 7 3 7? 3 3 3 3 7 3 3 Causal relationships
with causal influence

PCMCI [Runge et al., 2017] Constraint-
based

3 3? 3 3 3 3 3 3 7 3 3 Causal time series
graph, delay and
causal strength

ANLTSM
[Chu and Glymour, 2008]

Constraint-
based

3 31 72 3 3 3 3 3 3 3 3 Partial Ancestral
Graph with node for
each time step

tsFCI
[Entner and Hoyer, 2010]

Constraint-
based

3 3 7 3 3 7 3 3 ? 3 33 Partial Ancestral
Graph with node for
each time step

TiMINo [Peters et al., 2013] Structural
Equation
Model

3 34 75 3 36 7 3 3 7 3 3 Graph with node for
each time step (or re-
mains undecided)

PSTE [Papana et al., 2016] Information-
theoretic

3 7 3 7 3 3 3 3 3 3 3 Causal Relationships

SDI [Jiao et al., 2013] Information-
theoretic

7 7 3 7 3 3 7 7 3 3 3? Causal relationships
with a ‘degree of cau-
sation’

CUTE
[Budhathoki and Vreeken, 2018]

Information-
theoretic

7 7 7 7 3 3 7 7 7 3 3 Causal graph

Table 1: Causal discovery methods for time series data, classified among various dimensions. A ‘?’ indicates
that we are unsure.

Granger Causality (GC) [Granger, 1969] is one of the earliest methods developed to quantify the causal
e↵ects among two time series (therefore called a ‘pairwise’ method). It is based on the common conception
that a cause occurs prior to its e↵ect. More precisely, time series Xi Granger causes time series Xj if
the future value of Xj (at time t + 1) can be better predicted by using both the values of Xi and Xj up
to time t than by using only the past values of Xj itself. However, in practice not all relevant variables
may be observed or measured. This reveals an important shortcoming of GC; it cannot correctly deal with
unobserved time series, including hidden confounders [Bahadori and Liu, 2013].

Furthermore, although GC is successfully applied across many domains, it only captures the linear
interdependencies among time series. Various extensions have been made to nonlinear and higher-order
causality, e.g. [Ancona et al., 2004], [Marinazzo et al., 2008] and [Luo et al., 2013]. A more recent extension
that outperforms other Granger causality methods is based on conditional copula, that allows to dissociate the
marginal distributions from their joint density distribution to focus only on statistical dependence between
variables for uncovering the temporal causal graph [Hu and Liang, 2014].

1
Requires hidden confounders to be instantaneous and linear.

2
The authors present another version of the model that allows feedback loops, but only in the absence of hidden confounders.

3
Assumes Gaussian noise.

4
TiMINo stays undecided by not inferring a causal relationship in case of a hidden confounder.

5
Cyclicity is theoretically shown, but the algorithm is only implemented to produce acyclic graphs.

6
Although theoretically shown, the implemented algorithm does not explicitly output the discovered time delays.

13

Constraint-based Time Series approaches are often adapted versions of non-temporal causal graph
discovery algorithms for random variables. As an additional advantage, the temporal precedence constraint
helps reduce the search space of the causal structure [Spirtes and Zhang, 2016]. The well-known causal
discovery algorithms PC and FCI both have a time series version: PCMCI [Runge et al., 2017] and tsFCI
[Entner and Hoyer, 2010].

The PC algorithm (named after its authors, Peter and Clark) [Spirtes et al., 2000] makes use of a clever
series of tests to e�ciently explore the whole space of DAGs (Directed Acyclic Graphs). FCI (Fast Causal
Inference) [Spirtes et al., 2000] is a constraint-based algorithm that, contrary to PC, can deal with hidden
confounders by using independence tests on the observed data. However, both algorithms produce an acyclic
graph and therefore do not allow feedback loops. Besides, [Chu and Glymour, 2008] developed ANLTSM
(Additive Non-linear Time Series Model) for causal discovery in both linear and non-linear time series data,
that can also deal with hidden confounders. It uses statistical tests based on additive model regression.

Structural Equation Model approaches assume that the causal system can be represented by a Struc-
tural Equation Model (SEM) that describes a variableXj as a function of other substantive variablesX�j and
a unique error term ✏X to account for additive noise such that X := f (X�j, ✏X) [Spirtes and Zhang, 2016].
It assumes that the set X�j is jointly independent. SEM approaches are applied in the i.i.d. setting, but
[Peters et al., 2013] presented TiMINo (Time Series Model with Independent Noise) for the case of stationary
time series data. TiMINo associates the SEM with a directed graph that contains each time step Xt

i 2 Xi

as a node in the so-called full time graph. There is a directed edge from Xt
i to Xt

j , i 6= j, if the coe�cient of
Xt

i is nonzero for Xt
j . The resulting summary time graph contains all time series as vertices in which there

is an edge from Xi to Xj if there exists an edge from Xt�k
i to Xt

j in the full time graph for some k.
Note, since TiMINo requires i 6= j, that self-causation is not allowed. Furthermore, TiMINo remains

undecided if the direct causes of Xi are not independent, instead of drawing possibly wrong conclusions.
However, the main disadvantage is that TiMINo is not suitable for large datasets, since even smallest
di↵erences between the true data and the model may lead to rejected independence tests. Furthermore,
the authors state that the results from a high-dimensional dataset (more than ten time series) should be
interpreted carefully.

There are also Information-theoretic approaches for temporal causal discovery such as (mutual)
shifted directed information [Jiao et al., 2013] and transfer entropy [Papana et al., 2016]. Their main ad-
vantage is that they are model free and make no assumption for the distribution of the data, while being
able to detect both linear and non-linear dependencies [Papana et al., 2014]. The universal idea is that Xi

is likely a cause of Xj , i 6= j, if Xj can be better sequentially compressed given the past of both Xi and Xj

than given the past of Xj alone.
Compared to transfer entropy, directed information can be extended to more general systems, is not lim-

ited to stationary Markov processes and is able to quantify the instantaneous causality [Liu and Aviyente, 2012].
To solve the problem of transfer entropy not being able to deal with non-stationary time series,
[Papana et al., 2016] introduced Partial Symbolic Transfer Entropy (PSTE). However, PSTE is not e↵ective
when only linear causal relationships are present in the underlying causal system.

Besides, [Budhathoki and Vreeken, 2018] introduced CUTE (Causal Inference on Event Sequences) that
is claimed to be more robust than transfer entropy, but can only handle discrete data.

Causal Significance is a causal discovery framework that exploits the connections between each causal
relationship’s relative levels of significance [Huang and Kleinberg, 2015]. It calculates a causal significance
measure ↵(c, e) for a specific cause-e↵ect pair by isolating the impact of cause c on e↵ect e. The advantage
of this method is that it does not only discover a causal relationship, but also infers its delay and the impact
(e.g. e’s value raises with 2 units). However, the method assumes that causal relationships are linear and
additive (i.e. the value of a variable at any time is given by the sum of the impact of its causes), and that
all genuine causes are observed. But, the authors experimentally demonstrate that low false discovery and
negative rates are achieved if some of these assumptions do not hold.

14

3.2 Causal Discovery Methods based on Deep Learning

Existing temporal causal discovery methods, as discussed in the previous section, are mainly based on
statistical measures. Deep Learning, the approach we propose, is not yet used for temporal causal discovery.
The only study we found that compared deep learning with existing causality measures, was [Guo et al., 2018]
that proposed an interpretable LSTM network to characterize variable importance. Using an attention
mechanism, the important variables found by the LSTM showed to be highly in line with those determined
by the Granger causality test [Granger, 1969]. This exhibits the prospect that deep learning methods are
suitable for causal discovery.

Although deep learning is not applied for temporal causal discovery, [Louizos et al., 2017] presented a
method based on Variational Autoencoders to estimate causal e↵ects for non-temporal observational data.
Only recently, two methods were presented that aim to discover causal relationships from non-temporal
observational data using neural networks. [Goudet et al., 2018] introduced Causal Generative Neural Net-
works (CGNN) to learn functional causal models from non-temporal observational data. Despite its good
performances and lack of assumptions regarding confounders, CGNNs make the unrealistic assumption of a
known graph skeleton for the graphical causal model such that only the directed edges need to be oriented.

The same authors later presented the Structural Agnostic Model (SAM) [Kalainathan et al., 2018]. They
use Generative Adversarial Neural Networks for causal graph reconstruction from non-temporal continuous
observational data. Each network is trained to predict one variable. Although called ‘causal filters’ by the
authors, SAM uses a version of attention by multiplying each observed input variable by a trainable attention
score. SAM estimates a causal relationship if this attention score is greater than a given threshold. However,
this threshold should be specified by the user which can be hard to estimate. Besides, their loss function
includes a penalty for the attention scores, which results in an unusual behaviour in which attention scores
will decrease the longer the model is trained. Furthermore, SAM neglects to check for physical influence since
no causal validation step is performed. A consequence is that SAM cannot distinguish between correlation
and the presence of a hidden confounder.

15

4 Temporal Causal Discovery Framework

This chapter introduces and explains our Temporal Causal Discovery Framework (TCDF). Figure 3 gives
a global overview of TCDF, showing that TCDF applies 4 steps to learn a Temporal Causal Graph from
observational data: Correlation Discovery, Causal Discovery, Delay Discovery and Graph Construction.

Discover
Correlations

AD-DSTCNs

Distinguish
Causation
from

Correlation

Attention
Mechanism
& CQII

Discover
Delays

Kernel
Weights

of
AD-DSTCNs

Construct
and

Reduce
Graph

Discovered
Relationships

and
Delays

Figure 3: Overview of our Temporal Causal Discovery Framework (TCDF). The arrows describe the steps
taken by TCDF, while the circles describe what TCDF uses to perform the corresponding step.

More specifically, our Temporal Causal Discovery Framework (TCDF) consists ofN independent attention-
based convolutional neural networks, all having the same architecture but a di↵erent target time series. An
overview of TCDF containing multiple networks is shown in Figure 4. This shows that the goal of the jth

network Nj is to predict its target time series Xj by minimizing the loss L between the actual values of Xj

and the predicted X̂j . The input to network Nj consists of a N ⇥ T dataset X consisting of N equal-sized
time series of length T . Row Xj from the dataset corresponds to the target time series, while all other rows
in the dataset, X�j , are the so-called exogenous time series.

When network Nj is trained to predict Xj , the attention scores aj of the attention mechanism explain
where network Nj attends to when predicting Xj . Since the network uses the attended time series for
prediction, the attended time series should contain information that is useful for prediction, implying that
the attended time series are correlated with the predicted target time series Xj . TCDF therefore use the
attention scores to discover which of the exogenous time series are correlated with the targetXj . By including
the target time series in the input as well, the attention mechanism can also learn self-causation. We designed
a specific architecture for these attention-based convolutional networks that allows TCDF to discover these
correlations. We call our networks Attention-based Dilated Depthwise Separable Temporal Convolutional
Networks (AD-DSTCNs). Based on the attention scores of AD-DSTCN Nj , TCDF can discover which time
series are correlated with Xj .

The rest of this chapter is structured as follows: Section 4.1 describes the architecture of AD-DSTCNs and
discusses in more detail how TCDF uses these to discover correlations in a dataset. Section 4.2 describes
the second step of TCDF (shown in the middle of Figure 4) distinguishing causal relationships from all
discovered correlations by interpreting the attention results and applying the Causal Quantitative Input
Influence (CQII) to validate if a correlation is a causation. As a third step, TCDF discovers the time delay
between the cause and e↵ect of each discovered causal relationship. For this delay discovery, TCDF uses
the kernel weights Wj of each AD-DSTCN Nj , which will be discussed in more detail in Section 4.3. Lastly,
TCDF merges the results of all networks to construct a Temporal Causal Graph that graphically shows the
discovered causal relationships and their delays. For better readability, TCDF applies a graph reduction
step that removes all discovered indirect causes. Section 4.4 describes the graph construction and reduction
in more detail.

4.1 Correlation Discovery with AD-DSTCNs

We have designed a convolutional neural network architecture that can be used to predict a time series, while
the included attention mechanism can be used to extract learnt correlations from the network. Paragraphs
4.1.1 to 4.1.7 describe all aspects of the AD-DSTCN architecture used by our framework. Subsequently,
paragraph 4.1.8 describes how the attention scores from these networks are used by TCDF for correlation
discovery.

16

Input

Output

T

...

X1

X2

Xn

•
•
•

3

1
4

6

1

X2

11

6 3

4

X1

X1 X2 Xn

X̂2 + W2+ a2

X1 X2 Xn

X̂1 + W1 + a1

N2
N1

X1 X2 Xn

X̂n + Wn+ an

11

6 3

4

11

6 3

4

Nn

Xn

. . .

X1

XiX2

Xn

Xj

Attention Interpretation
Causal Validation
Delay Discovery

Figure 4: Temporal Causal Discovery Framework (TCDF) with N independent networks N1...Nn, all having
time series X1...Xn of length T as input. Nj predicts Xj and outputs besides X̂j also the kernel weights
Wj and attention scores aj . After attention interpretation, causal validation and delay discovery, TCDF
constructs a temporal causal graph.

17

4.1.1 Temporal Convolutional Network

An important restriction for time series prediction is that a neural network may not access future values
when predicting the current value of a time series. Therefore, we use the generic Temporal Convolutional
Network (TCN) architecture of [Bai et al., 2018] as a basis for our network architecture. This convolutional
architecture has configurable settings that can be used for univariate time series modeling. Having one time
series X1 (which could be the price of milk for example) as input, TCN can predict a di↵erent target time
series X2 (say, the price of cheese). TCN consists of a 1-dimensional (1D) Convolutional Neural Network
architecture in which each layer has length T , where T is the number of time steps of the input time series
and the equally-sized target time series. TCN uses supervised learning by minimizing the loss L between
the actual values of target X2 and the predicted X̂2. A TCN predicts time step t of the target time series
based on the past and current values of the input time series, i.e. from time step 1 up to and including time
step t. Including the current value of the input time series enables the detection of instantaneous e↵ects.
Since no future values are used for prediction, it satisfies the causal time constraint that future information
cannot cause an e↵ect. Therefore, a TCN uses a so-called causal convolution in which there is no information
‘leakage’ from future to past.

A TCN predicts each time step of the target time series X2 by sliding a kernel over input X1 of which
the input values are [X1

1 , X
2
1 , ..., X

t
1, ..., X

T
1]. When predicting the value of X2 at time step t, denoted as Xt

2,
the 1D kernel with a user-specified size K calculates the dot product between the learnt kernel weights W,
and the current input value plus its K � 1 previous values, i.e. W � [Xt�K+1

1 , Xt�K+2
1 ..., Xt�1

1 , Xt
1].

However, when the first value of X2, denoted as X1
2 , has to be predicted, the input data only consists

of X1
1 and past values are not available. This means that the kernel cannot fill its kernel size if K > 1.

Therefore, TCN applies left zero padding such that the kernel can access K � 1 values that equal zero to
replace the missing past values. For example, if K = 4, the sliding kernel first sees [0, 0, 0, X1

1], followed by
[0, 0, X1

1 , X
2
1], [0, X

1
1 , X

2
1 , X

3
1], etc. until [X

T�3
1 , XT�2

1 , XT�1
1 , XT

1].

4.1.2 Discovering Self-causation

Whereas the authors of TCN assume that the input time series is di↵erent than the output time series, we
propose to allow the input and output time series to be the same. Having the target time series Xj as input
data allows us to discover self-causation (i.e. the target time series causally influences itself, which enables
the modeling of repeated behavior). However, in this case we have to slightly adapt the TCN architecture
of [Bai et al., 2018], since we cannot include the current value of the target time series in the input. With
an exogenous time series as input, the sliding kernel with size K can access [Xt�K+1

i , Xt�K+2
i ..., Xt�1

i , Xt
i]

with i 6= j to predict Xt
j for time step t. However, with the target time series as input, the kernel may only

access the past values of the target time series Xj , i.e. excluding the current value Xt
j since that is the value

to be predicted.
Therefore, we have to make sure that this current value cannot be seen by the kernel. A simple so-

lution to this is to shift the target input data one time step forward with left zero padding such that
the input target time series in the dataset equals [0, X1

j , X
1
j , ..., X

T�1
j] and the kernel therefore can access

[Xt�K
j , Xt�K+1

j ..., Xt�2
j , Xt�1

j] to predict Xt
j .

4.1.3 Multivariate Causal Discovery

A restriction of the TCN architecture is that it is designed for univariate time series modeling, meaning
that there is only one input time series. Multivariate time series modeling in convolutional neural networks
is usually achieved by merging multiple time series into a 2D-input. This architecture, having 1 channel, is
shown in Figure 5. Instead of having a 1D-kernel with kernel size K as in the normal TCN architecture,
there is a 2D-kernel in the first convolutional layer with a width of size K and a height that is equal to
the number of input time series. The kernel slides over the 2D-input such that the kernel weights are
element-wise multiplied with the input. This creates a 1D-output in the first hidden layer. For a deep TCN,
1D-convolutional layers can be added to the architecture. However, the disadvantage of this approach is
that the output from each convolutional layer is always 1 dimensional, meaning that the input time series
are mixed. This mixing of inputs hinders causal discovery.

18

X̂1
2 X̂2

2 X̂3
2 X̂4

2 X̂5
2 X̂6

2 X̂7
2 X̂8

2 X̂9
2 X̂10

2 X̂11
2 X̂12

2 X̂13
2

X1
2 X2

2 X3
2 X4

2 X5
2 X6

2 X7
2 X8

2 X9
2 X10

2 X11
2 X12

2 X13
2

X1
n X2

n X3
n X4

n X5
n X6

n X7
n X8

n X9
n X10

nX
11
n X12

n X13
n

...

...

X1
1 X2

1 X3
1 X4

1 X5
1 X6

1 X7
1 X8

1 X9
1 X10

1 X11
1 X12

1 X13
1

�

�

Input

Hidden

Output

Channel 1

Figure 5: A Multivariate Temporal Convolutional Network that predicts X2 based on a 2D-input containing
N time series with T = 13 time steps. The network has L = 1 hidden layer and 2 kernels with kernel size
K = 2 (denoted by the colored blocks). The kernel in the first layer has a kernel height of N . The time
series are element-wise multiplied with the kernel weights (denoted by �).

To allow for multivariate causal discovery, we therefore extend the univariate TCN architecture to a
1-dimensional Depthwise Separable Temporal Convolutional Network (DSTCN) in which the input
time series stay separated. A DSTCN consists of one channel for each input time series making N channels
in total. Thus, in network Nj , channel j corresponds to the target time series Xj = [0, X1

j , X
1
j , ..., X

T�1
j] and

all other channels correspond to the exogenous time series Xi 6=j = [X1
i , X

1
i , ..., X

T�1
i , XT

i]. An overview of
this architecture is shown in Figure 6. This overview includes the attention mechanism that will be discussed
in Section 4.1.7.

A depthwise separable convolution consists of depthwise convolutions, where channels are kept separate
by applying a di↵erent kernel to each input channel, followed by a 1⇥ 1 pointwise convolution that merges
together the resulting output channels [Chollet, 2017]. This is di↵erent than normal convolutional architec-
tures that have just one kernel per layer. Because of the separate channels, the kernel weights relate to one
specific time series which allows us to correctly interpret the relation between a specific input time series
and the target time series, without any mixing of inputs. This shows to be useful for our delay discovery.

But, although a separate channel for each input time series is useful for correctly interpreting how
one specific time series influences the target, it is not su�cient for accurate time series prediction. When
predicting the target time series Xj conditional on another time series Xi where i 6= j, we should also include
the past values of target Xj . More formally, we aim at maximizing the conditional likelihood:

P (Xj |Xi 6=j) =
TY

t=1

P (Xt
j |X1

i , ..., X
t
i , X

1
j , ..., X

t�1
j). (1)

Adopting the idea from [Borovykh et al., 2017] for time series prediction, the conditioning on past values
of Xj is done by element-wise addition of the target convolutional output from the first layer to the convo-
lutional outputs from the first layer of the other channels. The element-wise addition is indicated by � in
Figure 6. With this addition, we ensure that each channel uses not only the past and current values of their
input time series, but also the past values of the target time series.

4.1.4 Activation Functions

For non-linearity, a non-linear activation function is needed that transforms the output of a convolution.
Although a Rectified Linear Unit (ReLU) is used in the original TCN architecture of [Bai et al., 2018],
we use a Parametric Rectified Linear Unit (PReLU), defined as PReLU(x) := max(x, 0) + ↵j · min(x, 0)
with ↵j being a learnable parameter for input time series Xj . Although any other non-linear activation
function can be applied as well, we chose PReLU since it has found to be most e�cient when applied to the

19

X̂1
2 X̂2

2 X̂3
2 X̂4

2 X̂5
2 X̂6

2 X̂7
2 X̂8

2 X̂9
2 X̂10

2 X̂11
2 X̂12

2 X̂13
2

a2,1

X1
2 X2

2 X3
2 X4

2 X5
2 X6

2 X7
2 X8

2 X9
2 X10

2 X11
2 X12

2 X13
2

a2,2

X1
n X2

n X3
n X4

n X5
n X6

n X7
n X8

n X9
n X10

nX
11
n X12

n X13
n

a2,n

D
ep
th
w
is
e

P
oi
nt
w
is
e

X1
1 X2

1 X3
1 X4

1 X5
1 X6

1 X7
1 X8

1 X9
1 X10

1 X11
1 X12

1 X13
1

�

���

� �

...

...

...

��

���
Input

Attention

Hidden

Hidden

Output

Conditioning

Channel 1 Channel 2 Channel n

Residual

Figure 6: Attention-based Dilated Depthwise Separable Temporal Convolutional Network N2 to predict its
target time series X2, having N channels with T = 13 time steps, L = 2 hidden layers and N ⇥ L kernels
with kernel size K = 2 (denoted by the colored blocks). The attention scores a are element-wise multiplied
with the input time series, followed by an element-wise multiplication with the kernel. The output of the
first convolution from target X2 is element-wise added to the other outputs before being inputted to the
next convolutional layer. In the pointwise convolution, all output channels are combined to construct the
prediction X̂2.

forecasting of non-stationary, noisy financial time series [Borovykh et al., 2017], and has shown to improve
model fitting with nearly zero extra computational cost and little overfitting risk compared to the traditional
ReLU [He et al., 2015].

But, since we have a regression task, the network needs to be able to approximate any real value,
without being changed by a non-linear activation function. Therefore, we use the common setup that
applies a linear activation function in the last hidden layer7. Moreover, it has been shown that neural
networks that combine linear and nonlinear feature transformations are able to capture long-term temporal
correlations [Müller et al., 2012].

4.1.5 Residual connections

An increasing number of hidden layers in a network usually results in a higher training error. This accuracy
degradation, called the degradation problem, is not caused by overfitting, but because standard backpropa-
gation tends to become unable to find optimal weights in a deep network [He et al., 2016]. The proven way
around this problem is to use residual connections. A convolution layer transforms its input x to F(x), after
which an activation function is applied. With a residual connection, the input x of the convolutional layer
is added to F(x) such that the output o is:

o = PReLU(x+ F(x)) (2)

We add a residual connection in each channel after each convolution from the input to the convolution to
the output, as shown in Figure 6. We only exclude the first layer since here already the target conditioning
takes place.

7
If the network has exactly 1 layer (i.e. no hidden layers), only the PReLU activation is applied to allow for non-linearity.

20

X̂1
2 X̂2

2 X̂3
2 X̂4

2 ... X̂16
2 ... X̂T

2

Output

Hidden

Hidden

Hidden

Input

X1
1 X2

1 X3
1 X4

1 ... X16
1 ... XT

1

Padding = 8

Padding = 4

Padding = 2

Padding = 1

f = 23

f = 22

f = 21

f = 20

Linear

PReLU

PReLU

PReLU

Figure 7: Channel 1 of a dilated DSTCN to predict X2, with L = 3 hidden layers, kernel size K = 2 (denoted
by the arrows) and dilation coe�cient c = 2, leading to a receptive field R = 16. A ReLU activation function
is applied after each convolution. To predict the first values (shown by the dashed arrows), zero padding is
added to the left side of the sequence. Weights are shared across layers, indicated by the identical colors.

4.1.6 Dilations

In a TCN with only one layer (i.e. no hidden layers), the receptive field (the number of time steps seen by
the sliding kernel) is equal to the user-specified kernel size K. To successfully discover a causal relationship,
the receptive field should be as least as large as the delay between cause and e↵ect. To increase the receptive
field, one can increase the kernel size or add hidden layers to the network.

A 1D convolutional network has a receptive field that grows linearly in the number of layers, which is
computationally expensive when a large receptive field is needed. More formally, the receptive field R of a
1D CNN is

RCNN = 1 +
LX

l=0

(k � 1) (3)

where K is the user-specified kernel size and L the number of hidden layers. (L = 0 corresponds to a
network without hidden layers, where one convolution in a channel maps an input time series to the output.)

The well-known WaveNet architecture [Van Den Oord et al., 2016] therefore employed dilated convolu-
tions. A dilated convolution is a convolution where a kernel is applied over an area larger than its size by
skipping input values with a certain step size f . This step size f , called dilation factor, increases exponen-
tially depending on the chosen dilation coe�cient c, such that f = cl for layer l. An example of dilated
convolutions is shown in Figure 7.

With an exponentially increasing dilation factor f , a network with stacked dilated convolutions can
operate on a coarser scale without loss of resolution or coverage. We therefore implement the dilated
convolutions to create a Dilated DSTCN (D-DSTCN). The receptive field R of a kernel in a 1D Dilated
DSTCN is:

RD�DSTCN = 1 +
LX

l=0

(k � 1) · cl (4)

This shows that dilated convolutions support exponential increase of the receptive field, while the number
of parameters grows only linear.

21

4.1.7 Attention Mechanism

The D-DSTCN architecture as described in the previous paragraphs is suitable for time series prediction.
However, we need to add a method to the network architecture that extracts explanations from the network,
such that our framework TCDF can discover which time series are correlated with the predicted time series.
We therefore add an explanation-producing method called ‘attention mechanism’ [Gilpin et al., 2018] to our
network architecture. We call these attention-based networks ‘Attention-based Dilated Depthwise Separable
Temporal Convolutional Networks’ (AD-DSTCNs).

An attention mechanism (or attention in short) equips a neural network with the ability to focus on a
subset of its inputs. Prior work on attention in deep learning mostly addresses recurrent networks, but Face-
book’s FairSeq [Gehring et al., 2017] for neural machine translation and the Attention Based Convolutional
Neural Network (ABCNN) [Yin et al., 2016] for modelling sentence pairs have shown that attention is very
e↵ective in CNNs as well. Besides the increased accuracy, attention allows us to interpret where the network
attends to. Thus, after training a network on predicting the target time series Xj , we can identify to which
input time series network Nj attended to. These attended time series should be at least correlated with the
predicted target time series and might have a causal influence on the target.

Typically, attention is implemented as a trainable 1 ⇥ N -dimensional vector a that is element-wise
multiplied with the N input time series or with the output of another neural network. Each value a 2
a is called an attention score. In our framework, each network Nj has its own attention vector aj =
[a1,j , a2,j , ..., aj,j , ..., aN,j]. Attention score ai,j is multiplied with input time series Xi in network Nj . This
is indicated with � at the top of Figure 6. Thus, attention score ai,j 2 aj shows how much Nj attends to
input time series Xi for predicting target Xj . A high value for ai,j 2 aj means that Xi is correlated with
Xj and might cause Xj . A low value for ai,j means that Xi is not correlated with Xj . Note that i = j
is possible since we allow self-causation. The attention scores will be used after training of the networks to
determine which time series are correlated with a target time series.

4.1.8 Correlation Discovery

Our framework has one AD-DSTCN for each time series Xj 2 X. All N AD-DSTCNs have the same
architecture, but only their target time series is di↵erent. Network Nj is trained to predict its target time
series Xj with backpropagation by minimizing the error between the actual values of Xj and the predicted

values X̂j . The number of training epochs, loss function and optimization algorithm can be selected by the
user.

When the training of the network starts, all attention scores are initialized as 1 such that aj = [1, 1, ..., 1].
While the networks use back-propagation to predict their target time series, the network also changes its
attention scores such that each score is either increased or decreased in every training epoch. This means
that after some training epochs, aj 2 [�1,1]N although the boundaries depend on the number of training
epochs and the specified learning rate.

Literature distinguishes between soft attention where aj 2 [0, 1]N , and hard attention where aj 2 {0, 1}N .
Soft attention is usually realized by applying the Softmax function � to the attention scores such thatPN

i=1 ai,j = 1. A limitation of the Softmax transformation is that the resulting probability distribution
always has full support, i.e. �(ai,j) 6= 0 [Martins and Astudillo, 2016].

Intuitively, one would prefer hard attention for correlation discovery, since the network should make a
binary decision: a time series is either correlated (and possibly causally related) or non-correlated. However,
hard attention is non-di↵erentiable due to its discrete nature and therefore cannot be optimized through back-
propagation [Shen et al., 2018]. We therefore first use the soft attention approach by applying the Softmax
function � to each a 2 aj in each training epoch. After training network Nj , we apply our straightforward
semi-binarization function HardSoftmax that truncates all attention scores that fall below a threshold ⌧j to
zero:

h = HardSoftmax(a) =

⇢
�(a) if a � ⌧j
0. if a < ⌧j

(5)

We denote by hj the set of attention scores in aj to which the HardSoftmax function is applied. Time
series Xi is considered to be correlated with the target time series Xj if hi,j 2 hj > 0.

Manually estimating this threshold ⌧j for targetXj can be challenging. We therefore created an algorithm
that determines ⌧j by finding the largest gap between the attention scores in aj . The algorithm orders the

22

⌧i

2.0 1.0 0.0
Attention scores

g0 g2

Figure 8: Threshold ⌧j is set equal to the attention score at the left side of the largest gap gk where k 6= 0
and k < |G|/2. In this example ⌧j is set equal to the third attention score.

attention scores from high to low and searches for the largest gap g between two adjacent attention scores
ai,j and ak 6=i,j , such that a split can be made between ‘high’ scores and ‘low’ scores. Threshold ⌧j is set
equal to the attention score on the left side of the gap. This approach is graphically shown in Figure 8. We
denote by G the list of gaps [g0, ..., gN�1].

However, we have set three requirements for determining ⌧j (in priority order). First, we require that
⌧j � 1, since all scores are initiated as 1 and a score will only be increased through backpropagation if the
network attends to that corresponding time series. Secondly, since a temporal causal graph is usually sparse,
we require that the gap selected for ⌧j lies in the first half of G (if N > 3) to ensure that the algorithm does
not include low attention scores in the selection. This means that at most 50% of the input time series can
be correlated with target Xj . By defining this requirement, we ensure that not too many time series are
labeled as correlated. Although this number can be changed by the user, we experimentally estimated that
50% gives good results in the evaluation of our framework.

Lastly, we require that the gap for ⌧j cannot be in first position (i.e. between the highest and second-
highest attention score). This requirement ensures that the algorithm does not truncate scores to zero of
time series which were actually correlated, but weaker than the top scoring one. This means that at least 2
time series will be labeled as correlated for target Xj .

After ⌧j is determined, the HardSoftmax function can be applied. Thus, time series Xi is labeled as
correlated with the target time series Xj if ai,j 2 aj > ⌧j , i.e. if hi,j 2 hj > 0. By applying HardSoftmax to
the attention scores of all N networks, TCDF collects all correlations between time series discovered by the
attention mechanisms.

4.2 Causal Validation

The second step of TCDF distinguishes causation from correlation. Recall that a causal relationship should
comply with two aspects [Eichler, 2012]:

1. Temporal precedence: the cause precedes its e↵ect,

2. Physical influence: manipulation of the cause changes its e↵ect.

Since we use a temporal convolutional network architecture, there is no information leakage from future to
past. Therefore, we already comply with the temporal precedence assumption. To comply with the second
assumption, we have to validate that a change in a potential cause will influence its e↵ect. Since our method
will be purely based on observational data, TCDF does not have the possibility to do a real-life experiment
to check for physical influence. We therefore came up with a novel causal validation approach that uses only
the observational dataset.

We divide the causal validation stage in two steps. TCDF first interprets the HardSoftmax scores hj

to find potential causes, described in Section 4.2.1. Secondly, TCDF applies the Causal Quantitative Input
Influence (CQII) measure of [Datta et al., 2016] to check the physical influence assumption, described in
Section 4.2.2. Potential causes that are validated by CQII will be called true causes. However, the existence
of hidden confounders can complicate the correct discovery of true causes. Section 4.2.3 describes how TCDF
handles a dataset in which not all confounders are measured.

23

4.2.1 Attention Interpretation

After each networkNj is trained for an equal number of training epochs, the HardSoftmax attention scores hj

for each network Nj are collected to distinguish causation from correlation. By interpreting these attention
scores, we can create a set of potential causes Pj for each time series Xj 2 X. This set Pj will serve as
input for the CQII measure discussed in the next section.

We can observe the following cases between HardSoftmax scores hi,j and hj,i:

1. hi,j = 0 and hj,i = 0: Xi is not correlated with Xj and vice versa.

2. hi,j = 0 and hj,i > 0: Xj is added to Pi since Xj is a potential cause of Xi because of:

(a) (In)direct causal relation from Xj to Xi, or

(b) Presence of a (hidden) confounder between Xj and Xi where the delay from the confounder to
Xj is smaller than the delay to Xi.

3. hi,j > 0 and hj,i = 0: Xi is added to Pj since Xi is a potential cause of Xj because of:

(a) (In)direct causal relation from Xi to Xj , or

(b) Presence of a (hidden) confounder between Xi and Xj where the delay from the confounder to
Xi is smaller than the delay to Xj .

4. hi,j > 0 and hj,i > 0: Time series Xi and Xj are correlated because of:

(a) Presence of a 2-cycle where Xi causes Xj and Xj causes Xi, or

(b) Presence of a (hidden) confounder with equal delays to its e↵ects Xi and Xj .

Note that a HardSoftmax score > 0 could also be the result of a spurious correlation. However, since it
is impossible to judge whether a correlation is spurious purely on the analysis of observational data, TCDF
does not take the possibility of a spurious correlation into account. After causal discovery from observational
data, it is up to a domain expert to judge or test whether a discovered causal relationship is correct. Section
6 presents a more extensive discussion on this topic.

By comparing all attention scores, we create a set of potential causes for each time series. Then, we will
use the CQII measure to validate if a potential cause is a true cause. More specifically, TCDF will apply
CQII to distinguish between case 2a and 2b, and between case 3a and 3b.

One could also use the CQII measure to distinguish between case 4a and 4b. In that case, Xi should be
added to Pj and Xj should be added to Pi. However, when we expect that a 2-cycle is non-existent (or at
least sparse) based on domain knowledge, TCDF assumes that only the much more common case 4b occurs
in order to save computational costs.

4.2.2 Causal Quantitative Input Influence

To allow for causal reasoning, we apply the Causal Quantitative Input Influence (CQII) measure
of [Datta et al., 2016] as described in Section 2.2. This measure models the di↵erence in the “quantity of
interest” between the real input distribution and an intervened distribution. In our case, the quantity of
interest is the loss L of the network between the predictions and the actual values of the target time series.
As intervention, we change the input values of potential cause Xi 2 Pj to random values having the same
mean and standard deviation as the true values of Xi. Thus, the ‘real input distribution’ is the original
input data, while the ‘intervened distribution’ is the input data where the intervention is applied.

Network N 0
j is then trained with the same input dataset as for Nj , except that Xi is replaced with random

values having the mean and standard deviation as Xi. If Xi would be a real cause of Xj , the predictions of
N 0

j should be worse, since N 0
j has no access to the ground truth values of Xi when predicting Xj . Therefore,

the intervention loss LI of the network should significantly increase compared to the ground loss LG when
the real input distribution is used. If the intervention loss LI is not significantly higher than LG (and maybe
even lower), then Xi is apparently no cause of Xj since Xj can be predicted without having access to the

24

ground truth values of Xi. Only the time series in Pj that are validated by CQII are considered true causes
of the target time series Xj . We denote by Cj the set of all true causes of Xj .

As an example, we consider the case depicted in Figure 2d. Suppose that both X1 and X2 are considered
as potential causes for X3 based on the attention score interpretation. CQII is applied to validate if these
causes are true causes of X3. When the intervened distribution of X1 is used in dataset X to predict X3,
loss LI will probably be higher than LG since the network has no access to the ground truth values of the
confounder X1. On the other hand, if CQII is applied to X2, the loss will probably not change significantly,
since the network has still access to the confounder X1 to predict X3. Our TCDF will therefore conclude
that only X1 is a true cause of X3.

The user can define a percentage to consider an increase in loss to be ‘significant’. A low percentage will
lead to a more tolerant algorithm, with the risk that some causes are incorrectly labeled as ‘true cause’. A
high percentage means a more strict algorithm, with the risk that some causes are incorrectly not labeled as
‘true cause’. One should find a good balance between those two scenario’s. In our experiments as described
in Section 5, we require an increase of at least 5%.

The benefit of applying CQII, which is for the first time applied to neural networks to the best of our
knowledge, is that the resulting true causes satisfy both the temporal precedence requirement and the physical
influence requirement. However, the disadvantage is that computational costs increase significantly. Instead
of training each network Nj only once, a network N 0

j needs to be trained for each Xi 2 Pj .

4.2.3 Dealing with Hidden Confounders

If we assume that all genuine causes are measured, the causal validation step of TCDF consisting of attention
interpretation and CQII validation should in theory only discover correct causal relationships (according to
the data). Namely, cases 2b, 3b and 4b from Section 4.2.1 then all arose because of a measured confounder.
A time series Xi that was correlated with time series Xj because of a confounder would not be labeled as
true cause by CQII, since only the presence of the confounder would be needed to predict Xj .

However, our CQII approach might discover incorrect causal relationships if there exist hidden con-
founders, i.e. confounders that are not included in the dataset. This section describes how TCDF can
successfully discover the presence of a hidden confounder with equal delays to its e↵ects Xi and Xj (case
4b from Section 4.2.1). But, we also discuss that TCDF will probably not detect the presence of a hidden
confounder when the hidden confounder has unequal delays to its e↵ects (case 2b and 3b).

As is shown in Table 1, most temporal causal discovery methods cannot deal with hidden confounders
in a dataset. Method ANLTSM can only deal with hidden confounders that are linear and instantaneous.
The authors of TiMINo claim to handle hidden confounders by staying undecided instead of inferring any
(possibly incorrect) causal relationship. Lastly, tsFCI handles hidden confounders by including a special
edge type (Xi $ Xj) that shows that Xi is not a cause of Xj and that Xj is not a cause of Xi. From this,
the authors conclude that there should be a hidden confounder that causes both Xi and Xj .

TCDF can discover this Xi $ Xj relation in specific cases by applying CQII. Based on cases 2, 3 and
4, we can distinguish three reasons why two time series are correlated: existence of a causal relationship,
presence of a measured confounder or presence of a hidden confounder. (We exclude the possibility of a
spurious correlation). If there is a measured confounder, CQII should discover that the confounder’s e↵ects
Xi and Xj are just correlated and not causally related. If there is a 2-cycle, CQII should discover that Xi

causes Xj with a certain delay and that Xj causes Xi with a certain delay. If there is a hidden confounder of
Xi and Xj , CQII will find that Xi is a true cause of Xj and vice versa. Namely, if CQII uses an intervened
distribution for Xi, the loss L of network Nj to predict Xj will probably increase, since both the hidden
confounder and the intervened Xi cannot give away any information about the future values of Xj .

When the delay from the confounder to Xi is smaller than the delay to Xj (case 3b), TCDF will, based
on the temporal precedence assumption, discover an incorrect causal relationship from Xi to Xj . More
specifically, TCDF will discover that the delay of this causal relationship will be equal to the delay from the
confounder to Xi minus the delay from the confounder to Xj . Figure 9a shows an example of this situation.
The same reasoning applies when the delay from the confounder to Xi is greater than the delay to Xj (case
2b), since Xi and Xj are just interchanged such that TCDF will discover an incorrect causal relationship
from Xj to Xi.

25

3

1 4

X2 X3

X1

(a) Example showing that TCDF will incorrectly
discover a causal relationship from X2 to X3 when
the delay from hidden confounder X1 to e↵ect X2 is

smaller than the delay from X1 to X3.

0

0

4 4

X2 X3

X1

(b) Example showing that TCDF will discover a
2-cycle between X2 and X3 where both delays equal
0, such that it concludes that there should exist a

hidden confounder between X2 and X3.

Figure 9: Example showing how TCDF deals with hidden confounders (denoted as a square). A black
square indicates that the hidden confounder is discovered, whereas a grey square indicates that the hidden
confounder is not discovered by TCDF. Black edges indicate causal relationships that will be included in the
learnt temporal causal graph GL. Grey edges indicate that these causal relationships are not included in GL.

However, TCDF will not discover a causal relationship when the hidden confounder has equal delays to
its e↵ects Xi and Xj (case 4b), and can even conclude that there should be a hidden confounder that causes
both Xi and Xj . Because the confounder has equal delays to Xi and Xj , both the delay from the discovered
causal relationship from Xi to Xj will be 0, and the delay from the discovered causal relationship from Xj to
Xi will be 0. The zero delays give away the presence of a hidden confounder, since there cannot exist a 2-cycle
where both time series have an instantaneous e↵ect on each other. Recall that an instantaneous e↵ect means
that there is an e↵ect within 1 measured time step. If both time series cause each other instantaneously,
there will be an infinite causal influence between the time series within 1 time step, which is impossible.
Therefore, TCDF will in this case conclude that Xi and Xj are not causally related, and that there exists a
hidden confounder between Xi and Xj . Figure 9b shows an example of this situation.

The advantage of our approach is that TCDF not only concludes that two variables are not causally
related, but can also detect the presence of a hidden confounder. This might be useful information for
further research.

26

X̂1
2 X̂2

2 X̂3
2 X̂4

2 ... X̂16
2

Output

Hidden

Hidden

Hidden

Input

X1
1 X2

1 X3
1 X4

1 X10
1 X16

1

0.80.3

1.2 0.41.2 0.4

0.20.2 0.2 0.21.61.6 1.6 1.6

1.3 1.31.3 1.3 1.31.3 1.3 1.3

0.10.10.10.10.10.10.10.1

f = 23

f = 22

f = 21

f = 20

Figure 10: An example that discovers the delay between cause X1 and target X2, both having T = 16.
Starting from the top convolutional layer, the algorithm traverses through the path with the highest kernel
weights. Eventually, the algorithm ends in input value X10

1 , indicating a delay of 16� 10 = 6 time steps.

4.3 Delay Discovery

Besides discovering the existence of a causal relationship, it is useful to discover the number of time steps
between the occurrence of a true cause and the occurrence of its e↵ect. For example, the delay between a
change in the milk price and a change in the butter price might be 1 month. We discover this time delay
by interpreting the kernel weights Wi for a causal input time series Xi from a network Nj predicting target
time series Xj . Since we have a depthwise separable architecture where input time series are not mixed,
the relation between the kernel weights of one input time series and the target time series can be correctly
interpreted.

The kernel that slides over the N input channels is a weight matrix with N rows and K columns (where K
is the kernel size), and outputs the dot product between the input channel and the weight matrix. Contrary
to regular neural networks, all output values of a channel share the same weights and therefore detect exactly
the same pattern, as indicated by the identical colors in Figure 7. These shared weights not only reduce the
total number of learnable parameters, but also allow delay interpretation.

Since a convolution is a linear operation, we can measure the influence of a specific delay between cause
Xi and target Xj , by analyzing the weights of Xi in the kernel. The K weights of each channel output show
the ‘importance’ of each delay with an intermediate step of dilation factor f .

TCDF creates a weighted tree of which the root corresponds to time step T (the last time step) in the
output layer of the channel corresponding to cause Xj . The time steps in the receptive field of the lower
layer correspond to the children, and the leafs correspond to all time steps in the input layer. An example
is shown in Figure 10, where the black dots are the vertices of the tree. The kernel weights are the weighted
edges of the tree (depicted by the annotated colored edges in Figure 10). To discover the delay between
cause and e↵ect, our framework finds the path with the heaviest weight, starting from the output layer and
ending up at a certain time step in the input layer, as shown by the bright colored edges in Figure 10. The
di↵erence between time step T and the end point of the heaviest path equals the discovered delay d(ei,j).
Since we also use the current values in the input data, the smallest delay can be 0 time steps, which indicates
an instantaneous e↵ect. The maximum delay that can be found equals the size of the receptive field.

When the network has more than 1 layer, it is advisable to select a dilation coe�cient c that is equal
to the kernel size K, to make sure that there is exactly one path for each delay. In the case of c = K, the
receptive field R simply becomes:

RD�DSTCNc=K = kL+1 (6)

where K is the kernel size that equals the dilation coe�cient c, and L is the number of hidden layers.

27

2

4

s = .61

s = .39
X2 X3

X1

Figure 11: Example showing that TCDF can be used to estimate the relative causal strength of a true cause
on its e↵ect.

4.4 Graph Construction and Reduction

After training the network, interpreting the attention scores and discovering the delays, we can construct a
temporal causal graph GL by drawing a vertex for each time series in dataset X and drawing an edge ei,j
from vertex vi to vj if there is a true causal relationship discovered from Xi to Xj . Edge ei,j in the learnt
graph GL is annotated with the discovered delay d(ei,j).

To improve readability, TCDF implements a graph reduction step that reduces the graph by removing all
direct edges in GL that denote an indirect causal relationship. A requirement for a causal relationship ei,j to
be indirect, is that it should be weaker than the direct relationship ek,j . Paragraph 4.4.1 describes how we
can estimate the causal strength of a relationship based on the attention scores. Subsequently, paragraph
4.4.2 discusses how the causal strength estimation can be used to reduce the learnt temporal causal graph
by removing edges from GL that denote indirect causal relationships.

4.4.1 Causal Strength Estimation

It is useful to know how strongly a true cause influences its e↵ect. This can be done by using the dataset to es-
timate causal model parameters that provide quantitative strength information [Malinsky and Danks, 2018].
As shown in Table 1, most existing approaches have some model parameter to estimate causal strength. In
our framework, the attention scores provide such a quantitative measure.

In a network Nj , an attention score ai,j 2 aj of a true cause Xi 2 Cj can to some extent be interpreted as
a ‘causal strength score’ indicating how much it influences its e↵ect Xj . An edge ei,j in the learnt temporal
causal graph GL can be annotated with this causal strength score s.

Note that attention scores between networks cannot be compared, since the value of an attention score
depends on the learning process of its network. For example, network Nj might immediately discover that
Xi is correlated with Xj and therefore it can increase the attention score of Xi in all training epochs. On
the contrary, if a di↵erent network Nk starts with incorrectly decreasing the attention score of Xi before
learning that it has to increase this score, Nk will end up with a lower attention score for Xi than Nj .

Since each network learns their attention scores di↵erently, we can only compare the attention scores
within one network, i.e. compare all ai,j 2 aj . By normalizing the attention scores in aj of all true causes
of a time series, we can create a measure denoting an estimate of the relative causal strength.

Figure 11 shows an example in which both X1 and X2 are true causes of X3, with attention scores
a1,3 = 1.9 and a2,3 = 1.2. We assume that the attention scores of all other time series in X are irrelevant
since these are not a true cause of X3. By normalizing the attention scores, TCDF will find that X1 is a
stronger cause of X3 than X2, because the causal strength score of X1 is 1.9/(1.9 + 1.2) = 0.61, while X2

has a causal strength score of 0.39.
More formally, we can define the causal strength score of a true cause Xi as:

s(ei,j) =
ai,jP

Xk2Cj

ak,j
(7)

where ei,j is the edge in a temporal causal graph G denoting a causal relationship from Xi to Xj , ai,j is the
attention score of cause Xi on Xj and Cj is the set of all true causes of Xj .

Thus, the causal strength score s denotes how strongly a true cause a↵ects its e↵ect compared to other
true causes of that same e↵ect. If a time series has only one true cause, causal strength score s = 1.

28

1 3 1

s = 0.2

s = 0.8

5

X1 X2 X3 X4

(a) Learnt graph GL that includes edge e1,4 that
denotes an indirect causal relationship.

1 3 1

5

s = 1
X1 X2 X3 X4

(b) Reduced learnt graph where edge e1,4 denoting
an indirect causal relationship is removed.

Figure 12: Example showing that an indirect causal relationship can be removed from the constructed graph
to improve readability.

4.4.2 Graph Reduction

TCDF applies a graph reduction step that reduces the learnt graph GL by removing all direct edges from GL

that denote an indirect causal relationship. Although the attention mechanism and validation step might
already have removed some indirect causes, we have experienced that some indirect causes are still labeled
as true cause by TCDF. These indirect causes have no added informative value since the direct causal
relationships are already in the learnt graph, and can therefore safely be removed. This even improves the
readability of the learnt graph. Figure 12 shows an example in which edge e1,4 2 GL denotes an indirect
causal relationship and is therefore removed.

To ensure that an edge ei,j 2 GL is indirect, and not an extra direct causal relationship from Xi to Xj ,
we have set up a set of requirements that an indirect discovered causal relationship should adhere to. First
of all, we assume that a causal relationship is only indirect if its delay is equal to the sum of the delays of
the direct causal relationships that form a directed path from Xi to Xj . Note that an indirect cause from
Xi to Xj with a di↵erent delay than the sum of the direct causes cannot be removed, since ei,j then denotes
a di↵erent direct causal relationship from Xi to Xj .

Secondly, we check that the indirect causal relationship from Xi to Xj via Xk is weaker than the direct
causal relationship from Xk to Xj , to make sure that ei,j is not an extra direct causal relationship that by
chance has the same delay to Xj as another direct edge k,j .

More formally, we consider a discovered true causal relationship indirect using three criteria:

1. There is a path p1 = hvi, vji 2 GL with |p1| = 1, and a path p2 = hvi, ..., vk, vji 2 GL with |p2| � 2.

2. The delay of path p1 equals the delay of path p2: d(p1) = d(p2).

3. The causal strength of vi on vj is smaller than the causal strength of vk on vj : s(ei,j) < s(ek,j).

From now on, we denote by GL a learnt temporal causal graph in which the graph reduction step is
applied (i.e. the edges corresponding to indirect causal relationships are removed).

29

5 Experiments

To evaluate our framework, we apply TCDF both to actual time series data and simulated time series
data. When TCDF is applied to an actual data set, of which the ground truth is unknown, we evaluate if
the temporal causal graph is in accordance with domain knowledge. In a simulated dataset, the true causal
relationships are known which allows us to evaluate the accuracy of TCDF. We perform multiple experiments
with simulated time series data such that all data types listed in Table 1 are covered: multivariate, continuous,
non-stationary, non-linear and noisy. In all experiments, we compare the results of TCDF with results of
three existing temporal causal discovery methods.

In all experiments with simulated data, we evaluate the four steps of TCDF as shown in Figure 3, from
back to front. First, we evaluate the output of TCDF by comparing the edges in the learnt (and reduced)
temporal causal graph GL with the edges in the ground truth graph GG to evaluate how well TCDF discovered
the existence of causal relationships. Secondly, we compare the discovered delays in GL with the delays in GG

to evaluate how well our delay discovery algorithm in TCDF works. Thirdly, we compare the e↵ectiveness
of CQII to check if it correctly distinguishes causation from correlation. The evaluation measures for these
evaluations are described in the next section. Lastly, we want to evaluate how the architecture of AD-
DSTCNs influence the discovery of correct causal relationships. However, since it would be impractical to
test all parameter settings, we only vary the number of hidden layers L.

As a side experiment, we evaluate how TCDF handles hidden confounders. As discussed in Section 4.2.3,
TCDF should correctly discover the presence of a hidden confounders when the delays to its e↵ects are equal.
However, we expect that TCDF will discover an incorrect causal relationship if the delays from the hidden
confounders to its e↵ects are unequal.

In all experiments, we apply Mean Squared Error as loss function in our AD-DSTCNs. Furthermore, in
all our AD-DSTCNs we use the Adam optimization algorithm which is an extension to stochastic gradient
descent [Kingma and Ba, 2014]. This optimizer computes individual adaptive learning rates for each param-
eter which allows the gradient descent to find the minimum more accurately. Furthermore, in all experiments,
we train our AD-DSTCNs for 2,000 training epochs, with learning rate � = 0.01, dilation coe�cient c = 4
and kernel size K = 4. We chose K such that the delays in the ground truth fall within the receptive field
R. The number of training epochs was chosen so as to achieve convergence in the loss L.

Our framework is implemented in Python and PyTorch. In all experiments, we measure the runtime of
TCDF on a Ubuntu 16.04.4 LTS computer with an Intel R� Xeon R� E5-2683-v4 CPU (one thread used) and
NVIDIA TitanX 12GB GPU. We leave the calculation of the time and space complexity of TCDF and other
existing methods for future work.

5.1 Evaluation Measures

This section describes the evaluation measures to evaluate TCDF when applied to a simulated dataset of
which the ground truth is known. It describes 1) the evaluation measures for discovered causal relationships,
2) the evaluation measures for discovered delays and 3) the evaluation measures for the e↵ectiveness of CQII.

5.1.1 Evaluation Measure for Discovered Causal Relationships

We evaluate the learnt graph GL by looking at the presence and absence of directed edges compared to the
ground truth graph GG. Since causality is an asymmetric measure (X1 causing X2 is di↵erent than X2

causing X1), we take the directionality of an edge into account.
We evaluate the learnt edges in terms of True Positives (TP), False Positives (FP), True Negatives (TN)

and False Negatives (FN). We apply the usual definitions from graph comparison for the TP, FP, FN and
TN evaluation measures, such that:
TP = |TP| with TP = E(GG) \ E(GL),
FP = |FP| with FP = E(GG) \ E(GL),
FN = |FN| with FN = E(GG) \ E(GL),
TN = |TN| with TN = E(GG) \ E(GL),

where E(G) is the set of all edges in graph G and G is the complement of G.
Note that taking the directionality of edges into account means that a wrongly oriented edge counts for

one False Positive and one False Negative.

30

1 3
X1 X2 X3

(a) Ground truth GG

1 3
X1 X2 X3

4

(b) Full ground truth GF

4
X1 X3

(c) Learnt GL

Figure 13: Example with three variables showing that GL has TP = 0, FP = 1 (e1,4), TP’ = 1 (e1,3), FP’ =
0, FN = 2 (e1,2 and e2,3) and TN = 3 (e2,1, e3,1 and e3,2). Therefore, Precision = 1, Recall = 0.333 and F1
= 0.5.

However, these TP and FP measures evaluate GL only based on the direct causes in GG. This means
that a direct edge in GL which corresponds to a correct indirect causal relationship in the ground truth, will
not be counted as True Positive. An example where an indirect causal relationship would not be counted
as a True Positive is shown in Figure 13. Because of the graph reduction step of TCDF, the learnt graph
GL will only contain such indirect causal relationships when there is no direct causal relationship included
in GL. Therefore, we think it is reasonable to count those indirect causal relationships as a True Positive as
well, since an indirect cause does have, although indirectly, a causal influence on its e↵ect.

For that reason, we introduce the TP’ and FP’ measures that extend the normal TP and FP measures
by taking the edges into account that represent direct causal relationships in GL, but are indirect causal
relationships in GG. Where we compared the learnt graph GL with ground truth GG to calculate the normal
TP and FP measures, we compare GL with the full ground truth graph GF to calculate TP’ and FP’. The full
ground truth graph GF contains a directed edge ei,j for each directed path hvi, ..., vji in ground truth graph
GG. Figure 13b shows an example of a full ground truth graph GF . The TP’ and FP’ are then measured as
follows:
TP’ = |TP0| with TP0 = E(GF) \ E(GL),
FP’ = |FP0| with FP0 = E(GL) \ E(GF).

To evaluate our framework, we use the TP’, FP’ and FN measures to calculate Precision (indicating
the fraction of learnt edges that correspond to the full ground-truth edges) and Recall (indicating the
fraction of full ground-truth edges that were learnt correctly). We define Precision and Recall as follows:

Precision =
TP’

TP’ + FP’
(8) , Recall =

TP’

TP’ + FN
(9)

We summarize our framework’s accuracy using the F1’-score, that considers both Precision and Recall (based
on our TP’ and FP’ scores):

F1’ = 2 · Precision · Recall
Precision + Recall

(10)

5.1.2 Evaluation Measure for Discovered Delays

We evaluate a discovered delay d(ei,j 2 GL) between cause Xi and e↵ect Xj by comparing it to the full
ground truth delay d(ei,j 2 GF). We only evaluate the delay of edges in TP since the other edges do not
exist in both GF and GL.

We first measure the percentage of delays corresponding to edges in TP that are learnt correctly, i.e.
where d(ei,j 2 GL) = d(ei,j 2 GF). Secondly, we want to evaluate the error ✏d(ei,j) of an incorrectly learnt
delay to measure how o↵ the discovered delay is compared to the delay of the ground truth. This could
be done by calculating the distance between d(ei,j 2 GL) and d(ei,j 2 GF). However, this absolute measure
does not take the receptive field R of the AD-DSTCNs in TCDF into account. Recall that discovered delays
will lie between 0 and the receptive field R. We argue that a TCDF with R = 4 which is for example 3 time
steps o↵, should be more penalized than a TCDF with R = 256 that is ‘just’ 3 time steps o↵. Therefore, we
propose to calculate the distance to the ground truth relative to the receptive field:

✏d(ei,j) =
d(ei,j 2 GF)� d(ei,j 2 GL)

R
(11)

In this way, the error indicates how o↵ the learnt delay was relative to the receptive field. A high error
(close or equal to 1) denotes a learnt delay that could not be much more wrong, while a small error means

31

that the discovered delay was not equal but close to the ground truth delay. The mean of all non-zero errors,
µ✏, denotes the average error score of all incorrect delays.

5.1.3 Evaluation Measure for CQII e↵ectiveness

Lastly, we evaluate the e↵ectiveness of CQII. The goal of CQII is to label a subset of the potential causes
as true causes. We first analyse how many potential causes were correctly not selected as true cause by
comparing the number of False Positives when CQII is used to the number of False Positives when CQII is
not applied. Secondly, we compare the number of True Positives with and without CQII to see how many
potential causes were not labeled as true cause while they actually were a true cause according to the ground
truth. We summarize the CQII e↵ectiveness by calculating the relative increase (or decrease) of the F1’-score
when CQII is applied compared to not applying CQII.

5.2 Comparison with Existing Approaches

We compare the results of our framework with three other methods for temporal causal discovery: PCMCI
implemented by the authors in the Python Tigramite module [Runge et al., 2017], tsFCI implemented by
TETRAD [Scheines et al., 1998] and TiMINo implemented by the authors in R [Peters et al., 2013]. Al-
though the simulated financial dataset is provided by [Kleinberg, 2013], there is no public implementation
available of her causal significance measure.

However, we cannot apply the TP’ and FP’ evaluation measures to the results of the existing methods
like we do for TCDF. The TP’ and FP’ take the edges into account that represent direct causal relationships
in GL, but are indirect causal relationships in GG. However, the existing methods do not implement any
graph reduction step to remove edges that denote indirect causal relationships from GL. Therefore, their
learnt graphs will probably include many edges that denote indirect causal relationships. If we would apply
the TP’ and FP’ measures to the existing methods, we would overestimate their accuracy since we then
count both the direct and indirect causal relationships as True Positives. In contrast, TCDF only contains
an indirect causal relationship in GL if there is no corresponding direct causal relationship existent in GL.

For a legitimate comparison, we therefore compare TCDF with the other methods in terms of the normal
TP, FP and FN measures instead of TP’, FP’ and FN as we do for TCDF. We summarize the accuracy of
each model by calculating the F1-score based on TP, FP and FN.

Parameters In all experiments, we apply the following parameters to the algorithms:
PCMCI : We set the maximum delay to 3 time steps and the minimum delay to 0, equivalent to the minimum
and maximum delay that can be found by TCDF in our AD-DSTCNs with K = 4 and L = 0. We use the
ParCorr independence test for linear partial correlation8. Furthermore, we chose a fixed threshold for p-
values among [0.01, 0.1, 0.2]. Since all thresholds gave comparable results, we chose 0.01 such that all p-values
> 0.01 are selected as causes.

tsFCI : We set the maximum delay to 3 time steps, equivalent to the maximum delay that can be found
by TCDF in our AD-DSTCNs with K = 4 and L = 0. We chose the cuto↵ value for p-values among
[0.001, 0.01, 0.1] and use 0.01 as this value gave the best results (besides the fact that 0.01 is also the default
setting). We only take the discovered direct causes into account and disregard other edge types which denote
uncertainty or the presence of a hidden confounder.

TiMINo: We set the maximum delay to 3, equivalent to the maximum delay that can be found by
TCDF in our AD-DSTCNs with K = 4 and L = 0. We assumed a linear time series model9 including
instantaneous e↵ects and shifted time series, and we chose the significance level among [0.05, 0.01, 0.001].
However, TiMINo did not give any result for all of significance levels because it could not find a model that
seemed to fit. Therefore, we set it to 0 such that TiMINo always obtains a DAG, even if the residuals are
dependent.

8
Besides the linear independence test, the author presents the non-linear GPACE test to discover non-linear causal relation-

ships [Runge et al., 2017]. However, since GPACE scales ⇠ T 3
, we apply for practical reasons the linear ParCorr test.

9
The author presents two other variants besides the linear model, of which ‘TiMINo-GP’ was shown to be more suitable for

‘long’ time series (> 300 time steps) [Peters et al., 2013]. However, only the linear model was fully implemented by the author.

32

5.3 Experiment 1: Simulated Financial Time Series

5.3.1 Data

We apply our framework to a benchmark consisting of two di↵erent causal structures of simulated financial
market data developed by [Kleinberg, 2013]. Both structures are based on a dataset with returns for 25
financial ‘portfolios’ (i.e. time series). All portfolios are stationary. Each simulated financial portfolio has a
4,000-day observation period (i.e. the size of X is N ⇥ T = 25⇥ 4000). Both datasets are created using the
Fama-French Three-Factor Model [Fama and French, 1992] that can be used to describe stock returns based
on the three factors ‘volatility’, ‘size’ and ‘value’. A portfolio’s return Xt

i depends on these three factors at
time t plus a portfolio-specific error term [Kleinberg, 2013]. Thus, although the data is synthetic, it already
includes some noise because of the error terms.

Structure 1 has 20 linear causal relationships, all having a delay of 1 day, and includes confounders and
self-causation. Structure 2 is more complex. It has 40 linear causal relationships, each having a randomly
generated delay of 1, 2 or 3 days, and includes confounders and 2-cycles. Both structures have some vertices
which are not causally related to any other vertex. The ground truth graphs GG of both structures are shown
in Figure 14.

To evaluate the influence of hidden layers in the AD-DSTCN architecture for the TCDF accuracy, we vary
the number of hidden layers in the AD-DSTCNs from L = 0 to L = 3 (and therefore also the receptive field
R from 4 to 256). Recall that L = 0 corresponds to a network without hidden layers, where one convolution
in a channel simply maps an input time series to the output.

33

23

2

8

16

1

11

17

0

5

20

14

7

18

19

915

22

3 4

10

13

(a) GG of Structure 1 of the simulated financial time series

1

21

15

8

20

17

7

6

12

11

19

2

18

10

5

9

3

23

0

1316

422

24

(b) GG of Structure 2 of the simulated financial time series

Figure 14: Underlying causal structures of the simulated financial time series of [Kleinberg, 2013]. Both
structures contain 25 vertices (numbered 0 to 24). Vertex 0 corresponds with time series X0. If a vertex is
not present in the graph, then the corresponding time series has no causal relationships. Solid edges indicate
a delay of one day, double edges mean two days and dashed edges mean a delay of 3 days.

34

5.3.2 Results and Discussion

For clarity, we have divided this evaluation section in multiple paragraphs, which discuss the evaluation
of the causal discovery, delay discovery and CQII e↵ectiveness, and present the comparison with existing
methods.

Causal Discovery Evaluation The results of TCDF when applied to the simulated financial dataset
corresponding to Structure 1 and Structure 2 are shown in Table 2. It can be seen that our framework
discovered the causal relationships in both Structure 1 and the more complex Structure 2 reasonably well,
with an F1’-score varying from 0.59 to 0.86.

The run times (which includes the comparison with the ground truth) varied from 14 to 30 minutes, with
a mean run time of 24 minutes. The variance in run times can be explained by the fact that the number of
potential causes that should be checked by CQII highly influences the run time.

Structure 1 L = 0 L = 1 L = 2 L = 3
Precision 0.83 0.70 0.79 0.66
Recall 0.80 0.76 0.96 0.76

F1’-score 0.82 0.73 0.86 0.70

Structure 2 L = 0 L = 1 L = 2 L = 3
Precision 0.96 0.88 0.83 0.72
Recall 0.56 0.65 0.65 0.50

F1’-score 0.71 0.75 0.73 0.59

Table 2: Evaluation results of TCDF applied to the financial data corresponding to Structure 1 resp. Struc-
ture 2, with a varying number of hidden layers L. Both structures are learnt with 2000 training epochs,
learning rate � = 0.01, kernel sizeK = 4 and dilation coe�cient c = 4. The highest F1’-scores are highlighted
in bold.

For Structure 1, Precision and Recall are nicely balanced since both measures are generally close to each
other. The architecture with 2 hidden layers is a positive outlier with a Recall very close to 1, making it the
best performing architecture for Structure 1. Apparently the TCDF could find almost all causal relationships
that were present in the data by performing three convolutions (namely a convolution from the input layer
and the two hidden layers). In practice, one does not know which number of layers would work best for a
data set of which the ground truth is unknown. However, since the F1’-scores do not vary that much, these
results suggest that the number of hidden layers is not decisive for the framework’s accuracy.

For Structure 2, the Precision decreases when the number of hidden layers increases, whereas the Recall
stays roughly the same. This reveals that the lower Precision is mainly caused by a higher number of False
Positives. We expect that the increasing number of False Positives is caused by the increasing receptive
field such that some spurious correlations with a high delay were discovered. Moreover, the Recall measures
of Structure 2 are lower than the ones for Structure 1. We think that the worse Recall results come from
the fact that the underlying causal structure of Structure 2 is much more complex, such that more causal
relationships are not discovered.

In addition to judging the final outcome in terms of Precision, Recall and F1’-score, we are interested in
the e↵ectiveness of the graph reduction step. It turns out that our framework on average removes 3.8 edges
from the learnt graph of Structure 1, and 1.5 edges for Structure 2, meaning that the graph reduction step
was indeed e↵ective. For example, for Structure 1, TCDF (L = 0) removed the indirect causal relationships
e10,9, e10,4 and e11,20.

Delay Discovery Evaluation As discussed in Section 5.1.2, we evaluate the discovered delays by cal-
culating the percentages of delays that are correct (i.e. equal to the ground truth delay). Secondly, we
evaluate the incorrectly learnt delays by calculating the mean distance to the ground truth delay relative to
the receptive field R.

The evaluation results for Structure 1 and 2 are shown in Table 3. It can be seen that all discovered delays
are correct when L = 0. This is not surprising, since the receptive field R is close to the maximum delays
in GG and the path length of the heaviest path to discover the delay is only 1. Interestingly, the percentage
of correctly discovered delays stays relatively high when the number of hidden layers (and therefore the
receptive field) is increased, meaning that our delay discovery algorithm works correctly on this benchmark.
Furthermore, it can be seen that in most cases the incorrectly discovered delays have a rather small mean

35

error, meaning that an incorrect delay is still quite close to the ground truth delay. Only the TCDF with
L = 2 and L = 3 for Structure 1 are quite o↵. Our hypothesis is that in these cases the weights in the last
hidden layer were incorrectly learnt, such that the algorithm will follow a path that ends up in a much higher
delay. For example, if the weights from the example shown in Figure 10 in the top layer were interchanged,
the discovered delay would be 14 instead of 6.

Structure 1 L = 0 L = 1 L = 2 L = 3
% correct 100% 95% 95% 95%

µ✏ - 0.063 0.810 0.890

Structure 2 L = 0 L = 1 L = 2 L = 3
% correct 100% 82% 93% 91%

µ✏ - 0.250 0.039 0.023

Table 3: Evaluation results for the delay discovery for Structure 1 (left) and Structure 2 (right), where the
first row shows the percentage of delays of the True Positives that were learnt correctly, and µ✏ denotes the
mean distance of the incorrectly learnt delays to the ground truth, relative to the receptive field.

CQII Evaluation If we would not have applied CQII in TCDF (L = 0) to Structure 1, the number of False
Positives would have been 59 and the number of True Positives 20. So, by applying CQII to Structure 1,
55 potential causes were correctly found to be no true cause and all true causes were correctly discovered,
leading to a 112% increase of the F1’-score compared to not applying CQII (from 0.38 to 0.82).

For Structure 2, the number of False Positives would have been 28 without CQII (instead of 1 FP with
CQII) and the number of True Positives would still be 24. Thus, applying CQII to Structure 2 led to a 40%
increase of the F1-’score. The frameworks with other values for L gave comparable results, showing that
CQII is very e↵ective in reducing the number of False Positives.

However, the high number of False Positives when CQII is not applied indicates that the AD-DSTCNs
have been trained for dozens of times to conclude that many time series are not a true cause. This might
suggest that the selection of potential causes by the attention mechanism should be more strict, such that
fewer time series have to be validated by CQII.

Comparison with Existing Approaches Table 4 shows a comparison between the results of our TCDF
and the results of existing approaches applied to Structure 1 (top) and Structure 2 (bottom). We use TCDF
(L = 0) in the comparison such that all methods have the same maximum delay. We mention the number
of True Positives (TP), False Positives (FP) and False Negatives (FN), summarized by the F1-score. Since
GL and GG will be sparse, we do not mention the, probably large number of, True Negatives. For TCDF,
we also list the TP’, FP’ and F1’-score. A TP’ corresponds to an edge denoting a direct causal relationship
in GL that corresponds to an indirect causal relationship in GG. FP’ will not count these edges as a false
positive.

Structure 1 TP(/TP’) FP(/FP’) FN F1(/F1’) Correct delays
TCDF (L = 0) 15/20 9/4 5 0.68/0.82 100%

PCMCI 14 2 6 0.80 100%
tsFCI 5 1 15 0.38 100%

TiMINo 18 269 2 0.12 -

Structure 2 TP(/TP’) FP(/FP’) FN F1(/F1’) Correct delays
TCDF (L = 0) 21/24 4/1 19 0.64/0.71 100%

PCMCI 14 5 26 0.47 100%
tsFCI 11 1 29 0.42 100%

TiMINo 34 254 6 0.20 -

Table 4: Results of our TCDF compared with results of PCMCI, TiMINo and tsFCI applied to Structure 1
(top) and Structure 2 (bottom). The highest F1-scores are highlighted in bold.

36

X
0
0

X0
0

5

10

-5

-10

Time !

Figure 15: Plot showing the values of time series X0 from the financial dataset corresponding to Structure 1
and the transformed non-stationary time series X0

0 that increases over time.

For Structure 1, it can be seen that TiMINo discovered the largest number of correct causal relationships.
However, that method also discovered an incredibly large number of incorrect causal relationships and
therefore has a low F1-score. This was in line with our expectations, since the authors already stated
that TiMINo is not suitable for high-dimensional data [Peters et al., 2013]. The only two False Negatives
correspond to the two cases of self-causation, since TiMINo assumes acyclicity. In contrast, where TiMINo
discovers many incorrect causal relationships, tsFCI seems to be too conservative. It also missed both cases
of self-causation. Our poor results of tsFCI correspond with poor results of tsFCI in experiments done by
the authors on continuous data [Entner and Hoyer, 2010].

Overall, PCMCI performs best on the dataset of Structure 1, with an F1-score of 0.80, followed by our
TCDF with 0.68. However, if we would count correct indirect causal relationships as True Positives (denoted
by TP’), TCDF would have 20 True Positives and only 4 False Positives (FP’), leading to an F1’-score of
0.82. In addition, both PCMCI and TCDF discovered one of the two cases of self-causation.

The results for the more complex Structure 2 are comparable to the results of Structure 1. Although
TiMINo found most True Positives, this method is not applicable in practical settings due to the high number
of False Positives. Our method by far outperforms the existing methods with an F1-score and F1’-score that
is much higher than the other ones.

When evaluating the delay discovery, one easily sees that all approaches perform equally well by measuring
all delays correctly. Note that TiMINo only outputs causal relationships without an explicit notion of the
underlying delays and could therefore not be taken into account in the delay evaluation.

5.4 Experiment 2: Non-stationary Simulated Financial Time Series

Stationarity is a common assumption in many temporal causal discovery methods (as shown in Table 1),
meaning that those methods assume that the joint probability distribution of each time series does not
change when shifted in time [Papana et al., 2014]. However, real data often possesses a non-constant mean
and variance and hence such data is non-stationary [Papana et al., 2016]. We therefore test our framework
on non-stationary data and evaluate how TCDF performs.

5.4.1 Data

We transform the financial datasets of [Kleinberg, 2013] for Structure 1 and Structure 2, described in Section
5.3.1, to model non-stationarity. We transform each time series Xi in dataset X to X0

i, which includes a
‘trend’ that either goes up or down. More precisely:

8Xi 2 X, 8Xt
i 2 Xi, X

t0

i =

⇢
Xt

i + 0.001 · t if max(Xi) � 0
Xt

i � 0.001 · t if max(Xi) < 0
(12)

Thus, a time series that includes a positive value will be transformed to a time series that increases over
time. If a time series consists of only negative values, it will be transformed to a decreasing time series. As an
example, Figure 15 shows the values of the original time series X0 from the financial dataset corresponding
to Structure 1 and the transformed non-stationary time series X0

0.

37

5.4.2 Results and Discussion

The results of TCDF when applied to the non-stationary financial dataset corresponding to Structure 1 and
Structure 2 are shown in Table 5. The run times (including the comparison with the ground truth) varied
between 21 and 29 minutes, with a mean run time of 25 minutes.

Structure 1 L = 0 L = 1 L = 2 L = 3
Precision 0.43 0.74 0.43 0.33
Recall 0.83 0.71 0.48 0.43

F1’-score 0.57 0.72 0.45 0.38

Structure 2 L = 0 L = 1 L = 2 L = 3
Precision 0.66 0.81 0.73 0.67
Recall 0.47 0.65 0.24 0.35

F1’-score 0.55 0.72 0.37 0.46

Table 5: Evaluation results of TCDF applied to a non-stationary dataset derived from the financial dataset
of Structure 1 (left) and Structure 2 (right), with a varying number of hidden layers L. Both structures are
learnt with 2000 training epochs, learning rate � = 0.01, kernel size K = 4 and dilation coe�cient c = 4.
The highest F1’-scores are highlighted in bold.

Although it has been shown that Convolutional Neural Networks can predict non-stationary time se-
ries [Borovykh et al., 2017] and also our used optimization algorithm (Adam) is appropriate for non-stationary
objectives [Kingma and Ba, 2014], the F1’-scores are in general lower when TCDF is applied to non-stationary
data compared to the results of TCDF applied to the original, stationary, financial time series. The F1’-scores
vary between 0.37 and 0.72, compared to 0.59-0.86 with the stationary dataset. We can see that especially
the Precision is worse, indicating that the number of False Positives increases when the non-stationary data
is used. We suspect that this can be mainly explained by the fact that we artificially changed the time series
values to include a certain ‘trend’ (either going up or going down) in the dataset. Since multiple time series
will share the same trend, the data probably suggests that some of these time series are causally related.

Interestingly, for both Structure 1 and 2, the architecture with L = 1 gives the best results. We do not
have a specific reason why TCDF with 1 hidden layer give the best results, and we therefore suspect that this
result is dataset-specific. Apparently the TCDF had the highest F1’-score (and Precision) by performing
two convolutions to these financial datasets.

The delay discovery results from TCDF applied to these non-stationary datasets are shown in Table 6.
The results are in general comparable with the results from the stationary data. For Structure 1, the number
of correctly discovered delays is at least 85% and in two cases even 100%. For Structure 2, the accuracy of
the delay discovery varies between 81% and 87% and is therefore slightly lower than the results from the
stationary data (82%-100%).

Structure 1 L = 0 L = 1 L = 2 L = 3
% correct 85% 100% 93% 100%

µ✏ 0.33 - 0.55 -

Structure 2 L = 0 L = 1 L = 2 L = 3
% correct 82% 85% 87% 81%

µ✏ 0.50 0.11 0.039 0.45

Table 6: Delay evaluation results of TCDF to non-stationary financial data for Structure 1 (left) and Struc-
ture 2 (right), where the first row shows the percentage of delays of the True Positives that were learnt
correctly, and µ✏ denotes the mean distance of the incorrectly learnt delays to the ground truth, relative to
the receptive field.

Besides, whereas the delay discovery was 100% correct when TCDF with L = 0 was applied to the
stationary data, this is not the case with the non-linear data. We suspect that the AD-DSTCNs need
at least two convolutions to learn the correct delays because of the more complex dataset. Namely, the
transformation of the data from stationary to non-stationary could be seen as adding some noise to the time
series, making it harder for the network to discover the correct delays.

Table 7 shows the results of TCDF compared with existing methods. For Structure 1, TCDF outperforms
PCMCI, tsFCI and TiMINo in terms of F1-score when applied to this non-stationary dataset. It is not
surprising that TCDF outperforms PCMCI and TiMINo, since both authors state that their method requires
stationary data. This explains why the F1-score of PCMCI applied to Structure 1 decreases from 0.80 for
the stationary dataset to 0.37 for the non-stationary dataset. However, the F1-score of PCMCI increases for

38

the non-stationary dataset of Structure 2, showing that PCMCI can still perform reasonably well with non-
stationary data. Although TCDF has fewer False Positives, PCMCI outperforms our framework in terms
of F1-score, with an F1-score of 0.51 compared to our 0.41. However, the F1’-score that includes correct
indirect causal relationships of TCDF is a bit higher than PCMCI’s accuracy. The results of TiMINo are
very comparable to the results from the stationary data (and therefore still poor), despite the fact that its
stationary-assumption was violated. The authors of tsFCI do not mention stationarity. Our results show
that the accuracy of tsFCI decreases slightly, which might be caused by the extra ‘noise’ we’ve added.

When we evaluate the delay discovery of all methods, we see that tsFCI is the only method that discovered
all delays from its True Positives correctly. However, the comparison with the other methods is a bit skewed
because of the low number of True Positives of tsFCI. PCMCI shows to perform better than TCDF in terms
of delay discovery in these non-stationary datasets, with 100% correct delays for Structure 1 and 95% correct
delays for Structure 2.

Structure 1 TP(/TP’) FP(/FP’) FN F1(/F1’) Correct delays
TCDF (L = 0) 16/20 26/22 4 0.52/0.57 85%

PCMCI 15 47 5 0.37 100%
tsFCI 4 2 16 0.31 100%

TiMINo 18 274 2 0.12 -

Structure 2 TP(/TP’) FP(/FP’) FN F1(/F1’) Correct delays
TCDF (L = 0) 15/22 18/11 25 0.41/0.55 82%

PCMCI 22 24 18 0.51 95%
tsFCI 10 2 30 0.38 100%

TiMINo 36 252 4 0.22 -

Table 7: Results of our TCDF (L = 0) compared with PCMCI, tsFCI and TiMINo applied to a non-
stationary dataset derived from the financial dataset of Structure 1 (top) and Structure 2 (bottom). The
highest F1-scores are highlighted in bold.

Lastly, we evaluate the e↵ectiveness of CQII for these non-stationary datasets. When we would not have
applied CQII in TCDF (L = 0) to Structure 1, the number of False Positives would have been 50 and the
number of True Positives would remain 20. So, by using CQII, 24 potential causes were correctly found to be
no true cause and all true causes were correctly discovered, leading to an increase of the F1’-score of 34%. For
Structure 2, the number of False Positives would have been 53 without CQII (instead of 11 FP with CQII).
Interestingly, the number of True Positives would have been 27, instead of the 22 True Positives when CQII
was applied to the non-stationary dataset of Structure 2. This means that 5 causes were incorrectly labeled
as not being a true cause. Specifically, CQII denied e7,3 since the loss of network N3 without X7 increased
with only 4% which was less than the required significance threshold of 5%. The losses of the networks N16

and N18 stayed roughly the same when X22 resp. X20 were not included in the dataset. Surprisingly, e22,11
and e3,13 were denied because the network’s loss decreased when X22 resp. X3 were not included in the
dataset. We suspect that the losses did not increase significantly because of the fact that the time series
are non-stationary and therefore easier to predict. However, applying CQII still increased the F1’-score of
TCDF with 23%.

5.5 Experiment 3: Non-linear Simulated Financial Time Series

Some existing causal discovery methods, including the ones based on linear regression, assume that the causal
relationships in a dataset are linear. This means that it is required that a time series Xj can be predicted
by calculating:

Xj = b0 + b1Xi + ...+ bkXk + ✏ (13)

where b0 is a constant, b1, ..., bk are linear regression coe�cients and ✏ is an error term [Geladi et al., 1999].
Thus, those methods cannot be used to reveal nonlinear causality, which inevitably hinders wide ap-

plications of the model in which non-linearity may occur [Hu and Liang, 2014]. Since we use a non-linear

39

activation function in our AD-DSTCN architecture, our framework should in theory be able to discover non-
linear causal relationships. We evaluate this by applying TCDF to data with non-linear causal relationships.

5.5.1 Data

We transform the financial datasets of [Kleinberg, 2013], described in section 5.3.1, to model non-linear rela-
tionships. This can be done by applying a non-linear function to each time seriesXi 2 X [Geladi et al., 1999].
Therefore, we replace each time series Xi 2 X by multiplying Xi with itself. More precisely:

8Xi 2 X, 8Xt
i 2 Xi, X

t0

i = (Xt
i)

2 (14)

5.5.2 Results and Discussion

The results of TCDF when applied to the non-stationary financial dataset corresponding to Structure 1 and
Structure 2 are shown in Table 8. The run times (including the comparison with the ground truth) varied
between 14 and 28 minutes, with a mean run time of 21 minutes.

It can be seen that the accuracy of TCDF dropped vastly when applied to the non-linear financial time
series compared to the results of TCDF applied to the original, non-linear, data. The F1’-scores from the
non-linear dataset vary between 0.05 and 0.20, compared to 0.59-0.86 for the non-linear time series. Although
our precision also decreased compared to the linear case, the F1’-score mainly decreased due to the decreased
Recall, meaning that TCDF only discovered a fraction of all causal relationships in the non-linear dataset.
From these poor results, we can conclude that TCDF is better at discovering linear causal relationships than
non-linear ones. This suggests that although we apply non-linear activation functions in the AD-DSTCNs,
the convolutional (and therefore linear) architecture of the networks dominates. Our results correspond with
the findings of [Borovykh et al., 2017] that created a convolutional architecture for time series prediction
and concluded that the error of a convolutional network applied to data with non-linear dependencies is
higher than the error when the network is applied to linear data. We think it is worthwhile to test TCDF
with other non-linear activation functions in the AD-DSTCN architecture, which might increase accuracy.

Structure 1 L = 0 L = 1 L = 2 L = 3
Precision 0.33 0.23 0.25 0.16
Recall 0.14 0.15 0.14 0.19

F1’-score 0.20 0.18 0.18 0.17

Structure 2 L = 0 L = 1 L = 2 L = 3
Precision 0.25 0.50 0.08 0.50
Recall 0.03 0.07 0.05 0.09

F1’-score 0.05 0.13 0.06 0.16

Table 8: Evaluation results of TCDF applied to a non-linear dataset derived from the financial dataset of
Structure 1 (left) and Structure 2 (right), with a varying number of hidden layers L. Both structures are
learnt with 2000 training epochs, learning rate � = 0.01, kernel size K = 4 and dilation coe�cient c = 4.
The highest F1’-scores are highlighted in bold.

The delay discovery results from TCDF applied to the non-linear financial time series are shown in Table
9. It can be seen that the mean distance from the learnt delay to the ground truth (relative to the receptive
field) is fairly low, meaning that TCDF still discovers delays that are close to the ground truths. However, the
percentages of delays that are discovered correctly are a bit lower than the percentages when the algorithm
is applied to the linear datasets. However, since the number of True Positives from the TCDF applied to
non-linear data is much lower than the number of True Positives from the linear datasets, this comparison
is slightly biased.

Structure 1 L = 0 L = 1 L = 2 L = 3
% correct 67% 100% 0% 50%

µ✏ 0.50 - 0.07 0.05

Structure 2 L = 0 L = 1 L = 2 L = 3
% correct 100% 50% 0% 0%

µ✏ - 0.31 0.13 0.02

Table 9: Delay evaluation results of TCDF to non-linear financial data for Structure 1 (left) and Structure 2
(right), where the first row shows the percentage of delays of the True Positives that were learnt correctly,
and µ✏ denotes the mean distance of the incorrectly learnt delays to the ground truth, relative to the receptive
field.

40

Table 10 compares the results of TCDF (L = 0) with the results of three existing methods applied to
the non-linear datasets. It can be seen that PCMCI did not discover any correct causal relationship in both
structures and its F1-scores therefore equal 0. We suspect that the poor results are caused by the fact that we
applied the linear ‘ParCorr’ correlation test in PCMCI, which is designed to only capture linear dependence.
The author’s GPACE non-linear dependence test will probably give better results (although it assumes that
the time series are “su�ciently smooth functions” [Runge et al., 2017]). However, this implementation scales
⇠ T 3, making it impractical for datasets like ours with a relatively high number of time steps.

The delay discovery results of tsFCI show that the method is still conservative, but discovers less True
Positives and more False Positives in the non-linear data than in the linear datasets. However, the discovered
delays corresponding to its few True Positives are all correct. Lastly, TiMINo discovered many False Positives,
which is in line with the results of Experiment 1 and 2. However, compared to the linear case, the number of
True Positives has decreased from 18 to 7 for Structure 1 and from 34 to 21 for Structure 2. We suspect that
this is mainly due to the linear fitting method of this TiMINo version. However, it is surprising that TiMINo
still discovers some correct causal relationships, despite the fact that we violated the linearity assumption of
this TiMINo version. The author also presented a non-linear variant of TiMINo, which should give better
results, but this method was not fully implemented [Peters et al., 2013].

From this experiment we can conclude that all methods give poor results when applied to non-linear
financial time series. However, TCDF scores best in terms of F1-score compared to the other methods
when applied to Structure 1. For Structure 2, TiMINo scores best in terms of F1-score, closely followed by
tsFCI and TCDF. But, TiMINo will not be applicable in practical settings due to the high number of False
Positives.

Structure 1 TP(/TP’) FP(/FP’) FN F1(/F1’) Correct delays
TCDF (L = 0) 2/3 7/6 18 0.14/0.20 67%

PCMCI 0 6 20 0.00 -
tsFCI 1 7 19 0.07 100%

TiMINo 7 270 13 0.05 -

Structure 2 TP(/TP’) FP(/FP’) FN F1(/F1’) Correct delays
TCDF (L = 0) 1/1 3/3 39 0.05/0.05 100%

PCMCI 0 11 40 0.00 -
tsFCI 2 10 38 0.08 100%

TiMINo 21 267 19 0.13 -

Table 10: Results of our TCDF (L = 0) compared with PCMCI, tsFCI and TiMINo applied to a non-linear
dataset derived from the financial dataset of Structure 1 (top) and Structure 2 (bottom). The highest
F1-scores are highlighted in bold.

Lastly, we evaluate the e↵ectiveness of CQII for these non-linear datasets. When we would not have
applied CQII in TCDF (L = 0) to Structure 1, the number of False Positives would have been 56 and the
number of True Positives would have been 10. This means that although CQII correctly labeled 50 causal
relationships as not being causal, it also incorrectly labeled 7 causal relationships as being not causal. The
F1’-score when CQII was not applied would have been 0.23 (instead of 0.20 when CQII is applied), meaning
that applying CQII to the non-linear dataset of Structure 1 led to a 13% decrease in F1’-score.

For Structure 2, not applying CQII would result in 6 True Positives and 42 False Positives. Thus, for
this structure CQII also incorrectly labeled some true causal relationships as being not causal, leading to an
F1’-score of 0.14. Therefore, applying CQII decreased the F1’-score with 66% to 0.05. In most cases where
CQII incorrectly denied a true causal relationship, the loss of the network did increase when the intervened
distribution was used, but the increase was lower than our threshold of 5%. Therefore, it might be fruitful
to lower this significance threshold when TCDF is applied to non-linear data.

41

5.6 Experiment 4: Hidden Confounders

TCDF should be able to discover the existence of a hidden confounder between two time series Xi and Xj

when the confounder has equal delays to its e↵ects Xi and Xj . If the confounder has unequal delays to its
e↵ects, we expect that TCDF will discover an incorrect causal relationship between Xi and Xj . To evaluate
if TCDF deals with hidden confounders as expected, we apply TCDF to datasets in which there exists a
hidden confounder.

5.6.1 Data

We apply TCDF to the simulated financial datasets of [Kleinberg, 2013] in which we hide a confounder by
replacing all the confounder’s values by 0. We test TCDF on confounders with equal delays by hiding X16

in the dataset of Structure 1 and X7 in the dataset of Structure 2. Furthermore, we hide X0 in Structure 2
to evaluate how TCDF deals with a hidden confounder with unequal delays to its e↵ects. Lastly, we hide
in Structure 2 X8, which is a confounder that has equal delays to X23 and X4, and unequal delays to X5

and X4, and to X5 and X23. We apply TCDF with L = 1 since this architecture was most accurate for
Structure 2 in Experiment 1 and also well-performing for Structure 1.

5.6.2 Results and Discussion

The results of TCDF applied to a simulated financial dataset in which a confounder is hidden, are shown
in Table 11. We denote by ! a causal relationship that is discovered by TCDF based on the method to
discover hidden confounders as described in Section 4.2.3. The run times varied between 25 and 32 minutes,
with a mean run time of 28 minutes.

It can be seen in Table 11 that TCDF discovered all hidden confounders with equal delays to the con-
founder’s e↵ects, which corresponds with our expectations. In two out of three cases, TCDF performed as
expected by incorrectly learning a causal relationship between the e↵ects of a hidden confounder with un-
equal delay. Interestingly, TCDF did not label X23 as a true cause of X15, because the attention mechanism
did not discover X23 as potential cause of X15.

Hidden
Confounder

E↵ects
Equal
Delays

Confounder
Discovered

Learnt Causal
Relationship(s)

Structure 1 X16 X8, X5 3 3 X16 ! X8, X16 ! X5

Structure 2 X7 X8, X3 3 3 X7 ! X8, X7 ! X3

Structure 2 X0 X5, X6 7 7 X5 ! X6

Structure 2 X8 X23, X4 3 3 X8 ! X23, X8 ! X4

Structure 2 X8 X15, X4 7 7 X4 ! X15

Structure 2 X8 X15, X23 7 7 -

Table 11: Results of our TCDF applied to a simulated financial dataset (Structure 1 or Structure 2) in which
a confounder is hidden. ‘Equal Delays’ denotes whether the delays from the confounder to the confounder’s
e↵ects are the same. Grey causal relationships denote that the discovered relationship was not causal
according to the ground truth.

We also applied PCMCI, tsFCI and TiMINo to the datasets with a hidden confounder. The results
are shown in Table 12. Whereas TCDF discovered 2 incorrect causal relationships because of a hidden
confounder, PCMCI did not discover any incorrect causal relationship. However, in contrast to TCDF,
PCMCI does not give any indication that two particular time series are correlated, or that there might be a
hidden confounder between these time series.

tsFCI should handle hidden confounders by including a special edge type (Xi $ Xj) that shows that
Xi is not a cause of Xj and that Xj is not a cause of Xi. However, the results of tsFCI in our experiment
are not in accordance with the theoretical claims. tsFCI discovered an incorrect causal relationship from
X5 to X8 when X16 in Structure 1 was hidden, discovered the incorrect causal relationship from X8 to X3

when X7 in Structure 2 was hidden, and discovered the incorrect relationship from X5 to X6 when X0 was

42

Incorrect Causal
Relationships

Discovered
Hidden Confounders

TCDF (L = 0) 2 3
PCMCI 0 0
tsFCI 3 0

TiMINo 6 0

Table 12: Results of the performance of TCDF compared with PCMCI, tsFCI and TiMINo. The middle
column denotes how many incorrect causal relationships were discovered between the e↵ects of the hidden
confounder. The column on the right denotes how the number of hidden confounders that was discovered.
The best results are highlighted in bold.

hidden. Furthermore, it did not find any correlation (i.e. no $ edge and therefore no hidden confounder)
between X15, X23 and X4 when X8 in Structure 2 was hidden.

Lastly, TiMINo discovered in all cases an indirect causal relationship. When the hidden confounders
had equal delays to its e↵ects, TiMINo found an instantaneous causal relationship from one e↵ect to the
other (but not vice versa). In the case of a hidden confounder with unequal delays, it discovered a causal
relationship with a delay that was equal to the di↵erence in delay between the two confounder’s e↵ects.

From this experiment, we can conclude that TCDF performs as expected by successfully discovering the
presence of a hidden confounder when the delays to the confounder’s e↵ects are equal and by incorrectly
discovering a causal relationship between the confounder’s e↵ects when the delays to the e↵ects are unequal.
Compared to other approaches, PCMCI performs better in terms of not discovering any incorrect causal
relationships between the confounder’s e↵ects. However, only TCDF is able to detect the presence of hidden
confounders.

5.7 Experiment 5: Prices of Dairy

Besides simulated data which is created in a controlled setting, we evaluate the accuracy of TCDF when
applied to actual data. Since the ground truth causal relationships that might exist in the data are unknown,
we evaluate the results by checking if the constructed temporal causal graph is in accordance with domain
knowledge.

5.7.1 Data

We consider the actual Dutch monthly prices of milk, butter and cheese from the period January 2000 - June
201810, plotted in Figure 16. In this experiment, our framework discovers the causal relationships between
these prices and their delays and includes this in a temporal causal graph. Although there is no ground truth
of this dataset available, we can evaluate the results based on domain knowledge and compare our results
with the graphs learnt by existing approaches.

We expect that the milk price causally influences both the price of butter and the price of cheese. The
data might also incorrectly suggest that butter is a cause of cheese, due to the lower delay from milk to
butter than from milk to cheese, as decribed in Section 2.3. However, since the prices are monthly, we can
imagine that the time steps are too coarse to see this reflected in our dataset.

Besides evaluating the discovered causal relationships and their delays, we also analyse what potential
causes were discovered, and which of these turned out to be true causes. This will give an indication on how
our CQII validation step performs. For this analysis, in our learnt graphs GL we draw a black edge for each
true causal relationship, and a grey edge for each potential causal relationship that turned out to be no true
causal relationship based on CQII.

We again use kernel size K = 4 and dilation coe�cient c = 4. Since the dataset is rather small, we only
evaluate AD-DSTCNs with L = 0 and L = 1.

10
Source: Agrimatie - Wageningen Economic Research, prices for ‘Melk, gemiddeld vet’, ‘Boter’ and ‘Boerenkaas’ -

https://www.agrimatie.nl/Prijzen.aspx

https://www.agrimatie.nl/Prijzen.aspx

43

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

ja
n-
00

ju
l-0
0

ja
n-
01

ju
l-0
1

ja
n-
02

ju
l-0
2

ja
n-
03

ju
l-0
3

ja
n-
04

ju
l-0
4

ja
n-
05

ju
l-0
5

ja
n-
06

ju
l-0
6

ja
n-
07

ju
l-0
7

ja
n-
08

ju
l-0
8

ja
n-
09

ju
l-0
9

ja
n-
10

ju
l-1
0

ja
n-
11

ju
l-1
1

ja
n-
12

ju
l-1
2

ja
n-
13

ju
l-1
3

ja
n-
14

ju
l-1
4

ja
n-
15

ju
l-1
5

ja
n-
16

ju
l-1
6

ja
n-
17

ju
l-1
7

ja
n-
18

Butter Cheese Milk

Figure 16: Dutch prices of milk (§/10kg), butter (§/1kg) and cheese (§/1kg).

5.7.2 Results

Both the TCDF with L = 0 and with L = 1 had a run time of 1.5 minute. The constructed temporal causal
graphs by TCDF, PCMCI, tsFCI and TiMINo are shown in Figure 17. Note that we have excluded our
causal strength scores since every time series has exactly one cause, such that all scores are equal to 1. The
next paragraphs will discuss the results in more detail.

Figures 17a and 17b show that our framework with both L = 0 and L = 1 discovers that the price of milk
causes both the price of butter and the price of cheese, which corresponds with our domain knowledge. In
contrast, PCMCI, tsFCI and TiMINo did not discover that milk is a confounder and find causal relationships
that are not in line with our domain knowledge.

In the constructed graph with L = 0 (Fig. 17a), the delay between milk and butter is 0 months, meaning
that a change in the price of milk instantaneously (i.e. within 1 time step) influences the price of butter.
Since butter is produced in less than a month (1 time step), this seems reasonable. The delay between milk
and cheese is found to be 2 months with L = 0. Because of the long storage period of cheese, it seems
reasonable that the delay from milk to cheese is higher than the delay from milk to butter. Lastly, our
framework with L = 0 found that the price of milk causally influences itself with a delay of 1. The network
probably attended most to the price of milk at time t to predict the next price at t+ 1.

TCDF with L = 1 discovered the same causal relationships as with L = 0 (Fig. 17b), although the
discovered delays are di↵erent due to a greater receptive field. The delay from milk to itself is discovered to
be 8 months. This could denote a recurring pattern of 8 months, although we think a delay of 12 months
would have been more logical because of a yearly cycle. The delay from milk to cheese was found to be 8
months. Since the ripening process of cheese varies from a few weeks to over a year, an average delay of 8
months might be correct, although ‘Belegen’ is considered as the average cheese type with a ripening time of
5-6 months [Roseboom et al., 2006]. We are therefore not sure if the discovered delay is correct (according
to the data).

Most interesting however is the grey edge in Figure 17b, denoting that butter was found to be a potential
cause of cheese, but not a true cause of cheese based on the CQII validation method. This is in accordance
with our hypothesis that the data might suggest that butter is a cause of cheese, although this is not the
case in reality. Both PCMCI and TiMINo included this incorrect causal relationship in their graph.

B C

M

0 2

1

(a) GL by TCDF
(L = 0)

B C

M

2

0 8

8

(b) GL by TCDF
(L = 1)

B C

M

1

1 1

1

1

1

(c) GL by PCMCI

B C

M

1

1 1

1

(d) GL by tsFCI

B C

M

(e) GL by TiMINo

Figure 17: Temporal causal graphs constructed by multiple temporal causal discovery methods, showing the
causal relationships between the Dutch prices of milk (M), butter (B) and cheese (C).

44

5.7.3 Discussion

In contrast to the good results of TCDF applied to the actual dairy prices, the learnt temporal causal graphs
of the existing approaches do not correspond with the domain knowledge. These poor results are probably
caused by a violation of assumptions that the existing methods make on the data. The authors of PCMCI
and TiMINo state that they assume stationarity, and we expect that tsFCI also makes this assumption
because of its poor results. Figure 16 suggests that not all time series in this dataset are stationary. To
formally check this, we use the Augmented Dickey-Fuller test [Dickey and Fuller, 1979] which tests the null
hypothesis that a time series is non-stationary. In the test settings, we set the maximum lag to 3 (equivalent
to the maximum delay used in TCDF(L = 0) and in the existing methods). We find that in a 1% confidence
interval, both the price of butter and cheese are non-stationary, which probably explains the poor results of
the existing methods. To the contrary, in this experiment and in experiment 2, our TCDF has shown to be
able to correctly handle non-stationary data.

45

6 Interpretation of Discovered Causality

Since a causal discovery method based on observational data cannot intervene in a system to check if manip-
ulating the cause changes the e↵ect, causal discovery methods are principally used to discover and investigate
hypotheses. Therefore, a constructed temporal causal graph by TCDF should be interpreted as a hypothetical
graph, learnt from observational time series data, which can subsequently be confirmed by a domain expert
or experimentation. However, whereas most researchers are aware that real-life experiments are considered
the “gold standard” for causal inference, manipulation of the independent variable of interest will often be
unfeasible, unethical, or simply impossible [Rohrer, 2018]. Thus, causal discovery from observational data is
often the better (or only) option.

However, drawing valid causal inferences on the basis of observational data always depends on assump-
tions that should be more or less plausible, and need to be accompanied by critical assessments. The following
paragraphs will give an overview of well-known issues facing causal discovery that one should be aware of
when interpreting results of any causal discovery method, including TCDF.

The first pitfall, called imperfect regularities, is that many causes are not always followed by their ef-
fects [Hitchcock, 2018]. TCDF, and most other causal discovery methods, aim to learn a type-level model
describing causal relationships that hold in general. But the fact that a general causal relationship exists,
does not necessarily mean that the e↵ect occurs in all cases. For example, a bad diet is a cause of diabetes,
even though some people that eat unhealthy will not develop diabetes, and some people that eat healthy
might still develop diabetes. Type-level discoveries can therefore not directly be applied to token-level events
that consider a specific individual.

A di�culty for many causal discovery methods is irrelevance. If a condition in the analysed dataset is often
followed by some outcome, a causal discovery method might conclude that the condition and the outcome
are causally related. However, the outcome might be completely irrelevant to this event. [Hitchcock, 2018]
gives the example that hexed salt always dissolves when placed in water. Hexing does not cause the salt to
dissolve (since salt would also have been dissolved if it was not hexed), but a causal discovery method can
have di�culties with identifying that hexing is not a cause of dissolving salt. TCDF however tackles this
problem by applying CQII. When an intervened distribution for the hexing variable is used (and assuming
that both the positive and negative value of hexing are in the dataset), our framework will learn that hexing
is no true cause of dissolving salt and that only water is, since the loss of the neural network will not increase.

The irrelevance issue relates to the problem of sample selection bias, that arises when the population repre-
senting the dataset is not representative of the population intended to be analyzed [Koller and Friedman, 2009].
It is important to critically assess which variables should be included in the dataset and to verify that the val-
ues of these variables are representative for the analysed population. If the dataset is not su�cient, new data
collection approaches are needed such as repeated measures or collecting di↵erent samples [Rohrer, 2018].
In TCDF, this can be easily implemented by applying batch training, such that the neural networks learn
to make correlations based on multiple samples.

Another di�culty important to take into account is the problem of unmeasured variables. TCDF can
deal with unmeasured confounders (if the delays from the confounder to its e↵ects are equal), but causal
discovery methods will not correctly deal with unmeasured variables that are part of a causal chain of events.
For example, the price of milk will influence the price of cream, which in turn influences the price of butter.
However, if the price of cream is not measured, TCDF will conclude that the price of milk influences the
price of butter. This result is correct, but the discovered direct causal relationship is in reality indirect.

Lastly, we discuss the occurrence of spurious correlations, where the values of two unrelated variables
are coincidentally statistically correlated. For example, the number of lawyers in Amsterdam might be
statistically correlated with the per capita consumption of cheese in Brazil with a delay of 2 months, according
to a dataset. A causal discovery method will probably label this as a causal relationship if there are no
counterexamples available. Only based on domain knowledge one can conclude that the discovered causal
relationship is incorrect.

Thus, the practice of discovering causal relationships from observational data depends crucially on aware-
ness of these aforementioned pitfalls. It might require careful planning before data collection begins to avoid
sample selection bias. Furthermore, one should be critical when interpreting the causal discoveries and, if
possible, do a real-life experiment to verify the findings.

46

7 Conclusions and Future Work

In this report, we introduced the Temporal Causal Discovery Framework (TCDF), a deep learning approach
for causal discovery and structure learning from time series data. TCDF consists of multiple attention-
based convolutional neural networks which we call Attention-based Dilated Depthwise Separable Temporal
Convolutional Networks (AD-DSTCNs). These networks have an architecture that is optimized to predict a
time series based on a multivariate temporal dataset. While an AD-DSTCN performs supervised prediction
of a time series, it trains its attention-mechanism and internal parameters with backpropagation. Our
experiments indicate that the implemented attention mechanism in an AD-DSTCN is accurate in discovering
time series that are correlated with the predicted time series. Since correlation does not imply causation,
TCDF subsequently applies a novel causal validation step to e↵ectively distinguish causality from correlation.
Our framework also interprets the internal parameters of each AD-DSTCN to discover the time delay between
a cause and its e↵ect. TCDF summarizes its findings by constructing a temporal causal graph that shows
the discovered causal relationships between time series and their corresponding time delays. Our framework
improves readability by implementing a graph reduction step that removes indirect causal relationships.

In an experiment based on actual dairy prices, we showed the excellent performance of TCDF. Compared
to three existing temporal causal discovery methods (PCMCI, tsFCI and TiMINo), TCDF was the only
method that successfully discovered that milk is a common cause of butter and cheese. The poor results of
the existing methods can be explained by the fact that these statistical methods make idealized assumptions
on a dataset that rarely hold in practice, such as acyclicity and non-stationarity.

Moreover, we evaluated TCDF on two simulated financial time series datasets with complex underlying
causal structures that include confounders, feedback loops and self-causation. The learnt graphs by TCDF
were close to the ground truth, with F1-scores that varied from 0.86 to 0.59. TCDF outperformed tsFCI
and TiMINo in discovering causal relations, and had comparable or better accuracy than PCMCI for both
stationary and non-stationary data. Our experiments also showed that TCDF discovered 82% to 100% of
the delays correctly, which was comparable with the delay discovery results of existing methods. However,
we found that the accuracy of TCDF decreases drastically for non-linear data. Although TCDF still per-
formed comparable or better than existing methods when applied to non-linear financial data, we think it is
worthwhile to test other activation functions in the AD-DSTCN architecture which might increase accuracy.

Lastly, TCDF includes a novel algorithm to detect the presence of hidden confounders. Our experiments
show that, in contrast to existing temporal causal discovery methods, TCDF can successfully discover the
presence of a hidden confounder when the time delays to the confounder’s e↵ects are equal.

A future work will be to use TCDF as a feature selector in order to compare the prediction results from a
network that uses all observed variables, with results from a network that uses only causal variables. The
latter has the benefit that the model is less complex because fewer variables are used, and that the learnt
relationships by the model should be more robust. A future study has to show if the prediction accuracy
will improve when all non-causal variables are removed. Our AD-DSTCN architecture already supports
the prediction of time series relying only on causal variables, simply by fixing the attention scores of all
non-causal variables to zero.

Secondly, we want to do an in-depth study of the time-complexity of our framework. Since many existing
approaches do not report any complexity boundaries, it is useful to compare all approaches in terms of
time-complexity or run time. We expect that TCDF will have a higher time-complexity than other methods
because of our validation step by which each network may need to be trained multiple times. It is therefore
worthwhile to study other validation approaches for TCDF that might have a lower time complexity.

In addition, our proposed framework summarizes the dependence structure of the dataset by learning
a static temporal causal graph. In practice, causality could vary over time, because of local trends or
seasonality. For future work, our structure learning method can be extended to flexibly accommodate these
variations. A promising opportunity for this is the growing field of multilayer networks which enable to
study causal networks on multiple interdependent levels in order to represent causal associations on di↵erent
aggregation levels [Boccaletti et al., 2014]. Another possibility may be to implement a state-space model
which can deal with time-varying influences [Brodersen et al., 2015]. We also see opportunities to learn
these variations by interpreting the weight updates of a neural network that is being trained. Some large
variations in weight updates could point to local trends or seasonality.

47

References

[Ancona et al., 2004] Ancona, N., Marinazzo, D., and Stramaglia, S. (2004). Radial basis function approach
to nonlinear granger causality of time series. Physical Review E, 70(5):056221.

[Bahadori and Liu, 2013] Bahadori, M. T. and Liu, Y. (2013). An examination of practical granger causality
inference. In Proceedings of the 2013 SIAM International Conference on Data Mining, pages 467–475.
SIAM.

[Bai et al., 2018] Bai, S., Kolter, J. Z., and Koltun, V. (2018). Convolutional sequence modeling revisited.
Workshop paper at International Conference on Learning Representations.

[Bengio et al., 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is di�cult. IEEE transactions on neural networks, 5(2):157–166.

[Binkowski et al., 2017] Binkowski, M., Marti, G., and Donnat, P. (2017). Autoregressive convolutional
neural networks for asynchronous time series. arXiv preprint arXiv:1703.04122.

[Boccaletti et al., 2014] Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardenes, J., Ro-
mance, M., Sendina-Nadal, I., Wang, Z., and Zanin, M. (2014). The structure and dynamics of multilayer
networks. Physics Reports, 544(1):1–122.

[Borovykh et al., 2017] Borovykh, A., Bohte, S., and Oosterlee, C. W. (2017). Conditional time series
forecasting with convolutional neural networks. In Lecture Notes in Computer Science/Lecture Notes in
Artificial Intelligence, pages 729–730.

[Brodersen et al., 2015] Brodersen, K. H., Gallusser, F., Koehler, J., Remy, N., Scott, S. L., et al. (2015).
Inferring causal impact using bayesian structural time-series models. The Annals of Applied Statistics,
9(1):247–274.

[Budhathoki and Vreeken, 2018] Budhathoki, K. and Vreeken, J. (2018). Causal inference on event se-
quences. In Proceedings of the 2018 SIAM International Conference on Data Mining, pages 55–63. Society
for Industrial and Applied Mathematics.

[Chollet, 2017] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 00, pages 1800–1807.

[Chu and Glymour, 2008] Chu, T. and Glymour, C. (2008). Search for additive nonlinear time series causal
models. Journal of Machine Learning Research, 9(May):967–991.

[Datta et al., 2016] Datta, A., Sen, S., and Zick, Y. (2016). Algorithmic transparency via quantitative input
influence: Theory and experiments with learning systems. In Security and Privacy (SP), 2016 IEEE
Symposium on, pages 598–617. IEEE.

[Dickey and Fuller, 1979] Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autore-
gressive time series with a unit root. Journal of the American statistical association, 74(366a):427–431.

[Drton and Maathuis, 2017] Drton, M. and Maathuis, M. H. (2017). Structure learning in graphical model-
ing. Annual Review of Statistics and Its Application, 4:365–393.

[Eichler, 2012] Eichler, M. (2012). Causal inference in time series analysis. Causality: Statistical perspectives
and applications, pages 327–354.

[Entner and Hoyer, 2010] Entner, D. and Hoyer, P. O. (2010). On causal discovery from time series data
using fci. Probabilistic graphical models, pages 121–128.

[Fama and French, 1992] Fama, E. F. and French, K. R. (1992). The cross-section of expected stock returns.
Journal of Finance, 47(2):427–465.

48

[Gehring et al., 2017] Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convo-
lutional sequence to sequence learning. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 1243–1252. PMLR.

[Geladi et al., 1999] Geladi, P., Hadjiiski, L., and Hopke, P. (1999). Multiple regression for environmental
data: nonlinearities and prediction bias. Chemometrics and Intelligent Laboratory Systems, 47(2):165–173.

[Gilpin et al., 2018] Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., and Kagal, L. (2018).
Explaining explanations: An approach to evaluating interpretability of machine learning. arXiv preprint
arXiv:1806.00069.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding the di�culty of training deep
feedforward neural networks. In Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics, pages 249–256.

[Goudet et al., 2018] Goudet, O., Kalainathan, D., Caillou, P., Guyon, I., Lopez-Paz, D., and Sebag, M.
(2018). Causal generative neural networks. arXiv preprint arXiv:1711.08936v2.

[Granger, 1969] Granger, C. W. (1969). Investigating causal relations by econometric models and cross-
spectral methods. Econometrica: Journal of the Econometric Society, pages 424–438.

[Guo et al., 2018] Guo, T., Lin, T., and Lu, Y. (2018). An Interpretable LSTM Neural Network for Autore-
gressive Exogenous Model. Workshop paper at International Conference on Learning Representations.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1026–1034.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778.

[Hitchcock, 2018] Hitchcock, C. (2018). Probabilistic causation. In Zalta, E. N., editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2018 edition.

[Hu and Liang, 2014] Hu, M. and Liang, H. (2014). A copula approach to assessing granger causality.
NeuroImage, 100:125–134.

[Huang and Kleinberg, 2015] Huang, Y. and Kleinberg, S. (2015). Fast and accurate causal inference from
time series data. In FLAIRS Conference, pages 49–54.

[Hyvärinen et al., 2008] Hyvärinen, A., Shimizu, S., and Hoyer, P. O. (2008). Causal modelling combining
instantaneous and lagged e↵ects: an identifiable model based on non-gaussianity. In Proceedings of the
25th International Conference on Machine Learning, pages 424–431. ACM.

[Jiao et al., 2013] Jiao, J., Permuter, H. H., Zhao, L., Kim, Y.-H., and Weissman, T. (2013). Universal
estimation of directed information. IEEE Transactions on Information Theory, 59(10):6220–6242.

[Kalainathan et al., 2018] Kalainathan, D., Goudet, O., Guyon, I., Lopez-Paz, D., and Sebag, M. (2018).
Sam: Structural agnostic model, causal discovery and penalized adversarial learning. arXiv preprint
arXiv:1803.04929.

[Kalisch and Bühlmann, 2014] Kalisch, M. and Bühlmann, P. (2014). Causal structure learning and infer-
ence: a selective review. Quality Technology & Quantitative Management, 11(1):3–21.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
International Conference on Learning Representations, 2015.

[Kleinberg, 2013] Kleinberg, S. (2013). Causality, probability, and time. Cambridge University Press.

[Kleinberg, 2015] Kleinberg, S. (2015). Why: A Guide to Finding and Using Causes. O’Reilly.

49

[Koller and Friedman, 2009] Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles
and techniques. MIT press.

[Liu and Aviyente, 2012] Liu, Y. and Aviyente, S. (2012). The relationship between transfer entropy and
directed information. In Statistical Signal Processing Workshop (SSP), 2012 IEEE, pages 73–76. IEEE.

[Louizos et al., 2017] Louizos, C., Shalit, U., Mooij, J. M., Sontag, D., Zemel, R., and Welling, M. (2017).
Causal e↵ect inference with deep latent-variable models. In Advances in Neural Information Processing
Systems, pages 6446–6456.

[Luo et al., 2013] Luo, Q., Ge, T., Grabenhorst, F., Feng, J., and Rolls, E. T. (2013). Attention-dependent
modulation of cortical taste circuits revealed by granger causality with signal-dependent noise. PLoS
computational biology, 9(10):e1003265.

[Malinsky and Danks, 2018] Malinsky, D. and Danks, D. (2018). Causal discovery algorithms: A practical
guide. Philosophy Compass, 13(1):e12470.

[Marinazzo et al., 2008] Marinazzo, D., Pellicoro, M., and Stramaglia, S. (2008). Kernel method for nonlinear
granger causality. Physical review letters, 100(14):144103.

[Martins and Astudillo, 2016] Martins, A. and Astudillo, R. (2016). From softmax to sparsemax: A sparse
model of attention and multi-label classification. In International Conference on Machine Learning, pages
1614–1623.

[Müller et al., 2012] Müller, B., Reinhardt, J., and Strickland, M. T. (2012). Neural networks: an introduc-
tion. Springer Science & Business Media.

[Nauta et al., 2018] Nauta, M., Bucur, D., and Stoelinga, M. (2018). LIFT: Learning fault trees from
observational data. In Quantitative Evaluation of Systems. 15th International Conference, QEST 2018,
Beijing, China, September 4-7, 2018, Proceedings. Springer International Publishing.

[Papana et al., 2016] Papana, A., Kyrtsou, C., Kugiumtzis, D., and Diks, C. (2016). Detecting causality in
non-stationary time series using partial symbolic transfer entropy: evidence in financial data. Computa-
tional Economics, 47(3):341–365.

[Papana et al., 2014] Papana, A., Kyrtsou, K., Kugiumtzis, D., Diks, C., et al. (2014). Identifying causal
relationships in case of non-stationary time series. Technical report, Universiteit van Amsterdam, Center
for Nonlinear Dynamics in Economics and Finance.

[Peters et al., 2013] Peters, J., Janzing, D., and Schölkopf, B. (2013). Causal inference on time series using
restricted structural equation models. In Advances in Neural Information Processing Systems, pages 154–
162.

[Peters et al., 2017] Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of causal inference: founda-
tions and learning algorithms. MIT Press.

[Quinn et al., 2011] Quinn, C. J., Coleman, T. P., Kiyavash, N., and Hatsopoulos, N. G. (2011). Estimating
the directed information to infer causal relationships in ensemble neural spike train recordings. Journal
of computational neuroscience, 30(1):17–44.

[Rohrer, 2018] Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal
models for observational data. Advances in Methods and Practices in Psychological Science, 1(1):27–42.

[Roseboom et al., 2006] Roseboom, J., Gijsbers, G., and van der Zee, F. (2006). Kwaliteit als toekomst?
Een verkenning van de Boerenkaasketen.

[Runge et al., 2017] Runge, J., Sejdinovic, D., and Flaxman, S. (2017). Detecting causal associations in
large nonlinear time series datasets. arXiv preprint arXiv:1702.07007.

50

[Scheines et al., 1998] Scheines, R., Spirtes, P., Glymour, C., Meek, C., and Richardson, T. (1998). The
tetrad project: Constraint based aids to causal model specification. Multivariate Behavioral Research,
33(1):65–117.

[Shen et al., 2018] Shen, T., Zhou, T., Long, G., Jiang, J., Wang, S., and Zhang, C. (2018). Reinforced
self-attention network: a hybrid of hard and soft attention for sequence modeling. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages 4345–4352.
International Joint Conferences on Artificial Intelligence Organization.

[Singh et al., 2018] Singh, K., Gupta, G., Tewari, V., and Shro↵, G. (2018). Comparative benchmarking of
causal discovery algorithms. In Proceedings of the ACM India Joint International Conference on Data
Science and Management of Data, CoDS-COMAD ’18, pages 46–56, New York, NY, USA. ACM.

[Spirtes, 2010] Spirtes, P. (2010). Introduction to causal inference. Journal of Machine Learning Research,
11(May):1643–1662.

[Spirtes et al., 2000] Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, prediction, and search.
MIT press.

[Spirtes and Zhang, 2016] Spirtes, P. and Zhang, K. (2016). Causal discovery and inference: concepts and
recent methodological advances. In Applied Informatics, volume 3, page 3. Springer.

[Van Den Oord et al., 2016] Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves,
A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499.

[van den Oord et al., 2016] van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A.,
et al. (2016). Conditional image generation with pixelCNN decoders. In Advances in Neural Information
Processing Systems, pages 4790–4798.

[Walther et al., 2004] Walther, D., Rutishauser, U., Koch, C., and Perona, P. (2004). On the usefulness of
attention for object recognition. In Workshop on Attention and Performance in Computational Vision at
ECCV, pages 96–103.

[Woodward, 2005] Woodward, J. (2005). Making things happen: A theory of causal explanation. Oxford
university press.

[Yin et al., 2016] Yin, W., Schütze, H., Xiang, B., and Zhou, B. (2016). ABCNN: Attention-Based Convo-
lutional Neural Network for Modeling Sentence Pairs. Transactions of the Association for Computational
Linguistics, 4:259–272.

[Zhang et al., 2017] Zhang, K., Schölkopf, B., Spirtes, P., and Glymour, C. (2017). Learning causality and
causality-related learning: some recent progress. National Science Review.

LIFT: Learning Fault Trees from Observational

Data

Meike Nauta, Doina Bucur, and Mariëlle Stoelinga

University of Twente, Enschede, The Netherlands
{m.nauta, d.bucur, m.i.a.stoelinga}@utwente.nl

Abstract. Industries with safety-critical systems increasingly collect
data on events occurring at the level of system components, thus cap-
turing instances of system failure or malfunction. With data availability,
it becomes possible to automatically learn a model describing the fail-
ure modes of the system, i.e., how the states of individual components
combine to cause a system failure. We present LIFT, a machine learning
method for static fault trees directly out of observational datasets. The
fault trees model probabilistic causal chains of events ending in a global
system failure. Our method makes use of the Mantel-Haenszel statis-
tical test to narrow down possible causal relationships between events.
We evaluate LIFT with synthetic case studies, show how its performance
varies with the quality of the data, and discuss practical variants of LIFT.

1 Introduction

Fault tree (FT) analysis [1] is a widely applied method to analyse the safety
of high-tech systems, such as self-driving cars, drones and robots. FTs model
how system failures occur as a result of component failures: the leaves of the
tree model di↵erent failure modes, while the fault tree gates model how failure
modes propagate through the system and lead to system failures. A wide number
of metrics, such as the system reliability and availability, can then be computed
to evaluate whether a system meets its dependability and safety requirements.

A key bottleneck is the construction of the FT. This requires domain knowl-
edge, and the number of potential failure causes and contributing factors can be
overwhelming: age, system loads, usage patterns and environmental conditions
can all influence the failure mechanisms. It is thus appealing to learn FTs auto-
matically from data, to assist reliability engineers in tackling the complexity of
today’s systems. This paper is a first step in this direction: we learn static FTs
from observational records.

The fault-tree formalism. The nodes in an FT are either events or logical
gates. Fig. 1 shows an example FT and the graphical notation. A part of the
system is modelled by an intermediate event ; a special intermediate event is
the root node of the tree, called the top event or outcome, which models the
global system failure. A set of basic events, distinct from the intermediate events,
marks the most elementary faults in system components, may be annotated
with a probability of occurrence, and form the leaves of the FT. Intermediate

51

52

events form the inputs and the output of any gate, and are the output of any
basic event. The basic gates, AND and OR, denoted by the standard logic-gate
symbols, model their standard logic meaning, in terms of causal relationships
between the events in the input and the event in the output of any gate.

T

F G

C D

A B

E Intermediate event

Intermediate event

Top event

Basic event

Fig. 1: Example fault tree with annotations

Summary of contribution. We learn static FTs with Boolean event vari-
ables (where an event variable has value True or 1 if that fault occurs in the
system), n-ary AND/OR gates, and annotated with event failure probabilities.
The input to the algorithm consists of raw, untimed observational data over
the system under study, i.e., a dataset where each row is a single observation

over the entire system, and each column variable records the value of a system
event. All intermediate events to be included in the FT must be present in the
dataset, but not all of those events in the dataset may be needed in the FT. We
do not know what the basic events will be, nor which gates form the FT, nor
which intermediate events are attached to the gates. We know the top event:
the system failure of interest. Our main result is an algorithm that learns a sta-
tistically significant FT; we allow for a user-specified amount of noise, assumed
uniformly distributed in the data. We evaluate the algorithm on synthetic data:
given a “ground truth” FT, we synthesise a random dataset, apply the learning
algorithm, and then compare the machine-learnt FT to the ground truth.

An example dataset is shown in Fig. 2a, in compact form: each row is a count

(e.g., 20) of identical records, where each record is an untimed list of Boolean
observations of events (denoted A,B,C and T , with T the global system failure,
or outcome). The order of the records in a dataset is not significant.

A tree formalism commonly machine-learnt from such observational data is
the Binary Decision Tree (BDT), a practical tool for the description, classifica-
tion and generalisation of data [2]. The BDT learning algorithm appears to be a
natural starting point for the design of an FT learning algorithm; however, we
argue below why the BDT learning logic is unsatisfactory.

Detecting causality from data. The construction of a BDT is a greedy
algorithm: a series of local optimum decisions determines subsequent branching
nodes. Each decision uses a variable test condition (e.g., a classification error)
to find the best split in the data records [3]. For example, when creating a BDT

53

A B C T count
0 0 0 0 20
0 1 1 1 5
0 0 1 1 5
1 1 1 1 30
1 1 0 1 20
0 1 0 1 20

(a) Dataset

A

T = 1

1

B

T = 1

1

C

T = 1

1

T = 0

0

0

0

(b) Decision Tree

C

T = 1

1

B

T = 1

1

T = 0

0

0

(c) Causal Decision
Tree

T

B C

(d) Fault Tree

Fig. 2: An example showing that a BDT does not encode causal relationships.

for the dataset in Fig. 2a to classify variable T , a naive approach is to first split
the dataset on variable A, and obtain the BDT in Fig. 2b. However, decision
trees model correlations (which are symmetric) and not the causal relationships
(which are asymmetric) required for an FT. As a correlation between variables
does not imply a causation, the knowledge represented in a decision tree does
not provide root causes for faults, and thus cannot support decision making.

To overcome this problem, the Causal Decision Tree (CDT) [4] was recently
introduced. A CDT di↵ers from a BDT in that each of its non-leaf nodes has a
causal interpretation with respect to the outcome T . CDTs find causal relation-
ships automatically by using the Mantel-Haenszel statistical test [5]. A causal
relationship between a variable and the outcome exists if the causal e↵ect is
statistically significant (i.e., is above random chance). A CDT for the dataset in
Fig. 2a is in Fig. 2c; it shows that C has a causal relationship with T and that B
has a causal relationship with T under the “context” (i.e., fixed variable assign-
ment) C = 0. A is not included in this CDT. The path (A = 1) ! (T = 1) in the
BDT with probability P (T = 1|A = 1) = 1 correctly classifies half of the records
in the dataset. However, the path does not code a causal relationship between A

and T since, for example, given C = 1, P (T = 1|A = 1)� P (T = 1|A = 0) = 0.
When fixing the value of C, a change in A does not result in a change in T . In
fact, C causes T , and B causes T under the context C = 0.

CDTs on average achieve similar classification accuracy as decision trees, even
though this is not a CDT objective; also, the size of CDTs is on average half that
of decision trees [4], simplifying their analysis. Some aspects of CDT learning are
useful in the automatic construction of an FT. However, while a CDT can only
model the causal relationship between a variable and the outcome, the strength
of an FT is the additional modelling of (a) multiple independent variables that
may cause a failure, and (b) if-then Boolean logic. As shown in Fig. 2d, the CDT
of Fig. 2c can be redrawn as an FT with a single OR gate.

In the following, Sect. 2 gives the related work on the automated synthesis of
fault trees. Sect. 3 formally introduces FTs. Sect. 4 presents the LIFT algorithm
and examples. Sect. 5 evaluates LIFT on datasets with noise or superfluous
variables. Sect. 6 discusses possible LIFT variants. The conclusions, including
future work, are presented in Sect. 7.

54

2 Related Work

System dependability evaluation via fault tree analysis is largely a manual pro-
cess, performed over informal fault-tree models which will not accurately describe
an evolving system [6]. Due to this, the automatic synthesis of fault trees has
been of recent interest. However, we stress the fact that most of the existing con-
tributions generate the necessary dependability information from existing, for-
mal system models, and are thus Model-Based Dependability Analysis (MBDA)
techniques [6–8]. In contrast, there is little research aiming to synthesise causal
dependability information for black-box systems, for which formal models do not
exist, or for which the quantity and quality of the available sensed data surpasses
the quality and completeness of existing system models.

Learning fault trees from data. Observational data was used for machine-
learning fault trees in the Induction of Fault Trees (IFT) algorithm [9], based on
decision-tree learning. As in our method, all that is needed are observations of
measurable quantities taking certain values. However, IFT completely disregards
the matter of causality between events, and essentially learns a syntactically
correct FT which encodes exactly the same information as a decision tree – so
the FT is essentially a classifier, rather than a means of modelling causal e↵ect.

Generating fault trees from formal system models. A diverse body
of techniques is available for this; we refer to recent reviews on MBDA for a
complete picture [6–8] and give here a brief overview of the most relevant gen-
eration methods. While these approaches cannot directly synthesise FTs from
observational data (as in our work), other techniques able to learn the required
system models from observational data could (indirectly) bridge this gap.

In the Hierarchically Performed Hazard Origin & Propagation Studies (HiP-
HOPS) framework [10], any system model formalising the transactions among
the system components, annotated with failure information for components (as
Boolean expressions), may be used to synthesise an FT. Using these annotations,
the synthesis is straightforward: it proceeds top-down from the top event and cre-
ates local FTs based on the component failure annotations; these are then merged
into a global FT showing all combinations leading to system failure. If formal
models in the AltaRica high-level system description language are available,
they include explicit transitions modelling causal relations between state vari-
ables and events, which can similarly be used to synthesise classic FTs [11]. The
Formal Safety Analysis Platform (FSAP/NuSMV-SA) generates, from NuSMV
system models, FTs which show only the relation between top events and basic
events, and not how faults propagate among the system components [12]. The
Architecture Analysis and Design Language (AADL) includes an Error Model
for the specification of fault information, and a number of techniques exist to
translate an AADL model into static or dynamic FTs (recently, in [13]). AADL
models have also been translated into models compatible with the HiP-HOPS
and AltaRica frameworks, enabling cross-framework FT synthesis [6].

A process of FT generation with explicit reasoning about causality is de-
scribed in [14]; however, this approach still requires a formal system model to
exist. Given such a probabilistic system model, a set of probabilistic counterex-

55

amples (i.e., system execution paths of temporally ordered, interleaved events
leading to a system fault) is obtained from the process of model-checking. As
the system is concurrent, the counterexamples potentially, but not necessarily,
model causality. Logical combinations of events are determined as causes of other
events using a set of test conditions; the time complexity is cubic in the size of
the set of counterexamples.

Other approaches. Causal Bayesian Networks (CBNs) [15] can also be
learnt from observational data, as well as Boolean formulas (BFs) [16]; both
models may be translated into FTs, and both learning problems are NP-hard
or require exponential time [17, 16]. As our algorithm will also be shown to
have a worst-case exponential complexity, both CBNs and BFs remain feasible
alternatives to FT learning.

3 Background: Fault Trees

We define the basic components of an FT formally in Definitions 1–4.

Definition 1. A gate G is a tuple ht, I, Oi, where:

– t is the type of G, with t 2 {And ,Or}.
– I is a set of n � 2 intermediate events {i1, ..., in} that are inputs to G.

– O is the intermediate event that is output for G.

We denote by I(G) the set of intermediate events in the input of G, and by O(G)
the intermediate event in the output of G.

Definition 2. An AND gate is a gate hAnd , I, Oi where output O occurs (i.e.

O is True) if and only if every i 2 I occurs.

Definition 3. An OR gate is a gate hOr , I, Oi where output O occurs (i.e. O

is True) if and only if at least one i 2 I occurs.

Definition 4. A basic event B is an event with no input and one intermediate

event as output. We denote by O(B) the intermediate event in the output of B.

Intuitively, a basic event B models an elementary system fault in the real
world; its output O(B) is True when this elementary system fault occurs. Then,
all system components modelled by the events in the input of an AND gate must
fail in order for the system modelled by the event in the output to fail.

We then formalise the fault tree in Definition 5.

Definition 5. A fault tree F is a tuple hBE, IE, T,Gi, where:

– BE is the set of basic events; 8B 2 BE, O(B) 2 IE. A basic event may be

annotated with a probability of occurrence p.

– IE is the set of intermediate events, where IE \BE = ;.
– T is the top event, T 2 IE.

– G is the set of gates; 8G 2 G, I(G) ⇢ IE, O(G) 2 IE.

56

– The graph formed by G should be connected and acyclic, with the top event

T as unique root.

Given fault tree F, we denote by IE (F) the set of intermediate events in F.

The basic LIFT algorithm (Sect. 4) will learn trees rather than directed
acyclic graphs (DAGs), i.e. an intermediate event can be the input of only one
gate. Sect. 6 will then discuss a DAG variant of the LIFT algorithm.

Comparison FT-CDT. Unlike FTs, CDTs can be learnt from data, and
also encode causal relationships between variables; an example CDT was given
in Fig. 2c. However, there are major syntactic di↵erences between the two for-
malisms. An FT can be n-ary, while a CDT can only be binary: every branching
decision is based on a Boolean variable. Also, an FT is more concise: it models
only the positive (failure) outcome, while the CDT must model both outcomes
of any variable. Finally, the position of the outcome di↵ers: while in FTs the top
event models the system outcome, in a CDT this is modelled by leaf nodes.

4 Machine Learning Fault Trees

The dataset from which an FT can be learnt contains untimed, Boolean obser-
vations of system events; an FT event corresponds to a column variable in the
dataset. A record and a dataset are formally defined in Definitions 6–7.

Definition 6. A record R over the set of variables V is a list of length |V|
containing tuples [hVi, vii], 1 i |V|, where:

– Vi is a variable name, Vi 2 V.

– vi is a Boolean value of Vi.

Definition 7. A dataset D is a set of r records, all over the same set of vari-

ables V. Each variable name in V forms a column in D and each record forms

a row. When k identical records are present in D, a single such record is shown,

with a new count column for the value k.

A synthetic dataset (of 185 records in total, but only 11 unique records) is
shown in Table 1. We assume the su�ciency of any dataset (i.e., all shared causes
are measured [18]) and also its faithfulness (i.e., the data accurately represents
the real-world dependencies [18]). However, because of either sensor glitches or
human error, there may be some noise in the dataset (i.e., flipped bits).

From a dataset, causal relationships between (groups of) variables can be
discovered to form an FT. For this, one can use the standard Mantel-Haenszel
Partial Association test (PAMH) [5], a test used for the analysis of data that
is stratified. When stratifying the dataset, the e↵ect of other variables on the
outcome variable T is eliminated, and hence the di↵erence reflects the causal
e↵ect of one variable (say, E) on the outcome T . By this test, a causal rela-
tionship between two given variables is statistically significant if and only if the
PAMH-score � �̃

2
↵,1, where �̃

2
↵,1 is the standard critical value of the chi-square

57

Table 1: Example dataset
A B C D E F G T count
0 0 0 0 0 0 0 0 30
1 0 1 1 0 1 0 0 20
0 1 0 1 1 0 0 0 20
0 1 0 1 1 1 0 0 20
1 0 0 1 0 0 0 0 15
0 0 1 0 0 1 0 0 15
0 0 0 0 1 0 0 0 15
0 0 1 0 1 1 0 0 15
1 1 1 1 1 0 1 0 20
0 1 1 1 1 1 1 1 10
1 0 1 1 1 1 1 1 5

distribution with 1 degree of freedom [19]. A significance level of ↵ = 0.05 or
↵ = 0.01 is often used in practice.

A stratum is formally defined in Definition 8 (and is a classic concept, as
per [19]). A concrete example is given later in this section, in Example 1.

Definition 8. Given a dataset D over the set of variables V, a stratum SE,T

(where E and T are variables from V) is a contingency table which shows the

distribution of the values of variables E and T in the dataset, as counts, in the

following format:

T=1 T=0 Total

E = 1 n11 n12 n1.

E = 0 n21 n22 n2.

Total n.1 n.2 n..

where n denotes the number of records that

satisfy a given valuation of E and T .

The PAMH-score can be calculated over multiple strata (as done in CDTs [4]
and first formalised in [19]); here we have a single stratum, as follows:

PAMH(E, T) =

✓����
n11n22 � n21n12

n..

�����
1

2

◆2 �
n1.n2.n.1n.2

n2
..(n.. � 1)

Using these concepts of strata and the PAMH-score, the LIFT algorithm1,
shown in Alg. 1, synthesises an FT from a datasetD. A variable inD corresponds
to an intermediate event. All intermediate events to be included in the FT must
be present in the dataset, but not all of those events in the dataset may be
needed in the FT. We do not know what the basic events will be, nor which
gates form the FT, nor which intermediate events are attached to the gates.

1 Code can be found at https://github.com/M-Nauta/LIFT

58

Algorithm 1: LIFT: Learning a Fault Tree from a dataset
Input: D, a data set containing r records over V;

T , the intended top event with T 2 V;
↵, the significance level for the Mantel-Haenszel test

Result: Fault Tree F

1 Function CheckANDGate(E, I):
2 result = False, pamh = 0.0
3 v = [v1, ..., vr] in which vj is 1 if every i 2 I in record j of D is 1
4 if n12 of Sv,E < ↵n.. && n21 of Sv,E < ↵n.. then
5 pamh = PAMH(v, T)
6 if pamh � �̃

2
↵,1 then

7 result = True

8 return result, pamh

9 Function CheckORGate(E, I):
10 Similar to lines 2-8

11 Function CreateLevel(F, Leaves):
12 for l 2 Leaves do
13 k = 2, gate = False
14 while not gate and k |V \ IE(F)| do
15 for a in generator of combinations of size k from V \ IE(F) do
16 compute isGate, pamh = CheckANDGate(l, a)
17 compute isGate, pamh = CheckORGate(l, a)

18 if at least one a exists where isGate was True then
19 select that a and gate type t where pamh was maximum
20 add gate ht,a, li to F
21 gate = True

22 else
23 k++

24 if not gate then
25 p = ratio of records in D where l = 1
26 create basic event B as input for l in F, and annotate B with p

27 return F

28 let F = Fault Tree h;, {T}, T, ;i
29 while at least one new event is added to F do
30 let Leaves = set of all intermediate events at the lowest level of F
31 F = CreateLevel(F, Leaves)

Checking a proposed gate. To create a fault tree F, the LIFT algorithm itera-
tively adds a level to F, starting with just the top event (line 28-31 in Alg. 1).
Each time CreateLevel is called, the depth of the FT increases with one level.
For each intermediate event E at the lowest level of F, sets (of size � 2) con-
taining intermediate events not yet in F are proposed as input of a new (AND
or OR) gate whose output is E. This is done by checking the gate for correct-
ness according to the properties of Definitions 2–3. If both gates are correct, any
design choice can be made, as discussed later in Sect. 6.

59

Example 1. Using the data set shown in Table 2a, a significance level ↵, the
outcome variable T and the set of variables I = {A,B}, one can check if gate
G of the form hAnd, I, T i meets the property specified in Definition 2 and is
statistically significant using function CheckANDgate.

Table 2: Dataset for Example 1, over variables A, B and outcome variable T ;
stratum and fault tree learnt.

A B T count
0 0 0 30
1 0 0 25
0 1 0 20
0 1 1 1
1 1 1 15

(a) Dataset

A B v T count
0 0 0 0 30
1 0 0 0 25
0 1 0 0 20
0 1 0 1 1
1 1 1 1 15

(b) Dataset incl.
var. v (AND gate)

T=1 T=0 Total

v = 1 15 0 15
v = 0 1 75 76
Total 16 75 91

(c) Stratum Sv,T

T

A B

(d) FT learnt

A temporary new variable v is added to the dataset (Table 2b). v encodes an
AND relation between A and B; v occurs (is 1) only when both A and B occur.
This variable v can then be compared with top event T to measure if there is
a causal relationship between T and A AND B. The stratum Sv,T is computed
by counting the corresponding records in Table 2b, as shown in Table 2c.

The user can specify the ratio of noise allowed by LIFT per stratum. (If the
user can assume that the flipped bits are uniformly distributed in the dataset, the
expected per-stratum noise ratio is equal to the global noise ratio.) For simplicity,
we set this noise “allowance” equal to the significance level ↵; the algorithm is
easily modified for any other level. In the dataset shown in Table 2a, one can see
that one record may be noise. In this example, we will set ↵ = 0.05, so we allow
5% noise in a stratum. It then follows that the proposed AND gate G of the form
hAnd, {A,B}, T i meets the property of Definition 2 because in stratum Sv,T we
have n12 = 0, n21 = 1, meaning one record where the values of v and T di↵er.
We do allow a ratio ↵ out of n.. = 91 to di↵er, but 1 < 0.05 · 91 holds. However,
if we would have selected a significance level ↵ = 0.01, since 1 < 0.01 · 91 does
not hold, the FT couldn’t include this gate.

If the proposed gate has less noise than allowed (which is in this case true for
↵ = 0.05), we can determine if the causal relation between T and v is significant,
by calculating the PAMH-score:

PAMH(v, T) =

✓
15 · 75� 1 · 0

91
� 1

2

◆2 � 15 · 76 · 16 · 75
912(91� 1)

= 76.66 .

For ↵ = 0.05, the critical value �̃
2
↵,1 = 3.84. Since the PAMH-score is higher

than �̃
2
↵,1, v and T can be concluded to have a significant causal relationship.

Similarly, a proposed OR gate is checked. By creating a temporary new vari-
able v for the OR gate, one can create a stratum to calculate the noise and the
PAMH-score in a similar way. This OR gate will have too much noise and is

60

therefore not correct. So, hAnd, I, T i is added to F. Table 2d shows the final FT
learnt from the original dataset in Table 2 for ↵ = 0.05.

An FT may have a path containing two subsequent gates of the same type;
in this case, the FT solution is not unique, and one may optimise for either
minimal gate sizes, or minimal tree depth. We choose here the former, i.e., select
the smallest input sets for all gates. LIFT is easily modified for another aim.
Example 2 below clarifies this situation.

Example 2. Take the dataset in Table 1 at the beginning of this section. The
LIFT algorithm starts with an FT containing only the top event T (line 28 in
Alg. 1). For this top event, the algorithm generates all combinations (sets) of
intermediate events, in order of increasing size (line 15). For each set a containing
intermediate events, LIFT tests whether a gate hOr/And,a, T i (either AND
or OR) meets the property in Definitions 2–3 and does not exceed the noise
allowance (line 4). If true, LIFT checks if the PAMH score is higher than the
threshold for the Mantel-Haenszel test.

For this dataset, there is no correct OR gate hOr, a, T i . However, there are
9 sets of intermediate events that can act as input for a correct and significant
AND gate hAnd,a, T i: a = {F,G}, a = {E,F,G}, a = {D,F,G}, a = {C,F,G},
a = {D,E, F,G}, a = {C,E, F,G}, a = {C,D, F,G}, a = {C,D,E, F} and
a = {C,D,E, F,G}. In other words, there are multiple structural solutions for
the FT, when the FT has a path with two subsequent gates of the same type.
In such cases, LIFT learns the solution with minimum-sized gates. The input
sets are generated in increasing size, and LIFT will stop proposing input sets
when the minimum correct input set is found. In this example, the smallest set
has size two, namely {F,G}. Therefore, gate hAnd, {F,G}, T i is added to F (as
shown in Fig. 3). In case of multiple correct sets of the same size (which can
arise when there are more variables in the dataset than needed in the FT) the
set with the highest PAMH-score is selected (line 19 in Alg. 1). The algorithm
can be easily modified for another design decision, as argued later in Sect. 6.

T T

F G

T

F G

C D E

T

F G

C D

A B

E

T

F G

C D

A B

E

p=0.32 p=0.38

p=0.46

p=0.46

p=0.57

Fig. 3: Applying LIFT in Example 2 on the dataset shown in Table 1.

In the next iteration, for both F and G again sets of intermediate events are
tried. The search space is now 25 � 5� 1 = 26, because |V \ IE(F)| = 5. There
is no correct gate hOr/And,a, F i for intermediate event F . Therefore, a basic

61

event is added as input for F (line 26). For intermediate event G, one correct
and significant AND gate hAnd, {C,D,E}, Gi is found and added to F. Similar
iterations are done for C, D and E followed by A and B, as shown in Fig. 3.

When the dataset contains information on system states which are always
measured in a fixed time horizon (i.e. discrete time), one can easily derive
stochastic measures such as failure probabilities using standard probability laws.
The statistical probability that an event E 2 D occurs is simply P (E = 1) =
records where E=1

total # records ; all basic events are annotated with these probabilities.

5 Evaluation

The algorithm is evaluated following the approach shown in Fig. 4. A number of
fault trees Fgt are generated as ground truth; from each of these FTs, a dataset
is synthesised randomly, including adding noise and superfluous variables (both
of these processes of synthesis are described below). LIFT takes this dataset and
a given significance value ↵ as input, and learns another FT F, which can then
be compared to the ground truth. We say that a learnt FT is “correct” if it is
structurally equivalent to the ground-truth FT, i.e., syntactically (and not only
semantically) equivalent, where only the order of the inputs to any gate may
di↵er. We require that the learnt FT recovers the exact gates as in the ground
truth, since these gates may model concrete system components, for which the
correct causes of failure should be learnt. Our evaluation is thus stronger than
an isomorphism check for the FTs.

Furthermore, we assess how noise and superfluous variables in the dataset
influence the ratio of correctly learnt FTs.

LIFTDataset DGround Truth Fgt Learnt F
Data Synthesis

Evaluation

Fig. 4: Evaluation approach: Randomly generate a dataset from an FT, apply
LIFT to that dataset and compare the learnt FT with the ground truth.

Generating all FTs of a certain size As ground truth, we generate all possible

FTs over a fixed number (here, 8) of intermediate events, with no probabilities
annotated on basic events. We only generate trees and leave DAGs (with shared
variables) as future work. To mimic a manually constructed FT where readability
is important, we set a minimum of 2 intermediate events and a maximum of 5
intermediate events as input to a gate, and thus obtain 76 di↵erent FTs.

Generating a synthetic dataset from an FT Based on a generated FT, we mimic
a real-life situation by randomly synthesising 1000-record datasets where basic
events happen with a certain probability (and are not rare events). The gen-
eration process starts with valuating all basic events to either 0 or 1, with a

62

randomly chosen probability between 20% and 50% that each basic event is 1.
These values are propagated through the gates in the FT up to the top event;
dependent on the type of each gate, the gate’s output event is assigned 0 or 1.
Each iteration of this procedure results in one data record.

To assure that gates are correctly recognised and that every gate is at least
once true, every combination of inputs for a gate occurs in at least c% of the
rows in the dataset (i.e. in the case of 1000 rows and c=2, every combination
occurs at least 20 times). We created datasets for both c = 0.5% and c = 2%. We
leave the task of discriminating between rare events and noise for future work.

Adding noise to the dataset In a real-life situation, having perfectly clean data
is rare because of wrong measurements, sensor glitches or manual errors for
example. To mimic noise, a number up to 5% of the rows in the dataset are
added, each with 1-2 wrong (flipped) values.

Adding superfluous variables to the dataset Our algorithm should also create a
correct fault tree when there are variables in the dataset which have no causal

e↵ect and should not be included in the learnt FT. We thus experiment with
adding up to 4 non-causal system variables. The case of a causal superfluous
variable is discussed in Sect. 6.

5.1 Results

An analysis is done on the influence of noise or superfluous variables in the
dataset on the number of correct fault trees obtained by LIFT.

Fig. 5: Percentage of correctly learnt
fault trees relative to the percentage
of rows with noise in the dataset. All
76 di↵erent FTs with 8 intermediate
events are generated. The dataset for
each FT contains no non-causal vari-
ables, and 1000 records plus an extra
percentage of noisy records.

Fig. 6: Percentage of correctly learnt
FTs relative to the number of non-
causal variables in the dataset. All
76 di↵erent FTs with 8 intermediate
events are generated. The dataset for
each FT contains 1000 records, no
noisy records, but up to 4 non-causal
variables.

63

As we generated all ground-truth FTs with exactly 8 intermediate events,
and 2-5 inputs for each gate (76 FTs in total), the basic datasets contain 8
columns (one for each intermediate event), and 1000 rows. Noisy rows are then
added to the dataset, depending on the level of noise desired.

Figure 5 shows the percentage of correctly learnt fault trees relative to the
percentage of rows with noise in the dataset. All learnt FTs are correct in the
absence of noise and with the significance level ↵ = 0.001. However, this ↵ is
by nature incapable of correctly dealing with noise, since LIFT may not find a
significant gate due to the noise. A higher ↵ is less sensitive for noise, but does
result in a lower number of correct FTs. A learnt FT may be incorrect when
LIFT finds a significant gate with a smaller number of inputs than what should
actually be the case. Therefore, the significance level should be chosen based on
the amount of noise in the dataset. Furthermore, one can see that c naturally
influences the number of correctly learnt FTs: the less rare the events are in the
dataset, the more likely is LIFT to learn the correct FT.

Figure 6 shows the percentage of correctly learnt FTs relative to the number
of non-causal random variables present in the dataset; one can see that these
variables have little e↵ect on the accuracy, showing that LIFT indeed finds only
causal relationships.

5.2 Complexity

Time complexity LIFT exhaustively checks all input event combinations in
order of their size, so in worst case there is one gate with all variables (except
the top event) as input. This means that for all input sets, a stratum is created
that loops over all r records and over k variables that are in that set. The
number of di↵erent combinations of size k is

�n
k

�
where n = |V|� 1. Therefore,

the time complexity of these operations is r ·
Pn

k=2 k ·
�n
k

�
. The PAMH-score of

each stratum is calculated and compared with the significance level, which has
a constant time complexity. This results in a time complexity of O(nr2n).

Learning boolean formulae, closely related to learning static fault trees, from
examples obtained by querying an oracle is exponential in the size of the vocab-
ulary in the general case as well as for many restrictions [16]. More precisely, a
static fault tree with only AND and OR gates can be seen as a monotone boolean
function for which the Vapnik-Chervonenkis (VC) dimension is exponential in
n [20]. So, a general exact FT learning algorithm cannot be more e�cient than
the VC dimension. Reaching better complexity, which could be useful for large
datasets, is then only possible when an approximated FT is learnt, instead of
an exact solution. Such a variant of Alg. 1 may apply a greedy search-and-score

approach rather than our constraint-based approach with exhaustive search, as
inspired by structure-learning algorithms for Bayesian networks. However, those
algorithms may su↵er from getting stuck in a local maximum, resulting in a lower
reconstruction accuracy. Furthermore, the highest-scoring network structure is
not necessarily the only viable hypothesis [21].

64

Space complexity The input for Algorithm 1 consists of dataset D with r

records and n columns, top event T and significance level ↵. Therefore, the
input space complexity is ⇥(rn). If the generator of combinations is on-the-fly,
its auxiliary memory complexity is O(n2).

6 Discussion

Interpretation of causality Currently, all intermediate events that should
be in the fault tree have to be included in the dataset. However, obtaining a
dataset containing all relevant variables may be impractical. One problem is the
presence of hidden variables that influence measured variables but are not in the
dataset themselves [18]. The other one is the selection bias: values of unmeasured
variables may influence whether a unit is included in the dataset [21]. This can
result in a learnt causal relationship between observed variables that does not
correspond to the real causal relations. Drawing valid causal inferences using
observational data is therefore not just a mechanistic procedure, but always
depends on assumptions and justification that require domain knowledge [22].
We are aware of the critical assessment of causal claims based on observational
data, but we think the learnt fault tree will still be valuable to give insights which
possibly were unknown beforehand and facilitates further causal inference.

Algorithm variants We made certain design decisions for the basic LIFT
algorithm in Alg. 1. Below, we present some of the many possible variants.

Multiple gate types In the case of multiple significant correct gates with the same
number of inputs, the LIFT algorithm chooses the one with the highest PAMH-
score. However, there may be cases where both an OR gate and an AND gate are
correct. For example, in case of the dataset as shown in Table 3, an OR gate will
be created when a very high significance level is chosen. However, two of these
records may be noise, so with a lower significance level an AND gate will result
in a correct gate as well. Selecting the gate type is then a matter of choice: one
can argue to choose the OR gate as this matches exactly the dataset, or choose
the AND gate since the interpretation of this gate is stricter than the OR gate.
One can also argue that the algorithm need not make a decision at all and that
it outputs multiple FTs. LIFT is easily modified for any design decision.

Table 3: Dataset where both an OR gate and an AND gate may be correct.
A B T count
0 0 0 1
1 0 1 1
0 1 1 1
1 1 1 10,000

65

Multiple significant FTs When there are causal superfluous variables in the
dataset, there may be cases of multiple correct sets of intermediate events of the
same size, that can all serve as input to a statistically significant gate. While the
basic LIFT algorithm chooses the input set with the highest PAMH-score, it is
easily modified for a di↵erent design choice, such as returning all correct FTs.

The FT as a Directed Acyclic Graph (DAG) The basic LIFT algorithm learns
trees, so the examples and evaluation presented in this paper all learn tree struc-
tures. However, in general FTs may share subtrees, meaning that an intermediate
event can be the input of multiple gates, and therefore have a directed acyclic
structure [1]. The LIFT algorithm can be modified to create DAGs by generating
broader combinations a of intermediate events, outside the while loop at line 14
of Alg. 1: instead of a generator of all combinations of size � 2 from V \ IE (F),
one can instead have a generator of all combinations from V\T , with an extra
check that the created graph F remains acyclic.

More e�cient exploration of variable combinations Other features of the dataset
(e.g., the graph of dependencies between variables), or even domain knowledge,
may be used to reduce the number of combinations of variables to be tried by
LIFT as inputs to gates.

7 Conclusion

In this paper, we presented an algorithm to automatically learn a statistically
significant fault tree from Boolean observational data, inspired by the construc-
tion algorithm for Causal Decision Trees. In absence of noise, all learnt FTs were
found to be structurally equivalent to the ground truth when the significance
level is 0.001. With up to 3% noise in the data, a significance level of 0.01 results
in around 65% correct FTs. As a downside, the basic LIFT algorithm does an
exhaustive search, and thus has exponential time complexity. It also cannot deal
with hidden variables.

In future work, the algorithm can be extended to learn other elements of
a fault tree, such as the XOR gate (true if and only if exactly one of its in-
put events is true). Note that elements that need sequence information (such
as the Priority-AND gate or the SPARE gate) cannot be implemented, since
the required dataset format doesn’t contain timing information. Learning fault
trees from timed observational data is also a direction for future work. For this,
learning Bayesian networks, closely related to FTs, may also be a competitive
direction to take. Moreover, one may allow continuous data instead of only bi-
nary values, similar to the C4.5 algorithm for decision trees [23] that creates a
binary expression for continuous values. This expression encodes the conditions
under which a measurement results in a failure.

Acknowledgements This research was supported by the Dutch STW project
SEQUOIA (grant 15474). The authors would like to thank Joost-Pieter Katoen
and Djoerd Hiemstra for valuable feedback.

66

References

1. Ruijters, E., Stoelinga, M.: Fault tree analysis: A survey of the state-of-the-art in
modeling, analysis and tools. Computer Science Review 15 (2015) 29–62

2. Murthy, S.K.: Automatic construction of decision trees from data: A multi-
disciplinary survey. Data Mining and Knowledge Discovery 2(4) (1998) 345–389

3. Tan, P., Steinbach, M., Kumar, V.: Introduction To Data Mining. Pearson Edu-
cation (2006)

4. Li, J., Ma, S., Le, T., Liu, L., Liu, J.: Causal decision trees. IEEE Transactions
on Knowledge and Data Engineering 29(2) (2017) 257–271

5. Mantel, N., Haenszel, W.: Statistical aspects of the analysis of data from retro-
spective studies of disease. J. of the national cancer institute 22(4) (1959) 719–748

6. Kabir, S.: An overview of fault tree analysis and its application in model based
dependability analysis. Expert Systems with Applications 77 (2017) 114–135

7. Aizpurua, J.I., Muxika, E.: Model-based design of dependable systems: Limitations
and evolution of analysis and verification approaches. International Journal on
Advances in Security Volume 6, Number 1 & 2, 2013 (2013)

8. Sharvia, S., Kabir, S., Walker, M., Papadopoulos, Y.: Model-based dependability
analysis: State-of-the-art, challenges, and future outlook. In: Software Quality
Assurance. Elsevier (2016) 251–278

9. Madden, M.G., Nolan, P.J.: Generation of fault trees from simulated incipient fault
case data. WIT Trans. Information and Communication Technologies 6 (1994)

10. Papadopoulos, Y., McDermid, J.: Safety-directed system monitoring using safety
cases. PhD thesis, University of York (2000)

11. Li, S., Li, X.: Study on generation of fault trees from Altarica models. Procedia
Engineering 80 (2014) 140–152

12. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA safety analysis platform.
International Journal on Software Tools for Technology Transfer 9(1) (2007) 5

13. Li, Y., Zhu, Y.a., Ma, C.y., Xu, M.: A method for constructing fault trees from
AADL models. In: Int. Conf. on Autonomic and Trusted Computing, Springer
(2011) 243–258

14. Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using causality
computation. Int. J. Critical Computer-Based Systems 30 4(2) (2013) 119–143

15. Li, J., Shi, J.: Knowledge discovery from observational data for process control
using causal Bayesian networks. IIE transactions 39(6) (2007) 681–690

16. Jha, S., Raman, V., Pinto, A., Sahai, T., Francis, M.: On learning sparse boolean
formulae for explaining AI decisions. In: NASA Formal Methods Symposium,
Springer (2017) 99–114

17. Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian
networks is NP-hard. Journal of Machine Learning Research 5 (2004) 1287–1330

18. Kleinberg, S.: Why: A Guide to Finding and Using Causes. O’Reilly (2015)
19. Birch, M.: The detection of partial association, i: the 2⇥2 case. Journal of the

Royal Statistical Society. Series B (Methodological) (1964) 313–324
20. Kearns, M., Li, M., Valiant, L.: Learning boolean formulas. Journal of the ACM

(JACM) 41(6) (1994) 1298–1328
21. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.

MIT press (2009)
22. Rohrer, J.M.: Thinking clearly about correlations and causation: Graphical causal

models for observational data. (2017)
23. Quinlan, J.R.: C4. 5: programs for machine learning. Elsevier (2014)

