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Summary

The transplant department of the Leiden University Medical Center (LUMC) experiences difficulties
with scheduling the transplant surgeons. This is because the transplant surgeons have more shifts than
other departments. Therefore, many surgeries are unexpected and therefore it is not known when these
surgeries will take place. The schedules of the different tasks are made per quarter and are currently
made by one of the surgeons by hand. The aim of this research is to schedule the transplant surgeons
such that the number of surgeries done per year is divided over the surgeons. This is currently not part
of their planning environment as equally as possible. To do this, first an integer linear program (ILP) is
developed for automatically making the quarter schedules. The number of surgeries performed is not
taken into account here. By using this ILP optimal schedules, given the availability of the surgeons, that
fulfill all constraints can be made automatically. However, when we look at the fourth quarter of 2018
shortages occur during different tasks in this schedule. Also at the organ removal shift, which is the
most important task to schedule. Therefore, the model is adjusted to schedule the organ removal shift
by another structure.

Then, we do take into account the number of surgeries performed. A stochastic dynamic program
(SDP) is developed to do this for a more generic case, where persons must be scheduled over different
tasks and during these tasks orders can arrive. The goal here is to equally divide the number of com-
pleted orders over the persons at the end of the horizon. We solve this SDP for different small instances
with the goal to find a structure in the optimal actions that can be extended to bigger instances. Most of
the times the optimal action is such that the expected number of surgeries at the end of the schedule
is divided as equally as possible. However, there are some exceptions. This SDP is adjusted to the
LUMC case, but we cannot solve this due to the curse of dimensionality. Therefore, we approximate the
optimal solution by using the ILP model for scheduling the different tasks over the surgeons and add the
condition that we want to divide the expected number of surgeries at the end of the schedule as equally
as possible over the surgeons. By using this model, the LUMC can include the number of surgeries
performed per surgeon in their planning environment. the LUMC to use the model for scheduling the
transplant surgeons and take into account the number of surgeries performed per surgeon. However,
to do this a user friendly application should be developed. By doing this optimal schedules, given the
availability of the surgeons, can be made that fulfill all constraints, the program is impartial and the
surgeons do not have to spend time at scheduling the different tasks over the surgeons.
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Chapter 1

Introduction

In the Netherlands, only academic hospitals can perform transplants of organs at patients who need a
transplant organ. Each academic hospital can perform kidney transplants and the government decides
if a hospital can also perform transplants of other organs. The Leiden University Medical Center (LUMC)
performs transplants of kidneys, pancreas and livers [Nederlandse Transplantatie Stichting, 2018]. The
transplant surgeons in the LUMC do not only perform the transplants of organs at patients who need
a transplant organ, but also the organ removals are performed by them. In the Netherlands five hospi-
tals have a team that can perform these organ removals. A team that can perform an organ removal
consists of two surgeons, two operating room assistants and an anaesthesiologist. The only thing they
need in the hospital where the organ removal takes place is a free operating room. They bring all other
requirements in their specially equipped bus [van der Hoeven, 2013].

The transplant department of the LUMC experiences difficulties with scheduling the transplant sur-
geons. The problem is that transplant surgeons have more shifts than other departments because in
comparison with other departments the transplant department has more emergency surgeries. With
emergency surgeries, we mean the surgeries that cannot be scheduled during the operating room (OR)
days. These emergency surgeries are organ transplants and organ removals. For the emergency trans-
plants transplant shifts must be scheduled and for the organ removals the organ removal shift must be
scheduled. Not all transplants are emergency transplants. For example, a kidney donation with a living
donor can be scheduled during the OR. One example of an emergency transplant is a organ transplant
with a deceased donor. All organ removals are emergency surgeries, although this removal can be
known a day in advance. This is because the treatment of a patient is stopped and this patient is an
organ donor. However, the time of the removal is not known exactly and the removal can be cancelled
if the organs of the patient are not good enough.

Not only these shifts are done by transplant surgeons, also the inpatients should be visited, the OR
should be scheduled for transplants that can be scheduled and the outpatient clinic should be sched-
uled. Making a schedule for these surgeons is, therefore, a difficult job, performed by one of the trans-
plant surgeons by hand. Every quarter, this surgeon spends one day on making the schedules and after
that about fifteen minutes per week for the changes in the schedule. The different tasks must fulfill all
kind of constraints when these tasks are scheduled. For example, always a senior surgeon should be
scheduled at the transplant shift and always at least one multi-organ donation (MOD) certified surgeon
should be scheduled at the organ removal shift when this shift should be scheduled. Furthermore, it is
desirable to distribute the number of surgeries done by the end of the year as equally as possible over
the surgeons. In this way, every surgeon can gain about the same amount of experience during a year.
This is currently not a part of their planning environment.

The goal of this research is to schedule the transplant surgeons in such a way that the number of
surgeries done per year is divided over the surgeons as equally as possible. Therefore this research
aims to investigate:

In which way can the schedules of the transplant surgeons be made to improve the schedules and
to equally divide the number of surgeries done over the transplant surgeons per year?

To answer this question, we will first develop a model for making the quarter scheduled without tak-
ing into account the number of surgeries done per surgeon. For this, an integer linear program (ILP) is
developed and the following questions will be answered.

– Which tasks are done by transplant surgeons?
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– When should these tasks be scheduled?

– When can these tasks be scheduled for another surgeon at the next day?

– What are the constraints for the schedules?

When this is done, we also want to consider the number of surgeries done. This is done by developing
a Stochastic Dynamic Program (SDP). First the SDP will be developed for a more generic case, where
we have persons who can be scheduled at different tasks and orders can arrive during tasks. The goal
is to equally divide the number of completed orders over the persons at the end of the horizon. The
following questions will be answered for the generic case

– What is the distribution of the transition probabilities?

– Is a deterministic Markovian policy optimal in this case?

– Can we find a structure in the optimal actions?

– How can these results be extended to the LUMC context?

This report is organized as follows. In Chapter 2 we give an overview of some related literature. In
Chapter 3 we describe the tasks done by transplant surgeons and when these tasks should be sched-
uled. Chapter 4 describes the developed ILP model for making the quarter schedule. Chapter 5 shows
the results from the ILP. Chapter 6 describes the model that includes the number of surgeries done per
surgeon. In Chapter 7 results of this model are shown. Chapter 8 we will adjust the generic model for
equally dividing the number of orders over the persons to the LUMC case and use an ILP to approxi-
mate the optimal schedule. Finally, in Chapters 9 and 10 we will respectively discuss and conclude our
research.
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Chapter 2

Literature review

A transplant is the replacement of a poor or completely non-functional organ of a patient. This is done by
transplant surgeons. The transplants can be done at every moment of the day because it must be done
as soon as possible when a donor organ is available. Therefore, always a transplant surgeon should
be available for transplant. But also transplant surgeons should be available for taking the donor organ.
Therefore, different tasks must be scheduled over the transplant surgeons. To schedule these tasks
some constraints must be met. It is preferred that the number of surgeries is equally divided over the
transplant surgeons per year. This is currently not included in the planning environment of the LUMC.
To schedule in this way, first, a model is made for scheduling the different tasks over the surgeons with-
out considering the number of surgeries done per surgeon. Some literature about this part is described
in Section 2.1. Later, this first part is used to schedule the transplant surgeons with considering the
number of surgeries done per surgeon. Some literature about this part is described in Section 2.2.

2.1 Scheduling tasks

A lot of research has been done about employee scheduling [Bruecker et al., 2015, den Bergh et al.,
2013]. Both articles are a literature review about employee scheduling. den Bergh et al. [2013] uses four
classification fields: the personal characteristics, the constraints, the solution method and uncertainty
incorporation and the application area and applicability of research. For the first field, the contract can
be considered, as is done in Akbari et al. [2013]. In our case all surgeons are working full-time, so
we do not take this into account. We are considering the skills of the different surgeons, as is done
in Akbari et al. [2013]. Not all surgeons can be scheduled at all tasks. Often hierarchical skills are
used, employees with a lower skill level can do less than employees with a higher-level skill. In this
research, no hierarchical skills are used because different surgeons can do different tasks. We also
have a different experience of surgeons. When the transplant shifts are scheduled always one surgeon
must be a senior surgeon. This is a senior with more experience. The distinction in experience is
also made in Majozi and Zhu [2005]. Further, a distinction is made between multi-organ donation
(MOD) certified surgeons and not MOD certified surgeons. When the organ removal shifts should be
scheduled at least one of the surgeons should be certified. In this research we schedule tasks for
individuals. It is also possible to schedule tasks for teams, as is done in Dück et al. [2012]. Different
solution methods can be used for employee scheduling. Most of the times mathematical programming
is used to solve the scheduling problem, with sometimes a heuristic when the problem is big. In this
research also, mathematical programming will be used. To schedule the tasks over the surgeons integer
linear programming (ILP) is used. More about ILP can be found in Section 4.1.

2.2 Include the number of surgeries done per surgeon

When we include the number of surgeries done per surgeon, the goal is to equally divide this number
over the surgeons per year. Every quarter we make a schedule for the different tasks over the surgeons
such that all constraints hold. Every task has a probability distribution of the number of surgeries done
during this task. Stochastic Dynamic Programming (SDP) is used for this. More about SDP can be
found in Section 6.1. An SDP is used for problems with a finite horizon. When the horizon is infinite
Markov Decision Process (MDP) can be used.
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MDP/SDP is used in healthcare on various subjects. For example, Chow et al. [2012] and van Arendonk
et al. [2015] use MDP for kidney transplants. Chow et al. [2012] use an MDP to allow patients to see
their estimated survival probability after accepting versus declining an infectious risk donor offer over
a five-year horizon. van Arendonk et al. [2015] use an MDP to compare the outcomes of the different
options for a given pediatric kidney transplant candidate with only one living donor available. This can-
didate must choose between immediate primary living donor kidney transplant, followed if necessary by
deceased donor retransplantation versus waiting to undergo primary deceased donor kidney tranplan-
tation, followed if necessary by living donor retransplantation (if the living donor is still able to donate)
or deceased donor retransplantation (if the living donor is no longer able to donate).

In our research we are using an SDP, because we want to divide the number of surgeries done per
year as equally as possible. Therefore, we have a finite horizon. An SDP can be used when the target
is fixed as is done in Sever et al. [2018] and we want to know the optimal route to this target. In our
research, the target is the line where all surgeons have done an equal number of surgeries per year
and we want to approach this line as good as possible at the end of the year. Tsai [2017] has done
something similar by scheduling operating room (OR) and outpatient department (OD) sessions for or-
thopedic surgeons. Each surgeon has a budgeted amount of OR and OD sessions per year. Therefore,
the number of OR and OD sessions scheduled per year is fixed. The goal is to schedule the OR and
OD sessions in such a way that the expected number of patients in the OR queue at the beginning
of the next week is minimized. The state of the system is the number of patients that is referred to
radiology, screening and the number of patients in the OR queue. In our research the tasks that must
be scheduled are fixed. However, these tasks can be done by multiple surgeons. The target at the end
of the year is also not known, but we want to distribute the number of surgeries as equally as possible
over the surgeons. Therefore, we want to approach the line where all surgeons have done the same
number of surgeries as well as possible. Tsai [2017] used an upper boundary to guarantee that each
patient has the possibility to be scheduled within a certain amount of weeks with a high enough prob-
ability and solves the problem by using an exact stochastic dynamic program (SDP), but to make the
SDP numerically tractable approximations for the transition probabilities are used. In our research no
boundaries are needed to guarantee things about the goal.

Our research has similarities with that of Hulshof et al. [2016]. This article looks at a generalized situa-
tion of the situation of Tsai [2017], a network of queues. First, a mixed integer linear program (MILP) is
developed in Hulshof et al. [2013] and in Hulshof et al. [2016] an approximate dynamic program (ADP) is
developed for the same system extended with stochastic aspects, such as random patient arrivals and
patient transitions between queues. On every decision epoch is decided how many patients are treated
who already have been waiting a certain amount of time. The action space is restricted by the number
of resources available. The state of the system is equal to the number of patients in the different queues
with certain waiting time. Therefore, in this article the target is not known. They used value iteration with
a cost function as a function of the waiting time per individual queue. Post-decision states are used for
a single approximation for the outcome state, the basis function approach is used to approximate the
value function and an ILP is used to overcome the large decision space for large problem instances.
Solving a Dynamic Program is typically intractable due to the curse of dimensionality, as the problem
size increase. Therefore, Hulshof et al. [2016] first develops an SDP to solve small instances and uses
ADP for bigger instances. More about ADP can be found in Powell [2011].

To the best of our knowledge no research has been done on an SDP with in which the target equals a
line. In Zhang et al. [2018] an SDP is used to compute the optimal trajectory of an underwater vehicle
subject to some mission objectives. This SDP is applied to a submarine whose goal is to detect one or
several targets, or/and to minimize its own detection range perceived by the other targets. To do this,
discretisation grids that are dynamic and concentrated at most probable positions of the targets are
used. The costs only depend on the submarine and target relative positions and some fixed parame-
ters. In this article, the target is not equal to a line. However, in our research the costs depend on the
relative position of the state of the system from the line where all surgeries are equally divided over the
surgeons.
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Chapter 3

Context analysis

Different tasks are done by transplant surgeons. Section 3.1 describes which tasks must be scheduled.
These tasks are scheduled for a surgeon when a switching moment occurs. The switching moments
are described in Section 3.2. Last, the fixed structure of scheduling the organ removal shift is discussed
in Section 3.3.

3.1 Tasks

The tasks done by transplant surgeons are shown below. At each shift, one surgeon should be sched-
uled.

• T1: This is the transplant shift from 18:00 till 8:00 o’clock on weekdays and is done by the same
surgeon the whole week. During this shift, the transplant surgeon works in the night and is home
during the day. The weekend T1 shift is from Saturday 8:00 o’clock till Monday 8:00 o’clock. During
this shift in the morning, the surgeon visits inpatients and the surgeon is available for emergency
cases. After this shift, on Monday no task can be scheduled because it is not known how busy the
shift was.

• T2: This is the reserve transplant shift. Some surgeries must be done with two surgeons, so also
two surgeons should be available to do this operation at every moment in time. It is also possible
that the surgeon of the T1 shift is busy and the surgeon of T2 must fill in. This shift is from 22:00
o’clock till the next day 22:00 o’clock. One surgeon is scheduled at this shift for the whole weekend.
So, this surgeon starts at Friday 22:00 o’clock and is scheduled at the T2 shift till Sunday 22:00
o’clock. By scheduling shifts, we want to minimize the number of switching moments between
surgeons, because information can be lost by switching from surgeon. However, this shift is a 24h
shift and therefore this shift should not be scheduled too long for the same surgeon. Therefore,
this shift is scheduled two or three days for the same surgeon. It is also possible to schedule this
shift four days for the same surgeon, but this is not preferred.

• Td: This is the transplant shift during the day, from 8:00 o’clock till 18:00 o’clock. The continuity
of this shift is not important, so it can be done by another surgeon every day. Supervising the
intensive care is also part of the shift. This shift is only scheduled during weekdays.

• M1: This is the organ removal shift. This shift is done together with the transplant team of the
Erasmus MC. One week this shift is done by the transplant team of the Erasmus MC and the other
week this shift is done by the transplant team of the LUMC. The M1 and M2 shift is at the same
time done by the same transplant team. So, one week M1 and M2 are done by the transplant
team of the Erasmus MC and the other week these shifts are done by the transplant team of the
LUMC. The shift starts at Friday 12:00 o’clock and ends the next Friday 12:00 o’clock. The switch
between surgeons of the LUMC is at 22:00 o’clock. The start and switch moments of this shift
are fixed. When the organ removal shift should be scheduled, one surgeon starts with the M1
shift on Friday and this surgeon is scheduled at this task till Sunday. The next surgeon starts on
Sunday evening and is scheduled till Tuesday. The last surgeon starts on Tuesday evening and
is scheduled till Friday at the M1 shift. One of the surgeons of the M1 or M2 shift should be
multi-organ donation (MOD) certified.

• M2: This shift is the same as the M1 shift.
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The following tasks should also be scheduled. At each of these tasks, one surgeon should be sched-
uled. These tasks should be scheduled on weekdays.

• Hpb: This is the chef Hpb. Hpb is a department for the liver, pancreas, bile duct and gallbladder.
During this task phone calls are answered on these subjects and inpatients are visited. This shift
is not considered heavy and is regularly combined with the T2 shift.

• Ch: chef ward. This is the same as the chef Hpb, but for the transplant department.

While the schedule of the tasks described above is made per quarter, the next tasks are not scheduled
until three weeks before they take place.This is because the shifts are more important. But these tasks
could be scheduled at the same time as the shifts.

• Outpatient clinic (OC): This is at Monday, Tuesday, and Wednesday. Every Monday two surgeons
should be scheduled at the outpatient clinic and the surgeon with the Hpb task also has outpatient
clinic. At Tuesday and Wednesday, the surgeon with Ch task has outpatient clinic and no other
surgeons are scheduled at the outpatient clinic.

• Operating room (OR): This is at Wednesday, Thursday, and Friday. During these days two sur-
geons should be scheduled at the operating room. Per two weeks one day is OR reduction. So,
during this day no operations can be scheduled. This OR reduction day is not fixed and is known
a few weeks in advance. When the OR task is scheduled during the quarter schedule, the OR
task should be scheduled an Wednesday, Thursday and Friday, because we do not know when
the OR reduction days are.

The following tasks are scheduled for the whole surgery department. So, a transplant surgeon can be
scheduled at this task, but also another surgeon can do this task. These tasks are scheduled after the
other tasks are scheduled. So, these tasks are not considered when the other tasks for the transplant
surgeons are scheduled.

• CVD: This is the surgeon of the day. This task can be combined with other tasks. During this task,
the surgeon answers phone calls.

• Front guard surgery: This shift is from 18:15 till 23:00 o’clock. When this task is done by a
transplant surgeon, the surgeon with the T1 shift has this task.

3.2 Switching moments

A switching moment of a task is the moment another surgeon is scheduled for this task. The switching
moments have fixed times. These moments are shown in Figures 3.1 – 3.8. These figures show when
the tasks should be scheduled. This is the case when a block is filled. When the pattern of a block
changes another transplant surgeon can be scheduled. The figures are from the first Friday the organ
removal shifts should be scheduled (Figure 3.1) till the last Friday of an organ removal shift week (Figure
3.8). We will now look at the shifts during these days in more detail.

• First Friday organ removal week
We start with the first Friday of an organ removal shift week shown in Figure 3.1. We see that
the outpatient clinic is not scheduled during this day and the organ removal shift starts at 12:00
o’clock. No other tasks than the Hpb task can be scheduled for the surgeon that starts with the
organ removal shift. This is because of the compensation of the organ removal shift. The pattern
of the T2 shift changes at 22:00 o’clock. Therefore, at Friday 22:00 o’clock is a switching moment
of the T2 shift. This does not mean that another surgeon must be scheduled, but it is possible to
schedule another surgeon.

Figure 3.1: The shifts on Friday when the organ removal shifts start.
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• Saturday
In Figure 3.2 the shifts scheduled during Saturday are shown. We see that during the weekends
only the T1, T2 and M shifts are scheduled. One switching moment occurs during Saturday. This
switching moment is at 8:00 o’clock at the T1 shift.

Figure 3.2: The shifts on Saturday when the organ removal shifts must be scheduled.

• Sunday
In Figure 3.3 the shifts scheduled on Sunday are shown. We see that the same shifts are sched-
uled as on Saturday. We can also see that a shift is scheduled for the whole weekend if a shift
is scheduled at Saturday, because no switching moments occur between Saturday morning and
Sunday evening. On Sunday evening the T2 shift has a switching moment at 22:00 o’clock.

Figure 3.3: The shifts on Sunday when the organ removal shifts must be scheduled.

• Monday
In Figure 3.4 the shifts scheduled on Monday are shown. We see that the operating room is not
scheduled on Monday, but all other tasks are. We can also see that the weekend T1 shift ends at
Monday 8:00 o’clock and at 18:00 o’clock another surgeon is scheduled at the T1 shift. The M
shift has a switching moment at 12:00 o’clock and the T2 shift also has a switching moment on
Monday. This switching moment is at 22:00 o’clock. While the weekend M shifts ends at Monday
12:00 o’clock, the surgeon cannot be scheduled at another task this day. This is because this
surgeon has compensation of this shift during the rest of the day. Also, the surgeon that starts on
12:00 o’clock with the M shift cannot be scheduled at another task on this day, because of the
compensation for this shift.

Figure 3.4: The shifts on Monday when the organ removal shifts must be scheduled.

• Tuesday
In Figure 3.5 the shifts scheduled on Tuesday are shown. We see that the operating room is not
scheduled on Tuesday. The surgeon with the Ch task has also outpatient clinic. Therefore, the
outpatient clinic has the same pattern in the blocks on Tuesday as the Ch task. Another surgeon
can be scheduled at the Td shift on Tuesday than on Monday. The same thing holds for the Hpb
and Ch tasks. The T2 shift has a switching moment on Tuesday 22:00 o’clock.
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Figure 3.5: The shifts on Tuesday when the organ removal shifts must be scheduled.

• Wednesday
In Figure 3.6 the shifts scheduled on Wednesday are shown. The surgeon with the Ch task has
outpatient clinic. Therefore, the pattern in the blocks of the outpatient clinic and the Ch task are
the same. The Td shift, Ch task, and Hpb tasks can be done at Wednesday by another surgeon
than on Tuesday. Also, the M shift has a switching moment at 12:00 o’clock and the T2 shift has a
switching moment on Wednesday at 22:00 o’clock. While the M shift that starts at Monday ends
at Wednesday 12:00 o’clock, the surgeon cannot be scheduled at another task on Monday. This
surgeon has compensation of this shift during the rest of the day. Also, the surgeon that starts on
12:00 o’clock with the M shift cannot be scheduled at another task on this day, because of the
compensation for this shift.

Figure 3.6: The shifts on Wednesday when the organ removal shifts must be scheduled.

• Thursday
In Figure 3.7 the shifts scheduled on Thursday are shown. We see that the outpatient clinic is
not scheduled on Thursday. The Td shift, Ch task, and Hpb tasks can be done at Thursday by
another surgeon than on Wednesday. Also, the T2 shift has a switching moment on Thursday at
22:00 o’clock.

Figure 3.7: The shifts on Thursday when the organ removal shifts must be scheduled.

• Last Friday organ removal week
In Figure 3.8 the shifts scheduled at the last Friday of the organ removal week are shown. We
see that the outpatient clinic is not scheduled on Friday. The Td shift, Ch task, and Hpb tasks can
be done at Friday by another surgeon than on Thursday. The organ removal shift ends at 12:00
o’clock and the T2 shift has a switching moment on Friday at 22:00 o’clock. The surgeon sched-
uled at the organ removals shift cannot be scheduled at another task during this day, because of
the compensation of the organ removal shift.

Figure 3.8: The shifts on the last Friday of the the organ removal shift week.
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• Combine T1 and Td shift
During a vacation period, it can be decided to combine the T1 and Td shifts during weekdays.
The surgeon scheduled at this combination must be available from 22:00 o’clock till 22:00 o’clock
the next day. Therefore, the switching moments change when these shifts are combined. The
switching moments, in this case, are the same as the switching moments of the T2 shift described
above. Therefore, the T1 shift is not scheduled for the same surgeon the whole week and we do
not have this continuity. Nevertheless, we have no transfer moment between the T1 and Td shift.
Therefore, we do have more continuity during a day.

3.3 Scheduling organ removal shift

The organ removal shift has a fixed structure as shown in Section 3.2. This structure is new and is made
by the zut (‘zelfstandige uitname teams’). Therefore, this structure must be used in the Netherlands.
This structure is made, because surgeons where not always fit during the organ removal shift. Before
this structure, no rules were used for scheduling the organ removal shift. Therefore, some surgeons
where scheduled a whole week at the organ removal shift, while this shift is a 24h shift. The goal of this
structure is to have fit surgeons scheduled at the organ removal shift.

However, this structure leads to challenges with scheduling the organ removal shift. This is shown
in Table 3.1. This table shows the number of surgeons that should be scheduled at the organ removal
shift per day during two weeks. We see that the differences between the number of surgeons scheduled
during a day during week one or two is at least equal to two, except for Friday. The Friday is the only day
without differences in the number of surgeons that must be scheduled. The difference of two surgeons
cannot be reduced by using another structure of scheduling the organ removal shift, when this shift
should be scheduled every other week and two surgeons should be scheduled. However, the difference
in the number of surgeons that must be scheduled on Monday and Wednesday during an organ removal
shift week and no organ removal shift week is four surgeons. This difference is a result of the structure,
because two surgeons are scheduled during the morning on these days and have compensation during
the rest of the day and two surgeons are scheduled from 12:00 o’clock and have compensation the rest
of the day.

Also, the fixed consecutive days that must be scheduled can lead to more shortages on the organ
removal shift. The surgeons have a fixed day of the week a non-clinical day (no tasks can be scheduled
during this day) and the organ removal shift block that contains this day cannot be scheduled for this
surgeon. While without this structure, the organ removal shift can only not be scheduled during the
non-clinical day.

Table 3.1: The number of surgeons scheduled at the organ removal shift per day during two weeks.
Week one is the week where no organ removal shift is scheduled and during week two the organ
removal shift is scheduled.

Day Number of surgeons scheduled
Week one Week two

Monday 0 4
Tuesday 0 2
Wednesday 0 4
Thursday 0 2
Friday 2 2
Saturday 2 0
Sunday 2 0
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Chapter 4

Model for scheduling tasks

This chapter formulates a model for scheduling the different tasks over the transplant surgeons as
described in Chapter 3. These tasks are scheduled per day over the surgeons during a quarter. The
schedule must fulfill various conditions. For example, not every surgeon can be scheduled at every
task, some tasks are scheduled for multiple days at once etcetera. The schedule is made in such a way
that the shortages are minimized. The shortages are the tasks that are not scheduled, but should be
scheduled. Not only the shortages are minimized, also the number of times one surgeon is scheduled
at multiple tasks, the difference between the number of tasks scheduled per surgeon etcetera. This is
done by formulating an integer linear program. First, Section 4.1 describes integer linear programming.
Then, Section 4.2 shows the notation used. Section 4.3 shows the conditions for the variables; this is
when the variables are created and when not. Section 4.4 shows the constraints and Section 4.5 the
objective function. The complete model is shown in Appendix A. Section 4.6 describes how we get a
schedule from the solution of the ILP and Section 4.7 describes three models to schedule the organ
removal shift differently.

4.1 Integer Linear Programming (ILP)

A linear program (LP) is a mathematical optimization problem of the following form: [Bertsimas and
Tsitsiklis, 1998]

min CT · x
s.t. A · x ≤ B

xj ≥ 0 ∀j
(4.1)

The matrix A and vectors B,C are given and x1, . . . , xn are decision variables. The LP is an integer
linear program (ILP) if x ∈ Zd. An x is called a feasible solution of (4.1) if it fulfills all constraints and
it is called an optimal solution if it minimizes CT · x among all feasible solutions. CT · x is called the
objective function. In the remainder of this chapter, we will formulate an ILP for scheduling the different
tasks over the surgeons.

4.2 Notation

This section describes the notation used for the model for scheduling the tasks over the transplant
surgeons. First, the basic notation is described. The notation for the different shifts and other tasks is
shown below. The two organ removal shifts are combined in the M shift. The two shifts are the same,
so this can also be done by scheduling two surgeons at the M shift.

Notation Task
T1 Transplant shift
T2 Transplant shift backup
Td Transplant shift during the day
M Organ removal shift
Ch Chef department
Hpb Chef hpb
OC Outpatient clinic
OR Operating room
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Also, some notation is used for the days during a week. Each day of the week has a number as shown
below. This is done because some constraints only hold for particular days.

Notation Day of the week
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday

Now that the basic notation is introduced, the sets, variables and parameters can be described. This is
done by respectively Section 4.2.1, 4.2.2 and 4.2.3.

4.2.1 Sets

The sets used are shown below. First, the set of all tasks that should be scheduled is shown, then the
set of the surgeons who can do the tasks or a part of the tasks. Last, the set of the week numbers and
the set of the day numbers is shown. These sets contain numbers corresponding to weeks/days for
which tasks should be scheduled. The length of the set depends on the horizon of the schedule. So,
when we want to schedule tasks during a quarter (13 weeks), the set of week numbers consist of the
numbers 1 till 13 and the set of the day numbers consist of the numbers 1 till 91.

Set Description Index

T = {T1, T2, Td,M,Ch,Hpb,OC,OR} Tasks t
S = {s1, . . . , s|S|} Surgeons s
W = {w1, . . . , w|W |} Week numbers w
D = {d1, . . . , d|W |·7} Day numbers d

4.2.2 Variables

This section describes the variables used in the model for scheduling the different tasks. First, the
decision variables are described and then the state variables. The decision variables are the variables
corresponding to the decisions that must be made, and the state variables are the variables following
from the decision variables.

Decision variables

The decisions that must be made are which surgeon is scheduled at which task during a day. This is
done with the variables shown below. This variable indicates when a particular task is scheduled for a
particular surgeon during a day. When a task is scheduled for some surgeon during a day, the variable
is equal to one. When the task is not scheduled for the surgeon during the day, the variable is equal
to zero. Some tasks are scheduled for more days at once. For example the organ removal shift is
scheduled from Friday till Monday. In this case we only schedule the start moment of this task (Friday)
and we know that this shift also is scheduled during Saturday till Sunday. By doing this, fewer decisions
have to be made by the model.

xs,t,d =

{
1 if surgeon s starts with task t at day d
0 otherwise

State variables

The state variables are shown below. To indicate when two tasks are combined the first four variables
are used. By combining tasks we mean that one surgeon is scheduled at both tasks. When tasks
are combined the number of shortages can decrease. However, we want to minimize the number of
combinations. Therefore, we have to know when tasks are combined. Some combinations are less
desirable than other combinations and therefore we also want to know which tasks are combined. This
is done with the first variable for the chef Hpb and the T2 shift.
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The second one indicates when the Hpb task is combined with the M shift. The third one indicates
when the Hpb task is combined with the Ch task and the fourth one when the T2 shift is combined
with the operating room task. The fifth variable indicates if other combinations are made. By other
combinations we mean other combinations than described above from the chef tasks, the T2 shift and
the Td. These combinations are less desirable than the combinations described above, but are possible
to reduce the number of shortages. When necessary these tasks can be scheduled at one surgeon, but
also a part of these tasks can be scheduled at one surgeon. The last variable indicates if these other
combinations are made during a day. This is because we also want to minimize the number of days
other combinations are needed to reduce the shortages.

yd =

{
1 if one surgeon is scheduled at the tasks Hpb and T2 shift at day d
0 otherwise

wd =

{
1 if one surgeon is scheduled at the tasks Hpb and M shift at day d
0 otherwise

ud =

{
1 if one surgeon is scheduled at the tasks Hpb and Ch at day d
0 otherwise

zd =

{
1 if one surgeon is scheduled at the T2 shift and OR at day d
0 otherwise

mcd,t,t′ =


1 if one surgeon is scheduled at the t task and the t′ task at day d

t, t′ ∈ {Ch,Hpb, T2, Td}
0 otherwise

mcdd =

{
1 if mcd,t,t′ > 0 for some t, t′

0 otherwise

The following two variables indicate if a surgeon is scheduled at the Hpb/Ch task. This is used to
minimize the number of different surgeons scheduled at these tasks. For the continuity of a department
it is undesired that five different surgeons are scheduled on the Ch task during one week. The same
thing holds for the Hpb task. Therefore, the number of different surgeons that are scheduled on the Ch
task during a week is minimized. The same thing is done for the Hpb task.

ihs,w =

{
1 if surgeon s is scheduled at the Hpb task at week w
0 otherwise

ics,w =

{
1 if surgeon s is scheduled at the Ch task at week w
0 otherwise

When many surgeons are on holiday during a week, the organ removal shift can be scheduled from
Friday till Monday and from Monday till Friday. Therefore, the switching moment on Wednesday expires.
The next variable indicates when this happens. This variable is used, because we want to minimize the
number of times this is happening.

lmw =

{
1 if the M shift is scheduled from Monday till Friday at week w
0 otherwise

A weekend T2 shift can be scheduled before a week T1 shift, but preferably not because the weekend
T2 shift is a 24h shift and the T1 shift is a week night shift. The variable shown below indicates if the
T2 weekend shift is scheduled before a week T1 shift during a week.

wkw =

{
1 if the T2 weekend shift is scheduled before a week T1 shift at week w
0 otherwise

The T2 shift can be scheduled for four days consecutively at the same surgeon, but at most three days
consecutive T2 shift is preferred. This is because the T2 shift is a 24h shift. The variable shown below
is used to indicate when the T2 shift is scheduled four days consecutively. By using this variable we
can minimize the number of times that the T2 shift is scheduled for four days consecutive for the same
surgeon.

fdd =


1 if the T2 shift is scheduled for four days consecutively at the same surgeon,

starting at day d
0 otherwise
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Also, at the boundary (the beginning of the schedule) must be indicated when four days consecutive T2
shift is scheduled. This is done with the two variables shown below.

fdm =

{
1 if on the first Monday the fourth consecutive day T2 shift is scheduled for some surgeon
0 otherwise

fdtu =

{
1 if on the first Tuesday the fourth consecutive day T2 shift is scheduled for some surgeon
0 otherwise

The variables shown below are the maximum number of days a surgeon is scheduled at a certain task
and maximum total number. The first variable is used to equally divide the number of days a surgeon is
scheduled at some task over the surgeons. The second variable is used to equally divide workload. By
doing this not always the same surgeon has multiple tasks at one day.

mdst ∈ R+ ∪ {0} maximum number of days scheduled at task t
md ∈ R+ ∪ {0} maximum total number of tasks scheduled

To ensure a feasible solution exists even when some tasks cannot be scheduled, a dummy variable is
used. When the dummy variable is equal to one for some task and day, one surgeon fewer than needed
is scheduled at this tasks at this day. The maximum value the dummy variable can take is the number
of surgeons that should be scheduled at the task. When enough surgeons are scheduled, the dummy
variable has value zero.

dt,d ∈ [0,MAXt] number of surgeons fewer than needed scheduled

Also, a dummy variable is used for the constraint that always an MOD certified surgeon is scheduled
when the organ removal shift must be scheduled. The dummy variable used for this is shown below.

dmd =


1 if no MOD certified surgeon can be scheduled during day d and

the M shift should be scheduled
0 otherwise

For the constraints that always a senior surgeon is available at the transplant shifts and every week
an hpb surgeon is scheduled at the operating room also dummy variables are used. These are shown
below.

dsd =


1 if no senior surgeon can be scheduled during day d at

a transplant shift
0 otherwise

dhpbw =

{
1 if no hpb surgeon can be scheduled at the operating room during week w
0 otherwise

4.2.3 Parameters

This section describes the parameters used in the model for scheduling the tasks. The parameters con-
tain information that is known before the schedule is made. For example, the days off for the surgeons.
This information is needed for the constraints.

The first parameter is used to indicate if a surgeon is MOD certified. One of the surgeons sched-
uled for the organ removal shifts should be MOD certified every day this task should be scheduled. This
is done by using the parameters shown below. The first parameter indicates if the surgeon is MOD
certified during the whole schedule. If the surgeon is not MOD certified during the whole schedule, the
second parameter can be used to indicate which days the surgeon is MOD certified.

MODs =

{
1 if surgeon s is MOD certified
0 otherwise

MODCs,d =

{
1 if surgeon s is MOD certified during day d
0 otherwise
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Also for scheduling the transplant surgeons we need information about the surgeons. A surgeon can
be a junior surgeon. It is not possible that both surgeons who are scheduled at the same time at the
transplant shift are junior surgeons. Therefore, the parameter shown below is used. This parameter
indicates if a surgeon is a junior surgeon.

JRs =

{
1 if surgeon s is a junior
0 otherwise

For scheduling the operating room we also need information about the surgeons. One day per week hpb
surgeries are scheduled. For these hpb surgeries hbp surgeons must be scheduled. Therefore, every
week at least one hpb surgeon must be scheduled at the operating room. To indicate which surgeons
are hpb surgeons the parameter shown below is used.

HPBs =

{
1 if surgeon s is an hpb surgeon
0 otherwise

Some surgeons cannot handle a whole week of night shifts (T1 shift) well. Therefore, these surgeons
can do more weekend T1 shifts. During a weekend T1 shift, the shift is not only during the night but also
during the day. The weekend shift starts at Saturday morning and ends at Monday morning, where the
week night shift is five consecutive days. The next parameter indicates if a surgeon prefers weekend
shifts over week shifts, because the surgeon cannot handle a whole week of night shifts well.

FWT1s =

{
1 if surgeon s cannot handle well a whole week (Monday till Friday) night shifts
0 otherwise

Every surgeon has a non-clinical day during the week. During the non-clinical day no tasks are sched-
uled for this surgeon. This non-clinical day is usually on the same day of the week. The parameter
shown below indicates the standard non-clinical day of a surgeon.

NCDs =



1 if surgeon s has a non-clinical day on Monday
2 if surgeon s has a non-clinical day on Tuesday
3 if surgeon s has a non-clinical day on Wednesday
4 if surgeon s has a non-clinical day on Thursday
5 if surgeon s has a non-clinical day on Friday
−1 if it is not important when surgeon s has a non-clinical day

The non-clinical days can also be changed. For a new non-clinical day, the parameter shown below is
used.

ENCDs,d =

{
1 if surgeon s has an extra non-clinical day at day number d
0 otherwise

When the standard non-clinical day is not a non-clinical day at a day, the parameter shown below is
used.

NNCDs,d =

{
1 if surgeon s has no non-clinical day at day number d
0 otherwise

The organ removal shift is the first and last day half a day. Therefore, some surgeons do not have
a problem with the fact that this is scheduled during their non-clinical day. This is indicated with the
parameters shown below. The first one is for a morning organ removal shift (end of the organ removal
shift) and the second one for an afternoon organ removal shift (start of the organ removal shift).

MONCDs,d =


1 if surgeon s does not have a problem with a morning organ removal shift during

his/her non-clinical day during day d
0 otherwise

MNCDs,d =


1 if surgeon s does not have a problem with an afternoon organ removal shift

during his/her non-clinical day during day d
0 otherwise

We also have to take into account where the different surgeons can be scheduled. Not all surgeons
can be scheduled at all tasks. The parameter shown below indicates which tasks can be scheduled for
each surgeon.

TSs,t =

{
1 if surgeon s can be scheduled at task t
0 otherwise
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Surgeons can go to a congress or go on holiday. During these days no tasks can be scheduled. This is
done with the parameter shown below.

Vs,d =

{
1 if surgeon s is on holiday or congress at day d
0 otherwise

Sometimes a surgeon can do the start or the end of the organ removal shift during the day off. This is
indicated with the parameters shown below. The first one for the start of the organ removal shift and the
second one for the end of the organ removal shift.

MVs,d =


1 if surgeon s is on holiday or congress at day d and can start the organ removal

shift during this day
0 otherwise

MOVs,d =


1 if surgeon s is on holiday or congress at day d and can end the organ removal

shift during this day
0 otherwise

It is also possible that a surgeon does not want to do shifts during a day. During this day, only tasks
during office hours can be scheduled. Also, an organ removal shift can be scheduled during a day when
the surgeon does not want to do shifts, but only the morning can be scheduled. When a surgeon does
not want to do shift on Friday, this surgeon can be scheduled at the organ removal shift from Wednesday
till Friday. This is done with the parameter shown below.

Gs,d =

{
1 if surgeon s does not want to do shifts at day d
0 otherwise

During a vacation period, it can be decided that the T1 and Td shifts are combined. In this case, one
surgeon is scheduled for both tasks. By doing this, one surgeon fewer is needed per day. To indicate
when these shifts are combined, the parameter shown below is used.

COMBw =

{
1 if the T1 and Td shifts are combined during week w
0 otherwise

The organ removal shifts are scheduled every other week. So, the weeks that this shift must be sched-
uled must be indicated. This is done with the parameter shown below. This parameter is equal to one
if the whole first week the organ removal shift should be scheduled and zero if the whole second week
the organ removal shift should be scheduled.

MW =

{
1 if the first Monday of the schedule the organ removal shifts must be scheduled
0 if the second Monday of the schedule the organ removal shifts must be scheduled

When some tasks are already fixed, this can be filled in the following parameter. This can be done at the
start moments of the tasks. Tasks are for example fixed for surgeons who only are doing organ removal
shifts and have another speciality than transplantation.

Xs,t,d =

{
1 if surgeon s must be scheduled at task t at day number d
0 otherwise

The public holidays can be indicated with the parameter shown below. During public holidays only the
shifts that are done during weekends must be scheduled.

PHd =

{
1 if day d is public holiday
0 otherwise

When the public holiday is Christmas, this is indicated with the parameter shown below. During Christ-
mas no surgeon can be scheduled both days at the same task.

CHRISTMASd =

{
1 if day d is Christmas
0 otherwise

The maximum value of the dummy variable is the number of surgeons needed for a task. The maximum
value of the dummy variable per task is shown below.

MAXt =

{
1 if t ∈ {T1, T2, Td, Ch,Hpb}
2 if t ∈ {M,OC,OR}
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To distribute the tasks over the surgeons such that the workload is equally divided, the number of days
a surgeon has done a certain task must be included. In this case, not only the tasks are equally divided
during the schedule, but it considers the period before the start date of the schedule. This is done with
the parameter shown below. This is the number of days a surgeon already has done a certain task.

DTs,t ∈ N number of days surgeon s has done task t

To determine the importance factor of equally dividing tasks over surgeons, we need to know how many
days the different tasks are scheduled during the schedule. This is done with the following parameter.
We say that the tasks is scheduled two days when a task is scheduled for two surgeons at one day.

DTSt ∈ N number of days task t must be scheduled

Some parameters are used to ensure the conditions also hold at the boundary (the beginning of the
schedule). These parameters contain information of the schedule before the start date of the new
schedule. The parameter shown below indicates if the surgeon has done a shift at the last weekend
before the start date.

WBs =

{
1 if surgeon s has done a shift in the last weekend before this schedule
0 otherwise

The next parameter indicates if the surgeon has done a shift in the second-last weekend before the start
date.

WBTs =

{
1 if surgeon s has done a shift in the second-last weekend before this schedule
0 otherwise

The parameter shown below indicates if the surgeon has done a T1 shift in the last week before the
start date.

TWBs =

{
1 if surgeon s has done T1 shift in the last week before this schedule
0 otherwise

The parameter shown below indicates if the surgeon has done an T1 shift in the last weekend before
the start date.

TWs =

{
1 if surgeon s has done the T1 shift in the last weekend before this schedule
0 otherwise

The parameter shown below indicates if the surgeon has done an M shift in the last weekend before
the start date.

WBMs =

{
1 if surgeon s has done the M shift in the last weekend before this schedule
0 otherwise

To ensure not more than four days consecutive T2 is scheduled at the boundary, the parameter shown
below is used for the number of consecutive days a surgeon has done T2 shift before the schedule.

NDs ∈ {0, 1, 2, 3, 4} number of consecutive days T2 before schedule

When the T1 shift is combined with the Td shift, not more than three consecutive days T1 shift can be
scheduled for the same surgeon. To ensure this holds at the boundary, the parameter shown below is
used for the number of consecutive days a surgeon has done T1 shift before the schedule.

NDTs ∈ {0, 1, 2, 3} number of consecutive days T1 before schedule

4.3 Conditions for creating variables

Not all variables are used for all combinations of the indices. The variables are not created for the
combinations that are not possible. By doing this, the model does not have to take into account these
variables and the solving time is smaller. For example, when a surgeon has a day off this surgeon
cannot be scheduled. Therefore, we do not create the decision variables to schedule this surgeon
during his/her day off. Also, when a surgeon cannot be scheduled at the Ch task, we do not have
to look if this surgeon is scheduled during a week at the Ch task, because we know that this is not
possible. Section 4.3.1 shows the constraints for the variable that indicates if a surgeon is scheduled
at the Hpb/Ch task during a week, Section 4.3.2 shows the conditions for the variable that shows the
maximum number of days a surgeon is scheduled at a task, Section 4.3.3 for the variables for combining
different tasks, Section 4.3.4 for the variables for scheduling the different tasks and Section 4.3.5 for the
dummy variable.
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4.3.1 Surgeon scheduled at Hpb/Ch

A surgeon can only be scheduled at theHpb task during a week if a surgeon can do this task. Therefore,
if a surgeon cannot be scheduled at the Hpb task, this surgeon is not taken into account in indicating
how many different surgeons are scheduled at this task during a week. This is done with constraint
(4.2). The same thing holds for the Ch task. This is done with constraint (4.3).

ihs,w = 0 ∀s, w st TSs,Hpb = 0 (4.2)
ics,w = 0 ∀s, w st TSs,Ch = 0 (4.3)

4.3.2 Maximum number of days at a task

Only the tasks T1, T2, M and OR must be distributed equally over the surgeons, all other tasks not.
Therefore, we do not have to determine the maximum number of days a surgeons is scheduled at the
other tasks. This is done with constraints (4.4).

mdst = 0 ∀t ∈ {Td,Hpb, Ch,OC} (4.4)

4.3.3 Variables for combining tasks

TheHpb task and T2 shift can only be combined during weekdays. Therefore, the variable that indicates
if these tasks are combined is equal to zero during the other days. This is done with constraint (4.5).

yd = 0 ∀d st d mod 7 ∈ {0, 6} (4.5)

The Hpb task and the M shift can only be combined when the M shift starts at 12:00 o’clock (first
Friday of organ removal shift, Monday of organ removal shift and Wednesday of organ removal shift).
Therefore, the variable that indicates if these tasks are combined is equal to zero during the other days.
This is done with constraint (4.6).

wd = 0 ∀d st d mod 14 /∈ {5 + 7 ·MW, 1 + 7 · (1−MW ), 3 + 7 · (1−MW )} (4.6)

The OR task and T2 shift can only be combined on Wednesday, Thursday, and Friday. Therefore, the
variable that indicates if these tasks are combined is equal to zero during the other days. This is done
with constraint (4.7).

zd = 0 ∀d st d mod 7 ∈ {0, 1, 2, 6} (4.7)

The Ch and Hpb tasks can be combined on Monday till Friday. Therefore, the variable that indicates if
these tasks are combined is equal to zero during the weekend. This is done with constraint (4.8).

ud = 0 ∀d st d mod 7 ∈ {0, 6} (4.8)

The day tasks and the T2 shift can only be combined during weekdays. This is done with constraint
(4.9). Also, only the T2 shift, the chef tasks and the Td shift can be combined. Therefore, the variable
is zero for all other combinations. This is done with constraints (4.10) and (4.11). We only take into
account the tasks when the t task is earlier in the set of the different tasks than the t′ task. This is done
because otherwise we would create two variables for each combination while we need only one. This
is done with constraint (4.12). Last, for the combinations which were already possible no extra variable
has to be created. This is done with constraint (4.13).

mcd,t,t′ = 0 ∀d, t, t′ st d mod 7 ∈ {0, 6} (4.9)
mcd,t,t′ = 0 ∀d, t, t′ st t ∈ {T1,M,OC,OR} (4.10)
mcd,t,t′ = 0 ∀d, t, t′ st t′ ∈ {T1,M,OC,OR} (4.11)
mcd,t,t′ = 0 ∀d, t, t′ st t ≺ t′ (4.12)
mcd,t,t′ = 0 ∀d, t, t′ st t′ = Hpb, t ∈ {T2, Ch} (4.13)

The combinations that can be made by variable mcd, t, t′ can only be done during weekdays. Therefore,
the variable that indicates which days these tasks are combined is equal to zero during the weekend.
This is done with constraint (4.14)

mcdd = 0 ∀d st d mod 7 ∈ {0, 6} (4.14)
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4.3.4 Variables for scheduling tasks

The variables for scheduling tasks do not have to be created for all combinations of indices for several
reasons. These are explained below.

Start moments
Only the start moments of the different tasks should be scheduled. When a shift starts at 22 : 00
o’clock, we say that the starting moment is the next day. When for example the T2 shift starts on
Tuesday 22:00 o’clock, the starting moment is on Wednesday. When a shift does not start at a
day, no surgeon has to be scheduled for this task at this day. So, no variable must be created for
this day and this task.

This is done with constraints (4.15) and (4.16) for the T1 shift. The T1 shift must be sched-
uled every day. However, the whole weekend this shift is done by the same surgeon. Therefore,
we say that the weekend shift has as starting moment Saturday and we do not schedule the Sun-
day, because we know that the surgeon scheduled on Saturday at the T1 task also is scheduled
on Sunday at this task. This is done with constraint (4.15). When the T1 shift is not combined
with the Td shift, this shift is done by the same surgeon from Monday till Friday. Therefore, we
only schedule this shift on Monday in this case. This is done with constraint (4.16). When the T1
shift is combined with the Td shift, every weekday we have a switching moment. Therefore, all
variables for scheduling the T1 shift during the week are created.

xs,T1,d = 0 ∀s, d st d mod 7 = 0 (4.15)
xs,T1,d = 0 ∀s, d st d mod 7 ∈ {2, 3, 4, 5}, COMBd d7 e

= 0 (4.16)

The T2 shift must always be scheduled. However, the T2 shift is the whole weekend done by
the same surgeon. Therefore, the surgeon that is scheduled for the T2 shift on Saturday is also
scheduled on Sunday. This shift is not scheduled on Sunday, because we know that the surgeon
who is scheduled on Saturday is also scheduled on Sunday. This is done with constraint (4.17)

xs,T2,d = 0 ∀s, d st d mod 7 = 0 (4.17)

The M shift only must be scheduled every other week. During a week that the M shift should
be scheduled, the first Friday, Monday, and Wednesday are the start moments. On Friday the
shift starts at 12:00 o’clock and ends on Monday 12:00 o’clock. When a surgeon is scheduled
on Monday on the M shift, this surgeon starts at 12:00 o’clock and is scheduled till Wednesday
12:00 o’clock. When a surgeon is scheduled on Wednesday on the M shift, the surgeon starts at
12:00 o’clock and is scheduled till Friday 12:00 o’clock. Therefore, the M shift only is scheduled
at these fixed switch moments. This is done with constraint (4.18).

xs,M,d = 0 ∀s, d st d mod 14 /∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW ),

5 + 7 ·MW} (4.18)

The Td, Ch and Hpb only must be scheduled during weekdays and not during the weekend. This
is done with constraint (4.19). The outpatient clinic only must be scheduled on Monday. This is
done with constraint (4.20). Last, the operating room must only be scheduled on Wednesday,
Thursday, and Friday. This is done with constraint (4.21).

xs,t,d = 0 ∀s, t, d st t ∈ {Td,Ch,Hpb}, d mod 7 ∈ {0, 6} (4.19)
xs,OC,d = 0 ∀s, d st d mod 7 ∈ {0, 2, 3, 4, 5, 6} (4.20)
xs,OR,d = 0 ∀s, d st d mod 7 ∈ {0, 1, 2, 6} (4.21)

During non-clinical day no task during the day
During the non-clinical day, no task, except the T1 shift, should be scheduled. Sometimes the
start of end of the organ removal shift can be scheduled during the non-clinical day if the surgeon
does not have problems with this. The non-clinical day is a fixed day of the week per surgeon.
It is possible the non-clinical day is changed, this can be done by the parameters ENCDs,d and
NNCDs,d. During the non-clinical day no other tasks than the T1 or M shift can be scheduled.
This is done with constraint (4.22) for the fixed non-clinical day per week and with constraint (4.23)
for the non-clinical days that are scheduled at another day.

xs,t,d = 0 ∀s, t, d st t /∈ {T1,M}, d mod 7 = NCDs, NNCDs,d = 0 (4.22)
xs,t,d = 0 ∀s, t, d st t /∈ {T1,M}, ENCDs,d = 1 (4.23)
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When the non-clinical day of a surgeon is during a day the whole day M shift is scheduled at the
same surgeon, this M shift cannot be scheduled for this surgeon. This is done with constraints
(4.24) and (4.25) for the second day of the M shift. So, a non-clinical day on Tuesday and the
M shift that starts on Monday and a non-clinical day on Thursday and the M shift that starts on
Wednesday. Constraint (4.24) is for the standard non-clinical day and constraint (4.25) for the
extra non-clinical days.

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ),

3 + 7 · (1−MW )}, (d+ 1) mod 7 = NCDs, NNCDs,d+1 = 0 (4.24)
xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW )},

ENCDs,d+1 = 1 (4.25)

TheM shift that starts on Monday can be scheduled when a surgeon has the standard non-clinical
day on Wednesday and has no problems with a Morning M shift during his/her non-clinical day.
This is done with constraint (4.26). When a surgeon has an extra non-clinical day on Wednesday,
the M shift that starts on Monday cannot be scheduled, unless the surgeon has no problems with
a Morning M shift. This is done with constraint (4.27). The M shift that starts on Wednesday can
be scheduled when a surgeon has the standard non-clinical day on Friday and has no problems
with a morning M shift during his/her non-clinical day. This is also done with constraint (4.26).
Constraint (4.27) does the same for an extra non-clinical day.

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW )},
(d+ 2) mod 7 = NCDs, NNCDs,d+2 = 0,MONCDs,d+2 = 0 (4.26)

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW )},
ENCDs,d+2 = 1,MONCDs,d+2 = 0 (4.27)

The M shift that starts on Friday ends on Monday. Therefore, this shift can only be scheduled if
the surgeon has no problems with a morning M shift during a non-clinical day on Monday or when
the surgeon does not have a non-clinical day on Monday. This is done with constraint (4.28) for
the fixed non-clinical day and with constraint (4.29) for the extra non-clinical day.

xs,M,d = 0 ∀s, d st d mod 14 = 5 + 7 ·MW, (d+ 3) mod 7 = NCDs,

NNCDs,d+3 = 0,MONCDs,d+3 = 0 (4.28)
xs,M,d = 0 ∀s, d st d mod 14 = 5 + 7 ·MW,ENCDs,d+3 = 1,MONCDs,d+3 = 0 (4.29)

The M shift can be scheduled when the surgeon does not have a non-clinical day during the start
day of this shift or this surgeon does not have problems with an afternoon M shift during his/her
non-clinical day. This is done with constraint (4.30) for the fixed non-clinical day and with constraint
(4.31) for the extra non-clinical day.

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW ), 5 + 7 ·MW},
d mod 7 = NCDs, NNCDs,d = 0,MNCDs,d = 0 (4.30)

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW ), 5 + 7 ·MW},
ENCDs,d = 1,MNCDs,d = 0 (4.31)

Shifts that can be done per surgeon
When a surgeon cannot do a task, this surgeon-task combination can never be scheduled. This
is done with constraint (4.32).

xs,t,d = 0 ∀s, t, d st TSs,t = 0 (4.32)

Holiday or congress
When a surgeon is on holiday or at congress, the surgeon cannot be scheduled at tasks during
this day. First, this is done for weekdays. Then for the weekend days.

• Weekdays
The start moment of the organ removal shift cannot be scheduled if a surgeon has a day off
during the days belonging to this start moment. However, the first or last day of the organ
removal shift can be scheduled if the surgeon has indicated that this is possible. This is done
with constraints (4.33) – (4.37).
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On Friday, Monday and Wednesday the organ removal shift cannot be scheduled if the sur-
geon has a day off and the surgeon cannot be scheduled for an afternoon at the organ
removal shift during the start day. This is done with constraint (4.33).

xs,M,d = 0 ∀s, d st d mod 14 ∈ {5 + 7 ·MW, 1 + 7 · (1−MW ),

3 + 7 · (1−MW )}, Vs,d = 1,MVs,d = 0 (4.33)

The organ removal shift can also not be scheduled on Friday, Monday or Wednesday if the
surgeon has a day off the next day. This is done with constraint (4.34).

xs,M,d = 0 ∀s, d st d mod 14 ∈ {5 + 7 ·MW, 1 + 7 · (1−MW ),

3 + 7 · (1−MW )}, Vs,d+1 = 1 (4.34)

When the surgeon has a day off on Sunday, the organ removal shift that starts on Friday
cannot be scheduled for this surgeon. This is done with constraint (4.35).

xs,M,d = 0 ∀s, d st d mod 14 = 5 + 7 ·MW,Vs,d+2 = 1 (4.35)

When the surgeon has a day off on Wednesday, the organ removal shift that starts on Monday
can only be scheduled if the surgeon has indicated that the surgeon can be scheduled for
the organ removal shift on Wednesday morning. The same thing holds for scheduling the
organ removal shift on Wednesday when the surgeon has a day of on Friday. This is done
with constraint (4.36).

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ),

3 + 7 · (1−MW )}, Vs,d+2 = 1,MOVs,d+2 = 0 (4.36)

The organ removal shift that starts on Friday ends on Monday. Therefore, this organ removal
shift cannot be scheduled if a surgeon has a day of on Monday and cannot be scheduled on
Monday morning at the organ removal shift. This is done with constraint (4.37).

xs,M,d = 0 ∀s, d st d mod 14 = 5 + 7 ·MW,Vs,d+3 = 1,MOVs,d+3 = 0 (4.37)

Tasks can also not be scheduled when a surgeon has a day off during the start moment for
other tasks than the organ removal shift. This is done with constraint (4.38).

xs,t,d = 0 ∀s, t, d st t 6=M,d mod 7 ∈ {1, 2, 3, 4, 5}, Vs,d = 1 (4.38)

The T1 shift is scheduled from Monday till Friday for the same surgeon if the T1 shift and Td
shift are not combined. Therefore, this shift cannot be scheduled if the surgeon has a day off
during a week. This is done with constraints (4.39) (day off on Tuesday)– (4.42) (day off on
Friday).

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Vs,d+1 = 1, COMBd d7 e
= 0 (4.39)

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Vs,d+2 = 1, COMBd d7 e
= 0 (4.40)

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Vs,d+3 = 1, COMBd d7 e
= 0 (4.41)

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Vs,d+4 = 1, COMBd d7 e
= 0 (4.42)

• Weekend days
When a surgeon has a day off during the weekend, no weekend shifts can be scheduled.
This is done with constraints (4.43).

xs,t,d = 0 ∀s, t, d st t ∈ {T1, T2}, d mod 7 = 6, Vs,d + Vs,d+1 ≥ 1 (4.43)

Public holiday
During public holidays only the shifts that are done during weekends must be scheduled (M , T1
and T2). All other tasks are not scheduled. This is done with constraint (4.44).

xs,t,d = 0 ∀d, t st t ∈ {Td,Ch,Hpb,OC,OR}, d mod 7 ∈ {1, 2, 3, 4, 5}, PHd = 1 (4.44)

No shifts
When a surgeon does not want to do shifts during a day, no shifts should be scheduled. First, this
is done for the weekdays. Then for the weekend days.
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• Weekdays
When a surgeon does not want to do shifts during a day, the T1, T2 and M shift cannot be
scheduled for this surgeon. This is done with constraint (4.45).

xs,t,d = 0 ∀s, t, d st t ∈ {T1, T2,M}, d mod 7 ∈ {1, 2, 3, 4, 5}, Gs,d = 1 (4.45)

The organ removal shift is scheduled for multiple days at once. Therefore, this shift can only
be scheduled if the surgeon can be scheduled at shifts during these days. The organ removal
shift cannot be scheduled at Friday, Monday or Wednesday if the surgeon does not want to
do shifts on the next day. This is done with constraint (4.46). On Friday the organ removal
shift can also not be scheduled if the surgeon does not want to do shifts on Sunday. This is
done with constraint (4.47). The organ removal shift can be scheduled if the surgeon does
not want to do shifts during the last day. This is because the shift ends at 12:00 o’clock.
When a surgeon does not want to do shifts, this means the surgeon cannot be scheduled
after office hours during this day.

xs,M,d = 0 ∀s, d st d mod 14 ∈ {5 + 7 ·MW, 1 + 7 · (1−MW ),

3 + 7 · (1−MW )}, Gs,d+1 = 1 (4.46)
xs,M,d = 0 ∀s, d st d mod 14 = 5 + 7 ·MW,Gs,d+2 = 1 (4.47)

The T1 shift is scheduled from Monday till Friday for the same surgeon if the T1 shift and
Td shift are not combined. Therefore, this shift cannot be scheduled during a week if the
surgeon does not want to do shifts during a day of this week. This is done with Constraints
(4.48) (no shift on Tuesday) – (4.51) (no shift on Friday).

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Gs,d+1 = 1, COMBd d7 e
= 0 (4.48)

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Gs,d+2 = 1, COMBd d7 e
= 0 (4.49)

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Gs,d+3 = 1, COMBd d7 e
= 0 (4.50)

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Gs,d+4 = 1, COMBd d7 e
= 0 (4.51)

• Weekend days
When a surgeon cannot be scheduled on a shift one day during the weekend, no weekend
shifts can be scheduled. This is done with constraint (4.52).

xs,t,d = 0 ∀s, t, d st t ∈ {T1, T2}, d mod 7 = 6, Gs,d +Gs,d+1 ≥ 1 (4.52)

Only M , OC and OR tasks or only M shifts
When a surgeon can only be scheduled at the M , OC and OR, it is input when the M task is
scheduled. This is because this M task is also scheduled during days the surgeon is normally
not available. Therefore, for all other days no variables are created to schedule the M shift for
that surgeon. The variables for scheduling the M task is only created when it is known that the
M shift must be scheduled. The same thing holds for surgeons who can only be scheduled at M
shifts, because the surgeon is only available at the moments the M shift must be scheduled. This
is done with constraint (4.53). When the surgeon can also be scheduled at the OC and OR tasks,
the variables for scheduling these tasks are created when the surgeon is available. Therefore, no
extra constraints are needed for these tasks.

xs,M,d = 0 ∀s, d st
∑
t

TSs,t = TSs,M + TSs,OC + TSs,OR, Xs,M,d = 0 (4.53)

4.3.5 Dummy variable

Shortages can only occur when the task must be scheduled. So, the dummy variable is only needed
when the tasks should be scheduled. This is done with constraints (4.54) – (4.59). The T1 and T2 shift
are scheduled on Saturday for the whole weekend. Therefore no shortages can occur during Sunday.
This is done with constraint (4.54).

dt,d = 0 ∀t, d st t ∈ {T1, T2}, d mod 7 = 0 (4.54)

When the T1 shift is not combined with the Td shift, the T1 shift is scheduled on Monday for the whole
week. Therefore, no shortages can occur during Tuesday till Friday in this case. This is done with
constraint (4.55).

dT1,d = 0 ∀d st d mod 7 ∈ {2, 3, 4, 5}, COMBd d7 e
= 0 (4.55)
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The organ removal shift is scheduled during the fixed switching moments on Friday, Monday and
Wednesday every other week. Therefore, no shortages can occur during the other days. This is done
with constraint (4.56).

dM,d = 0 ∀d st d mod 14 /∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW ), 5 + 7 ·MW} (4.56)

The Td, Ch and Hpb tasks are scheduled during weekdays. Therefore, no shortages can occur during
the weekends. This is done with constraint (4.57).

dt,d = 0 ∀t, d st t ∈ {Td,Ch,Hpb}, d mod 7 ∈ {0, 6} (4.57)

The outpatient clinic is scheduled on Monday. During all other days no shortage can occur at the
outpatient clinic. This is done with constraint (4.58).

dOC,d = 0 ∀d st d mod 7 ∈ {0, 2, 3, 4, 5, 6} (4.58)

The operating room is scheduled on Wednesday, Thursday and Friday. During all other days no short-
age can occur. This is done with constraint (4.59).

dOR,d = 0 ∀d st d mod 7 ∈ {0, 1, 2, 6} (4.59)

During a public holiday only the T1, T2 and M shifts must be scheduled, all other tasks not. Therefore,
no shortages can occur at tasks not equal to T1, T2 or M during a public holiday. This is done with
constraint (4.60).

dt,d = 0 ∀t, d st t ∈ {Td,Ch,Hpb,OC,OR}, PHd = 1 (4.60)

The dummy variable used for the constraint that one of the surgeons scheduled for the M shift must
be MOD certified is only used during starting moments of the M shift. For all other days, this dummy
variable is equal to zero. This is done with constraint (4.61).

dmd = 0 ∀d st d mod 14 /∈ {5 + 7 ·MW, 1 + 7 · (1−MW ), 3 + 7 · (1−MW )} (4.61)

4.3.6 Extend duration

Some tasks can be scheduled longer for the same surgeon, but preferably not. The variables that
indicate if the task is longer scheduled at the same surgeon cannot always be equal to one. This is
explained below.

Monday till Friday M shift
The start moments of the M shift on Monday and Wednesday can only be scheduled at the same
surgeon if the M shift must be scheduled during that week. When this is not the case, the variable
that indicates if both start moments are scheduled at the same surgeon is equal to zero. This is
done with constraint (4.62).

lmw = 0 ∀w st w mod 2 = 1−MW (4.62)

Four days T2 shift
On Wednesday no block of four consecutive days T2 can be scheduled because the whole week-
end is scheduled when the T2 shift is scheduled on Saturday. Also, the T2 shift cannot start on
Sunday because of this. Therefore, no block of four consecutive days T2 shift can start on Sunday
and Wednesday. This is done with constraint (4.63).

fdd = 0 ∀d st d mod 7 ∈ {0, 3} (4.63)

4.4 Constraints

This section shows the constraints of the model. First, Section 4.4.1 shows the generic constraints.
Then, Section 4.4.2 shows the boundary constraints.
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4.4.1 Generic constraints

In this section the generic constraints are described. This is done per condition and we will start with
the MOD certification.

MOD certified
One of the two surgeons scheduled at the organ removal shifts at the same time must be MOD
certified. A dummy variable is added to ensure the model is feasible, also when it is not possible
to schedule an MOD certified surgeon. This is done with constraint (4.64).∑

s

(MODs +MODCs,d) · xs,M,d ≥ 1− dmd ∀d st d mod 14 ∈ {7 ·MW + 5,

7 · (1−MW ) + 1, 7 · (1−MW ) + 3} (4.64)

Junior surgeon
At most one of the surgeons scheduled at a transplant shifts at the same time is a junior surgeon.
This is done with the constraints shown below. We will first look at the overlap between the T1 and
T2 shift during weekends, then the overlap between the T1 shift and the T2 shift during weekdays.
Last, we will look at the overlap between the T2 shift and the Td shift. There are no other overlaps
between the transplant shifts.

• Overlap T1 and T2 during weekend
When the T1 shift is not combined with the Td shift, the weekend T1 shift starts on Saturday
8:00 0’clock. The weekend T2 shift starts on Friday 22:00 o’clock. Therefore, both weekend
shifts overlap. This is done with constraint (4.65). Also, the weekend T2 shift overlaps with
the week T1 shift. This is done with constraint (4.66). The weekend T1 shift overlaps with
the Monday T2 shift. The weekend T1 shift ends on Monday 8:00 0’clock and the Monday
T2 shift starts on Sunday 22:00 o’clock. This is done with constraint (4.67).

When the T1 shift is combined with the Td shift during the week before the weekend shift,
the T1 weekend shift start on Friday 22:00 o’clock. Therefore, the weekend T1 and T2 shift
overlap also in this case. This is done with constraint (4.65). However, the weekend T2 shift
does not overlap with the week T1 shift in this case. Therefore, constraint (4.66) must only
hold when the T1 shift is not combined with the Td shift during the week before the sched-
ule. When the T1 shift is combined with the Td shift the week after the weekend shift, the
weekend T1 shift ends at Sunday 22:00 o’clock. Therefore, the weekend T1 shift does not
overlap with the Monday T2 shift in this case and constraint (4.67) must only hold when the
T1 and Td shift are not combined the week after the weekend shift.∑

s

(1− JRs) · (xs,T1,d + xs,T2,d) ≥ 1− dsd ∀d st d mod 7 = 6 (4.65)∑
s

(1− JRs) · (xs,T1,d−5 + xs,T2,d) ≥ 1− dsd ∀d st d mod 7 = 6,

COMBd d7 e
= 0 (4.66)∑

s

(1− JRs) · (xs,T1,d + xs,T2,d+2) ≥ 1− dsd+2 ∀d st d mod 7 = 6

COMBd d+2
7 e

= 0 (4.67)

• Overlap T1 and T2 during weekdays
When the T1 shift is not combined with the Td shift, the whole week the same surgeon is
scheduled at the T1 shift. The whole week T1 shift overlaps with the T2 shift on Monday,
Tuesday, Wednesday, Thursday and Friday. This is done with constraint (4.68).∑
s

(1− JRs) · (xs,T1,d + xs,T2,d′) ≥ 1− dsd′ ∀d, d′ st d mod 7 = 1, COMBd d7 e
= 0, d′ ∈ {d,

d+ 1, d+ 2, d+ 3, d+ 4} (4.68)

When the T1 shift is combined with the Td shift, the T1 shift has the same switching moments
during weekdays as the T2 shift. Therefore, the T1 shift overlaps the whole shift with the T2
shift scheduled at the same day. This is done with constraint (4.69).∑

s

(1− JRs) · (xs,T1,d + xs,T2,d) ≥ 1− dsd ∀d st d mod 7 ∈ {1, 2, 3, 4, 5},

COMBd d7 e
= 1 (4.69)
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• Overlap T2 and Td during weekdays
Also, the T2 and Td have an overlap during weekdays. Also, in this case, at most one of
the surgeons is a junior surgeon. The T2 shift overlaps with the Td shift scheduled at the
same day. This is done with constraint (4.70). This constraint must only hold when the T1
is not combined with the Td shift, otherwise this constraint is already included in the overlap
between the T1 and T2 shift.∑

s

(1− JRs) · (xs,Td,d + xs,T2,d) ≥ 1− dsd ∀d st d mod 7 ∈ {1, 2, 3, 4, 5},

COMBd d7 e
= 0 (4.70)

Hpb surgeon
Every week at least one hpb surgeon must be scheduled at the operating room. This is done with
constraint (4.128). When it is not possible to make a schedule by fulfilling this constrain, we still
want to make a schedule. Therefore, a dummy variable is used.

d+2∑
d′=d

∑
s

HPBs · xs,OR,d′ ≥ 1− dhpbd d7 e ∀d st d mod 7 = 3 (4.71)

Schedule tasks
We want that the tasks are scheduled when this is needed. Therefore constraints (4.72) — (4.78)
are used. Constraint (4.72) is used to ensure one surgeon is scheduled during week days at the
tasks Td, Ch and Hpb. When it is not possible to schedule these tasks, a dummy variable is used.
These tasks should only be scheduled when the weekday is no public holiday. The same thing
is done with constraints (4.73) and (4.74) for the T1 shift. Constraint (4.74) must only hold when
the T1 shift is combined with the Td shift. This is because the T1 shift is scheduled for the whole
week at the same surgeon when the T1 shift is not combined with the Td shift. Constraint (4.75)
is for the T2 shift. At this shift always one surgeon should be scheduled, except for the Sunday.
Constraint (4.76) is used for the M shift. At the M shift always two surgeons must be scheduled
at the starting moments. Constraint (4.77) is used for the outpatient clinic and constraint (4.78)
for the operating room. For the outpatient clinic and operating room two surgeons should be
scheduled when this task should be scheduled.∑

s

xs,t,d + dt,d = 1 ∀t, d st t ∈ {Td,Ch,Hpb}, d mod 7 ∈ {1, 2, 3, 4, 5},

PHd = 0 (4.72)∑
s

xs,T1,d + dT1,d = 1 ∀d st d mod 7 ∈ {1, 6} (4.73)∑
s

xs,T1,d + dT1,d = 1 ∀d st d mod 7 ∈ {2, 3, 4, 5}, COMBd d7 e
= 1 (4.74)∑

s

xs,T2,d + dT2,d = 1 ∀d st d mod 7 ∈ {1, 2, 3, 4, 5, 6} (4.75)∑
s

xs,M,d + dM,d = 2 ∀d st d mod 14 ∈ {5 + 7 ·MW, 7 · (1−MW ) + 1,

7 · (1−MW ) + 3} (4.76)∑
s

xs,OC,d + dOC,d = 2 ∀d st d mod 7 = 1, PHd = 0 (4.77)∑
s

xs,OR,d + dOR,d = 2 ∀d st d mod 7 ∈ {3, 4, 5}, PHd = 0 (4.78)

T1 shift
When the T1 shift is not combined with the Td shift, the T1 shift has a fixed structure. This fixed
structure is created with the constraints shown below.

• No other tasks scheduled
When the T1 shift is scheduled no other tasks can be scheduled during that day. This is done
with constraint (4.79).

xs,t,d′ ≤ 1− xs,T1,d ∀s, t, d, d′ st COMBd d7 e
= 0, t 6= T1, d mod 7 = 1,

d′ ∈ {d, d+ 1, d+ 2, d+ 3, d+ 4} (4.79)
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• Weekend shift before week T1 shift
When a surgeon is scheduled at the week T1 shift, the weekend before this week no weekend
T1 shift can be scheduled. This is done with constraint (4.82). It is possible to schedule a
weekend T2 shift before the week T1 shift, but preferably not. This is done with constraint
(4.80).

xs,T2,d ≤ 1− xs,T1,d+2 + wkd d+2
7 e

∀s, d st COMBd d+2
7 e

= 0,

d mod 7 = 6 (4.80)

• No weekend shift after week T1 shift
When a surgeon has a week T1 shift, the weekend after this week T1 no shifts can be
scheduled. The weekend M shift is not scheduled, because this shift starts on Friday. For
the T1 and T2 shift during the weekend constraint (4.81) is used.∑

t∈{T1,T2}

xs,t,d+5 + xs,T1,d ≤ 1 ∀s, d st COMBd d7 e
= 0, d mod 7 = 1 (4.81)

• No task on Monday after weekend shift T1
When a surgeon has a weekend shift T1, the Monday after this shift no task can be sched-
uled. This is done with constraint (4.82).∑

t

xs,t,d+2 + 5 · xs,T1,d ≤ 5 ∀s, d st COMBd d+2
7 e

= 0, d mod 7 = 6 (4.82)

• No two weeks consecutive T1 shift
No two weeks consecutive T1 shift can be scheduled. Therefore, only one of two consecutive
weeks the T1 shift can be scheduled at the same surgeon. This is done with constraint (4.83).

xs,T1,d + xs,T1,d+7 ≤ 1 ∀s, d st COMBd d7 e
= 0, COMBd d+7

7 e
= 0, d mod 7 = 1 (4.83)

No three weeks consecutive weekend shift
A surgeon should not be scheduled at a weekend shift for three weekends consecutively. This is
done with constraint (4.84).

xs,M,d−1 + xs,M,d+6 + xs,M,d+13 +
∑

t∈{T1,T2}

(xs,t,d + xs,t,d+7 + xs,t,d+14) ≤ 2

∀s, d st d mod 7 = 6 (4.84)

Combine tasks
It is desirable that each surgeon has at most one task during a day, but it is possible to combine
some of the tasks. Not all tasks can be combined. Constraint (4.85) ensures no tasks can be
combined with the outpatient clinic tasks and constraint (4.86) ensures that the operating room
tasks can only can be combined with the T2 shift. Other constraints ensure the T1 shift is only
combined with the Td shift during the vacation period (constraints (4.110) and (4.111)). Also, other
constraints ensure that the organ removal shift is not combined with other tasks except for the Hpb
task on Friday when the organ removal week starts (constraints (4.103), (4.106) and (4.109)).

xs,t,d ≤ 1− xs,OC,d ∀s, t, d st d mod 7 = 1, t 6= OC (4.85)
xs,t,d ≤ 1− xs,OR,d ∀s, t, d st d mod 7 ∈ {3, 4, 5}, t /∈ {T2, OR} (4.86)

The other tasks can be combined, but it is not preferred. Therefore, we want to know when the
tasks are combined. With constraint (4.87) theHpb and T2 tasks can be combined, with constraint
(4.88) the M and Hpb task can be combined, with constraint (4.90) one surgeon can do both OR
and T2, and with constraint (4.91) one surgeon can do both Ch and Hpb. The Hpb task only can
be combined with the M shift on Wednesday if the switching moment on Wednesday is used. This
is done with constraint (4.89). Constraints (4.92) and (4.93) ensure only one of the combination
possibilities is used per day, except for the combinations OR and T2 for one surgeon and Ch
and Hpb for another surgeon and the combinations Hpb and M for one surgeon and T2 and OR
for another surgeon. Constraint (4.94) ensures that the chef tasks, Td shift and T2 shift can be
combined to decrease the number of shortages, but not the combination Hpb with Ch or with T2.
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These combinations can be done with constraints (4.87) and (4.91).

xs,Hpb,d + xs,T2,d ≤ 1 + yd ∀s, d st d mod 7 ∈ {1, 2, 3, 4, 5} (4.87)
xs,Hpb,d + xs,M,d ≤ 1 + wd ∀s, d st d mod 14 ∈ {7 ·MW + 5, 7 · (1−MW ) + 1,

7 · (1−MW ) + 3} (4.88)
wd ≤ 1− lmd d7 e ∀d st d mod 14 = 7 · (1−MW ) + 3 (4.89)

xs,OR,d + xs,T2,d ≤ 1 + zd ∀s, d st d mod 7 ∈ {3, 4, 5} (4.90)
xs,Ch,d + xs,Hpb,d ≤ 1 + ud ∀s, d st d mod 7 ∈ {1, 2, 3, 4, 5} (4.91)

yd + zd ≤ 1 ∀d st d mod 7 ∈ {3, 4, 5} (4.92)
yd + wd + ud ≤ 1 ∀d st d mod 7 ∈ {1, 2, 3, 4, 5} (4.93)
xs,t,d + xs,t′,d ≤ 1 +mcd,t,t′ ∀s, t, t′, d st d mod 7 ∈ {1, 2, 3, 4, 5}, t, t′ ∈ {T2, Td, Ch,Hpb},

t′ ≺ t,¬(t ∈ {T2, Ch}, t′ = Hpb) (4.94)

Initial conditions
When some of the tasks are already scheduled before the rest of the schedule is made, constraint
(4.95) ensures these tasks are scheduled at these moments for the corresponding surgeon.

xs,t,d = Xs,t,d ∀s, t, d st Xs,t,d = 1, d mod 7 6= 0 (4.95)

Minimal number of days T2 shift
The T2 shift must be scheduled for at least two consecutive days. This is done with constraint
(4.96) when a surgeon starts with the T2 shift on Monday and with constraint (4.97) when a
surgeon starts with the T2 shift at another day. When a surgeon starts on Saturday, the surgeon
is scheduled the whole weekend on the T2 shift. Therefore, no constraint is needed for the start
on Saturday.

xs,T2,d+1 ≥ xs,T2,d − xs,T2,d−2 ∀d st d mod 7 = 1 (4.96)
xs,T2,d+1 ≥ xs,T2,d − xs,T2,d−1 ∀d st d mod 7 ∈ {2, 3, 4, 5} (4.97)

Maximum number of days T2 shift
The T2 shift can be scheduled at most four days consecutively. We want to indicate when the
T2 shift is scheduled four days consecutively, because we want to minimize the number of times
the T2 shift is scheduled four days consecutively. This is done with constraints (4.98) – (4.101).
Four constraints are needed because on Saturday the shift is scheduled for the whole weekend.
When the T2 shift is scheduled for the first day on Monday or Tuesday, constraint (4.98) is used to
indicate when four consecutive days T2 are scheduled. When the shift is scheduled at Wednesday,
the shifts can be scheduled till Saturday and not on Sunday. Therefore, the whole weekend shift
cannot be scheduled, and it is not possible to schedule the T2 shift four days consecutively starting
on Wednesday. This is done with constraint (4.99). When the T2 shift starts at Thursday, Friday
or Saturday, the Sunday is also a day the shift can be scheduled. Therefore, constraints (4.100)
and (4.101) are needed. Constraint (4.102) ensures that after four consecutive days T2 shift the
next day no T2 shift is scheduled for this surgeon.

d+3∑
d′=d

xs,T2,d′ ≤ 3 + fdd ∀s, d st d mod 7 ∈ {1, 2} (4.98)

d+3∑
d′=d

xs,T2,d′ ≤ 3 ∀s, d st d mod 7 = 3 (4.99)

d+2∑
d′=d

xs,T2,d′ ≤ 2 + fdd ∀s, d st d mod 7 = 4 (4.100)

d+3∑
d′=d

xs,T2,d′ ≤ 2 + fdd ∀s, d st d mod 7 ∈ {5, 6} (4.101)

xs,T2,d+4 ≤ 2− fdd − xs,T2,d ∀s, d st d mod 7 ∈ {1, 2, 4, 5, 6} (4.102)

Scheduling M shift
The structure of the M shift is fixed. Every other week two surgeons start on Friday and are
scheduled for this shift till Monday 12:00 o’clock, on Monday 12:00 o’clock two surgeons start
and are scheduled till Wednesday 12:00 o’clock and on Wednesday two surgeons start and are
scheduled till Friday 12:00 o’clock.
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• Start on Friday
When a surgeon starts with the M shift on Friday, no other tasks can be scheduled during
this Friday, except for the Hpb task. This is done with constraint (4.103). The Hpb task can
be combined with the M shift on Friday. This is done with constraint (4.88).

xs,t,d ≤ 1− xs,M,d ∀s, t, d st t ∈ {T2, Td,OR,Ch},
d mod 14 = 5 + 7 ·MW (4.103)

When a surgeon starts with the M shift on Friday, this surgeon is also scheduled for the M
shift during the weekend. Therefore, no other tasks can be scheduled during the weekend.
This is done with constraint (4.104).

xs,t,d+1 ≤ 1− xs,M,d ∀s, t, d st t ∈ {T1, T2}, d mod 14 = 5 + 7 ·MW (4.104)

No task can be scheduled on Monday when the surgeon starts on Friday before with the M
shift. This is because the M shift is scheduled till Monday 12:00 o’clock in this case and the
rest of the Monday is compensation for the M shift. This is done with constraint (4.105).

xs,t,d+3 ≤ 1− xs,M,d ∀s, t, d st d mod 14 = 5 + 7 ·MW (4.105)

• Start on Monday
When a surgeon starts with the M shift on Monday, no other tasks can be scheduled on
Monday and Tuesday. This is done with constraint (4.106).

xs,t,d′ ≤ 1− xs,M,d ∀s, t, d, d′ st t ∈ {T1, T2, Td,OC,Ch,Hpb},
d mod 14 = 1 + 7 · (1−MW ), d′ ∈ {d, d+ 1} (4.106)

No task, except the M shift, can be scheduled on Wednesday when a surgeon starts with
the M shift on Monday. The surgeon is scheduled on the M shift till 12:00 o’clock and the
rest of the day is compensation for the M shift. This is done with constraint (4.107).

xs,t,d+2 ≤ 1− xs,M,d ∀s, t, d st t 6=M,d mod 14 = 1 + 7 · (1−MW ) (4.107)

The M shift can be scheduled on Wednesday, but preferably not. This is done with constraint
(4.108). By doing this, only two surgeons need to be scheduled on Wednesday on the M
shift. However, the surgeons who are scheduled are scheduled form Monday till Friday.
Therefore, these surgeons are scheduled four days on a 24h shift.

xs,M,d+2 ≤ 1− xs,M,d + lmd d7 e
∀s, d st d mod 14 = 1 + 7 · (1−MW ) (4.108)

• Start on Wednesday
When a surgeon starts with the M shift on Wednesday, no other tasks can be scheduled on
Wednesday, Thursday, and Friday. This is done with constraint (4.109).

xs,t,d′ ≤ 1− xs,M,d ∀s, t, d, d′ st t ∈ {T2, Td,OR,Ch,Hpb},
d mod 14 = 3 + 7 · (1−MW ), d′ ∈ {d, d+ 1, d+ 2} (4.109)

Combine T1 and Td shift
During the vacation period, it can be decided to combine the T1 and Td shift. When the two shifts
are combined, this combination is scheduled in the same way as the T2 shift. The switch moments
are the same, it is scheduled for at least two consecutive days and for at most three consecutive
days. This is one day shorter than the T2 shift, because the T1 and Td shift combined is busier
than the T2 shift. The constraints used for this combination are shown below.

• Schedule T1 and Td and no other tasks
When we combine the T1 and Td shift, the Td shift is also scheduled when the T1 shift is
scheduled during weekdays. This is done with constraint (4.110). This constraint only holds
when the day is not a public holiday, because during a public holiday only the T1 shift is
scheduled and not the Td shift. When the T1 shift is scheduled no other tasks than the Td
shift can be scheduled. This is done with constraint (4.111).

xs,Td,d = xs,T1,d ∀s, d st COMBd d7 e
= 1, PHd = 0, d mod 7 6= 6 (4.110)

xs,t,d ≤ 1− xs,T1,d ∀s, t, d st t /∈ {T1, Td}, COMBd d7 e
= 1 (4.111)
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• Not scheduled after T2 shift
The T1, Td combination cannot be scheduled the day after the T2 shift ends. When this
was possible, a surgeon could be scheduled for seven consecutive days on a 24h shift. This
is done with constraint (4.112) for all days except Monday and with constraint (4.113) for
Monday.

xs,T1,d+1 ≤ 1− xs,T2,d ∀s, d st COMBd d+1
7 e

= 1,

(d+ 1) mod 7 6= 1 (4.112)
xs,T1,d+2 ≤ 1− xs,T2,d ∀s, d st COMBd d+2

7 e
= 1,

(d+ 2) mod 7 = 1 (4.113)

• No T2 shift after the combination
The day after the combination T1, Td is scheduled, the T2 shift cannot be scheduled. When
this was possible, a surgeon could be scheduled for seven consecutive days on a 24h shift.
This is done with constraint (4.114) for all days except for Monday and Saturday and with
constraint (4.115) for Monday. When the shift is scheduled on Saturday, also the Sunday is
scheduled. Therefore, two days are scheduled.

xs,T2,d+1 ≤ 1− xs,T1,d ∀s, d st COMBd d7 e
= 1,

(d+ 1) mod 7 6= 1 (4.114)
xs,T2,d+2 ≤ 1− xs,T1,d ∀s, d st COMBd d7 e

= 1,

(d+ 2) mod 7 = 1 (4.115)

• At least two days
When the T1, Td combination is scheduled for some surgeon, this is scheduled for at least
two consecutive days. This is done with constraint (4.116) for all days except for Monday
and with constraint (4.117) for Monday. On Saturday the shift is scheduled for the whole
weekend. Therefore, no constraint is needed for the Saturday.

xs,T1,d+1 ≥ xs,T1,d − xs,T1,d−1 ∀s, d st COMBd d7 e
= 1,

d mod 7 ∈ {2, 3, 4, 5} (4.116)
xs,T1,d+1 ≥ xs,T1,d − xs,T1,d−2 ∀s, d st COMBd d7 e

= 1,

d mod 7 = 1 (4.117)

• At most three days
When the T1, Td combination is scheduled, the combination is scheduled for at most three
consecutive days. This is done with constraints (4.118), (4.119) and (4.120). Different con-
straints are needed because on Saturday the shift is scheduled for the whole weekend. When
the T1, Td combination is scheduled for the first day on Monday, Tuesday or Wednesday con-
straint (4.118) is used. When the T1, Td combination starts at Thursday, Friday or Saturday,
the Sunday is also a day the shift can be scheduled. Therefore, the constraints (4.119) and
(4.120) are needed.

d+3∑
d′=d

xs,T1,d′ ≤ 3 ∀s, d st COMBd d7 e
= 1, d mod 7 ∈ {1, 2, 3} (4.118)

d+2∑
d′=d

xs,T1,d′ ≤ 2 ∀s, d st COMBd d7 e
= 1, d mod 7 = 4 (4.119)

d+3∑
d′=d

xs,T1,d′ ≤ 2 ∀s, d st COMBd d+3
7 e

= 1, d mod 7 ∈ {5, 6} (4.120)

Determine maximum number of days scheduled at a task
The differences between the number of days scheduled at a task per surgeon are minimized, not
for all tasks but for the T1, T2, M and OR tasks, To do this the maximum number of days a sur-
geon is scheduled at a task is minimized. With constraint (4.121) this value is determined for the
M shift. When a surgeon starts on Friday with the M shift, this surgeon is scheduled for three
days at the M shift. When a surgeon is scheduled on Monday or Wednesday on the M shift, this
surgeon is scheduled at the M shift for two days.
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For the M shift only the surgeons who can be scheduled at the transplant shifts are taken into ac-
count. This is done, because the other surgeons can do more organ removal shifts to compensate
the fact that they cannot be scheduled at the transplant shifts.

3 ·
∑

d:d mod 14=5+7·MW

xs,M,d + 2 ·
∑

d:d mod 14=1+7·(1−MW )

xs,M,d+

2 ·
∑

d:d mod 14=3+7·(1−MW )

xs,M,d +DTs,M ≤ mdsM ∀s st
∑

t∈{T1,T2,M}

TSt,s 6= TSM,s (4.121)

The same thing is done with constraint (4.122) for the T2 shift. When the T2 shift is scheduled
at some day, except the Saturday, this shift is scheduled for one day at this surgeon. When a
surgeon is scheduled at Saturday on the T2 shift, this surgeon is scheduled for two days on the
T2 shift. ∑

d:d mod 76=6

xs,T2,d + 2 ·
∑

d:d mod 7=6

xs,T2,d +DTs,T2 ≤ mdsT2 ∀s (4.122)

The maximum number of days a surgeon is scheduled at the T1 shift is determined with constraint
(4.123). When the surgeon is scheduled at Tuesday, Wednesday or Thursday at the T1 shift, this
surgeon is scheduled for one day at this shift. When the surgeon is scheduled on Monday on
the T1 shift and the T1 shift is not combined with the Td shift, this surgeon is scheduled for five
days at this shift. When the T1 shift is combined with the Td shift, the surgeon is scheduled for
one day at the T1 shift if the surgeon is scheduled on Monday at the T1 shift. When the surgeon
is scheduled on Saturday on the T1 shift, this surgeon is scheduled the whole weekend at this
shift. Therefore, a surgeon is scheduled two days at the T1 shift when a surgeon is scheduled on
Saturday at the T1 shift.∑

d:d mod 7/∈{1,6}

xs,T1,d + 5 ·
∑

d:d mod 7=1,COMBd d
7
e=0

xs,T1,d +
∑

d:d mod 7=1,COMBd d
7
e=1

xs,T1,d

+ 2 ·
∑

d:d mod 7=6

xs,T1,d +DTs,T1 ≤ mdsT1 ∀s (4.123)

The same thing is done with constraint (4.124) for the OR task. When a surgeon is scheduled at
the OR task, this surgeon is always scheduled for one day.∑

d

xs,OR,d +DTs,OR ≤ mdsOR ∀s (4.124)

Determine maximum number of days scheduled
The scheduled days must be equally divided over the surgeons. Therefore, every surgeon is
approximately scheduled at a task the same number of days, but also the number of times more
tasks are scheduled at the same day for a surgeon. To do this the maximum number of tasks
scheduled for one surgeon is determined. We also take into account when a task is scheduled
for more days at once. Therefore, a tasks scheduled at Saturday counts for two tasks scheduled
etcetera. This is done with constraint (4.125). By doing this, the workload is equally divided over
the surgeons.

3 ·
∑

d:d mod 14=5+7·MW

xs,M,d + 2 ·
∑

d:d mod 14=1+7·(1−MW )

xs,M,d + 2 ·
∑

d:d mod 14=3+7·(1−MW )

xs,M,d

+ 2 ·
∑

d:d mod 7=6

∑
t∈{T1,T2}

xs,t,d +
∑

d:d mod 76=6

∑
t/∈{M,T1}

xs,t,d +
∑

d:d mod 7/∈{1,6}

xs,T1,d

+ 5 ·
∑

d:d mod 7=1,COMBd d
7
e=0

xs,T1,d +
∑

d:d mod 7=1,COMBd d
7
e=1

xs,T1,d + 2 ·
∑

d:d mod 7=6

xs,T1,d

+
∑
t

DTs,t ≤ md ∀s (4.125)

Only M , OC and OR tasks or only M shift
When a surgeon can only be scheduled at M , OC and OR tasks, the organ removal shift can only
be scheduled when the parameter Xs,M,d is equal to one. The same thing holds for surgeons who
can only be scheduled at the M shift. This is done with constraint (4.126).

xs,M,d = Xs,M,d ∀s, d st
∑
t

TSt,s =
∑

t∈{M,OR,OC}

TSt,s, d mod 14 ∈ {5 + 7 ·WM,

1 + 7 · (1−MW ), 3 + 7 · (1−MW )} (4.126)

CHAPTER 4. MODEL FOR SCHEDULING TASKS Page 29



No transplant shifts
Some surgeons cannot be scheduled at the transplant shifts. When no transplant shifts can be
scheduled, at most one-fifth of the days an organ removal shift can be scheduled per quarter. This
is done with constraint (4.127).

3 ·
∑

d:d mod 14=5+7·MW

xs,M,d + 2 ·
∑

d:d mod 14=1+7·(1−MW )

xs,M,d+

2 ·
∑

d:d mod 14=3+7·(1−MW )

xs,M,d ≤
|D|
5

∀s st
∑

t∈{T1,T2,M}

TSt,s = TSM,s (4.127)

Scheduling Hpb task
The number of different surgeons scheduled at the Hpb task during a week is minimized. To
determine the number of surgeons scheduled at the Hpb task during a week, constraint (4.128) is
used.

7·w∑
d=7·(w−1)+1

xs,Hpb,d ≤ 5 · ihs,w ∀s, w st TSs,Hpb = 1 (4.128)

Scheduling Ch task
The number of different surgeons scheduled at the Ch task during a week is minimized. To
determine the number of surgeons scheduled at the Ch task during a week constraint (4.129) is
used.

7·w∑
d=7·(w−1)+1

xs,Ch,d ≤ 5 · ics,w ∀s, w st TSs,Ch = 1 (4.129)

More combinations
When more combinations are made than the combinations Ch/Hpb, M/Hpb, T2/Hpb or T2/OR
we want to know this, because extra costs belong to this case. This case is indicated with con-
straint (4.130)

mcdd ≥ mcd,t,t′ ∀d, t, t′ st d mod 7 ∈ {1, 2, 3, 4, 5}, t ≺ t′

t, t′ ∈ {T2, Td, Ch,Hpb} (4.130)

Week T1 shift
Some surgeons cannot handle the week T1 shift well, because this is the night shift for the whole
week. Therefore, these surgeons have to do fewer night shifts during the week and are scheduled
for at most one week the whole week at the T1 shift. This is done with constraint (4.131). However,
we want to distribute the shifts equally over the surgeons. Therefore, these surgeons have to do
more weekend T1 shifts. ∑

d:d mod 7=1,COMBd d
7
e=0

xs,T1,d ≤ 1 ∀s st FWT1s = 1 (4.131)

Shifts during Christmas
During Christmas only shifts that are done during weekends are scheduled. However, during
Christmas we have extra constraints. The T1 or T2 shift cannot be done by the same surgeon the
two Christmas days. This is done with constraint (4.132) for the T2 shift. For the T1 shift holds
that during Christmas the whole week T1 and Td are combined. Constraint (4.133) ensures that
two different surgeons are scheduled at the T1 shift during Christmas.

xs,T2,d + xs,T2,d+1 ≤ 1 ∀s, d st CHRISTMASd = 1, CHRISTMASd+1 = 1 (4.132)
xs,T1,d + xs,T1,d+1 ≤ 1 ∀s, d st CHRISTMASd = 1, CHRISTMASd+1 = 1 (4.133)

4.4.2 Boundary conditions

To ensure the conditions also hold at the boundary, the beginning of the schedule, the constraints
shown below are used. For this, some extra parameters are used. These parameters contain
information of the shifts done one week or two weeks before the start date of the new schedule.
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No task on Monday after weekend T1 shift
When the last weekend before the new schedule a T1 shift is done, the first Monday of the new
schedule no tasks can be scheduled when the T1 and Td shifts are not combined. This is done
with constraint (4.134). ∑

t

xs,t,1 ≤ 5− 5 · TWs ∀s st COMB1 = 0 (4.134)

No two weeks consecutive T1 shift
When the last week before the new schedule a T1 shift is done by a surgeon the whole week, the
first week of the new schedule the T1 shift cannot be scheduled if the T1 and Td shifts are not
combined. This is done with constraint (4.135).

xs,T1,1 ≤ 1− TWBs ∀s st COMB1 = 0 (4.135)

No three weeks consecutive weekend shift
To ensure no three weeks consecutive weekend shifts are scheduled at the beginning of the
schedule, the weekend before the start date of the schedule must be considered. Constraint
(4.136) considers two weekends before the start date of the schedule and constraint (4.137) only
the last weekend before the start date.

xs,M,5 +
∑

t∈{T1,T2}

xs,t,6 ≤ 2−WBs −WBs ·WBTs ∀s (4.136)

xs,M,5 +
∑

t∈{T1,T2}

xs,t,6 + xs,M,12 +
∑

t∈{T1,T2}

xs,t,13 ≤ 2−WBs ∀s (4.137)

Maximum number of consecutive days T2 shift
The T2 shift can be scheduled at most four consecutive days for the same surgeon. This must
also hold at the boundary. When we know how many consecutive days a surgeon is scheduled
at the T2 shift before the first day of the new scheduled, we know when four consecutive days
are scheduled. When four consecutive days T2 shift are scheduled, the first day of the new
schedule no T2 shift can be scheduled for this surgeon. This is done with constraint (4.138).
When three consecutive days T2 shift are scheduled, the first day of the schedule the T2 shift
can be scheduled, but preferably not. This is done with constraint (4.139). When two consecutive
days T2 shift are scheduled before the first day of the schedule, the second day T2 shift can be
scheduled. When also the first day of the schedule the T2 shift is scheduled for this surgeon, four
consecutive days are scheduled. This is done with constraint (4.140).

xs,T2,1 = 0 ∀s st NDs = 4 (4.138)
xs,T2,1 ≤ fdm ∀s st NDs = 3 (4.139)
xs,T2,2 ≤ 1− xs,T2,1 + fdtu ∀s st NDs = 2 (4.140)

Maximum number of consecutive days T1 shift
When the T1 shift is combined with the Td shift, this combination can be scheduled maximally
three consecutive days. This is done with constraints (4.141) and (4.142).

xs,T1,1 = 0 ∀s st COMB1 = 1, NDTs = 3 (4.141)
xs,T1,2 ≤ 1− xs,T1,1 ∀s st COMB1 = 1, NDTs = 2 (4.142)

Weekend shift before week T1 shift
When the T1 shift is not combined with the Td shift, the week T1 shift cannot be scheduled after
a weekend T1 shift. This is done with constraint (4.134). It is possible to schedule a weekend T2
shift before a week T1 shift, but preferably not. This is done with constraint (4.143).

xs,T1,1 ≤ wk1 ∀s st COMB1 = 0, NDs > 0 (4.143)

First Monday M shift
When a surgeon starts at Friday with the M shift, this surgeon cannot start at Monday with the
another task. This surgeon is scheduled on the M shift on Monday. However, this surgeon cannot
start with the M shift, because the surgeon already started on Friday with the M shift. This is
done with constraint (4.144).

xs,t,1 ≤ 1−WBMs ∀s, t st MW = 1 (4.144)
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Junior surgeon
Also at the boundary at most one of the surgeons scheduled at the transplant shifts at the same
time is a junior surgeon. An extra constraint is needed at the boundary if the T1 shift is not
combined with the Td shift. In this case, the T2 shift of the first day of the schedule overlaps with
the T1 weekend shift of the last weekend of the last schedule.∑

s

(1− JRs)(TWs + xs,T2,1) ≥ 1− ds1 st COMB1 = 0 (4.145)

4.5 Objective function

The best schedule is a schedule where all tasks are scheduled and all constraints are fulfilled. When it
is not possible to make such a schedule, costs are assigned to the possibility that a constraint does not
hold during a schedule. By assigning these costs, we can add which constraints are more important
than others. The costs are determined together with the transplant surgeons. They have determined
which constraints are more important than others. The costs are the numbers before the variables in the
objective function (4.146). How the costs are determined, is described below, but first, we will explain
what all parts of the objective function represent. First, the number of shortages is minimized with the
first twelve summations. A shortage occurs if fewer surgeons than needed are scheduled at some task,
when no MOD certified surgeon is scheduled, when no hpb surgeon is scheduled at the operating room
during a week or when at some moment no senior surgeon is scheduled at a transplant shift. Some
tasks are more important than other tasks. Therefore, different weights are used for the shortages at
different tasks. To reduce the number of shortages, some tasks can be combined. This is done with
the thirteenth, fourteenth, fifteenth and sixteenth summation. These summations have lower costs than
the shortages, because we prefer combinations over shortages. Then, we also minimize the number of
weeks a weekend shift is scheduled before a week T1 shift with the summation with costs 300 (when the
T1 shift is not combined with the Td shift). The summation with costs 200 minimizes the weeks where
the M shift is done from Monday till Friday by the same surgeon. The T2 shift can also be scheduled
longer for the same surgeon if this reduces the number of shortages or combinations. This is done with
the summations with costs 100. The next summation (with costs 10) minimizes the number of different
surgeons at respectively the Hpb and Ch task during a week. The lasts part of the objective function are
the maximum number of days a surgeon is scheduled at the different tasks and the maximum number
tasks that are scheduled for one surgeon. By minimizing the maximum number of tasks, the workload
is equally divided over the surgeons.

minimize 210 000 ·
∑

d:d mod 14=5+7·MW

(dM,d + dmd) + 140 000 ·
∑

d:d mod 14∈{3+7·(1−MW ),
1+7·(1−MW )}

(dM,d + dmd)

+ 80 000 ·
∑

d:d mod 7=6

dT1,d + 40 000 ·
( ∑
d:d mod 76=6,
COMBd d

7
e=1

dT1,d + 5 ·
∑

d:d mod 76=6,
COMBd d

7
e=0

dT1,d +
∑
w

dhpbw

+
∑
d

dsd

)
+ 60 000 ·

∑
d:d mod 7=6

dT2,d + 30 000 ·
∑

d:d mod 76=6

dT2,d + 20 000 ·
∑
d

dTd,d

+ 10 000 ·
∑
d

∑
t∈{Ch,Hpb}

dt,d + 5 000 ·
∑
d

∑
t∈{OC,OR}

dt,d + 3 000 ·
∑
d

ud + 2 000 ·
∑
d

zd

+ 2 000 ·
∑
d

yd + 1 000 ·
∑
d

wd + 300 ·
∑
w

wkw + 200 ·
∑
w

lmw + 100 ·
(∑

d

fdd + fdm+ fdtu
)

+ 10 ·
∑
t

∑
w

(ihs,w + ics,w) +

∑
s TSs,M

DTSM +
∑
sDTs,M

·mdsM +

∑
s TSs,T1

DTST1 +
∑
sDTs,T1

·

(mdsT1 +
1

2

∑
d:d mod 7/∈{6,0},
COMBd d

7
e=0

∑
s

FWT1s · xs,T1,d) +

∑
s TSs,T2

DTST2 +
∑
sDTs,T2

·mdsT2

+

∑
s TSs,OR

DTSOR +
∑
sDTs,OR

·mdsOR +
|S|∑

tDTSt +
∑
t

∑
sDTs,t

·md (4.146)

Now we will explain how the costs are determined. First, we will determine importance factors for
different categories for variables. After that, we will determine the importance per variable within this
category. The costs in the objective function are a multiplication of these factors.
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4.5.1 Importance factor per category

We can divide the different variables into different categories and determine a ranking of importance of
these categories. The importance factors of the different categories are powers of ten. By doing this,
we can also have different importance factors within the categories in such a way that the costs within
one category will never exceed the costs of another category that has a higher importance factor. The
different categories are

1. Shortages

2. Combined tasks

3. Extended duration tasks

4. Different surgeons Hpb/Ch

5. Equally divide tasks

Category 1 has the highest importance factor and Category 5 has the lowest importance factor. The
importance factors are shown in Table 4.1. Category 1 includes all shortages that can occur. These are
the shortages at the different tasks, but also when no MOD certified surgeon is scheduled or no senior
transplant surgeon is scheduled or no hpb surgeon is scheduled during the week on the OR. This
category has the highest importance factor of the different categories, because we want to schedule all
tasks if possible. The importance factors within this category are described in Section 4.5.2.

Category 2 includes all combinations of the different tasks. These are the different tasks that can be
scheduled for the same surgeon during a day. By combining different tasks, the number of shortages
can be decreased. However, we do not want to combine more tasks than necessary and therefore, this
category has the second highest importance factor. The importance factors within this category are
described in Section 4.5.3.

Category 3 includes all tasks that can be scheduled longer for the same surgeon if this reduces the
number of shortages or the number of combinations. Therefore, this category has the third highest
importance factor. The importance factors within this category are described in Section 4.5.4.

Category 4 are the number of different surgeons scheduled during a week on the Hpb/Ch task. If
it does not lead to extra shortages, combinations or extended durations of tasks, we want to minimize
the number of different surgeons scheduled at the Hpb tasks during a week. The same thing holds for
the Ch task. Therefore, this category has the fourth highest importance factor. The importance factors
within this category are described in Section 4.5.5.

Category 5 includes all tasks that must be equally divided over the surgeons. We only want to do
this if it does not lead to extra shortages, extra combined tasks, extra tasks with extended durations or
more different surgeons at the Hpb or Ch tasks during a week. Therefore, this is the category with the
lowest importance factor. The importance factors within this category are described in Section 4.5.6.

Table 4.1: The importance factors for the different categories.

Possibility Factor
Shortage 10 000
Combined tasks 1 000
Extended duration task 100
Different surgeons Hpb/Ch 10
Equally divide tasks 1

4.5.2 Importance factors within Category 1

In the category shortages, the variable with the highest importance is the M shift. This is because
the hospital has a contract with the ZUT (‘zelfstandige uitname teams’ this means independent organ
removal teams) which says that always two surgeons are scheduled at this task with at least one of
them MOD certified. We assign the same importance factor to no shortages at the M shift during a day
and an MOD certified surgeon scheduled at the M shift during a day. The M shift is scheduled using
start moments, therefore more days are scheduled when only the start moment is scheduled. We must
take this into account in determining the importance factor.
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For example, if one surgeon less is scheduled at the start moment on Monday two days a surgeon less
is available for the M shift. But if one surgeon less is scheduled on Friday three days one surgeon less
is available for the M shift. The importance factor of no shortages on Friday is therefore higher than the
importance factor of no shortages on Monday. The same thing holds for an MOD certified surgeon on
Monday or an MOD certified surgeon on Friday. The importance factor for no shortages at the M shift
is higher than every possible combination of tasks. If possible the M shift should be scheduled instead
of a combination of other tasks and not scheduling the M shift.

The second most important task is the T1 shift. This is because this is the first point of contact for
transplants that are not scheduled. This shift is scheduled per day, except for the weekend. The whole
weekend is scheduled when the T1 is scheduled on Saturday. Therefore, the importance factor of
scheduling this shift on Saturday is two times the importance factor of scheduling this shift during a
weekday. The importance factor of scheduling a senior surgeon at the transplant shifts is the same as
the importance factor of no shortage at the T1 shift for one day. Also, the importance factor of schedul-
ing a hpb surgeon at the OR during a week is the same.

The next task is the T2 shift. This is because this shift is needed to fulfill unscheduled transplants.
This shift is also scheduled per day, but on Saturday for the whole weekend. Therefore, the importance
factor of scheduling this shift on Saturday is two times the importance of scheduling this shift during
weekdays.

When the M , T1 and T2 shifts are scheduled, the most important task is the Td shift. The Td shift
is not more important than the T2 shift, because during office hours it is easier to find someone not
scheduled at this task to do parts of this task than during other moments of the day. This Td shift is
scheduled per day and only during weekdays. Therefore, the importance factor of scheduling this shift
is the same for all days.

The Ch and Hpb tasks have the same importance factor. The same thing holds for the OR and OC.
The importance factor for scheduling the Ch/Hpb task is higher than for scheduling the OR/OC task.
The OR/OC tasks have the lowest importance factor, because the work during these tasks can be
scheduled. When for example one surgeon less is scheduled at the outpatient clinic, this is known well
ahead. Therefore, fewer patients can be scheduled during this outpatient clinic. The importance factors
for Category 1 are shown in Table 4.2. The importance factors shown in this table are not the costs in
the objective function. In the objective function, the importance factor of the category is also consid-
ered. The costs used in the objective function are the importance factor of Table 4.2 multiplied by the
importance factor of Category 1 (10 000) from Table 4.1.

Table 4.2: The importance factors for no shortages in the schedule made.

Shortage Factor
M task Friday 21
MOD certified surgeon Friday 21
M task Monday 14
MOD certified surgeon Monday 14
M task Wednesday 14
MOD certified surgeon Wednesday 14
T1 task Saturday 8
T1 task weekday 4
Senior at the transplant shifts 4
Hpb surgeon at the OR 4
T2 task Saturday 6
T2 task weekday 3
Td task 2
Ch/Hpb task 1
OR/OC task 1

2

4.5.3 Importance factors within Category 2

To reduce the shortages at the different tasks, some tasks can be combined. This means that one
surgeon is scheduled at these tasks instead of different surgeons. Some combinations are better than
others. The importance factors of not making the possible combinations are shown in Table 4.3.
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When the combination of tasks is not shown in the table, this combination is not possible. The combi-
nations with the highest importance factor are the combinations of other (than the combinations shown
in the table) tasks (T2, Td, Ch,Hpb). When during a day a combination is made, this leads to 5 costs
(without taking into account the importance factor of the category) of that day and the costs of the com-
bination. It is more preferable that two surgeons each have two tasks than that one surgeon has one
task and the other surgeon has three tasks. Therefore, not making each combination of two tasks has
an importance factor. When one surgeon has three tasks three combinations of two tasks are sched-
uled, while only two combinations are made when two surgeons each have two tasks. The importance
factors are determined in such a way that we do not combine the tasks to reduce the shortages at the
outpatient clinic and we will give one surgeon four tasks if this is needed to reduce the other shortages.
The next combination is the Ch and Hpb tasks. This is because the tasks can be combined, but during
the morning the surgeons scheduled at these tasks should visit inpatients at the same time. The M
shift can be combined with the Hpb task on Friday because the biggest part of the Hpb shift is visiting
inpatients in the morning and the M shift starts on Friday at 12:00 o’clock. Another possibility is to com-
bine the T2 shift with the OR task. This is because the T2 shift is a backup for the transplant shifts. This
surgeon is available for transplants when two surgeons are needed. When this surgeon is scheduled at
the OR, no backup is available during the time the surgeon is at the OR. The last possible combination
is the T2 shift with the Hpb task. This is also because the T2 shift is a backup and the biggest part of
the Hpb shift is during the morning. The surgeon scheduled at the Hpb task is most of the time not busy
the entire day.

Table 4.3: The importance factors for not making combinations of tasks in the schedule made.

Combination Factor
Extra combinations during a day 5
Combine two other tasks 3
Ch and Hpb 3
T2 and Hpb 2
T2 and OR 2
M Friday and Hpb 1

4.5.4 Importance factors within Category 3

It is possible that the shortages at the different tasks can be reduced when tasks can be scheduled at
the same surgeon more days. This is possible for the M and T2 shift, but also a weekend shift can
be scheduled before a week T1 shift. The M shift normally has a switching moment on Wednesday.
This means that on Wednesday another surgeon is scheduled at the M shift. However, it is possible to
schedule the M shift for Monday till Friday for the same surgeon. In this case, the switching moment
on Wednesday does not exist. The duration of the T2 shift can be extended. The T2 shift normally is
scheduled two or three days for the same surgeon, but it is possible that a surgeon is scheduled four
consecutive days at the T2 shift. The weekend before a week T1 shift a weekend T2 or M shift can be
scheduled if this reduces the number of shortages or the combinations of tasks. The importance factors
for these cases are shown in Table 4.4.

Table 4.4: The importance factors for not extending the duration of tasks in the schedule made.

Extend duration factor
Weekend shift before week T1 3
M shift 2
T2 shift 1

4.5.5 Importance factors within Category 4

The number of different surgeons at the Hbp task during a week is minimized. The same thing is done
for the Ch tasks and both tasks have the same importance. This is shown in Table 4.5.
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Table 4.5: The importance factors for the number of different surgeons scheduled at tasks during a
week in the schedule made.

Task factor
Ch 1
Hpb 1

4.5.6 Importance factors within Category 5

We want to minimize the differences of the number of days a task is scheduled over the surgeons. To do
this, the maximum number of days a surgeon is scheduled at a task is minimized. This is done for the
tasks M , T1, T2, OR and the total number of tasks scheduled. To determine the costs for the different
tasks, we must normalize these variables. This is done by dividing the number of surgeons that can
be scheduled at the task by the number of days the task is scheduled plus the number of days already
scheduled. By doing this we normalise the maximum number of days a surgeon is scheduled at a task by
the average number of days a surgeon is scheduled at a task (we multiply the maximum number of days
a surgeon is scheduled at a task by 1

average number of days a surgeon is scheduled at the task ). By using these factors,
the number of different surgeons scheduled at Hpb/Ch during a week is not increased to decrease the
maximum number of days a surgeon is scheduled at a task. When we look for example at the organ
removal shift and all organ removal shifts are scheduled for one surgeon (which is not possible), we will
get the value equal to the number of surgeons that can be scheduled at the organ removal shift in the
objective function. This is (in our case) a bit bigger than one different surgeon more scheduled at one
week at the Ch or Hpb task. Therefore, the value of the maximum number of days scheduled will not
increase the factor ten, which is equal to the value in the objective function when one different surgeon
extra is scheduled at one week at the Ch or Hpb task. When surgeons who do prefer weekend T1
shifts, because they cannot handle a whole week night shifts well, are scheduled at a week night shift,
the importance factor is one half times the importance factor for dividing the T1 shift equally. This is
because it is more important to distribute the T1 shift equally. However, we want to minimize the number
of times this surgeon is scheduled at the week night shift. These factors are shown in Table 4.6.

Table 4.6: The importance factors for the maximum number of days scheduled.

Task Factor

M shift
∑
s TSs,M

DTSM+
∑
sDTs,M

T1 shift
∑
s TSs,T1

DTST1+
∑
sDTs,T1

Prefer weekend T1 shift 1
2 ·

∑
s TSs,T1

DTST1+
∑
sDTs,T1

T2 shift
∑
s TSs,T2

DTST2+
∑
sDTs,T2

OR task
∑
s TSs,OR

DTSOR+
∑
sDTs,OR

Total |S|∑
tDTSt+

∑
t

∑
sDTs,t

4.5.7 Costs in objective function

The costs used in the objective function are shown in Table 4.7. The costs used in the objective function
are the importance factors within the category multiplied by the importance factor of the category of the
variable.
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Table 4.7: The costs used in the objective function.

Variable Costs
Shortage M shift Friday 210 000
No MOD certified surgeon Friday 210 000
Shortage M shift Monday 140 000
No MOD certified surgeon Monday 140 000
Shortage M shift Wednesday 140 000
No MOD certified surgeon Wednesday 140 000
Shortage T1 shift Saturday 80 000
Shortage T1 shift weekday 40 000
Senior at the transplant shifts 40 000
Hpb surgeon at the OR 40 000
Shortage T2 shift Saturday 60 000
Shortage T2 shift weekday 30 000
Shortage Td shift 20 000
Shortage Ch/Hpb task 10 000
Shortage OR/OC task 5 000
Extra combinations during a day 5 000
Combine two other tasks 3 000
Ch and Hpb tasks combined 3 000
T2 and Hpb tasks combined 2 000
T2 and OR tasks combined 2 000
M and Hpb tasks combined 1 000
Weekend shift before week T1 300
Longer M shift 200
Longer T2 shift 100
Different surgeons Hpb 10
Different surgeons Ch 10

Maximum number of days M shift
∑
s TSs,M

DTSM+
∑
sDTs,M

Maximum number of days T1 shift
∑
s TSs,T1

DTST1+
∑
sDTs,T1

Prefer weekend T1 shift 1
2 ·

∑
s TSs,T1

DTST1+
∑
sDTs,T1

Maximum number of days T2 shift
∑
s TSs,T2

DTST2+
∑
sDTs,T2

Maximum number of day OR task
∑
s TSs,OR

DTSOR+
∑
sDTs,OR

Maximum number of days scheduled |S|∑
tDTSt+

∑
t

∑
sDTs,t

4.6 Schedule

By solving the ILP as described in this chapter, we schedule for certain tasks and days only the starting
moment. For example the M shift is scheduled on Friday and then we know that this shift is scheduled
for the same surgeon on Saturday, Sunday and Monday. Therefore, not the whole schedule is the out-
put of the ILP. Before we have the schedule, we have to execute the procedure shown in Algorithm 2 in
Appendix B. We loop over all surgeons, tasks and days. When the day is a Saturday, we know that if a
task is scheduled, the task is also scheduled on Sunday. If the day is a weekday or the task is the organ
removal shift, we know that this shift is scheduled for more days at once for one surgeon. When the day
is a weekday and the task is the T1 shift and the T1 and Td shifts are not combined, then the whole
week T1 is scheduled if this task is scheduled on Monday. Otherwise, the task is scheduled for one day
for this surgeon. Then, the non-clinical days, days off and days the surgeon does not want to do a shift
must be indicated in the schedule. Last, when a surgeon has the weekend organ removal shift during
the last weekend before the schedule, the surgeon is also scheduled at this shift the first Monday of the
schedule.

4.7 Different structure organ removal shift

As described in Section 3.3, we expect difficulties with scheduling the organ removal shift using the
fixed structure. Therefore, we will look at some cases to schedule the organ removal shift differently. To
do this, the model has to be adjusted. First, this is done in Section 4.7.1 for the case that the LUMC will
cooperate with the Erasmus MC.
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This means that the organ removal shift is not scheduled every other week, but constantly. The same
thing holds for the Erasmus MC. Then, in Section 4.7.2 we will adjust the model to the old situation and
in Section 4.7.3 we will adjust the model such that the organ removal shift is scheduled the same as the
T2 shift.

4.7.1 Cooperate with Erasmus MC

When the LUMC cooperates with the Erasmus MC, always one surgeon must be scheduled at the organ
removal shift instead of two surgeons every other week. However, we still have the structure that one
surgeon is scheduled from Friday 12:00 o’clock till Monday 12:00 o’clock, another surgeon is sched-
uled at the organ removal shift from Monday 12:00 o’clock till Wednesday 12:00 o’clock and a surgeon
(possibly the same as scheduled from Monday till Wednesday) is scheduled from Wednesday 12:00
o’clock till Friday 12:00 o’clock. By doing this, it is more difficult to determine when an MOD surgeon is
scheduled at this shift, because this depends on the schedule of the Erasmus MC and the LUMC. The
model described in this chapter has to be adjusted to schedule the organ removal shift this way. First,
the constraints will be described and then the objective function.

Constraint (4.6) is replaced by constraint (4.147). This is because every Friday the surgeon who starts
with the organ removal shift can also be scheduled at the Hpb task. Every week a surgeon starts at
12:00 o’clock with the organ removal shift.

wd = 0 ∀d st d mod 7 /∈ {1, 3, 5} (4.147)

Constraint (4.18) is replaces by constraint (4.148). The constraint is adjusted because the organ re-
moval shift starts on more days when the LUMC cooperates with the Erasmus MC.

xs,M,d = 0 ∀s, d st d mod 7 ∈ {0, 2, 4, 6} (4.148)

Also, constraints (4.24) and (4.25) are adjusted, because the organ removal shift is scheduled more
days. Therefore, we do not have a organ removal shift week. The constraints that without the cooper-
ation hold for a determined day in the organ removal shift week must now hold for this day during all
weeks. This is done with constraints (4.149) and (4.150).

xs,M,d = 0 ∀s, d st d mod 7 ∈ {1, 3}, (d+ 1) mod 7 = NCDs, NNCDs,d+1 = 0 (4.149)
xs,M,d = 0 ∀s, d st d mod 7 ∈ {1, 3}, ENCDs,d+1 = 1 (4.150)

Constraints (4.26) – (4.31) are replaced by constraints (4.151) – (4.156) because the constraints should
hold every week instead of only during organ removal shift weeks.

xs,M,d = 0 ∀s, d st d mod 7 ∈ {1, 3}, (d+ 2) mod 7 = NCDs, NNCDs,d+2 = 0,

MONCDs,d+2 = 0 (4.151)
xs,M,d = 0 ∀s, d st d mod 7 ∈ {1, 3}, ENCDs,d+2 = 1,MONCDs,d+2 = 0 (4.152)
xs,M,d = 0 ∀s, d st d mod 7 = 5, (d+ 3) mod 7 = NCDs,

NNCDs,d+3 = 0,MONCDs,d+3 = 0 (4.153)
xs,M,d = 0 ∀s, d st d mod 7 = 5, ENCDs,d+3 = 1,MONCDs,d+3 = 0 (4.154)
xs,M,d = 0 ∀s, d st d mod 7 ∈ {1, 3, 5}, d mod 7 = NCDs, NNCDs,d = 0,

MNCDs,d = 0 (4.155)
xs,M,d = 0 ∀s, d st d mod 7 ∈ {1, 3, 5}, d mod 7 = NCDs, ENCDs,d = 1,

MNCDs,d = 0 (4.156)

Constraints (4.33) – (4.37) are replaced by constraints (4.157) – (4.161) by the same reason.

xs,M,d = 0 ∀s, d st d mod 7 ∈ {1, 3, 5}, Vs,d = 1,MVs,d = 0 (4.157)
xs,M,d = 0 ∀s, d st d mod 7 ∈ {1, 3, 5}, Vs,d+1 = 1 (4.158)
xs,M,d = 0 ∀s, d st d mod 7 = 5, Vs,d+2 = 1 (4.159)
xs,M,d = 0 ∀s, d st d mod 7 ∈ {1, 3}, Vs,d+2 = 1,MOVs,d+2 = 0 (4.160)
xs,M,d = 0 ∀s, d st d mod 7 = 5, Vs,d+3 = 1,MOVs,d+3 = 0 (4.161)

Also, Constraints (4.46) and (4.47) are replaced by constraints (4.162) and (4.163), because of this.

xs,M,d = 0 ∀s, d st d mod 7 ∈ {1, 3, 5}, Gs,d+1 = 1 (4.162)
xs,M,d = 0 ∀s, d st d mod 7 = 5, Gs,d+2 = 1 (4.163)
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The organ removal shift is not scheduled on Tuesday, Thursday, Saturday and Sunday. Therefore, only
on these days the dummy variables for this shift are not created. This is done with constraints (4.164)
and (4.165) instead of constraints (4.56) and (4.61).

dM,d = 0 ∀d st d mod 7 ∈ {0, 2, 4, 6} (4.164)
dmd = 0 ∀d st d mod 7 ∈ {0, 2, 4, 6} (4.165)

Constraint (4.62) is deleted, because now every week the organ removal shift can be scheduled from
Monday till Friday for the same surgeon.

We cannot take into account constraint (4.64), because it depends on the schedule of the Erasmus
MC when a MOD certified surgeon is scheduled.

Constraint (4.76) is replaced by constraint (4.166). This is because the organ removal shift should
be scheduled every week and one surgeon should be scheduled instead of two.∑

s

xs,M,d + dM,d = 1 ∀d st d mod 7 ∈ {1, 3, 5} (4.166)

Constraint (4.88) is replaced by constraint (4.167) by the same reason.

xs,Hpb,d + xs,M,d ≤ 1 + wd ∀s, d st d mod 7 ∈ {1, 3, 5} (4.167)

Constraint (4.89) is replaced by constraint (4.168) because the organ removal shift is scheduled every
week.

wd ≤ 1− lmd d7 e ∀d st d mod 7 = 3 (4.168)

Also, Constraints (4.103) – (4.109) are replaced by constraints (4.169) – (4.175) because of this.

xs,t,d ≤ 1− xs,M,d ∀s, t, d st t ∈ {T2, Td,OR,Ch},
d mod 7 = 5 (4.169)

xs,t,d+1 ≤ 1− xs,M,d ∀s, t, d st t ∈ {T1, T2}, d mod 7 = 5 (4.170)
xs,t,d+3 ≤ 1− xs,M,d ∀s, t, d st d mod 7 = 5 (4.171)
xs,t,d′ ≤ 1− xs,M,d ∀s, t, d, d′ st t ∈ {T1, T2, Td,OC,Ch,Hpb},

d mod 7 = 1, d′ ∈ {d, d+ 1} (4.172)
xs,t,d+2 ≤ 1− xs,M,d ∀s, t, d st t 6=M,d mod 7 = 1 (4.173)
xs,M,d+2 ≤ 1− xs,M,d + lmd d7 e

∀s, d st d mod 7 = 1 (4.174)

xs,t,d′ ≤ 1− xs,M,d ∀s, t, d, d′ st t ∈ {T2, Td,OR,Ch,Hpb},
d mod 7 = 3, d′ ∈ {d, d+ 1, d+ 2} (4.175)

Constraint (4.121) is replaced by constraint (4.176) because we have to sum over all weeks instead of
only the organ removal shift weeks.

3 ·
∑

d:d mod 7=5

xs,M,d + 2 ·
∑

d:d mod 7=1

xs,M,d+

2 ·
∑

d:d mod 7=3

xs,M,d +DTs,M ≤ mdsM ∀s st
∑

t∈{T1,T2,M}

TSt,s 6= TSM,s (4.176)

Constraint (4.125) is replaced by (4.177) by the same reason.

3 ·
∑

d:d mod 7=5

xs,M,d + 2 ·
∑

d:d mod 7=1

xs,M,d + 2 ·
∑

d:d mod 7=3

xs,M,d

+ 2 ·
∑

d:d mod 7=6

∑
t∈{T1,T2}

xs,t,d +
∑

d:d mod 76=6

∑
t/∈{M,T1}

xs,t,d +
∑

d:d mod 7/∈{1,6}

xs,T1,d

+ 5 ·
∑

d:d mod 7=1,COMBd d
7
e=0

xs,T1,d +
∑

d:d mod 7=1,COMBd d
7
e=1

xs,T1,d + 2 ·
∑

d:d mod 7=6

xs,T1,d

+
∑
t

DTs,t ≤ md ∀s (4.177)

Constraint (4.126) is replaced by (4.178), because the organ removal shift starts every Monday, Wednes-
day and Friday. Therefore, some surgeons can already be scheduled at the organ removal shift during
these days.

xs,M,d = Xs,M,d ∀s, d st
∑
t

TSt,s =
∑

t∈{M,OR,OC}

TSt,s, d mod 7 ∈ {1, 3, 5} (4.178)
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Constraint (4.127) is replaced by constraint (4.179), because we have to sum over all weeks instead of
only the organ removal shift weeks.

3 ·
∑

d:d mod 7=5

xs,M,d + 2 ·
∑

d:d mod 7=1

xs,M,d+

2 ·
∑

d:d mod 7=3

xs,M,d ≤
|D|
5

∀s st
∑

t∈{T1,T2,M}

TSt,s = TSM,s (4.179)

Constraint (4.144) is replaced by constraint (4.180), because it always holds that the surgeon who is
scheduled the last weekend before the new schedule at the organ removal shift cannot be scheduled at
a task on Monday.

xs,t,1 ≤ 1−WBMS ∀s, t (4.180)

We will also add a new constraint. This constraint ensures that the surgeon who is scheduled on the
organ removal shift on Wednesday cannot also be scheduled at the organ removal shift on Friday. This
is done with constraint (4.181).

xs,M,d+2 ≤ 1− xs,M,d ∀s, d st d mod 5 = 3 (4.181)

The objective function has to be adjusted. Also in the objective function we have to sum over all weeks
for the organ removal shift instead of the organ removal shift weeks. This is shown in the new objective
function (4.182)

minimize 210 000 ·
∑

d:d mod 7=5

(dM,d + dmd) + 140 000 ·
∑

d:d mod 7∈{1,3}

(dM,d + dmd)

+ 80 000 ·
∑

d:d mod 7=6

dT1,d + 40 000 ·
( ∑
d:d mod 76=6,
COMBd d

7
e=1

dT1,d + 5 ·
∑

d:d mod 76=6,
COMBd d

7
e=0

dT1,d +
∑
w

dhpbw

+
∑
d

dsd

)
+ 60 000 ·

∑
d:d mod 7=6

dT2,d + 30 000 ·
∑

d:d mod 76=6

dT2,d + 20 000 ·
∑
d

dTd,d

+ 10 000 ·
∑
d

∑
t∈{Ch,Hpb}

dt,d + 5 000 ·
∑
d

∑
t∈{OC,OR}

dt,d + 3 000 ·
∑
d

ud + 2 000 ·
∑
d

zd

+ 2 000 ·
∑
d

yd + 1 000 ·
∑
d

wd + 300 ·
∑
w

wkw + 200 ·
∑
w

lmw + 100 ·
(∑

d

fdd + fdm+ fdtu
)

+ 10 ·
∑
t

∑
w

(ihs,w + ics,w) +

∑
s TSs,M

DTSM +
∑
sDTs,M

·mdsM +

∑
s TSs,T1

DTST1 +
∑
sDTs,T1

·

(mdsT1 +
1

2

∑
d:d mod 7/∈{6,0},
COMBd d

7
e=0

∑
s

FWT1s · xs,T1,d) +

∑
s TSs,T2

DTST2 +
∑
sDTs,T2

·mdsT2

+

∑
s TSs,OR

DTSOR +
∑
sDTs,OR

·mdsOR +
|S|∑

tDTSt +
∑
t

∑
sDTs,t

·md (4.182)

4.7.2 Old situation

The old situation is the situation in the LUMC before the structure of three blocks was introduced. Also
in this case the organ removal shift is scheduled every other week, but further no rules were available
for scheduling the organ removal shift. We have a switching moment at 22:00 o’clock every day, except
at Saturday. The whole weekend this shift is done by the same surgeon. Therefore, the surgeon who
starts on Friday 22:00 o’clock is scheduled at this shift till Sunday 22:00 o’clock. With no further rules we
mean that it does not matter how long the surgeon is scheduled consecutively at this shift. The organ
removal week still starts at Friday 12:00 o’clock and ends at the next Friday 12:00 o’clock. Therefore,
every Friday a surgeon is scheduled at the organ removal shift, but only half a day. In this section the
adjustments of the model shown in this chapter are shown to schedule the organ removal shift in the
old situation. The switching moments of the organ removal shift in this case are shown in Figure 4.1.
When a block is filled, the organ removal shift must be scheduled at this day and on this time moment.
When the pattern of a block changes another transplant surgeon can be scheduled.
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Figure 4.1: The switching moments of the organ removal shift at the different days this shift is scheduled.

Below we will describe which constraints are adjusted and how the new objective function looks like.
First, constraint 4.6 is replaced by constraint (4.183) because theHpb task andM shift can be combined
when the organ removal shift starts at 12:00 o’clock. This only is on the first Friday in the old situation.

wd = 0 ∀d st d mod 14 6= 5 + 7 ·MW (4.183)

Also, constraint (4.18) must be adjusted. This is because the organ removal shift is scheduled the whole
week during an organ removal shift week instead of only three starting moments. Constraint (4.184)
replaces constraint (4.18).

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 ·MW, 2 + 7 ·MW, 3 + 7 ·MW, 4 + 7 ·MW,

6 + 7 · (1−MW ), 0, 7} (4.184)

Constraints (4.22) – (4.31) are replaced by constraints (4.185) and (4.186). This is because the organ
removal shift is scheduled for a whole day, except at the beginning and end of the organ removal shift
week. Therefore, the organ removal shift does not have to be scheduled half a day during the non-
clinical day of a surgeon.

xs,t,d = 0 ∀s, t, d st t 6= T1, d mod 7 = NCDs, NNCDs = 0 (4.185)
xs,t,d = 0 ∀s, t, d st t 6= T1, ENCDs,d = 1 (4.186)

Constraints (4.33) – (4.37) are replaced by constraint (4.187). This is because the organ removal shift is
scheduled per day in this case. Therefore, only the organ removal shift during the day off of the surgeon
cannot be scheduled. Also in this case we do not need the parameters that indicate if a surgeon can do
a half day organ removal shift during the day off.

xs,t,d = 0 ∀s, t, d st d mod 7 ∈ {1, 2, 3, 4, 5}, Vs,d = 1 (4.187)

The organ removal shift is scheduled for the whole weekend when this shift is scheduled on Saturday.
Therefore, this shift cannot be scheduled at Saturday when a surgeon has a day off on Sunday. This is
done with constraint (4.43) for the T1 and T2 shifts. This constraint is replaced by constraints (4.188).
This new constraint is also for the organ removal shift.

xs,t,d = 0 ∀s, t, d st t ∈ {T1, T2,M}, d mod 7 = 6, Vs,d + Vs,d+1 ≥ 1 (4.188)

Constraints (4.45), (4.46) and (4.47) are replaced by constraint (4.189), (4.190) and (4.191) . When a
surgeon does not want to do a shift during a day, the organ removal shift cannot be scheduled. The
organ removal shift at the last Friday of the organ removal shift week can be scheduled, because this
shift ends at 12:00 o’clock. Therefore, the surgeon does not have any shift after office hours. When the
shift is scheduled on Saturday, the Sunday is also scheduled. Therefore, we cannot schedule the shift
on Saturday when the surgeon does not want to do shifts on Sunday.

xs,t,d = 0 ∀s, t, d st t ∈ {T1, T2}, d mod 7 ∈ {1, 2, 3, 4, 5}, Gs,d = 1 (4.189)
xs,M,d = 0 ∀s, d st d mod 14 6= 5 + 7 · (1−MW ), Gs,d = 1 (4.190)
xs,M,d = 0 ∀s, d st d mod 14 = 6 + 7 ·MW,Gs,d+1 = 1 (4.191)

Constraint (4.56) is replaced by constraint (4.192). This is because the dummy variable is equal to zero
if the organ removal shift does not have to be scheduled and in this case the organ removal shift is
scheduled on more separate days.

dM,d = 0 ∀d st d mod 14 ∈ {1 + 7 ·MW, 2 + 7 ·MW, 3 + 7 ·MW, 4 + 7 ·MW,

6 + 7 · (1−MW ), 0, 7} (4.192)

The same thing holds for the dummy variable for the scheduled MOD certified surgeon. Therefore,
constraint (4.61) is replaced by constraint (4.193).

dmd = 0 ∀s, d st d mod 14 ∈ {1 + 7 ·MW, 2 + 7 ·MW, 3 + 7 ·MW, 4 + 7 ·MW,

6 + 7 · (1−MW ), 0, 7} (4.193)
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Constraint (4.62) is not needed any more, because the organ removal shift can be scheduled as long
as wanted for the same surgeon in this case. We also do not need the variable lmw anymore.

Constraint (4.64) is replaced by constraint (4.194). This is done because every switch moment of
the organ removal shift at least one MOD certified surgeon must be scheduled. When we schedule the
organ removal shift as was done in the old situation, we have more switching moments.∑
s

(MODs +MODCs,d) · xs,M,d ≥ 1− dmd ∀d st d mod 14 ∈ {5 + 7 ·MW, 6 + 7 ·MW,

1 + 7 · (1−MW ), 2 + 7 · (1−MW ), 3 + 7 · (1−MW ),

4 + 7 · (1−MW ), 5 + 7 · (1−MW )} (4.194)

Constraint (4.76) is replaced by constraint (4.195). This is because every switch moment two surgeons
must be scheduled and we have more switching moments in the old situation.∑

s

xs,M,d + dM,d = 2 ∀d st d mod 14 ∈ {5 + 7 ·MW, 6 + 7 ·MW, 1 + 7 · (1−MW ),

2 + 7 · (1−MW ), 3 + 7 · (1−MW ), 4 + 7 · (1−MW ),

5 + 7 · (1−MW )} (4.195)

Constraint (4.80) is replaced by constraint (4.196). A weekend shift is not preferred before a week T1
shift. When we schedule the organ removal shift as done in the old situation, only a weekend organ
removal shift is possible. Therefore, we have to add the weekend organ removal shift in this constraint.

xs,t,d ≤ 1− xs,T1,d+2 + wkd d+2
7 e

∀s, t, d st t ∈ {T2,M}, COMBd d+2
7 e

= 0,

d mod 7 = 6 (4.196)

By the same reason we replace constraint (4.81) by constraint (4.197). No weekend shift can be sched-
uled after a week T1 shift. Therefore, also no organ removal shift can be scheduled on Saturday.∑

t∈{T1,T2,M}

xs,t,d+5 + xs,T1,d ≤ 1 ∀s, d st COMBd d7 e
= 0, d mod 7 = 1 (4.197)

Constraint (4.84) is replaced by constraint (4.198). This constraint ensures no three weeks consecutive
weekend shift is scheduled for a surgeon. This constraint must be adjusted, because the weekend shift
of the organ removal shift does not start on Friday, but on Saturday in the old situation.∑

t∈{T1,T2,M}

(xs,t,d + xs,t,d+7 + xs,t,d+14) ≤ 2 ∀s, d st d mod 7 = 6 (4.198)

Constraint (4.88) is replaced by constraint (4.199). This is because the Hpb shift can only be combined
with the organ removal shift during the first Friday of the organ removal shift. Therefore, during all other
switch moments not both tasks can be scheduled for the same surgeon. The variable wd only can be
one during the first Friday of the organ removal shift. This variable is equal to one on the first Friday of
the organ removal shift if both tasks are scheduled for the same surgeon.

xs,Hpb,d + xs,M,d ≤ 1 + wd ∀s, d st d mod 14 ∈ {5 + 7 ·MW, 6 + 7 ·MW,

1 + 7 · (1−MW ), 2 + 7 · (1−MW ), 3 + 7 · (1−MW ),

4 + 7 · (1−MW ), 5 + 7 · (1−MW )} (4.199)

The variable lmw is not needed in this case. Therefore, constraint (4.89) is not included in this model.

Constraints (4.103)–(4.109) are not needed in the old situation, because the organ removal shift can
be scheduled as wanted. However, during the organ removal shifts no other tasks, except the Hpb task
can be scheduled. Scheduling the Hpb task at the same surgeon as the organ removal shift is done
with constraint (4.199). For all other tasks this is done with constraint (4.200).

xs,t,d ≤ 1− xs,M,d ∀s, t, d st t /∈ {Hpb,M}, d mod 14 ∈ {5 + 7 ·MW, 6 + 7 ·MW,

1 + 7 · (1−MW ), 2 + 7 · (1−MW ), 3 + 7 · (1−MW ),

4 + 7 · (1−MW ), 5 + 7 · (1−MW )} (4.200)

Constraint (4.121) is replaced by (4.201), because we do not schedule multiple days at once in the old
situation, except the weekend. Therefore, we have to adjust the weights in this constraint.∑
d:d mod 14/∈
{6+7·MW,5,12}

xs,M,d + 2 ·
∑

d:d mod 14=
6+7·MW

xs,M,d +
1

2
·

∑
d:d mod 7=5

xs,M,d ≤ mdsM ∀s st
∑

t∈{T1,T2,M}

TSt,s

6= TSM,s (4.201)
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The same thing is done for constraint (4.125), where we determine the maximum number of tasks
scheduled at a surgeon. The new constraint is constraint (4.202).∑

d:d mod 14/∈
{6+7·MW,5,12}

xs,M,d + 2 ·
∑

d:d mod 14=
6+7·MW

xs,M,d +
1

2
·

∑
d:d mod 7=5

xs,M,d + 2 ·
∑

d:d mod 7=6

∑
t∈{T1,T2}

xs,t,d

+
∑

d:d mod 76=6

∑
t/∈{M,T1}

xs,t,d +
∑

d:d mod 7/∈{1,6}

xs,T1,d + 5 ·
∑

d:d mod 7=1,COMBd d
7
e=0

xs,T1,d

+
∑

d:d mod 7=1,COMBd d
7
e=1

xs,T1,d + 2 ·
∑

d:d mod 7=6

xs,T1,d +
∑
t

DTs,t ≤ md ∀s (4.202)

Constraint (4.126) is replaced by constraint (4.203). The constraint must hold for all switching moments
and the switching moments are changed.

xs,M,d = Xs,M,d ∀s, d st
∑
t

TSt,s =
∑

t∈{M,OR,OC}

TSt,s, d mod 14 ∈ {5 + 7 ·MW, 6 + 7 ·MW,

1 + 7 · (1−MW ), 2 + 7 · (1−MW ), 3 + 7 · (1−MW ), 4 + 7 · (1−MW ),

5 + 7 · (1−MW )} (4.203)

Also constraint (4.127) has to be adjusted in the same way as constraint (4.121). This is done in
constraint (4.204).∑
d:d mod 14/∈
{6+7·MW,5,12}

xs,M,d + 2 ·
∑

d:d mod 14=
6+7·MW

xs,M,d +
1

2
·

∑
d:d mod 7=5

xs,M,d ≤
|D|
5

∀s st
∑

t∈{T1,T2,M}

TSt,s

= TSM,s (4.204)

Constraints (4.136) and (4.137) are adjusted in the same way as constraint (4.84), because constraints
(4.136) and (4.137) are the boundary constraints of constraint (4.84). This is done in constraints (4.205)
and (4.206). ∑

t∈{M,T1,T2}

xs,t,6 ≤ 2−WBs −WBs ·WBTs ∀s (4.205)

∑
t∈{M,T1,T2}

(xs,t,6 + xs,t,13) ≤ 2−WBs ∀s (4.206)

Constraint (4.143) is adjusted in the same way as constraint (4.80), because constraint (4.143) is the
boundary constraint of constraint (4.80). This is done in constraint (4.207)

xs,T1,1 ≤ wk1 ∀s st COMB1 = 0, (NDs > 0 or WBMs = 1) (4.207)

Last, constraint (4.144) is not needed in the old situation, because the surgeon with the weekend organ
removal shift is not automatically scheduled on the Monday after this weekend.

Also, the objective function has to be adjusted. The organ removal shift is scheduled per day and
therefore shortages can occur per day. The costs of the shortages are adjusted, because this are the
costs for a shortage during one day except for the Friday and Saturday. On Saturday the shift is sched-
uled for two days and therefore these costs are twice the costs of a shortage during one day. On Friday
the organ removal shift is scheduled till/from 12:00 o’clock. Therefore we divide the costs by two during
these days. We also remove the costs for scheduling the organ removal shift from Monday till Friday for
the same surgeon, because this does not matter in the old situation. This is shown in the new objective
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function (4.208).

minimize 140 000 ·
∑

d:d mod 14=
6+7·MW

(dM,d + dmd) + 70 000 ·
∑

d:d mod 14/∈
{6+7·MW,5,12}

(dM,d + dmd) + 35 000 ·
∑

d:d mod 7=5

(dM,d + dmd) + 80 000 ·
∑

d:d mod 7=6

dT1,d + 40 000 ·
( ∑
d:d mod 76=6,
COMBd d

7
e=1

dT1,d + 5 ·
∑

d:d mod 76=6,
COMBd d

7
e=0

dT1,d

+
∑
w

dhpbw +
∑
d

dsd

)
+ 60 000 ·

∑
d:d mod 7=6

dT2,d + 30 000 ·
∑

d:d mod 76=6

dT2,d + 20 000 ·
∑
d

dTd,d

+ 10 000 ·
∑
d

∑
t∈{Ch,Hpb}

dt,d + 5 000 ·
∑
d

∑
t∈{OC,OR}

dt,d + 3 000 ·
∑
d

ud + 2 000 ·
∑
d

zd

+ 2 000 ·
∑
d

yd + 1 000 ·
∑
d

wd + 300 ·
∑
w

wkw + 100 ·
(∑

d

fdd + fdm+ fdtu
)

+ 10 ·
∑
t

∑
w

(ihs,w + ics,w) +

∑
s TSs,M

DTSM +
∑
sDTs,M

·mdsM +

∑
s TSs,T1

DTST1 +
∑
sDTs,T1
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·md (4.208)

4.7.3 Same structure as the T2 shift

The organ removal shift can also be scheduled in the same way as the T2 shift. By doing this, schedul-
ing the organ removal shift is easier than with the fixed structure. We have more switching moments in
this case and therefore more options of scheduling the organ removal shift. The surgeons cannot be
scheduled more than four consecutive days at this shift and no shift can be scheduled till 22:00 o’clock
when a surgeon starts at 22:00 o’clock with the organ removal shift. Also, the organ removal shift is
scheduled for at least two consecutive days for one surgeon. Therefore, the surgeons scheduled at the
organ removal shift are fitter than in the old situation (Section 4.7.2).

When we want to schedule the organ removal shift the same as the T2 shift the model as described
in this chapter can be used with the adjustments described in Section 4.7.2 and the constraints shown
below have to be adjusted added.

Constraints (4.111) and (4.112) have to be adjusted, because not only the T1/Td combination can-
not be scheduled after the T2 shift, also not after the M shift. This is done with constraints (4.209) and
(4.210).

xs,T1,d+1 ≤ 1− xs,t,d ∀s, t, d st t ∈ {T2,M}, COMBd d+1
7 e

= 1,

(d+ 1) mod 7 6= 1 (4.209)
xs,T1,d+2 ≤ 1− xs,t,d ∀s, t, d st t ∈ {T2,M}, COMBd d+2

7 e
= 1,

(d+ 2) mod 7 = 1 (4.210)

Also constraints (4.114) and (4.115) have to be adjusted. Not only the T2 shift cannot be scheduled
after the T1/Td combination, also the M shift cannot be scheduled after the T1/Td combination. This is
done with constraints (4.211) and (4.212)

xs,t,d+1 ≤ 1− xs,T1,d ∀s, t, d st t ∈ {T2,M}, COMBd d7 e
= 1,

(d+ 1) mod 7 6= 1 (4.211)
xs,t,d+2 ≤ 1− xs,T1,d ∀s, t, d st t ∈ {T2,M}, COMBd d7 e

= 1,

(d+ 2) mod 7 = 1 (4.212)

The next constraints have to be added to the model. With the first constraints we ensure that the T2
shift is not scheduled after the M shift and vice versa. Constraints (4.213) and (4.214) ensure that the
T2 shift cannot be scheduled after the M shift. However, the T2 shift can be scheduled the Saturday
after the last Friday of the organ removal shift. This is because the organ removal shift ends on the last
Friday at 12:00 o’clock. Constraints (4.215) and (4.216) ensure that the M shift cannot be scheduled
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after the T2 shift. The start of the organ removal shift week on Friday can be scheduled after the T2
shift, because this organ removal shift start at 12:00 o’clock.

xs,T2,d+1 ≤ 1− xs,M,d ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 2 + 7 · (1−MW ),

3 + 7 · (1−MW ), 4 + 7 · (1−MW ), 5 + 7 ·MW} (4.213)
xs,T2,d+2 ≤ 1− xs,M,d ∀s, d st d mod 14 = 6 + 7 ·MW (4.214)
xs,M,d+1 ≤ 1− xs,T2,d ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 2 + 7 · (1−MW ),

3 + 7 · (1−MW ), 4 + 7 · (1−MW ), 5 + 7 · (1−MW )} (4.215)
xs,M,d+2 ≤ 1− xs,T2,d ∀s, d st d mod 14 = 6 + 7 ·MW (4.216)

We want to schedule the organ removal shift for at least two consecutive days. This is done with
constraints (4.217) and (4.218).

xs,M,d+1 ≥ xs,M,d − xs,M,d−2 ∀d st d mod 14 = 1 + 7 · (1−MW ) (4.217)
xs,M,d+1 ≥ xs,M,d − xs,M,d−1 ∀d st d mod 7 ∈ {2 + 7 · (1−MW ), 3 + 7 · (1−MW ),

4 + 7 · (1−MW ), 5 + 7 · (1−MW ), 5 + 7 ·MW} (4.218)

The M shift can be scheduled at most four days consecutively. We want to indicate when the M shift
is scheduled four consecutive days, because we want to minimize the number of times the M shift is
scheduled four days consecutively. To do this, we need a new variable fdmd as shown below.

fdmd =


1 if the M shift is scheduled for four days consecutively at the same surgeon,

starting at day d
0 otherwise

This variable is minimized in the objective function with the same costs as the lmw variable has in the
model for the fixed structure of the organ removal shift. The value of fdmd is determined with constraints
(4.219) – (4.224).

d+3∑
d′=d

xs,M,d′ ≤ 3 + fdmd ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ),

2 + 7 · (1−MW )} (4.219)
d+3∑
d′=d

xs,M,d′ ≤ 3 ∀s, d st d mod 14 = 3 + 7 · (1−MW ) (4.220)

d+2∑
d′=d

xs,M,d′ ≤ 2 + fdmd ∀s, d st d mod 14 = 4 + 7 · (1−MW ) (4.221)

d+3∑
d′=d

xs,M,d′ ≤ 2 + fdmd ∀s, d st d mod 14 ∈ {5 + 7 ·MW, 6 + 7 ·MW} (4.222)

xs,M,d+4 ≤ 2− fdmd − xs,M,d ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 2 + 7 · (1−MW ),

4 + 7 · (1−MW ), 5 + 7 ·MW, 6 + 7 ·MW} (4.223)
fdmd = 0 ∀s, d st d mod 14 ∈ {1 + 7 ·MW, 2 + 7 ·MW, 3 + 7 ·MW,

4 + 7 ·MW, 3 + 7 · (1−MW ), 6 + 7 · (1−MW ),

5 + 7 · (1−MW ), 0, 7} (4.224)

We have to adjust the objective function in this case. The objective function is almost the same as the
objective function in the old situation (Section 4.7.2). However, we also want to minimize the number of
times the organ removal shift is scheduled four consecutive days for the same surgeon. The objective
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function (4.225) is the objective function for this case.
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∑
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∑
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·md (4.225)
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Chapter 5

Results for scheduling tasks

The model shown in Chapter 4 is programmed in the 64 bits version of AIMMS 4.50 and is solved with
the 64 bits version of GUROBI 7.5.1 on an HP Elitebook 8570w laptop with intel core i7 processor
(8GB RAM) and 64 bits Windows 10. Section 5.1 describes how the model is validated, Section 5.2
shows the input used for making the quarter schedule, Section 5.3 shows the results for this quarter
schedule, Section 5.4 shows the results when the LUMC cooperates with the Erasmus MC to schedule
the organ removal shift, Section 5.5 shows the results when the organ removal shift is scheduled by
the old structure, Section 5.6 shows the results when the organ removal shift is scheduled by the same
structure as the T2 shift, Section 5.7 compares the results for the different cases of scheduling the
organ removal shift and Section 5.8 describes the schedules made by hand during the first and second
quarter of 2018.

5.1 Validation

The validation of the model was done with help of the transplant surgeons. The constraints used in
the model were reviewed by the transplant surgeons and also the schedule made was reviewed by
transplant surgeons. The first case is to check if the constraints used in the model are correct, while the
second case is to check if constraints have been missed. So, the conditions for scheduling the different
tasks, where the constraints are derived from, were checked if they are correct. After that, the schedule
made was checked to see if the schedule has impossibilities. When this is the case, a condition has
been missed and must be added. This procedure was repeated a couple of times.

5.2 Case-study specific input

To make the quarter schedule for the transplant surgeons, the parameters have values according to
that quarter. The schedule is made for October till January 2018. In total thirteen surgeons should be
scheduled during 98 days (14 weeks). Which surgeons are MOD certified, which surgeons are junior
and which surgeons are hpb surgeons is shown in Table C.1 in Appendix C. Which tasks can be sched-
uled for the different surgeons is shown in Table C.2 in Appendix C. The first Monday the organ removal
shift must not be scheduled. Therefore MW = 0. The days off or congress days of the surgeons are
shown in Figure C.1 in Appendix C. When surgeon s has a V at day d, the surgeon has a day off during
day d. The non-clinical day can be replaced. The non-clinical days during the quarter are shown in Fig-
ure C.1 in Appendix C, indicated with NCD. During some weeks no non-clinical days are scheduled,
because these weeks are vacation weeks. During these weeks surgeons have vacation and therefore
the surgeons present do not have a non-clinical day. The days a surgeon does not want to do shifts are
shown in Figure C.1 in Appendix C and are indicated with G. Also the tasks that are already scheduled
before the schedule is made, are shown in Figure C.1 in Appendix C.

We also must know when the T1 and Td shifts are combined in one shift. During which weeks this
is done is shown in Table C.3 in Appendix C. During this schedule some public holidays occur, these
are shown in Table C.4 in Appendix C. In Table C.5 in Appendix C is shown when the organ removal
shift can be scheduled during a non-clinical day or a day off. We start with zero days already done for
each surgeon and shift, because this data is not known. The parameters for the boundary are shown in
Table C.6 in Appendix C and the number of days a task should be scheduled is shown in Table C.7 in
Appendix C.
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5.3 Case-study results

When we solve the model in AIMMS with GUROBI for the parameters as described in Section 5.2, an
optimal solution is found within four hours. The objective function has the value 2802079.12. This means
that the optimal schedule, given the availability of the surgeons, that fulfills all constraints is found. Fig-
ure 5.1 shows the schedule made by the model described in Chapter 4. The schedule is divided in five
blocks of a number of weeks. Each row in this block corresponds to a surgeon and each column to a
day. The text in the block belonging to day d and surgeon s specifies the task(s) scheduled for surgeon
s at day d. When a surgeon has a block without text, no task is scheduled that day for this surgeon and
the surgeon is available to be scheduled at all tasks that can be scheduled for this surgeon. The days
with a grey background are weekend days. It can be seen that fewer tasks are scheduled during the
weekend. This is because only some shifts must be scheduled during the weekend.

In Figure 5.2 the shortages during the quarter schedule are shown. We see that while the shortages
of the organ removal shift have the highest costs in the objective function, we do have shortages at the
organ removal shift. This is because the organ removal shift is scheduled multiple days at once and no
other surgeons are available all these days. Therefore, we have a shortage at the organ removal shift
during all the days that must be scheduled for the same surgeon. We also see that most of the short-
ages occur at the OR task. This is because these shortages have the lowest costs of the shortages
at tasks in the objective function. The surgeries during the OR task can be scheduled, therefore fewer
surgeries can be scheduled when fewer surgeons are scheduled at the operating room task. The figure
also shows that the maximum number of shortages during a day is five during day 26 and 89. In Figure
5.1 is shown that at day 26 only three surgeons are available and day 26 is the last Friday of an organ
removal shift week. Day 89 also is on Friday and in this case only two surgeons are available. This
is the first Friday of the organ removal shift week, but the organ removal shift cannot be scheduled at
these surgeons because they are not available on Monday.

Figure 5.3 shows the shortages of the MOD certified surgeon. The maximum shortage is one, because
only one MOD certified surgeon is needed. The shortage can only occur during an organ removal week,
because no MOD certified surgeon is needed when the organ removal shift is not scheduled. The figure
shows the shortages per day. We see that a shortage occurs in blocks (multiple consecutive days). This
is because the organ removal shift is scheduled for multiple consecutive days at once. In the figure is
shown that a block of shortages occurs four times. The last two are because no transplant surgeon is
scheduled at the organ removal shift as shown in Figure 5.2. The other two times at least one transplant
surgeon is scheduled at the organ removal shift, but no MOD certified surgeon is scheduled.

Figure 5.4 shows the shortages of the senior surgeons. Always one senior surgeon should be available.
The figure shows the shortages per day. We see in this figure that three times a shortage occurs for a
senior surgeon, during day 26, 85 and 86. During day 26 no T2 shift is scheduled and the T1 and Td
shift are scheduled for surgeon 7 who is a junior surgeon. During days 85 and 86 surgeons 10 and 11
are scheduled at the transplant shifts and both surgeons are junior surgeons.

Figure 5.5 shows the shortages of the hpb surgeon. Always one hpb surgeon should be scheduled
at the operating room during a week. When no hpb surgeon is scheduled at the operating room during
a week, a shortage occurs. The figure shows the shortages per week. We see that we have a shortage
during week 1, 4 and 13. We have three hbp surgeons, surgeons 1, 3 and 6. However, surgeon 3
cannot be scheduled at the OR task. Therefore, we only have two surgeons who are hpb surgeons
and can be scheduled at the OR task. During week 1 both surgeons are on holiday and therefore it
is not possible to schedule an hpb surgeon at the OR task this week. The same thing holds for week
13. During week 4 surgeon 1 is available. However, this surgeon is scheduled the whole week at the
organ removal shift because this is the only surgeon (except for surgeon 10 who is also scheduled at
the organ removal shift) who is available from Wednesday till Friday and also the only surgeon (ex-
cept for surgeon 4 who is also scheduled at the organ removal shift) who is available from Monday till
Wednesday for the organ removal shift. The organ removal shift is more important than the hpb sur-
geon scheduled at the OR task and therefore no OR task is scheduled for this surgeon during this week.

Figure 5.6 shows the distribution of the different tasks over the surgeons. We want to equally divide
the total number of tasks over the surgeons and also the M shift, T1 shift, T2 shift and the OR task.
We can see that these tasks are not equally divided. This can be explained by the days off, the non-
clinical days and the number of surgeons available. For example, surgeon 9 is not available during this
schedule. Therefore, no tasks are scheduled for this surgeon. Surgeon 7 is not available from day
31 till the end of the schedule. Therefore, surgeon 7 is scheduled at fewer tasks than other surgeons.
When we look at the organ removal shift, we see that surgeon 6 is not scheduled at the organ removal
shift while surgeon 11 is scheduled fourteen days at this shift. This can be explained by the fact that
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surgeon 6 has the standard non-clinical day at Wednesday. Therefore, two of the three organ removal
shift blocks (consecutive days) cannot be scheduled for this surgeon, because these blocks contain the
Wednesday. The block that can be scheduled for this surgeon is from Friday till Monday. However, this
surgeon is only available two weekends when the organ removal shift must be scheduled. Surgeon
11 is scheduled the most at the organ removal shift. This surgeon is not available on Thursday and
Friday and has the standard non-clinical on Wednesday. However, this surgeon can start with the organ
removal shift on Friday and can end the organ removal shift on Wednesday. When we look at the T1
shift, we see that this shift is not scheduled for surgeons 3 and 12. This is because these surgeons
cannot be scheduled at this shift. We also see large differences in the number of days scheduled at
this shift per surgeon. Surgeons 10 and 11 are only scheduled five and six days, respectively, at this
shift while surgeons 4 and 6 are scheduled twenty-one and twenty days, respectively, at this shift. This
can be explained by the fact that surgeon 11 can never be scheduled at the week T1 shift, because this
surgeon is not available at Thursday and Friday. Surgeon 10 also has multiple weeks one day off and
both surgeons are scheduled much at the organ removal shift.

The number of days scheduled at the T2 shift varies from zero days till fifteen days per surgeon. This
shift is not scheduled for surgeon 3, because this surgeon cannot be scheduled at the T2 task. The fact
that surgeon 2 is scheduled the most at the T2 shift is because this surgeon is scheduled fewer days at
the organ removal shift and the T1 shift. This surgeon therefore has more possibilities to be scheduled
at the T2 shift.

For the OR task we see that surgeons 3, 7 and 11 are not scheduled at this task. This is because
surgeon 3 cannot be scheduled at this task, surgeon 7 is not the whole schedule available and surgeon
11 is never available when this task should be scheduled. We also see that surgeon 12 is scheduled
the most at this task. This can be explained by the fact that if this surgeon is available during the days
that the OR task should be scheduled and no organ removal shift is scheduled for this surgeon, the only
task that can be scheduled for this surgeon is the OR task.

Despite the fact that shortages occur, the made schedule fulfills all conditions for scheduling the dif-
ferent tasks. When the schedules made by hand are used, tasks are assigned to surgeons while the
conditions are not fulfilled. Then, the surgeon has to complain that the schedule is not doable and a last
minute solution has to be found. Therefore, we will look in Section 5.8 to the schedules made by hand.
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Figure 5.1: The generated schedule of the different tasks during quarter 4 of 2018.

Figure 5.2: The shortages at the different tasks in the quarter schedule per day.
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Figure 5.3: The shortages of the MOD certified surgeon in the quarter schedule per day.

Figure 5.4: The shortages of the senior surgeon in the quarter schedule per day.

Figure 5.5: The shortages of the hpb surgeon in the quarter schedule per week.

Figure 5.6: The distribution of the different tasks over the surgeon.
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5.4 Case-study results when cooperate with Erasmus MC

The model described in Section 4.7.1 is programmed in AIMMS and solved with GUROBI, where we
use the parameters as described in Section 5.2. Not all parameters are needed in this case. The organ
removal shift is scheduled every week and therefore we do not need MW . We stopped the solver after
about four hours. The objective value of the best solution found is 1 431 211.89 and the optimality gap
is equal to 0.92%. This means that it may be possible to find a better solution. However, this solution
has an objective value not better than 1 418 104.97. Therefore, the difference between the best solution
found and the optimal solution is at most 13 106.92. We know the costs for shortages at different tasks
from objective function (4.182). This means that no solution can be found with less shortages at the
shifts than the shortages in the solution found, because the costs for a shortage are at least 20 000. It
is possible that the optimal schedule has fewer shortages at the Ch, Hpb, OR or OC task. The quarter
schedule is shown in Figure D.1 in Appendix D.1. The shortages that occur during the schedule at the
different tasks are shown in Figure D.2 in Appendix D.1. Notice that we do not have costs for shortages
of MOD certified surgeons, because we do not know which surgeons from the Erasmus MC are MOD
certified. Therefore, this objective value can be lower than the other cases.

5.5 Case-study results when the organ removal shift is scheduled
as done in the old situation

The model described in Section 4.7.2 is programmed in AIMMS and solved with GUROBI, where we use
the parameters as described in Section 5.2. We stopped the solver after about four hours. The objective
value of the best solution found is 1 061 467.12 and the optimality gap is equal to 0.60%. This means
that it may be possible to find a better solution. However, this solution has an objective value not better
than 1 054 282.35. Therefore, the difference between the best solution found and the optimal solution
is at most 7 184.77. We know the costs for shortages at different tasks from objective function (4.208).
This means that no solution can be found with fewer shortages than the shortages in the solution found,
except one shortage fewer at the OR/OC task is possible. The costs for a shortage at the OR/OC task
is 5 000 and the costs for shortages at other tasks is at least 10 000. The quarter schedule is shown
in Figure D.3 in Appendix D.2. The shortages that occur during the schedule at the different tasks are
shown in Figure D.4 in Appendix D.2.

5.6 Case-study results when the organ removal shift is scheduled
the same as the T2 shift

The model described in Section 4.7.3 is programmed in AIMMS and solved with GUROBI, where we use
the parameters as described in Section 5.2. We stopped the solver after about four hours. The objective
value of the best solution found is 1 241 693.74 and the optimality gap is equal to 0.20%. This means
that it may be possible to find a better solution. However, this solution has an objective value not better
than 1 239 210.35. Therefore, the difference between the best solution found and the optimal solution
is at most 2 483.39. We know the costs for shortages at different tasks from objective function (4.225).
This means that no solution can be found with fewer shortages than the shortages in the solution found,
because the costs for a shortage are at least 5 000. The quarter schedule is shown in Figure D.5 in
Appendix D.3. The shortages that occur during the schedule at the different tasks are shown in Figure
D.6 in Appendix D.3.

5.7 Compare cases

When we look at the objective values of the different possibilities of scheduling the organ removal shift,
we see that the old structure has the lowest objective value. This can be explained by the fact that this
structure has the lowest number of constraints for scheduling the organ removal shift. Therefore, we
have more possibilities for scheduling the organ removal shift and therefore we have fewer times that
the organ removal shift cannot be scheduled.

The second lowest objective value is when we schedule the organ removal shift by the same struc-
ture as the T2 shift. This can be explained by the fact that we have more constraints than when we
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schedule the organ removal shift using the old structure. However, we have more flexibility of schedul-
ing the organ removal shift than using the fixed structure of the switching moments on Friday, Monday
and Wednesday.

When the LUMC cooperates with the Erasmus MC we also have a lower objective value than when
this cooperation does not exist. However, the fact that an MOD certified surgeon must be scheduled at
the organ removal shift is not taken into account in this case. Therefore, no shortages can occur for the
MOD certified surgeon.

5.8 Schedules made by hand

When we want to schedule the fourth quarter, we see that shortages occur at the different tasks. There-
fore, we want to know how the schedules made by hand look like. For this we look at the schedules of
the first and second quarter of 2018. We do not take into account the third quarter, because this was
during the holiday and two surgeons were unexpectedly not available during this schedule. Therefore,
this quarter is not representative. In Table 5.1 is shown that the schedules made by hand do not always
fulfill the rules that should be fulfilled. During the first quarter schedule the M , T1, T2, Td, Ch and
Hpb tasks were scheduled. During the second quarter schedule only the M , T1, T2 and Td task were
scheduled. During these quarters the organ removal shift was scheduled by the old structure. Therefore
this shift was easier to schedule.

Table 5.1: The number of times a rule is broken during the schedule of the first and second quarter of
2018.

Rule Quarter 1 2018
Number of times Percentage

T1 shift the whole week done by the same surgeon 1 8%
At least two consecutive days T2 shift 2 3%
No tasks on Monday after weekend T1 shift 3 23%
Ch task and M shift cannot be combined 1 3%
T2/M /Ch not possible for one surgeon 1 3%
Td and M cannot be combined 1 3%
T2 and M cannot be combined 2 5%
No weekend T1 shift before week T1 shift 1 8%
Weekend shift done by the same surgeon 1 3%

Rule Quarter 2 2018
Number of times Percentage

T1 shift the whole week done by the same surgeon 1 8%
At least two consecutive days T2 shift 15 23%
T2 and M cannot be combined 1 3%
Weekend shift done by the same surgeon 3 8%
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Chapter 6

Generic mathematical model for
equally dividing orders

Now we want to include the number of surgeries done and we want to distribute this as equally as
possible over the surgeons per year. To do this, we will first look at a more generic problem: on fixed
moments a schedule must be made to divide different tasks over different persons. The length of the
schedule is fixed. So, it is possible that more tasks must be scheduled for one person, because more
time blocks (e.g., days) must be scheduled during one schedule. The moments that the schedule must
be made and the length of one schedule are known. During a task an order can arrive with a certain
probability. This probability can differ per task and when the task is scheduled. The tasks should be
scheduled in such a way that at the end of the horizon the number of orders is divided equally over the
persons who are scheduled at the tasks. This is modelled as a Stochastic Dynamic Program.

This chapter is organized as follows: Section 6.1 describes what a stochastic dynamic program is,
Section 6.2 shows the notation that is used, Section 6.3 describes the assumptions made for modelling
the process, Section 6.4 derives the transition probabilities, Section 6.5 describes the upper boundary
used for the state space, Section 6.6 proves the existence of a deterministic Markovian policy which
is optimal, Section 6.7 describes the dynamic program that can be used to solve the SDP exactly and
Section 6.8 describes how we can reduce the number of states in the state space.

6.1 Stochastic Dynamic Programming (SDP)

An SDP is a process that is observed at a finite number of discrete time points. At each of these time
points the system is at any of the possible states. After observing the state of the system an action
should be chosen. When an action is chosen, the next state of the system for the subsequent point
in time is determined according to the transition probabilities. These transition probabilities depend on
the current state and the chosen action at the current state. The transition probabilities cannot depend
on previous states. The chosen actions have immediate costs. At the subsequent point in time, the
decision-maker faces a similar problem. However, the state of the system can differ and the set of
actions to choose from can differ. This is done for a finite number of points in time, because a horizon
is determined. The decisions are made during time points before the end of the horizon. At the end of
the horizon we have costs of being in the state at the end of the horizon. More about SDP can be found
in Puterman [2005].

6.2 Notation

For modelling the arrival of orders during tasks, a Poisson Proces is used. A Poisson Process is a
counting proces. The definition of a counting process is shown in Definition 6.2.1. The definition of a
Poisson process is shown in Definition 6.2.2.

Definition 6.2.1. [Ross, 2010] A stochastic process {N(t), t ≥ 0} is said to be a counting process if
N(t) represents the total number of events that occur by time t.
Definition 6.2.2. [Ross, 2010] The counting process {N(t), t ≥ 0} is said to be a Poisson process
having rate λ, λ > 0 if
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1. N(0) = 0

2. The process has independent increments (the number of events that occur in disjoint time intervals
are independent)

3. The number of events in any interval of length t is Poisson distributed with mean λ · t. That is, for
all s, t ≥ 0

P
(
N(t+ s)−N(s) = n

)
= e−λ·t

(λ · t)n

n!
, n = 0, 1, . . .

Now we will describe how we model the process as an SDP and which notation is used. By process
we mean scheduling tasks over persons, where orders arrive during the different tasks and we want to
equally divide these orders over the persons at the end of the horizon.

• Persons
The persons who can be scheduled at the different tasks are notated as follows:

P = {1, 2, . . . , J}
p ∈ P

• Tasks
Different tasks must be scheduled over the persons. The notation of the different tasks is shown
below.

TA = {1, . . . ,M}
t ∈ TA

• Blocks
During one schedule, different time blocks must be scheduled. An example of a time block is a
day. In this case, the tasks are scheduled per day and during one schedule multiple days can be
scheduled. The notation used is shown below.

D = {1, . . . , B}
d ∈ D

The total number of different time blocks that must be scheduled is shown below. These time
blocks are all the time blocks during the different schedules.

TD = {1, . . . , TB}
td ∈ TD

• Decision epochs
The moment an action should be taken is a decision epoch. In this case, the action is to make
a schedule. This is shown in Figure 6.1. So, at decision epoch 1 schedule 1 is made. The last
decision epoch is at N , but in this case no decisions is made, because this is the end of the
horizon. During this decision epoch we can assign costs of being in a state at the end of the
horizon.

Figure 6.1: The decision epochs and schedules

The following notation is used for the decision epochs:

T = {1, 2, . . . , N}
n ∈ T

• States
The state of one person is the number of orders this person has completed before decision epoch
n (σp,n). The state of the system is the state of all persons who can be scheduled at the tasks.
This is notated as follows:

σn = (σ1,n, . . . , σJ,n)

The state space are all the states that can be reached. The states in the state space must fulfill
the following conditions:
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– The number of orders completed per person is non-negative

– The number of orders completed per person before the first schedule is equal to zero

When all states that can be reached are used, we have an infinite number of states. An upper
boundary is used to decrease the number of states (see Section 6.3). How to determine the upper
boundary is described in Section 6.5. The notation is shown below.

S1 = {σ1 = (σ1,1, . . . , σJ,1) | σp,1 = 0 ∀p ∈ P}
Sn = {σn = (σ1,n, . . . , σJ,n) | 0 ≤ σp,n ≤ Up,n ∀p ∈ P} ∀ 1 < n ≤ N

• Decisions
Each decision epoch a new schedule must be made. The decisions that must be made are which
tasks are scheduled for which person and when, with the conditions shown below.

– Each person has at most one task per time block

– All tasks are scheduled exactly once during a time block

The notation used for this is shown below.

A = {xp,t,d ∀p, t, d | xp,t,d ∈ {0, 1},
∑
t

xp,t,d ≤ 1,
∑
p

xp,t,d = 1}

xp,t,d =

{
1 if person p is scheduled at task t at block number d
0 otherwise

a ∈ A

• Direct costs
The costs that must be minimized are the deviation of the line with the number of orders equally
divided over the persons. When we start scheduling, we do not know how may orders arrive be-
fore reaching the end of the horizon. So, we do not know which point of the line with the number
of orders equally divided over the persons we want to reach. So, we want to approach the line as
good as possible. In Figure 6.2 this is shown when two persons are scheduled. The red points
have the same costs, but the green square is cheaper. It does not matter how we reach the line.
So, whether we had large differences between the number of orders completed per person before
the end of the horizon or the differences were small all the time does not matter. This is shown in
Figure 6.3 when two persons are scheduled. The purple dots are the states at decision epochs
for one path with endpoint the yellow square. The blue triangles are the states at decision epochs
for another path with endpoint the yellow square. Both paths have the same endpoint. Therefore,
these paths have the same costs. However, before the yellow square, they have nothing in com-
mon.

The costs of being in a state during a decision epoch is zero when the decision epoch is not the
last decision epoch. When we are at the end of the horizon the costs are equal to the deviation
from the line where the orders are divided equally. The notation is shown below.

cn(σn) =


∑
k

(
σk,n −

∑
j σj,n

J

)2
if n = N

0 otherwise

Figure 6.2: The line with equal number of orders when the tasks are scheduled over two persons.
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Figure 6.3: Different paths with the same endpoint.

• Transition probabilities
The transition probabilities between two states depend on the arrival probabilities of orders during
the tasks and the chosen action (the schedule). The derivation of the transition probabilities is
shown in Section 6.4 and the transition probabilities are shown below.

P
(
i | σn, a

)
=


∏
p:ip<Un+1,p

e−
∑
d

∑
t xp,t,d·λt,d (

∑
d

∑
t xp,t,d·λt,d)

ip−σp,n

(ip−σp,n)! ·∏
p:ip=Un+1,p

(
1−

∑ip−1
m=σp,n

e−
∑
d

∑
t xp,t,d·λt,d (

∑
d

∑
t xp,t,d·λt,d)

m−σp,n

(m−σp,n)!

)
if ip ≥ σn,p ∀p

0 otherwise

• Optimal value function
The goal is to minimize the difference between the state at the horizon and the line where the
number of completed orders is equally divided over the persons. This can be done by minimizing
the expected future costs, because the costs determine this difference. At the end of the horizon
we have the direct costs of being in a state at the end of the horizon.

fn(σn) = mina∈A
∑

i∈Sn+1

P(i | σn, a) · fn+1(i) ∀n < N

fN (σN ) = cN (σN )

6.3 Assumptions

Some assumptions must be made to use an SDP and solve the SDP. Assumption 1 gives us the distri-
bution of the arriving orders. The orders arrive independent of each other, therefore a Poisson Process
is used.

Assumption 1. Orders arrive during tasks t on time block d according to a Poisson Process with rate
λt,d,∀t, d per time block. The arrival process is independent of the arrival processes at other tasks and
other time blocks. This process is also independent of the person scheduled at the task.

Assumption 2 is used to solve the SDP. To be able to solve the SDP, the state space must be finite.
Therefore, Assumption 2 is needed.

Assumption 2. The number of orders that can be completed by a person during a decision epoch has
an upper boundary. Therefore, at every decision epoch a finite number of states can be reached.

Assumption 3 is used to determine the transition probabilities.

Assumption 3. All time blocks have the same length.

6.4 Derivation transition probabilities

For the derivation of the transition probabilities we will first look at the arrival process of orders during
tasks. Then we will look at the arrival process of orders during a time block per person. After that, we
will look at the arrival process of orders during a schedule per person. Last, we will use the other parts
of this section to derive the transition probabilities.
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Arrival process orders during tasks

We know the distribution of the arrival process of orders during the different tasks from Assumption 1,
Possion Process with arrival rate λt,d,∀t, d per time block. We also know from this assumption that the
arrival process of orders during a task on a time block d is independent of the arrival process of orders
during other tasks and other time blocks. This process is also independent of the person scheduled at
the task.

Arrival process orders during time block per person

Now we will derive the arrival process of orders during a time block per person. By doing this, we
now derive the arrival process when more tasks can be scheduled during one time block for the same
person. Therefore, this is more generic than the decisions described earlier. However, we know the
transition probabilities when we do not include the condition that each person has at most one task per
time block. This is done, because this condition does not hold in the LUMC context.

We can derive the probability that a certain number of orders arrive during a time block for a partic-
ular person given the schedule, from the arrival processes of orders during tasks. This derivation is
shown below. The total number of orders that arrive during a time block is equal to the sum over the
tasks of the orders that arrive during a task that is scheduled during the time block. This is done with
the first equal sign. The second equal sign is because we know which tasks are scheduled during a day
for a person when we know the chosen action. The third equal sign will be explained below and the last
equal sign is because we know the probability mass function of a Poisson distribution.

P
(

# orders at time block d for person p = k | an
)

=

P
( ∑
t:xp,t,d=1

# orders arriving at task t during time block d for person p = k | an
)

=

P
( ∑
t:xp,t,d=1

# orders arriving at task t during time block d for person p = k | xp,t,d ∀p, t, d
)

=

P
(

# arrivals in Poisson Process with rate
∑
t

xp,t,d · λt,d = k) =

e−
∑
t xp,t,d·λt,d

(
∑
t xp,t,d · λt,d)k

k!

The third row is a sum of independent Poisson Processes (Assumption 1). The sum of independent
Poisson Processes is a new Poisson process with an arrival rate equal to the sum of the arrival rates of
the Poisson Processes, see Theorem 6.4.1.

Theorem 6.4.1. [Durrett, 2012] Suppose that {N1(t), t ≥ 0}, {N2(t), t ≥ 0}, . . . , {Nk(t), t ≥ 0} are
independent Poisson processes with respective rates λ1, λ2, . . . , λk. Let N(t) = N1(t) + N2(t) + . . . +
Nk(t), t ≥ 0 Then the merged process {N(t), t ≥ 0} is a Poisson process with rate λ = λ1+λ2+ . . .+λk.

Arrival process orders during schedule per person

We now know the probability of a certain number of orders arrive during a time block for a person. Now
we can derive the probability of a certain number of orders arrive during a schedule for a person. Notice
that the number of orders that arrive during a schedule for a certain person is equal to the sum of the
number of orders that arrive during the time blocks of this schedule. Now we can derive this probability
in the same way as for the number orders during a task. Property 3 of Definition 6.2.2 is used to add
Poisson processes during different time blocks. From this property we know that it does not matter
which time block the task is scheduled, only the length of the time block matters. We also know that all
time blocks have the same length (Assumption 3). However, the time block does determine the arrival
rate of orders during a task.
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P
(

# orders during the schedule for person p = k | schedule
)

=

P
(∑

d

∑
t:xp,t,d=1

# orders arriving at task t during time block d for person p = k | a
)

=

P
(∑

d

∑
t:xp,t,d=1

# orders arriving at task t during time block d for person p = k | xp,t,d ∀p, t, d
)

=

P
(

# arrivals in Poisson Process with rate
∑
d

∑
t

xp,t,d · λt,d = k | xp,t,d ∀p, t, d) =

e−
∑
d

∑
t xp,t,d·λt,d

(
∑
d

∑
t xp,t,d · λt,d)k

k!

Transition probabilities

The derivation of the transition probabilities is shown below. First we will look at the case that the num-
ber of completed orders at the end of the schedule higher is than before the schedule for all persons.
Then we will look at the case that the number of completed orders at the end of the schedule is lower
than before the schedule for some person.

The derivation of the transition probabilities when the number of completed orders at the end of the
schedule is higher than before the schedule for all persons, is shown below. The second equal sign
in the derivation holds, because the arrival processes during tasks are independent of the arrival pro-
cesses during other tasks, time blocks and the person scheduled at the task. From this follows that the
arrival process of the orders for one person is independent of the arrival process of orders for another
person when the schedule is known. The third and fourth equal signs have the same reasoning as the
arrival process of orders during a schedule per person.

P
(
i | σn, a

)
= P

(
# orders during schedule for person p = ip − σp,n ∀p | σn, a

)
=

∏
p

P
(

# orders during schedule for person p = ip − σp,n | σn, a
)

=
∏
p

P
(

# arrivals in Poisson Process with rate
∑
d

∑
t

xp,t,d · λt,d = ip − σp,n | xp,t,d ∀p, t, d)

=
∏
p

e−
∑
d

∑
t xp,t,d·λt,d

(
∑
d

∑
t xp,t,d · λt,d)ip−σp,n
(ip − σp,n)!

Now we will look at the case that the number of completed orders after the schedule is lower than before
the schedule for some person. This means that for some person the number of orders done decreases.
This is not possible, so the transition probability in this case is equal to zero.

P
(
i | σn, a

)
= 0

When we combine both cases, we have the following transition probabilities.

P
(
i | σn, a

)
=

{∏
p e
−

∑
d

∑
t xp,t,d·λt,d (

∑
d

∑
t xp,t,d·λt,d)

ip−σp,n

(ip−σp,n)! if ip ≥ σn,p ∀p
0 otherwise

These transition probabilities can be used, but we have an upper boundary for the state space and the
transition probabilities must sum to one for all possible number of orders per person. A person does
not have other possibilities of a number of orders completed than the states. Therefore, the state in
which the number of orders completed is equal to the upper boundary has a transition probability for
that person equal to one minus the sum of the transition probabilities to the other numbers of completed
orders. The transition probabilities used are shown below. We define the empty product as one and the
empty sum as zero.

P
(
i | σn, a

)
=


∏
p:ip<Un+1,p

e−
∑
d

∑
t xp,t,d·λt,d (

∑
d

∑
t xp,t,d·λt,d)

ip−σp,n

(ip−σp,n)! ·∏
p:ip=Un+1,p

(
1−

∑ip−1
m=σp,n

e−
∑
d

∑
t xp,t,d·λt,d (

∑
d

∑
t xp,t,d·λt,d)

m−σp,n

(m−σp,n)!

)
if ip ≥ σn,p ∀p

0 otherwise
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6.5 Upper boundary state space

An upper boundary for the state space is used to have a finite number of states (Assumption 2). We
determine for each person an upper boundary of number of orders. This is done by determining the
maximal arrival rate of orders during a task that can be scheduled for the person before the decision
epoch. So, the tasks that can be scheduled for a person with the highest arrival rate are used for this.
The upper boundary used for this person is the maximum number of orders that can arrive during a
Poisson Process with this maximal arrival rate with a probability greater than q. The derivation of this
upper boundary is shown below.

P
(
ip orders before decision epoch n during tasks that can be scheduled for person p

)
=

P
(
ip orders during Poisson Process with rate

∑
td:time block before schedule n

maxt{TSp,t · λt,td}
)

=

e−
∑
td:time block before schedule n maxt{TSp,t·λt,td} (

∑
td:time block before schedule nmaxt{TSp,t · λt,td})ip

ip!

where

TSp,t =

{
1 if person p can be scheduled at task t
0 otherwise

The states taken into account are the states with the number of orders per person lower than the upper
boundary. The upper boundary per person is the biggest number of orders with a probability higher than
q. This is shown below.

argmaxip{e
−

∑
td:time block before schedule nmaxt{TSp,t·λt,td} (

∑
td:time block before schedule nmaxt{TSp,t · λt,td})ip

ip!
≥ q}

Only one state can be reached at decision epoch 1. This state is the state where all persons have done
zero orders. The upper boundary for the next decision epoch is described below. To determine the
maximal arrival rate before decision epoch 2 per person, the maximal arrival rate per time block during
schedule one is determined. For each time block we determine the tasks that can be scheduled for this
person with the highest arrival rate. When we sum these maximal arrival rates per time block over the
time blocks during schedule 1, we get the maximal arrival rate during schedule 1 for this person. Now
we can determine the upper boundary for this person at decision epoch 2. This upper boundary is equal
to the maximal number of orders that can arrive during a Poisson Process with the determined maximal
arrival rate with probability greater or equal than q.

When all numbers of arriving orders have a probability less than q, the upper boundary used is the
arrival rate rounded up to the nearest integer. This is done because the probability mass function of the
Poisson distribution has a top at the number of events equal to the arrival rate. The upper boundary
used is shown below.

Up,n = max
{
argmaxip{e

−
∑
td:time block before schedule nmaxt{TSp,t·λt,td} ·

(
∑
td:time block before schedule nmaxt{TSp,t · λt,td})ip

ip!
≥ q},⌈ ∑

td:time block before schedule n

maxt{TSp,t · λt,td}
⌉}

6.6 Existence of a deterministic Markovian policy which is opti-
mal

We want to find the optimal action for each state of the system which only depends on history by the
current state of the system and the action is chosen with certainty. This means at every decision epoch
for every state one of the possible schedules is chosen as action and this is optimal. Such a decision
rule is called a deterministic Markovian policy.

Theorem 1. [Puterman, 2005]
Assume S is finite or countable and that

1. As is finite for each s ∈ S, or
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2. As is compact, cn(s, a) is continuous in a for each s ∈ S, there exists an M < ∞ for which
|cn(s, a)| ≤ M for all a ∈ As, and Pn

(
j | s, a

)
is continuous in a for each j ∈ S and s ∈ S and

n = 1, 2, . . . , N , or

3. As is compact , cn(s, a) is upper semicontinuous in a for each s ∈ S, there exists an M < ∞ for
which |cn(s, a)| ≤M for all a ∈ As, s ∈ S, and for n = 1, 2, . . . , N .

Then there exists a deterministic Markovian policy which is optimal.

Now we know some conditions for the existence of a deterministic Markovian policy, we need the fol-
lowing theorem to say something about the size of the action space.

Theorem 2. [Grimaldi, 2003]
The number of permutations of k objects from n elements without repetition is equal to

n!

(n− k)!

Now we want to prove that in our case a deterministic Moarkovian policy is optimal. This is done with
Theorem 3.

Theorem 3. (deterministic Markovian policy)
There exists a deterministic Markovian policy which is optimal for the problem formulated in Sections
6.2 – 6.5

Proof. The number of states is finite by Assumption 2. Now we want to prove that the action state is
finite for each s ∈ S (Theorem 1.1). The action space is the same for each decision epoch. Therefore,
we only have to prove that this action space is finite.

The number of actions in the action space when one block is scheduled per schedule is equal to the
number of permutations without repetition of P (number of persons) elements (assign each person to
a task). From Theorem 2 follows that this is equal to P !. When more blocks are scheduled during one
schedule, for each block P ! different schedules can be chosen. Hence, the number of actions in the
action space is equal to (

P !
)B

where P <∞ and B <∞. Therefore, the action space is finite. From Theorem 1.1. follows that in this
case a deterministic Markovian policy exists which is optimal.

A deterministic Markovian policy can be found by using dynamic programming. This is done in the next
section.

6.7 Dynamic Programming (DP)

This model can be solved using dynamic programming. The idea of dynamic programming is to solve
the problem backwards. The costs at the horizon (n = N ) are known, so the value of the objective
function at the horizon is known for every state. Then we can determine the optimal action at decision
epoch n = N − 1 for every state by finding the action that leads to the minimum expected costs. This
is the action where the expected costs are equal to the optimal value function. This can be done for all
decision epochs. Algorithm 1 shows this procedure.

Set n = N
for s ∈ SN do

fN (s) = cN (s)
end
while n > 1 do

n← n− 1
for s ∈ Sn do

fn(s) = mina∈A{cn(s) +
∑
i∈S P(i | s, a) · fn+1(i)}

A∗s,n = argmina∈A{cn(s) +
∑
i∈S P(i | s, a) · fn+1(i)}

end
end

Algorithm 1: The dynamic programming algorithm.
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6.8 Reduce state space

When we use the states as defined in Section 6.2, the number of states in the state space is equal to∏
p∈P

(Up,n + 1)

The state of a person can take the values 0, . . . , Up,n. So, we have Up,n+1 possible values for the state
of person p. When we want to know the number of possibilities for the state of the system, we multiply
the possibilities for the state of the persons. To give an indication of the number of states, two examples
are shown below.

• When we have for example five persons who could have completed four orders each, the number
of states is equal to

55 = 3 125

• When we have ten persons who could have completed fifty orders each, the number of states is
equal to

5110 = 119 042 423 827 613 001

Therefore, we want to reduce the state space. First we will determine the state as the difference between
the number of orders completed. This is done in Section 6.8.1. In Section 6.8.2 we will order the states
lexicographically.

6.8.1 State equal to the difference between the number of orders completed

We want to distribute the number of orders completed as equally as possible over the persons. There-
fore, it does not matter how many orders a person has completed. The difference with the other persons
only matters. Therefore, the states are reformulated as follows.

The state of one person is the number of orders this person has completed more than the person
with the least number of orders completed. The state is the state of all persons who can be scheduled
at the tasks. This is notated as follows:

σn = (σ1,n, . . . , σJ,n)

The state space are all the states that can be reached. The states must fulfill the following conditions:

• The number of orders completed per person is non-negative

• The number of orders completed per person before the first schedule is equal to zero

• The number of orders completed per person more than the person with the least number of orders
completed is non-negative

When all states that can be reached are used, we have an infinite number of states. An upper boundary
is used to decrease the number of states (Assumption 2). The upper boundary used in this case is the
same as described in Section 6.5.

S1 = {σ1 = (σ1,1, . . . , σJ,1) | σp,1 = 0 ∀p ∈ P}
Sn = {σn = (σ1,n, . . . , σJ,n) | 0 ≤ σp,n ≤ Up,n ∀p ∈ P,∃p st σp,n = 0} ∀1 < n ≤ N

By using this definition all vectors shown below belong to the same state (the state with at least one
element equal to zero), while these vectors were different states in the state space described in Section
6.2. (

σ1,n, . . . , σJ,n

)
(
σ1,n + 1, . . . , σJ,n + 1

)
·
·
·(

σ1,n + k, . . . , σJ,n + k
)
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where k ∈ N and σp,n + k ≤ Up,n ∀p.

When we use the states as defined above, also the transition probabilities change. This is because we
now have more possibilities to reach a state. The transition probabilities are shown below. The transition
probabilities are almost the same, but now we can also reach a state (i1,n, . . . , iJ,n) from (σ1,n, . . . , σJ,n)
when ip,n − σp,n + k orders arrive for all persons p, where k ∈ N and σp,n + k ≤ Up,n+1 ∀p.

When the original state space is used, state (i1,n, . . . , iJ,n) can only be reached from state (σ1,n, . . . , σJ,n)
when ip,n − σp,n orders arrive for all persons p.

P
(
i | σn, a

)
=

∑
k∈N,

ip+k≤Up,n+1∀p,
ip+k≥σp,n ∀p

∏
p:ip+k<Un+1,p

e−
∑
d

∑
t xp,t,d·λt,d

(
∑
d

∑
t xp,t,d · λt,d)ip+k−σp,n
(ip + k − σp,n)!

·

∏
p:ip+k=Un+1,p

(
1−

ip+k−1∑
m=σp,n

e−
∑
d

∑
t xp,t,d·λt,d

(
∑
d

∑
t xp,t,d · λt,d)m−σp,n
(m− σp,n)!

)
When we use the states as defined above, the number of states in the state space is equal to∏

p∈P
(Up,n + 1)−

∏
p∈P

Up,n

This can be explained by the fact that one of the persons should have state zero, because we could
subtract more from the states for all persons otherwise. Therefore, all states that do not have a zero for
any person are now not part of the state space. The number of states in this case for the examples are
shown below.

• When we have for example five persons who could have completed four orders, each the number
of states is equal to

55 − 45 = 2 101

• When we have ten persons who could have completed fifty orders, each the number of states is
equal to

5110 − 5010 = 21 386 173 827 613 001

The number of states is still big. Therefore, we want to reduce the number of states further by ordering
the states lexicographically.

6.8.2 Order state lexicographically

When we use Assumptions 4 and 5, we can further reduce the state space. This is because it does not
matter which person is scheduled with these assumptions. When in the state two persons are switched,
the optimal action remains the same, only the schedule from these two persons is switched.

Assumption 4. Every person can be scheduled at each task.
Assumption 5. Every person is always available to be scheduled at each task.

The definition of the states in this case is shown below. The state of one person is the number of orders
this person has completed more than the person with the least number of orders completed. The state
is the state of all persons who can be scheduled at the tasks lexicographic ordered. This is notated as
follows:

σn = (σ1,n, . . . , σJ,n)

where σ1,n ≥ σ2,n ≥ . . . ≥ σJ,n

The state space are all the states that can be reached. The states must fulfill the following conditions.

• The number of orders completed per person is non-negative

• The number of orders completed per person before the first schedule is equal to zero

• The number of orders completed per person more than the person with the least number of orders
completed is non-negative
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• The number of completed orders of person p is at least the number of completed orders of persons
p+ 1 and is at most the number of completed orders of person p− 1

When all states that can be reached are used, we have an infinite number of states. An upper boundary
is used to decrease the number of states (Assumption 2). The upper boundary used in this case is the
same as described in Section 6.5, except for the last element of the state. This element should be equal
to zero. When this element is not equal to zero, we can subtract this number from all elements. In this
case the upper boundary is not dependent on the person as in Section 6.5, because we assume that
all persons can be scheduled at all tasks (Assumption 4). Therefore, we will use Un instead of Up,n in
this case. The state space is shown below.

S1 = {σ1 = (σ1,1, . . . , σJ,1) | σp,1 = 0 ∀p ∈ P}
Sn = {σn = (σ1,n, . . . , σJ,n) | 0 = σJ,n ≤ σJ−1,n ≤ . . . ≤ σ1,n ≤ Un ∀p ∈ P} ∀1 < n ≤ N

By using this definition all vectors shown below belong to the same state, while these vectors were
different states in the state space described in Section 6.8.1.(

σ1,n, σ2,n, . . . , σJ−1,n, σJ,n

)
(
σ2,n, σ1,n, . . . , σJ−1,n, σJ,n

)
·
·
·(

σ1,n, σ2,n, . . . , σJ,n, σJ−1,n

)
When we use the states as defined above, also the transition probabilities change. This is because
we now have more possibilities to reach a state. The transition probabilities are shown below. The
transition probabilities are almost the same as described in Section 6.8.1. However, we now have
more possibilities to reach a state, namely all permutations of the state. Therefore, we have an extra
summation in the transition probabilities. In Section 6.8.1 the transition from state σn to state i was
possible with ip + k − σp,n arrivals per person with the following conditions k ∈ N, ip + k ≤ Un+1 ∀p and
ip + k ≥ σp,n ∀p. Now also the permutations of the vector i+ k− σn are possible arrivals per person for
this transition if Ep ≥ σp,n ∀p where E is a permutation of the vector i+ k.

P
(
i | σn, a

)
=

∑
k

k∈N,
ip+k≤Un+1 ∀p,
ip+k≥σp,n ∀p

∑
E,

E permutation of i+ k,
Ep≥σp,n ∀p

∏
p:Ep<Un+1,p

e−
∑
d

∑
t xp,t,d·λt,d

(
∑
d

∑
t xp,t,d · λt,d)Ep−σp,n
(Ep − σp,n)!

·

∏
p:EP=Un+1,p

(
1−

Ep−1∑
m=σp,n

e−
∑
d

∑
t xp,t,d·λt,d

(
∑
d

∑
t xp,t,d · λt,d)m−σp,n
(m− σp,n)!

)
Now we want to know the number of states, when we use the states as defined above. Theorem 4 is
used for this.

Theorem 4. [Grimaldi, 2003]
The number of combinations of k objects from n elements with repetition is equal to C(n + k − 1, k),
where

C(n, k) =

(
n
k

)
=

n!

k!(n− k)!

The number of states is equal to the number of combinations of P −1 objects from Un+1 elements. The
objects are the persons. However, we know that the last person has element zero. Therefore, we only
need P −1 objects. Every person has a state between zero and Un and this are Un+1 possibilities. We
only include the states which are ordered lexicography. Therefore we do not include two different states
when one can be obtained from the other by permutation of the terms. Because of this, the number
of states in the state space is the number of combinations of P − 1 objects from Un + 1 elements with
repetition. From Theorem 4 follows that the number of states in the state space is equal to

C
(
(Un + 1) + (P − 1)− 1, P − 1

)
=

(
(Un + 1) + (P − 1)− 1

P − 1

)
=

(P − 1 + Un)!

Un!(P − 1)!

The number of states in this case for the examples are shown below.
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• When we have for example five persons who could have completed four orders, each the number
of states is equal to

(5− 1 + 4)!

4!(5− 1)!
=

8!

4!4!
= 70

• When we have ten persons who could have completed fifty orders, each the number of states is
equal to

(10− 1 + 50)!

50!(10− 1)!
=

59!

50!9!
= 12 565 671 261

We will use this definition of states and the results of the DP with these states are shown in the next
chapter.
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Chapter 7

Results SDP

The dynamic programming algorithm is programmed in Python and results for small test instances are
discussed in this chapter. Section 7.1 shows the results for a small instance when the original state
space is used, Section 7.2 shows the results for instances when the lexicographically ordered states
are used. Section 7.3 describes the structure for the optimal actions of the different states at the different
decision epochs.

7.1 Results original states

Results from the DP with three persons who can be scheduled over three tasks with one time block and
when two schedules are made, are shown in Table E.1 in Appendix E.1. This table shows an optimal
action given the state and decision epoch. A 1 corresponds to task one with λ1, a 2 corresponds to task
two with λ2 and a 3 corresponds to task three with λ3. When ‘−’ is in the table, the corresponding state
is not part of the state space at the corresponding decision epoch. The parameters used for this case
are shown below.

λ1 = 0.01

λ2 = 2.02

λ3 = 1.00

q = 0.01

N = 3

J = 3

M = 3

B = 1

From these results is concluded that the DP works as expected, because in order of increasing number
of orders completed, persons are scheduled at tasks with decreasing arrival rate. Therefore, the person
with the highest number of orders completed is scheduled at the task with the lowest arrival rate, the
person with the second highest number of orders completed is scheduled at the task with the second
lowest arrival rate and the person with the lowest number of orders completed is scheduled at the task
with the highest arrival rate.

7.2 Results states ordered lexicographically

In this section the results are shown from the dynamic programming algorithm with the states that are
lexicographically ordered. By looking at different small instances we hope that we find a structure in the
optimal actions we can extend to bigger instances. First we will look at the case that the arrival rate of
a task is the same during the different schedules. So, the arrival process of the orders is the same for
every schedule. In Section 7.2.1 the number of time blocks during a schedule is equal to the number of
different tasks. Then, in Section 7.2.2 we will look at the case that the arrival process of orders during a
schedule is the same for each schedule, but the number of time blocks during a schedule is not equal
to the number of different tasks. Section 7.2.3 shows the results when the arrival process differs per
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schedule. Section 7.2.4 shows the results when the arrival rates differ in the last schedule and Section
7.2.5 shows the results when the differences between the arrival rates of the different tasks are bigger.

7.2.1 Same arrival rate during schedules and number of time blocks equal to
number of different tasks

The results from the DP with three persons who can be scheduled over three tasks with three time
blocks and when five times a schedule is made, are shown in Table E.2 for the fifth schedule, Table E.3
for the fourth schedule, Table E.4 for the third schedule, Table E.5 for the second schedule and Table E.6
for the first schedule in Appendix E. These tables show an optimal action given the state and decision
epoch. A 1 corresponds to task one with λ1, a 2 corresponds to task two with λ2 and a 3 corresponds
to task three with λ3. The parameters used in this case are shown below.

λ1 = 0.05

λ2 = 0.5

λ3 = 0.3

q = 0.01

N = 6

J = 3

M = 3

B = 3

The last column of Tables E.2 – E.6 is the expected new state. This expected new state is equal to the
state before the schedule made plus the arrival rates from the tasks that are scheduled for the persons.
Sometimes the variance of the schedule also influences the optimal action. First, this will be explained.
We will also explain the variance of the schedule, because we will refer to this variance later. Then, the
optimal action will be described.

Expected new state

The arrival process of orders during a schedule for a person p is a Poisson Process. Therefore, the
number of orders arriving is Poisson distributed with mean γp,n · t (Definition 6.2.2) . γp,n is the sum
over all arrival rates of orders during tasks that are scheduled for that person during schedule n. The
arrival rates are per time block, because the tasks are scheduled per time block. Therefore, t is equal
to one when we want to know the expected number of arrivals during the schedule. When we now
want to know the expected new state, we can add for all persons the total arrival rate γp to the state
before the made schedule. We do not take into account that the states are equal to the differences of
the number of orders completed and ordered lexicographically. Therefore, it is possible no zero is in the
state space and the expected new states are not ordered lexicographically. It is also possible that the
expected new state is not a state in the state space because the states in the state space are integers
and the expected new state is not necessarily an integer. The formula for the expected new state is
shown below.

E[(σ1,n+1, . . . σJ,n+1)] = (σ1,n + γ1,n, . . . , σJ,n + γJ,n)

Variance of the schedule

We can also look at the variance of the schedule. To do this, we need to know the variance of the number
of orders arriving during a schedule per person. The number of orders arriving during a schedule for
a person p is Poisson distributed with parameter γp,n. Therefore, the variance of the number of orders
arriving during the schedule is equal to γp,n [Ross, 2010]. The variance in this case is the mean
difference between the number of orders that arrive during a Poisson process with parameter γp,n. The
variance of the schedule is equal to

Var(schedule n) = (γ1,n, . . . , γJ,n)
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Optimal action

In Tables E.2 – E.6 in Appendix E.2 is shown that the optimal action is chosen in such a way that the
expected new state is as close as possible to the line where all persons have completed the same num-
ber of orders. Therefore, it does not matter which schedule is made, the optimal action only depends
on the current state of the system.

When we now look at the optimal actions at the different states of the system, we see that the same ac-
tion is chosen for a group of states. The different groups of states are states when all persons have the
same number of completed orders (only state (0, 0, 0)), two persons have the same number of orders
completed but fewer than the other person, two persons have the same number of completed orders
and more than the other person, and when the three persons all have different numbers of completed
orders. This is shown in Table 7.1. For this table we need a, b as defined below.

a, b ∈ N
a > b > 0

Table 7.1: The optimal action for the different groups of states.

State group Optimal action
p = 1 p = 2 p = 3

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

(0, 0, 0) 1 3 2 2 1 3 3 2 1
(a, 0, 0) 1 1 1 2 2 3 3 3 2
(a, a, 0) 1 1 3 3 3 1 2 2 2
(a, b, 0) 1 1 1 3 3 3 2 2 2

There are a couple of exceptions to this rule. The optimal actions chosen at state (2, 0, 0) of the fifth
schedule, states (1, 0, 0), (1, 1, 0), (2, 2, 0) and (6, 0, 0) of the fourth schedule, states (1, 0, 0) and (1, 1, 0)
of the third schedule, and states (1, 0, 0) and (1, 1, 0) of the second schedule differ from Table 7.1.

For the states (2, 0, 0), (2, 2, 0) and (6, 0, 0) the schedule for the two persons with the same number
of completed orders is switched in schedules two, three and four in comparison with schedule five.
Therefore, the differences in the expected new state are the same. Therefore, we would expect that the
expected future costs are the same for both actions. However, we should take the same optimal action
in this case, because we use the same order of the actions to evaluate the expected future costs and
only update the optimal action if the costs of this action are lower than the expected future costs of the
current optimal action. The expected future costs for the actions are shown in Table 7.2. In this table
is shown that the absolute differences of the expected future costs of the different actions (|expected
future costs with action following the rule − expected future costs with optimal action|) are low. This can
be explained by the rounding errors.

Table 7.2: The expected future costs for the optimal action and the action that follows the rule for states
(2, 0, 0) in the fifth schedule and (2, 2, 0) and (6, 0, 0) of the fourth schedule .

State Action Expected future costs Absolute difference expected future costs
(2, 0, 0) Optimal 2.3216666664275727
(2, 0, 0) Follow the rule 2.3216666664275730 3 · 10−16
(2, 2, 0) Optimal 2.4549623347776874
(2, 2, 0) Follow the rule 2.4549623347776880 6 · 10−16
(6, 0, 0) Optimal 12.990209643789226
(6, 0, 0) Follow the rule 12.990209643789228 2 · 10−15

Rounding errors appear because of the finite precision of the computer arithmetic (floating points) [Tre-
fethen and III, 1997]. These rounding errors appear and spread whenever any arithmetic operation is
performed. Even a simple input of a real number x into a computer leads to an error. Instead of x we
get the floating point representation of x, fl(x):

x → fl(x)

fl(x) = x(1 + ε)

|ε| ≤ εc
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Table 7.3: The expected future costs for the optimal action and the action that follows the rule for states
at the boundary.

Schedule five
State Action Expected future costs Absolute difference expected future costs
(12, 12, 0) Optimal 82.1750603578536
(12, 12, 0) Follow the rule 82.33263282899317 0.1575724711395

Schedule four
State Action Expected future costs Absolute difference expected future costs
(10, 10, 0) Optimal 45.77322055699952
(10, 10, 0) Follow the rule 45.93552501646413 0.16230445946461

Schedule two
State Action Expected future costs Absolute difference expected future costs
(5, 5, 0) Optimal 5.314926724627012
(5, 5, 0) Follow the rule 5.358994449565818 0.044067724938806

where εc is the machine precision (εc ≈ 2.22 ·10−16 in our case). The floating point representation of the
state of the system (a, b, 0) is

(a, b, 0) → (a+ ε1, b+ ε2, 0 + ε3)

|ε1| ≤ εc

|ε2| ≤ εc

|ε3| ≤ εc

This floating point representation does not only affect the input, but also every elementary arithmetic
operation. Let ∗ be one of the operations +,−, ·, : then

x ∗ y → (x ∗ y)(1 + ε)

|ε| ≤ εc

This can affect the costs at the horizon, the transition probabilities and the expected future costs for
states not at the horizon. Therefore, the expected future costs of the actions shown in Table 7.2 can
differ a little.

The optimal action also differs three times at the boundary from the actions in Table 7.1, in schedule
five and state (12, 12, 0), in schedule four and state (10, 10, 0), and in schedule two and state (5, 5, 0). In
these cases the expected new state would be closer to the line where all persons have completed the
same number of orders when person one is scheduled at one day at tasks three and the other days at
tasks one, person two one day at task one and the other days at task three and person three is always
scheduled at task two. The differences between the expected future costs of the optimal action and the
action that follows the rule are shown in Table 7.3. We see that this difference is too big to be a result
of the rounding error. It is possible that this is a result of using a boundary for the state space, because
both states are the last state of the state space of the corresponding decision epoch. Therefore, these
states are at the boundary. This can be explained by the fact that we cut down the state space at the
upper boundary. The upper boundaries used for every decision epoch are shown in Table 7.4. In this
table we see that at decision epoch five, four and two the difference between the upper boundary of this
decision epoch and the upper boundary for the next decision epoch is equal to two. The differences
between the upper boundary of the decision epochs three and one and the upper boundary of the next
decision epoch are bigger. This is equal to three for the upper boundary between decision epochs three
and four and equal to five for the difference between the upper boundaries of decision epoch two and
one. When the number of completed orders is equal to the boundary, the transition probability is equal
to the probability that this person has this number of orders completed or more. Therefore, the distance
from the line where all persons have the same number of orders completed at the boundary is bigger
in reality. Because of this, one person with the state at the boundary is scheduled three times at task
three (where in all other cases this person is scheduled two times at task three and once at task one)
and the other person with the state at the boundary is scheduled three times at task one (where in all
other cases this person is schedules two times at task one and once at task three).

When we compute the future costs for states (1, 0, 0) and (1, 1, 0) we get Table 7.5. We see that
the differences between the optimal action and the action that follows the rule are bigger than the differ-
ences in Table 7.2. These differences cannot be explained by the rounding errors. Therefore, we now
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Table 7.4: The upper boundaries used per decision epoch.

Decision epoch Upper boundary state space
6 14
5 12
4 10
3 7
2 5
1 0

will look at the expected new state and the variance of the schedule of the states (1, 0, 0) and (1, 1, 0).
These expected new states and variances of the schedule are shown in Table 7.6. The schedule for
state (1, 0, 0) in the fourth schedule differs from schedule two and three, because persons two and three
are switched. The distance between the expected new state in this case and the line where all persons
completed the same number is the same when these persons are switched. The variance of the system
only changes by switching the variance for these persons, but the order of the variance of the system
does not matter when two persons also have the same state. However, the order of the persons for the
expected new state and the variance of the system has to be the same.

Table 7.5: The expected future costs for the optimal action and the action that follows the rule for states
(1, 0, 0) and (1, 1, 0) in the second, third, and fourth schedule.

Schedule four
State Action Expected future costs Absolute difference expected future costs
(1, 0, 0) Optimal 2.139580314195619
(1, 0, 0) Follow the rule 2.144141881838927 0.004561567643308
(1, 1, 0) Optimal 2.1514951004157923
(1, 1, 0) Follow the rule 2.1524231775891844 0.0009280771733921

Schedule three
State Action Expected future costs Absolute difference expected future costs
(1, 0, 0) Optimal 2.3206349001807216
(1, 0, 0) Follow the rule 2.3273136640022862 0.0066787638215646
(1, 1, 0) Optimal 2.326958995984065
(1, 1, 0) Follow the rule 2.329512163533935 0.002553167549870

Schedule two
State Action Expected future costs Absolute difference expected future costs
(1, 0, 0) Optimal 2.413511008836633
(1, 0, 0) Follow the rule 2.4167499445594425 0.003238935722808
(1, 1, 0) Optimal 2.4168189948615746
(1, 1, 0) Follow the rule 2.4175105350679833 0.0006915402064087

In Table 7.6 we see that when the expected new state is close to the line where the number of com-
pleted orders is equally divided over the persons, the optimal action in schedules two, three and four is
to increase this distance a little to decrease the variance of the person with the highest variance. For
example, when we start at the state (1, 0, 0) before the fifth schedule we see that the expected new
state after the fifth schedule is equal to (1.15, 1.3, 1.1). However, when we start in state (1, 0, 0) before
the second third or fourth schedule, we see that the expected new state after the schedule is equal
to (1.4, 1.1, 1.05). Therefore, the maximum differences is bigger between the elements of the expected
new state after the second, third or fourth schedule (0.3) than after the fifth schedule (0.2). However, the
maximum difference between the elements of the variance of schedule two, three or four is equal to 0.7
while this is equal to 0.95 in schedule five.

In the last schedule of the year we want to have the smallest distance between the expected new
state and the line where the number of completed orders is equally divided over the persons, also if this
means that we have big differences between the elements of the variance of the schedule. In Section
7.2.5 we will have bigger differences between the arrival rates to have a better look at these optimal
actions that are not the actions with the expected new state as close as possible to the line where all
persons have completed the same number of orders.

The optimal actions are chosen such that the expected new state is as close as possible to the line
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Table 7.6: The optimal action for states (1, 0, 0) and (1, 1, 0) .

State Schedule Expected new state Variance of the schedule
(1, 0, 0) Schedules two, three and four (1.4, 1.1, 1.05) (0.4, 1.1, 1.05)
(1, 0, 0) Schedule five (1.15, 1.3, 1.1) (0.15, 1.3, 1.1)
(1, 1, 0) Schedules two, three and four (1.6, 1.65, 1.3) (0.6, 0.65, 1.3)
(1, 1, 0) Schedule five (1.4, 1.65, 1.5) (0.4, 0.65, 1.5)

where the number of completed orders is equally divided over the persons. When the expected new
state is very close to this line and the schedule made is not the last one, an action is chosen such that
the expected new state is still close to this line, but the distance can be increased a little such that the
elements of the variance of the schedule are closer to each other.

That the optimal actions do not create big differences between the expected new state of the differ-
ent persons can be explained by the fact that in this case in the next schedules big differences between
the variance of these persons arise to approach the line where the number of completed orders is
equally divided over the persons at the horizon, because the variance is equal to the mean number of
orders that arrive. When the differences between the variances of the persons are big, also the variance
of a person is big. When a person has a bigger variance, the mean differences between the numbers
of orders that can arrive during a Poisson process with this parameter is bigger. Therefore, the distance
between the expected new state and the line where the number of completed orders is equally divided
can again be big.

7.2.2 Same arrival rate during schedules and the number of time blocks not
equal to the number of different tasks

Now we will look at an example when the arrival process of orders is the same during the different
schedules, but the number of time blocks is not equal to the number of different tasks. This is done, to
see if the same structure in the optimal actions can be seen in this case. The results from the DP with
three persons who can be scheduled over three tasks with two time blocks and when five schedules are
made, are shown in Tables E.7 (fifth schedule) – E.11 (first schedule) in Appendix E.2. These tables
show an optimal action given the state and decision epoch. A 1 corresponds to task one with λ1, a 2
corresponds to task two with λ2 and a 3 corresponds to task three with λ3. The parameters used in this
case are shown below.

λ1 = 0.05

λ2 = 0.5

λ3 = 0.3

q = 0.01

N = 6

J = 3

M = 3

B = 2

In Tables E.7 – E.11 in Appendix E.2 we see that the optimal action is chosen in the same way as is
done in Section 7.2.1. Therefore, the optimal action is chosen in such a way that the expected new
state is as close as possible to the line where all persons have completed the same number of orders.
We also see that it does not matter in which decision epoch we are, the optimal action only depends on
the current state of the system. The optimal actions for the different groups of states (same groups as
Table 7.1) are shown in Table 7.7. For this table we need a, b as defined below.

a, b ∈ N
a > b > 0

There are a couple of exceptions to this rule. In schedule five and states (8, 8, 0) and (9, 9, 0) , in sched-
ule four and state (7, 7, 0), in schedule three and states (5, 5, 0), (6, 5, 0) and (6, 6, 0), in schedule two
and state (4, 4, 0), and in schedule one and state (0, 0, 0).

In the optimal action in state (0, 0, 0) of schedule one the schedules of persons two and three are
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Table 7.7: The optimal action for the different groups of states.

State group Optimal action
p = 1 p = 2 p = 3

d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 3
(a, 0, 0) 1 1 2 3 3 2
(a, a, 0) 1 3 3 1 2 2
(a, b, 0) 1 1 3 3 2 2

switched. By doing this, the distance between the expected new state and the line where all persons
have completed the same number of orders remains the same. The optimal action differs from the rule
because of the rounding error (Section 7.2.1).

The differences of the expected future costs of the optimal action and the action that follows the rule are
shown in Table 7.8. We see that this difference in all cases is too big to be explained by the rounding
error. Now we will look at the upper boundary, like is done in Section 7.2.1. The upper boundaries used
for every decision epoch are shown in Table 7.9. In this table we see that the difference between the
upper boundary at a decision epoch and the upper boundary at the next decision epoch is less than or
equal to two, except the difference between the upper boundary at decision epoch one and two. There-
fore, the state at the boundary at decision epochs two, three, four and five has another optimal action.
This is the same as in Section 7.2.1. In schedule five and three more states close to the boundary
are an exception of the rule. This can be explained by the fact that the difference between the upper
boundary of these decision epochs and the next decision epoch is equal to one. However, in schedule
three state (6, 5, 0) is an exception of the rule, while state (9, 8, 0) follows the rule in schedule five. When
we use the parameters shown below, we do not have optimal actions that differ from Table 7.7 and the
optimal action that differs from the table cannot be explained by upper boundary or rounding error.

Table 7.8: The expected future costs for the optimal action and the action that follows the rule for states
at the boundary.

Schedule five
State Action Expected future costs Absolute difference expected future costs
(8, 8, 0) Optimal 37.05292776431982
(8, 8, 0) Follow the rule 37.053391864072324 0.00046409975250
(9, 9, 0) Optimal 46.58281482290619
(9, 9, 0) Follow the rule 46.81893682158964 0.23612199868345

Schedule four
State Action Expected future costs Absolute difference expected future costs
(7, 7, 0) Optimal 23.615159598349912
(7, 7, 0) Follow the rule 23.63164711757915 0.01648751922924

Schedule three
State Action Expected future costs Absolute difference expected future costs
(5, 5, 0) Optimal 9.029214031778451
(5, 5, 0) Follow the rule 9.040196892198145 0.010982860419694
(6, 5, 0) Optimal 11.107878939861648
(6, 5, 0) Follow the rule 11.185160625814213 0.077281685952565
(6, 6, 0) Optimal 13.304363390836167
(6, 6, 0) Follow the rule 13.433198470125204 0.128835079289037

Schedule two
State Action Expected future costs Absolute difference expected future costs
(4, 4, 0) Optimal 4.63063946253339
(4, 4, 0) Follow the rule 4.6368545698440355 0.00621510731064

7.2.3 Arrival rates differ per schedule

In the previous example the arrival rates were the same during all schedules. Now we will look at
an example where the arrival rates differ per schedule. In this example three persons are scheduled
over three tasks with two time blocks and four schedules are made. The arrival rate of task two during
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Table 7.9: The upper boundaries used per decision epoch.

Decision epoch Upper boundary state space
6 10
5 9
4 7
3 6
2 4
1 0

schedule three differs from the arrival rate of task two during the other schedules. The parameters used
are shown below.

λ1 = 0.05

λ2,d =

{
0.5 if day d is during schedule 1, 2 or 4
5.0 if day d is during schedule 3

λ3 = 0.3

q = 0.01

N = 5

J = 3

M = 3

B = 2

In Tables E.12 and E.13 in Appendix E.2 is shown that the optimal action is chosen in such a way that
the expected new state is as close as possible to the line where all persons have completed the same
number of orders. The actions shown in Table E.12 in Appendix E (fourth schedule) follow the rule
shown in Table 7.7. The optimal actions in schedule three (Table E.13 in Appendix E.2) are shown in
Table 7.10. For some states the schedule for the different persons is switched when these persons have
the same state before the schedule. Therefore, the distance between the expected new state and the
line where all persons have completed the same number of orders remains the same.

a, b ∈ N
a ≥ b > 0

Table 7.10: The optimal action for the third schedule.

State group Optimal action
p = 1 p = 2 p = 3

d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(a, b, 0), a < 5 3 3 1 2 2 1
(a, 0, 0), a ≥ 5 1 1 2 3 3 2
(a, a, 0), a ≥ 5 1 3 3 1 2 2

(a, b, 0), a ≥ 5 > b 1 3 2 1 3 2
(a, b, 0), a ≥ 5 = b 1 1 3 3 2 2

However, in Tables E.14 and E.15 in Appendix E.2 (second and first schedule) the optimal action chosen
is different. This can be explained by the fact that in schedule three a task must be scheduled with a
high arrival rate. Therefore, during schedules one and two the optimal action is such that the expected
new state for one person is high. The task with high arrival rate is scheduled two days (in schedule
three) and therefore, the person with the highest expected new state is not higher than the arrival rate
of the task with the highest arrival rate. We do not know what will happen with states higher than the
arrival rate of the task with the highest arrival rate. Also, the number of states is not so big. Therefore,
we will look at another example with more decision epochs before the schedule with the big task.

7.2.4 Arrival rates differ in last schedule

We now look at the same case as in Section 7.2.3, but in this case the arrival rate of task two is higher
in the last schedule and five schedules are made. The results from the DP are shown in Table E.16
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in Appendix E.2 for the fourth schedule, Table E.17 in Appendix E.2 for the third schedule, Table E.18
in Appendix E.2 for the second schedule and Table E.19 in Appendix E.2 for the first schedule. These
tables show an optimal action given the state and decision epoch. No results for schedule five are
shown, because we only want to know what happens before schedule five. The parameters used are
shown below.

λ1 = 0.05

λ2,d =

{
0.5 if day d is during schedule 1, 2, 3 or 4
5.0 if day d is during schedule 5

λ3 = 0.3

q = 0.01

N = 6

J = 3

M = 3

B = 2

The optimal actions shown in Tables E.16 – E.19 in Appendix E.2 follow the rules shown in Table 7.11.
Where a, b are defined as below. For the case a = 5 the optimal action depends on the decision epoch.
Therefore, these results are not shown in Table 7.11.

a, b ∈ N
a ≥ b > 0

Table 7.11: The optimal action for the schedule before the schedule with the task with a high arrival rate.

State group Optimal action
p = 1 p = 2 p = 3

d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 3 3 2 2 1 1
(a, 0, 0), a = 1 2 2 1 1 3 3

(a, 0, 0), 1 < a < 5 2 2 1 3 3 1
(a, 0, 0), a > 5 1 1 2 3 3 2
(a, a, 0), a = 1 2 2 3 3 1 1

(a, a, 0), 1 < a < 5 1 1 2 2 3 3
(a, b, 0), 5 > a > b 2 2 1 1 3 3

(a, b, 0), a > 5, a− b = 1 3 3 2 2 1 1
(a, b, 0), a > 5, 1 < a− b < 5 3 3 1 1 2 2
(a, b, 0), a > 5, a− b = 5 1 3 3 1 2 2
(a, b, 0), a > 5, a− b > 5 1 1 3 3 2 2

From these results we can conclude that the structure described in Section 7.2.1 does not hold when
one schedule has a task with a higher arrival rate of orders than the other schedules. This can be
explained by the fact that the big task must be scheduled and after that schedule the number of orders
must be divided over the persons as equally as possible. Therefore, differences are created between
the expected new state of persons. We also see in Table 7.11 that the rule for the optimal action for
states with a < 5 and a > 5 differs. This can be explained by the fact that the big task has an arrival
rate of five. When a < 5 the tasks scheduled for the first person have a bigger arrival rate than when
a > 5. This is because we want to have differences to schedule the task with arrival rate five. When
a < 5 the optimal action is such that the expected state of one person is approximately five more than
the other two persons. This is also done when a > 5, but when two persons have more than five orders
completed or exactly completed five orders before the schedule is made the other person is scheduled
at the task with the lowest arrival rate. In this case, the person with zero completed orders can be
scheduled two days at the task with the arrival rate of five. When the person with the highest number
of completed orders is equal to five it depends on the decision epoch what is the optimal action. The
differences between the expected new state of the persons are bigger in the third schedule than in the
fourth schedule. The schedule for the second person is the same in both cases, but the schedules of
the first and third person differ.
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7.2.5 Bigger differences arrival rates

Now we will look at an example when the arrival rates of orders of the different tasks differ more. The
arrival rates are the same during the different schedules. The results from the DP with three persons
who can be scheduled over three tasks with two time blocks and when three schedules are made, are
shown in Tables E.20 (third schedule) – E.22 (first schedule) in Appendix E.2. These tables show an
optimal action given the state and decision epoch. A 1 corresponds to task one with λ1, a 2 corresponds
to task two with λ2 and a 3 corresponds to task three with λ3.

λ1 = 0.1

λ2 = 3

λ3 = 1

q = 0.01

N = 4

P = 3

B = 2

In Tables E.20 – E.22 in Appendix E.2 we see that the optimal action is chosen in the same way as is
done in Section 7.2.1. Therefore, the optimal action is chosen in such a way that the expected new state
is as close as possible to the line where all persons have completed the same number of orders. We
also see that most of the times it does not matter in which decision epoch we are, the optimal action only
depends on the current state of the system. The optimal action can differ during the different decision
epochs for the same schedule. This is as described in Section 7.2.1 because the differences between
the variances for the different persons are less while the differences in the expected new schedule
increase a little when the expected new state is close to the line where all persons have completed
the same number of orders during schedules which are not the last one. The optimal actions for the
different groups of states are shown in Table 7.12. For this table we need a, b as defined below.

a, b ∈ N
a > b > 1

Table 7.12: The optimal action for the different groups of states.

State group Optimal action
p = 1 p = 2 p = 3

d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 3
(a, 0, 0), a = 1 3 3 1 2 2 1
(a, a, 0), a = 1 1 2 3 3 2 1

(a, 1, 0), 1 < a < 4 or (a, 2, 0), 2 < a < 5 1 3 2 1 3 2
(a, a, 0), a = 2 1 2 3 1 2 3

(a, 0, 0) or (a, 1, 0), a > 2 1 1 2 3 3 2
(a, b, 0), a > 3, b > 1 and not (4, 2, 0) 1 1 3 3 2 2

(a, a, 0), a > 2 1 3 3 1 2 2

All optimal actions of states in the third schedule follow the rule shown in Table 7.12. The states with an
optimal action in the second schedule that differ from Table 7.12 are shown in Table 7.13. In this table
the expected new state and the variance of the schedule are shown for both the different schedules
made in schedule two and schedule three for the states with a different optimal action in schedule two
and schedule three. States (2, 0, 0), (2, 1, 0), (2, 2, 0), (a, 2, 0), 4 < a < 8 and (12, 2, 0) have the same
elements in the expected new state after schedule two and three. However, the expected new state is
ordered differently and the variance of the schedule differs. The expected new state of states (3, 0, 0),
(3, 3, 0), (4, 1, 0), (4, 3, 0), (5, 2, 0), (5, 3, 0) and (a, a − 1, 0), 5 < a after schedules two and three differs
a little. The differences between the expected costs in schedule two of the optimal action chosen in
schedule two and the optimal action chosen in schedule three are shown in Table C.3. The same thing
is done for the expected costs in schedule three. This is shown in Table 7.15.
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Table 7.13: The optimal action for the states with different optimal actions (and the different action is not
switching schedules of persons with the same state) in schedule three and two.

State Schedule Expected new state Variance of the schedule
(2, 0, 0) Schedule two (4.0, 3.1, 3.1) (2.0, 3.1, 3.1)
(2, 0, 0) Schedule three (3.1, 3.1, 4.0) (1.1, 3.1, 4.0)
(2, 1, 0) Schedule two (4.0, 4.1, 3.1) (2.0, 3.1, 3.1)
(2, 1, 0) Schedule three (3.1, 4.1, 4.0) (1.1, 3.1, 4.0)
(2, 2, 0) Schedule two (5.1, 4.0, 3.1) (3.1, 2.0, 3.1)
(2, 2, 0) Schedule three (5.1, 3.1, 4.0) (3.1, 1.1, 4.0)
(3, 0, 0) Schedule two (4.1, 4.0, 3.1) (1.1, 4.0, 3.1)
(3, 0, 0) Schedule three (3.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(3, 3, 0) Schedule two (4.1, 6.1, 4.0) (1.1, 3.1, 4.0)
(3, 3, 0) Schedule three (4.1, 4.1, 6.0) (1.1, 1.1, 6.0)
(4, 1, 0) Schedule two (5.1, 4.1, 4.0) (1.1, 3.1, 4.0)
(4, 1, 0) Schedule three (4.2, 3.0, 4.0) (0.2, 2.0, 4.0)
(4, 3, 0) Schedule two (5.1, 4.1, 6.0) (1.1, 1.1, 6.0)
(4, 3, 0) Schedule three (4.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(5, 2, 0) Schedule two (5.1, 5.1, 4.0) (1.1, 3.1, 4.0)
(5, 2, 0) Schedule three (5.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(5, 3, 0) Schedule two (6.1, 4.1, 4.0) (1.1, 3.1, 4.0)
(5, 3, 0) Schedule three (5.2, 5.0, 6.0) (0.2, 2.0, 6.0)

(a, 2, 0),5 < a < 8 Schedule two (a+ 0.2, 6.0, 4.0) (0.2, 4.0, 4.0)
(a, 2, 0),5 < a < 8 Schedule three (a+ 0.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(a, a− 1, 0),5 < a Schedule two (a+ 1.1, a+ 0.1, 6.0) (1.1, 1.1, 6.0)
(a, a− 1, 0),5 < a Schedule three (a+ 0.2, a+ 1.0, 6.0) (0.2, 2.0, 6.0)

(12, 2, 0) Schedule two (12.2, 6.0, 4.0) (0.2, 4.0, 4.0)
(12, 2, 0) Schedule three (12.2, 4.0, 6.0) (0.2, 2.0, 6.0)
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Table 7.14: The expected future costs second schedule.

State Action Expected future costs Absolute differences
(2, 0, 0) Optimal schedule 3 6.401861204840630
(2, 0, 0) Optimal schedule 2 6.338521280022710 0.063339924817920
(2, 1, 0) Optimal schedule 3 6.382421228907967
(2, 1, 0) Optimal schedule 2 6.351037415965354 0.031383812942613
(2, 2, 0) Optimal schedule 3 6.517568406626449
(2, 2, 0) Optimal schedule 2 6.493849069208849 0.023719337417599
(3, 0, 0) Optimal schedule 3 6.404652358345826
(3, 0, 0) Optimal schedule 2 6.378155305834787 0.023719337417599
(3, 3, 0) Optimal schedule 3 6.812822159632798
(3, 3, 0) Optimal schedule 2 6.621041359602996 0.191780800029802
(4, 1, 0) Optimal schedule 3 6.436456043596647
(4, 1, 0) Optimal schedule 2 6.347082766378246 0.089373277218401
(4, 3, 0) Optimal schedule 3 6.622460549056092
(4, 3, 0) Optimal schedule 2 6.497913227984748 0.124547321071344
(5, 2, 0) Optimal schedule 3 6.776203830641944
(5, 2, 0) Optimal schedule 2 6.396728907175095 0.37947492346685
(5, 3, 0) Optimal schedule 3 6.528779225264985
(5, 3, 0) Optimal schedule 2 6.464197823345366 0.06458140191962
(6, 2, 0) Optimal schedule 3 6.638101141064784
(6, 2, 0) Optimal schedule 2 6.472776169442353 0.165324971622431
(6, 5, 0) Optimal schedule 3 6.358708842837822
(6, 5, 0) Optimal schedule 2 6.356973995712993 0.001734847124829
(7, 2, 0) Optimal schedule 3 6.5334192421137365
(7, 2, 0) Optimal schedule 2 6.4697798456039120 0.063639396509824
(7, 6, 0) Optimal schedule 3 6.413944644006913
(7, 6, 0) Optimal schedule 2 6.381512459277475 0.032432184729439
(8, 7, 0) Optimal schedule 3 6.586558239808126
(8, 7, 0) Optimal schedule 2 6.535751904128724 0.050806335679402
(9, 8, 0) Optimal schedule 3 6.978666345660920
(9, 8, 0) Optimal schedule 2 6.923543350033924 0.055122995626996
(10, 9, 0) Optimal schedule 3 7.772194404132056
(10, 9, 0) Optimal schedule 2 7.723199883112608 0.048994521019448
(11, 10, 0) Optimal schedule 3 9.190336690098840
(11, 10, 0) Optimal schedule 2 9.152512397903530 0.037824292195310
(12, 2, 0) Optimal schedule 3 15.805938549208275
(12, 2, 0) Optimal schedule 2 15.777059411013568 0.028879138194707
(12, 11, 0) Optimal schedule 3 11.450763983079582
(12, 11, 0) Optimal schedule 2 11.425674542035331 0.025089441044251
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Table 7.15: The expected future costs third schedule.

State Action Expected future costs Absolute differences
(2, 0, 0) Optimal schedule 3 6.0066666666663595
(2, 0, 0) Optimal schedule 2 6.0066666666666070 2.48 · 10−13
(2, 1, 0) Optimal schedule 3 6.073333333332986
(2, 1, 0) Optimal schedule 2 6.073333333333229 2.43 · 10−13
(2, 2, 0) Optimal schedule 3 7.473333333332966
(2, 2, 0) Optimal schedule 2 7.473333333333193 2.27 · 10−13
(3, 0, 0) Optimal schedule 3 5.893333333332792
(3, 0, 0) Optimal schedule 2 6.073333333333030 0.180000000000239
(3, 3, 0) Optimal schedule 3 7.8733333308462505
(3, 3, 0) Optimal schedule 2 8.2733333333328000 0.400000002486550
(4, 1, 0) Optimal schedule 3 6.0266666666650280
(4, 1, 0) Optimal schedule 2 6.2066666666663455 0.180000000001318
(4, 3, 0) Optimal schedule 3 7.093333330898823
(4, 3, 0) Optimal schedule 2 7.673333333332790 0.580000002433967
(5, 2, 0) Optimal schedule 3 7.4933333308988255
(5, 2, 0) Optimal schedule 2 7.6733333333329930 0.180000002434167
(5, 3, 0) Optimal schedule 3 6.026666664284733
(5, 3, 0) Optimal schedule 2 8.406666666666156 2.380000002381424
(6, 2, 0) Optimal schedule 3 8.426666664284731
(6, 2, 0) Optimal schedule 2 8.426666666657903 2.373172 · 10−9
(6, 5, 0) Optimal schedule 3 6.026666664442417
(6, 5, 0) Optimal schedule 2 6.206666664442458 0.180000000000041
(7, 2, 0) Optimal schedule 3 10.693333331003982
(7, 2, 0) Optimal schedule 2 10.693333333324757 2.320775 · 10−9
(7, 6, 0) Optimal schedule 3 7.493333331214229
(7, 6, 0) Optimal schedule 2 7.673333331214280 0.180000000000051
(8, 7, 0) Optimal schedule 3 10.293333331319220
(8, 7, 0) Optimal schedule 2 10.473333331319438 0.180000000000218
(9, 8, 0) Optimal schedule 3 14.426666664755983
(9, 8, 0) Optimal schedule 2 14.606666664757897 0.180000000001915
(10, 9, 0) Optimal schedule 3 19.893333331510990
(10, 9, 0) Optimal schedule 2 20.073333331529664 0.180000000018673
(11, 10, 0) Optimal schedule 3 26.693333331459730
(11, 10, 0) Optimal schedule 2 26.873333331634715 0.180000000174985
(12, 2, 0) Optimal schedule 3 42.02666666460017
(12, 2, 0) Optimal schedule 2 42.02666666665909 2.058918 · 10−9
(12, 11, 0) Optimal schedule 3 34.826666663518246
(12, 11, 0) Optimal schedule 2 35.006666665071180 0.180000001552933
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7.3 Structure optimal schedules

As described in Section 7.2 most of the optimal actions are the action that divides the number of orders
over the persons as equally as possible. However, we also have seen some exceptions. Most of
these exceptions could be explained by the fact that we use an upper boundary for the state space.
The number of completed orders equal to the upper boundary can be reached when the number of
completed orders at the end of the schedule is equal to this upper bound, but also when the number of
completed orders at the end of the schedule is bigger than this upper bound.
When during a schedule a task is scheduled with a big arrival rate with respect to the other arrival rates,
the schedules before this the optimal actions are not equal to the action that divides the number of
orders over the persons as equally as possible. This is because the number of completed orders after
the schedule with the task with a big arrival rate can be divided more equally over the persons when
the differences between the number of completed orders are bigger when the number of days this task
should be scheduled is not equal to the number of persons that are scheduled. When the arrival rates of
the different tasks are fixed over the schedules, but the differences between the arrival rates are bigger
we also have seen some exceptions. However, we did not manage to explain these results. We expect
that some exceptions can be explained by the same reason as for the schedule with the task with a big
arrival rate or the variance of the schedule.
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Chapter 8

Model including the number of
surgeries done per surgeon

Now that we have a generic mathematical model, we want to apply this model for scheduling the trans-
plant surgeons in the LUMC to distribute the surgeries as equally as possible over the surgeons by
the end of the year. To do this, every quarter a schedule must be made of the different tasks over the
surgeons. The notation used is shown in Section 8.1, the assumptions made are shown in Section 8.2,
the derivation of the transition probabilities is shown in Section 8.3, solving the model is discussed in
Section 8.4, in Section 8.5 an ILP approximation is given, Section 8.6 shows the input for the ILP model,
Section 8.7 shows the results of the ILP model with this input and Section 8.8 compares the results with
the results described in Section 5.3.

8.1 Notation

In this section we will adjust parts of the model shown in Section 6.2 to the situation of the transplant
surgeons in the LUMC. This is shown below.

• Persons
The different tasks are scheduled over the surgeons. Not all surgeons are used for equally dividing
the surgeries. This is because some surgeons can for example only be scheduled at the organ
removal shift and these shifts are scheduled before the rest of the schedule is made. To indicate
the number of surgeons that are used for the objective function, the parameter shown below is
used. This is the number of surgeons the surgeries must be equally divided over.

NS = number of surgeons to equally divide surgeries over

• Tasks
Different tasks must be scheduled over the surgeons. The different tasks are described in Section
3.1. In total eight different tasks must be scheduled. This is because the M1 and M2 are the
same tasks and therefore modelled as one M shift where two surgeons should be scheduled.
This is the same as done in Section 4.2.

• Blocks
A task is scheduled for one day.

• Decision epochs
Each quarter a schedule must be made, so at these moments an action should be taken. The last
decision epoch is at 5, because four times a schedule must be made and the last decision epoch
is at the end of the last schedule.

• States
The states are defined in the same way as in Section 6.2. However, we do not take into account
all surgeons. We will not take into account the surgeons who can only be scheduled at the organ
removal shift or the organ removal shift, outpatient clinic and operating room. This is because
we cannot schedule the organ removal shift for these surgeons because this is done before the
rest of the schedule. One surgeon in the LUMC can also be scheduled at the operating room
and outpatient clinic, but these tasks are scheduled based on the availability of this surgeon. This
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surgeon is available only one day a week, except for the weeks this surgeon is scheduled at the
organ removal shift. Therefore, we do not take into account the number of surgeries done by
this surgeon. To make sure that the constraints at the boundary hold, we must include some
information of the end of the last schedule in the states.

σn = (σ1,n, . . . , σNS,n,WB1,n, . . . ,WBJ,n,WBT1,n, . . . ,WBTJ,n, TWB1,n, . . . , TWBJ,n,

TW1,n, . . . , TWJ,n,WBM1,n, . . . ,WBMJ,n, ND1,n, . . . , NDJ,n, NDT1,n, . . . , NDTJ,n)

where the new parts of the state are as defined in Section 4.2.3. However, in Section 4.2.3 we
did not have the subscript n and now we have. This is because we make more schedules in this
model and in Section 4.2.3 we make every schedule separate.

• Decisions
The decisions in the LUMC case are the quarter schedules. These schedules must fulfill all
constraints described in Section 4.3 and Section 4.4. For the constraints at the boundary in
decision epoch n we will use the boundary parameters of decision epoch n−1. For example, if we
want to schedule a task at the first day of decision epoch n, we need to know if the last weekend of
decision epoch n− 1 the T1 shift is scheduled for this surgeon. When this is the case, we cannot
schedule a task on the first day of the schedule of decision epoch n.

A = {xp,t,d ∀p, t, d | constraints in Section 4.3 and Section 4.4 hold}

xp,t,d =

{
1 if surgeon p is scheduled at task t at day number d
0 otherwise

a ∈ A

• Direct costs
We want to distribute the number of surgeries as equally as possible over the surgeons by the end
of the year. Therefore the costs shown below are used. These costs are the same as described in
Section 6.2. However, we do not take into account all surgeons. Also, some surgeons do not work
full time. Therefore, we do not want to distribute the number of surgeries as equally as possible,
because we want to take into account the work week of every surgeon. Therefore, a surgeon who
does not work full time has ideally done fewer surgeries than a surgeon who works full time.

cn(σn) =


objective function as defined in Section 4.5 +K ·

∑
k:
∑
t TSk,t 6=TSk,M+TSk,OC+TSk,OR(

σk,n −
∑
j σj,n∑

l:
∑
t TSl,t 6=TSl,M+TSl,OC+TSl,OR

AVl
·AVk

)2

if n = 5

objective function as defined in Section 4.5 otherwise

where

K = constant to determine the importance of the costs of the distribution of the completed
surgeries over the surgeons

AVp =
number of hours per week working
number of hours per full time week

• Transition probabilities
The transition probabilities differ, because no surgeries can be done during Hpb and Ch tasks
and the distribution of surgeries during the OR task is not a Poisson Process. This is because
the surgeries are scheduled during the OR task. Assumptions 6, 7 and 8 in Section 8.2 give the
distribution of the number of surgeries during a task. The transition probabilities are shown below
and the derivation of the transition probabilities is shown in Section 8.3.

P
(
i | σn, a

)
=



∏
p:ip<Un,p

e−
∑
d

∑
t/∈{Hpb,Ch,OR} xp,t,d·λt,d (

∑
d

∑
t/∈{Hpb,Ch,OR} xp,t,d·λt,d)

ip−σp,n−
∑
d xp,OR,t·λOR,d

(ip−σp,n−
∑
d xp,OR,t·λOR,d)!

·∏
p:ip=Un,p

(
1−

∑
k<ip

e−
∑
d

∑
t/∈{Hpb,Ch,OC,OR} xp,t,d·λt,d (

∑
d

∑
t/∈{Hpb,Ch,OC,OR} xp,t,d·λt,d)

k−σp,n−
∑
d xp,OR,t·λOR,d

(k−σp,n−
∑
d xp,OR,t·λOR,d)!

)
if ip −

∑
d xp,OR,t · λOR,d ≥ σn,p ∀p

and the other parts of the state as defined below
0 otherwise

CHAPTER 8. MODEL INCLUDING THE NUMBER OF SURGERIES DONE PER SURGEON Page 81



First, below is shown how i looks like.

i = (σ1,n+1, . . . , σNS,n+1,WB1,n+1, . . . ,WBJ,n+1,WBT1,n+1, . . . ,WBTJ,n+1, TWB1,n+1, . . . , TWBJ,n+1,

TW1,n+1, . . . , TWJ,n+1,WBM1,n+1, . . . ,WBMJ,n+1, ND1,n+1, . . . , NDJ,n+1, NDT1,n+1, . . . , NDTJ,n+1)

Now we can define the other parts of the state when we know xs,t,d ∀s, t, d. This is shown below.

WBp,n+1 =

{
1 if xs,M,B−2 +

∑
t∈{T1,T2} xs,t,B−1 > 0

0 otherwise

WBTp,n+1 =

{
1 if xs,M,B−9 +

∑
t∈{T1,T2} xs,t,B−8 > 0

0 otherwise

TWBp,n+1 =

{
1 if xs,T1,B−6 = 1 and COMBW = 0

0 otherwise

TWp,n+1 =

{
1 if xs,T1,B−1 = 1

0 otherwise

WBMp,n+1 =

{
1 if xs,M,B−1 = 1

0 otherwise

NDp,n+1 =


0 if xs,T2,B−1 = 0

2 if xs,T2,B−1 = 1 and xs,T2,B−2 = 0

3 if xs,T2,B−1 = 1 and xs,T2,B−2 = 1 and xs,T2,B−3 = 0

4 if xs,T2,B−1 = 1 and xs,T2,B−2 = 1 and xs,T2,B−3 = 1

NDTp,n+1 =


0 if xs,T1,B−1 = 0

2 if xs,T1,B−1 = 1 and xs,T1,B−2 = 0

3 if xs,T1,B−1 = 1 and xs,T1,B−2 = 1

8.2 Assumptions

Some assumptions must be made to use an SDP and solve the SDP. Assumptions 6 and 7 give the
distribution of the arriving orders. The orders arrive independent of each other during shifts, therefore
a Poisson Process is used for the arrival process during shifts. We assume that a fixed number of
surgeries is done during the operating room task (deterministic distribution). When multiple tasks are
scheduled simultaneously for a surgeon, we assume that the surgeon is always available to do surg-
eries during these tasks. This is done with Assumption 8.

Assumption 6. Surgeries arrive during shift t on time block d according to a Poisson Process with rate
λt,d,∀t, d per day. The arrival process is independent of the arrival processes at other tasks and other
days. This process is also independent of the surgeon scheduled at the task.
Assumption 7. The arrival process of surgeries during the operating room is deterministic distributed
with rate λOR,d.
Assumption 8. When a task is scheduled, the surgeon is always available for surgeries during this
task, also when more tasks are scheduled for this surgeon.

Assumption 9 is used to solve the SDP. To be able to solve the SDP, the state space must be finite.
Therefore, Assumption 9 is needed.

Assumption 9. The number of orders that can be completed by a person during a decision epoch has
an upper boundary. Therefore, at every decision epoch a finite number of states can be reached.

When the new schedule is made, we need to know how many surgeries the surgeons have completed
after the previous schedule. For this, Assumption 10 is used.

Assumption 10. The new schedule can be made after the end of the previous schedule.
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8.3 Derivation transition probabilities

From Section 6.4 we know the transition probabilities when surgeries arrive according to a Poisson
Process during all tasks. These transition probabilities are shown below. The states contain more
information in the LUMC context, but we will only look at the number of surgeries completed in this
case, because all other parts of the states have transition probabilities equal to zero or one (depends
on the schedule made). Therefore, the new state except the number of surgeries is fixed when the
optimal action (schedule) is determined.

P
(
i | σn, a

)
=


∏
p:ip<Un,p

e−
∑
d

∑
t xp,t,d·λt,d (

∑
d

∑
t xp,t,d·λt,d)

ip−σp,n

(ip−σp,n)! ·∏
p:ip=Un,p

(
1−

∑
k<ip

e−
∑
d

∑
t xp,t,d·λt,d (

∑
d

∑
t xp,t,d·λt,d)

k−σp,n

(k−σp,n)!

)
if ip ≥ σn,p ∀p

0 otherwise

In the LUMC case, no surgeries can be done during an Hpb, Ch or OC task. Therefore, we do not take
these tasks into account in the transition probabilities. This is shown below.

P
(
i | σn, a

)
=



∏
p:ip<Un,p

e−
∑
d

∑
t/∈{Hpb,Ch,OC} xp,t,d·λt,d (

∑
d

∑
t/∈{Hpb,Ch,OC} xp,t,d·λt,d)

ip−σp,n

(ip−σp,n)! ·∏
p:ip=Un,p

(
1−

∑
k<ip

e−
∑
d

∑
t/∈{Hpb,Ch,OC} xp,t,d·λt,d (

∑
d

∑
t/∈{Hpb,Ch,OC} xp,t,d·λt,d)

k−σp,n

(k−σp,n)!

)
if ip ≥ σn,p ∀p

0 otherwise

The number of surgeries during the OR task is deterministic distributed (Assumption 7). Therefore, the
transition probability for person p to state ip from state σp,n is the probability that a surgeon performs
ip − σp,n −

∑
d xp,OR,t · λOR,d surgeries during the scheduled shifts. This is because the number of

surgeries done during the OR task is known and no surgeries can be done during the Hpb, Ch and OC
tasks. The transition probabilities are shown below.

P
(
i | σn, a

)
=



∏
p:ip<Un,p

e−
∑
d

∑
t/∈{Hpb,Ch,OC,OR} xp,t,d·λt,d (

∑
d

∑
t/∈{Hpb,Ch,OC,OR} xp,t,d·λt,d)

ip−σp,n−
∑
d xp,OR,t·λOR,d

(ip−σp,n−
∑
d xp,OR,t·λOR,d)!

·∏
p:ip=Un,p

(
1−

∑
k<ip

e−
∑
d

∑
t/∈{Hpb,Ch,OC,OR} xp,t,d·λt,d (

∑
d

∑
t/∈{Hpb,Ch,OC,OR} xp,t,d·λt,d)

k−σp,n−
∑
d xp,OR,t·λOR,d

(k−σp,n−
∑
d xp,OR,t·λOR,d)!

)
if ip −

∑
d xp,OR,t · λOR,d ≥ σn,p ∀p

0 otherwise

8.4 Solving model

The model described in Section 8.3 cannot be solve by dynamic programming, due to the curse of
dimensionality. Therefore, only small instances can be solved as is done in Chapter 7 for the generic
model. We can use the structure found in the results of the generic model to approximate the results
using an ILP. From Chapter 7 follows that the optimal action for most of the states is the action for which
the expected state after the schedule is as close as possible to the line where the number of orders is
equally divided over the persons. Therefore, we can approximate the optimal action by solving the ILP
described in Chapter 4 and add the costs of the distribution of the number of completed surgeries over
the surgeons. This model will be described in Section 8.5.

8.5 Integer linear program

The ILP that approximates the optimal action of the model described in Section 8.1 is shown below.
We will adjust the ILP described in Chapter 4. Below is described what should be added to the model
described in Chapter 4.

First, we need a parameter that contains the information of the number of completed orders per surgeon
before the new schedule that will be made. This parameter is shown below.

σs ∈ N number of surgeries surgeon s has completed before the schedule made
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The next parameter is equal to the arrival rate of surgeries during the different tasks.

λt,d ∈ N the arrival rate of surgeries during task t on day d

The following variable is equal to the maximum number of expected completed surgeries after the new
schedule per surgeon.

i ∈ N maximum number of expected surgeries after the new schedule

We want to take into account the work week of the surgeon. This means, the standard availability of the
surgeon. When for example one surgeon is never available on Wednesday, Thursday and Friday, this
surgeon should have done fewer surgeries than a surgeon who is standard every day available (we do
not take into account the days off). The parameter shown below is used for this availability.

AVs ∈ R number of hours work week surgeon s divided by
the number of hours full time work week

The following constraint has to be added. We need a constraint to determine the maximum number
of expected completed surgeries after the new schedule per surgeon. To do this, we have to take into
account if the surgeon works full time. This is done with constraint (8.1). We do not take into account the
surgeons who can only be scheduled at the organ removal shift or at the organ removal shift, outpatient
clinic and operating room.

1

AVs

(
σs +

∑
t/∈{T1,M}

∑
d:d mod 76=6

xs,t,d · λt,d +
∑

d:d mod 14∈
{1+7·(1−MW ),3+7·(1−MW )}

xs,M,d · (0.5 · λM,d + λM,d+1 + 0.5 · λM,d+2)

+
∑

d:d mod 14=
5+7·MW

xs,M,d · (0.5 · λM,d + λM,d+1 + λM,d+2 + 0.5 · λM,d+3) +
∑
t 6=M

∑
d:d mod 7=6

xs,t,d · (λt,d + λt,d+1)

+
∑

d:COMBd d
7
e=1

d mod 76=6

xs,T1,d · λT1,d +
∑

d:COMBd d
7
e=0

d mod 76=6

xs,T1,d ·
d+4∑
d′=d

λT1,d′

)
≤ i

∀s st
∑
t

TSs,t 6= TSs,M + TSs,OC + TSs,OR (8.1)

We will equally divide the performed surgeries over the surgeons by minimizing i. For this, we need
to determine the cost factor for the maximum number of surgeries performed (the factor before i in the
objective function). The shortages, combined tasks, extended duration tasks and different surgeons
Hpb/Ch are more important than the maximum number of surgeries scheduled. However, the maxi-
mum number of surgeries scheduled is more important than equally dividing tasks over the surgeons.
Therefore, the importance factor of the new category equally dividing the number of performed surgeries
has an importance factor between the importance factor of the category different surgeons Hpb/Ch and
the importance factor of the category equally divide tasks. The new importance factors for the different
categories are shown in Table 8.1.

Table 8.1: The importance factors for the different categories.

Possibility Factor
Shortage 100 000
Combined tasks 10 000
Extended duration task 1 000
Different surgeons Hpb/Ch 100
Equally divide performed surgeries 10
Equally divide tasks 1

Now we need to determine the importance factor within the new category. We will do this the same as
done for the factors for equally dividing the tasks. We will divide the number of surgeons over who we
want to equally divide the number of surgeries by the total arrival rate of tasks during the schedule. By
doing this we normalise the maximum number of surgeries done per surgeon by the average number
of surgeries per surgeon. The average number of surgeries for a surgeon that works full time is equal
to the total number of surgeries during the schedule divided by the surgeons available. This is shown
below ∑

s:
∑
t TSs,t 6=

TSs,M+TSs,OC+TSs,OR

AVs∑
t

∑
d λt,d
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Now we will include this in the objective function. This is shown in the new objective function (8.2).

minimize 2 100 000 ·
∑

d:d mod 14=5+7·MW

(dM,d + dmd) + 1 400 000 ·
∑

d:d mod 14∈{3+7·(1−MW ),
1+7·(1−MW )}

(dM,d + dmd)

+ 800 000 ·
∑

d:d mod 7=6

dT1,d + 400 000 ·
( ∑
d:d mod 76=6,
COMBd d

7
e=1

dT1,d + 5 ·
∑

d:d mod 76=6,
COMBd d

7
e=0

dT1,d +
∑
w

dhpbw

+
∑
d

dsd

)
+ 600 000 ·

∑
d:d mod 7=6

dT2,d + 300 000 ·
∑

d:d mod 76=6

dT2,d + 200 000 ·
∑
d

dTd,d

+ 100 000 ·
∑
d

∑
t∈{Ch,Hpb}

dt,d + 50 000 ·
∑
d

∑
t∈{OC,OR}

dt,d + 30 000 ·
∑
d

ud + 20 000 ·
∑
d

zd

+ 20 000 ·
∑
d

yd + 10 000 ·
∑
d

wd + 3 000 ·
∑
w

wkw + 2 000 ·
∑
w

lmw + 1 000 ·
(∑

d

fdd + fdm+ fdtu
)

+ 100 ·
∑
t

∑
w

(ihs,w + ics,w) + 10 ·

∑
s:
∑
t TSs,t 6=

TSs,M+TSs,OC+TSs,OR

AVs∑
t

∑
d λs,d

· i+
∑
s TSs,M

DTSM +
∑
sDTs,M

·mdsM

+

∑
s TSs,T1

DTST1 +
∑
sDTs,T1

· (mdsT1 +
1

2

∑
d:d mod 7/∈{6,0},
COMBd d

t
e=0

∑
s

FWT1s · xs,T1,d) +

∑
s TSs,T2

DTST2 +
∑
sDTs,T2

·

mdsT2 +

∑
s TSs,OR

DTSOR +
∑
sDTs,OR

·mdsOR +
|S|∑

tDTSt +
∑
t

∑
sDTs,t

·md (8.2)

8.6 Case-study specific input

To make a quarter schedule while we take into account the number of performed surgeries, we need
to assign values to the parameters of the ILP. We will use the same input as described in Section 5.2.
However, we also need to assign values to the new parameters described in Section 8.5. We will start
with σs = 0 for all surgeons, because no data is available on the number of surgeries completed per
surgeon. To determine the arrival rate of surgeries during the different tasks we have the data of the
surgeries performed from 2014 till 2017. This data we received by collecting the surgeries entered in
HiX where the first surgeon was one of the transplant surgeons working on the transplant department
that time. However, we do not know during which tasks these surgeries are performed because this data
was not available. However, we do know which surgeries are done during the organ removal shift and
we have this data from 2015 till April 2018. This data we received from the transplant center. Therefore,
we will approximate the arrival rates of the surgeries during the different tasks and we will assume that
this arrival rate does not depend on the day, except for the weekend. This is done in Section 8.6.1 –
8.6.6. The availability of the surgeons is shown in Section 8.6.7

8.6.1 Arrival rate surgeries during M

To determine the arrival rate of surgeries during the organ removal shift, we assume that the arrival rate
does not depend on the day. We first look at the number of days the organ removal shift is scheduled
from 2015 till April 2018. When a Friday is scheduled, this day counts for half a day. This is because the
organ removal shift is on Friday scheduled till/from 12:00 o’clock. Then we will divide the total number of
surgeries performed by the number of days the organ removal shift is scheduled. This gives the arrival
rate of surgeries during one day. The arrival rates are shown below. When only half a day is scheduled
during a day, we will divide the arrival rate by two. This is done in constraint (8.1).

λM,d =


0.43 if d mod 14 ∈ {7 ·MW, 6 + 7 ·MW, 1 + 7 · (1−MW ), 2 + 7 · (1−MW ),

3 + 7 · (1−MW ), 4 + 7 · (1−MW ), 5, 12}
0 otherwise
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8.6.2 Arrival rate surgeries during Ch, Hpb and OC

During the Ch, Hpb and OC tasks no surgeries are done. Therefore, the arrival rate of surgeries is
equal to zero for these tasks.

λt,d = 0 t ∈ {Ch,Hpb,OC}

8.6.3 Arrival rate surgeries during OR

To determine the arrival rate of surgeries during the OR we will first determine the arrival rate of surg-
eries during shifts on Monday and Tuesday, because no OR is scheduled during these days. Then we
will determine the arrival rate of surgeries during Wednesday, Thursday and Friday. For the arrival rate
of surgeries during the OR task, we will take the difference of these two arrival rates. This is done be-
cause the same shifts are scheduled on Wednesday, Thursday and Friday as on Monday and Tuesday.
However, on Wednesday, Thursday and Friday the OR task is scheduled where surgeries are performed
and this task is not scheduled on Monday and Tuesday. The arrival rate used is shown below.

λOR,d =

{
1.29 if d mod 7 ∈ {3, 4, 5}
0 otherwise

8.6.4 Arrival rate surgeries during T1

We will determine an arrival rate of surgeries during the T1 shift on weekdays and an arrival rate of
surgeries during the T1 shift on weekends. We will determine two different arrival rates, because the T1
shift during Saturday or Sunday is a 24h shift and the T1 shift during a weekday is from 18:00 o’clock
till 8:00 o’clock. We will count the number of surgeries performed during the time moments the T1 shift
is scheduled and divide by the number of days. This is done for the days during the week T1 shift and
for the days during the weekend.

λT1,d =

{
0.29 if d mod 7 ∈ {1, 2, 3, 4, 5}
0.46 otherwise

8.6.5 Arrival rate surgeries during Td

We will determine the arrival rate of surgeries during the Td shift the same as done for the T1 shift
in Section 8.6.4. Now we take into account the surgeries during weekdays from 8:00 o’clock till 18:00
o’clock and we will only take into account the Monday and Tuesday. Otherwise we also count the
surgeries during the OR.

λTd,d =

{
0.69 if d mod 7 ∈ {1, 2, 3, 4, 5}
0 otherwise

8.6.6 Arrival rate surgeries during T2

We will assume that the surgeon with the T2 shift performs all the surgeries that the surgeons with T1
and Td shift perform. Therefore, we can add these arrival rates.

λT2,d =

{
0.99 if d mod 7 ∈ {1, 2, 3, 4, 5}
0.46 otherwise

8.6.7 Availability surgeons

All surgeons except for surgeon 11 work full time. Surgeon 11 is not available on Thursday and Friday.
However, surgeon 11 can be scheduled at the organ removal shift the first Friday of the organ removal
shift week. This surgeon also has a whole non-clinical day per week, but the end of the organ removal
shift can be scheduled during this day.

AVs =

{
1
2 if s = 11

1 otherwise
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8.7 Case-study results

The model described in Section 8.5 is programmed in AIMMS and solved with GUROBI, where we use
the parameters as described in Section 8.6. We stopped the solver after one day when the best solu-
tion had an objective value of 28 020 722.65, the optimality gap is 0.13% and the LP bound is equal to
27 982 897.90. This means that it is possible that a better solution can be found. However, the value
of the objective function of the optimal solution is not better than 27 982 897.90. The quarter schedule
is shown in Figure 8.1, the shortages at the different tasks in Figure 8.2, the shortages for the MOD
certified surgeon in Figure 8.3, the shortages for the senior surgeon in Figure 8.4, the shortages for the
hpb surgeon in Figure 8.5 and the distribution of the different tasks over the surgeons in Figure 8.6. The
expected number of surgeries per surgeon during the schedule are shown in Table 8.2.

All surgeons work full time, except for surgeon 11. This surgeon has an availability factor of one half.
Therefore, we should multiply the expected number of surgeries of surgeon 11 by two when we want to
compare this number with the other surgeons. Also, we do not take into account surgeons who can only
be scheduled at the organ removal shift (surgeon 13) and surgeons who can only be scheduled at the
organ removal shift, outpatient clinic and the operating room (surgeon 12). We see that the expected
number of surgeries performed is equal to zero for surgeon 9. This is because this surgeon is not
available during the schedule made. We also see that the expected number of surgeries for surgeon
3 is much lower than for other surgeons. This can be explained by the fact that surgeon 3 can only
perform surgeries during the organ removal shift and this shift can only be scheduled every other week
for at most three days, because this surgeon has the standard non-clinical day on Wednesday. The
organ removal shift can be scheduled on Wednesday morning, but the organ removal shift cannot be
scheduled from Monday till Friday for this surgeon. The expected number of surgeries for surgeon 7
also is much lower than for other surgeons. This can be explained by the fact that this surgeon is only
available till day 31. The expected number of surgeries of all other surgeons varies between 27.36 and
29.16.

Table 8.2: The expected number of surgeries performed in the fourth quarter per surgeon.

Surgeon Expected number of surgeries
1 29.16
2 27.36
3 5.16
4 28.56
5 29.06
6 29.15
7 9.15
8 29.14
9 0.00

10 29.16
11 14.17
12 13.76
13 0.00
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Figure 8.1: The schedule of the different tasks during quarter 4 when we take into account the number
of surgeries performed per surgeon.

Figure 8.2: The generated shortages at the different tasks in the quarter schedule per day.
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Figure 8.3: The shortages of the MOD certified surgeon in the quarter schedule per day when we take
into account the number of surgeries performed per surgeon.

Figure 8.4: The shortages of the senior surgeon in the quarter schedule per day when we take into
account the number of surgeries performed per surgeon.

Figure 8.5: The shortages of the hpb surgeon in the quarter schedule per week when we take into
account the number of surgeries performed per surgeon.

Figure 8.6: The distribution of the different tasks over the surgeon when we take into account the number
of surgeries performed per surgeon.
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8.8 Compare results with quarter schedule without taken into ac-
count number of surgeries

In this section, we will compare the results shown in Section 8.7 (where we do take into account the
number of surgeries performed per surgeon) with the result shown in Section 5.3 (where we do not take
into account the number of surgeries performed per surgeon). We will look at the expected number of
surgeries per surgeon. The expected number of surgeries performed in the fourth quarter per surgeon
when we do take into account the number of surgeries performed per surgeon are shown in Table 8.2.
The expected number of surgeries performed in the fourth quarter per surgeon when we do not take
into account the number of surgeries performed per surgeon are shown in Table 8.3. All surgeons work
full time, except for surgeon 11. This surgeon has an availability factor of one half. Therefore, we should
multiply the expected number of surgeries of surgeon 11 by two when we want to compare this number
with the other surgeons. We see that the maximum expected number of surgeries of Table 8.2 is equal
to 29.16, while the maximum expected number of surgeries of Table 8.3 is equal to 36.24. Therefore,
the maximum expected number of surgeries is decreased by 20% when we use the model described in
Section 8.5 instead of the model described in Chapter 4.

When we compare Figures 5.2 – 5.5 (shortages when we do not take into account the number of
surgeries) with Figures 8.2 – 8.5 (shortages when we do take into account the number of surgeries)
we see that the shortages do not change. Also, the combined tasks, extended duration of tasks and
the number of different surgeons on the Hpb/Ch task per week do not change. This is because these
categories have higher importance factors than the category equally dividing the number of surgeries
performed. When we compare Figure 5.6 (distribution of the different tasks over the surgeons when we
do not take into account the number of surgeries) with Figure 8.6 (distribution of the different tasks over
the surgeons when we do take into account the number of surgeries) we see that the distribution of the
different tasks over the surgeons does change. The tasks are divided more equally when we do not take
into account the number of surgeries performed. This can be explained by the fact that the distribution
of the tasks over the surgeons has a lower importance factor than the distribution of the surgeries over
the surgeons. However, it is possible that the tasks can be distributed more equally over the surgeons
in the case that we want to distribute the number of surgeries equally over the surgeons, because it is
possible that the optimal solution is better than the solution shown in Section 8.7. This is because we
stopped the solver and we had a optimality gap of 0.13%.

Table 8.3: The expected number of surgeries performed in the fourth quarter per surgeon when we use
the model described in Chapter 4.

Surgeon Expected number of surgeries
1 31.4
2 23.88
3 5.16
4 25.01
5 31.23
6 24.54
7 6.57
8 36.24
9 0.00

10 29.8
11 16.24
12 13.76
13 0.00
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Chapter 9

Discussion

Section 9.1 will discuss the model for scheduling tasks, Section 9.2 the generic model for equally divid-
ing the orders, Section 9.3 the model including the number of surgeries done per surgeon and Section
9.4 will discuss further research.

9.1 Model for scheduling tasks

In the model for scheduling the different tasks, we want to equally divide certain tasks and the total
number of tasks scheduled over the transplant surgeons. This is done by minimizing the maximum
number of days scheduled at this task (or total number tasks scheduled). However, it is possible that
the tasks could be divided more equally than only minimizing the maximum number. When for example
one surgeon is scheduled many days at a task and this number cannot be reduced, but it is possible to
divide the tasks of the other surgeons more equally. This is not included in the model, but it could be
done. However, the solving time will increase when we do this. We will explain this with an example.

We have three surgeons and one task should be scheduled over these three surgeons for six days.
Surgeon 2 and 3 are not available during day 1,2 and 3. Therefore, surgeon 1 must be schedule at the
task on day 1, 2 and 3. When we minimize the maximum number of days scheduled at the task per
surgeon during this schedule, we do not schedule surgeon 1 during day 4, 5 and 6. However, it does
not matter how we schedule the task during day 4, 5 and 6 over surgeon 2 and 3. Two possibilities
are shown in Figure 9.1. While both schedules have the same value when we minimize the maximum
number of days scheduled at the task per surgeon, we prefer the second one.

Figure 9.1: Two possible schedules when one task is scheduled over three surgeons.

9.2 Generic mathematical model for equally dividing orders

We hoped to find a structure in the results of small instances of the generic mathematical model for
equally dividing the number of order over the persons that we could extend to bigger instances. Most of
the states have an optimal action that can be defined as the expected new state as close as possible to
the line where the number of orders is equally divided over the persons. However, this is not always the
case. When during one schedule a big task (high arrival rate) must be scheduled this structure does not
hold. Also when we have the same arrival rates during the schedules we have some exceptions that we
could not explain.
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9.3 Model including the number of surgeries done per surgeon

In this section the SDP model will be discussed in Section 9.3.1 and the ILP model will be discussed in
Section 9.3.2.

9.3.1 SDP

In the SDP model for including the number of surgeries done per surgeon we assume a deterministic
distribution for the number of surgeries done during the OR task. However, the OR task is scheduled
every Wednesday, Thursday and Friday and once in the two weeks one OR day expires due to the
operating room reduction. Also, the number of surgeries done during the OR task depends on the
surgeries scheduled. One surgery takes less time than another one and therefore during some days
fewer surgeries can be scheduled than during other days. To say something about the distribution of the
number of surgeries done during an OR tasks data of these numbers during the OR task is required. At
the shifts we assumed a Poisson process as arrival process, because the surgeries arrive independent
of each other. To check if this assumption is correct data of the number on surgeries done during the
different shifts is required.

We also assumed that a surgeon scheduled at multiple tasks simultaneously is always available at
both tasks. Practically this is not possible. When a surgeon is scheduled at the OR and at the T2 shift
and the surgeon is performing a surgery for the OR task, this surgeon cannot at the same time perform
another surgery of the T2 task. Therefore, this should be taken into account in the arrival process of
surgeries for this surgeon.

We do not take into account the differences between first and second surgeon during a surgery. How-
ever, for the surgical experience this is a difference. Therefore, this should be taken into account.

Last, we assumed that the new quarter schedule can be made after the end of the previous sched-
ule. This assumption is made, because in this case we know the number of surgeries done after the
previous schedule before we make the new schedule. In practice, the schedules must be made earlier.
This is because the surgeons must know earlier when they have to work during the weekend or when
they have night shifts. Therefore, the rule is that the schedules are known six weeks before the start of
the schedule. This should be included in the model. This can be done by using the number of surgeries
done six weeks before the start of the new schedule. The number of surgeries done during the last six
weeks can be added to the transition probabilities. We used the transition probabilities for a number of
surgeries during the schedule. However, in this case the last six weeks of the old schedule should be
taken into account.

9.3.2 ILP

We approximate the optimal solution of the SDP by minimizing the maximum number of expected surg-
eries per surgeon at the end of the schedule in an ILP. This is done because in the generic SDP most
of the states have the optimal action equal to equally dividing the expected number of orders after the
schedule. However, we do not know how good this approximation is.

To add the objective to minimize the maximum number of expected surgeries per surgeon at the end of
the schedule to the ILP model for making the schedules without taken into account the number of surg-
eries completed, we have to know the arrival rate of surgeries during the different tasks. We assumed
that these arrival rates do not depend on the day, time of the year etcetera. We only take into account
the duration of the shift. This is done because we only have the data of the surgeries performed, but we
do not know during which task the surgery occurred. However, when we would take this into account
the expectations of the number of surgeries would be more accurate.

Because we do not know during which task the surgeries are done, we approximated the arrival rates.
For the organ removal shift we do have the data of the number of surgeries done during this shift. How-
ever, because we do not have the data for the other tasks we only used the mean number of surgeries
and did not look at differences between days etcetera. For the OR task we determined the mean num-
ber of surgeries done on Wednesday, Thursday and Friday and subtract the mean number of surgeries
done on Monday and Tuesday. However, we did not take into account the public holidays. It is also
possible that during some days no OR task was scheduled, because for example no surgeons were
available. We also did not take this into account. Therefore, it is possible that the mean number of
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surgeries during the OR is higher. It is also possible that during shifts on Monday and Thursday fewer
or more surgeries arrive than during Wednesday, Thursday and Friday. The mean number of surgeries
during the OR task can be different because of this. For the arrival rate of surgeries during the T1
shift during weekdays and the arrival rate of the Td shift we only take into account the Monday and
Tuesday. Therefore, it is possible that the arrival rates are different because it is possible that fewer or
more surgeries are done during the other days. We assumed that the surgeon scheduled at the T2
shift performed all the surgeries done during the T1 and Td shift. This is not the case, because some
surgeries can be done by one surgeon. Therefore, the arrival rate of surgeries will be lower in practice.

9.4 Further research

Further research can be done to the risks of combining certain tasks for the surgeons. For example
if we combine the T2 task with the OR task, what can we say about the probability that the surgeon
performs a scheduled surgery from the OR task, while this surgeon should also be available for the T2
task and this surgeon is not?

Second, research can be done to schedule the surgeons differently. Now the transplant surgeons
are scheduled at different shifts and during each shift a surgery can be performed. However, also a
group of surgeons can be scheduled at shifts and not specified which shift. In this group a rank order
can be determined. The first surgeon is called first when a surgery during one of the shifts should be
performed. By using this structure it is possible that fewer surgeons are needed for the shifts, because
the arrival rate of surgeries during shifts is not very high.

Also, research could be done to take into account the type of surgery done instead of only takeing into
account the number of surgeries to equally divide the surgical experience. Some surgeries are easier
than other surgeries. This could be done by equally dividing the time spent on surgeries. However, one
surgeon may be faster than another surgeon. Therefore, this should also be taken into account. Also
the difference between first and second surgeon can be taken into account.

The ILP model that takes into account the number of surgeries performed could be tested. This can for
example be done by simulation.

Last, research could be done to develop an ADP to overcome the curse of dimensionality and ap-
proximate the optimal solution of the SDP. This may give better solutions than the approximation of the
ILP.
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Chapter 10

Conclusion and recommendations

This chapter gives the conclusion and recommendations of this research. First, Section 10.1 shows the
conclusion. Then, Section 10.2 shows the recommendations.

10.1 Conclusion

The transplant surgeons must be scheduled over different tasks. Different transplant shift must be
scheduled where transplants can be done that are not scheduled. The different transplant shifts are the
shift during office hours (Td), the shift outside office hours (T1) and the backup transplant shift (T2).
The organ removal shift (M ) must also be scheduled every other week. Also, the chef ward (Ch), chef
hpb (Hpb), outpatient clinic (OC) and operating room (OR) tasks must be scheduled during office hours.

We first developed an ILP for scheduling these tasks over the surgeons per quarter. By using this model
the optimal schedule can be found given the surgeons and availability of the surgeons. Using this model
the schedule for the fourth quarter of 2018 is made. When we use the availability of the surgeons as
input, we have shortages at different tasks during the schedule. Even the organ removal shift that is the
most important to be scheduled has shortages. This is because this shift must be scheduled by a fixed
structure. Two surgeons must be scheduled every other week from Friday 12:00 0’clock till Monday
12:00, two other surgeons are scheduled from Monday 12:00 o’clock till Wednesday 12:00 o’clock and
two surgeons must be scheduled from Wednesday 12:00 o’clock till Friday 12:00 o’clock. Therefore,
two surgeons must be available during the whole block (consecutive days). When the organ removal
shift is scheduled with another structure, fewer shortages occur at the organ removal shift. Three other
structures are investigated: old structure (no further constraints), T2 structure (two to four consecutive
days for the same surgeon) and cooperate with the Erasmus MC (the shift must be scheduled each
week and one surgeon must be scheduled). All cases have fewer shortages at the organ removal shift
than the current structure.

By developing the ILP model for scheduling tasks over surgeons, we know how to schedule the trans-
plant surgeons. Therefore, the next step is to take into account the surgical experience. This is done
with the number of surgeries performed. To do this an SDP model is developed for a more generic case.
In this case different tasks are scheduled over persons and during the tasks orders can arrive. The goal
is to equally divide the number of completed orders at the end of the horizon. This SDP is solved using
DP for various small instances. The goal was to find a structure in the optimal actions that can be ex-
tended to bigger instances. Most of the optimal actions are such that the expected new state after the
schedule is divided as equally as possible. However, sometimes the optimal action differs a little from
this. This SDP is adjusted to the LUMC context. However, due to the curse of dimensionality this SDP
cannot be solved using DP. Therefore, we approximated the optimal action by using the ILP model and
add the condition that we want to divide the expected number of surgeries equally over the surgeons at
the end of the schedule. By doing this the maximal expected number of surgeries at the end of quarter
4 per surgeon is decreased by 20% in comparison with the ILP for scheduling the different tasks. While
the shortages, combined tasks, extended duration of tasks and the number of different surgeons per
week at the Hpb/Ch task do not change.
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10.2 Recommendations

We will recommend the LUMC to use the model for scheduling the transplant surgeons and take into
account the number of surgeries performed per surgeon. However, to do this a user friendly application
should be developed. By doing this optimal schedules, given the availability of the surgeons, can be
made that fulfill all constraints, the program is impartial and the surgeons do not have to spend time
at scheduling the different tasks over the surgeons. Also, the mean number of surgeries during a task
should be determined. This model can be used to first indicate the shortages that will occur when the
requests for the days off have to be approved/rejected. When the days off are fixed the model can be
used to make the quarter schedule.

To schedule the organ removal shift more easily it is recommended to use a different structure for
scheduling the organ removal shift. One of the following options can be chosen:

• Use the old structure. This means that no further constraints are used for scheduling the organ
removal shift. Using this structure the organ removal shift can be scheduled the easiest of the
different cases investigated.

• Use the T2 structure for scheduling the organ removal shift. This means that the shift is scheduled
at least two and at most four consecutive days for one surgeon. By using this structure it can be
harder to schedule the organ removal shift than using the old structure. However, the surgeons
will be fitter during this shift because it cannot be scheduled longer than four days for the same
surgeon.

• Cooperate with Rotterdam and keep the fixed structure. This is harder to schedule because of the
fixed structure. However, the differences between the number of surgeons needed per week are
zero while this is equal to four at some days with the current structure.
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Appendix A

Model for scheduling tasks

The model for scheduling the different tasks over the surgeons is shown in this appendix.

minimize 210 000 ·
∑

d:d mod 14=5+7·MW

(dM,d + dmd) + 140 000 ·
∑

d:d mod 14∈{3+7·(1−MW ),
1+7·(1−MW )}

(dM,d + dmd)

+ 80 000 ·
∑

d:d mod 7=6

dT1,d + 40 000 ·
( ∑
d:d mod 76=6,
COMBd d

7
e=1

dT1,d + 5 ·
∑

d:d mod 76=6,
COMBd d

7
e=0

dT1,d +
∑
w

dhpbw

+
∑
d

dsd

)
+ 60 000 ·

∑
d:d mod 7=6

dT2,d + 30 000 ·
∑

d:d mod 76=6

dT2,d + 20 000 ·
∑
d

dTd,d

+ 10 000 ·
∑
d

∑
t∈{Ch,Hpb}

dt,d + 5 000 ·
∑
d

∑
t∈{OC,OR}

dt,d + 3 000 ·
∑
d

ud + 2 000 ·
∑
d

zd

+ 2 000 ·
∑
d

yd + 1 000 ·
∑
d

wd + 300 ·
∑
w

wkw + 200 ·
∑
w

lmw + 100 ·
(∑

d

fdd + fdm+ fdtu
)

+ 10 ·
∑
t

∑
w

(ihs,w + ics,w) +

∑
s TSs,M

DTSM +
∑
sDTs,M

· (mdsM ) +

∑
s TSs,T1

DTST1 +
∑
sDTs,T1

·

(mdsT1 +
1

2

∑
d:d mod 7/∈{6,0},
COMBd d

7
e=0

∑
s

FWT1s · xs,T1,d) +

∑
s TSs,T2

DTST2 +
∑
sDTs,T2

·mdsT2

+

∑
s TSs,OR

DTSOR +
∑
sDTs,OR

·mdsOR +
|S|∑

tDTSt +
∑
t

∑
sDTs,t

·md

subject to

ihs,w = 0 ∀s, w st TSs,Hpb = 0

ics,w = 0 ∀s, w st TSs,Ch = 0

mdst = 0 ∀t ∈ {Td,Hpb, Ch,OC}
yd = 0 ∀d st d mod 7 ∈ {0, 6}
wd = 0 ∀d st d mod 14 6= 5 + 7 ·MW

zd = 0 ∀d st d mod 7 ∈ {0, 1, 2, 6}
ud = 0 ∀d st d mod 7 ∈ {0, 6}

mcd,t,t′ = 0 ∀d, t, t′ st d mod 7 ∈ {0, 6}
mcd,t,t′ = 0 ∀d, t, t′ st t ∈ {T1,M,OC,OR}
mcd,t,t′ = 0 ∀d, t, t′ st t′ ∈ {T1,M,OC,OR}
mcd,t,t′ = 0 ∀d, t, t′ st t ≺ t′

mcd,t,t′ = 0 ∀d, t, t′ st t′ = Hpb, t ∈ {T2, Ch}
mcdd = 0 ∀d st d mod 7 ∈ {0, 6}
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xs,T1,d = 0 ∀s, d st d mod 7 = 0

xs,T1,d = 0 ∀s, d st d mod 7 ∈ {2, 3, 4, 5}, COMBd d7 e
= 0

xs,T2,d = 0 ∀s, d st d mod 7 = 0

xs,M,d = 0 ∀s, d st d mod 14 /∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW ),

5 + 7 ·MW}
xs,t,d = 0 ∀s, t, d st t ∈ {Td,Ch,Hpb}, d mod 7 ∈ {0, 6}

xs,OC,d = 0 ∀s, d st d mod 7 ∈ {0, 2, 3, 4, 5, 6}
xs,OR,d = 0 ∀s, d st d mod 7 ∈ {0, 1, 2, 6}
xs,t,d = 0 ∀s, t, d st t /∈ {T1,M}, d mod 7 = NCDs, NNCDs,d = 0

xs,t,d = 0 ∀s, t, d st t /∈ {T1,M}, ENCDs,d = 1

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ),

3 + 7 · (1−MW )}, (d+ 1) mod 7 = NCDs, NNCDs,d+1 = 0

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW )},
ENCDs,d+1 = 1

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW )},
(d+ 2) mod 7 = NCDs, NNCDs,d+2 = 0,MONCDs,d+2 = 0

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW )},
ENCDs,d+2 = 1,MONCDs,d+2 = 0

xs,M,d = 0 ∀s, d st d mod 14 = 5 + 7 ·MW, (d+ 3) mod 7 = NCDs,

NNCDs,d+3 = 0,MONCDs,d+3 = 0

xs,M,d = 0 ∀s, d st d mod 14 = 5 + 7 ·MW,ENCDs,d+3 = 1,MONCDs,d+3 = 0

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW ), 5 + 7 ·MW},
d mod 7 = NCDs, NNCDs,d = 0,MNCDs,d = 0

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ), 3 + 7 · (1−MW ), 5 + 7 ·MW},
ENCDs,d = 1,MNCDs,d = 0

xs,t,d = 0 ∀s, t, d st TSs,t = 0

xs,M,d = 0 ∀s, d st d mod 14 ∈ {5 + 7 ·MW, 1 + 7 · (1−MW ),

3 + 7 · (1−MW )}, Vs,d = 1,MVs,d = 0

xs,M,d = 0 ∀s, d st d mod 14 ∈ {5 + 7 ·MW, 1 + 7 · (1−MW ),

3 + 7 · (1−MW )}, Vs,d+1 = 1

xs,M,d = 0 ∀s, d st d mod 14 = 5 + 7 ·MW,Vs,d+2 = 1

xs,M,d = 0 ∀s, d st d mod 14 ∈ {1 + 7 · (1−MW ),

3 + 7 · (1−MW )}, Vs,d+2 = 1,MOVs,d+2 = 0

xs,M,d = 0 ∀s, d st d mod 14 = 5 + 7 ·MW,Vs,d+3 = 1,MOVs,d+3 = 0

xs,t,d = 0 ∀s, t, d st t 6=M,d mod 7 ∈ {1, 2, 3, 4, 5}, Vs,d = 1

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Vs,d+1 = 1, COMBd d7 e
= 0

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Vs,d+2 = 1, COMBd d7 e
= 0

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Vs,d+3 = 1, COMBd d7 e
= 0

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Vs,d+4 = 1, COMBd d7 e
= 0

xs,t,d = 0 ∀s, t, d st t ∈ {T1, T2}, d mod 7 = 6, Vs,d + Vs,d+1 ≥ 1

xs,t,d = 0 ∀d, t st t ∈ {Td,Ch,Hpb,OC,OR}, d mod 7 ∈ {1, 2, 3, 4, 5}, PHd = 1

xs,t,d = 0 ∀s, t, d st t ∈ {T1, T2,M}, d mod 7 ∈ {1, 2, 3, 4, 5}, Gs,d = 1

xs,M,d = 0 ∀s, d st d mod 14 ∈ {5 + 7 ·MW, 1 + 7 · (1−MW ),

3 + 7 · (1−MW )}, Gs,d+1 = 1

xs,M,d = 0 ∀s, d st d mod 14 = 5 + 7 ·MW,Gs,d+2 = 1

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Gs,d+1 = 1, COMBd d7 e
= 0

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Gs,d+2 = 1, COMBd d7 e
= 0

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Gs,d+3 = 1, COMBd d7 e
= 0

xs,T1,d = 0 ∀s, d st d mod 7 = 1, Gs,d+4 = 1, COMBd d7 e
= 0

xs,t,d = 0 ∀s, t, d st t ∈ {T1, T2}, d mod 7 = 6, Gs,d +Gs,d+1 ≥ 1
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xs,M,d = 0 ∀s, d st
∑
t

TSs,t = TSs,M+

TSs,OC + TSs,OR, Xs,M,d = 0

dt,d = 0 ∀t, d st t ∈ {T1, T2}, d mod 7 = 0

dT1,d = 0 ∀d st d mod 7 ∈ {2, 3, 4, 5},
COMBd d7 e

= 0

dM,d = 0 ∀d st d mod 14 /∈ {1 + 7 · (1−MW ),

3 + 7 · (1−MW ), 5 + 7 ·MW}
dt,d = 0 ∀t, d st t ∈ {Td,Ch,Hpb},

d mod 7 ∈ {0, 6}
dOC,d = 0 ∀d st d mod 7 ∈ {0, 2, 3, 4, 5, 6}
dOR,d = 0 ∀d st d mod 7 ∈ {0, 1, 2, 6}
dt,d = 0 ∀t, d st t ∈ {Td,Ch,Hpb,OC,OR},

PHd = 1

dmd = 0 ∀d st d mod 14 /∈ {5 + 7 ·MW,

1 + 7 · (1−MW ), 3 + 7 · (1−MW )}
lmw = 0 ∀w st w mod 2 = 1−MW

fdd = 0 ∀d st d mod 7 ∈ {0, 3}∑
s

(MODs +MODCs,d) · xs,M,d ≥ 1− dmd ∀d st d mod 14 ∈ {7 ·MW + 5,

7 · (1−MW ) + 1, 7 · (1−MW ) + 3}∑
s

(1− JRs) · (xs,T1,d + xs,T2,d) ≥ 1− dsd ∀d st d mod 7 = 6∑
s

(1− JRs) · (xs,T1,d−5 + xs,T2,d) ≥ 1− dsd ∀d st d mod 7 = 6,

COMBd d7 e
= 0∑

s

(1− JRs) · (xs,T1,d + xs,T2,d+2) ≥ 1− dsd+2 ∀d st d mod 7 = 6

COMBd d+2
7 e

= 0∑
s

(1− JRs) · (xs,T1,d + xs,T2,d′) ≥ 1− dsd′ ∀d, d′ st d mod 7 = 1, COMBd d7 e
= 0, d′ ∈ {d,

d+ 1, d+ 2, d+ 3, d+ 4}∑
s

(1− JRs) · (xs,T1,d + xs,T2,d) ≥ 1− dsd ∀d st d mod 7 ∈ {1, 2, 3, 4, 5},

COMBd d7 e
= 1∑

s

(1− JRs) · (xs,Td,d + xs,T2,d) ≥ 1− dsd ∀d st d mod 7 ∈ {1, 2, 3, 4, 5},

COMBd d7 e
= 0

d+2∑
d′=d

∑
s

HPBs · xs,OR,d′ ≥ 1− dhpbd d7 e ∀d st d mod 7 = 3∑
s

xs,t,d + dt,d = 1 ∀t, d st t ∈ {Td,Ch,Hpb},

d mod 7 ∈ {1, 2, 3, 4, 5}, PHd = 0∑
s

xs,T1,d + dT1,d = 1 ∀d st d mod 7 ∈ {1, 6}∑
s

xs,T1,d + dT1,d = 1 ∀d st d mod 7 ∈ {2, 3, 4, 5},

COMBd d7 e
= 1∑

s

xs,T2,d + dT2,d = 1 ∀d st d mod 7 ∈ {1, 2, 3, 4, 5, 6}∑
s

xs,M,d + dM,d = 2 ∀d st d mod 14 ∈ {5 + 7 ·MW,

7 · (1−MW ) + 1, 7 · (1−MW ) + 3}
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∑
s

xs,OC,d + dOC,d = 2 ∀d st d mod 7 = 1, PHd = 0∑
s

xs,OR,d + dOR,d = 2 ∀d st d mod 7 ∈ {3, 4, 5}, PHd = 0

xs,t,d′ ≤ 1− xs,T1,d ∀s, t, d, d′ st COMBd d7 e
= 0, t 6= T1, d mod 7 = 1,

d′ ∈ {d, d+ 1, d+ 2, d+ 3, d+ 4}
xs,T1,d ≤ 1− xs,T1,d+2 ∀s, d st COMBd d7 e

= 0, d mod 7 = 6

xs,T2,d ≤ 1− xs,T1,d+2 + wkd d+2
7 e

∀s, d, w st COMBd d+2
7 e

= 0,

d mod 7 = 6∑
t∈{T1,T2}

xs,t,d+5 + xs,T1,d ≤ 1 ∀s, d st COMBd d7 e
= 0, d mod 7 = 1

∑
t

xs,t,d+2 + 5 · xs,T1,d ≤ 5 ∀s, d st COMBd d+2
7 e

= 0, d mod 7 = 6

xs,T1,d + xs,T1,d+7 ≤ 1 ∀s, d st COMBd d7 e
= 0,

COMBd d+7
7 e

= 0, d mod 7 = 1

xs,M,d−1 + xs,M,d+6+

xs,M,d+13 +
∑

t∈{T1,T2}

xs,t,d+

xs,t,d+7 + xs,t,d+14 ≤ 2 ∀s, d st d mod 7 = 6

xs,t,d ≤ 1− xs,OC,d ∀s, t, d st d mod 7 = 1, t 6= OC

xs,t,d ≤ 1− xs,OR,d ∀s, t, d st d mod 7 ∈ {3, 4, 5}, t /∈ {T2, OR}
xs,Hpb,d + xs,T2,d ≤ 1 + yd ∀s, d st d mod 7 ∈ {1, 2, 3, 4, 5}
xs,Hpb,d + xs,M,d ≤ 1 + wd ∀s, d st d mod 14 ∈ {7 ·MW + 5, 7 · (1−MW ) + 1,

7 · (1−MW ) + 3}
xs,OR,d + xs,T2,d ≤ 1 + zd ∀s, d st d mod 7 ∈ {3, 4, 5}
xs,Ch,d + xs,Hpb,d ≤ 1 + ud ∀s, d st d mod 7 ∈ {1, 2, 3, 4, 5}

yd + zd ≤ 1 ∀d st d mod 7 ∈ {3, 4, 5}
yd + wd + ud ≤ 1 ∀d st d mod 7 ∈ {1, 2, 3, 4, 5}
xs,t,d + xs,t′,d ≤ 1 +mcd,t,t′ ∀s, t, t′, d st d mod 7 ∈ {1, 2, 3, 4, 5}, t,

t′ ∈ {T2, Td, Ch,Hpb}, t′ ≺ t,¬(t ∈ {T2, Ch},
t′ = Hpb)

xs,t,d = Xs,t,d ∀s, t, d st Xs,t,d = 1, d mod 7 6= 0

xs,T2,d+1 ≥ xs,T2,d − xs,T2,d−2 ∀d st d mod 7 = 1

xs,T2,d+1 ≥ xs,T2,d − xs,T2,d−1 ∀d st d mod 7 ∈ {2, 3, 4, 5}
d+3∑
d′=d

xs,T2,d′ ≤ 3 + fdd ∀s, d st d mod 7 ∈ {1, 2}

d+3∑
d′=d

xs,T2,d′ ≤ 3 ∀s, d st d mod 7 = 3

d+2∑
d′=d

xs,T2,d′ ≤ 2 + fdd ∀s, d st d mod 7 = 4

d+3∑
d′=d

xs,T2,d′ ≤ 2 + fdd ∀s, d st d mod 7 ∈ {5, 6}

xs,T2,d+4 ≤ 2− fdd − xs,T2,d ∀s, d st d mod 7 ∈ {1, 2, 4, 5, 6}
xs,t,d ≤ 1− xs,M,d ∀s, t, d st t ∈ {T2, Td,OR,Ch},

d mod 14 = 5 + 7 ·MW

xs,t,d+1 ≤ 1− xs,M,d ∀s, t, d st t ∈ {T1, T2}, d mod 14 = 5 + 7 ·MW

xs,t,d+3 ≤ 1− xs,M,d ∀s, t, d st d mod 14 = 5 + 7 ·MW

xs,t,d′ ≤ 1− xs,M,d ∀s, t, d, d′ st t ∈ {T1, T2, Td,OC,Ch,Hpb},
d mod 14 = 1 + 7 · (1−MW ), d′ ∈ {d, d+ 1}

xs,t,d+2 ≤ 1− xs,M,d ∀s, t, d st t 6=M,d mod 14 = 1 + 7 · (1−MW )
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xs,M,d+2 ≤ 1− xs,M,d + lmd d7 e
∀s, d st d mod 14 = 1 + 7 · (1−MW )

xs,t,d′ ≤ 1− xs,M,d ∀s, t, d, d′ st t ∈ {T2, Td,OR,Ch,Hpb},
d mod 14 = 3 + 7 · (1−MW ), d′ ∈ {d, d+ 1,

d+ 2}
xs,Td,d = xs,T1,d ∀s, d st COMBd d7 e

= 1, PHd = 0,

d mod 7 6= 6

xs,t,d ≤ 1− xs,T1,d ∀s, t, d st t /∈ {T1, Td}, COMBd d7 e
= 1

xs,T1,d+1 ≤ 1− xs,T2,d ∀s, d st COMBd d+1
7 e

= 1,

(d+ 1) mod 7 6= 1

xs,T1,d+2 ≤ 1− xs,T2,d ∀s, d st COMBd d+2
7 e

= 1,

(d+ 2) mod 7 = 1

xs,T2,d+1 ≤ 1− xs,T1,d ∀s, d st COMBd d7 e
= 1,

(d+ 1) mod 7 6= 1

xs,T2,d+2 ≤ 1− xs,T1,d ∀s, d st COMBd d7 e
= 1,

(d+ 2) mod 7 = 1

xs,T1,d+1 ≥ xs,T1,d − xs,T1,d−1 ∀s, d st COMBd d7 e
= 1,

d mod 7 ∈ {2, 3, 4, 5}
xs,T1,d+1 ≥ xs,T1,d − xs,T1,d−2 ∀s, d st COMBd d7 e

= 1,

d mod 7 = 1

d+3∑
d′=d

xs,T1,d′ ≤ 3 ∀s, d st COMBd d7 e
= 1,

d mod 7 ∈ {1, 2, 3}
d+2∑
d′=d

xs,T1,d′ ≤ 2 ∀s, d st COMBd d7 e
= 1, d mod 7 = 4

d+3∑
d′=d

xs,T1,d′ ≤ 2 ∀s, d st COMBd d+3
7 e

= 1,

d mod 7 ∈ {5, 6}

3 ·
∑

d:d mod 14=5+7·MW

xs,M,d+

2 ·
∑

d:d mod 14=1+7·(1−MW )

xs,M,d+

2 ·
∑

d:d mod 14=3+7·(1−MW )

xs,M,d +DTs,M ≤ mdsM ∀s st
∑

t∈{T1,T2,M}

TSt,s 6= TSM,s

∑
d:d mod 76=6

xs,T2,d+

2 ·
∑

d:d mod 7=6

xs,T2,d +DTs,T2 ≤ mdsT2 ∀s

3 ·
∑

d:d mod 14=5+7·MW

xs,M,d+

2 ·
∑

d:d mod 14=1+7·(1−MW )

xs,M,d+

2 ·
∑

d:d mod 14=3+7·(1−MW )

xs,M,d+

2 ·
∑

d:d mod 7=6

∑
t∈{T1,T2}

xs,t,d+

∑
d:d mod 76=6

∑
t/∈{M,T1}

xs,t,d+

∑
d:d mod 7/∈{1,6}

xs,T1,d+
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5 ·
∑

d:d mod 7=1,COMBd d
7
e=0

xs,T1,d+

∑
d:d mod 7=1,COMBd d

7
e=1

xs,T1,d+

2 ·
∑

d:d mod 7=6

xs,T1,d +
∑
t

DTs,t ≤ md ∀s∑
d:d mod 7/∈{1,6}

xs,T1,d+

5 ·
∑

d:d mod 7=1,COMBd d
7
e=0

xs,T1,d+

∑
d:d mod 7=1,COMBd d

7
e=1

xs,T1,d+

2 ·
∑

d:d mod 7=6

xs,T1,d +DTs,T1 ≤ mdsT1 ∀s∑
d

xs,OR,d +DTs,OR ≤ mdsOR ∀s

xs,M,d = Xs,M,d ∀s, d st
∑
t

TSt,s =
∑

t∈{M,OR,OD}

TSt,s,

d mod 14 ∈ {5 + 7 ·WM, 1 + 7 · (1−MW ),

3 + 7 · (1−MW )}

3 ·
∑

d:d mod 14=5+7·MW

xs,M,d+

2 ·
∑

d:d mod 14=1+7·(1−MW )

xs,M,d+

2 ·
∑

d:d mod 14=3+7·(1−MW )

xs,M,d ≤
|D|
5

∀s st
∑

t∈{T1,T2,M}

TSt,s = TSM,s

7·w∑
d=7·(w−1)+1

xs,Hpb,d ≤ 5 · ihs,w ∀s, w st TSs,Hpb = 1

7·w∑
d=7·(w−1)+1

xs,Ch,d ≤ 5 · ics,w ∀s, w st TSs,Ch = 1

mcdd ≥ mcd,t,t′ ∀d, t, t′ st d mod 7 ∈ {1, 2, 3, 4, 5}, t ≺ t′

t, t′ ∈ {T2, Td, Ch,Hpb}∑
d:d mod 7=1,COMBd d

7
e=0

xs,T1,d ≤ 1 ∀s st FWT1s = 1

xs,T2,d + xs,T2,d+1 ≤ 1 ∀s, d st CHRISTMASd = 1,

CHRISTMASd+1 = 1

xs,T1,d + xs,T1,d+1 ≤ 1 ∀s, d st CHRISTMASd = 1,

CHRISTMASd+1 = 1∑
t

xs,t,1 ≤ 5− 5 · TWs ∀s st COMB1 = 0

xs,T1,1 ≤ 1− TWBs ∀s st COMB1 = 0

xs,M,5 +
∑

t∈{T1,T2}

xs,t,6 ≤ 2−WBs −WBs ·WBTs ∀s

xs,M,5 +
∑

t∈{T1,T2}

xs,t,6+

xs,M,12 +
∑

t∈{T1,T2}

xs,t,13 ≤ 2−WBs ∀s

xs,T2,1 = 0 ∀s st NDs = 4

xs,T2,1 ≤ fdm ∀s st NDs = 3

xs,T2,2 ≤ 1− xs,T2,1 + fdtu ∀s st NDs = 2

xs,T1,1 = 0 ∀s st COMB1 = 1, NDTs = 3
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xs,T1,2 ≤ 1− xs,T1,1 ∀s st COMB1 = 1, NDTs = 2

xs,T1,1 ≤ 1− TWs ∀s st COMB1 = 0

xs,T1,1 ≤ wk1 ∀s st COMB1 = 0, NDs > 0

xs,t,1 ≤ 1−WBMS ∀s, t st MW = 1∑
s

(1− JRs)(TWs + xs,T2,1) ≥ 1− ds1 st COMB1 = 0
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Appendix B

Procedure making schedule after
solving ILP

When we solve the ILP as described in Chapter 4, we made a schedule, but we scheduled only the
starting moments of certain tasks and days. Therefore, we have to execute the procedure shown in
Algorithm 2 to make a schedule from the output of the ILP.
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for all surgeons, tasks and days do
if the day number corresponds to a Saturday then

The tasks scheduled on Saturday are also scheduled on Sunday
else if the day number does not correspond to a Sunday then

if the task is the organ removal shift then
if the day number corresponds to a Friday and in the weekend the organ removal shift must
be scheduled then

if The organ removal shift is scheduled during this day then
The organ removal shift is scheduled during day numbers d, d+ 1, d+ 2, d+ 3

end
else if the day number corresponds to a Monday during a week that the organ removal shift
must be scheduled then

if The organ removal shift is scheduled during this day then
The organ removal shift is scheduled during day numbers d, d+ 1, d+ 2

end
else if the day number corresponds to a Wednesday during a week that the organ removal
shift must be scheduled then

if The organ removal shift is scheduled during this day then
The organ removal shift is scheduled during day numbers d, d+ 1, d+ 2

end
end

else if the task is the T1 task and the T1 and Td shifts are not combined then
if the T1 task is scheduled on Monday then

This task is scheduled for the whole week
end

else
A task is scheduled during the day if the task starts that day for this surgeon

end
end

end
for all surgeons and days do

if the day number corresponds to the non-clinical day of the surgeon and no T1 shift is scheduled
during this day then

The surgeon has a non-clinical day during this day
end
if the day number corresponds to a day off for the surgeon then

Schedule the day off for this surgeon
end
if the day number corresponds to a day the surgeon does not want to do a shift then

Indicate that this surgeon does not want to do a shift in the schedule
end

end
for all surgeons do

if the surgeon has done the organ removal shift the last weekend before the schedule then
Schedule the organ removal shift on the first day of the schedule

end
end

Algorithm 2: The algorithm to output the schedule made by the ILP.
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Appendix C

Input schedule

In this chapter the input for the case-study is shown. Table C.1 shows the characteristics of the different
surgeons. Table C.2 shows the tasks that can be scheduled for the different surgeons. Table C.3
shows the weeks in which the T1 and Td shifts are combined. Table C.4 shows the public holidays and
Christmas days during the schedule. Table C.5 shows the possibilities to schedule half a day organ
removal shift during a day off or non-clinical day. Table C.6 shows which surgeon has done which shift
before the start date of the schedule made. Table C.7 shows the number of days a task is scheduled.
Figure C.1 shows the days off, non-clinical days, when no shift should be scheduled and the tasks which
are already scheduled.

Table C.1: The characteristics of the different surgeons.

Surgeon Junior MOD certified Hpb surgeon weekend T1 preferred NCD
1 0 0 1 0 5
2 0 1 0 0 4
3 0 1 1 0 3
4 0 1 0 0 5
5 0 1 0 0 2
6 0 1 1 0 3
7 1 0 0 0 2
8 0 1 0 1 3
9 0 0 0 0 4

10 1 0 0 0 2
11 1 0 0 0 3
12 0 1 0 0 -1
13 0 1 0 0 -1

Table C.2: The tasks that can be scheduled for the different surgeons.

Surgeon T1 T2 Td M Ch Hpb OC OR

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 0 0 0 1 0 1 0 0
4 1 1 1 1 1 0 1 1
5 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1
9 0 0 1 0 1 1 1 1
10 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
12 0 0 0 1 0 0 1 1
13 0 0 0 1 0 0 0 0
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Table C.3: The weeks the T1 and Td shifts are combined.

Week T1, Td combined
1 0
2 0
3 0
4 1
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 1
14 1

Table C.4: The day numbers corresponding to public holidays during the schedule.

Public holiday Christmas
Day number 86 Day number 86
Day number 87 Day number 87
Day number 93

Table C.5: The days the organ removal shift can be scheduled for surgeons during a day off or non-
clinical day.

Surgeon Morning during NCD Afternoon during NCD Morning during day off Afternoon during day off
1
2
3 Wednesday
4
5
6
7
8
9

10
11 Wednesday Friday
12
13

Table C.6: The value of the boundary parameters.

Surgeon Boundary parameters
Last weekend Second last weekend T1 week T1 weekend M weekend Days T2 Days T1

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0
5 0 1 0 0 0 0 0
6 0 1 0 0 0 0 0
7 0 0 0 0 0 0 0
8 1 0 0 1 0 0 2
9 0 0 0 0 0 0 0

10 1 0 0 0 0 2 0
11 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0
13 0 1 0 0 0 0 0
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Table C.7: The number of days a task should be scheduled

Task Number of days
T1 98
T2 98
Td 70
M 98
Ch 70
Hpb 70
OC 14
OR 42
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Figure C.1: The input of the days off, days without shifts and already scheduled tasks.
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Appendix D

Schedules with different organ
removal shift structure

In this appendix the schedules made with the different organ removal shift structures are shown. Section
D.1 shows the quarter schedule when the LUMC coorperates with Erasmus MC, Section D.2 shows the
quarter schedule when the organ removal shift is scheduled as was done before the current structure
was introduced and Section D.3 shows the quarter schedule when the organ removal shift has the same
structure as the T2 shift.

D.1 Cooperate with Erasmus MC

Figure D.1 shows the quarter schedule and Figure D.2 shows the shortages at the different tasks when
the LUMC cooperates with the Erasmus MC.
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Figure D.1: The generated schedule of the different tasks during quarter 4 when the LUMC cooperates
with the Erasmus MC.

Figure D.2: The shortages at the different tasks in the quarter schedule per day when the LUMC coop-
erates with the Erasmus MC.
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D.2 Old situation

Figure D.3 shows the quarter schedule and Figure D.4 shows the shortages at the different tasks when
the organ removal shift is scheduled using the old structure.

Figure D.3: The generated schedule of the different tasks during quarter 4 when the organ removal shift
is scheduled using the old structure
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Figure D.4: The shortages at the different tasks in the quarter schedule per day when the organ removal
shift is scheduled using the old structure.

D.3 Same structure as the T2 shift

Figure D.5 shows the quarter schedule and Figure D.6 shows the shortages at the different tasks when
the organ removal shift is scheduled with the same structure as the T2 shift.
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Figure D.5: The generated schedule of the different tasks during quarter 4 when the organ removal shift
is scheduled with the same structure as the T2 shift.

Figure D.6: The shortages at the different tasks in the quarter schedule per day when the organ removal
shift is scheduled with the same structure as the T2 shift.
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Appendix E

Output SDP

In this appendix the output of the SDP for different instances is shown. In Section E.1 results are shown
with the original state space and in Section E.2 results are shown for a bigger instance and states
lexicographically ordered.

E.1 Original states

The results from the DP with three persons who can be scheduled over three tasks with one time block
and when two schedules are made, are shown in Table E.1. This table shows an optimal action given
the state and decision epoch. A 1 corresponds to task one with λ1, a 2 corresponds to task two with λ2
and a 3 corresponds to task three with λ3. When ‘−’ is in the table, the corresponding state is not part
of the state space at the corresponding decision epoch. The parameters used in this case are shown
below.

λ1 = 0.01

λ2 = 2.02

λ3 = 1.00

q = 0.01

N = 3

J = 3

M = 3

B = 1

Table E.1: The DP results for a small instance.

State n = 1 n = 2
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

(0, 0, 0) 3 2 1 2 3 1
(0, 0, 1) - - - 2 3 1
(0, 0, 2) - - - 3 2 1
(0, 0, 3) - - - 3 2 1
(0, 0, 4) - - - 3 2 1
(0, 0, 5) - - - 2 3 1
(0, 0, 6) - - - 3 2 1
(0, 1, 0) - - - 2 1 3
(0, 1, 1) - - - 2 3 1
(0, 1, 2) - - - 2 3 1
(0, 1, 3) - - - 2 3 1
(0, 1, 4) - - - 2 3 1
(0, 1, 5) - - - 2 3 1
(0, 1, 6) - - - 2 3 1
(0, 2, 0) - - - 3 1 2
(0, 2, 1) - - - 2 1 3
(0, 2, 2) - - - 2 3 1
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(0, 2, 3) - - - 2 3 1
(0, 2, 4) - - - 2 3 1
(0, 2, 5) - - - 2 3 1
(0, 2, 6) - - - 2 3 1
(0, 3, 0) - - - 3 1 2
(0, 3, 1) - - - 2 1 3
(0, 3, 2) - - - 2 1 3
(0, 3, 3) - - - 2 3 1
(0, 3, 4) - - - 2 3 1
(0, 3, 5) - - - 2 3 1
(0, 3, 6) - - - 2 3 1
(0, 4, 0) - - - 3 1 2
(0, 4, 1) - - - 2 1 3
(0, 4, 2) - - - 2 1 3
(0, 4, 3) - - - 2 1 3
(0, 4, 4) - - - 2 1 3
(0, 4, 5) - - - 2 3 1
(0, 4, 6) - - - 2 3 1
(0, 5, 0) - - - 2 1 3
(0, 5, 1) - - - 2 1 3
(0, 5, 2) - - - 2 1 3
(0, 5, 3) - - - 2 1 3
(0, 5, 4) - - - 2 1 3
(0, 5, 5) - - - 2 1 3
(0, 5, 6) - - - 2 3 1
(0, 6, 0) - - - 3 1 2
(0, 6, 1) - - - 2 1 3
(0, 6, 2) - - - 2 1 3
(0, 6, 3) - - - 2 1 3
(0, 6, 4) - - - 2 1 3
(0, 6, 5) - - - 2 3 1
(0, 6, 6) - - - 2 3 1
(1, 0, 0) - - - 1 3 2
(1, 0, 1) - - - 3 2 1
(1, 0, 2) - - - 3 2 1
(1, 0, 3) - - - 3 2 1
(1, 0, 4) - - - 3 2 1
(1, 0, 5) - - - 3 2 1
(1, 0, 6) - - - 3 2 1
(1, 1, 0) - - - 3 1 2
(1, 1, 1) - - - 3 1 2
(1, 1, 2) - - - 2 3 1
(1, 1, 3) - - - 3 2 1
(1, 1, 4) - - - 3 2 1
(1, 1, 5) - - - 2 3 1
(1, 1, 6) - - - 2 3 1
(1, 2, 0) - - - 3 1 2
(1, 2, 1) - - - 2 1 3
(1, 2, 2) - - - 2 3 1
(1, 2, 3) - - - 2 3 1
(1, 2, 4) - - - 2 3 1
(1, 2, 5) - - - 2 3 1
(1, 2, 6) - - - 2 3 1
(1, 3, 0) - - - 3 1 2
(1, 3, 1) - - - 3 1 2
(1, 3, 2) - - - 2 1 3
(1, 3, 3) - - - 2 3 1
(1, 3, 4) - - - 2 3 1
(1, 3, 5) - - - 2 3 1
(1, 3, 6) - - - 2 3 1
(1, 4, 0) - - - 3 1 2
(1, 4, 1) - - - 3 1 2
(1, 4, 2) - - - 2 1 3
(1, 4, 3) - - - 2 1 3
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(1, 4, 4) - - - 2 3 1
(1, 4, 5) - - - 2 3 1
(1, 4, 6) - - - 2 3 1
(1, 5, 0) - - - 3 1 2
(1, 5, 1) - - - 2 1 3
(1, 5, 2) - - - 2 1 3
(1, 5, 3) - - - 2 1 3
(1, 5, 4) - - - 2 1 3
(1, 5, 5) - - - 2 1 3
(1, 5, 6) - - - 2 3 1
(1, 6, 0) - - - 3 1 2
(1, 6, 1) - - - 2 1 3
(1, 6, 2) - - - 2 1 3
(1, 6, 3) - - - 2 1 3
(1, 6, 4) - - - 2 1 3
(1, 6, 5) - - - 2 1 3
(1, 6, 6) - - - 2 1 3
(2, 0, 0) - - - 1 3 2
(2, 0, 1) - - - 1 2 3
(2, 0, 2) - - - 1 2 3
(2, 0, 3) - - - 3 2 1
(2, 0, 4) - - - 3 2 1
(2, 0, 5) - - - 3 2 1
(2, 0, 6) - - - 3 2 1
(2, 1, 0) - - - 1 3 2
(2, 1, 1) - - - 1 2 3
(2, 1, 2) - - - 3 2 1
(2, 1, 3) - - - 3 2 1
(2, 1, 4) - - - 3 2 1
(2, 1, 5) - - - 3 2 1
(2, 1, 6) - - - 3 2 1
(2, 2, 0) - - - 1 3 2
(2, 2, 1) - - - 3 1 2
(2, 2, 2) - - - 3 2 1
(2, 2, 3) - - - 2 3 1
(2, 2, 4) - - - 3 2 1
(2, 2, 5) - - - 3 2 1
(2, 2, 6) - - - 3 2 1
(2, 3, 0) - - - 3 1 2
(2, 3, 1) - - - 3 1 2
(2, 3, 2) - - - 2 1 3
(2, 3, 3) - - - 2 3 1
(2, 3, 4) - - - 2 3 1
(2, 3, 5) - - - 2 3 1
(2, 3, 6) - - - 2 3 1
(2, 4, 0) - - - 3 1 2
(2, 4, 1) - - - 3 1 2
(2, 4, 2) - - - 3 1 2
(2, 4, 3) - - - 2 1 3
(2, 4, 4) - - - 2 3 1
(2, 4, 5) - - - 2 3 1
(2, 4, 6) - - - 2 3 1
(2, 5, 0) - - - 3 1 2
(2, 5, 1) - - - 3 1 2
(2, 5, 2) - - - 2 1 3
(2, 5, 3) - - - 2 1 3
(2, 5, 4) - - - 2 1 3
(2, 5, 5) - - - 2 3 1
(2, 5, 6) - - - 2 3 1
(2, 6, 0) - - - 3 1 2
(2, 6, 1) - - - 3 1 2
(2, 6, 2) - - - 3 1 2
(2, 6, 3) - - - 2 1 3
(2, 6, 4) - - - 2 1 3
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(2, 6, 5) - - - 2 1 3
(2, 6, 6) - - - 2 1 3
(3, 0, 0) - - - 1 3 2
(3, 0, 1) - - - 1 2 3
(3, 0, 2) - - - 1 2 3
(3, 0, 3) - - - 3 2 1
(3, 0, 4) - - - 3 2 1
(3, 0, 5) - - - 3 2 1
(3, 0, 6) - - - 3 2 1
(3, 1, 0) - - - 1 3 2
(3, 1, 1) - - - 1 2 3
(3, 1, 2) - - - 1 2 3
(3, 1, 3) - - - 1 2 3
(3, 1, 4) - - - 3 2 1
(3, 1, 5) - - - 3 2 1
(3, 1, 6) - - - 3 2 1
(3, 2, 0) - - - 1 3 2
(3, 2, 1) - - - 1 3 2
(3, 2, 2) - - - 1 3 2
(3, 2, 3) - - - 3 2 1
(3, 2, 4) - - - 3 2 1
(3, 2, 5) - - - 3 2 1
(3, 2, 6) - - - 3 2 1
(3, 3, 0) - - - 3 1 2
(3, 3, 1) - - - 1 3 2
(3, 3, 2) - - - 3 1 2
(3, 3, 3) - - - 3 2 1
(3, 3, 4) - - - 2 3 1
(3, 3, 5) - - - 2 3 1
(3, 3, 6) - - - 3 2 1
(3, 4, 0) - - - 3 1 2
(3, 4, 1) - - - 3 1 2
(3, 4, 2) - - - 3 1 2
(3, 4, 3) - - - 2 1 3
(3, 4, 4) - - - 2 3 1
(3, 4, 5) - - - 2 3 1
(3, 4, 6) - - - 2 3 1
(3, 5, 0) - - - 3 1 2
(3, 5, 1) - - - 3 1 2
(3, 5, 2) - - - 3 1 2
(3, 5, 3) - - - 2 1 3
(3, 5, 4) - - - 2 1 3
(3, 5, 5) - - - 2 3 1
(3, 5, 6) - - - 2 3 1
(3, 6, 0) - - - 3 1 2
(3, 6, 1) - - - 3 1 2
(3, 6, 2) - - - 3 1 2
(3, 6, 3) - - - 2 1 3
(3, 6, 4) - - - 2 1 3
(3, 6, 5) - - - 2 1 3
(3, 6, 6) - - - 2 3 1
(4, 0, 0) - - - 1 2 3
(4, 0, 1) - - - 1 2 3
(4, 0, 2) - - - 1 2 3
(4, 0, 3) - - - 1 2 3
(4, 0, 4) - - - 1 2 3
(4, 0, 5) - - - 3 2 1
(4, 0, 6) - - - 3 2 1
(4, 1, 0) - - - 1 3 2
(4, 1, 1) - - - 1 3 2
(4, 1, 2) - - - 1 2 3
(4, 1, 3) - - - 1 2 3
(4, 1, 4) - - - 3 2 1
(4, 1, 5) - - - 3 2 1
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(4, 1, 6) - - - 3 2 1
(4, 2, 0) - - - 1 3 2
(4, 2, 1) - - - 1 3 2
(4, 2, 2) - - - 1 3 2
(4, 2, 3) - - - 1 2 3
(4, 2, 4) - - - 3 2 1
(4, 2, 5) - - - 3 2 1
(4, 2, 6) - - - 3 2 1
(4, 3, 0) - - - 1 3 2
(4, 3, 1) - - - 1 3 2
(4, 3, 2) - - - 1 3 2
(4, 3, 3) - - - 1 3 2
(4, 3, 4) - - - 3 2 1
(4, 3, 5) - - - 3 2 1
(4, 3, 6) - - - 3 2 1
(4, 4, 0) - - - 1 3 2
(4, 4, 1) - - - 3 1 2
(4, 4, 2) - - - 1 3 2
(4, 4, 3) - - - 3 1 2
(4, 4, 4) - - - 3 2 1
(4, 4, 5) - - - 2 3 1
(4, 4, 6) - - - 3 2 1
(4, 0, 0) - - - 1 2 3
(4, 0, 1) - - - 1 2 3
(4, 0, 2) - - - 1 2 3
(4, 0, 3) - - - 1 2 3
(4, 0, 4) - - - 1 2 3
(4, 0, 5) - - - 3 2 1
(4, 0, 6) - - - 3 2 1
(4, 1, 0) - - - 1 3 2
(4, 1, 1) - - - 1 3 2
(4, 1, 2) - - - 1 2 3
(4, 1, 3) - - - 1 2 3
(4, 1, 4) - - - 3 2 1
(4, 1, 5) - - - 3 2 1
(4, 1, 6) - - - 3 2 1
(4, 2, 0) - - - 1 3 2
(4, 2, 1) - - - 1 3 2
(4, 2, 2) - - - 1 3 2
(4, 2, 3) - - - 1 2 3
(4, 2, 4) - - - 3 2 1
(4, 2, 5) - - - 3 2 1
(4, 2, 6) - - - 3 2 1
(4, 3, 0) - - - 1 3 2
(4, 3, 1) - - - 1 3 2
(4, 3, 2) - - - 1 3 2
(4, 3, 3) - - - 1 3 2
(4, 3, 4) - - - 3 2 1
(4, 3, 5) - - - 3 2 1
(4, 3, 6) - - - 3 2 1
(4, 4, 0) - - - 1 3 2
(4, 4, 1) - - - 3 1 2
(4, 4, 2) - - - 1 3 2
(4, 4, 3) - - - 3 1 2
(4, 4, 4) - - - 3 2 1
(4, 4, 5) - - - 2 3 1
(4, 4, 6) - - - 3 2 1
(4, 5, 0) - - - 3 1 2
(4, 5, 1) - - - 3 1 2
(4, 5, 2) - - - 3 1 2
(4, 5, 3) - - - 3 1 2
(4, 5, 4) - - - 2 1 3
(4, 5, 5) - - - 2 3 1
(4, 5, 6) - - - 2 3 1
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(4, 6, 0) - - - 3 1 2
(4, 6, 1) - - - 3 1 2
(4, 6, 2) - - - 3 1 2
(4, 6, 3) - - - 3 1 2
(4, 6, 4) - - - 3 1 2
(4, 6, 5) - - - 2 1 3
(4, 6, 6) - - - 2 1 3
(5, 0, 0) - - - 1 3 2
(5, 0, 1) - - - 1 2 3
(5, 0, 2) - - - 1 2 3
(5, 0, 3) - - - 1 2 3
(5, 0, 4) - - - 1 2 3
(5, 0, 5) - - - 1 2 3
(5, 0, 6) - - - 3 2 1
(5, 1, 0) - - - 1 3 2
(5, 1, 1) - - - 1 2 3
(5, 1, 2) - - - 1 2 3
(5, 1, 3) - - - 1 2 3
(5, 1, 4) - - - 1 2 3
(5, 1, 5) - - - 1 2 3
(5, 1, 6) - - - 3 2 1
(5, 2, 0) - - - 1 3 2
(5, 2, 1) - - - 1 3 2
(5, 2, 2) - - - 1 3 2
(5, 2, 3) - - - 1 2 3
(5, 2, 4) - - - 3 2 1
(5, 2, 5) - - - 3 2 1
(5, 2, 6) - - - 3 2 1
(5, 3, 0) - - - 1 3 2
(5, 3, 1) - - - 1 3 2
(5, 3, 2) - - - 1 3 2
(5, 3, 3) - - - 1 3 2
(5, 3, 4) - - - 2 2 3
(5, 3, 5) - - - 3 2 1
(5, 3, 6) - - - 3 2 1
(5, 4, 0) - - - 1 3 2
(5, 4, 1) - - - 1 3 2
(5, 4, 2) - - - 1 3 2
(5, 4, 3) - - - 1 3 2
(5, 4, 4) - - - 1 2 3
(5, 4, 5) - - - 3 2 1
(5, 4, 6) - - - 3 2 1
(5, 5, 0) - - - 1 2 2
(5, 5, 1) - - - 1 2 2
(5, 5, 2) - - - 3 1 2
(5, 5, 3) - - - 3 1 2
(5, 5, 4) - - - 3 1 2
(5, 5, 5) - - - 2 3 1
(5, 5, 6) - - - 2 3 1
(5, 6, 0) - - - 3 1 2
(5, 6, 1) - - - 3 1 2
(5, 6, 2) - - - 3 1 2
(5, 6, 3) - - - 3 1 2
(5, 6, 4) - - - 3 1 2
(5, 6, 5) - - - 2 1 3
(5, 6, 6) - - - 2 1 3
(6, 0, 0) - - - 1 3 2
(6, 0, 1) - - - 1 2 3
(6, 0, 2) - - - 1 2 3
(6, 0, 3) - - - 1 2 3
(6, 0, 4) - - - 1 2 3
(6, 0, 5) - - - 1 2 3
(6, 0, 6) - - - 1 2 3
(6, 1, 0) - - - 1 3 2
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(6, 1, 1) - - - 1 2 3
(6, 1, 2) - - - 1 2 3
(6, 1, 3) - - - 1 2 3
(6, 1, 4) - - - 1 2 3
(6, 1, 5) - - - 1 2 3
(6, 1, 6) - - - 1 2 3
(6, 2, 0) - - - 1 3 2
(6, 2, 1) - - - 1 3 2
(6, 2, 2) - - - 1 2 3
(6, 2, 3) - - - 1 2 3
(6, 2, 4) - - - 1 2 3
(6, 2, 5) - - - 1 2 3
(6, 2, 6) - - - 3 2 1
(6, 3, 0) - - - 1 3 2
(6, 3, 1) - - - 1 3 2
(6, 3, 2) - - - 1 3 2
(6, 3, 3) - - - 1 3 2
(6, 3, 4) - - - 1 2 3
(6, 3, 5) - - - 1 2 3
(6, 3, 6) - - - 3 2 1
(6, 4, 0) - - - 1 3 2
(6, 4, 1) - - - 1 3 2
(6, 4, 2) - - - 1 3 2
(6, 4, 3) - - - 1 3 2
(6, 4, 4) - - - 1 3 2
(6, 4, 5) - - - 1 2 3
(6, 4, 6) - - - 1 2 3
(6, 5, 0) - - - 1 3 2
(6, 5, 1) - - - 1 3 2
(6, 5, 2) - - - 1 3 2
(6, 5, 3) - - - 1 3 2
(6, 5, 4) - - - 1 3 2
(6, 5, 5) - - - 1 2 3
(6, 5, 6) - - - 3 2 1
(6, 6, 0) - - - 1 3 2
(6, 6, 1) - - - 1 3 2
(6, 6, 2) - - - 1 3 2
(6, 6, 3) - - - 3 1 2
(6, 6, 4) - - - 1 3 2
(6, 6, 5) - - - 1 3 2
(6, 6, 6) - - - 2 3 1
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E.2 States lexicographically ordered

In this section we will look at the results from the DP when the states are ordered lexicographically. First,
the results are shown when the arrival rates during the different schedules are the same. The results
are shown in Section E.2.1 when the number of time blocks is equal to the number of different tasks and
in Section E.2.2 when the number of time blocks is not equal to the number of different tasks. Then,
the results are shown when the arrival rates differ per schedule. The results are shown in Section E.2.3
when the schedule with different arrival rates is in schedule three and in total four schedules are made
and in Section E.2.4 when the schedule with different arrival rates is in schedule five and in total five
schedules are made. In Section E.2.5 the results are shown when we have bigger differences between
the arrival rates of the different tasks.

E.2.1 Same arrival rate during schedules and number of time blocks equal to
number of different tasks

The results from the DP with three persons who can be scheduled over three tasks with three time blocks
and when five schedules are made, are shown in Tables E.2 (fifth schedule) – E.6 (first schedule). This
tables show an optimal action given the state and decision epoch. A 1 corresponds to task one with λ1,
a 2 corresponds to task two with λ2 and a 3 corresponds to task three with λ3. The parameters used in
this case are shown below.

λ1 = 0.05

λ2 = 0.5

λ3 = 0.3

q = 0.01

N = 6

J = 3

M = 3

B = 3

Table E.2: The DP results for the fifth schedule of a small instance when the states are ordered lexico-
graphically.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

(0, 0, 0) 1 3 2 2 1 3 3 2 1 (0.85, 0.85, 0.85)
(1, 0, 0) 1 1 1 2 2 3 3 3 2 (1.15, 1.3, 1.1)
(1, 1, 0) 1 1 3 3 3 1 2 2 2 (1.4, 1.65, 1.5)
(2, 0, 0) 1 1 1 2 3 3 3 2 2 (2.15, 1.1, 1.3)
(2, 1, 0) 1 1 1 3 3 3 2 2 2 (2.15, 1.9, 1.5)
(2, 2, 0) 1 1 3 3 3 1 2 2 2 (2.4, 2.65, 1.5)
(3, 0, 0) 1 1 1 2 2 3 3 3 2 (3.15, 1.3, 1.1)
(3, 1, 0) 1 1 1 3 3 3 2 2 2 (3.15, 1.9, 1.5)
(3, 2, 0) 1 1 1 3 3 3 2 2 2 (3.15, 2.9, 1.5)
(3, 3, 0) 1 1 3 3 3 1 2 2 2 (3.4, 3.65, 1.5)
(4, 0, 0) 1 1 1 2 2 3 3 3 2 (4.15, 1.3, 1.1)
(4, 1, 0) 1 1 1 3 3 3 2 2 2 (4.15, 1.9, 1.5)
(4, 2, 0) 1 1 1 3 3 3 2 2 2 (4.15, 2.9, 1.5)
(4, 3, 0) 1 1 1 3 3 3 2 2 2 (4.15, 3.9, 1.5)
(4, 4, 0) 1 1 3 3 3 1 2 2 2 (4.4, 4.65, 1.5)
(5, 0, 0) 1 1 1 2 2 3 3 3 2 (5.15, 1.3, 1.1)
(5, 1, 0) 1 1 1 3 3 3 2 2 2 (5.15, 1.9, 1.5)
(5, 2, 0) 1 1 1 3 3 3 2 2 2 (5.15, 2.9, 1.5)
(5, 3, 0) 1 1 1 3 3 3 2 2 2 (5.15, 3.9, 1.5)
(5, 4, 0) 1 1 1 3 3 3 2 2 2 (5.15, 4.9, 1.5)
(5, 5, 0) 1 1 3 3 3 1 2 2 2 (5.4, 5.65, 1.5)
(6, 0, 0) 1 1 1 2 2 3 3 3 2 (6.15, 1.3, 1.1)
(6, 1, 0) 1 1 1 3 3 3 2 2 2 (6.15, 1.9, 1.5)
(6, 2, 0) 1 1 1 3 3 3 2 2 2 (6.15, 2.9, 1.5)
(6, 3, 0) 1 1 1 3 3 3 2 2 2 (6.15, 3.9, 1.5)
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(6, 4, 0) 1 1 1 3 3 3 2 2 2 (6.15, 4.9, 1.5)
(6, 5, 0) 1 1 1 3 3 3 2 2 2 (6.15, 5.9, 1.5)
(6, 6, 0) 1 1 3 3 3 1 2 2 2 (6.4, 6.65, 1.5)
(7, 0, 0) 1 1 1 2 2 3 3 3 2 (7.15, 1.3, 1.1)
(7, 1, 0) 1 1 1 3 3 3 2 2 2 (7.15, 1.9, 1.5)
(7, 2, 0) 1 1 1 3 3 3 2 2 2 (7.15, 2.9, 1.5)
(7, 3, 0) 1 1 1 3 3 3 2 2 2 (7.15, 3.9, 1.5)
(7, 4, 0) 1 1 1 3 3 3 2 2 2 (7.15, 4.9, 1.5)
(7, 5, 0) 1 1 1 3 3 3 2 2 2 (7.15, 5.9, 1.5)
(7, 6, 0) 1 1 1 3 3 3 2 2 2 (7.15, 6.9, 1.5)
(7, 7, 0) 1 1 3 3 3 1 2 2 2 (7.4, 7.65, 1.5)
(8, 0, 0) 1 1 1 2 2 3 3 3 2 (8.15, 1.3, 1.1)
(8, 1, 0) 1 1 1 3 3 3 2 2 2 (8.15, 1.9, 1.5)
(8, 2, 0) 1 1 1 3 3 3 2 2 2 (8.15, 2.9, 1.5)
(8, 3, 0) 1 1 1 3 3 3 2 2 2 (8.15, 3.9, 1.5)
(8, 4, 0) 1 1 1 3 3 3 2 2 2 (8.15, 4.9, 1.5)
(8, 5, 0) 1 1 1 3 3 3 2 2 2 (8.15, 5.9, 1.5)
(8, 6, 0) 1 1 1 3 3 3 2 2 2 (8.15, 6.9, 1.5)
(8, 7, 0) 1 1 1 3 3 3 2 2 2 (8.15, 7.9, 1.5)
(8, 8, 0) 1 1 3 3 3 1 2 2 2 (8.4, 8.65, 1.5)
(9, 0, 0) 1 1 1 2 2 3 3 3 2 (9.15, 1.3, 1.1)
(9, 1, 0) 1 1 1 3 3 3 2 2 2 (9.15, 1.9, 1.5)
(9, 2, 0) 1 1 1 3 3 3 2 2 2 (9.15, 2.9, 1.5)
(9, 3, 0) 1 1 1 3 3 3 2 2 2 (9.15, 3.9, 1.5)
(9, 4, 0) 1 1 1 3 3 3 2 2 2 (9.15, 4.9, 1.5)
(9, 5, 0) 1 1 1 3 3 3 2 2 2 (9.15, 5.9, 1.5)
(9, 6, 0) 1 1 1 3 3 3 2 2 2 (9.15, 6.9, 1.5)
(9, 7, 0) 1 1 1 3 3 3 2 2 2 (9.15, 7.9, 1.5)
(9, 8, 0) 1 1 1 3 3 3 2 2 2 (9.15, 8.9, 1.5)
(9, 9, 0) 1 1 3 3 3 1 2 2 2 (9.4, 9.65, 1.5)
(10, 0, 0) 1 1 1 2 2 3 3 3 2 (10.15, 1.3, 1.1)
(10, 1, 0) 1 1 1 3 3 3 2 2 2 (10.15, 1.9, 1.5)
(10, 2, 0) 1 1 1 3 3 3 2 2 2 (10.15, 2.9, 1.5)
(10, 3, 0) 1 1 1 3 3 3 2 2 2 (10.15, 3.9, 1.5)
(10, 4, 0) 1 1 1 3 3 3 2 2 2 (10.15, 4.9, 1.5)
(10, 5, 0) 1 1 1 3 3 3 2 2 2 (10.15, 5.9, 1.5)
(10, 6, 0) 1 1 1 3 3 3 2 2 2 (10.15, 6.9, 1.5)
(10, 7, 0) 1 1 1 3 3 3 2 2 2 (10.15, 7.9, 1.5)
(10, 8, 0) 1 1 1 3 3 3 2 2 2 (10.15, 8.9, 1.5)
(10, 9, 0) 1 1 1 3 3 3 2 2 2 (10.15, 9.9, 1.5)
(10, 10, 0) 1 1 3 3 3 1 2 2 2 (10.4, 10.65, 1.5)
(11, 0, 0) 1 1 1 2 2 3 3 3 2 (11.15, 1.3, 1.1)
(11, 1, 0) 1 1 1 3 3 3 2 2 2 (11.15, 1.9, 1.5)
(11, 2, 0) 1 1 1 3 3 3 2 2 2 (11.15, 2.9, 1.5)
(11, 3, 0) 1 1 1 3 3 3 2 2 2 (11.15, 3.9, 1.5)
(11, 4, 0) 1 1 1 3 3 3 2 2 2 (11.15, 4.9, 1.5)
(11, 5, 0) 1 1 1 3 3 3 2 2 2 (11.15, 5.9, 1.5)
(11, 6, 0) 1 1 1 3 3 3 2 2 2 (11.15, 6.9, 1.5)
(11, 7, 0) 1 1 1 3 3 3 2 2 2 (11.15, 7.9, 1.5)
(11, 8, 0) 1 1 1 3 3 3 2 2 2 (11.15, 8.9, 1.5)
(11, 9, 0) 1 1 1 3 3 3 2 2 2 (11.15, 9.9, 1.5)
(11, 10, 0) 1 1 1 3 3 3 2 2 2 (11.15, 10.9, 1.5)
(11, 11, 0) 1 1 3 3 3 1 2 2 2 (11.4, 11.65, 1.5)
(12, 0, 0) 1 1 1 2 2 3 3 3 2 (12.15, 1.3, 1.1)
(12, 1, 0) 1 1 1 3 3 3 2 2 2 (12.15, 1.9, 1.5)
(12, 2, 0) 1 1 1 3 3 3 2 2 2 (12.15, 2.9, 1.5)
(12, 3, 0) 1 1 1 3 3 3 2 2 2 (12.15, 3.9, 1.5)
(12, 4, 0) 1 1 1 3 3 3 2 2 2 (12.15, 4.9, 1.5)
(12, 5, 0) 1 1 1 3 3 3 2 2 2 (12.15, 5.9, 1.5)
(12, 6, 0) 1 1 1 3 3 3 2 2 2 (12.15, 6.9, 1.5)
(12, 7, 0) 1 1 1 3 3 3 2 2 2 (12.15, 7.9, 1.5)
(12, 8, 0) 1 1 1 3 3 3 2 2 2 (12.15, 8.9, 1.5)
(12, 9, 0) 1 1 1 3 3 3 2 2 2 (12.15, 9.9, 1.5)
(12, 10, 0) 1 1 1 3 3 3 2 2 2 (12.15, 10.9, 1.5)
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(12, 11, 0) 1 1 1 3 3 3 2 2 2 (12.15, 11.9, 1.5)
(12, 12, 0) 1 1 1 3 3 3 2 2 2 (12.15, 12.9, 1.5)

Table E.3: The DP results for the fourth schedule of a small instance when the states are ordered
lexicographically.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

(0, 0, 0) 1 3 2 2 1 3 3 2 1 (0.85, 0.85, 0.85)
(1, 0, 0) 1 1 3 2 2 1 3 3 2 (1.4, 1.05, 1.1)
(1, 1, 0) 1 1 2 3 3 1 2 2 3 (1.6, 1.65, 1.3)
(2, 0, 0) 1 1 1 2 2 3 3 3 2 (2.15, 1.3, 1.1)
(2, 1, 0) 1 1 1 3 3 3 2 2 2 (2.15, 1.9, 1.5)
(2, 2, 0) 1 3 1 3 1 3 2 2 2 (2.4, 2.65, 1.5)
(3, 0, 0) 1 1 1 2 2 3 3 3 2 (3.15, 1.3, 1.1)
(3, 1, 0) 1 1 1 3 3 3 2 2 2 (3.15, 1.9, 1.5)
(3, 2, 0) 1 1 1 3 3 3 2 2 2 (3.15, 2.9, 1.5)
(3, 3, 0) 1 1 3 3 3 1 2 2 2 (3.4, 3.65, 1.5)
(4, 0, 0) 1 1 1 2 2 3 3 3 2 (4.15, 1.3, 1.1)
(4, 1, 0) 1 1 1 3 3 3 2 2 2 (4.15, 1.9, 1.5)
(4, 2, 0) 1 1 1 3 3 3 2 2 2 (4.15, 2.9, 1.5)
(4, 3, 0) 1 1 1 3 3 3 2 2 2 (4.15, 3.9, 1.5)
(4, 4, 0) 1 1 3 3 3 1 2 2 2 (4.4, 4.65, 1.5)
(5, 0, 0) 1 1 1 2 2 3 3 3 2 (5.15, 1.3, 1.1)
(5, 1, 0) 1 1 1 3 3 3 2 2 2 (5.15, 1.9, 1.5)
(5, 2, 0) 1 1 1 3 3 3 2 2 2 (5.15, 2.9, 1.5)
(5, 3, 0) 1 1 1 3 3 3 2 2 2 (5.15, 3.9, 1.5)
(5, 4, 0) 1 1 1 3 3 3 2 2 2 (5.15, 4.9, 1.5)
(5, 5, 0) 1 1 3 3 3 1 2 2 2 (5.4, 5.65, 1.5)
(6, 0, 0) 1 1 1 2 3 3 3 2 2 (6.15, 1.1, 1.3)
(6, 1, 0) 1 1 1 3 3 3 2 2 2 (6.15, 1.9, 1.5)
(6, 2, 0) 1 1 1 3 3 3 2 2 2 (6.15, 2.9, 1.5)
(6, 3, 0) 1 1 1 3 3 3 2 2 2 (6.15, 3.9, 1.5)
(6, 4, 0) 1 1 1 3 3 3 2 2 2 (6.15, 4.9, 1.5)
(6, 5, 0) 1 1 1 3 3 3 2 2 2 (6.15, 5.9, 1.5)
(6, 6, 0) 1 1 3 3 3 1 2 2 2 (6.4, 6.65, 1.5)
(7, 0, 0) 1 1 1 2 2 3 3 3 2 (7.15, 1.3, 1.1)
(7, 1, 0) 1 1 1 3 3 3 2 2 2 (7.15, 1.9, 1.5)
(7, 2, 0) 1 1 1 3 3 3 2 2 2 (7.15, 2.9, 1.5)
(7, 3, 0) 1 1 1 3 3 3 2 2 2 (7.15, 3.9, 1.5)
(7, 4, 0) 1 1 1 3 3 3 2 2 2 (7.15, 4.9, 1.5)
(7, 5, 0) 1 1 1 3 3 3 2 2 2 (7.15, 5.9, 1.5)
(7, 6, 0) 1 1 1 3 3 3 2 2 2 (7.15, 6.9, 1.5)
(7, 7, 0) 1 1 3 3 3 1 2 2 2 (7.4, 7.65, 1.5)
(8, 0, 0) 1 1 1 2 2 3 3 3 2 (8.15, 1.3, 1.1)
(8, 1, 0) 1 1 1 3 3 3 2 2 2 (8.15, 1.9, 1.5)
(8, 2, 0) 1 1 1 3 3 3 2 2 2 (8.15, 2.9, 1.5)
(8, 3, 0) 1 1 1 3 3 3 2 2 2 (8.15, 3.9, 1.5)
(8, 4, 0) 1 1 1 3 3 3 2 2 2 (8.15, 4.9, 1.5)
(8, 5, 0) 1 1 1 3 3 3 2 2 2 (8.15, 5.9, 1.5)
(8, 6, 0) 1 1 1 3 3 3 2 2 2 (8.15, 6.9, 1.5)
(8, 7, 0) 1 1 1 3 3 3 2 2 2 (8.15, 7.9, 1.5)
(8, 8, 0) 1 1 3 3 3 1 2 2 2 (8.4, 8.65, 1.5)
(9, 0, 0) 1 1 1 2 2 3 3 3 2 (9.15, 1.3, 1.1)
(9, 1, 0) 1 1 1 3 3 3 2 2 2 (9.15, 1.9, 1.5)
(9, 2, 0) 1 1 1 3 3 3 2 2 2 (9.15, 2.9, 1.5)
(9, 3, 0) 1 1 1 3 3 3 2 2 2 (9.15, 3.9, 1.5)
(9, 4, 0) 1 1 1 3 3 3 2 2 2 (9.15, 4.9, 1.5)
(9, 5, 0) 1 1 1 3 3 3 2 2 2 (9.15, 5.9, 1.5)
(9, 6, 0) 1 1 1 3 3 3 2 2 2 (9.15, 6.9, 1.5)
(9, 7, 0) 1 1 1 3 3 3 2 2 2 (9.15, 7.9, 1.5)
(9, 8, 0) 1 1 1 3 3 3 2 2 2 (9.15, 8.9, 1.5)
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(9, 9, 0) 1 1 3 3 3 1 2 2 2 (9.4, 9.65, 1.5)
(10, 0, 0) 1 1 1 2 2 3 3 3 2 (10.15, 1.3, 1.1)
(10, 1, 0) 1 1 1 3 3 3 2 2 2 (10.15, 1.9, 1.5)
(10, 2, 0) 1 1 1 3 3 3 2 2 2 (10.15, 2.9, 1.5)
(10, 3, 0) 1 1 1 3 3 3 2 2 2 (10.15, 3.9, 1.5)
(10, 4, 0) 1 1 1 3 3 3 2 2 2 (10.15, 4.9, 1.5)
(10, 5, 0) 1 1 1 3 3 3 2 2 2 (10.15, 5.9, 1.5)
(10, 6, 0) 1 1 1 3 3 3 2 2 2 (10.15, 6.9, 1.5)
(10, 7, 0) 1 1 1 3 3 3 2 2 2 (10.15, 7.9, 1.5)
(10, 8, 0) 1 1 1 3 3 3 2 2 2 (10.15, 8.9, 1.5)
(10, 9, 0) 1 1 1 3 3 3 2 2 2 (10.15, 9.9, 1.5)
(10, 10, 0) 1 1 1 3 3 3 2 2 2 (10.15, 10.9, 1.5)

Table E.4: The DP results for the third schedule of a small instance when the states are ordered lexico-
graphically.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

(0, 0, 0) 1 3 2 2 1 3 3 2 1 (0.85, 0.85, 0.85)
(1, 0, 0) 1 1 3 3 3 2 2 2 1 (1.4, 1.1, 1.05)
(1, 1, 0) 1 1 2 3 3 1 2 2 3 (1.6, 1.65, 1.3)
(2, 0, 0) 1 1 1 2 2 3 3 3 2 (2.15, 1.3, 1.1)
(2, 1, 0) 1 1 1 3 3 3 2 2 2 (2.15, 1.9, 1.5)
(2, 2, 0) 1 1 3 3 3 1 2 2 2 (2.4, 2.65, 1.5)
(3, 0, 0) 1 1 1 2 2 3 3 3 2 (3.15, 1.3, 1.1)
(3, 1, 0) 1 1 1 3 3 3 2 2 2 (3.15, 1.9, 1.5)
(3, 2, 0) 1 1 1 3 3 3 2 2 2 (3.15, 2.9, 1.5)
(3, 3, 0) 1 1 3 3 3 1 2 2 2 (3.4, 3.65, 1.5)
(4, 0, 0) 1 1 1 2 2 3 3 3 2 (4.15, 1.3, 1.1)
(4, 1, 0) 1 1 1 3 3 3 2 2 2 (4.15, 1.9, 1.5)
(4, 2, 0) 1 1 1 3 3 3 2 2 2 (4.15, 2.9, 1.5)
(4, 3, 0) 1 1 1 3 3 3 2 2 2 (4.15, 3.9, 1.5)
(4, 4, 0) 1 1 3 3 3 1 2 2 2 (4.4, 4.65, 1.5)
(5, 0, 0) 1 1 1 2 2 3 3 3 2 (5.15, 1.3, 1.1)
(5, 1, 0) 1 1 1 3 3 3 2 2 2 (5.15, 1.9, 1.5)
(5, 2, 0) 1 1 1 3 3 3 2 2 2 (5.15, 2.9, 1.5)
(5, 3, 0) 1 1 1 3 3 3 2 2 2 (5.15, 3.9, 1.5)
(5, 4, 0) 1 1 1 3 3 3 2 2 2 (5.15, 4.9, 1.5)
(5, 5, 0) 1 1 3 3 3 1 2 2 2 (5.4, 5.65, 1.5)
(6, 0, 0) 1 1 1 2 2 3 3 3 2 (6.15, 1.3, 1.1)
(6, 1, 0) 1 1 1 3 3 3 2 2 2 (6.15, 1.9, 1.5)
(6, 2, 0) 1 1 1 3 3 3 2 2 2 (6.15, 2.9, 1.5)
(6, 3, 0) 1 1 1 3 3 3 2 2 2 (6.15, 3.9, 1.5)
(6, 4, 0) 1 1 1 3 3 3 2 2 2 (6.15, 4.9, 1.5)
(6, 5, 0) 1 1 1 3 3 3 2 2 2 (6.15, 5.9, 1.5)
(6, 6, 0) 1 1 3 3 3 1 2 2 2 (6.4, 6.65, 1.5)
(7, 0, 0) 1 1 1 2 3 3 3 2 2 (7.15, 1.1, 1.3)
(7, 1, 0) 1 1 1 3 3 3 2 2 2 (7.15, 1.9, 1.5)
(7, 2, 0) 1 1 1 3 3 3 2 2 2 (7.15, 2.9, 1.5)
(7, 3, 0) 1 1 1 3 3 3 2 2 2 (7.15, 3.9, 1.5)
(7, 4, 0) 1 1 1 3 3 3 2 2 2 (7.15, 4.9, 1.5)
(7, 5, 0) 1 1 1 3 3 3 2 2 2 (7.15, 5.9, 1.5)
(7, 6, 0) 1 1 1 3 3 3 2 2 2 (7.15, 6.9, 1.5)
(7, 7, 0) 1 1 3 3 3 1 2 2 2 (7.4, 7.65, 1.5)
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Table E.5: The DP results for the second schedule of a small instance when the states are ordered
lexicographically.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

(0, 0, 0) 1 3 2 2 1 3 3 2 1 (0.85, 0.85, 0.85)
(1, 0, 0) 1 1 3 3 3 2 2 2 1 (1.4, 1.1, 1.05)
(1, 1, 0) 1 1 2 3 3 1 2 2 3 (1.6, 1.65, 1.3)
(2, 0, 0) 1 1 1 2 2 3 3 3 2 (2.15, 1.3, 1.1)
(2, 1, 0) 1 1 1 3 3 3 2 2 2 (2.15, 1.9, 1.5)
(2, 2, 0) 1 1 3 3 3 1 2 2 2 (2.4, 2.65, 1.5)
(3, 0, 0) 1 1 1 2 2 3 3 3 2 (3.15, 1.3, 1.1)
(3, 1, 0) 1 1 1 3 3 3 2 2 2 (3.15, 1.9, 1.5)
(3, 2, 0) 1 1 1 3 3 3 2 2 2 (3.15, 2.9, 1.5)
(3, 3, 0) 1 1 3 3 3 1 2 2 2 (3.4, 3.65, 1.5)
(4, 0, 0) 1 1 1 2 2 3 3 3 2 (4.15, 1.3, 1.1)
(4, 1, 0) 1 1 1 3 3 3 2 2 2 (4.15, 1.9, 1.5)
(4, 2, 0) 1 1 1 3 3 3 2 2 2 (4.15, 2.9, 1.5)
(4, 3, 0) 1 1 1 3 3 3 2 2 2 (4.15, 3.9, 1.5)
(4, 4, 0) 1 1 3 3 3 1 2 2 2 (4.4, 4.65, 1.5)
(5, 0, 0) 1 1 1 2 2 3 3 3 2 (5.15, 1.3, 1.1)
(5, 1, 0) 1 1 1 3 3 3 2 2 2 (5.15, 1.9, 1.5)
(5, 2, 0) 1 1 1 3 3 3 2 2 2 (5.15, 2.9, 1.5)
(5, 3, 0) 1 1 1 3 3 3 2 2 2 (5.15, 3.9, 1.5)
(5, 4, 0) 1 1 1 3 3 3 2 2 2 (5.15, 4.9, 1.5)
(5, 5, 0) 1 1 1 3 3 3 2 2 2 (5.15, 5.9, 1.5)

Table E.6: The DP results for the first schedule of a small instance when the states are ordered lexico-
graphically.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

(0, 0, 0) 1 3 2 2 1 3 3 2 1 (0.85, 0.85, 0.85)
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E.2.2 Same arrival rate during schedules and number of time blocks not equal
to number of different tasks

The results from the DP with three persons who can be scheduled over three tasks with two time blocks
and when five schedules are made, are shown in Tables E.7 (fifth schedule) – E.11 (first schedule).
These tables show an optimal action given the state and decision epoch. A 1 corresponds to task one
with λ1, a 2 corresponds to task two with λ2 and a 3 corresponds to task three with λ3. The parameters
used in this case are shown below.

λ1 = 0.05

λ2 = 0.5

λ3 = 0.3

q = 0.01

N = 6

J = 3

M = 3

B = 2

Table E.7: The DP results for the fifth schedule of a small instance when the states are ordered lexico-
graphically and the number of time blocks is not equal to the number of different tasks.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 3 (0.55, 0.55, 0.6)
(1, 0, 0) 1 1 2 3 3 1 (1.1, 0.8, 0.8)
(1, 1, 0) 1 3 3 1 2 2 (1.35, 1.35, 1.0)
(2, 0, 0) 1 1 2 3 3 1 (2.1, 0.8, 0.8)
(2, 1, 0) 1 1 3 3 2 2 (2.1, 1.6, 1.0)
(2, 2, 0) 1 3 3 1 2 2 (2.35, 2.35, 1.0)
(3, 0, 0) 1 1 2 3 3 1 (3.1, 0.8, 0.8)
(3, 1, 0) 1 1 3 3 2 2 (3.1, 1.6, 1.0)
(3, 2, 0) 1 1 3 3 2 2 (3.1, 2.6, 1.0)
(3, 3, 0) 1 3 3 1 2 2 (3.35, 3.35, 1.0)
(4, 0, 0) 1 1 2 3 3 1 (4.1, 0.8, 0.8)
(4, 1, 0) 1 1 3 3 2 2 (4.1, 1.6, 1.0)
(4, 2, 0) 1 1 3 3 2 2 (4.1, 2.6, 1.0)
(4, 3, 0) 1 1 3 3 2 2 (4.1, 2.6, 1.0)
(4, 4, 0) 1 3 3 1 2 2 (4.35, 4.35, 1.0)
(5, 0, 0) 1 1 2 3 3 1 (5.1, 0.8, 0.8)
(5, 1, 0) 1 1 3 3 2 2 (5.1, 1.6, 1.0)
(5, 2, 0) 1 1 3 3 2 2 (5.1, 2.6, 1.0)
(5, 3, 0) 1 1 3 3 2 2 (5.1, 3.6, 1.0)
(5, 4, 0) 1 1 3 3 2 2 (5.1, 4.6, 1.0)
(5, 5, 0) 1 3 3 1 2 2 (5.35, 5.35, 1.0)
(6, 0, 0) 1 1 2 3 3 1 (6.1, 0.8, 0.8)
(6, 1, 0) 1 1 3 3 2 2 (6.1, 1.6, 1.0)
(6, 2, 0) 1 1 3 3 2 2 (6.1, 2.6, 1.0)
(6, 3, 0) 1 1 3 3 2 2 (6.1, 3.6, 1.0)
(6, 4, 0) 1 1 3 3 2 2 (6.1, 4.6, 1.0)
(6, 5, 0) 1 1 3 3 2 2 (6.1, 5.6, 1.0)
(6, 6, 0) 1 3 3 1 2 2 (6.35, 6.35, 1.0)
(7, 0, 0) 1 1 2 3 3 1 (7.1, 0.8, 0.8)
(7, 1, 0) 1 1 3 3 2 2 (7.1, 1.6, 1.0)
(7, 2, 0) 1 1 3 3 2 2 (7.1, 2.6, 1.0)
(7, 3, 0) 1 1 3 3 2 2 (7.1, 3.6, 1.0)
(7, 4, 0) 1 1 3 3 2 2 (7.1, 4.6, 1.0)
(7, 5, 0) 1 1 3 3 2 2 (7.1, 5.6, 1.0)
(7, 6, 0) 1 1 3 3 2 2 (7.1, 6.6, 1.0)
(7, 7, 0) 1 3 3 1 2 2 (7.35, 7.35, 1.0)
(8, 0, 0) 1 1 2 3 3 1 (8.1, 0.8, 0.8)
(8, 1, 0) 1 1 3 3 2 2 (8.1, 1.6, 1.0)
(8, 2, 0) 1 1 3 3 2 2 (8.1, 2.6, 1.0)
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(8, 3, 0) 1 1 3 3 2 2 (8.1, 3.6, 1.0)
(8, 4, 0) 1 1 3 3 2 2 (8.1, 4.6, 1.0)
(8, 5, 0) 1 1 3 3 2 2 (8.1, 5.6, 1.0)
(8, 6, 0) 1 1 3 3 2 2 (8.1, 6.6, 1.0)
(8, 7, 0) 1 1 3 3 2 2 (8.1, 7.6, 1.0)
(8, 8, 0) 1 1 3 3 2 2 (8.1, 8.6, 1.0)
(9, 0, 0) 1 1 2 3 3 2 (9.1, 0.8, 0.8)
(9, 1, 0) 1 1 3 3 2 2 (9.1, 1.6, 1.0)
(9, 2, 0) 1 1 3 3 2 2 (9.1, 2.6, 1.0)
(9, 3, 0) 1 1 3 3 2 2 (9.1, 3.6, 1.0)
(9, 4, 0) 1 1 3 3 2 2 (9.1, 4.6, 1.0)
(9, 5, 0) 1 1 3 3 2 2 (9.1, 5.6, 1.0)
(9, 6, 0) 1 1 3 3 2 2 (9.1, 6.6, 1.0)
(9, 7, 0) 1 1 3 3 2 2 (9.1, 7.6, 1.0)
(9, 8, 0) 1 1 3 3 2 2 (9.1, 8.6, 1.0)
(9, 9, 0) 1 1 3 3 2 2 (9.1, 9.6, 1.0)

Table E.8: The DP results for the fourth schedule of a small instance when the states are ordered
lexicographically and the number of time blocks is not equal to the number of different tasks.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 3 (0.55, 0.55, 0.6)
(1, 0, 0) 1 1 2 3 3 2 (1.1, 0.8, 0.8)
(1, 1, 0) 1 3 3 1 2 2 (1.35, 1.35, 1.0)
(2, 0, 0) 1 1 2 3 3 2 (2.1, 0.8, 0.8)
(2, 1, 0) 1 1 3 3 2 2 (2.1, 1.6, 1.0)
(2, 2, 0) 1 3 3 1 2 2 (2.35, 2.35, 1.0)
(3, 0, 0) 1 1 2 3 3 2 (3.1, 0.8, 0.8)
(3, 1, 0) 1 1 3 3 2 2 (3.1, 1.6, 1.0)
(3, 2, 0) 1 1 3 3 2 2 (3.1, 2.6, 1.0)
(3, 3, 0) 1 3 3 1 2 2 (3.35, 3.35, 1.0)
(4, 0, 0) 1 1 2 3 3 2 (4.1, 0.8, 0.8)
(4, 1, 0) 1 1 3 3 2 2 (4.1, 1.6, 1.0)
(4, 2, 0) 1 1 3 3 2 2 (4.1, 2.6, 1.0)
(4, 3, 0) 1 1 3 3 2 2 (4.1, 2.6, 1.0)
(4, 4, 0) 1 3 3 1 2 2 (4.35, 4.35, 1.0)
(5, 0, 0) 1 1 2 3 3 2 (5.1, 0.8, 0.8)
(5, 1, 0) 1 1 3 3 2 2 (5.1, 1.6, 1.0)
(5, 2, 0) 1 1 3 3 2 2 (5.1, 2.6, 1.0)
(5, 3, 0) 1 1 3 3 2 2 (5.1, 3.6, 1.0)
(5, 4, 0) 1 1 3 3 2 2 (5.1, 4.6, 1.0)
(5, 5, 0) 1 3 3 1 2 2 (5.35, 5.35, 1.0)
(6, 0, 0) 1 1 2 3 3 2 (6.1, 0.8, 0.8)
(6, 1, 0) 1 1 3 3 2 2 (6.1, 1.6, 1.0)
(6, 2, 0) 1 1 3 3 2 2 (6.1, 2.6, 1.0)
(6, 3, 0) 1 1 3 3 2 2 (6.1, 3.6, 1.0)
(6, 4, 0) 1 1 3 3 2 2 (6.1, 4.6, 1.0)
(6, 5, 0) 1 1 3 3 2 2 (6.1, 5.6, 1.0)
(6, 6, 0) 1 3 3 1 2 2 (6.35, 6.35, 1.0)
(7, 0, 0) 1 1 2 3 3 2 (7.1, 0.8, 0.8)
(7, 1, 0) 1 1 3 3 2 2 (7.1, 1.6, 1.0)
(7, 2, 0) 1 1 3 3 2 2 (7.1, 2.6, 1.0)
(7, 3, 0) 1 1 3 3 2 2 (7.1, 3.6, 1.0)
(7, 4, 0) 1 1 3 3 2 2 (7.1, 4.6, 1.0)
(7, 5, 0) 1 1 3 3 2 2 (7.1, 5.6, 1.0)
(7, 6, 0) 1 1 3 3 2 2 (7.1, 6.6, 1.0)
(7, 7, 0) 1 1 3 3 2 2 (7.1, 7.6, 1.0)
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Table E.9: The DP results for the third schedule of a small instance when the states are ordered lexico-
graphically and the number of time blocks is not equal to the number of different tasks.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 3 (0.55, 0.55, 0.6)
(1, 0, 0) 1 1 2 3 3 2 (1.1, 0.8, 0.8)
(1, 1, 0) 1 3 3 1 2 2 (1.35, 1.35, 1.0)
(2, 0, 0) 1 1 2 3 3 2 (2.1, 0.8, 0.8)
(2, 1, 0) 1 1 3 3 2 2 (2.1, 1.6, 1.0)
(2, 2, 0) 1 3 3 1 2 2 (2.35, 2.35, 1.0)
(3, 0, 0) 1 1 2 3 3 2 (3.1, 0.8, 0.8)
(3, 1, 0) 1 1 3 3 2 2 (3.1, 1.6, 1.0)
(3, 2, 0) 1 1 3 3 2 2 (3.1, 2.6, 1.0)
(3, 3, 0) 1 3 3 1 2 2 (3.35, 3.35, 1.0)
(4, 0, 0) 1 1 2 3 3 2 (4.1, 0.8, 0.8)
(4, 1, 0) 1 1 3 3 2 2 (4.1, 1.6, 1.0)
(4, 2, 0) 1 1 3 3 2 2 (4.1, 2.6, 1.0)
(4, 3, 0) 1 1 3 3 2 2 (4.1, 3.6, 1.0)
(4, 4, 0) 1 3 3 1 2 2 (4.35, 4.35, 1.0)
(5, 0, 0) 1 1 2 3 3 2 (5.1, 0.8, 0.8)
(5, 1, 0) 1 1 3 3 2 2 (5.1, 1.6, 1.0)
(5, 2, 0) 1 1 3 3 2 2 (5.1, 2.6, 1.0)
(5, 3, 0) 1 1 3 3 2 2 (5.1, 3.6, 1.0)
(5, 4, 0) 1 1 3 3 2 2 (5.1, 4.6, 1.0)
(5, 5, 0) 1 1 3 3 2 2 (5.1, 5.6, 1.0)
(6, 0, 0) 1 1 2 3 3 2 (6.1, 0.8, 0.8)
(6, 1, 0) 1 1 3 3 2 2 (6.1, 1.6, 1.0)
(6, 2, 0) 1 1 3 3 2 2 (6.1, 2.6, 1.0)
(6, 3, 0) 1 1 3 3 2 2 (6.1, 3.6, 1.0)
(6, 4, 0) 1 1 3 3 2 2 (6.1, 4.6, 1.0)
(6, 5, 0) 3 3 1 1 2 2 (6.6, 5.1, 1.0)
(6, 6, 0) 1 1 3 3 2 2 (6.1, 6.6, 1.0)

Table E.10: The DP results for the second schedule of a small instance when the states are ordered
lexicographically and the number of time blocks is not equal to the number of different tasks.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 3 (0.55, 0.55, 0.6)
(1, 0, 0) 1 1 2 3 3 2 (1.1, 0.8, 0.8)
(1, 1, 0) 1 3 3 1 2 2 (1.35, 1.35, 1.0)
(2, 0, 0) 1 1 2 3 3 2 (2.1, 0.8, 0.8)
(2, 1, 0) 1 1 3 3 2 2 (2.1, 1.6, 1.0)
(2, 2, 0) 1 3 3 1 2 2 (2.35, 2.35, 1.0)
(3, 0, 0) 1 1 2 3 3 2 (3.1, 0.8, 0.8)
(3, 1, 0) 1 1 3 3 2 2 (3.1, 1.6, 1.0)
(3, 2, 0) 1 1 3 3 2 2 (3.1, 2.6, 1.0)
(3, 3, 0) 1 3 3 1 2 2 (3.35, 3.35, 1.0)
(4, 0, 0) 1 1 2 3 3 2 (4.1, 0.8, 0.8)
(4, 1, 0) 1 1 3 3 2 2 (4.1, 1.6, 1.0)
(4, 2, 0) 1 1 3 3 2 2 (4.1, 2.6, 1.0)
(4, 3, 0) 1 1 3 3 2 2 (4.1, 3.6, 1.0)
(4, 4, 0) 1 1 3 3 2 2 (4.1, 4.6, 1.0)
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Table E.11: The DP results for the first schedule of a small instance when the states are ordered
lexicographically and the number of time blocks is not equal to the number of different tasks.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 3 3 2 1 (0.55, 0.6, 0.55)
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E.2.3 Different arrival rate per schedule

The results from the DP with three persons who can be scheduled over three tasks with two time blocks
and four schedules are made, are shown in Tables E.12 (fourth schedule) – E.15 (first schedule). These
tables show an optimal action given the state and decision epoch. A 1 corresponds to task 1 with λ1,
a 2 corresponds to task 2 with λ2,d and a 3 corresponds to task 3 with λ3. The parameters used are
shown below.

λ1 = 0.05

λ2,d =

{
0.5 if day d is during schedule 1, 2 or 4
5.0 if day d is during schedule 3

λ3 = 0.3

q = 0.01

N = 5

J = 3

M = 3

B = 2

Table E.12: The DP results for the fourth schedule of a small instance when the states are ordered
lexicographically and the arrival rates per task can differ per schedule.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 3 (0.55, 0.55, 0.6)
(1, 0, 0) 1 1 2 3 3 2 (1.1, 0.8, 0.8)
(1, 1, 0) 1 3 3 1 2 2 (1.35, 1.35, 1.0)
(2, 0, 0) 1 1 2 3 3 2 (2.1, 0.8, 0.8)
(2, 1, 0) 1 1 3 3 2 2 (2.1, 1.6, 1.0)
(2, 2, 0) 1 3 3 1 2 2 (2.35, 2.35, 1.0)
(3, 0, 0) 1 1 2 3 3 2 (3.1, 0.8, 0.8)
(3, 1, 0) 1 1 3 3 2 2 (3.1, 1.6, 1.0)
(3, 2, 0) 1 1 3 3 2 2 (3.1, 2.6, 1.0)
(3, 3, 0) 1 3 3 1 2 2 (3.35, 3.35, 1.0)
(4, 0, 0) 1 1 2 3 3 2 (4.1, 0.8, 0.8)
(4, 1, 0) 1 1 3 3 2 2 (4.1, 1.6, 1.0)
(4, 2, 0) 1 1 3 3 2 2 (4.1, 2.6, 1.0)
(4, 3, 0) 1 1 3 3 2 2 (4.1, 3.6, 1.0)
(4, 4, 0) 1 3 3 1 2 2 (4.35, 4.35, 1.0)
(5, 0, 0) 1 1 2 3 3 2 (5.1, 0.8, 0.8)
(5, 1, 0) 1 1 3 3 2 2 (5.1, 1.6, 1.0)
(5, 2, 0) 1 1 3 3 2 2 (5.1, 2.6, 1.0)
(5, 3, 0) 1 1 3 3 2 2 (5.1, 3.6, 1.0)
(5, 4, 0) 1 1 3 3 2 2 (5.1, 4.6, 1.0)
(5, 5, 0) 1 3 3 1 2 2 (5.35, 5.35, 1.0)
(6, 0, 0) 1 1 2 3 3 2 (6.1, 0.8, 0.8)
(6, 1, 0) 1 1 3 3 2 2 (6.1, 1.6, 1.0)
(6, 2, 0) 1 1 3 3 2 2 (6.1, 2.6, 1.0)
(6, 3, 0) 1 1 3 3 2 2 (6.1, 3.6, 1.0)
(6, 4, 0) 1 1 3 3 2 2 (6.1, 4.6, 1.0)
(6, 5, 0) 1 1 3 3 2 2 (6.1, 5.6, 1.0)
(6, 6, 0) 1 3 3 1 2 2 (6.35, 6.35, 1.0)
(7, 0, 0) 1 1 2 3 3 2 (7.1, 0.8, 0.8)
(7, 1, 0) 1 1 3 3 2 2 (7.1, 1.6, 1.0)
(7, 2, 0) 1 1 3 3 2 2 (7.1, 2.6, 1.0)
(7, 3, 0) 1 1 3 3 2 2 (7.1, 3.6, 1.0)
(7, 4, 0) 1 1 3 3 2 2 (7.1, 4.6, 1.0)
(7, 5, 0) 1 1 3 3 2 2 (7.1, 5.6, 1.0)
(7, 6, 0) 1 1 3 3 2 2 (7.1, 6.6, 1.0)
(7, 7, 0) 1 3 3 1 2 2 (7.35, 7.35, 1.0)
(8, 0, 0) 1 1 2 3 3 2 (8.1, 0.8, 0.8)
(8, 1, 0) 1 1 3 3 2 2 (8.1, 1.6, 1.0)
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(8, 2, 0) 1 1 3 3 2 2 (8.1, 2.6, 1.0)
(8, 3, 0) 1 1 3 3 2 2 (8.1, 3.6, 1.0)
(8, 4, 0) 1 1 3 3 2 2 (8.1, 4.6, 1.0)
(8, 5, 0) 1 1 3 3 2 2 (8.1, 5.6, 1.0)
(8, 6, 0) 1 1 3 3 2 2 (8.1, 6.6, 1.0)
(8, 7, 0) 1 1 3 3 2 2 (8.1, 7.6, 1.0)
(8, 8, 0) 1 3 3 1 2 2 (8.35, 8.35, 1.0)
(9, 0, 0) 1 1 2 3 3 2 (9.1, 0.8, 0.8)
(9, 1, 0) 1 1 3 3 2 2 (9.1, 1.6, 1.0)
(9, 2, 0) 1 1 3 3 2 2 (9.1, 2.6, 1.0)
(9, 3, 0) 1 1 3 3 2 2 (9.1, 3.6, 1.0)
(9, 4, 0) 1 1 3 3 2 2 (9.1, 4.6, 1.0)
(9, 5, 0) 1 1 3 3 2 2 (9.1, 5.6, 1.0)
(9, 6, 0) 1 1 3 3 2 2 (9.1, 6.6, 1.0)
(9, 7, 0) 1 1 3 3 2 2 (9.1, 7.6, 1.0)
(9, 8, 0) 1 1 3 3 2 2 (9.1, 8.6, 1.0)
(9, 9, 0) 1 3 3 1 2 2 (9.35, 9.35, 1.0)
(10, 0, 0) 1 1 2 3 3 2 (10.1, 0.8, 0.8)
(10, 1, 0) 1 1 3 3 2 2 (10.1, 1.6, 1.0)
(10, 2, 0) 1 1 3 3 2 2 (10.1, 2.6, 1.0)
(10, 3, 0) 1 1 3 3 2 2 (10.1, 3.6, 1.0)
(10, 4, 0) 1 1 3 3 2 2 (10.1, 4.6, 1.0)
(10, 5, 0) 1 1 3 3 2 2 (10.1, 5.6, 1.0)
(10, 6, 0) 1 1 3 3 2 2 (10.1, 6.6, 1.0)
(10, 7, 0) 1 1 3 3 2 2 (10.1, 7.6, 1.0)
(10, 8, 0) 1 1 3 3 2 2 (10.1, 8.6, 1.0)
(10, 9, 0) 1 1 3 3 2 2 (10.1, 9.6, 1.0)
(10, 10, 0) 1 3 3 1 2 2 (10.35, 10.35, 1.0)
(11, 0, 0) 1 1 2 3 3 2 (11.1, 0.8, 0.8)
(11, 1, 0) 1 1 3 3 2 2 (11.1, 1.6, 1.0)
(11, 2, 0) 1 1 3 3 2 2 (11.1, 2.6, 1.0)
(11, 3, 0) 1 1 3 3 2 2 (11.1, 3.6, 1.0)
(11, 4, 0) 1 1 3 3 2 2 (11.1, 4.6, 1.0)
(11, 5, 0) 1 1 3 3 2 2 (11.1, 5.6, 1.0)
(11, 6, 0) 1 1 3 3 2 2 (11.1, 6.6, 1.0)
(11, 7, 0) 1 1 3 3 2 2 (11.1, 7.6, 1.0)
(11, 8, 0) 1 1 3 3 2 2 (11.1, 8.6, 1.0)
(11, 9, 0) 1 1 3 3 2 2 (11.1, 9.6, 1.0)
(11, 10, 0) 1 1 3 3 2 2 (11.1, 10.6, 1.0)
(11, 11, 0) 1 3 3 1 2 2 (11.35, 11.35, 1.0)
(12, 0, 0) 1 1 2 3 3 2 (12.1, 0.8, 0.8)
(12, 1, 0) 1 1 3 3 2 2 (12.1, 1.6, 1.0)
(12, 2, 0) 1 1 3 3 2 2 (12.1, 2.6, 1.0)
(12, 3, 0) 1 1 3 3 2 2 (12.1, 3.6, 1.0)
(12, 4, 0) 1 1 3 3 2 2 (12.1, 4.6, 1.0)
(12, 5, 0) 1 1 3 3 2 2 (12.1, 5.6, 1.0)
(12, 6, 0) 1 1 3 3 2 2 (12.1, 6.6, 1.0)
(12, 7, 0) 1 1 3 3 2 2 (12.1, 7.6, 1.0)
(12, 8, 0) 1 1 3 3 2 2 (12.1, 8.6, 1.0)
(12, 9, 0) 1 1 3 3 2 2 (12.1, 9.6, 1.0)
(12, 10, 0) 1 1 3 3 2 2 (12.1, 10.6, 1.0)
(12, 11, 0) 1 1 3 3 2 2 (12.1, 11.6, 1.0)
(12, 12, 0) 1 3 3 1 2 2 (12.35, 12.35, 1.0)
(13, 0, 0) 1 1 2 3 3 2 (13.1, 0.8, 0.8)
(13, 1, 0) 1 1 3 3 2 2 (13.1, 1.6, 1.0)
(13, 2, 0) 1 1 3 3 2 2 (13.1, 2.6, 1.0)
(13, 3, 0) 1 1 3 3 2 2 (13.1, 3.6, 1.0)
(13, 4, 0) 1 1 3 3 2 2 (13.1, 4.6, 1.0)
(13, 5, 0) 1 1 3 3 2 2 (13.1, 5.6, 1.0)
(13, 6, 0) 1 1 3 3 2 2 (13.1, 6.6, 1.0)
(13, 7, 0) 1 1 3 3 2 2 (13.1, 7.6, 1.0)
(13, 8, 0) 1 1 3 3 2 2 (13.1, 8.6, 1.0)
(13, 9, 0) 1 1 3 3 2 2 (13.1, 9.6, 1.0)
(13, 10, 0) 1 1 3 3 2 2 (13.1, 10.6, 1.0)
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(13, 11, 0) 1 1 3 3 2 2 (13.1, 11.6, 1.0)
(13, 12, 0) 1 1 3 3 2 2 (13.1, 12.6, 1.0)
(13, 13, 0) 1 3 3 1 2 2 (13.35, 13.35, 1.0)
(14, 0, 0) 1 1 2 3 3 2 (14.1, 0.8, 0.8)
(14, 1, 0) 1 1 3 3 2 2 (14.1, 1.6, 1.0)
(14, 2, 0) 1 1 3 3 2 2 (14.1, 2.6, 1.0)
(14, 3, 0) 1 1 3 3 2 2 (14.1, 3.6, 1.0)
(14, 4, 0) 1 1 3 3 2 2 (14.1, 4.6, 1.0)
(14, 5, 0) 1 1 3 3 2 2 (14.1, 5.6, 1.0)
(14, 6, 0) 1 1 3 3 2 2 (14.1, 6.6, 1.0)
(14, 7, 0) 1 1 3 3 2 2 (14.1, 7.6, 1.)
(14, 8, 0) 1 1 3 3 2 2 (14.1, 8.6, 1.0)
(14, 9, 0) 1 1 3 3 2 2 (14.1, 9.6, 1.0)
(14, 10, 0) 1 1 3 3 2 2 (14.1, 10.6, 1.0)
(14, 11, 0) 1 1 3 3 2 2 (14.1, 11.6, 1.0)
(14, 12, 0) 1 1 3 3 2 2 (14.1, 12.6, 1.0)
(14, 13, 0) 1 1 3 3 2 2 (14.1, 13.6, 1.0)
(14, 14, 0) 1 3 3 1 2 2 (14.35, 14.35, 1.0)
(15, 0, 0) 1 1 2 3 3 2 (15.1, 0.8, 0.8)
(15, 1, 0) 1 1 3 3 2 2 (15.1, 1.6, 1.0)
(15, 2, 0) 1 1 3 3 2 2 (15.1, 2.6, 1.0)
(15, 3, 0) 1 1 3 3 2 2 (15.1, 3.6, 1.0)
(15, 4, 0) 1 1 3 3 2 2 (15.1, 4.6, 1.0)
(15, 5, 0) 1 1 3 3 2 2 (15.1, 5.6, 1.0)
(15, 6, 0) 1 1 3 3 2 2 (15.1, 6.6, 1.0)
(15, 7, 0) 1 1 3 3 2 2 (15.1, 7.6, 1.0)
(15, 8, 0) 1 1 3 3 2 2 (15.1, 8.6, 1.0)
(15, 9, 0) 1 1 3 3 2 2 (15.1, 9.6, 1.0)
(15, 10, 0) 1 1 3 3 2 2 (15.1, 10.6, 1.0)
(15, 11, 0) 1 1 3 3 2 2 (15.1, 11.6, 1.0)
(15, 12, 0) 1 1 3 3 2 2 (15.1, 12.6, 1.0)
(15, 13, 0) 1 1 3 3 2 2 (15.1, 13.6, 1.0)
(15, 14, 0) 1 1 3 3 2 2 (15.1, 14.6, 1.0)
(15, 15, 0) 1 3 3 1 2 2 (15.35, 15.35, 1.0)
(16, 0, 0) 1 1 2 3 3 2 (16.1, 0.8, 0.8)
(16, 1, 0) 1 1 3 3 2 2 (16.1, 1.6, 1.0)
(16, 2, 0) 1 1 3 3 2 2 (16.1, 2.6, 1.0)
(16, 3, 0) 1 1 3 3 2 2 (16.1, 3.6, 1.0)
(16, 4, 0) 1 1 3 3 2 2 (16.1, 4.6, 1.0)
(16, 5, 0) 1 1 3 3 2 2 (16.1, 5.6, 1.0)
(16, 6, 0) 1 1 3 3 2 2 (16.1, 6.6, 1.0)
(16, 7, 0) 1 1 3 3 2 2 (16.1, 7.6, 1.0)
(16, 8, 0) 1 1 3 3 2 2 (16.1, 8.6, 1.0)
(16, 9, 0) 1 1 3 3 2 2 (16.1, 9.6, 1.0)
(16, 10, 0) 1 1 3 3 2 2 (16.1, 10.6, 1.0)
(16, 11, 0) 1 1 3 3 2 2 (16.1, 11.6, 1.0)
(16, 12, 0) 1 1 3 3 2 2 (16.1, 12.6, 1.0)
(16, 13, 0) 1 1 3 3 2 2 (16.1, 13.6, 1.0)
(16, 14, 0) 1 1 3 3 2 2 (16.1, 14.6, 1.0)
(16, 15, 0) 1 1 3 3 2 2 (16.1, 15.6, 1.0)
(16, 16, 0) 1 3 3 1 2 2 (16.35, 16.35, 1.0)
(17, 0, 0) 1 1 2 3 3 2 (17.1, 0.8, 0.8)
(17, 1, 0) 1 1 3 3 2 2 (17.1, 1.6, 1.0)
(17, 2, 0) 1 1 3 3 2 2 (17.1, 2.6, 1.0)
(17, 3, 0) 1 1 3 3 2 2 (17.1, 3.6, 1.0)
(17, 4, 0) 1 1 3 3 2 2 (17.1, 4.6, 1.0)
(17, 5, 0) 1 1 3 3 2 2 (17.1, 5.6, 1.0)
(17, 6, 0) 1 1 3 3 2 2 (17.1, 6.6, 1.0)
(17, 7, 0) 1 1 3 3 2 2 (17.1, 7.6, 1.0)
(17, 8, 0) 1 1 3 3 2 2 (17.1, 8.6, 1.0)
(17, 9, 0) 1 1 3 3 2 2 (17.1, 9.6, 1.0)
(17, 10, 0) 1 1 3 3 2 2 (17.1, 10.6, 1.0)
(17, 11, 0) 1 1 3 3 2 2 (17.1, 11.6, 1.0)
(17, 12, 0) 1 1 3 3 2 2 (17.1, 12.6, 1.0)
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(17, 13, 0) 1 1 3 3 2 2 (17.1, 13.6, 1.0)
(17, 14, 0) 1 1 3 3 2 2 (17.1, 14.6, 1.0)
(17, 15, 0) 1 1 3 3 2 2 (17.1, 15.6, 1.0)
(17, 16, 0) 1 1 3 3 2 2 (17.1, 16.6, 1.0)
(17, 17, 0) 1 3 3 1 2 2 (17.35, 17.35, 1.0)
(18, 0, 0) 1 1 2 3 3 2 (18.1, 0.8, 0.8)
(18, 1, 0) 1 1 3 3 2 2 (18.1, 1.6, 1.0)
(18, 2, 0) 1 1 3 3 2 2 (18.1, 2.6, 1.0)
(18, 3, 0) 1 1 3 3 2 2 (18.1, 3.6, 1.0)
(18, 4, 0) 1 1 3 3 2 2 (18.1, 4.6, 1.0)
(18, 5, 0) 1 1 3 3 2 2 (18.1, 5.6, 1.0)
(18, 6, 0) 1 1 3 3 2 2 (18.1, 6.6, 1.0)
(18, 7, 0) 1 1 3 3 2 2 (18.1, 7.6, 1.0)
(18, 8, 0) 1 1 3 3 2 2 (18.1, 8.6, 1.0)
(18, 9, 0) 1 1 3 3 2 2 (18.1, 9.6, 1.0)
(18, 10, 0) 1 1 3 3 2 2 (18.1, 10.6, 1.0)
(18, 11, 0) 1 1 3 3 2 2 (18.1, 11.6, 1.0)
(18, 12, 0) 1 1 3 3 2 2 (18.1, 12.6, 1.0)
(18, 13, 0) 1 1 3 3 2 2 (18.1, 13.6, 1.0)
(18, 14, 0) 1 1 3 3 2 2 (18.1, 14.6, 1.0)
(18, 15, 0) 1 1 3 3 2 2 (18.1, 15.6, 1.0)
(18, 16, 0) 1 1 3 3 2 2 (18.1, 16.6, 1.0)
(18, 17, 0) 1 1 3 3 2 2 (18.1, 17.6, 1.0)
(18, 18, 0) 1 3 3 1 2 2 (18.35, 18.35, 1.0)
(19, 0, 0) 1 1 2 3 3 2 (19.1, 0.8, 0.8)
(19, 1, 0) 1 1 3 3 2 2 (19.1, 1.6, 1.0)
(19, 2, 0) 1 1 3 3 2 2 (19.1, 2.6, 1.0)
(19, 3, 0) 1 1 3 3 2 2 (19.1, 3.6, 1.0)
(19, 4, 0) 1 1 3 3 2 2 (19.1, 4.6, 1.0)
(19, 5, 0) 1 1 3 3 2 2 (19.1, 5.6, 1.0)
(19, 6, 0) 1 1 3 3 2 2 (19.1, 6.6, 1.0)
(19, 7, 0) 1 1 3 3 2 2 (19.1, 7.6, 1.0)
(19, 8, 0) 1 1 3 3 2 2 (19.1, 8.6, 1.0)
(19, 9, 0) 1 1 3 3 2 2 (19.1, 9.6, 1.0)
(19, 10, 0) 1 1 3 3 2 2 (19.1, 10.6, 1.0)
(19, 11, 0) 1 1 3 3 2 2 (19.1, 11.6, 1.0)
(19, 12, 0) 1 1 3 3 2 2 (19.1, 12.6, 1.0)
(19, 13, 0) 1 1 3 3 2 2 (19.1, 13.6, 1.0)
(19, 14, 0) 1 1 3 3 2 2 (19.1, 14.6, 1.0)
(19, 15, 0) 1 1 3 3 2 2 (19.1, 15.6, 1.0)
(19, 16, 0) 1 1 3 3 2 2 (19.1, 16.6, 1.0)
(19, 17, 0) 1 1 3 3 2 2 (19.1, 17.6, 1.0)
(19, 18, 0) 1 1 3 3 2 2 (19.1, 18.6, 1.0)
(19, 19, 0) 1 1 3 3 2 2 (19.1, 19.6, 1.0)

Table E.13: The DP results for the third schedule of a small instance when the states are ordered
lexicographically and the arrival rates per task can differ per schedule.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 2 (5.05, 5.05, 0.6)
(1, 0, 0) 3 3 1 2 2 1 (1.6, 5.05, 5.05)
(1, 1, 0) 1 2 3 3 2 1 (6.05, 1.6, 5.05)
(2, 0, 0) 3 3 1 2 2 1 (2.6, 5.05, 5.05)
(2, 1, 0) 3 3 1 2 2 1 (2.6, 6.05, 5.05)
(2, 2, 0) 3 3 1 2 2 1 (2.6, 7.05, 5.05)
(3, 0, 0) 3 3 1 2 2 1 (3.6, 5.05, 5.05)
(3, 1, 0) 3 3 1 2 2 1 (3.6, 6.05, 5.05)
(3, 2, 0) 3 3 1 2 2 1 (3.6, 7.05, 5.05)
(3, 3, 0) 3 3 1 2 2 1 (3.6, 8.05, 5.05)
(4, 0, 0) 3 3 1 2 2 1 (4.6, 5.05, 5.05)
(4, 1, 0) 3 3 1 2 2 1 (4.6, 6.05, 5.05)
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(4, 2, 0) 3 3 1 2 2 1 (4.6, 7.05, 5.05)
(4, 3, 0) 3 3 1 2 2 1 (4.6, 8.05, 5.05)
(4, 4, 0) 1 2 3 3 2 1 (9.05, 4.6, 5.05)
(5, 0, 0) 1 1 2 3 3 2 (5.1, 5.3, 5.3)
(5, 1, 0) 1 3 2 1 3 2 (5.35, 6.05, 5.3)
(5, 2, 0) 1 3 2 1 3 2 (5.35, 7.05, 5.3)
(5, 3, 0) 1 3 2 1 3 2 (5.35, 8.05, 5.3)
(5, 4, 0) 1 3 2 1 3 2 (5.35, 9.05, 5.3)
(5, 5, 0) 1 3 3 1 2 2 (5.35, 5.35, 10.0)
(6, 0, 0) 1 1 2 3 3 2 (6.1, 5.3, 5.3)
(6, 1, 0) 1 3 2 1 3 2 (6.35, 6.05, 5.3)
(6, 2, 0) 1 3 2 1 3 2 (6.35, 7.05, 5.3)
(6, 3, 0) 1 3 2 1 3 2 (6.35, 8.05, 5.3)
(6, 4, 0) 1 3 2 1 3 2 (6.35, 9.05, 5.3)
(6, 5, 0) 1 1 3 3 2 2 (6.1, 5.6, 10.0)
(6, 6, 0) 1 3 3 1 2 2 (6.35, 6.35, 10.0)

Table E.14: The DP results for the second schedule of a small instance when the states are ordered
lexicographically and the arrival rates per task can differ per schedule.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 1 2 2 3 3 (0.1, 1.0, 0.6)
(1, 0, 0) 2 2 1 1 3 3 (2.0, 0.1, 0.6)
(1, 1, 0) 2 2 3 3 1 1 (2.0, 1.6, 0.1)
(2, 0, 0) 2 2 1 3 3 1 (3.0, 0.35, 0.35)
(2, 1, 0) 2 2 1 1 3 3 (3.0, 1.1, 0.6)
(2, 2, 0) 2 2 3 3 1 1 (3.0, 2.6, 0.1)
(3, 0, 0) 2 2 1 3 3 1 (4.0, 0.35, 0.35)
(3, 1, 0) 2 2 1 1 3 3 (4.0, 1.1, 0.6)
(3, 2, 0) 2 2 1 1 3 3 (4.0, 2.1, 0.6)
(3, 3, 0) 3 3 2 2 1 1 (3.1, 4.0, 0.6)
(4, 0, 0) 2 2 1 3 3 1 (5.0, 0.35, 0.35)
(4, 1, 0) 2 2 1 1 3 3 (5.0, 1.1, 0.6)
(4, 2, 0) 2 2 1 1 3 3 (5.0, 2.1, 0.6)
(4, 3, 0) 2 2 1 1 3 3 (5.0, 3.1, 0.6)
(4, 4, 0) 1 1 2 2 3 3 (4.1, 5.0, 0.6)

Table E.15: The DP results for the first schedule of a small instance when the states are ordered
lexicographically and the arrival rates per task can differ per schedule.

State p = 1 p = 2 p = 3 Expected new state
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 1 3 3 2 2 (0.1, 0.6, 1.0)
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E.2.4 Different arrival rates last schedule

The results from the DP with three persons who can be scheduled over three tasks with two time blocks
and when five schedules are made, are shown in Tables E.16 (fourth schedule) – E.19 (first schedule).
These tables show an optimal action given the state and decision epoch. A 1 corresponds to task 1 with
λ1, a 2 corresponds to task 2 with λ2,d and a 3 corresponds to task 3 with λ3. The parameters used are
shown below.

λ1 = 0.05

λ2,d =

{
0.5 if day d is during schedule 1, 2, 3 or 4
5.0 if day d is during schedule 5

λ3 = 0.3

q = 0.01

N = 6

J = 3

M = 3

B = 2

Table E.16: The DP results for the fourth schedule of a small instance when the states are ordered
lexicographically and the arrival rates per task can differ in the last schedule.

State p = 1 p = 2 p = 3 Expected new state Variance of the schedule
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 3 3 2 2 1 1 (0.6, 1.0, 0.1) (0.6, 1.0, 0.1)
(1, 0, 0) 2 2 1 1 3 3 (2.0, 0.1, 0.6) (1.0, 0.1, 0.6)
(1, 1, 0) 2 2 3 3 1 1 (2.0, 1.6, 0.1) (1.0, 0.6, 0.1)
(2, 0, 0) 2 2 1 3 3 1 (3.0, 0.35, 0.35) (1.0, 0.35, 0.35)
(2, 1, 0) 2 2 1 1 3 3 (3.0, 1.1, 0.6) (1.0, 0.1, 0.6)
(2, 2, 0) 2 2 3 3 1 1 (3.0, 2.6, 0.1) (1.0, 0.6, 0.1)
(3, 0, 0) 2 2 1 3 3 1 (4.0, 0.35, 0.35) (1.0, 0.35, 0.35)
(3, 1, 0) 2 2 1 1 3 3 (4.0, 1.1, 0.6) (1.0, 0.1, 0.6)
(3, 2, 0) 2 2 1 1 3 3 (4.0, 2.1, 0.6) (1.0, 0.1, 0.6)
(3, 3, 0) 1 1 2 2 3 3 (3.1, 4.0, 0.6) (0.1, 1.0, 0.6)
(4, 0, 0) 2 2 1 3 3 1 (5.0, 0.35, 0.35) (1.0, 0.35, 0.35)
(4, 1, 0) 2 2 1 1 3 3 (5.0, 1.1, 0.6) (1.0, 0.1, 0.6)
(4, 2, 0) 2 2 1 1 3 3 (5.0, 2.1, 0.6) (1.0, 0.1, 0.6)
(4, 3, 0) 2 2 1 1 3 3 (5.0, 3.1, 0.6) (1.0, 0.1, 0.6)
(4, 4, 0) 1 1 2 2 3 3 (4.1, 5.0, 0.6) (0.1, 1.0, 0.6)
(5, 0, 0) 1 2 2 1 3 3 (5.55, 0.55, 0.6) (0.55, 0.55, 0.6)
(5, 1, 0) 2 3 1 1 3 2 (5.8, 1.1, 0.8) (0.8, 0.1, 0.8)
(5, 2, 0) 3 3 1 1 2 2 (5.6, 2.1, 1.0) (0.6, 0.1, 1.0)
(5, 3, 0) 3 3 1 1 2 2 (5.6, 3.1, 1.0) (0.6, 0.1, 1.0)
(5, 4, 0) 3 3 1 1 2 2 (5.6, 4.1, 1.0) (0.6, 0.1, 1.0)
(5, 5, 0) 2 3 3 2 1 1 (5.8, 5.8, 0.1) (0.8, 0.8, 0.1)
(6, 0, 0) 1 1 2 3 3 2 (6.1, 0.8, 0.8) (0.1, 0.8, 0.8)
(6, 1, 0) 1 3 3 1 2 2 (6.35, 1.35, 1.0) (0.35, 0.35, 1.0)
(6, 2, 0) 3 3 1 1 2 2 (6.6, 2.1, 1.0) (0.6, 0.1, 1.0)
(6, 3, 0) 3 3 1 1 2 2 (6.6, 3.1, 1.0) (0.6, 0.1, 1.0)
(6, 4, 0) 3 3 1 1 2 2 (6.6, 4.1, 1.0) (0.6, 0.1, 1.0)
(6, 5, 0) 3 3 2 2 1 1 (6.6, 6.0, 0.1) (0.6, 1.0, 0.1)
(6, 6, 0) 2 3 3 2 1 1 (6.8, 6.8, 0.1) (0.8, 0.8, 0.1)
(7, 0, 0) 1 1 2 3 3 2 (7.1, 0.8, 0.8) (0.1, 0.8, 0.8)
(7, 1, 0) 1 1 3 3 2 2 (7.1, 1.6, 1.0) (0.1, 0.6, 1.0)
(7, 2, 0) 1 3 3 1 2 2 (7.35, 2.35, 1.0) (0.35, 0.35, 1.0)
(7, 3, 0) 3 3 1 1 2 2 (7.6, 3.1, 1.0) (0.6, 0.1, 1.0)
(7, 4, 0) 3 3 1 1 2 2 (7.6, 4.1, 1.0) (0.6, 0.1, 1.0)
(7, 5, 0) 3 3 2 2 1 1 (7.6, 6.0, 0.1) (0.6, 1.0, 0.1)
(7, 6, 0) 3 3 2 2 1 1 (7.6, 7.0, 0.1) (0.6, 1.0, 0.1)
(7, 7, 0) 2 3 3 2 1 1 (7.8, 7.8, 0.1) (0.8, 0.8, 0.1)
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Table E.17: The DP results for the third schedule of a small instance when the states are ordered
lexicographically and the arrival rates per task can differ in the last schedule.

State p = 1 p = 2 p = 3 Expected new state Variance of the schedule
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 3 3 2 2 1 1 (0.6, 1.0, 0.1) (0.6, 1.0, 0.1)
(1, 0, 0) 2 2 3 2 1 1 (2.0, 0.6, 0.1) (1.0, 0.6, 0.1)
(1, 1, 0) 2 2 3 3 1 1 (2.0, 1.6, 0.1) (1.0, 0.6, 0.1)
(2, 0, 0) 2 2 1 3 3 1 (3.0, 0.35, 0.35) (1.0, 0.35, 0.35)
(2, 1, 0) 2 2 1 1 3 3 (3.0, 1.1, 0.6) (1.0, 0.1, 0.6)
(2, 2, 0) 1 1 2 2 3 3 (2.1, 3.0, 0.6) (0.1, 1.0, 0.6)
(3, 0, 0) 2 2 1 3 3 1 (4.0, 0.35, 0.35) (1.0, 0.35, 0.35)
(3, 1, 0) 2 2 1 1 3 3 (4.0, 1.1, 0.6) (1.0, 0.1, 0.6)
(3, 2, 0) 2 2 1 1 3 3 (4.0, 2.1, 0.6) (1.0, 0.6, 0.1)
(3, 3, 0) 1 1 2 2 3 3 (3.1, 4.0, 0.6) (0.1, 1.0, 0.6)
(4, 0, 0) 2 2 1 3 3 1 (5.0, 0.35, 0.35) (1.0, 0.35, 0.35)
(4, 1, 0) 2 2 1 1 3 3 (5.0, 1.1, 0.6) (1.0, 0.1, 0.6)
(4, 2, 0) 2 2 1 1 3 3 (5.0, 2.1, 0.6) (1.0, 0.1, 0.6)
(4, 3, 0) 2 2 1 1 3 3 (5.0, 3.1, 0.6) (1.0, 0.1, 0.6)
(4, 4, 0) 1 1 2 2 3 3 (4.1, 5.0, 0.6) (0.1, 1.0, 0.6)
(5, 0, 0) 3 3 1 2 2 1 (5.6, 0.55, 0.55) (0.6, 0.55, 0.55)
(5, 1, 0) 2 2 1 1 3 3 (6.0, 1.1, 0.6) (1.0, 0.1, 0.6)
(5, 2, 0) 2 3 1 1 3 2 (5.8, 2.1, 0.8) (0.8, 0.1, 0.8)
(5, 3, 0) 2 3 1 1 3 2 (5.8, 3.1, 0.8) (0.8, 0.1, 0.8)
(5, 4, 0) 2 3 1 1 3 2 (5.8, 4.1, 0.8) (0.8, 0.1, 0.8)
(5, 5, 0) 2 3 3 2 1 1 (5.8, 5.8, 0.1) (0.8, 0.8, 0.1)
(6, 0, 0) 1 1 2 3 3 2 (6.1, 0.8, 0.8) (0.1, 0.8, 0.8)
(6, 1, 0) 3 3 1 1 2 2 (6.6, 1.1, 1.0) (0.6, 0.1, 1.0)
(6, 2, 0) 3 3 1 1 2 2 (6.6, 2.1, 1.0) (0.6, 0.1, 1.0)
(6, 3, 0) 3 3 1 1 2 2 (6.6, 3.1, 1.0) (0.6, 0.1, 1.0)
(6, 4, 0) 3 3 1 1 2 2 (6.6, 4.1, 1.0) (0.6, 0.1, 1.0)
(6, 5, 0) 3 3 2 2 1 1 (6.6, 6.0, 0.1) (0.6, 1.0, 0.1)
(6, 6, 0) 2 3 3 2 1 1 (6.8, 6.8, 0.1) (0.8, 0.8, 0.1)

Table E.18: The DP results for the second schedule of a small instance when the states are ordered
lexicographically and the arrival rates per task can differ in the last schedule.

State p = 1 p = 2 p = 3 Expected new state Variance of the schedule
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 2 2 3 3 1 1 (1.0, 0.6, 0.1) (1.0, 0.6, 0.1)
(1, 0, 0) 2 2 1 1 3 3 (2.0, 0.1, 0.6) (1.0, 0.1, 0.6)
(1, 1, 0) 2 2 3 3 1 1 (2.0, 1.6, 0.1) (1.0, 0.6, 0.1)
(2, 0, 0) 2 2 1 3 3 1 (3.0, 0.35, 0.35) (1.0, 0.35, 0.35)
(2, 1, 0) 2 2 1 1 3 3 (3.0, 1.1, 0.6) (1.0, 0.1, 0.6)
(2, 2, 0) 1 1 2 2 3 3 (2.1, 3.0, 0.6) (0.1, 1.0, 0.6)
(3, 0, 0) 2 2 1 3 3 1 (4.0, 0.35, 0.35) (1.0, 0.35, 0.35)
(3, 1, 0) 2 2 1 1 3 3 (4.0, 1.1, 0.6) (1.0, 0.1, 0.6)
(3, 2, 0) 2 2 1 1 3 3 (4.0, 2.1, 0.6) (1.0, 0.1, 0.6)
(3, 3, 0) 1 1 2 2 3 3 (3.1, 4.0, 0.6) (0.1, 1.0, 0.6)
(4, 0, 0) 2 2 1 3 3 1 (5.0, 0.35, 0.35) (1.0, 0.35, 0.35)
(4, 1, 0) 2 2 1 1 3 3 (5.0, 1.1, 0.6) (1.0, 0.1, 0.6)
(4, 2, 0) 2 2 1 1 3 3 (5.0, 2.1, 0.6) (1.0, 0.1, 0.6)
(4, 3, 0) 2 2 1 1 3 3 (5.0, 3.1, 0.6) (1.0, 0.1, 0.6)
(4, 4, 0) 1 1 2 2 3 3 (4.1, 5.0, 0.6) (0.1, 1.0, 0.6)
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Table E.19: The DP results for the first schedule of a small instance when the states are ordered
lexicographically and the arrival rates per task can differ in the last schedule.

State p = 1 p = 2 p = 3 Expected new state Variance of the schedule
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 3 3 2 2 1 1 (0.6, 1.0, 0.1) (0.6, 1.0, 0.1)
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E.2.5 Bigger differences arrival rates

The results from the DP with three persons who can be scheduled over three tasks with two time blocks
and when three schedules are made, are shown in Tables E.20 (third schedule) – E.22 (first schedule).
These tables show an optimal action given the state and decision epoch. A 1 corresponds to task one
with λ1, a 2 corresponds to task two with λ2,d and a 3 corresponds to task three with λ3.

λ1 = 0.1

λ2,d = 3

λ3 = 1

q = 0.01

N = 4

P = 3

B = 2

Table E.20: The DP results for the third schedule of a small instance with bigger differences arrival
rates.

State p = 1 p = 2 p = 3 Expected new state Variance of the schedule
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 3 (3.1, 3.1, 2.0) (3.1, 3.1, 2.0)
(1, 0, 0) 3 3 1 2 2 1 (3.0, 3.1, 3.1) (2.0, 3.1, 3.1)
(1, 1, 0) 1 2 3 3 2 1 (4.1, 3.0, 3.1) (3.1, 2.0, 3.1)
(2, 0, 0) 1 3 2 1 3 2 (3.1, 3.1, 4.0) (1.1, 3.1, 4.0)
(2, 1, 0) 1 3 2 1 3 2 (3.1, 4.1, 4.0) (1.1, 3.1, 4.0)
(2, 2, 0) 1 2 3 1 2 3 (5.1, 3.1, 4.0) (3.1, 1.1, 4.0)
(3, 0, 0) 1 1 2 3 3 2 (3.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(3, 1, 0) 1 3 2 1 3 2 (4.1, 4.1, 4.0) (1.1, 3.1, 4.0)
(3, 2, 0) 1 3 2 1 3 2 (4.1, 5.1, 4.0) (1.1, 3.1, 4.0)
(3, 3, 0) 1 3 3 1 2 2 (4.1, 4.1, 6.0) (1.1, 1.1, 6.0)
(4, 0, 0) 1 1 2 3 3 2 (4.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(4, 1, 0) 1 1 2 3 3 2 (4.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(4, 2, 0) 1 3 2 1 3 2 (5.1, 5.1, 4.0) (1.1, 3.1, 4.0)
(4, 3, 0) 1 1 3 3 2 2 (4.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(4, 4, 0) 1 3 3 1 2 2 (5.1, 5.1, 6.0) (1.1, 1.1, 6.0)
(5, 0, 0) 1 1 2 3 3 2 (5.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(5, 1, 0) 1 1 2 3 3 2 (5.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(5, 2, 0) 1 1 3 3 2 2 (5.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(5, 3, 0) 1 1 3 3 2 2 (5.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(5, 4, 0) 1 1 3 3 2 2 (5.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(5, 5, 0) 1 3 3 1 2 2 (6.1, 6.1, 6.0) (1.1, 1.1, 6.0)
(6, 0, 0) 1 1 2 3 3 2 (6.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(6, 1, 0) 1 1 2 3 3 2 (6.2, 5.0, 4.0) (0.1, 4.0, 4.0)
(6, 2, 0) 1 1 3 3 2 2 (6.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(6, 3, 0) 1 1 3 3 2 2 (6.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(6, 4, 0) 1 1 3 3 2 2 (6.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(6, 5, 0) 1 1 3 3 2 2 (6.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(6, 6, 0) 1 3 3 1 2 2 (7.1, 7.1, 6.0) (1.1, 1.1, 6.0)
(7, 0, 0) 1 1 2 3 3 2 (7.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(7, 1, 0) 1 1 2 3 3 2 (7.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(7, 2, 0) 1 1 3 3 2 2 (7.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(7, 3, 0) 1 1 3 3 2 2 (7.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(7, 4, 0) 1 1 3 3 2 2 (7.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(7, 5, 0) 1 1 3 3 2 2 (7.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(7, 6, 0) 1 1 3 3 2 2 (7.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(7, 7, 0) 1 3 3 1 2 2 (8.1, 8.1, 6.0) (1.1, 1.1, 6.0)
(8, 0, 0) 1 1 2 3 3 2 (8.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(8, 1, 0) 1 1 2 3 3 2 (8.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(8, 2, 0) 1 1 3 3 2 2 (8.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(8, 3, 0) 1 1 3 3 2 2 (8.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(8, 4, 0) 1 1 3 3 2 2 (8.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(8, 5, 0) 1 1 3 3 2 2 (8.2, 7.0, 6.0) (0.2, 2.0, 6.0)
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(8, 6, 0) 1 1 3 3 2 2 (8.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(8, 7, 0) 1 1 3 3 2 2 (8.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(8, 8, 0) 1 3 3 1 2 2 (9.1, 9.1, 6.0) (1.1, 1.1, 6.0)
(9, 0, 0) 1 1 2 3 3 2 (9.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(9, 1, 0) 1 1 2 3 3 2 (9.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(9, 2, 0) 1 1 3 3 2 2 (9.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(9, 3, 0) 1 1 3 3 2 2 (9.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(9, 4, 0) 1 1 3 3 2 2 (9.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(9, 5, 0) 1 1 3 3 2 2 (9.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(9, 6, 0) 1 1 3 3 2 2 (9.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(9, 7, 0) 1 1 3 3 2 2 (9.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(9, 8, 0) 1 1 3 3 2 2 (9.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(9, 9, 0) 1 3 3 1 2 2 (10.1, 10.1, 6.0) (1.1, 1.1, 6.0)
(10, 0, 0) 1 1 2 3 3 2 (10.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(10, 1, 0) 1 1 2 3 3 2 (10.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(10, 2, 0) 1 1 3 3 2 2 (10.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(10, 3, 0) 1 1 3 3 2 2 (10.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(10, 4, 0) 1 1 3 3 2 2 (10.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(10, 5, 0) 1 1 3 3 2 2 (10.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(10, 6, 0) 1 1 3 3 2 2 (10.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(10, 7, 0) 1 1 3 3 2 2 (10.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(10, 8, 0) 1 1 3 3 2 2 (10.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(10, 9, 0) 1 1 3 3 2 2 (10.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(10, 10, 0) 1 3 3 1 2 2 (11.1, 11.1, 6.0) (1.1, 1.1, 6.0)
(11, 0, 0) 1 1 2 3 3 2 (11.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(11, 1, 0) 1 1 2 3 3 2 (11.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(11, 2, 0) 1 1 3 3 2 2 (11.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(11, 3, 0) 1 1 3 3 2 2 (11.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(11, 4, 0) 1 1 3 3 2 2 (11.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(11, 5, 0) 1 1 3 3 2 2 (11.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(11, 6, 0) 1 1 3 3 2 2 (11.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(11, 7, 0) 1 1 3 3 2 2 (11.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(11, 8, 0) 1 1 3 3 2 2 (11.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(11, 9, 0) 1 1 3 3 2 2 (11.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(11, 10, 0) 1 1 3 3 2 2 (11.2, 12.0, 6.0) (0.2, 2.0, 6.0)
(11, 11, 0) 1 3 3 1 2 2 (12.1, 12.1, 6.0) (1.1, 1.1, 6.0)
(12, 0, 0) 1 1 2 3 3 2 (12.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(12, 1, 0) 1 1 2 3 3 2 (12.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(12, 2, 0) 1 1 3 3 2 2 (12.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(12, 3, 0) 1 1 3 3 2 2 (12.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(12, 4, 0) 1 1 3 3 2 2 (12.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(12, 5, 0) 1 1 3 3 2 2 (12.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(12, 6, 0) 1 1 3 3 2 2 (12.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(12, 7, 0) 1 1 3 3 2 2 (12.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(12, 8, 0) 1 1 3 3 2 2 (12.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(12, 9, 0) 1 1 3 3 2 2 (12.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(12, 10, 0) 1 1 3 3 2 2 (12.2, 12.0, 6.0) (0.2, 2.0, 6.0)
(12, 11, 0) 1 1 3 3 2 2 (12.2, 13.0, 6.0) (0.2, 2.0, 6.0)
(12, 12, 0) 1 3 3 1 2 2 (13.1, 13.1, 6.0) (1.1, 1.1, 6.0)
(13, 0, 0) 1 1 2 3 3 2 (13.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(13, 1, 0) 1 1 2 3 3 2 (13.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(13, 2, 0) 1 1 3 3 2 2 (13.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(13, 3, 0) 1 1 3 3 2 2 (13.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(13, 4, 0) 1 1 3 3 2 2 (13.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(13, 5, 0) 1 1 3 3 2 2 (13.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(13, 6, 0) 1 1 3 3 2 2 (13.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(13, 7, 0) 1 1 3 3 2 2 (13.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(13, 8, 0) 1 1 3 3 2 2 (13.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(13, 9, 0) 1 1 3 3 2 2 (13.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(13, 10, 0) 1 1 3 3 2 2 (13.2, 12.0, 6.0) (0.2, 2.0, 6.0)
(13, 11, 0) 1 1 3 3 2 2 (13.2, 13.0, 6.0) (0.2, 2.0, 6.0)
(13, 12, 0) 1 1 3 3 2 2 (13.2, 14.0, 6.0) (0.2, 2.0, 6.0)
(13, 13, 0) 1 3 3 1 2 2 (14.1, 14.1, 6.0) (1.1, 1.1, 6.0)
(14, 0, 0) 1 1 2 3 3 2 (14.2, 4.0, 4.0) (0.2, 4.0, 4.0)

APPENDIX E. OUTPUT SDP Page 141



(14, 1, 0) 1 1 2 3 3 2 (14.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(14, 2, 0) 1 1 3 3 2 2 (14.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(14, 3, 0) 1 1 3 3 2 2 (14.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(14, 4, 0) 1 1 3 3 2 2 (14.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(14, 5, 0) 1 1 3 3 2 2 (14.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(14, 6, 0) 1 1 3 3 2 2 (14.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(14, 7, 0) 1 1 3 3 2 2 (14.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(14, 8, 0) 1 1 3 3 2 2 (14.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(14, 9, 0) 1 1 3 3 2 2 (14.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(14, 10, 0) 1 1 3 3 2 2 (14.2, 12.0, 6.0) (0.2, 2.0, 6.0)
(14, 11, 0) 1 1 3 3 2 2 (14.2, 13.0, 6.0) (0.2, 2.0, 6.0)
(14, 12, 0) 1 1 3 3 2 2 (14.2, 14.0, 6.0) (0.2, 2.0, 6.0)
(14, 13, 0) 1 1 3 3 2 2 (14.2, 15.0, 6.0) (0.2, 2.0, 6.0)
(14, 14, 0) 1 3 3 1 2 2 (15.1, 15.1, 6.0) (1.1, 1.1, 6.0)
(15, 0, 0) 1 1 2 3 3 2 (15.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(15, 1, 0) 1 1 2 3 3 2 (15.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(15, 2, 0) 1 1 3 3 2 2 (15.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(15, 3, 0) 1 1 3 3 2 2 (15.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(15, 4, 0) 1 1 3 3 2 2 (15.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(15, 5, 0) 1 1 3 3 2 2 (15.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(15, 6, 0) 1 1 3 3 2 2 (15.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(15, 7, 0) 1 1 3 3 2 2 (15.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(15, 8, 0) 1 1 3 3 2 2 (15.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(15, 9, 0) 1 1 3 3 2 2 (15.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(15, 10, 0) 1 1 3 3 2 2 (15.2, 12.0, 6.0) (0.2, 2.0, 6.0)
(15, 11, 0) 1 1 3 3 2 2 (15.2, 13.0, 6.0) (0.2, 2.0, 6.0)
(15, 12, 0) 1 1 3 3 2 2 (15.2, 14.0, 6.0) (0.2, 2.0, 6.0)
(15, 13, 0) 1 1 3 3 2 2 (15.2, 15.0, 6.0) (0.2, 2.0, 6.0)
(15, 14, 0) 1 1 3 3 2 2 (15.2, 16.0, 6.0) (0.2, 2.0, 6.0)
(15, 15, 0) 1 3 3 1 2 2 (16.1, 16.1, 6.0) (1.1, 1.1, 6.0)
(16, 0, 0) 1 1 2 3 3 2 (16.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(16, 1, 0) 1 1 2 3 3 2 (16.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(16, 2, 0) 1 1 3 3 2 2 (16.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(16, 3, 0) 1 1 3 3 2 2 (16.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(16, 4, 0) 1 1 3 3 2 2 (16.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(16, 5, 0) 1 1 3 3 2 2 (16.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(16, 6, 0) 1 1 3 3 2 2 (16.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(16, 7, 0) 1 1 3 3 2 2 (16.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(16, 8, 0) 1 1 3 3 2 2 (16.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(16, 9, 0) 1 1 3 3 2 2 (16.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(16, 10, 0) 1 1 3 3 2 2 (16.2, 12.0, 6.0) (0.2, 2.0, 6.0)
(16, 11, 0) 1 1 3 3 2 2 (16.2, 13.0, 6.0) (0.2, 2.0, 6.0)
(16, 12, 0) 1 1 3 3 2 2 (16.2, 14.0, 6.0) (0.2, 2.0, 6.0)
(16, 13, 0) 1 1 3 3 2 2 (16.2, 15.0, 6.0) (0.2, 2.0, 6.0)
(16, 14, 0) 1 1 3 3 2 2 (16.2, 16.0, 6.0) (0.2, 2.0, 6.0)
(16, 15, 0) 1 1 3 3 2 2 (16.2, 17.0, 6.0) (0.2, 2.0, 6.0)
(16, 16, 0) 1 3 3 1 2 2 (17.1, 17.1, 6.0) (1.1, 1.1, 6.0)
(17, 0, 0) 1 1 2 3 3 2 (17.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(17, 1, 0) 1 1 2 3 3 2 (17.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(17, 2, 0) 1 1 3 3 2 2 (17.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(17, 3, 0) 1 1 3 3 2 2 (17.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(17, 4, 0) 1 1 3 3 2 2 (17.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(17, 5, 0) 1 1 3 3 2 2 (17.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(17, 6, 0) 1 1 3 3 2 2 (17.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(17, 7, 0) 1 1 3 3 2 2 (17.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(17, 8, 0) 1 1 3 3 2 2 (17.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(17, 9, 0) 1 1 3 3 2 2 (17.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(17, 10, 0) 1 1 3 3 2 2 (17.2, 12.0, 6.0) (0.2, 2.0, 6.0)
(17, 11, 0) 1 1 3 3 2 2 (17.2, 13.0, 6.0) (0.2, 2.0, 6.0)
(17, 12, 0) 1 1 3 3 2 2 (17.2, 14.0, 6.0) (0.2, 2.0, 6.0)
(17, 13, 0) 1 1 3 3 2 2 (17.2, 15.0, 6.0) (0.2, 2.0, 6.0)
(17, 14, 0) 1 1 3 3 2 2 (17.2, 16.0, 6.0) (0.2, 2.0, 6.0)
(17, 15, 0) 1 1 3 3 2 2 (17.2, 17.0, 6.0) (0.2, 2.0, 6.0)
(17, 16, 0) 1 1 3 3 2 2 (17.2, 18.0, 6.0) (0.2, 2.0, 6.0)
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(17, 17, 0) 1 3 3 1 2 2 (18.1, 18.1, 6.0) (1.1, 1.1, 6.0)
(18, 0, 0) 1 1 2 3 3 2 (18.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(18, 1, 0) 1 1 2 3 3 2 (18.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(18, 2, 0) 1 1 3 3 2 2 (18.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(18, 3, 0) 1 1 3 3 2 2 (18.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(18, 4, 0) 1 1 3 3 2 2 (18.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(18, 5, 0) 1 1 3 3 2 2 (18.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(18, 6, 0) 1 1 3 3 2 2 (18.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(18, 7, 0) 1 1 3 3 2 2 (18.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(18, 8, 0) 1 1 3 3 2 2 (18.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(18, 9, 0) 1 1 3 3 2 2 (18.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(18, 10, 0) 1 1 3 3 2 2 (18.2, 12.0, 6.0) (0.2, 2.0, 6.0)
(18, 11, 0) 1 1 3 3 2 2 (18.2, 13.0, 6.0) (0.2, 2.0, 6.0)
(18, 12, 0) 1 1 3 3 2 2 (18.2, 14.0, 6.0) (0.2, 2.0, 6.0)
(18, 13, 0) 1 1 3 3 2 2 (18.2, 15.0, 6.0) (0.2, 2.0, 6.0)
(18, 14, 0) 1 1 3 3 2 2 (18.2, 16.0, 6.0) (0.2, 2.0, 6.0)
(18, 15, 0) 1 1 3 3 2 2 (18.2, 17.0, 6.0) (0.2, 2.0, 6.0)
(18, 16, 0) 1 1 3 3 2 2 (18.2, 18.0, 6.0) (0.2, 2.0, 6.0)
(18, 17, 0) 1 1 3 3 2 2 (18.2, 19.0, 6.0) (0.2, 2.0, 6.0)
(18, 18, 0) 1 3 3 1 2 2 (19.1, 19.1, 6.0) (1.1, 1.1, 6.0)
(19, 0, 0) 1 1 2 3 3 2 (19.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(19, 1, 0) 1 1 2 3 3 2 (19.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(19, 2, 0) 1 1 3 3 2 2 (19.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(19, 3, 0) 1 1 3 3 2 2 (19.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(19, 4, 0) 1 1 3 3 2 2 (19.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(19, 5, 0) 1 1 3 3 2 2 (19.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(19, 6, 0) 1 1 3 3 2 2 (19.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(19, 7, 0) 1 1 3 3 2 2 (19.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(19, 8, 0) 1 1 3 3 2 2 (19.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(19, 9, 0) 1 1 3 3 2 2 (19.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(19, 10, 0) 1 1 3 3 2 2 (19.2, 12.0, 6.0) (0.2, 2.0, 6.0)
(19, 11, 0) 1 1 3 3 2 2 (19.2, 13.0, 6.0) (0.2, 2.0, 6.0)
(19, 12, 0) 1 1 3 3 2 2 (19.2, 14.0, 6.0) (0.2, 2.0, 6.0)
(19, 13, 0) 1 1 3 3 2 2 (19.2, 15.0, 6.0) (0.2, 2.0, 6.0)
(19, 14, 0) 1 1 3 3 2 2 (19.2, 16.0, 6.0) (0.2, 2.0, 6.0)
(19, 15, 0) 1 1 3 3 2 2 (19.2, 17.0, 6.0) (0.2, 2.0, 6.0)
(19, 16, 0) 1 1 3 3 2 2 (19.2, 18.0, 6.0) (0.2, 2.0, 6.0)
(19, 17, 0) 1 1 3 3 2 2 (19.2, 19.0, 6.0) (0.2, 2.0, 6.0)
(19, 18, 0) 1 1 3 3 2 2 (19.2, 20.0, 6.0) (0.2, 2.0, 6.0)
(19, 19, 0) 1 3 3 1 2 2 (20.1, 20.1, 6.0) (1.1, 1.1, 6.0)

Table E.21: The DP results for the second schedule of a small instance with bigger differences arrival
rates.

State p = 1 p = 2 p = 3 Expected new state Variance of the schedule
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 3 (3.1, 3.1, 2.0) (3.1, 3.1, 2.0)
(1, 0, 0) 3 3 1 2 2 1 (3.0, 3.1, 3.1) (2.0, 3.1, 3.1)
(1, 1, 0) 1 2 3 3 2 1 (4.1, 3.0, 3.1) (3.1, 2.0, 3.1)
(2, 0, 0) 3 3 1 2 2 1 (4.0, 3.1, 3.1) (2.0, 3.1, 3.1)
(2, 1, 0) 3 3 1 2 2 1 (4.0, 4.1, 3.1) (2.0, 3.1, 3.1)
(2, 2, 0) 1 2 3 3 2 1 (5.1, 4.0, 3.1) (3.1, 2.0, 3.1)
(3, 0, 0) 1 3 3 2 2 1 (4.1, 4.0, 3.1) (2.1, 4.0, 3.1)
(3, 1, 0) 1 3 2 1 3 2 (4.1, 4.1, 4.0) (2.1, 3.1, 4.0)
(3, 2, 0) 1 3 2 1 3 2 (4.1, 5.1, 4.0) (2.1, 3.1, 4.0)
(3, 3, 0) 1 3 2 1 3 2 (4.1, 6.1, 4.0) (2.1, 3.1, 4.0)
(4, 0, 0) 1 1 2 3 3 2 (4.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(4, 1, 0) 1 3 2 1 3 2 (5.1, 4.1, 4.0) (2.1, 3.1, 4.0)
(4, 2, 0) 1 3 2 1 3 2 (5.1, 5.1, 4.0) (1.1, 3.1, 4.0)
(4, 3, 0) 1 3 2 1 3 2 (5.1, 6.1, 4.0) (2.1, 3.1, 4.0)
(4, 4, 0) 1 3 3 1 2 2 (5.1, 5.1, 6.0) (1.1, 1.1, 6.0)
(5, 0, 0) 1 1 2 3 3 2 (5.2, 4.0, 4.0) (0.2, 4.0, 4.0)
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(5, 1, 0) 1 1 2 3 3 2 (5.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(5, 2, 0) 1 3 2 1 3 2 (6.1, 5.1, 4.0) (2.1, 3.1, 4.0)
(5, 3, 0) 1 3 2 1 3 2 (6.1, 6.1, 4.0) (2.1, 3.1, 4.0)
(5, 4, 0) 1 1 3 3 2 2 (5.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(5, 5, 0) 1 3 3 1 2 2 (6.1, 6.1, 6.0) (1.1, 1.1, 6.0)
(6, 0, 0) 1 1 2 3 3 2 (6.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(6, 1, 0) 1 1 2 3 3 2 (6.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(6, 2, 0) 1 1 2 3 3 2 (6.2, 6.0, 4.0) (0.2, 4.0, 4.0)
(6, 3, 0) 1 1 3 3 2 2 (6.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(6, 4, 0) 1 1 3 3 2 2 (6.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(6, 5, 0) 1 3 3 1 2 2 (7.1, 6.1, 6.0) (1.1, 1.1, 6.0)
(6, 6, 0) 1 3 3 1 2 2 (7.1, 7.1, 6.0) (1.1, 1.1, 6.0)
(7, 0, 0) 1 1 2 3 3 2 (7.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(7, 1, 0) 1 1 2 3 3 2 (7.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(7, 2, 0) 1 1 2 3 3 2 (7.2, 6.0, 4.0) (0.2, 4.0, 4.0)
(7, 3, 0) 1 1 3 3 2 2 (7.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(7, 4, 0) 1 1 3 3 2 2 (7.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(7, 5, 0) 1 1 3 3 2 2 (7.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(7, 6, 0) 1 3 3 1 2 2 (8.1, 7.1, 6.0) (1.1, 1.1, 6.0)
(7, 7, 0) 1 3 3 1 2 2 (8.1, 8.1, 6.0) (1.1, 1.1, 6.0)
(8, 0, 0) 1 1 2 3 3 2 (8.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(8, 1, 0) 1 1 2 3 3 2 (8.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(8, 2, 0) 1 1 3 3 2 2 (8.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(8, 3, 0) 1 1 3 3 2 2 (8.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(8, 4, 0) 1 1 3 3 2 2 (8.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(8, 5, 0) 1 1 3 3 2 2 (8.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(8, 6, 0) 1 1 3 3 2 2 (8.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(8, 7, 0) 1 3 3 1 2 2 (9.1, 8.1, 6.0) (1.1, 1.1, 6.0)
(8, 8, 0) 1 3 3 1 2 2 (9.1, 9.1, 6.0) (1.1, 1.1, 6.0)
(9, 0, 0) 1 1 2 3 3 2 (9.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(9, 1, 0) 1 1 2 3 3 2 (9.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(9, 2, 0) 1 1 3 3 2 2 (9.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(9, 3, 0) 1 1 3 3 2 2 (9.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(9, 4, 0) 1 1 3 3 2 2 (9.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(9, 5, 0) 1 1 3 3 2 2 (9.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(9, 6, 0) 1 1 3 3 2 2 (9.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(9, 7, 0) 1 1 3 3 2 2 (9.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(9, 8, 0) 1 3 3 1 2 2 (10.1, 9.1, 6.0) (1.1, 1.1, 6.0)
(9, 9, 0) 1 3 3 1 2 2 (10.1, 10.1, 6.0) (1.1, 1.1, 6.0)
(10, 0, 0) 1 1 2 3 3 2 (10.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(10, 1, 0) 1 1 2 3 3 2 (10.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(10, 2, 0) 1 1 3 3 2 2 (10.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(10, 3, 0) 1 1 3 3 2 2 (10.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(10, 4, 0) 1 1 3 3 2 2 (10.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(10, 5, 0) 1 1 3 3 2 2 (10.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(10, 6, 0) 1 1 3 3 2 2 (10.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(10, 7, 0) 1 1 3 3 2 2 (10.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(10, 8, 0) 1 1 3 3 2 2 (10.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(10, 9, 0) 1 3 3 1 2 2 (11.1, 10.1, 6.0) (1.1, 1.1, 6.0)
(10, 10, 0) 1 3 3 1 2 2 (11.1, 11.1, 6.0) (1.1, 1.1, 6.0)
(11, 0, 0) 1 1 2 3 3 2 (11.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(11, 1, 0) 1 1 2 3 3 2 (11.2, 5.0, 4.0) (0.2, 4.0, 4.0)
(11, 2, 0) 1 1 3 3 2 2 (11.2, 4.0, 6.0) (0.2, 2.0, 6.0)
(11, 3, 0) 1 1 3 3 2 2 (11.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(11, 4, 0) 1 1 3 3 2 2 (11.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(11, 5, 0) 1 1 3 3 2 2 (11.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(11, 6, 0) 1 1 3 3 2 2 (11.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(11, 7, 0) 1 1 3 3 2 2 (11.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(11, 8, 0) 1 1 3 3 2 2 (11.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(11, 9, 0) 1 1 3 3 2 2 (11.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(11, 10, 0) 1 3 3 1 2 2 (12.1, 11.1, 6.0) (1.1, 1.1, 6.0)
(11, 11, 0) 1 3 3 1 2 2 (12.1, 12.1, 6.0) (1.1, 1.1, 6.0)
(12, 0, 0) 1 1 2 3 3 2 (12.2, 4.0, 4.0) (0.2, 4.0, 4.0)
(12, 1, 0) 1 1 2 3 3 2 (12.2, 5.0, 4.0) (0.2, 4.0, 4.0)
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(12, 2, 0) 1 1 2 3 3 2 (12.2, 6.0, 4.0) (0.2, 4.0, 4.0)
(12, 3, 0) 1 1 3 3 2 2 (12.2, 5.0, 6.0) (0.2, 2.0, 6.0)
(12, 4, 0) 1 1 3 3 2 2 (12.2, 6.0, 6.0) (0.2, 2.0, 6.0)
(12, 5, 0) 1 1 3 3 2 2 (12.2, 7.0, 6.0) (0.2, 2.0, 6.0)
(12, 6, 0) 1 1 3 3 2 2 (12.2, 8.0, 6.0) (0.2, 2.0, 6.0)
(12, 7, 0) 1 1 3 3 2 2 (12.2, 9.0, 6.0) (0.2, 2.0, 6.0)
(12, 8, 0) 1 1 3 3 2 2 (12.2, 10.0, 6.0) (0.2, 2.0, 6.0)
(12, 9, 0) 1 1 3 3 2 2 (12.2, 11.0, 6.0) (0.2, 2.0, 6.0)
(12, 10, 0) 1 1 3 3 2 2 (12.2, 12.0, 6.0) (0.2, 2.0, 6.0)
(12, 11, 0) 1 3 3 1 2 2 (13.1, 12.1, 6.0) (1.1, 1.1, 6.0)
(12, 12, 0) 1 3 3 1 2 2 (13.1, 13.1, 6.0) (1.1, 1.1, 6.0)

Table E.22: The DP results for the first schedule of a small instance with bigger differences arrival rates.

State p = 1 p = 2 p = 3 Expected new state Variance of the schedule
d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

(0, 0, 0) 1 2 2 1 3 3 (3.1, 3.1, 2.0) (3.1, 3.1, 2.0)
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