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Abstract

Making a robot arm able to reach a target position with its end-effector in a constrained envi-
ronment implies finding a trajectory from the initial configuration of the robot joints to the goal
configuration, avoiding collisions with existing obstacles. A practical example of this situation
is the environment in which a PIRATE robot (i.e. Pipe Inspection Robot for AuTonomous Ex-
ploration) operates. Although the manipulator is able to detect the environment and obstacles
using its laser sensors (or camera), this knowledge however is only approximate. One method
for a robust motion path planner in these conditions is to use a learned movement policy by
applying reinforcement learning algorithms. Reinforcement leaning is an automatic learning
technique which tries to determine how an agent has to select the actions to be performed,
given the current state of the environment in which it is located, with the aim of maximizing a
total predefined reward. Thus, this project focuses on verifying whether an agent, i.e. a planar
manipulator, is able to independently learn how to navigate in a constrained environment with
obstacles applying reinforcement learning techniques. The studied algorithms are SARSA and
Q-learning. To achieve that objective, a MATLAB-based simulation environment and a physical
setup have been implemented, and tests were performed with different configurations. After a
deep analysis of the obtained results, it has been proven that both algorithms allow the agent
to autonomously learn the required motion actions to be able to navigate inside constrained
pipe-like environments. Even though, SARSA has been demonstrated to be a more "conser-
vative" approach with respect to Q-learning: if there is a risk along the shortest path towards
the goal (e.g. an obstacle), Q-learning will probably collide with it and then learn a policy ex-
actly along that risky trajectory to minimize the needed actions to reach the target. On the other
hand, SARSA will try to avoid this path completely, preferring a longer but safer trajectory. Once
a full path has been learned, this acquired knowledge can be easily applied to a similar but not
equal configuration of the pipe in a transfer learning perspective. In this way, the algorithms
have been demonstrated to be able to quickly adapt to different pipes layouts and to different
goal locations.
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1 Introduction

1.1 Context and relative problem statement

Nowadays, robots are more and more autonomously performing jobs that are deemed dan-
gerous, monotonous or unacceptable to humans. Innovative systems such as pipe inspection
robots are used all over the world to get high accuracy in damage detection. There are even
inspection robots capable of climbing 90 meters on a wind blade to inspect the rotor blades of
the plant (1). The kilometers of underground pipe systems are not less complex. These systems
must always operate reliably, therefore regular inspections are absolutely necessary to prevent
damage caused by corrosion, cracks and mechanical wear. However, some points in the pipe
system, which are narrow and tortuous, are often unattainable: in these cases the only solution
is to rely on specific technical solutions.

Under these circumstances, learning-based navigation approaches are advantageous to make
robots able to autonomously move inside (partially) unknown environments, like a pipe. One
learning methodology that has been proven to be efficient in navigation tasks is reinforcement
learning. Reinforcement learning is an automatic learning technique that aims at actuating
systems able to learn and adapt to the changes in the environment in which they are immersed
through the distribution of a "prize", called reward, which evaluates their performance. The
cited approach is able to run without any previous knowledge of the dynamic model of the sys-
tem itself, called agent, and without an accurate knowledge of the environment in which it is
placed. Consequently, it should be appropriate for making a PIRATE robot (i.e. Pipe Inspection
Robot for AuTonomous Exploration) able to autonomously learn the pipe network environ-
ment in which it should operate. The integrated hardware (e.g. laser or torque sensors, camera
etc.) may detect part of the environment, but a reinforcement learning approach should allow
the robot to interact with different pipes configuration in a more productive and goal-oriented
way, without being affected by model inaccuracies.

Thus, summarizing, reinforcement learning algorithms will be analyzed to verify whether an
automatic learning technique can be beneficial in making a robot arm able to autonomously
navigate in a constrained environment with a different obstacles configurations.

1.2 Project goals and expectations

As mentioned beforehand, the primary goal of this project is to make a robot arm able to au-
tonomously navigate in an unknown constrained environment with obstacles, e.g. a pipe net-
work, applying reinforcement learning algorithms to learn an optimal and robust movement
policy. Furthermore, the algorithms to be tested should be chosen and tuned in such a way
that they can be easily adapted to different circumstances, reducing computational time re-
quired to learn new tasks and new environments.

In particular, two RL algorithms will be tested: Q-learning and SARSA, both with discretized
state-space and with continuous state-space. For the discretized state-space case, the agent
implements SARSA/Q-learning methodologies as proposed in the literature, i.e. creating a ta-
ble to estimate the action-value function (see sections 2.1.5 and 2.1.6). On the other hand, in
the continuous-state space situation, the cited table is replaced by a neural network addressed
to approximate the action-value function and, consequently, able to figure out a more detailed
representation of the state of the environment (see section 2.1.8). After the realization of the
elements required by the reinforcement learning approach, the performances of the agents in
the learning phase are evaluated. Thus, depending on the algorithm selection, the configura-
tion of the environment and the tuning of the learning parameters, different conclusions will
be drawn.

Robotics and Mechatronics Marta Barbero



2 Reinforcement Learning for Robot Navigation in Constrained Environments

1.3 Report outline

This report presents the different reinforcement learning algorithms that have been analyzed
and tested both in simulation and on the real setup. Eventually, experimental results will be
discussed and assessed.

In particular, in chapter 2, reinforcement learning approach is presented together with its ap-
plications in robotics domain. Moreover, the mechanical and software configuration of the
existing setup that has been taken as a reference for the actual setup (2) is described. At this
point, visual-guided manipulator state estimation is investigated in order to figure out the im-
age processing strategy that is more efficient for real-time applications. In chapter 3, the solu-
tions proposed in chapter 2 are deeply analyzed from different points of view so that the most
appropriate approach can be employed to satisfy the requirements that are presented herein.
Furthermore, chapter 4 focuses on the actual design choices and correspondent implementa-
tion of the chosen strategy in terms of software and control architectures as well as setup and
simulation development. According to the cited implementation, chapter 5 shows the relative
results and evaluate them based on the parameters presented in section 1.2. Eventually, chap-
ter 6 draws the conclusions about the project and the possible recommendations for future
works.
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ready learned information (4). To get a high reward, an agent must prefer the actions expe-
rienced in the past, which allowed it to produce a good reward. Therefore, to discover such
actions, the agent must choose to perform actions that it has never experienced before. The
agent must exploit what it already knows in order to maximize the final reward, but at the same
time must explore in order to choose better actions in future executions. The dilemma is that
neither the exploration nor the exploitation of experience, chosen exclusively, allow to com-
plete the task without failing. The agent will therefore have to try a large set of actions and
progressively choose the ones that have appeared more beneficial.

Another key feature of reinforcement learning is that it explicitly considers the whole problem
of the interaction between agent and environment, without focusing on sub-problems (4). All
RL agents are able to observe the environment and then choose which action to take to influ-
ence the environment. Moreover it is assumed from the beginning that the agent will have to
operate and interact with the environment despite the considerable uncertainty in the choice
of actions.

2.1.2 RL elements

In addition to the agent and the environment, four other elements can be identified which are
relevant for RL algorithms analysis (4): a policy, a reward function, a value function and, if
needed, a model of the environment.

The policy defines the behavior that the agent will have at a given moment during the learning
phase. In general, the policy can be defined as the mapping between the observed states of the
environment and the actions to be chosen when the agent is in these states. This corresponds
to what in psychology is called conditioning or a set of stimulus-reaction associations (3)(4).
In some cases, the policy can be a simple function or a look-up table, while in other cases
it may result in more challenging computations, such as a search process. In any case, the
policy represents the nucleus of the agent, in the sense that it alone is sufficient to determine
its behavior.

The reward function in a reinforcement learning problem defines its objective or goal. It maps
each state-action pair (or rather every action taken from a given state) with a single number,
called reward, which intrinsically indicates how desirable is to undertake a certain action in a
given state. The agent’s goal is to maximize the total cumulative reward received over the entire
period of training. The reward function defines the goodness of events for the agent. The re-
wards obtained in the state-action pairs represent for the agent the immediate characteristics
of the problem it is facing (4). For this reason, the agent does not have to be able to alter the re-
ward function but it can use it to alter its behavioral policy. For example, if an action selected by
the policy is followed by a low reward, then the policy may change in order to choose different
actions in the future in that same situation.

While the reward function indicates what is good immediately, the value function specifies
what is good in the long run (4). The value of a state represents the cumulative reward that the
agent can expect to get in the future, starting from the current state and following a certain pol-
icy. While the reward determines the immediate desire to achieve a state of the environment,
the value-function indicates the long-term desire considering not only the state achieved in
the immediate time, but also all the possible following states and the consequent rewards ob-
tained by reaching those states. For example, a state could always be characterized by a low
reward but, at the same time, it could allow to visit other states, which cannot be visited other-
wise, which allow to get a high reward. Similarly for humans, a high reward represents pleasure
while a low reward pain (3). Value-functions, on the other hand, represent a more refined and
forward-looking judgment of how they will be satisfied or dissatisfied if the environment is in a
particular state. The rewards therefore represent a primary reward while value-functions rep-
resent the prediction of the total reward. Without the rewards, value-functions would not exist,
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since the only purpose of estimating value-functions is to obtain higher total rewards. How-
ever, decisions will be made according to the estimated value-functions, because the agent’s
goal is to maximize the total reward and not the immediate rewards. Unfortunately, determin-
ing the value-functions is more complicated than determining the rewards, since the latter are
supplied to the agent directly from the environment, while the former must be estimated and
re-established by the agent’s observations (4). Precisely for this reason, the most important
component of most reinforcement learning algorithms is the methodology which permits an
effective estimation of the value-functions.

Most reinforcement learning methods are therefore structured around the estimate of the
value-function, even if it is not strictly necessary to solve some RL problems. For example,
meta-heuristic algorithms such as genetic and other functional optimization methods, like
policy gradient methods, have been used to solve reinforcement learning problems (5),(7),(4).
These methods search directly in the policy space optimizing locally around existing policies
parametrized by a set of policy parameters. Consequently, they do not even consider the es-
timation of value-functions. This type of algorithms takes the name of evolutionary methods
(or, sometimes, policy search (9),(10)) because their modalities follow biological evolution. If
the policy space is sufficiently small, or it can be structured in a way to make the process of
getting good policies easier, the evolutionary methods can be valid. Furthermore, evolution-
ary methods have advantages in problems in which the agent is not able to accurately observe
the state of the environment. However, methods based on learning through interaction with
the environment in many cases are more advantageous than evolutionary methods. This con-
sideration is due to the fact that, unlike interaction-based methods, evolutionists ignore most
of the formulation of the problem of RL: they do not exploit the fact that the policy they are
looking for is a function that maps the observed states into actions to be taken. When the
agent is able to perceive and observe the state of the environment, interaction methods allow a
more efficient search. In order to make use of the advantages of both value-function based and
policy-based algorithms, another type of algorithms has been implemented under the name
of "actor-critic" approaches. These methods have the characteristic of separating the memory
structure to make the policy independent from the value function. The block of the policy is
known as actor, because it chooses actions, while the block of the estimated value-function is
known as a critic, in the sense that it makes a critique of the actions performed by the policy
that is being followed (4). From this explanation, it is possible to understand that this approach
is a combination of the previous two methodologies.

The fourth and last element of some reinforcement learning systems, is the model of the en-
vironment (4). A model is an entity able to simulate the behavior of the environment. For
example, given a state and an action, the model is able to predict the result of the next state
and the next reward. Models are used for planning, where planning means any decision mode
based on possible future situations, before they actually occurred.

2.1.3 Markov decision processes

As already mentioned in the previous paragraphs, the learning agent bases its decisions on
the state perceived from the environment. In this section, a property of the environments and
their states is defined: the Markovian property. To maintain simple mathematical formulas,
the states and reward values are assumed to be finite (4). This allows to define the formulas in
terms of probability sums instead of integrals and probability densities.

In the general case, the state of the environment at time step t +1 after executing action At at
time step t , can be defined as a probability distribution (4):

P {Rt+1 = r,St+1 = s0|S0, A0,R1, ...,St°1, At°1,Rt ,St , At } (2.1)
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transitions, with i = 3 in the analyzed MDP. A value representing p(si+1|si , a j ) is associated to
each transition. Transitions can also have another associated expected value which represents
r (si , a j , si+1).

2.1.4 RL algorithms classification

Several algorithms have now been implemented for solving reinforcement learning problems.
At the base of each apporach, it is possible to identify central ideas in common among all. By
comparing the different methods, it is possible to notice that they differ in the way they learn
the value-function, but, in any case, the underlying idea remains the same for all methods
and is called Generalized Policy Iteration (GPI). GPI represents the iterative approach aimed
at approximating policy and value-functions: the value-function is repeatedly altered to ap-
proximate the value-function relative to the policy, and the policy is repeatedly improved with
respect to the current value-function. In the next subsections, an accurate definition of GPI is
provided as well as the correspondent algorithms implementation.

Generalized Policy Iteration

The policy iteration consists in the mutual influence of two processes (4): the first performs the
task of creating the value-function V , consistent with the current policy º (process called policy

evaluation), while the second has the task of modifying the policy, in greedy mode, following the
values extracted from the value-function, º! g r eed y(v) (process called policy improvement).
In the generalized policy iteration, these two processes alternate, the second starts when the
first one ends, even if this is not necessary. There are variants in which the processes partially
terminate before starting the following ones. For example, in Temporal Difference methods,
the policy evaluation process updates the value of a single state-action pair at each iteration
before terminating and allowing the policy improvement process to run. If the two processes
iteratively update all the states, the final result is equivalent to the convergence with the optimal
value function v§, following the optimal policy º§.

Thus, through the GPI, it is possible to describe the behavior of all the algorithms treated in
this project, and most of the existing reinforcement learning methods. This means that, in
most methods, it is possible to identify a policy according to which actions are selected and
a value function, where the former is always improved compared to the values estimated by
the second, and the second is always guided by the first, for the calculation of the new value-
function. When both processes stabilize, then the value-function and the obtained policy will
result in being optimal. This is because the value-function will only stabilize when it is consis-
tent with the policy, and the policy will only stabilize when it has a behavior that follows the
current value-function. If the policy changed the behavior with respect to the new value func-
tion, then consequently the value function would also be modified in the following iteration,
to better model the behavior of the policy. For this reason, if the value function and the policy
stabilize, they will be both optimal and consistent with each others. The evaluation process
of the value-function and the process of improving the policy are simultaneously competing
and cooperating with each others. They are competing because, by making the greedy policy
in relation to the value-function, the value function is made incorrect for the new policy, while
making the value-function consistent with the policy, the policy is made greedy than the new
calculated value-function. In the long run, in any case, these two processes interact to find a
solution that coincides with each others, which is equivalent to obtaining optimal results.

In order to fully understand the role of the policy and the value-function, it is good to briefly
summarize the elements of the problem of RL. The agent and the environment interact in a
sequence of discrete steps over time. The actions taken in the environment are chosen by the
agent. The states are the basis on which the agent chooses the actions to be taken, and the
rewards are the basic information to determine the goodness of the action performed by the

Robotics and Mechatronics Marta Barbero





CHAPTER 2. BACKGROUND 9

Since the environment can be of stochastic nature, it is not possible to be sure that in the fol-
lowing episode, by visiting s, one always obtains the same Gt . A discounting concept can be
added:

Gt = Rt+1 +∞Rt+2 +∞Rt+3 =

T
X

k=0
∞k Rt+k+1 (2.8)

with ∞ between 0 and 1, called the discount rate. The discount rate permits to consider with
less weight choices taken in the future with respect to choices made at time step t . As you move
away from state s, the obtained rewards have a lower and lower weight in the calculation of the
expected return.

Thanks to the definition of expected return and value function, it is now possible to determine a
fundamental property of the value functions which shows that they satisfy particular recursive
relationships. For any policy º and any state s, the following consistency condition is satisfied
between the value of s and the value of the possible successive state s0:

vº(s) = Eº[
T
X

k=0
∞k Rt+k+1|St = s] = Eº[Rt+1 +∞

T
X

k=0
∞k Rt+k+2|St = s]

= Eaº(a|s)Es0p(s0|s, a)[Rt+1 +∞vº(s0)]

(2.9)

The equation in 2.9 is said Bellman equation and expresses the relation between the value of
a state and the value of the states succeeding it (4). The Bellman equation averages among
all the possibilities, weighing each of them with respect to the relative probability. It states
that the value of the state s must be equivalent to the value of the following state, reduced
by a parameter ∞, added to the reward obtained by executing the transition. In equation 2.9,
º(a|s) represents the probability of choosing action a given the state s. p(s0|s, a) is equivalent to
equation 2.3. Since the consistency property is satisfied by all possible policies º, it is necessary
to generalize the equation as:

Eº[·] =
X

a

º(a|s)
X

s0
p(s0|s, a)[·] (2.10)

Summarizing, the value of a state is given by the sum of the expected returns, weighted accord-
ing to the probability of the combination of the policy choice of a and possible following states
s0, deriving by the stochastic nature of the environment.

Bellman equation represents the basis for calculation, approximation and learning of the value-
function.

Dynamic Programming

The family of algorithms called dynamic programming (DP) was introduced by Bellman (1954),
who showed how these methods can be used to solve a wide range of problems. The following is
a summary of how dynamic programming approaches the decision-making process of Markov.

The DP methods deal with the solution of Markov decision-making processes through the it-
eration of two processes called policy evaluation and policy improvement, as defined in the
previous paragraph on GPI. DP methods operate through the entire set of states assumable by
the environment, following each complete iteration for each state. Each update operation per-
formed by the backup updates the value of a state based on the values of all possible successor
states, weighed for their probability of occurrence, induced by the policy and by the dynamics
of the environment. Full backups are closely related to the Bellman equation 2.9, they are noth-
ing more than the transformation of the equation into assigned instructions. When a complete
backup iteration does not bring any change to the state values, convergence is obtained and
then the final state values fully satisfy the Bellman equation 2.9. The DP methods are appli-
cable only if there is a perfect model of the environment (4), which must be equivalent to a
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Markov decision process. Precisely for this reason, the DP algorithms are of little use in rein-
forcement learning, both for their assumption of a perfect model of the environment, and for
the high and expensive computation, but it is still opportune to mention them because they
represent the theoretical basis of reinforcement learning. In fact, all the methods of RL try to
achieve the same goal of DP methods, only with lower computational cost and without the as-
sumption of a perfect model of the environment. Although DP methods are not practical for
large problems, they are still more efficient than methods based on direct search in the policy
space, such as the genetic algorithms mentioned in paragraph 2.1.2. DP methods converge to
the optimal solution faster with respect to methods based on direct policy search (4).

The DP methods update the estimates of the values of the states based on the estimates of the
values of the successive states, or update the estimates on the basis of past estimates. This
represents a special property, which is called bootstrapping. Several methods of RL perform
bootstrapping, even methods that do not require a perfect model of the environment, as re-
quired by the DP methods. In the following section, a summary of the dynamics and charac-
teristics of methods that do not require an environment model is reported, without the need of
bootstrapping. These two characteristics are separate, but the most interesting and functional
algorithms, such as Q-Learning and SARSA, are able to combine them.

Monte-Carlo methods

Despite DP, Monte Carlo methods do not require the presence of a model of the environment
(4). They are able to learn through the use of the agent’s experience alone or from samples
of state sequences, actions and rewards obtained from the interactions between the agent and
the environment. The experience can be acquired by the agent in line with the learning process
or emulated by a previously populated data-set. The possibility of gaining experience during
learning (on-line learning) is interesting because it allows to obtain excellent behavior even in
the absence of prior knowledge of the dynamics of the environment. Even learning through
an already-populated experience data-set can be interesting, because, if combined with online
learning, it makes automatic policy improvement induced by others’ experiences possible.

In order to solve RL problems, Monte Carlo methods estimate the value function on the basis
of the total sum of rewards, obtained on average in the past episodes. This assumes that the
experience is divided into episodes and that all episodes are composed of a finite number of
iterations. This is because in Monte Carlo methods only once an episode is completed the es-
timate of the new values and the modification of the policy take place. Like GPI, Monte Carlo
methods iteratively estimate policy and value function. In this case, however, each iteration cy-
cle is equivalent to completing an episode, i.e. the new estimates of policy and value function
occur episode by episode. Usually the term Monte Carlo is used for estimation methods, which
operations involve random components; in this case, the term Monte Carlo refers to RL meth-
ods based on total reward averages. Unlike DP methods that calculate the values for each state,
Monte Carlo methods calculate the values for each state-action pair, because in the absence
of a model, the only state values are not sufficient to decide which action is better to perform
from a certain state. It is necessary to explicitly estimate the value of each action to allow the
policy to make the choices. For this reason, in Monte Carlo methods, it is necessary to obtain
the value function q§(s, a). The evaluation process of the action-state values is based on the
estimate of qº(s, a) or the expected return obtained starting from the state s, choosing action
a, following the policy º. There are two main Monte Carlo methods, which differ in terms of
estimated expected returns:

• Every-visit method MC: it estimates the value of a state-action pair q(s, a) as the average
of the expected returns obtained after each visit to the state s and choice of the action a.

• First-visit method MC: it estimates q(s, a) as the average of the expected returns obtained
just after the first visit of the state s and action a in a given episode.
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14 Reinforcement Learning for Robot Navigation in Constrained Environments

to represent the value-function allows the creation of simple algorithms and, if the environ-
ment conditions are Markovian, it permits to accurately estimate the value-function, because
it assigns to each possible configuration of the environment the expected return learned dur-
ing policy iterations. The use of the table, however, also leads to limitations: in fact, the tabular
action-value methods are applicable only to environments with reduced number of states and
actions. The problem is not limited only to the large amount of memory required to store the
table, but also to the large number of data and time required to estimate each state-action pair
accurately. In other words, the main problem is generalization (4). A solution to the prob-
lem must be found, generalizing the experience gained on a subset of state-action pairs, so
as to approximate a broader set. Fortunately, generalization based on examples has already
been extensively studied and there is no need to completely invent new methods to be used
in reinforcement learning. The solutions to generalization are based on the combination of RL
approaches with methods of function approximation. Based on a subset of examples of behav-
ior of a given function, function approximation methods try to generalize with respect to them
to obtain an approximation of the whole function (4). As with table-based methods, there are
various techniques of function approximations. In order not to make the treatment too com-
plex, in the following section, just Deep Q-Learning and Deep SARSA are introduced and are
referred as Deep RL. Both are the evolution of Q-learning and SARSA explained respectively in
sections 2.1.6 and 2.1.5.

The term Deep reinforcement learning identifies a RL method based on function approxima-
tion (4). It therefore represents an evolution of the basic RL method since the state-action table
is replaced by a neural network, with the aim of approximating the optimal value function q§.
With respect to the standard approaches, in which the network was structured in a way to use as
input both states and actions and getting as output the correspondent expected reward, Deep
RL analyzed in this report revolutionizes the structure, to require only the state of the environ-
ment as input and supplying as output as many state-action values as there are actions that can
be performed in the environment.

Figure 2.7: On the left: naive structure. On the right:Deep RL structure (19)

Since for each value update it is necessary to determine maxa q(s, a) or q(s0, a0) for Q-learning
and SARSA respectively (see equations 2.13 and 2.12), with the naive configuration shown in
figure 2.7, for each step it is necessary to execute n forward steps. On the other side, in deep RL,
the number of forward steps is always equal to 1, whatever the number of executable actions,
because the output of the network is composed of as many neurons as the number of actions,
and the value contained in them represents the expected return of the related actions.

In the simple method with table, the learning is done by accessing the row-column represent-
ing the state-action pair and updating the expected return based on the new estimate follow-
ing formula 2.13 or 2.12. This learning method is not applicable to a neural network because
the only way to modify its behavior is through the adjustment of the weights, by performing
a backward step. The learning of the value-function in the Deep RL method is based on the
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adjustment of the net weights according to the loss function, which corresponds to the mean
squared error between the target and the current value function:

Lt = [Tar g et °Q(St , At )]2 (2.14)

where Q(St , At ) corresponds to the value estimated by the network and the targets, represent-
ing the optimal expected return, are respectively for Q-learning and SARSA:

Tar g et = [Rt+1 +∞maxaQ(St+1, a)] (2.15)

Tar g et = [Rt+1 +∞Q(St+1, At+1)] (2.16)

Clearly, the optimal expected return must be estimated. Its estimation can be done with tech-
niques already used in MC methods or using directly the network. In the second case, note that
the target values depend on the configuration of the network weights, to which changes will be
made at each step. Since a loss function is applied, Deep RL treats the estimate of the value-
function as a regression problem. The errors calculated by the loss function will be propagated
backwards in the network through a backward step, following the descent logic of the gradient
with the intent of minimizing the error.

With the made analysis, it is now possible to define a first basic Deep RL algorithm, where the
state-action pairs table is replaced by a neural network initialized with random weights and
the learning of the value-function is obtained by minimizing the errors calculated by the loss
function.

Algorithm 1: Basic Deep Q-learning

Init Q(s, a) with random weights w ;
while episode != final episode do

Init and observe S;
while step != final step do

Choose A from S using ≤-greedy º

derived from Q;
Take action A, observe R and S0;
Calculate target T ;
if condition then

S’ terminal state then T = R;
else

T = R +∞maxaQ(S0, a);
end

Train the Q-network using
(T °Q(S, A))2 as loss function;

S = S0;

end

end

Algorithm 2: Basic Deep SARSA

Init Q(s, a) with random weights w ;
while episode != final episode do

Init and observe S;
Choose A from S using ≤-greedy º derived

from Q;
while step != final step do

Take action A, observe R and S0;
Choose A’ from S’ using ≤-greedy º derived

from Q;
Calculate target T ;
if condition then

S’ terminal state then T = R;
else

T = R +∞Q(S0, A0);
end

Train the Q-network using (T °Q(S, A))2

as loss function;
S = S0;
A = A0;

end

end

Applying the basic algorithms shown in 1 and 2, it turns out that the approximation of the
value-function through a neural network is not stable. To achieve convergence, the basic al-
gorithm should be modified by introducing techniques to avoid oscillations and divergences.
The most important technique is called experience replay (14), (4), (8). During the episodes,
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at each step, the agent’s experience, i.e. et = (st , at ,rt , st+1) and e = (st , at ,rt , st+1, at+1) for Q-
learning and SARSA respectively, is stored in a dataset D t = {e1, ...,et } called replay memory. In
the cycle inside the algorithm, instead of performing the network training based on only the
transition just performed, a subset of transitions is selected randomly from the replay memory,
and the training takes place as a function of the loss (e.g. of the quadratic error ) calculated on
the subset of transitions. This type of update takes the name of minibatch update and brings a
significant advantage over the basic method. First of all, every step of experience is potentially
used in various network weight updates, and this allows data to be used more efficiently. Fur-
thermore, learning directly from consecutive transitions is inefficient due to the strong corre-
lation between them. The experience replay technique, by randomly selecting transitions from
replay memory, eliminates the problem of correlation between consecutive transitions and re-
duces variance between different updates. Finally, the use of the experience replay makes pos-
sible avoiding converging into a local minimum or to diverge catastrophically, since the update
of the weights is based on the average of several previous states, smoothing the learning and
avoiding oscillations or divergences in the parameters. In practice, the modified algorithm
stores the last n experiences in the replay memory D and randomly select a subset of experi-
ences from D each time it performs an update of the network weights (see algorithms 3 and 4).

Algorithm 3: Full Deep Q-learning

Init replay memory D to capacity N ;
Init Q(s, a) with random weights w ;
while episode != final episode do

Init and observe S;
while step != final step do

Choose A from S using ≤-greedy º

derived from Q;
Take action A, observe R and S0;
Store experience (S, A,R,S0) in D ;
Sample random transition

(Ss , As ,Rs ,S0

s) from D ;
Calculate target Ts ;
if condition then

S’ terminal state then Ts = Rs ;
else

Ts = Rs +∞maxaQ(S0

s , a);
end

Train the Q-network using
(Ts °Q(Ss , As))2 as loss function;

S = S0;

end

end

Algorithm 4: Full Deep SARSA

Init replay memory D to capacity N ;
Init Q(s, a) with random weights w ;
while episode != final episode do

Init and observe S;
Choose A from S using ≤-greedy º derived

from Q;
while step != final step do

Take action A, observe R and S0;
Choose A’ from S’ using ≤-greedy º derived

from Q;
Store experience (S, A,R,S0, A0) in D ;
Sample random transition

(Ss , As ,Rs ,S0

s , A0

s) from D ;
Calculate target Ts ;
if condition then

S’ terminal state then Ts = Rs ;
else

Ts = Rs +∞Q(S0

s , A0

s);
end

Train the Q-network using
(Ts °Q(Ss , As))2 as loss function;

S = S0;
A = A0;

end

end

2.2 Existing setup

In this section, the configuration of the already existing setup that will be modified to fit project
goals is presented. The existing setup is deeply described in (2). It consists of a three degrees of
freedom robotic arm, actuated by three servo-motors and controlled by an Arduino board. In
the next subsections, its mechanical and software architectures are presented.
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order not to rely on other hardware like torque sensors and/or laser scanners to evaluate the
distance between the manipulator structure and other points of interest (e.g. goal and obsta-
cles).

2.3 Vision guided state estimation

In recent years, interest in vision systems has considerably increased. This is because vision
techniques present themselves as the best compromise between cost, flexibility and provided
information. The development of robotic applications in unstructured, dynamic and rapidly
changing environments requires the use of robust and reliable vision systems that are able to
perceive the events that occur in the environment and monitor their evolution. Thus, the ad-
vantage of using vision systems for localization and tracking purposes lies essentially in the
amount of information that can be obtained even without the use of special and expensive
hardware, such as position sensors or torque sensors. Unfortunately, extracting reliable and
accurate information from images is not an easy task and it becomes even less so if the se-
quence of images should be taken and elaborated as much as possible real-time, as in the case
of configuration estimation of robotic arms.

The problem linked to the location and tracking of a body is a problem that is difficult to solve,
especially if, as in this case, the only source of information is a sequence of two-dimensional
images. So, there is the need to find a solution for:

• Extract the elements of interest from the set of pixels that constitute a digital image (clas-

sification).

• Calculate their position in the environment (localization).

• Associate the elements previously identified with the current ones in order to identify the
trajectory followed by each of them (tracking).

What makes localization and tracking a problem of not easy solution is the fact that it contains
within it a large number of sub-problems, such as the extraction of the elements of interest from
the images, the calculation of their position in space, the resolution of the ambiguities due to
the various occlusion situations, the location of the same object in two different frames and so
on. All these sub-problems have to be taken into account when selecting the most appropriate
algorithm.

In this section, an analysis of some of the most interesting applications of vision-guided state
estimation which can be found in literature is provided, in order to find out which is the most
appropriate technique for real-time implementations.

2.3.1 Localization and tracking techniques

One of the problems encountered in the realization of a vision system, which allows localiza-
tion and tracking of the movements of robots, is related to how to calculate their position and
their trajectories within the environment. The localization process has as its main objective
the determination of the position and the possible orientation of the elements of interest. In
the tracking process, on the other hand, it is important to identify the correspondences be-
tween the previous and the current frame, which allow agents to be followed over time. In
other words, it is a question of extracting the elements of interest that characterize the frame at
the instant t °1, such as points, lines, shapes, etc., determine their position in space (localiza-
tion) and identify their presence in the frame captured at time t by determining a displacement
trajectory (tracking). The techniques used to identify and extract these elements of interest are
substantially two and are distinguished by the employment or not of particular devices called
markers.
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Localization and tracking with markers

According to this approach, markers and/or devices of various types are fixed on the robot’s
structure (e.g. see figure 2.12) (21)-(26). The signals emitted by these devices can be of differ-
ent kinds, luminous, electro-mechanical, etc., and are captured by the appropriate receiving
device, which has the task of converting these signals into two/three dimensional information.
This technique is widely used in Virtual Reality applications and has the main advantage of ob-
taining the position and orientation of the robot in real time. On the other hand, it presents the
following disadvantages:

• Moving the sensors from their original position causes situations of uncertainty in the
results.

• Particular difficulty in positioning such devices on certain region of the body, such as
narrow areas.

Figure 2.12: AprilTag markers for navigation of mobile robots (26)

However, different types of reliable markers have been identified and tested on different robots.
In (21), fiducial markers developed in the ARToolkit library are attached to the links of a small
manipulator and then tracked through a monocular camera for visual servoing control appli-
cations. Visual servoing control permits to obtain a reliable state estimation and control with-
out using measurements acquired with the encoders placed in the joints of the manipulator.
In order to detect these special markers, first an edge detection is performed, identifying dis-
continuities through Laplacian operator and looking for connections between group of pixels
having similar gray tone. Once edges are extracted, four lines forming a frame are considered
as potential markers. The detection has been proved to be fast but not so robust to changes
in illumination (26). The same markers library have been used, detected and tracked through
a monocular camera also in (22), where the kinematic model of a six degrees of freedom ma-
nipulator is learned together with the geometrical relationships between its body parts as a
function of the joint angles. Furthermore, the predicted internal kinematic model could be
used to adapt it when the robot body changes due to fatigue or failure. The central idea that
stands behind these concepts is learning through non-parametric regression a large set of local
kinematic models and then look for the best arrangement of these models to represent the full
robotic system. In this perspective, a large sequence of random motor commands are given to
the robot and, after each movement, the new configuration of the manipulator is checked, de-
tecting the new location of the markers. But, since arbitrary motion patterns (just constrained
by the geometry of the manipulator) are set, full visibility of the markers is not guaranteed and,
in that case, the configuration is rejected. Thus, the work follows the idea of learning by ex-

planation, i.e. the search for the kinematic structure is guided by the accuracy of observations
and, consequently, depend on how well those observations could explain the model.
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Markers similar to ARTag have been developed by (26). AprilTags are fiducial markers which
use 2D bar code style "tag" (see figure 2.12), allowing full localization of features from a sin-
gle image. With respect to ARToolkit, this library is completely open and well documented.
In order to detect these markers, a graph-based image segmentation algorithm based on local
gradients has been implemented. As specified in (25), image segmentation is the process of
partitioning an image into meaningful regions. More precisely, segmentation is the process of
classifying image pixels that have common characteristics, so each pixel in a region is similar to
the others in the same region for some property or characteristic (color, intensity, or texture).
Adjacent regions are significantly different than at least one of these features. The result of a
segmented image is a set of segments that, collectively, cover the entire image. Thus, apply-
ing the local gradient means computing the gradient direction and magnitude at every pixel
and then cluster the pixels with similar gradient directions and magnitudes. Moreover, a quad
extraction is performed in order to find line segments that form the quad itself and, once the
quad is found, a 2D barcoding algorithm is applied to extract the digital code of the marker.
The AprilTag detection has been proved to be fast and robust (26).

Following different approaches with respect to the previous ones, other types of markers have
been employed in (23) and (24) and detected by a single monocular camera. Both the re-
searches made use of color markers which are placed on the features of interest of the robots (in
(23) they are placed on the hands of Nao robot, while in (24) they are settled on the joints of the
used manipulator and on its end-effector). In order to detect these kinds of markers, a colour
segmentation technique can be applied. Once the colour has been detected through image
segmentation, a process of blob analysis (25) is employed to detect the contours of the markers
and classify them according to their area. This approach have been proved to be accurate and
fast in real-time applications (23), (24).

Localization and tracking without markers

Methods that do not use markers in the phase of localization and tracking are able to obtain
an estimate of the position of the tracked robot processing only the sequences of images from
video capture systems. The sequence of images can come from a single camera (monocular
vision system), or from two or more cameras (multi-camera vision systems).

In monocular vision systems, the position of the robot is tracked by first extracting the profile
of it and then trying to find the correspondences with a 3D model. An example of this imple-
mentation is described in (27), where a virtual visual servoing algorithm has been applied to
track several parts of a six degrees of freedom manipulator with the use of a single monocular
camera. Then, the obtained information are employed together with the kinematic model of
the robot to estimate its configuration.

This technique, associated with a geometric model of the camera, allow the transition from
two-dimensional image coordinates to three-dimensional ones. It should be noted that the
geometric model of the camera is not sufficient to determine the position of a point in space. In
fact, in addition to knowing the coordinates (u, v) in the image domain, to get a single solution
the distance d that separates the point of interest from the camera is needed. An estimate of
this distance d is provided by applying the methodology mentioned above.

Another possible way to reconstruct the third dimension is based on the use of stereo cameras,
as proposed in (28). In (28), a seven degrees of freedom manipulator is tracked with a binocular
camera. Firstly, an HSV segmentation of a planar patch placed on the end-effector is made (25).
Afterwards, a region of interest is selected, extracting feature points and tracking the latter in all
the video frames. Finally, feature points are used to estimate the homography between world
reference frame and image frame.

These techniques, in which the use of markers or devices of various types is not required, al-
low the robot to move freely. This advantage is paid, however, with greater difficulty in the
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reconstruction of the third dimension. In previously mentioned monocular vision systems, the
estimate of the third dimension turns out to be even more difficult to obtain compared to vision
systems that employ two or more cameras. This is because the formation of a two-dimensional
image is constituted by the superimposition of more three-dimensional information that gov-
ern the scene. As a result, the inverse problem, given a two-dimensional image determining
the three-dimensional scene from which it derives, does not have a single solution.
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3 Analysis

This chapter mainly focuses on analyzing the most appropriate solutions to satisfy project goals
and expectations through the definition of specific requirements.

In the literature, many researches have already been done concerning the integration of RL al-
gorithms in the control architecture of robotic manipulators (see section 3.1), but none of them
actually compare different algorithms with different learning parameters tuning (e.g. different
reward functions). Such a comparison would be of great interest when dealing with a complex
and over-constrained environment like in the case of a pipe: the most appropriate algorithm
could be selected depending on the configuration of the environment that the manipulator
should learn at that time. Thus, in order to test these methods in an efficient and effective way,
it is necessary to develop a setup which is easy to be used and simply modifiable, so that it can
be adapted effortlessly to fit user requirements.

Summarizing, this chapter is organized as follow: in section 3.1, the state-of-the-art of RL in
robotics applications is analyzed together with its correspondent main challenges. Moreover,
in section 3.2, the domain of interest is inspected, in terms of RL algorithms selection, manip-
ulator configuration and vision-based setup layout. Then, in section 3.3 all the requirements
concerning RL algorithms, setup and tests are specified. Based on the requirements and on
the domain analysis, the methodology adopted in this project is outlined so that conclusions
concerning the feasibility of the chosen alternatives can be assessed.

3.1 State-of-the-art of RL in robotics applications

Reinforcement Learning has become of great importance in robotics applications since it per-
mits to fill the gap towards autonomous robots, providing the necessary data to make a robot
able to perform a specific task without the need of an exact model of the environment around
it (9), (10). Thus, in this section, some of the most relevant applications of RL into robotic arms
domain are analyzed, together with their correspondent approach and tuning choices. Even-
tually, in the last paragraph of this section, the main challenges in robotics-RL environment are
described.

3.1.1 RL and robotics manipulators

As previously stated, in the last decade, many researches have been done towards the integra-
tion of RL algorithms in robotics applications. This trend is due to the fact that RL is strictly
related to the theory of classical optimal control (9), since both the approaches try to find an
optimal policy (i.e. a controller) which is able to maximize an objective function, often called
cost or reward function. However, optimal control approaches require complete knowledge
of the model of the system, i.e. a function which is able to describe, starting from the current
state, which will be the next state if a certain action is performed. On the other hand, RL does
not require this kind of knowledge, because the learning procedure operates through direct
interaction between the agent and the environment according to measured data (see section
2.1.1). Precisely for this last aspect, RL has been increasingly used in arm planning applications.
Arm planning relates to all those sets of solutions which provide the robot arm with the ability
of navigating in an environment, avoiding collisions with possible obstacles and, eventually,
determining the best trajectory to be followed to achieve a predefined objective, e.g. grasping
an object or reaching a certain goal with the end-effector.

Many of the already implemented researches make use of (Deep) Q-learning algorithm to learn
different kinds of tasks. In (12), a two-link manipulator is trained to move the end-effector
to a defined position avoiding obstacles, applying compositional Q-learning together with a
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reward function, which is higher when destination is approached with low velocities, negative
when high velocities are reached and really negative when collision occurs. Q-learning is also
applied in (15), in which a two links rigid manipulator learns how to stabilize at 0 with zero
velocity in minimum time. The state-space has been discretized as well as the action-space,
which corresponds to three torque values for each joint. The reward function is zero when
the goal is reached and -0.5 otherwise. A similar situation is described in (13), where a six
degrees of freedom robot arm learns how to reach a target without any previous knowledge of
the constrained environment in which it is placed. A double neural network together with a Q-
learning algorithm is used as learning approach and combined with a reward function which is
positive when a target is reached without collisions and negative otherwise. On the other hand,
in (14), Deep Q-learning with convolutional neural network is applied to make a six degrees of
freedom robot arm with two grippers and a camera set on the end-effector to learn how to
pick up an object. A trivial linear reward function is applied, which takes into account of the
discounted exponential distance between the end-effector and the object.

With respect to Q-learning, SARSA has not been used a lot in the literature of robotic arms.
However, (16) proposes an interesting application on a three links planar robotic arm: a multi-
agents SARSA algorithm (i.e. each link has is proper Q-table, which update independently) is
tested on making the cited robot arm to reach first a fixed goal and then track a random goal. A
penalty of -1 is assigned at each time step, while a huge reward of +1000 is achieved when the
end-effector reaches the target. Both the action-space and the state-space is considered to be
discrete. Moreover, in (17), a seven degrees of freedom robotic arm is used to learn the so called
"ball-in-a-cup" game applying SARSA with discretized state and action spaces. The learning
goal is to swing the ball with the desired angle and the desired velocity. Each state is rewarded
based on the angle and negative rewards are assigned to prevent the robot to overcome its
stroke-ends. This approach has been compered with a supervised learning technique, based
on dynamic motion primitives.

3.1.2 Challanges in RL-robotics domain

As possible to notice also from the reported literature, one of the main issue concerning RL al-
gorithms in robotic arms domain is related to treat high dimensional state-spaces. Robots op-
erate in high-dimensional state-spaces constituted of both internal states (e.g. joints and links
position and velocity) and external states (e.g. obstacle locations, presence of other robots,
wind conditions, etc.). Under these circumstances, the robot selects its motors commands (i.e.
the actions) according to a certain control policy º. The motors commands will then alter the
state of the robot and its environment, based on the value function V º.

(9) and (10) reported the main challenges of this domain in a good order:

• Curse of Dimensionality: high dimensional continuous state-action pairs, which require
the implementation of either environment discretization (i.e. just some state-action
pairs are allocated to memory) or value-function approximation through deep-learning
techniques, e.g. neural-networks (see section 2.1.8).

• Curse of Real-World Interactions: Reinforcement Learning algorithms have to operate in
real-time, selecting actions in real-time, so they should be able to deal with delays in the
sensing and execution typical of physical systems.

• Model errors: assumption of complete knowledge of the robot and its environment is un-
realistic. Thus, uncertainties and noise have to be considered when designing the model.

• Shape a proper reward function: it is necessary to design a proper reward function, which
takes into account the available knowledge of the environment as well as learning con-
vergence rate.
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model-free and they require function approximations to deal with continuous state spaces (see
section 2.1.8).

Exactly for these reasons, besides the fact that their implementation is more straightforward
and similar, both the algorithms will be tested and assessed, in order to check which of the
twos presents faster convergence to a (sub)optimal policy and which is more reliable in dealing
with over-constrained environments.

Discretized RL vs deep RL

As already mentioned in section 3.1, the Curse of Dimensionality is an important issue to be
solved. In particular two different approaches could be adopted:

• State-space discretization: as explained in sections 2.1.5 and 2.1.6, the state-space can be
discretized reducing the possible states that the manipulator can assume in the environ-
ment to a finite number of states. For example, applying this approach, the joints could
be able to rotate only of some predefined degrees declared in the discretization sample
and based on the action vector. Thus, the algorithm makes use of a Q-table to store each
state-action pair.

• Continuous state-space: as mentioned in section 2.1.8, the state-space can be kept con-
tinuous by making use of function approximations. According to this approach, the state-
action pairs that have to be allocated to memory in value-function based approaches are
substituted by a function approximator (e.g. neural networks) which approximates the
value of as many Q-functions as there are actions in the action vector.

If on one side Deep RL approaches are able to handle huge state-spaces, their implementa-
tion is not straightforward and they need some extra tuning before working in an appropriate
way. On the other hand, discretized RL algorithms are easy to be used when the available state-
action pairs are not too much, but, when the environment becomes larger, they cannot be ap-
plied accurately anymore: a too high discretization level will necessarily bring to less accurate
results, because the agent would not be able anymore to reach any state of the environment,
but just the discretized states that have been considered. Thus, in a first moment, the state-
space will be discretized not to over-complicate the algorithm structure and, therefore, the in-
terpretation of hypothetical failures. When satisfactory results will be obtained in this context,
the algorithm will be extended to the continuous state-space case through the application of
deep learning techniques as specified in section 2.1.8.

RL parameters tuning

Appropriately tuning the RL parameters is of fundamental importance in order to make an
agent to converge to a (sub)optimal policy as fast as possible applying value-function based
algorithms. In particular, the main parameters that have to be taken into account are the fol-
lowing:

• Number of iterations per episode: a specific number of iterations per episode should be
selected, because they are proportional to the number of actions the agent is allowed to
select (see pseudo-codes in figures 2.5 and 2.6). Infinite iterations, or iterate up to the
goal is reached, can make the agent to fall in some local minima in value-function esti-
mate, never reaching the goal, but just following a policy which is thought to be optimal
even if it is not. On the other hand, not enough iterations could correspond to a never
reaching the goal situation because more actions could be required to achieve the objec-
tive. Thus, it is important to proportion the number of iterations according to the size of
the environment and, consequently, the available state-action pairs.

• ≤-greedy exploration and exploitation (figure 2.4): with ≤ probability a random action is
chosen, while with probability 1°≤ the best action is chosen, according to the estimated
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value-function. Thus, ≤ should be tuned such that a trade-off between exploration and
exploitation phases is figured out. In this way the agent is encouraged not to waste time
exploring non-interesting areas of the environment, but, at the same time, it explores
sufficiently to acquire knowledge of the surroundings (i.e. location of points of interest
s.t. obstacles and goal).

• Æ (look at equations 2.12 and 2.13), which is called learning rate and determines how is
the new value estimate weighted against the old.

• ∞ (look at equations 2.12 and 2.13), which corresponds to the discount factor. If ∞ is set
equal to 1, it means that future rewards are more relevant when evaluating the value of
the current state-action pair. On the other hand, if ∞= 0, future rewards do not play any
role during the update.

• Reward function: the reward function is the most important factor in RL, because accord-
ing to it the agent select the most appropriate actions. As a matter of fact, the actions are
chosen so that the cumulative reward is maximized. Reward function can be a simple
bonus when reaching a goal and, consequently, a penalty otherwise (as described in (15),
(13) and (16)), or, on the other hand, it can be more sophisticated and depend on the
distance between the agent and the goal (as described in (14) and (17)).

Thus, an accurate selection of the cited parameters has to be performed in order to understand
their relation with the convergence rate and consequently optimize it.

3.2.2 Manipulator configuration analysis

As specified in section 2.2, the setup implemented in (2) has been taken as a reference for de-
signing the three degrees of freedom planar manipulator that will be employed in this project.
In this section, the cited configuration is analyzed in order to determine which modifications
should be made to its mechanical design and software architecture to allow the integration of
RL approaches.

Current mechanical architecture analysis

The mechanical configuration of the setup presented in (2) is non-planar. As a matter of fact,
the manipulator presents the following degrees of freedom (see figure 3.2):

1. A first degree of freedom, which allows the first link to rotate clockwise and counter-
clockwise around its z-axis (red arrow in figure 3.2).

2. A second degree of freedom, which allows the second link to rotate upwards and down-
wards (yellow arrow in figure 3.2).

3. A third degree of freedom, which allows the third link to rotate upwards and downwards
(green arrow in figure 3.2).

Thus, its design should be modified in order to make the links completely planar and conse-
quently parallel to the work-surface (see section 1.2). The decision to create a planar manip-
ulator is due mainly to the greater simplicity of design and verification of the prototype. Fur-
thermore, a planar manipulator is more easily employed for pipe inspection purposes, since it
can better fit inside small section pipes. On the other hand, a three degrees of freedom con-
figuration is selected to have more motion flexibility and, consequently, to be able to test more
sophisticated, constrained and challenging trajectories, which can better simulate applications
inside a pipe environment. Therefore, the SOLIDWORKS design of the manipulator will be
modified to get a planar configuration. However, the same servo-motors, DYNAMIXEL AX12A
(see A.1), could be employed since they present an integrated position controller, which allows
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The main advantages of employing this device instead of Arduino are that it is simple to be
used and a full open source library called DYNAMIXEL SDK has already been implemented by
Robotis team (31) and it can operate with different programming language (i.e. C#, C++, C,
Java, Python, LabVIEW, MATLAB) together with many external environments, such as ROS and
Arduino.

Once the motor are appropriately connected, another point to take into account is the integra-
tion of RL approach into the control architecture of the robotic arm. In this perspective, the
control architecture should be simplified as much as possible in order for it to be flexible and
easily adjustable to combine different RL algorithms. Thus, using the open libraries cited be-
forehand could be of great benefit since they are open and, consequently, modifiable to satisfy
project expectations.

3.2.3 Vision-based setup

In section 2.3, different vision-based localization and tracking techniques have been reported.
The stated techniques have been subdivided into two main categories:

• Localization and tracking with markers (21)-(26), which can be easily attached to the ma-
nipulator structure and to relevant features of the environment, such as obstacles and
goal. These approaches can accurately work in real-time applications and allow to get
precise pixel location of the points of interest, simply employing an uncalibrated monoc-
ular camera. Even though, the main disadvantage of this approach is that these markers
should be visible in most of the video frames not to increase uncertainty in the model.
Thus, their original location should be accurately chosen such that change in the sur-
roundings, i.e. motion of the robot or alteration of light conditions, do not affect or over-
complicate their detection.

• Localization and tracking without markers (27),(28) requires an accurate 3D model of the
environment in order to get correspondences between the actual environment as seen by
the camera and the model. These approaches are more tricky, in particular when adopt-
ing a single camera, because they all need the reconstruction of the depth dimension (i.e.
third dimension) to evaluate the distance between the features of interest and the camera
itself, so that a homography matrix can be generated.

Based on this analysis, it is evident that applying an approach which require the use of markers
is more handy in the current situation, because there is no need to implement a specific model
of the environment as required applying the other technique. The use of a model would also
go against the central idea of Q-learning and SARSA which are both model-free algorithms.

The use of a planar manipulator, which is parallel to the working environment, as well as of a
fixed single camera placed at a specific height above the environment should guarantee that
the markers are always detectable in the scene and should so overcome the main disadvantage
of this approach. Beside that, it is important to place the setup in a location with good light
conditions in order to avoid the presence of shadows that could obscure the camera field of
view and, consequently, impede the markers detection.

3.3 Requirements

This section reports the requirements for the project. In particular, five main topics are cov-
ered: in section 3.3.1, Reinforcement Learning algorithm requirements are described, paying
attention to convergence and tuning issues. Moreover, the setup requirements are shown in
section 3.3.2, while section 3.3.3 deal with tests and simulation requirements. In section 3.3.4,
the requirements concerning the documentation are presented. Finally, section 3.3.5 illustrates
the non-functional requirements that have not been specified beforehand.
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3.3.1 RL requirements

1. Employ value-function based RL algorithms

Value-function-based RL algorithms will be adopted in this project, since they have been
proven to be efficient in robotic navigation and manipulation applications (9)-(17). Fur-
thermore, their implementation is more straightforward and completely model-free, so
no previous knowledge of the environment is required. In this perspective, the tested
value-function based RL algorithms have to guarantee convergence to a sub-optimal pol-
icy in at maximum 8 hours, so that they can be fully tested in one working day.

2. Handle large state-space efficiently

If the state-space is discretized, a proper discretization level should be found out so that
the manipulator will still be able to accurately reach specific goal location. If the dis-
cretization level is too low, the considered state-space representation of the environment
would be too rough and would not allow the end-effector to reach precise locations, while
high discretization level would correspond to not-allocable Q-table. Thus, the discretiza-
tion level should be chosen in such a way that the end-effector can reach states in the
neighborhood of the goal (maximum 5 millimeters away).
On the contrary, if continuous state-spaces are adopted, the Q-table will be substituted
by a neural network (see section 2.1.8), which should be appropriately tuned and trained
to manage the whole state-space. In particular, the training period of the neural network
should not take more than 0.5 seconds so that the manipulator motion remains fluent.

3. Find an optimal trade-off between exploration and exploitation

A trade-off between exploration and exploitation phases should be figured out appro-
priately tuning ≤, to encourage the agent to learn the environment in a smart and goal-
oriented way. In particular, the agent should not waste time in exploring areas far away
from the goal, but, at the same time, it should be able to learn a suboptimal policy in less
than the available 8 working hours.

4. Make the algorithm as much as possible environment independent

The algorithm should be able to operate without requiring too many information on the
environment in which the robot is placed. If this requirement is satisfied, the algorithm
becomes flexible and easily adaptable to new conditions and constraints. To test if this
requirement is satisfied, the acquired knowledge (i.e. Q) can be utilized in a transfer
learning perspective, to learn similar environments initializing the Q in the same way. In
particular, the transfer learning approach has to be at least 50% faster than the standard
learning algorithm.

5. Improve convergence rate appropriately tuning RL parameters

As mentioned beforehand , RL parameters actually affect the convergence of the algo-
rithms. Thus, their tuning has to be justified such that convergence to a (sub)optimal
policy is always guaranteed.

6. Smart collisions management

A proper interaction between the robot arm and the obstacles should be figured out to
speed up the learning phase. E.g. reset the robot to its initial pose when a obstacle is hit.
Furthermore, the environment could be over-constrained to assess the efficiency of the
algorithm. This requirement is satisfied in the moment in which the number of collisions
is minimized without affecting the learning rate.
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3.3.2 Setup requirements

1. The setup should be manufactured with RAM facilities.

The setup should be designed in such a way that RaM Group laser cut or 3D printing
prototyping technology could be used to manufacture it.

2. The necessary components should be low-cost and commercial.

The components required for both the manipulator and the camera should be cheap and
easy to find, considering a maximum available budget of 1000 ".

3. The communication between different hardware components have to be as fast as possible

The communication between the different systems (camera, motors, control architecture
with RL algorithm) should be fast and reliable, so that signals can be exchanged as much
as possible real-time to avoid implementing complex synchronization procedures. To
satisfy this requirement it is advisable to make use of already tested open-source libraries.

4. The camera has to localize the markers efficiently

As already stated, markers will be placed in the points of interest to realize visual-guided
localization and tracking. Thus, markers should be selected such that they are easy to be
detected and tracked real-time. The detection algorithm should not take more than 0.5
seconds to detect all the markers present in the scene.

3.3.3 Tests requirements

1. Simulation is the first-step for valuable tests.

Before performing tests on the real setup, evaluate the code in simulation is important to
become sure of its outcome. The simulation has to be as much as possible representative
of the real conditions under which the robot will operate.

2. Employ virtual obstacles to bypass setup damages.

To avoid actual damages to the setup during possible collisions, virtual obstacles has to
be employed to make the test effective and safe at the same time.

3. Prioritize tests on more performing algorithms.

Since RL algorithms require some time to converge, it is necessary to prioritize tests on
more efficient algorithms, such that the full work-ability of such algorithms can be ex-
plored.

3.3.4 Documentation requirements

1. The documentation has to be up-to-date.

The project documentation has to be frequently updated, such that all the meaningful
developments and results are always underlined and real-time reviewed. In this way, no
information loss should occur.

2. Code documentation has to be well-structured.

In order to make the code user-friendly, the scripts should be clearly commented and
organized to improve readability and maintenance.

3.3.5 Non-functional requirements

1. The code should be user-friendly.

The code should be quickly readable and effectively understandable from both a user and
programmer point of view. It can also be provided of an intuitive Graphic User Interface
(GUI) to simplify the interaction with the code itself.
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3.4 Methodology

As already mentioned in section 1.2, the goal of this project is the implementation of a re-
inforcement learning based control architecture aimed at making a robotic arm able to au-
tonomously navigate in a constrained pipe-like environment. In order to test the performances
of the selected reinforcement learning algorithms, which should be value-function based, two
experimental environments have to be built:

• MATLAB-based simulation environment, in which the kinematic model of the robot
arm is taken into account to simulate its RL-based motion.

• Physical setup, which identifies a series of constrained pipe-like environments charac-
terized by the presence of a goal and a planar three degrees of freedom manipulator,
whose state is estimated through a visual-guided system: a fixed monocular camera has
to be placed on the top of the setup, so that it can be used both to track the joints and
end-effector location and to detect distances between points of interest (e.g. obstacles
and goal location) and the manipulator structure. The robotic arm should be designed
and built within RaM laboratory and it should be made of commercial and low-cost com-
ponents. The hardware should be selected in a way that the communication with the
employed RL architecture is reliable and almost real-time.

These two environments are taken as a reference to test two RL algorithms: Q-learning and
SARSA, both with discretized state-space and with continuous state-space. If the discretized
state-space is considered, a proper discretization level should be figured out to make the
manipulator motion accurate and fast. On the other hand, if the continuous state-space is
adopted, the deep neural network applied as a function approximation of the full environment
state should be quick to be trained and able to provide a good estimate of the complete state-
space. After the realization of the elements required by the reinforcement learning approach,
the performances of the agents in the learning phase can be evaluated. The agents’ perfor-
mances are calculated by means of the following parameters:

• Convergence rate: required time before reaching the target with the same amount of
actions and consequently with the maximum cumulative reward.

• Obstacles avoidance: ability in avoiding obstacles and, consequently, reduce the amount
of collisions between the robotic structure and the obstacles markers.

• Tuning of learning parameters: convergence rate comparison based on the correspon-
dent selection of learning elements, including exploration-exploitation trade-off and
deep neural network design.

• Adaptability to new configuration of the environment: applied the acquired knowledge
of the environment to quickly learn a similar but not equal configuration in a transfer
learning perspective.

Thus, analyzing these evaluation criteria for each implemented algorithm, it is possible to as-
sess their learning abilities, so that the most appropriate approach for autonomous navigation
in a pipe-like environment can be found out.

3.5 Conclusions

This section focuses on summarizing the domain analysis and relative requirements in order to
draw the conclusions about the design and implementation approaches that will be selected.

As already mentioned, value-function based RL approaches, i.e. Q-learning and SARSA algo-
rithms, will be validated both in simulation and on a real setup. Their convergence rate and
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their ability in dealing with over-constrained environments will be of central importance in
assessing their performance and efficiency, both with discretized and continuous state-space.
Beside that, learning parameters and reward function shaping will be appropriately investi-
gated in order to find out the correlation between valuable accomplishments and correspon-
dent tuning.

The setup that will be used to test the algorithms will consist of a planar three degrees of free-
dom robotic arm which will be placed in a constrained environment with virtual obstacles, so
that actual damages to the setup will be circumvented. The manipulator will be actuated by
three DYNAMIXEL AX12A motors, that will be connected to the USB serial port of a PC through
a USB2Dynamixel device. All the features of interest (e.g. joints, obstacles, goal, etc.) will be
provided with markers. These markers will be localized and tracked real-time through an ex-
ternal monocular camera, that will be settled at a certain height to record the whole scene.

Eventually, a full documentation on how the setup works will be provided such that every new
user will not face problem in dealing with it. Beside that, the code will be provided with com-
ments in all the sections and, more importantly, with a GUI, so that, without looking directly to
the code, the full setup can be used.

Robotics and Mechatronics Marta Barbero



34 Reinforcement Learning for Robot Navigation in Constrained Environments

4 Design and Implementation

As already specified, in this project a physical setup has been developed to effectively test re-
inforcement learning algorithms. To allow the interaction between the environment and the
agent, which characterizes reinforcement learning methods, the environment is recorded by
an external monocular camera, which is able to detect the features of interest (i.e. obstacles,
goal, joints and end-effector of the manipulator). In this way, the distance between those fea-
tures can be easily evaluated depending on their pixel location in the frame: e.g. collisions are
detected when the manipulator markers are touching the obstacles markers, or, on the other
hand, a success is identified when the end-effector marker has the same location of the goal
marker. This approach permits to avoid the use of different hardware: actual obstacles that
can damage the structure of the manipulator, position sensors to detect the distances and/or
torque sensors which can determine a collision.

In order to properly design the required mechanical and software architectures, it is necessary
to define RL elements presented in section 2.1 for the considered context. Thus, the following
components should be clarified (see figure 2.1):

• Environment: the environment corresponds to all the setup components which are
present in the considered system, i.e. manipulator structure, including motors and en-
coders, obstacles and goals markers as well as camera signals. In this context, the envi-
ronment as well as the agent are described by a Markov Decision Process (see equation
2.3) and, consequently, they consist of a set of states (i.e. robotic arm joint positions), a
set of actions (i.e. joint position displacements), a transitional function, which assigns a
probability distribution to each state-action pair, and a reward function, which assigns a
numerical value to each transition.

• Agent: the agent is able to receive some feedback signals from the environment thanks
to the available sensors and, based on those feedback signals, it decides which action to
take and, eventually, it translates those actions into actual motion for the robotic arm
motors, trying to maximize the cumulative reward. In a complex robotic system like the
considered one, the agent consists of the following components: a component which is
able to make high level decisions according to the received input from the environment
and a second component that implements those decisions in the environment. When
selecting an action a, in each time step the agent follows a policy which associates to
each state-action pair a probability to take action a from state s.

Summarizing, the boundary between the considered agent and environment can be specifi-
cally defined only in the moment in which states, actions and rewards are determined together
with a decision making strategy (4).

This chapter presents the design and implementation phases aimed at creating the setup envi-
ronment, whose intent is to test and compare four reinforcement learning algorithms:

• SARSA with discretized state-space.

• Q-learning with discretized state-space.

• Deep SARSA with continuous state-space.

• Deep Q-learning with continuous state-space.

All these algorithms will be tuned differently in order to figure out the connection between RL
parameters tuning and actual performance of the methodology (see section 3.2.1).
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It is provided by machine learning and deep learning libraries as well as graphical interfaces
and image processing solutions. Other than that, MATLAB permits to design representative
and emblematic simulations of the setup that will be adopted, so that the implementation of
the experimental phase of the project can be more straightforward (see section 3.3.3). Last but
not least, MATLAB codes are easily understandable and modifiable by programmers of differ-
ent backgrounds, not only programming experts, satisfying the requirement defined in section
3.3.5.

Therefore, MATLAB library provided by Robotis team will be adopted to communicate with
the servo-motors. The procedure to install the library in different operating systems (i.e. Linux,
MacOSX, Windows) is well documented in (31). In this project, in particular the following func-
tions have been applied in order to connect the PC with the motors and interchange data:

• openPort(port_number), which open the serial communication between the mo-
tors and the USB port according to the port path specified in port_number.

• write1ByteTxRx(), which orders to the DYNAMIXEL motor identifiable with a spe-
cific DXL_ID and with a predefined PROTOCOL_VERSION to communicate with the
port_number, writing 1 byte to activate its torque at the correspondent address
ADDR_AX_TORQUE_ENABLE and, consequently, set its status as being ready to move.

• write2ByteTxRx(), which orders to the DYNAMIXEL motor identifiable with a spe-
cific DXL_ID and with a predefined PROTOCOL_VERSION to communicate with the
port_number, writing 2 bytes for two main purposes:

– send the position value specified in DXL_GOAL_POSITION at the correspondent
address ADDR_AX_GOAL_POSITION and, consequently, move to that position.
The motor can get position values in the range 0-1023, where each unit corresponds
to 0.29 degrees (20).

– send the velocity value specified in DXL_GOAL_VELOCITY at the correspondent
address ADDR_AX_GOAL_VELOCITY and, consequently, move with that velocity.
The motor can get velocity values in the range 0-1023, where each unit corresponds
to 0.111 rpm (20).

• read2ByteTxRx(), which orders to the DYNAMIXEL motor identifiable with a spe-
cific DXL_ID and with a predefined PROTOCOL_VERSION to communicate with the
port_number, reading 2 bytes for two main purposes:

– read the current position value specified at the addressADDR_AX_GOAL_POSITION.

– read the current velocity value specified at the addressADDR_AX_GOAL_VELOCITY.

The full "read-write" code is provided in the appendix A.4 together with the control table of
DYNAMIXEL AX12A servo-motors (A.3) in which all the features addresses are defined.

4.1.2 Setup environment design

As already mentioned, a setup should be designed in order to test RL approaches on the real
environment. First of all, the environment must allow the interaction foreseen by reinforce-
ment learning methodologies, as observable in figure 2.1: the environment must be designed
in such a way that an external agent is allowed to perform an action and consequently return
to the agent the relative reward and the new state. Since the environment must be episodic in
nature (see pseudo-codes in 2.5 and 2.6), the agent should eventually reach a terminal state.
Each episode must end whether the goal is achieved or otherwise. Guided by the nature of the
objective of the environment, the terminal state is achieved only in the moment in which the
agent succeeds in reaching the goal. Applying this approach, however, makes the agent not
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actions and reduce their number; as a matter of fact, each possible state-action pair estimated
value should be allocated in a cell inside the Q-table during the learning phase. By discour-
aging and reducing the number of parameters that represent the state of the environment, in-
formation is lost and consequently the states may lose Markov property since the same state
parameters could result in different environment configurations. Because of the discretization
and reduction of inputs, discretized methods may not be able to achieve excellent results; for
this reason a second more advanced method has been implemented, Deep RL (section 4.2.2),
which replaces the Q-table with a neural network to approximate the value-function. As already
defined in detail (see section 2.1.8), thanks to the use of the neural network, there is no real ma-
terialization of the value of every possible state-action pair, but the estimation of the behavior
of the value-function is done through the neural network by modifying its internal weights. The
neural network receives continuous input values and does not require any discretization.

Although different algorithms have been implemented, the mode of interaction between the
agent and the environment remains of episodic nature for all the situations (see pseudo-codes
in 2.5, 2.6 and algorithms 3 and 4). In particular, all the methods present two nested loops, since
each episode (external loop) is constituted of a particular amount of iterations/steps (internal
loop). As already mentioned in section 3.2.1, each episode must be characterized by a prede-
fined number of iterations: each iteration corresponds to an action that the agent is allowed
to perform. Due to this correlation, the number of iterations should be well tuned to avoid the
following circumstances:

• Infinite iterations, which could make the agent to follow non-optimal policies related to
local minimum areas.

• Not enough iterations, which could make the agent not to have sufficient available ac-
tions to reach the goal, since the number of iterations is equal to the number of available
actions per episode.

According to this analysis, the number of iterations have been selected to be 250, considering
that the minimum number of actions required to reach a goal placed as in figure 4.5 corre-
sponds on average to 80.

At the beginning of each new episode, the manipulator is reset to an initial configuration which
is defined in advance, initializing in this way the initial state of the agent in the environment.
In order to end an episode, the agent should reach the goal avoiding the obstacles. Although, if
a collision occurs before reaching the goal, two strategies have been tested:

• Reset after collision: the episode ends if a the manipulator hits an obstacle and so the
agent returns to its initial state before ending the iterations.

• Move one step backwards: if a collision occurs, the iterations continue and the manip-
ulator moves back to its previous state, i.e. the state before the collision, and it should
select a new action from that state.

Summarizing, this section presents the design of the RL architecture, both with discretized
state-space (section 4.2.1) and continuous state-space (section 4.2.2). Eventually, the differ-
ences between the two implementations on the real setup and in simulation (section 4.2.3) are
highlighted.

4.2.1 Discretized RL algorithms

As already mentioned in sections 2.1.5 and 2.1.6, SARSA and Q-learning make use of a Q-table
to store the estimated values of all the possible state-actions pairs. In this perspective, a smart
discretization approach should be figured out in order to circumvent the curse of dimension-
ality issue typical of the robotics domain (see section 3.1 and (9)(10)).
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State discretization

Servo-motors with position control are adopted and, consequently, the state parameters cor-
respond only to the possible joint angles, i.e. the three motors positions that the manipulator
can present in the considered environment. The state-space dimension depends mainly on
two parameters:

• Size of the workspace: the definition of a specific workspace in which the robot arm can
operate is of great importance to have a better visualization of the motion the robotic
arm can perform and of the regions that the end-effector can actually reach in the en-
vironment. Thus, all the servo-motors mounted on the robotic arm have been limited
to specific position ranges to avoid undesired configurations and possible collisions be-
tween different parts of the manipulator structure.

• Discretization level: to select a proper discretization level, it is necessary to look at the
environment in which the robotic arm will operate. In a L-shaped pipe-like environment
(see e.g. figure 4.5), the manipulator should be able to reach quite far targets with its
end-effector, maybe rotating the latter of 90 degrees with respect to the second link and,
at the same time, the first two links should allow the end-effector to enter and explore the
other curve as fast as possible. In this context, both the first motor and the third motor
should have a high resolution so that they can make accurate movements, while, on the
other hand, the second motor, since it is attached to a longer link with respect to the first
one, should present less discretization to allow the end-effector to enter the curve faster.

According to the considerations previously made, the states of the agent can be selected as
follow, obtaining the workspace shown in figure 4.9:

Table 4.2: Definition of the states of the agent

Parameter Range [motor units] Discretization sample [motor units] State size
µ1 550-900 5 71
µ2 400-1000 8 76
µ3 180-900 5 145

Total state size 782420

As possible to notice from table 4.2, the three states are combined together to get a final state
matrix of dimension 782420x3, in which the rows corresponds to all the possible combinations
of the three column elements, i.e. the states µ1, µ2 and µ3. These states are in motor units
and each unit is equivalent to approximately 0.29 degrees (20); thus, the first and the third
state present a discretization sample of around 1.45°, while the second is sampled every 2.32°,
allowing the end-effector to move faster towards the right/left side of the pipe depending on
the goal location.
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Algorithm 9: ≤-greedy action selection algorithm

if rand() > ≤ then

Select greedy action derived from Q;
else

Select a random action;
end

Even if ≤-greedy strategy presents a good balance between exploration and exploitation during
the action selection, it has one main disadvantage in the exploration phase: it selects equally
among all the available actions (4), i.e. all the actions are equally attractive for the agent. This
scenario could be undesirable in the moment in which some actions would bring the agent
to reach environment states which should be avoided or when a full environment exploration
should be guaranteed. In order to solve those issues, the action selection strategy has been
modified as described in algorithm 10.

Algorithm 10: Modified ≤-greedy action selection algorithm

if rand() > ≤ then

Select greedy action derived from Q;
else

if iteration == 1 then

Select a random action;
else

Check the most and less selected actions;
if The most selected action is unique then

Select randomly among all the actions except the most selected;
else

if The less selected action is unique then

Select that action;
else

Select randomly among all the less selected actions;
end

end

end

end

According to the modified ≤-greedy action selection proposed in (10), all the selected actions
are stored in MATLAB workspace, such that, once the agent is exploring, instead of selecting a
random action uniformly among all the available actions, it selects a random action uniformly
among all the actions except for the most selected action. If more than one action have been
selected the most, the agent chooses the less selected action or, if even the latter is not unique,
it selects randomly among all the less selected actions.

In this way, the agent is allowed to explore the environment in a more uniform way and, since
RL algorithms have an episodic nature, problem concerning resets of the random generator
in MATLAB are avoided. This latter issue makes the MATLAB function rand() to returns the
same result any time it is executed at the beginning of each episode. Thus, since a completely
random exploration is not possible in a PC but it is always pseudo-random, it should be at least
supervised such that the agent can also explore the whole environment with a more homoge-
neous actions selection.
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In this context, it is so necessary to discover an optimal exploration-exploitation trade-off (see
requirement in 3.3.1), so that the agent does not waste time in exploring remote areas far from
the goal, but, at the same time, it does not exploit too much a specific policy, because, if not,
it could converge to a local optimal policy, which is not actually the generalized optimal one.
In particular, as mentioned in (4), to obtain higher rewards, the agent has to select actions that
it discovered in previous trials and that allowed it to get positive reward in the past, but, to
determine those actions, the agent must test actions that it has never tried beforehand. There-
fore, to learn that some actions may be better than others, the agent has to sufficiently explore
the environment. To converge to optimal policy, the exploration period must be gradually re-
duced, such that the algorithm can behave greedy letting ≤ converging to zero and, once the last
episodes are reached, the agent is allowed to just exploit the optimal policy it discovered. Thus,
at the beginning of the learning phase, a bigger ≤= 0.3 has been selected (see results in section
5.1.1 and figure 5.4 for comparison about tested ≤-values), such that the agent can explore 30%
of the time in each episode and, at the end of each episode, its value is decayed by a factor of
0.998. In this way, ≤! 0 when episode ! final episode.

Moreover, during the training period, convergence to the (sub)optimal policy is identified in
the moment in which the agent reaches the goal for 50 successive episodes with the minimum
number of actions. If this situation is reached, the exploration phase is completely stopped, i.e.
≤= 0, and the agent is allowed to exploit just the learned policy.

In order to find the greedy action specified in (10), a Q-table must be available in MATLAB
workspace which stores the value of all the available state-action pairs according to the dis-
cretization approach. Thus, this Q-table should have a number of rows equals to the available
states and how many columns as the available actions. As a result the implemented Q-table
would be 782420x6.

As specified in both 2.5 and 2.6, at the beginning of the algorithm, Q(s, a) should be initial-
ized and then updated according to the equations 2.12 and 2.13 for SARSA and Q-learning
respectively. In the literature, the Q-table is usually initialized arbitrarily (4), e.g. Q =

zer os(st ates, acti ons), but, to make the initial exploration phase more goal-oriented, it may
be initialized based on the reward function. In this way, states which bring the agent closer to
the goal present higher values with respect to the states which make the agent to move further
from the goal. Of course, since the value of each state-action pair has not been estimated yet
during the initialization of the algorithm, each action presents the same value for each state, i.e.
the resulting Q-table is just the repetition of the reward matrix in all its columns (see equation
4.3 and code in appendix B.2).

Q =
£

R1
nx1 ... Rm

nx1

§

(4.3)

Where n is the number of available states and m is the number of available actions.

Consequently, each action for each state is initialized equally and, so, this aspect should be
taken into account during the exploitation phase: when the agent in state S has to select the
greedy action A§ derived from Q (see algorithm 10), it should not always select the first action
for that state, i.e. A1, but it should select randomly among all the available actions with the
highest Q-value, so that, after some iterations, the optimal action A§ for that state S can be
actually highlighted by a higher value estimate. Following the described analysis, a second
version of the modified ≤-greedy algorithm is provided in 11.

According to algorithm 11, in the exploitation period the greedy-action is selected only when
at the current state S the available actions have different value estimates in the correspondent
Q-table. Eventually, at this point, the index of the chosen action is returned so that the manip-
ulator can actually move the correspondent motor to the specified position.
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Algorithm 11: Second modified ≤-greedy action selection algorithm

if rand() > ≤ then

if all(Q(S, :) ==Q(S, A1)) then

Check the most and less selected actions;
if The most selected action is unique then

Select randomly among all the actions except the most selected;
else

if The less selected action is unique then

Select that action;
else

Select randomly among all the less selected actions;
end

end

else

Select greedy action derived from Q;
end

else

if iteration == 1 then

Select a random action;
else

Check the most and less selected actions;
if The most selected action is unique then

Select randomly among all the actions except the most selected;
else

if The less selected action is unique then

Select that action;
else

Select randomly among all the less selected actions;
end

end

end

end

In section 5.1.1, a graph is reported which compare the action selection distribution among
standard ≤-greedy algorithm 9 and modified ≤-greedy algorithm 11 (see figure 5.3) to check if
the modified strategy actually provides a more uniform selection of the actions in each episode.

RL parameters selection

Once the manipulator has moved, the new state S0 of the agent and the reward received for per-
forming that action are observed. As already specified beforehand in section 3.2.1, the reward
could be a simple bonus when reaching the goal and a penalty when a collision occurs, i.e. bi-
nary/sparse reward, or it can depend on the distance between the end-effector and the goal.
This reward function is ideal when the manipulator has to learn an environment like the pipe
one shown in figure 4.5, because it guides the agent towards the goal in a more efficient way. If
the manipulator was rewarded only when the goal has been reached, as in the sparse reward
case, it would not receive any feedback concerning the distance with respect to the goal. In this
research, it is assumed that the agent knows the Euclidean distance between the end-effector
and the goal. This is a realistic assumption because of the fact that the agent makes use of the
markers detection signals provided by the camera. In this perspective, the following distance
reward functions have been investigated and tested:
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Table 4.3: Summary of implemented tuning choices for learning parameters

Parameter Value Description

Iterations 250
Number of iterations per episode. An episode can last as maximum
250 iterations.

≤ 0.3
Initial exploration index. It represents the probability of selecting a
random action with respect to selecting the greed-action (see sec-
tion 5.1.1).

≤ decay 0.998

Decay of ≤ at the beginning of each new episode. So that almost full
exploitation is reached in the last episodes. As a matter of fact, 0.3§
(0.9982000) = 0.0055, which is almost equal to zero exploration after
2000 episodes.

Æ 0.99
Learning rate. It represents the updating index of the value of a state-
action pair.

∞ 0.9
Discount index. When assessing the value of a state-action pair, it
declares how important is the value of the future states.

The full MATLAB code of both SARSA and Q-learning is provided in the appendix B.3 and B.4.

4.2.2 Deep RL algorithms

Since Markov property is affected by the reduction and discretization of the environment, it
is not easy to obtain excellent results in those conditions. Unfortunately, discretization is in-
evitable, since in its absence, the high memory requirement for storing all the state-action pairs
would be prohibitive, but, above all, the number of data and time required to accurately esti-
mate each single state-action pair would be too high. The solution to the problem is to combine
reinforcement learning, both Q-Learning and SARSA, with a function approximation method.
The implementation of Deep RL with experience replay has been selected (see section 2.1.8). In
the Deep RL method, the Q-table is replaced with a neural network for the approximation of the
value-function. The adoption of a neural network allows to use the complete state provided by
the environment without reductions and discretizations. Of course, since the encoders of the
motors have precise resolution of 1 motor unit, i.e. 0.29 degrees, the full state space is intrinsi-
cally discretized with a sample of 1 motor unit.

Concerning the actions choice, Deep RL adopts an ≤-greedy policy, similar to the policy used
by the first implementation (algorithm 11). In this case, however, the values of the state-action
pairs are obtained by performing a forward step in the neural network. During the learning
phase, the implemented method estimates the target values for the calculation of the loss func-
tion (see equation 2.14), following the logic proposed by Monte Carlo methods (see section
2.1.4) which provides the estimate of the expected return of a state-action pair, using the infor-
mation stored in a class called Replay Memory.

In Deep Q-Learning, at each iteration the agent stores a new tuple in replay memory contain-
ing: the previous state, the performed action, the obtained reward and the new visited state. In
Deep SARSA also the next action from the new visited state is stored (i.e. At+1). See table 4.5 to
get further details.

At this point, by randomly choosing a replay memory tuple, it is possible to estimate the ex-
pected return (equation 2.8). If the tuple selected in the Replay Memory belongs to a not yet
completed episode, the calculation of the expected return is totally or partly done using the
estimates of the neural network. In this perspective, instead of training the network with only
the just performed transition, as implemented in algorithms 1 and 2, the training is based on
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Table 4.5: Values contained in each tuple of the Replay Memory

Class object Parameter Description

obj.S state 1 State of the environment at instant t

obj.A action 1 Index of the performed action at instant t

obj.R reward Obtained reward when action 1 is performed

obj.S_new state 2
New successive state at t+1, reached executing ac-
tion 1 at state 1

obj.A_new action 2
New action selected from state 2 (only in Deep
SARSA)

a subset of randomly selected transitions from the Replay Memory. This type of update takes
the name of updating with mini-batch (see section 2.1.8) and brings a considerable advantage
with respect to the basic method, since, in the learning phase, fewer episodes are required to
reach convergence.

To create the neural network, MATLAB Neural Network toolbox has been employed. This
package offers a wide variety of architectures and training functions for modeling complex
non-linear systems in a simple way, using artificial neural networks of different type. MAT-
LAB implements different optimization algorithms for gradient descent learning, including
traingdm (35), which is a gradient descent function with momentum back-propagation and
has been proved to be 70% more accurate with respect to the standard gradient descent back-
propagation functions (36). As a matter of fact, since momentum back-propagation is applied,
the network becomes able to respond both to local gradients and to current trends in the er-
ror surface (35); consequently, the momentum behaves as a low-pass filter which filters out all
the small features in the error surface, allowing the network to bypass possible local minimum
points. traingdm makes use of the following formula to change the weights w of the neural
network (35):

d(w) = mc §d(wpr ev )+
l r § (1°mc)§d(perf)

d(w)
(4.7)

In equation 4.7, the next parameters are present:

• d(w), which represents the change of the NN weights.

• d(wpr ev ), which is the previous change to the weight.

• mc, which corresponds to the momentum constant. mc = 0 means no momentum, while
mc = 1 means that the relative network would not learn from the local gradient.

• l r is the learning rate of the network. A too high learning rate cannot ensure convergence
of the network, because the changes of weight values could be so huge that the gradient
descent can overshoot the minimum, making the loss function even worse. On the other
hand, a small learning rate is more reliable but it can make the training slower because
the steps required to minimize the loss function are usually of infinitesimal order. In this
case a learning rate of 0.012 has been selected since the resulting network can be trained
sufficiently fast (see results in table 5.2).

• @(per f )
@w

corresponds to the derivative of the performance with respect to the weight w .
The performance is evaluated according to the performance function, which in this case
is the mean-squared error as specified in equation 2.14.
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To initialize the Deep RL agent, in addition to the action-space attribute, containing all the
possible actions that the agent is allowed to perform, and the learning parameters ≤, ≤-decay, Æ
and ∞ (see table 4.3), additional parameters must be provided:

• Maximum dimension of the Replay Memory class, i.e. memory_size.

• Maximum dimension of the mini-batch, i.e. batch_size.

As already mentioned, to perform an action selection, Deep RL implements an ≤-greedy policy
in a way similar to the methodology applied for the discretized state-space case (see algorithm
10). In this case, the estimates of the values are obtained through the neural network (see algo-
rithm 12).

Algorithm 12: Deep RL ≤-greedy action selection algorithm

if rand() > ≤ then

Select greedy action derived from Q applying ar g maxa0Q(S, a0);
else

if iteration == 1 then

Select a random action;
else

Check the most and less selected actions;
if The most selected action is unique then

Select randomly among all the actions except the most selected;
else

if The less selected action is unique then

Select that action;
else

Select randomly among all the less selected actions;
end

end

end

end

As possible to notice from algorithm 12,if the action with higher expected return (i.e. greedy-
action) is selected, the deep ≤-greedy algorithm invokes an argmax function that requests as
input parameter the state of the environment S, used internally as input to the neural network
Q, in order to obtain the values related to every possible action that can be performed from that
state. By executing that function, it is possible to interact with the modeled neural network,
making a forward step with the environment state as input. The obtained output corresponds
to a vector of length equal to the number of executable actions. Once the vector is evaluated,
the function returns the index of the action with a higher value (greedy-action).

Once the selected action is performed, the new state and the relative reward are observed.
Thus, the new tuple (i.e. (St , At ,Rt ,St+1) for Deep Q-learning and (St , At ,Rt ,St+1, At+1) for
Deep SARSA) is added to the Replay Memory by calling the function store_transition.
store_transition concatenates each parameter of the tuple to the previous ones apply-
ing the MATLAB code provided in appendix B.5. In case the insertion of the new tuple exceeds
the maximum size of the Replay Memory memory_size, the maximum size is maintained by
eliminating the exceeding tuples following FIFO logic.

At this point, the action-value function Q is learned based on a randomly selected subset of
tuples from the Replay Memory. The amount of samples in the subset are determined based
on the chosen batch size. Then, for each selected tuple, the target value is calculated (see equa-
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4.2.3 RL architecture on real setup vs simulation environment

As already specified in section 4.1.2, the distance between the end-effector and the goal is eval-
uated through the camera, which detects the location of the goal and manipulator markers. On
the other hand, in simulation environment, since no camera signal is available, the end-effector
location is calculated according to the kinematic model in 4.1 and, based on that, its distance
with respect to the predefined goal location in x ° y plane can be determined. Thus, since the
reward function is based on the Euclidean distance between the cited points of interest, it is
evaluated in a different way according to the employed environment.

Even though, in the discretized state-space case, the Q-table should be initialized based on the
selected reward function, as specified in section 4.2.1. In this perspective, camera signals can-
not be utilized because it is inefficient to assess in advance all the possible configurations of
the manipulator and, consequently, evaluate the Euclidean distance between the end-effector
and the goal in all the stated configurations. Therefore,the kinematic model is also employed
in the setup environment in order to initialize the reward function and, consequently, the Q-
table, making the necessary adjustments for the unit of measures: to apply forward kinematics,
the joints positions should be in degree, so a conversion is applied to make the motor units
conforming to the kinematic model; at the same time, the links lengths are kept in pixel coordi-
nates, knowing that each pixel corresponds to 0.8824 millimeters in the employed PC display,
since the distances with the camera are evaluated in pixels, which do not require camera cali-
bration.

4.3 Experimental design

In order to test the different RL algorithms, it is necessary to design and plan the series of ex-
periments that will be performed.

The first configuration of the environment that will be considered is the one shown in figure
4.5, on which all the four implemented algorithms will be tested, i.e. discretized SARSA, dis-
cretized Q-learning, Deep SARSA and Deep Q-learning. On this environment, according to the
methodology proposed in section 3.4, each algorithm will be assessed through the following
parameters:

• Convergence rate: required episodes before reaching the target with the same amount
of actions and consequently accumulating the same maximum reward. If convergence
rate is reached, (sub)optimal policy is guaranteed to be found.

• Obstacles avoidance: ability of avoiding collisions with obstacles.

• Number of successes: average number of successes per learning period. An episode
is considered successful if the goal has been achieved. This number is a good perfor-
mance measure because it allows to understand how many times during the all available
episodes the agent is able to reach the goal.

• Reward function selection: performance evaluation based on the chosen reward func-
tion, which can be:

– Euclidean distance (equation 4.4).

– Exponential Euclidean distance (equation 4.5).

– Gaussian Euclidean distance (equation 4.6).

For each experiment, the performance of each algorithm will be analyzed through two types of
graphs:
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1. Average cumulative reward obtained by the agent at the end of each episode evaluated
as:

R̄ =

PN
n=1 R(n)

N
(4.9)

where R̄ is the average cumulative reward at the end of the episode, N is the number of
iterations that the agent experience per episode (with a maximum of 250) and R(n) is the
reward at considered iteration n.
Reinforcement learning tries to maximize the cumulative reward per episode, so this plot
is useful to verify whether the agent is able to correctly estimate the optimal policy. The
agent should follow this optimal policy to reach the goal without collisions and with the
least amount of actions. In this way, also convergence rate can be assessed, because
complete convergence is achieved in the moment in which the same policy is followed
and, consequently, the average cumulative reward is maximum and constant for the re-
maining episodes. At the same time, since the average cumulative reward depends on
the selected reward function, it is possible to analyze which reward function provides the
best results.

2. Bonus behavior. A sparse reward will be added to the reward function to prioritize ac-
tions that make the agent reach the goal and penalize actions that make the agent col-
liding. In particular, a bonus of +200 is assigned when the agent reach the goal, while a
penalty of -100 is obtained when a collision occurs. Looking at the bonus behavior allows
to understand whether an agent has actually reached the target location at the end of the
episode, maximizing the average cumulative reward, or collided with an obstacle. This
sparse reward is necessary in particular when obstacles are located close to the goal: re-
ward would be high at those points, since the distance between the end-effector and the
goal would be small, even if the goal has not been reached yet.

Based on the results obtained through the proposed assessment, just the most goal-oriented al-
gorithms will be tested in other configurations of the environment during the later experimen-
tal phase. This choice have been made because of the long training period of each algorithm
on the real setup, in the range 1-3 hours per experiment, depending on the selected number of
training episodes and on the chosen approach. In this way, further analysis or modification to
the selected algorithms can be performed to evaluate their efficiency in a more accurate way. In
particular, the environment layouts shown in figure 4.14 will be also taken into consideration
with different goal locations, i.e. goal on the left, goal on the right and straight goal.

These layouts have been chosen because they are representative of some possible standardized
configurations of a pipe network, as shown in figure 4.15. Configuration 4.14a, configuration
4.14d and configuration 4.14e are similar concerning the location of the goal and, therefore,
RL algorithm adaptability to new configurations of the environment can be investigated, i.e.
the acquired knowledge of the already learned environment is applied to learn a similar but
not equal configuration, adopting a transfer learning approach. If adaptability is proved to
work efficiently, the same trained Q can be adopted to similar pipe networks, ensuring a faster
convergence to the (sub)optimal policy.
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3. Prioritize tests on more performing algorithms.

As specified in section 4.3, all the algorithms are first tested in the environment shown
in figure 4.6 to assess the most performing ones. At that point, just the most efficient
algorithms will be tested in other configurations of the environment (see figure 4.14).

4.5.3 Non-functional requirements

1. The code should be user-friendly

In order to make the code more user-friendly, a MATLAB-based graphical user interface
has been developed (see section 4.4), so that new users can easily interact with the im-
plemented RL-based navigation system without the need of directly look at the main
algorithms.
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5 Results

This chapter presents the results obtained by applying RL algorithms on different configura-
tions of the environment. As already explain in section 4.3, the first configuration of the en-
vironment that has been considered is the one shown in figure 4.5, on which all the four im-
plemented algorithms have been tested, i.e. discretized SARSA, discretized Q-learning, Deep
SARSA and Deep Q-learning.

Based on the results obtained through the proposed first experiments, just the most perform-
ing algorithms have been tested in other configurations of the environment (see figure 4.14).
Since configuration 4.14a, configuration 4.14d and configuration 4.14e are similar concerning
the location of the goal, a transfer learning approach can be employed to verify algorithms
adaptability to similar environment layouts.

Thus, this chapter is organized as follow: first of all, the early experimental phase of the project
is presented, with a particular focus towards algorithms adjustments in simulation and tests of
the four possible approaches on the setup environment in figure 4.5. Afterwards, in section 5.2,
the later experiments are described, in which Q-learning and Deep Q-learning have been tested
in different configurations of the environment. Eventually, in section 5.3, a final analysis of the
different implementations is proposed, paying attention towards the strengths and weaknesses
of each technique.

5.1 Early experiments and results

In this section, the first experiments that have been performed both in simulation (section
5.1.1) and on the setup in figure 4.5 are presented (sections 5.1.2 and 5.1.3).

The algorithms have first been tested in simulation environment (see section 5.1.1) in order
to check their work-ability and to optimize the selection of RL and NN parameters (see table
4.3 and 4.7). These parameters cannot be all assessed on the actual setup because of the long
training time. Their selection is correlated to the objective of the algorithm, the environment
configuration and the agent behavior. Since the simulation environment together with the for-
ward kinematic model of the robot is a good approximation of the real environment in which
the robotic arm operates, the results obtained in simulation with specific parameters remain
invariant with respect to the results that would have been achieved in real-time environments.

Once all the parameters are determined, the algorithms are assessed on the real setup (see
sections 5.1.2 and 5.1.3) to verify which of them presents the best performance and so should
be chosen for later and more detailed experiments (see section 5.2).

In all the experiments, the action vector has been defined as follow:

acti ons =
£

°5, 5, °8, 8,°5, 5
§

(5.1)

The unit of measure of the action vector is motor units, so in degrees the vector would become:

acti ons =
£

°1.45, 1.45, ,°2.32, 2.32,°1.45, 1.45
§

(5.2)

The first two elements correspond to actions for the first joint, the third and the forth for the
second joint, while the last two elements correspond to third joint actions. In this perspective,
each joint can move clockwise and counter-clockwise depending on the selected action. As
possible to notice, the actions values are equal to the discretization sample of each state, that
has been actually discretized depending on the size of the workspace and on the motion each
link should be able to perform (see section 4.2.1).
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consequently, it takes more episodes to converge to the optimal solution, colliding more times
with obstacles.

In order to assess which ≤-greedy strategy is the most appropriate for the considered applica-
tion, the different approaches are compared based on the episodes required to converge to the
optimal actions selection and on the average number of successes or collisions in the training
period before convergence is achieved. The following results are obtained for 10 experiments
under the same conditions:

≤-value Convergence episode Probability of success Probability of collision

≤= 0.1 585 71.2% 28.4%
≤= 0.3 377 70.6% 29.1%
≤= 0.6 568 67.8% 31.5%

Table 5.1: Assessment of ≤-values based on convergence episode and number of successes/collisions
during the whole learning period

According to the results shown in table 5.1, the exploration-exploitation trade-off which guar-
antees faster convergence is the one with ≤ = 0.3 (377 episodes): its convergence episode is
smaller with respect to the ones obtained with ≤= 0.1 and ≤= 0.6. Anyway, the amount of colli-
sions and successes are preferable with ≤= 0.1, but, as previously mentioned, having too small
exploration period does not guarantee convergence to optimal policies but just to non-optimal
ones. On the other hand, larger values of exploration like ≤= 0.6 make the agent to explore too
much and consequently collide more frequently (31.5% of training period before convergence
with respect to 28.4% and 29.1% of ≤= 0.1 and ≤= 0.3 respectively). Eventually, ≤= 0.3 has been
chosen as exploration-exploitation strategy.

As possible to notice, the percentages of successes and collisions shown in table 5.1 do no add
up to 100% because, in the remaining period, the agent ends an episode making use of all the
available iterations (i.e. 250) without neither colliding nor reaching the goal.

At this point, all the RL parameters are completely defined, so it is possible to focus more on
the choice of NN parameters applied in Deep RL algorithms. While learning rate and momen-
tum constant choices have already been deeply analyzed in section 4.2.2, the dimension of the
hidden layer should be assessed in simulation to figure out the best trade-off between accuracy
of the results and training period required for the neural network.

As already mentioned in section 4.2.2, the number of neurons in the hidden layer depend on
the size of input and output layers. For instance, if the input has a size of three, the output
consists of six neurons and the hidden layer of 50 hidden neurons, the number of unknown
variables to be estimated is equivalent to (3 § 50 + 50 § 6) = 450 and so at least 450 training
examples are needed. In this case, the number of training episodes is huge since it corresponds
to all the possible combinations of states and actions, so three different layouts of the hidden
layer have been investigated on Deep Q-learning in simulation, i.e. 50, 150 and 300 neurons,
and the obtained results are shown in figure 5.5.

As noticeable from figure 5.5, all the three implementations of the hidden layer guarantee con-
vergence, but only if 300 hidden neurons are utilized the algorithm directly converges to the
optimal policy with a average cumulative reward of approximately -130. This result was ex-
pected because of the fact that increasing the number of hidden neurons correspond to an
increment in the number of combinations among the training examples and so an increment
in the accuracy of the network. In the other cases, with 50 and 150 hidden neurons, the al-
gorithm converges to optimal policies only after much more episodes. For instance, when 50
hidden neurons are applied (plot on the left), the number of combinations among training ex-
amples are not sufficient and, consequently, the agent reaches the goal frequently (bonus plot
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presence of obstacles in the environment. While exploring, the agent can end up in a new en-
vironment state far away from the goal, that corresponds to a collision state. Thus, after the
collision occurs, the agent reset to its initial configuration, accumulating a really negative total
reward, due to the fact that the obstacle has been hit when the Euclidean distance between the
end-effector and the goal was really high. This condition is well highlighted in the bonus graphs
(lower plots of each figure), where it is possible to notice that the agent performance oscillates
between successes, +200 when the goal has been reached, and failures, -100 when a collision
takes place. Really negative cumulative rewards (upper plots) are most likely correlated to colli-
sions in the bonus plots. This statement cannot be considered as a general rule, because some-
times the manipulator also collides with obstacles which are closed to the optimal trajectory
towards the goal (in figure 4.5 the obstacles with centre pixel coordinates (204,248), (145,256)
and (223,89)). Some failures in the bonus plots are related to higher average cumulative re-
wards, which could also be considered as successes even if they are not. This latter trend can
be easily noticed in the Euclidean distance reward plots on the left of figure 5.9, in the episode
range 500-600. In that case, the average cumulative reward of Deep SARSA algorithm seems to
have almost reached convergence, but the correspondent bonus in that phase demonstrates
that actually the agent was colliding with obstacles near the goal at that time.

Even though a sub-optimal convergence is achieved under all the reported conditions, the av-
erage cumulative reward of each algorithm continues to be of oscillatory nature also after con-
vergence, situation that does not occur in simulation (see plots 5.4 and 5.5). These oscillations
are due mainly to two factors:

• All the reward functions are in pixels. Since a pixel corresponds to 0.8824 millimeters
with the predefined camera location and PC screen resolution, the goal is considered
to be achieved in the moment in which the distance between its marker centre and the
end-effector marker centre becomes smaller than 5 pixels, i.e. 4.412 millimeters. This
trade-off has been chosen because, from an external observer point of view, the end-
effector has reached the goal even if it is not perfectly on it and with the discretized action
vectors it is hard to reach precise pixel locations. Consequently, the reward function value
oscillates between -5 and 0 depending on how close the end-effector is with respect to the
goal.

• The policy learned at convergence is just sub-optimal. In order to learn a global move-
ment policy, it is necessary to train the agent for at least 5000 episodes. This training
period is too high for real-time experiments, because it would require more than one
working day. Thus, 1000 episodes have been considered sufficient to learn a sub-optimal
policy, which is a good approximation of the global one.

Otherwise, this oscillation was not present in simulation (see plots in figure 5.4 and 5.5). As a
matter of fact, in the simulation environment the locations of the markers as well as of the ma-
nipulator itself are more accurate since they are not evaluated through external signals mea-
surements (camera and encoders signals) but through kinematic-based mathematical models.

In order to finally assess the more efficient reward function, it is interesting to analyze the con-
vergence episode and the probability of success and collision before convergence of each RL
algorithm (see table 5.3).

The results presented in table 5.3 are in line with what has been previously stated: exponen-
tial Euclidean distance reward function is the one that guarantees faster convergence for each
algorithm (smaller convergence episode in the table). In this perspective, it has been noticed
that having an always increasing reward trend in the proximity of the goal makes the agent to
be more goal-oriented and able to discern between environment states really close to the goal
and environment states which are just in the goal larger neighborhood. As a consequence, the
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Discretized Q-learning

Convergence

episode

Probability

of success

Probability

of collision

Euclidean distance 777 64.2% 34.7%
Exponential Euclidean distance 385 71.1% 28.4%
Gaussian Euclidean distance 474 68.5% 31.4%

Discretized SARSA

Convergence

episode

Probability

of success

Probability

of collision

Euclidean distance 747 61.9% 34.5%
Exponential Euclidean distance 398 69.4% 28.3%
Gaussian Euclidean distance 437 66.8% 30.8%

Deep Q-learning

Convergence

episode

Probability

of success

Probability

of collision

Euclidean distance 765 17.5% 82.4%
Exponential Euclidean distance 260 70.6% 29.3%
Gaussian Euclidean distance 677 50% 49.9%

Deep SARSA

Convergence

episode

Probability

of success

Probability

of collision

Euclidean distance 762 6.6% 93.4%
Exponential Euclidean distance 372 62.8% 36.2%
Gaussian Euclidean distance 764 50.7% 44.3%

Table 5.3: Comparison among convergence episode, probability of success and collision for each reward
function for each algorithm.

cited reward function is also the one that ensures higher probability of succeeding at the end of
an episode instead of colliding (highlighted probability of success and collision in the table). If
a collision occurs in proximity of the goal in a certain environment state, that state will be then
characterized by a much lower estimated value with respect to its neighbors in Q and so the
agent will never select the action that makes it to reach that state anymore, but it would priori-
tize the greedy actions with higher estimated values. This lower estimated value is due mainly
by the sparse bonus reward that has been added to the algorithm, i.e. -100 of penalty when a
state closed to the goal is reached. If just the reward function was adopted, a state closed to the
goal would be identified by a quite high reward even if it would correspond to a collision state.

The other reward function that provides acceptable outcomes is the Gaussian Euclidean reward
function. As already specified, this reward function has a trend similar to the exponential one,
except the fact that its increasing trend decreases in proximity of its mean (zero in the selected
Gaussian distribution in equation 4.6). Consequently, it becomes less efficient in the range
closer to the goal. This drawback does not influence too much the results of discretized Q-
learning and discretized SARSA, because both approaches present a convergence rate as well
as success/collision probability which are comparable to the ones of exponential Euclidean
distance reward. On the contrary, Deep Q-learning and Deep SARSA need much more episodes
to converge if Gaussian Euclidean distance is employed. Deep Q-learning and Deep SARSA are
both characterized by a continuous state-space, consequently the agent is allowed to reach
any environment state in the state-space according to the correspondent action vector. Thus,
if the reward does not allow a good prioritization of the environment states close to the goal,
it makes continuous state-space agents require more episodes to understand which states are
actually closer to the goal and which bring the agent colliding with obstacles in proximity of
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the goal. Moreover, both this last algorithms adopt experience replay with mini-batches (2.1.8)
and, consequently, the relative Q feed-forward neural network is just trained according to 75
random samples (mini-batches) from the learned experience. As a result, if many collisions
occur in proximity of the goal, their agent will tend to exploit that knowledge colliding even
more times in states close to the ones where it has already collided with.

The same situation happens applying the simple Euclidean distance reward, which is the least
performing for all the algorithms, both in terms of convergence episode and in success/colli-
sion probability. In particular, it is completely inefficient in continuous state space cases, i.e.
Deep Q-learning and Deep SARSA, because, as already mentioned in the previous paragraph,
these approaches present a much larger state-space and they are more correlated to the ex-
perience they made while exploiting and, consequently, if the reward does not provide a good
prioritization of the states near the goal, they tend to fail more times than succeeding.

Due to all the performed considerations, exponential reward function is adopted for all the
successive experiments.

5.1.3 First experiments on real setup - Algorithms assessment

After defining all the necessary RL parameters both in simulation and on the real setup, it is
now time to identify which RL algorithm actually presents the best performance. Thus, the
results introduced in section 5.1.2 are now assessed from different points of view:

• Convergence episode: required episodes before reaching the target with the minimum
number of actions and consequently maximizing the cumulative reward.

• Actions at convergence: number of actions required on average to reach the goal when
convergence is achieved.

• Success/collision probability: probability to collide with obstacles versus probability of
successfully reaching the goal without collisions.

• Training period: time required to train the agent for 1000 episodes with 250 iterations
each.

Considering the cited evaluation parameters and exponential Euclidean distance as reward
function, the distribution in figure 5.10 is obtained.

As possible to notice from figure 5.10 and table 5.3, each algorithm presents some pros and
cons. Deep Q-learning is the one that guarantees faster convergence to the (sub)optimal policy;
as a matter of fact, it takes 260 episodes (4746 seconds, i.e. approximately 1 hour and 20 min-
utes) to converge to the maximum average cumulative reward which corresponds to 78 agent
actions on average to reach the goal. The same number of actions are required by Q-learning
with discretized state-space, but this last approach necessitates at least 385 episodes (6308 sec-
onds, i.e. approximately one hour and 45 minutes) to achieve convergence. Thanks to the
possibility of using the complete non-discretized state-space, at each step the Deep Q-learning
agent obtains more detailed state of the environment with respect to discretized Q-learning,
allowing a more accurate approximation of the value function and, consequently, faster con-
vergence. Even though, larger state-space makes also the agent to collide with obstacles more
times (29.3% with respect to 28.4% of discretized Q-lerning), because larger state-space corre-
sponds to a wider range of collision states as well.

The same comparative analysis can be performed across discretized SARSA and Deep SARSA:
the former presents a collision probability of 28.3% with respect to 36.2% of Deep SARSA, but
the latter achieves convergence in 372 episodes (6059 seconds, i.e. approximately one hour and
40 minutes) with respect to 398 episodes (6618 seconds, i.e. approximately one hour and 50
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constrained and, consequently, avoiding the collision from one side can make the robotic arm
to collide on the other side. As a result, off-policy approaches are preferable for this kind of
applications, because they guarantee a better convergence to a sub-optimal and shorter trajec-
tory without colliding with obstacles much more frequently than when on-policy algorithms
are employed.

In line with the considerations made so far, discretized Q-learning and Deep Q-learning algo-
rithms have been taken as a reference during the last experimental phases of the project.

5.2 Later experiments and results

This section describes the last experimental phase of the project. As mentioned in the previ-
ous paragraph, discretized Q-learning and Deep Q-learning algorithms with exponential Eu-
clidean distance reward have been employed in this stage in order to perform further analysis
and modifications to the existing architecture, making it more efficient and goal-oriented. In
particular, both algorithms have first been tested on the cross configuration of the pipe-like
environment with goal on the left, on the right of the pipe and straight (see figures 4.14a, 4.14b
and 4.14c). The cross configuration is the most generic configuration that the robotic arm can
be asked to learn, because in that situation it is allowed to go left, right or continue straight in
the pipe. Thus, after learning all these possible goal locations in the cross environment (i.e.
left, right, straight), the same knowledge can be employed to learn similar configurations (see
figures 4.14d and 4.14e). In this perspective, the most performing RL approach has also been
employed for investigating its adaptability to similar environment layouts by applying transfer
learning strategies (see section 5.2.3).

5.2.1 A goal-oriented planning strategy

In the first experiments it has been noticed that each RL agent needs to explore many states of
the environment before evaluating which state presents a higher Q-value and so can actually
bring it closer to the goal. In order to make the agent to explore more areas that are in the
neighborhood of the goal and not to let it waste time in exploring further states, a smart and
goal-oriented planning strategy has been implemented.

In RL context, planning is defined as any process that employs a model of the environment to
foretell future events and, consequently, to create or improve a policy (4). The adopted value-
function based RL algorithms are model-free, so they do not require a model of the environ-
ment to achieve an objective, but an initial planning can be beneficial in the moment in which
convergence has to be prioritized and large exploration of the considered environment is not
necessary.

In the investigated pipe-like environment, the third link of the robotic manipulator (i.e. end-
effector link) is the one that presents more freedom of movement: while the first and second
links are constrained by the lower part of the pipe, the end-effector link can freely move clock-
wise or counter-clockwise depending on the goal location and on the curvature of the pipe.
Moreover, the pipe curve is actually explored by the end-effector link, because it is the only one
able to reach those regions of the environment; consequently, its correspondent actions should
be prioritized, since it is actually the link that should move more often to reach the goal faster.

With these ideas in mind, the following planning strategy has been developed:

where xg oal corresponds to the x pixel coordinate of the goal, while xee corresponds to the x

pixel coordinate of the end-effector at its initial configuration.

The algorithm in 13 changes the already specified initialization of the action-value function Q,
according to the selected action vector (see equation 5.1). Depending on the employed algo-
rithm, that initialization is performed differently:
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Algorithm 13: Goal-oriented planning: smart initialization of the end-effector link motion

Move the robotic arm to its initial configuration;
Check the goal and end-effector pixel location with camera;
Initialize Q;
if xg oal < xee then

Increase Q value correspondent to counter-clockwise action of the end-effector of 10
units;

else

Increase Q value correspondent to clockwise action of the end-effector of 10 units;
end

• Discretized Q-learning: as specified in section 4.2.1, the value-function table is initial-
ized according to the adopted reward function (equation 4.3), so that states closer to the
goal are initialized with higher value-estimates than states further away from it. However,
all the actions for each state are initialized with the same value because, at that point, it
has not yet been experienced which action brings the agent in the right direction. Apply-
ing the planning strategy, the end-effector action which move the agent towards the goal
is prioritized and, consequently, the correspondent state-action pair is incremented by a
factor of 10.

• Deep Q-learning: as mentioned in section 4.2.2, the value-function neural network
weights are initialized to zero. If planning strategy is applied, the target weights corre-
spondent to the end-effector action which move the agent towards the goal will be in-
stead initialized at 10.

Increasing the goal-directed end-effector action makes the ≤-greedy algorithm (i.e. algorithms
11 and 12) to privilege that action while exploiting the greedy policy. In this way, the agent will
tend more likely to move the end-effector link in the preferable direction and, consequently,
exploring states closer to it for the remaining exploration period.

An incremental factor of 10 has been selected because the planning should just affect the ini-
tial phase of the learning time and, consequently, the increment should vanish after some
episodes. During the training, the state-action pairs are updated according to the experi-
ence performed by the agent and the relative obtained reward; after some iterations, the agent
should be able to autonomously realize which action to take based on the acquired knowledge
and not just going on selecting the cited end-effector action.

5.2.2 Learning cross-environment

As already mentioned, the cross-environment is the most general layout of the pipe network:
it consists of one entrance and three exits, i.e. left pipe, right pipe and pipe on the front of
the entrance. Thus, if the agent learns how to reach all the possible exits with the minimum
amount of actions, it should acquire the necessary knowledge to face any other configuration
of the pipe (see figure 4.15).

In the next paragraphs the results obtained while learning the environment shown in figures
4.14a, 4.14b are 4.14c are reported.
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if in the phase before convergence the agent collides with obstacles most of its time (i.e. 87.7%).
This situation demonstrates how much combining planning with experience replay can be ef-
fective: the planning strategy helps the agent to faster learn to move its end-effector in the
right direction, while the experience replay with mini-batches makes use of that knowledge
about the goal location to quickly improve the behavior of the agent and make it even more
goal-oriented. Nevertheless, if the goal is located on the right, the Deep Q-learning agent takes
410 episodes to reach convergence with respect to the 416 episodes of discretized Q-learning,
even though the right-goal environment is almost symmetric with respect to the left-goal one.
This slower convergence rate is mainly due to the initial configuration of the robotic arm and
to the selected action vector 5.1. As already specified, the second link is the one that is allowed
to perform longer movements and, in the initial configuration, it is already rotated clockwise
in the direction of the goal (see figure 4.14b); thus, even if it performs few clockwise actions,
it tends to frequently collide with the obstacle on its right and, consequently, reset again to
its initial configuration. As a result, the agent takes some more episodes to understand that it
should not select too many clockwise actions for the second link, even if those actions make
the end-effector to be closer to the goal.

On the other hand, the planning strategy has not been applied in learning the straight-goal
cross-environment in figure 4.14c. Under these conditions, the goal marker is almost in line
with the end-effector marker and, consequently, the agent should freely choose both clock-
wise and counter-clockwise end-effector actions depending on the motion of the first two links.
Even though, Deep Q-learning continues to be faster than discretized Q-learning as expected
(145 episodes to converge with respect to 257 episodes of discretized Q-learning). Therefore,
the larger state-space makes the Deep Q-learning agent to present higher collision probability
than the discretized Q-learning case, as happened in all the performed experiments (for further
details see section 5.1.2).

Despite all these considerations, all the implemented cross-environment experiments have
been carried out successfully, learning accurate sub-optimal policies. Thus, at this point, the
acquired knowledge represented by the Q action-value function can be adopted to make the
robotic arm to be able to quickly learn mostly all the possible configurations of a pipe network
(see figure 4.15), applying transfer learning approaches.

5.2.3 Testing RL algorithm adaptability: a transfer learning approach

One of the requirements of this project is to verify whether the chosen RL algorithm is
environment-independent, i.e. if it does not require too many information about the environ-
ment in which it operates, so that its acquired knowledge becomes easily adaptable to similar
environments, initializing the Q value-function in the same way (see section 3.3.1). This flex-
ibility is of fundamental importance when the robot is actually asked to inspect a complete
pipe-network: it could learn a simple configuration of the pipe like the cross-environment in
figures 4.14a, 4.14b and 4.14c and then apply the obtained knowledge to inspect the whole pipe
network efficiently and effortlessly.

In section 5.2.2, Deep Q-learning has been demonstrated to be faster in reaching convergence
with respect to discretized Q-learning, even if a larger and more complete state-space is con-
sidered. Consequently, this RL approach is adopted to test the transfer learning strategy. In ma-
chine learning, transfer learning is a technique in which knowledge acquired while solving one
problem is stored, so that it can be re-used for similar applications afterwards. In this case, the
acquired knowledge corresponds to the policy that characterized the Q neural network, which
has already been trained for each of the cross-environment situations (figures 4.14a, 4.14b and
4.14c) and then stored in the MATLAB folder.

As already mentioned at the beginning of the chapter, the environments in figures 4.14d and
4.14e have been considered to test a transfer learning strategy from the cross-environment in
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Algorithm 14: Deep Q-learning with transfer-learning: from left-goal cross-environment to
acute or obtuse curve
Init Q network as the already trained cross-environment Q;
while episode != final episode do

Init and observe S;
while step != final step do

if distance(ee-obs) < 100 then

Choose only 2nd and 3r d link A from S using ≤-greedy º derived from Q;
else

Follow the greedy º derived from Q;
end

Take action A, observe R and S0;
Store experience (S, A,R,S0) in D ;
Sample best 75 transitions (Ss , As ,Rs ,S0

s) from D looking at the correspondent R;
Calculate target Ts ;
if condition then

S’ terminal state then Ts = Rs ;
else

Ts = Rs +∞maxaQ(S0

s , a);
end

Train the Q-network using (Ts °Q(Ss , As))2 as loss function;
S = S0;

end

end

• Reducing the exploration period to just 10% of the available episodes encourages the
agent to exploit the learned experience.

In the moment in which the action have been taken, the experience replay with mini-batches
section is performed. While in the previous version of the algorithm (algorithm 3) the training
of the Q network was performed on randomly selected 75 transitions from the Replay Memory,
in this case the best 75 experiences are instead selected. To identify these best samples, it is
sufficient to look at the reward value of each experience and select the 75 experiences which
present the highest rewards. In this way, the agent will tend to exploit the best policies it has
learned so far, instead of exploiting non-optimal trajectories which bring it away from the goal.
With this approach, the robotic arm is no more allowed to freely explore new areas of the en-
vironment, because it would tend to explore just environment states which are closer to the
ones with highest optimal values. This strategy speeds up the convergence to the learned pol-
icy, but, at the same time, the drawback of not experience the actual optimal policy is present.
Since in this case the robotic arm is not allowed to explore a lot but just inside the curve, the
mentioned disadvantage of this strategy is not so restrictive, because the end-effector is already
quite closed to the goal, therefore, a sub-optimal policy can be still discovered and it should be
a good approximation of the optimal one.

At this point, the results obtained for the acute and obtuse curve environments (figures 4.14d
and 4.14e) applying the proposed transfer learning approach are reported.
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5.3 Final evaluation of the proposed algorithms

In this section, a final evaluation of the proposed reinforcement learning algorithms is per-
formed, analyzing how the project requirements described in section 3.3 have been satisfied.

Value-function based RL algorithms have been adopted in this project, with a particular inter-
est towards on-policy and off-policy approaches. Before applying them on the real-setup, RL
and NN parameters have been investigated both in simulation (see section 5.1.1) and on the
real-setup (see section 5.1.2). In RL perspective, the ≤ exploration-exploitation trade-off has
been noticed to really affect the convergence rate of the algorithms (see figure 5.4): too high
exploration (i.e. ≤= 0.6) makes the convergence slower, while too high exploitation (i.e. ≤= 0.1)
does not guarantee convergence to the optimal policy. On the other hand, when Deep RL algo-
rithms are adopted, it is necessary to appropriately tune the number of hidden neurons in the
feed-forward neural network structure (see figure 5.5): a low amount of hidden neurons (i.e.
H N = 50) does not ensure a sufficient combination of the training examples, while increas-
ing the amount of hidden neurons (i.e. H N = 300) slow down the training time but ensures
convergence to the optimal solution.

Another RL factor that has been deeply investigated is the reward function. As a matter of fact
three reward functions have been considered: standard Euclidean distance, exponential Eu-
clidean distance and Gaussian Euclidean distance (equations 4.4, 4.5 and 4.6), all three based
on the Euclidean distance between the end-effector and the goal. The most efficient reward
function has been proven to be the exponential Euclidean reward, because it is the only one
that actually guarantees a always increasing trend and, consequently, a goal-oriented prioriti-
zation of the value estimates of the state-action pairs (see table 5.3).

Once all the parameters have been appropriately determined, the four implemented agents
(i.e. two on-policy algorithms and two off-policy algorithms) have been assessed on the real-
setup by observing the results reported in sections 5.1.2 and 5.1.3. Comparing the performance
of the implemented four agents (see figure 5.10 and table 5.3), it is easy to notice that the off-
policy Q-Learning-based agents are able to obtain better results than the SARSA-based agents,
both in terms of success and convergence rate as well as optimality of the learned policy. Con-
sequently, Q-learning-based algorithms are able to reach the goal with a less amount of actions
with respect to SARSA-based algorithms (see histogram 5.10), mainly because SARSA usually
prefers a longer but safer trajectory with respect to the shortest path learned by the Q-learning
approach.

These algorithms have been also evaluated according to the way they deal with large state-
space. If on one hand, discretized Q-learning and SARSA apply a discretization on the available
environment state-space in order to be able to store all the possible state-action pairs in a Q-
table, on the other hand Deep RL approaches like Deep Q-learning and Deep-SARSA make use
of a function approximation strategy (i.e. feed-forward neural network) to manage the full con-
tinuous state-space. Employing continuous state-space allows to the Deep RL agent to obtain
more detailed states of the environment and so a more accurate approximation of the Q value-
function, converging faster to the sub-optimal policy. Nevertheless, a more detailed state-space
makes these agents collide with obstacles even more, because of the fact that they can collide
from a larger range of environment states.

For all the aforementioned reasons, Q-learning based approaches have been taken as a refer-
ence for the final experimental phase of the project (see section 5.2). In this perspective, both
the algorithms have been tested in the cross-environment in figures 4.14a, 4.14b and 4.14c (see
section 5.2.2), by applying an initial planning strategy to encourage the robotic arm to move
in the direction of the goal. Satisfying results have been obtained under these conditions in
particular with Deep Q-learning algorithm (see table 5.4) thanks to the combination of plan-
ning and experience replay with mini-batches. Consequently, the latter has been further em-
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ployed to investigate RL adaptability to similar configurations of the environment (see figures
4.14d and 4.14e and section 5.2.3) adopting transfer learning strategies. In this context, the
transfer learning approach has been proven to be an effective tool when the considered Deep
Q-learning agent has to learn similar but not equal configuration of the pipe (see plots in figure
5.15 and 5.16). As a matter of fact, transfer learning allows to speed up the convergence rate
of 60% in case of obtuse curve and 90% in case of acute curve, completely satisfying environ-
ment independence requirement. In this way, the Deep Q-learning algorithm can be adopted
to learn any possible configuration of a pipe network (see figure 4.15).

5.3.1 Critical appraisal

In this section, a critical appraisal is reported focusing on the points of strength and weakness
of the proposed navigation approach.

Strengths

• Adaptability.

The implemented RL-based navigation system is easily adaptable to different kinds of
constrained environments and, if transfer learning approach is employed, it allows a
robotic arm to learn similar environment layouts quickly.

• No accurate environment model required.

All the implemented RL algorithms operate without the need of an accurate model of
the environment; as a matter of fact, since value-function based approaches are applied,
they are all model-free and the model is learned through interaction between the agent
and the environment. This interaction is guaranteed by the presence of camera and en-
coders signals.

• Reduction of training time.

New and modified versions of ≤-greedy algorithms have been provided to guarantee a
more uniform and faster exploration of the environment. With the introduction of the
goal-oriented planning (section 5.2), the RL agent has become able to directly orientate
the end-effector towards the goal, avoiding wasting time in non-of-interest environment
regions. Moreover, the employment of Euclidean distance based reward functions in
combination with sparse rewards (positive for the successes and negative for collisions)
encouraged the agent to progress to more rewarded states in a shorter period of time.

• Fast and reliable physical setup.

The developed setup has been discovered to be fast-responding and reliable in all the sit-
uations. It can be easily employed to test different kinds of algorithms, since its software
architecture is well documented and easily modifiable on MATLAB by non-expert users.
The communication with the camera is also straightforward but good light conditions
should be guaranteed to be able to detect markers without any troubles.

• Tests in both simulation and real world.

Tests in both simulation and real-world have been performed. All the tested algorithms
have been brought success when learning policies and, intrinsically, the algorithms have
been demonstrated to be able to extend to different kinds of virtual and physical envi-
ronments.

• Numerous tests have been performed.

Many tests have been performed for most of the algorithms in particular to appropriately
tune and assess RL parameters. Consequently, the resulting parameters selection is quite
optimized for the current navigation problem.

Robotics and Mechatronics Marta Barbero



88 Reinforcement Learning for Robot Navigation in Constrained Environments

Weaknesses

• Low repeatability .

Single experiments are not repeatable even if the environment conditions do not change.
This situation is due to the fact that the ≤-greedy algorithm is characterized by a random
action selection component which is unpredictable and different in each new experi-
ment.

• Unpredictable learning time.

As previously mentioned, experiments are not repeatable and, consequently, the learn-
ing period before reaching convergence cannot be predicted even if the environment
conditions are the same. Nevertheless, each experiment with each algorithm usually
starts converging at an episode which is in the same order of magnitude of other ex-
periments under the same conditions with the same algorithm.

• Collisions avoidance.

Most of the experiments have been performed with the reset obstacles avoidance ap-
proach (see section 5.1.1). Consequently, when a collision occurred, the manipulator
was reset to a predefined initial configuration. This solution cannot be applied in a phys-
ical environment with actual obstacles (e.g. pipe environment) because the robotic arm
could not be able to reach its initial position due to the obstacles location.

• Non-fluent motion of the manipulator.

Since the action vector is considered to be discrete, the manipulator cannot freely move
with just one movement to the desired location, but each joint can just rotate of some
predefined degrees. Consequently, the overall observable motion is not fluent as ex-
pected.

• Camera-based algorithm.

The proposed algorithm is camera-based if the physical setup is considered. As already
mentioned, camera signals are sufficiently reliable but they cannot be obtained in low-
light conditions. Thus, if an actual pipe is employed, the camera could never be adopted
and alternative solutions based on other types of sensors should be figured out.

5.3.2 Comparison with existing RL-based approaches

As already specified in section 3.1, RL has been increasingly adopted in arm planning appli-
cations because, with respect to optimal control, it does not require a specific model of the
system under consideration, but it operates through interaction between the RL agent and the
environment. This characteristic is of great benefit when the available model is not accurate
and the use of that imprecise knowledge would make the objective hard to be reached.

Despite these considerations, in the literature there are not too many examples of applications
of RL in over-constrained environment navigation tasks. In (12) and (13), two robotic arms are
trained to learn to reach a goal location inside constrained environment avoiding obstacles ap-
plying Q-learning algorithm. In both the cases, a sparse reward function is considered, which
is positive when the target is reached and really negative once a collision occurs. This sparse
reward function has also been applied into the adopted RL architecture (i.e. +200 when the
goal is reached and -100 when the manipulator structure hits an obstacle), but it has been then
integrated with another trivial reward function, i.e. the Euclidean distance reward (standard,
exponential and Gaussian). The exponential Euclidean distance reward function has been al-
ready applied in (14) to make a six degrees of freedom robot arm with two grippers able to pick
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up an object. Even though, no comparison among different reward functions in robotics/navi-
gation applications is provided in (14) to justify the efficiency of the selected reward.

Concerning the curse of dimensionality issue, most of the examples found in the literature pre-
fer to discretize the state and action space under consideration not to over-complicate the algo-
rithm design (15), (16), (17), (10), (9). Nevertheless, good results have been obtained adopting
neural networks as function approximators for the Q-table (4), (9), (10), (14), (8). Consequently,
this approach has been applied in the research in order to compare discretized RL algorithms
together with deep RL algorithms. To guarantee convergence to sub-optimal solutions and
avoid convergence to local minima or even divergence, the basic deep RL algorithm has been
modified to include experience replay, as already proposed in (8), (14). Experience replay elim-
inates the problem of correlation between consecutive transitions and reduces variance be-
tween different updates. As a consequence of this latter modification, really satisfying results
have been obtained with Deep Q-learning algorithm.
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6 Conclusions and recommendations

6.1 Conclusions

Employment of inspection robots in pipe network is really beneficial: their small size allow
them to navigate inside most of the hydraulic and gas pipes, eliminating the need to dig or open
a wall for further inspections or pipe replacements. These kinds of robots are usually equipped
with cameras and sensors for collecting different types of data, such as travelled route, diame-
ter of the inspected pipe, geographical position of possible leaks or damaged sections, internal
pressure and temperature and so on. However, they are usually remotely driven by an exter-
nal human operator, that, thanks to the gathered data, decides the navigation pattern. In this
perspective, an autonomous navigation system would be of great help to make the cited robots
able to independently explore the pipe network without the need of an external supervision.

Reinforcement Learning approaches have been demonstrated to be effective tools in imple-
menting automatic navigation in unknown environments. Reinforcement learning can be con-
sidered as an optimization problem, whose goal is to establish a control policy that obtains a
maximum reward, starting from the state in which the robot is located in the environment in
which it operates. These reinforcement learning techniques are particularly suitable for those
robotics applications where robotic errors are not immediately critical and for which a function
can be defined to evaluate the performance of the robot. In fact, reinforcement learning uses
a global assessment measure, i.e. the reward function, which controls and drives the learning
process. In this context, it differs from supervised learning schemes, which use specific target
values for the individual units. In robotics field, this property can be particularly advantageous
in those situations in which only the desired overall behavior of the robot is known; however,
at the same time, this can be a problem, as it is difficult to determine which parameter should
be modified within the controller to increase the cumulative reward. It is precisely through the
feedback of the performances that the agent learns the correspondence between the state (the
representation of a particular situation) and the action to be taken.

In this project, value-function based reinforcement learning algorithms have been investigated
to make a three degrees of freedom planar robotic arm able to autonomously navigate inside
a constrained pipe-like environment, as the ones reported in figure 4.14. In order to imple-
ment significant experiments of the algorithms, a real robotic arm has been designed and then
manufactured with RaM laser cut technology. Three servo-motors have been employed to ac-
tuate the joints of the cited manipulator, that has been then placed inside an environment with
markers representing virtual obstacles and a goal that should be reached by its end-effector.
The interaction between the robotic manipulator and the mentioned markers is recorded by
an external un-calibrated monocular camera, which is able to detect and localize the features
of interest in the scene (i.e. obstacles, goal, joints and end-effector of the manipulator). In
this way, no model of the robotic arm is required to drive its motion, since a vision-guided
state estimation approach has been employed, and, at the same time, no further hardware
is necessary to detect distances or collisions (e.g. position and torque sensors). A significant
MATLAB-based simulation environment has been also developed to facilitate and speed up the
first experimental stage of the project.

These two environments, i.e. simulation and real-setup, has been taken as a reference to test
two reinforcement learning algorithms: Q-learning and SARSA, with both discretized state-
action pairs and continuous state-space with discrete actions. In the discretized case, both the
approaches make use of a Q-table to store all the values estimates of each state-action pair,
making the exploration more imprecise but less likely affected by collisions with the present
obstacles. On the other hand, the continuous state-space implementation is able to carry out a
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more detailed approximation of the value-function Q through a deep neural-network, improv-
ing the convergence, but, at the same time, making the agent able to collide from a larger range
of environment states.

In order to facilitate the learning phase both in terms of exploration-exploitation trade-off and
convergence rate, algorithms parameters have been accurately tuned to figure out the cor-
relation between their values and the performance of the navigation. In particular, different
kinds of Euclidean distance-based reward functions have been analyzed to make the naviga-
tion quicker and more goal-oriented: simple Euclidean distance reward function, exponential
Euclidean distance reward function and Gaussian Euclidean distance reward function. The
second has been found to be the most efficient (look at the table in 5.3), because of the fact
that it presents an always increasing trend also in proximity of the goal, which is not the case of
Gaussian Euclidean distance that starts decreasing when the goal is closer. With the performed
tuning choices, all the approaches have been demonstrated to be able to learn a (sub)optimal
trajectory from the initial configuration of the robotic arm to the goal. SARSA on-policy algo-
rithms have been found to be more "conservative" with respect to off-policy Q-learning: they
prefer to learn longer and most likely safer trajectories, avoiding dangerous situations for the
agent. As reported in table 5.3, discretized SARSA algorithm present on average smaller proba-
bility of collision with respect to discretized Q-learning, i.e. 31.2% with respect to 31.5%. On the
contrary, Q-learning based algorithms are more goal-oriented, shortening the required path as
much as possible. As a matter of fact, as noticeable from figure 5.10, Q-learning-based algo-
rithms require on average 78 actions to reach the goal with respect to 93 necessary actions for
SARSA-based algorithms. Nevertheless, on-policy methodologies have been noticed not to be
so much efficient in over-constrained environments like the considered ones, because avoiding
obstacles on one side of the pipe can result into a collision on the other side of the pipe itself.
Indeed Deep SARSA collides even more than Deep Q-learning with exponential Euclidean re-
ward, 36.2% versus 29.3%. Consequently, Q-learning based algorithms have been identified as
the most competent techniques in learning different configurations of the pipe network with
minimum effort.

Due to the latter consideration, Q-learning-based algorithms have been applied to test algo-
rithm adaptability to similar configurations of the environment, applying a transfer learning
approach (see section 5.2 and figure 4.14). Transfer learning is based on the idea of adopting
the knowledge acquired for a certain configuration of the environment to learn similar but not
equal layouts, initializing the new Q with the already trained one. With this idea in mind, it
has been demonstrated that transfer learning allows to speed up the convergence rate of the
considered Deep Q-learning algorithm of at least 60% with respect to a "new-to-be-learned"
environment. This finding is of fundamental importance in navigation perspective, because
it allows a non-modelled robotic system to easily navigate inside different pipe configurations
with the minimum amount of training. As a matter of fact, the correspondent RL agent could
learn a basic configuration of the environment like the cross shown in figure 4.14 and then uti-
lize this knowledge to freely navigate inside any possible configuration of a pipe network, e.g.
characterized with obtuse and acute curves.

This research demonstrated that RL algorithms (in this case value-function based) can be
adopted to make a three degrees of freedom planar robotic arm able to autonomously navigate
inside constrained pipe-like environments as the considered ones. These approaches present
many pros in terms of adaptability to different non-modelled environment layouts and quite
feasible training periods for autonomous applications, usually in the range of 2-3 hours de-
pending on the number of training episodes. Even though, RL is characterized by two main
cons:

• Low repeatability, i.e. each experiment is not repeatable since the exploration of the en-
vironment is based on random action selection.
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• Unpredictable learning time: since each experiment is not repeatable, convergence can
be reached after a different amount of episodes, even if the experiment is performed
under the same conditions.

To circumvent these two related issues, it is possible to occasionally save in the workspace the
Q, so that, if the experiment has to be repeated another time, the already acquired knowledge
about the cited environment can be used to facilitate and speed up the learning. Eventually, it
is possible to state that the implemented RL navigation system can be used to learn movement
policies for tasks that involve a goal to be reached and many obstacles to be avoided.

6.2 Recommendations for future researches

Even if satisfying results have already been obtained in particular applying a Deep Q-learning
approach with experience replay and mini-batches, further analysis can still be performed to
improve convergence and to guarantee higher flexibility of the proposed approaches. The in-
tegration of continuous actions into the continuous state-space architecture could be of great
interest. The robotic arm would be able to reach the goal also applying just one wide movement
of the end-effector link. According to the literature, policy-search methodologies are more suit-
able for allowing the employment of continuous state-action, since they are no more related to
the estimation of the proper value-function as in the considered case. Even though, to make use
of the already implemented architecture, it is possible to extend it to an actor-critic approach.
In this perspective, the policy becomes completely independent from the value-function: the
actor, i.e. the policy, chooses the action to be performed, while the critic, i.e. the value-function
Q, criticizes that action selection (4). With this approach in mind, a deterministic policy gradi-
ent algorithm can be applied to deal with the continuous action space and then integrated with
the standard Deep Q-learning algorithm to learn the required optimal policy. If this objective is
achieved, the action-space can be extended to the velocity signals, so that the robotic arm can
move towards different environment states with different speeds and, consequently, determine
how to reach the goal faster.

Moreover, further analysis should be made in the collision avoidance field. As already men-
tioned, in this implementation the robotic arm can be reset when a collision occurs or it can
move back to the previous state before the collision. The former case is faster, but could make
the manipulator colliding with obstacles in its way back to its initial configuration. The lat-
ter approach has been noticed to be too slow and, consequently, applied only when transfer
learning approaches are tested. Thus, an optimal obstacle avoidance strategy has not been fig-
ured out yet; a good suggestion could be to design a mapping of the obstacles location and,
consequently, make the robotic arm to completely avoid those states which are closed to the
obstacles. In this way, the manipulator would tend to remain further away from the obstacles,
reducing the probability of collision.

In the proposed setup only virtual obstacles symbolized by markers are employed. In order to
make the environment even more representative of an actual pipe, physical obstacles can be
added. Adopting physical obstacles would require the implementation of an interaction strat-
egy between them and the structure of the manipulator. In this perspective, the integration of
motors equipped with a torque control architecture would be advantageous. Thus, the torque
acting on the joints of the manipulator could be easily estimated and, consequently, based on
its value, a collision could be identified.

From a more practical point of view, the adopted setup can just operate in limited work-spaces,
because of its small dimensions. Its structure could have not been further elongated due to its
planar configuration: the first joint of the robot has to support the whole weight of the ma-
nipulator and counterbalance the momentum of the gravity force. Consequently, it was not
possible to increase its size even more, because the structure would have been affected by too
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many vibrations, making the motion not accurate. Thus, two solutions have been figured out
to obtain larger workspace:

• Make use of smaller and lighter servo-motors.

• Put the manipulator in a standing position and use a vertical panel to represent the pipe
environment instead of the horizontal one. Consequently, the camera can be placed at a
certain horizontal distance to record the scene.

At this point, a gripper can be employed instead of the actual end-effector, in order to make the
considered robot able to grasp an object. This additional degree of freedom could be beneficial
for collecting and moving objects which are present in the workspace.
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A.3 DYNAMIXEL AX12A features addresses

Figure A.3: Features addresses DYNAMIXEL AX12A (20)
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A.4 READ-WRITE code

This code shows how to send position and velocity values to a DYNAMIXEL AX12A servo-
motors and read those values from the encoders to get sure that those settings have been
reached.
⌥ ⌅

1

2 % Copyright 2017 ROBOTIS CO. , LTD.
3

4 %
5 % * * * * * * * * * Read and Write Example * * * * * * * * *
6 %
7 %
8 % Available DXL model on t h i s example : A l l models using Protocol

1.0
9

10 cl c ;
11 clear a l l ;
12

13 lib_name = ’ ’ ;
14

15 i f strcmp ( computer , ’PCWIN ’ )
16 lib_name = ’ dxl_x86_c ’ ;
17 e l s e i f strcmp ( computer , ’PCWIN64 ’ )
18 lib_name = ’ dxl_x64_c ’ ;
19 e l s e i f strcmp ( computer , ’GLNX86 ’ )
20 lib_name = ’ l ibdxl_x86_c ’ ;
21 e l s e i f strcmp ( computer , ’GLNXA64 ’ )
22 lib_name = ’ l ibdxl_x64_c ’ ;
23 e l s e i f strcmp ( computer , ’MACI64 ’ )
24 lib_name = ’ libdxl_mac_c ’ ;
25 end
26

27 % Load L i b r a r i e s
28 i f ~ l ibis loaded ( lib_name )
29 [ notfound , warnings ] = l o a d l i b r a r y ( lib_name , ’ dynamixel_sdk . h ’ ,

’ addheader ’ , ’ port_handler . h ’ , ’ addheader ’ , ’
packet_handler . h ’ ) ;

30 end
31

32 % Control table address
33 ADDR_AX_TORQUE_ENABLE = 24; % Control table address

i s d i f f e r e n t in Dynamixel model
34 ADDR_AX_GOAL_POSITION = 30;
35 ADDR_AX_PRESENT_POSITION = 36;
36 ADDR_AX_GOAL_VELOCITY = 32;
37 ADDR_AX_PRESENT_VELOCITY = 38;
38

39 % Protocol version
40 PROTOCOL_VERSION = 1 . 0 ; % See which protocol

version i s used in the Dynamixel
41
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42 % Default s e t t i n g
43 DXL_ID = 1 ; % Dynamixel ID : 1
44 BAUDRATE = 57600;
45 DEVICENAME = ’COM4’ ; % Check which port i s

being used on your c o n t r o l l e r
46 % ex ) Windows : ’COM1’

Linux : ’/ dev/
ttyUSB0 ’ Mac: ’/ dev
/ t t y . usbserial °* ’

47

48 TORQUE_ENABLE = 1 ; % Value for enabling
the torque

49 TORQUE_DISABLE = 0 ; % Value for disabling
the torque

50 DXL_MINIMUM_POSITION_VALUE = 400; % Dynamixel w i l l rotate
between t h i s value

51 DXL_MAXIMUM_POSITION_VALUE = 500; % and t h i s value ( note
that the Dynamixel would not move when the position value i s
out of movable range . Check e°manual about the range of the
Dynamixel you use . )

52 DXL_MOVING_STATUS_THRESHOLD = 10; % Dynamixel moving
status threshold

53 DXL_MINIMUM_VELOCITY_VALUE = 100; % Dynamixel w i l l have a
speed between t h i s value

54 DXL_MAXIMUM_VELOCITY_VALUE = 800; % and t h i s value
55

56 ESC_CHARACTER = ’ e ’ ; % Key for escaping loop
57

58 COMM_SUCCESS = 0 ; % Communication Success
r e s u l t value

59 COMM_TX_FAIL = °1001; % Communication Tx
Failed

60

61 % I n i t i a l i z e PortHandler Structs
62 % Set the port path
63 % Get methods and members of PortHandlerLinux or PortHandlerWindows
64 port_num = portHandler (DEVICENAME) ;
65

66 % I n i t i a l i z e PacketHandler Structs
67 packetHandler ( ) ;
68

69 index = 1 ;
70 dxl_comm_result = COMM_TX_FAIL; % Communication r e s u l t
71 dxl_goal_position = [DXL_MINIMUM_POSITION_VALUE

DXL_MAXIMUM_POSITION_VALUE ] ; % Goal position
72 dxl_goal_velocity = [DXL_MINIMUM_VELOCITY_VALUE

DXL_MAXIMUM_VELOCITY_VALUE ] ;
73

74 dxl_error = 0 ; % Dynamixel error
75 dxl_present_velocity = 0 ; % Present position
76 dxl_present_velocity = 0 ;
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77

78

79 % Open port
80 i f ( openPort ( port_num ) )
81 f p r i n t f ( ’ Succeeded to open the port ! \ n ’ ) ;
82 else
83 unloadlibrary ( lib_name ) ;
84 f p r i n t f ( ’ Failed to open the port ! \ n ’ ) ;
85 input ( ’ Press any key to terminate . . . \ n ’ ) ;
86 return ;
87 end
88

89

90 % Set port baudrate
91 i f ( setBaudRate ( port_num , BAUDRATE) )
92 f p r i n t f ( ’ Succeeded to change the baudrate ! \ n ’ ) ;
93 else
94 unloadlibrary ( lib_name ) ;
95 f p r i n t f ( ’ Failed to change the baudrate ! \ n ’ ) ;
96 input ( ’ Press any key to terminate . . . \ n ’ ) ;
97 return ;
98 end
99

100

101 % Enable Dynamixel Torque
102 write1ByteTxRx ( port_num , PROTOCOL_VERSION, DXL_ID ,

ADDR_AX_TORQUE_ENABLE, TORQUE_ENABLE) ;
103 dxl_comm_result = getLastTxRxResult ( port_num , PROTOCOL_VERSION) ;
104 dxl_error = getLastRxPacketError ( port_num , PROTOCOL_VERSION) ;
105 i f dxl_comm_result ~= COMM_SUCCESS
106 f p r i n t f ( ’%s \n ’ , getTxRxResult (PROTOCOL_VERSION, dxl_comm_result

) ) ;
107 e l s e i f dxl_error ~= 0
108 f p r i n t f ( ’%s \n ’ , getRxPacketError (PROTOCOL_VERSION, dxl_error ) ) ;
109 else
110 f p r i n t f ( ’ Dynamixel has been s u c c e s s f u l l y connected \n ’ ) ;
111 end
112

113

114 while 1
115 i f input ( ’ Press any key to continue ! ( or input e to quit ! ) \n ’ ,

’ s ’ ) == ESC_CHARACTER
116 break ;
117 end
118

119 % Write goal position
120 write2ByteTxRx ( port_num , PROTOCOL_VERSION, DXL_ID ,

ADDR_AX_GOAL_POSITION, dxl_goal_position ( index ) ) ;
121 dxl_comm_result = getLastTxRxResult ( port_num , PROTOCOL_VERSION)

;
122 dxl_error = getLastRxPacketError ( port_num , PROTOCOL_VERSION) ;
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123 i f dxl_comm_result ~= COMM_SUCCESS
124 f p r i n t f ( ’%s \n ’ , getTxRxResult (PROTOCOL_VERSION,

dxl_comm_result ) ) ;
125 e l s e i f dxl_error ~= 0
126 f p r i n t f ( ’%s \n ’ , getRxPacketError (PROTOCOL_VERSION,

dxl_error ) ) ;
127 end
128

129 % Write goal v e l o c i t y
130 write2ByteTxRx ( port_num , PROTOCOL_VERSION, DXL_ID ,

ADDR_AX_GOAL_VELOCITY, dxl_goal_velocity ( index ) ) ;
131 dxl_comm_result = getLastTxRxResult ( port_num , PROTOCOL_VERSION)

;
132 dxl_error = getLastRxPacketError ( port_num , PROTOCOL_VERSION) ;
133 i f dxl_comm_result ~= COMM_SUCCESS
134 f p r i n t f ( ’%s \n ’ , getTxRxResult (PROTOCOL_VERSION,

dxl_comm_result ) ) ;
135 e l s e i f dxl_error ~= 0
136 f p r i n t f ( ’%s \n ’ , getRxPacketError (PROTOCOL_VERSION,

dxl_error ) ) ;
137 end
138

139 while 1
140 % Read present position
141 dxl_present_position = read2ByteTxRx ( port_num ,

PROTOCOL_VERSION, DXL_ID , ADDR_AX_PRESENT_POSITION) ;
142 dxl_comm_result = getLastTxRxResult ( port_num ,

PROTOCOL_VERSION) ;
143 dxl_error = getLastRxPacketError ( port_num , PROTOCOL_VERSION

) ;
144 i f dxl_comm_result ~= COMM_SUCCESS
145 f p r i n t f ( ’%s \n ’ , getTxRxResult (PROTOCOL_VERSION,

dxl_comm_result ) ) ;
146 e l s e i f dxl_error ~= 0
147 f p r i n t f ( ’%s \n ’ , getRxPacketError (PROTOCOL_VERSION,

dxl_error ) ) ;
148 end
149

150 f p r i n t f ( ’ [ ID:%03d] GoalPos:%03d PresPos:%03d\n ’ , DXL_ID ,
dxl_goal_position ( index ) , dxl_present_position ) ;

151

152 % Read present v e l o c i t y
153 dxl_present_velocity = read2ByteTxRx ( port_num ,

PROTOCOL_VERSION, DXL_ID , ADDR_AX_PRESENT_VELOCITY) ;
154 dxl_comm_result = getLastTxRxResult ( port_num ,

PROTOCOL_VERSION) ;
155 dxl_error = getLastRxPacketError ( port_num , PROTOCOL_VERSION

) ;
156 i f dxl_comm_result ~= COMM_SUCCESS
157 f p r i n t f ( ’%s \n ’ , getTxRxResult (PROTOCOL_VERSION,

dxl_comm_result ) ) ;
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158 e l s e i f dxl_error ~= 0
159 f p r i n t f ( ’%s \n ’ , getRxPacketError (PROTOCOL_VERSION,

dxl_error ) ) ;
160 end
161

162 f p r i n t f ( ’ [ ID:%03d] GoalVel:%03d PresVel :%03d\n ’ , DXL_ID ,
dxl_goal_velocity ( index ) , dxl_present_velocity ) ;

163

164 i f ~( abs ( dxl_goal_position ( index ) ° dxl_present_position ) >
DXL_MOVING_STATUS_THRESHOLD)

165 break ;
166 end
167 end
168

169 % Change goal position and v e l o c i t y
170 i f index == 1
171 index = 2 ;
172 else
173 index = 1 ;
174 end
175 end
176

177

178 % Disable Dynamixel Torque
179 write1ByteTxRx ( port_num , PROTOCOL_VERSION, DXL_ID ,

ADDR_AX_TORQUE_ENABLE, TORQUE_DISABLE) ;
180 dxl_comm_result = getLastTxRxResult ( port_num , PROTOCOL_VERSION) ;
181 dxl_error = getLastRxPacketError ( port_num , PROTOCOL_VERSION) ;
182 i f dxl_comm_result ~= COMM_SUCCESS
183 f p r i n t f ( ’%s \n ’ , getTxRxResult (PROTOCOL_VERSION, dxl_comm_result

) ) ;
184 e l s e i f dxl_error ~= 0
185 f p r i n t f ( ’%s \n ’ , getRxPacketError (PROTOCOL_VERSION, dxl_error ) ) ;
186 end
187

188 % Close port
189 closePort ( port_num ) ;
190

191 % Unload Library
192 unloadlibrary ( lib_name ) ;
193

194 close a l l ;
195 clear a l l ;
⌃ ⇧
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B Appendix 2

In this appendix, all the main codes related to RL algorithms implementation are reported.

B.1 RGB markers detection

This code shows how to detect RGB markers in a scene and get their pixel coordinates.
⌥ ⌅

1 %% Take the input image
2 data = imread ( ’ tags . png ’ ) ;
3 %%
4 t i c ;
5 % Convert the input image into gray°scale image
6 data_gray = rgb2gray ( data ) ;
7 % Now to track RGB objects in r e a l time the RGB component should be
8 % subtracted from the grayscale image
9 diff_im_red = imsubtract ( data ( : , : , 1 ) , data_gray ) ;

10 diff_im_green = imsubtract ( data ( : , : , 2 ) , data_gray ) ;
11 diff_im_blue = imsubtract ( data ( : , : , 3 ) , data_gray ) ;
12 % Sum the three obtained images together to get a f i n a l image with

a l l the
13 % RGB components
14 diff_im = imadd( diff_im_red , diff_im_green ) ;
15 diff_im = imadd( diff_im , diff_im_blue ) ;
16

17 %Use a median f i l t e r to f i l t e r out noise
18 diff_im = medfilt2 ( diff_im , [3 3 ] ) ;
19 % Convert the r e s u l t i n g grayscale image into a binary image .
20 diff_im = im2bw( diff_im , 0 . 1 8 ) ;
21

22 % Perform a blob analysis , removing a l l those p i x e l s l e s s than 300
[ px ]

23 diff_im = bwareaopen ( diff_im ,300) ;
24

25 % Label a l l the connected components in the image .
26 bw = bwlabel ( diff_im , 8) ;
27

28 % Get a set of properties for each labeled region .
29 properties = regionprops (bw, ’BoundingBox ’ , ’ Centroid ’ ) ;
30 boundaries = zeros ( length ( properties ) , 4) ;
31 centroids = zeros ( length ( properties ) , 2) ;
32 % Display the image
33 imshow( data )
34

35 hold on
36

37 %This i s a loop to bound the RGB markers in a rectangular box .
38 for object = 1 : length ( properties )
39 bb = properties ( object ) . BoundingBox ;
40 bc = properties ( object ) . Centroid ;
41 boundaries ( object , : ) = bb ;
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42 centroids ( object , : ) = bc ;
43 rectangle ( ’ Position ’ ,bb , ’ EdgeColor ’ , ’ r ’ , ’ LineWidth ’ , 2 )
44 plot ( bc ( 1 ) , bc ( 2 ) , ’°m+ ’ )
45 a= t e x t ( bc ( 1 ) +15 ,bc ( 2 ) , s t r c a t ( ’X : ’ , num2str ( round ( bc ( 1 ) ) ) ,

’ Y : ’ , num2str ( round ( bc ( 2 ) ) ) ) ) ;
46 set ( a , ’FontName ’ , ’ A r i a l ’ , ’ FontWeight ’ , ’ bold ’ , ’ FontSize

’ , 12 , ’ Color ’ , ’ black ’ ) ;
47 end
48

49 hold o f f
50

51 toc ;
⌃ ⇧

B.2 Q-table initialization

Q-table is initialized as the reward function applying the following code:
⌥ ⌅

1 % I n i t i a l i z e d action°value function based on the reward function R
2

3 Q = repmat (R, [ 1 , length ( actions ) ] ) ;
⌃ ⇧

Listing B.1: Initialization of the Q-table based on the selected reward function

B.3 SARSA with discretized state-space

In this section, the main code of the implemented SARSA algorithm with discretized state-
space is provided.
⌥ ⌅

1 %% SARSA algorithm
2 t i c ;
3 for episode = 1 : max_episode
4

5 disp ( [ ’ episodes l e f t : ’ , num2str ( max_episode°episode ) ] ) ;
6

7 i f episode > 1
8 % Reset the robot at the beginning of each new episode
9 [ dxl1_present_position , dxl2_present_position ,

dxl3_present_position ] = move_robot_3DOF(
dxl_comm_result , dxl_error , DXL_INITIAL_POSITION_VALUE1
, DXL_INITIAL_POSITION_VALUE2 ,
DXL_INITIAL_POSITION_VALUE3) ;

10 [ centroids , boundaries ] = take_image (cam, 1) ;
11 end
12

13 theta = [ dxl1_present_position , dxl2_present_position ,
dxl3_present_position ] ;

14

15 % Interpolate the s t a t e within our d i s c r e t i z a t i o n
16 [~ , state_Idx ] = min(sum( ( s t a t e s ° repmat ( theta , [ s i z e ( states , 1 )

, 1 ] ) ) . ^ 2 , 2 ) ) ;
17

18 cumReward = 0 ;
19
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20 %% PICK AN ACTION
21 % Choose an action :
22 % EITHER 1) pick the best action according the Q matrix (

EXPLOITATION) . OR
23 % 2) Pick a random action (EXPLORATION)
24 i f ( rand ( ) >epsilon | | episode == max_episode ) && episode > 1
25 i f a l l (Q( state_Idx , : ) == Q( state_Idx , 1) )
26 action_Idx = action_selection ( count_tot , count_max ,

count_min , num_actions ) ;
27 else
28 [~ , action_Idx ] = max(Q( state_Idx , : ) ) ; % Pick the

action the Q matrix thinks i s best !
29 end
30 e l s e i f episode == 1
31 action_Idx = randi ( length ( actions ) , 1 ) ;
32 else
33 action_Idx = action_selection ( count_tot , count_max ,

count_min , num_actions ) ;
34 end
35

36 for step = 1 : max_steps
37

38 i f action_Idx < 3
39 DXL1_NEW_POSITION_VALUE = actions ( action_Idx ) +

dxl1_present_position ;
40 i f DXL1_NEW_POSITION_VALUE < theta1_min | |

DXL1_NEW_POSITION_VALUE > theta1_max % i f the
new_angle i s out of robot angle°range , do not
update i t

41 DXL1_NEW_POSITION_VALUE = dxl1_present_position ;
42 end
43 [ dxl1_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL1_NEW_POSITION_VALUE
, 1) ;

44

45 e l s e i f action_Idx < 5
46 DXL2_NEW_POSITION_VALUE = actions ( action_Idx ) +

dxl2_present_position ;
47 i f DXL2_NEW_POSITION_VALUE < theta2_min | |

DXL2_NEW_POSITION_VALUE > theta2_max
48 DXL2_NEW_POSITION_VALUE = dxl2_present_position ;
49 end
50 [ dxl2_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL2_NEW_POSITION_VALUE
, 2) ;

51 else
52 DXL3_NEW_POSITION_VALUE = actions ( action_Idx ) +

dxl3_present_position ;
53 i f DXL3_NEW_POSITION_VALUE < theta3_min | |

DXL3_NEW_POSITION_VALUE > theta3_max
54 DXL3_NEW_POSITION_VALUE = dxl3_present_position ;
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55 end
56 [ dxl3_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL3_NEW_POSITION_VALUE
, 3) ;

57 end
58

59 theta_new = [ dxl1_present_position , dxl2_present_position ,
dxl3_present_position ] ;

60

61 [ centroids , boundaries ] = take_image (cam, 1) ;
62

63 i f length ( centroids ( : , 1 ) ) < 3
64 disp ( ’ Adjust l i g h t conditions and then press a key to

continue ’ ) ;
65 pause ;
66 else
67 [ x1 , y1 , x2 , y2 , xEE , yEE , link_x , l ink_y ] = kinematics

( centroids , boundaries , Origin ) ;
68

69 end
70 xEE_saved ( : , step ) = xEE ;
71 yEE_saved ( : , step ) = yEE ;
72

73

74 [~ , state_new_Idx ] = min(sum( ( s t a t e s ° repmat ( theta_new , [
s i z e ( states , 1 ) , 1 ] ) ) . ^ 2 , 2 ) ) ; % Interpolate again to find

the new s t a t e the system i s c l o s e s t to .
75

76 reward = reward_evaluation ( theta ) ;
77

78 %% PICK AN ACTION
79 % Choose an action :
80 % EITHER 1) pick the best action according the Q matrix (

EXPLOITATION) . OR
81 % 2) Pick a random action (EXPLORATION)
82 i f ( rand ( ) >epsilon | | episode == max_episode ) && episode >

1
83 i f a l l (Q( state_Idx , : ) == Q( state_Idx , 1) )
84 action_Idx_2 = action_selection ( count_tot ,

count_max , count_min , num_actions ) ;
85 else
86 [~ , action_Idx_2 ] = max(Q( state_new_Idx , : ) ) ; % Pick

the action the Q matrix thinks i s best !
87 end
88 e l s e i f episode == 1
89 action_Idx_2 = randi ( length ( actions ) , 1 ) ;
90 else
91 action_Idx_2 = action_selection ( count_tot , count_max ,

count_min , num_actions ) ;
92 end
93
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94 c o l l i s i o n _ t o t a l = c o l l i s i o n_ d e te c t i o n ( link_x , link_y ,
boundaries_obs ) ;

95 i f ismember ( 1 , c o l l i s i o n _ t o t a l )
96 bonus = °100;
97 count_hit = count_hit + 1 ;
98 disp ( ’ Obstacle h i t ! ’ ) ;
99 success = 0 ;

100 c o l l i s i o n = 1 ;
101 count_reach_goal ( : , episode ) = 0 ;
102 e l s e i f reward > tradeoff_DEMO
103 bonus = 200;
104 count_success = count_success + 1 ;
105 count_step ( : , episode ) = 1 ;
106 required_actions ( : , episode ) = step ;
107 s p r i n t f ( ’ Goal reached in %d actions ’ , step )
108 count_reach_goal ( : , episode ) = 1 ;
109 success = 1 ;
110 c o l l i s i o n = 0 ;
111 else
112 bonus = 0 ;
113 success = 0 ;
114 c o l l i s i o n = 0 ;
115 count_reach_goal ( : , episode ) = 0 ;
116 end
117

118 cumReward = cum_reward_evaluation ( reward , cumReward, step ) ;
119 cumReward_ep ( : , episode ) = cumReward ;
120

121 % Check c o l l i s i o n s t a t e
122 i f c o l l i s i o n == 1
123 [~ , col ] = find ( c o l l i s i o n _ t o t a l == 1) ;
124 for index = 1 : length ( col )
125 c o l l i s i o n _ l o c = cat ( 1 , c o l l i s i o n _ l o c , [ l ink_x ( col (

index ) ) l ink_y ( col ( index ) ) ] ) ;
126 end
127 end
128

129 % Update Q°table
130 Q( state_Idx , action_Idx ) = Q( state_Idx , action_Idx ) + alpha *

( reward + gamma*Q( state_new_Idx , action_Idx_2 ) ° Q(
state_Idx , action_Idx ) + bonus ) ;

131 Q_saved ( : , episode ) = Q( state_Idx , action_Idx ) ;
132 R_saved ( : , episode ) = reward ;
133 bonus_saved ( : , episode ) = bonus ;
134

135 % Count the selected actions
136 [ count_new , count_max , count_min ] = action_probabil i ty (

action_Idx , count_tot , num_actions ) ;
137 count_tot = count_new ;
138

139 state_Idx = state_new_Idx ;
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140 action_Idx = action_Idx_2 ;
141 theta = theta_new ;
142

143

144 i f success == 1 | | c o l l i s i o n == 1
145 break
146 end
147 end
148

149 epsilon = epsilon * epsilon_decay ;
150

151 i f episode > 50
152 i f count_reach_goal ( ( episode°49) : episode ) == ones ( 1 , 50)
153 epsilon = 0 ;
154 disp ( ’JUST EXPLOITING ! ! ’ ) ;
155 e l s e i f episode > 85*max_episode/100
156 epsilon = 0 ;
157 disp ( ’JUST EXPLOITING ! ! ’ ) ;
158 end
159 end
160

161 end
162 toc ;
163 time = toc ;
⌃ ⇧

Listing B.2: Initialization of the Q-table based on the selected reward function

B.4 Q-learning with discretized state-space

In this section, the main code of the implemented Q-learning algorithm with discretized state-
space is provided.
⌥ ⌅

1 %% Q°learning algorithm
2 t i c ;
3 for episode = 1 : max_episode
4

5 disp ( [ ’ episodes l e f t : ’ , num2str ( max_episode°episode ) ] ) ;
6

7 i f episode > 1
8 % Reset the robot at the beginning of each new episode
9 [ dxl1_present_position , dxl2_present_position ,

dxl3_present_position ] = move_robot_3DOF(
dxl_comm_result , dxl_error , DXL_INITIAL_POSITION_VALUE1
, DXL_INITIAL_POSITION_VALUE2 ,
DXL_INITIAL_POSITION_VALUE3) ;

10 [ centroids , boundaries ] = take_image (cam, 1) ;
11 [ x1 , y1 , x2 , y2 , xEE , yEE , link_x , l ink_y ] = kinematics (

centroids , boundaries , Origin ) ;
12 end
13

14 theta = [ dxl1_present_position , dxl2_present_position ,
dxl3_present_position ] ;

15
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16 % Interpolate the s t a t e within our d i s c r e t i z a t i o n
17 [~ , state_Idx ] = min(sum( ( s t a t e s ° repmat ( theta , [ s i z e ( states , 1 )

, 1 ] ) ) . ^ 2 , 2 ) ) ;
18

19 cumReward = 0 ;
20

21 for step = 1 : max_steps
22

23 penalty = 0 ;
24

25 %% PICK AN ACTION
26 % Choose an action :
27 % EITHER 1) pick the best action according the Q matrix (

EXPLOITATION) . OR
28 % 2) Pick a random action (EXPLORATION)
29 i f ( rand ( ) >epsilon | | episode == max_episode ) && episode >

1
30 i f a l l (Q( state_Idx , : ) == Q( state_Idx , 1) )
31 action_Idx = action_selection ( count_tot , count_max ,

count_min , num_actions ) ;
32 else
33 [~ , action_Idx ] = max(Q( state_Idx , : ) ) ; % Pick the

action the Q matrix thinks i s best !
34 end
35 e l s e i f episode == 1
36 action_Idx = randi ( length ( actions ) , 1 ) ;
37 else
38 action_Idx = action_selection ( count_tot , count_max ,

count_min , num_actions ) ;
39 end
40

41 i f action_Idx < 3
42 DXL1_NEW_POSITION_VALUE = actions ( action_Idx ) +theta ( 1 ) ;
43 i f DXL1_NEW_POSITION_VALUE < theta1_min | |

DXL1_NEW_POSITION_VALUE > theta1_max % i f the
new_angle i s out of robot angle°range , do not
update i t

44 DXL1_NEW_POSITION_VALUE = theta ( 1 ) ;
45 end
46 [ dxl1_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL1_NEW_POSITION_VALUE
, 1) ;

47

48 e l s e i f action_Idx < 5
49 DXL2_NEW_POSITION_VALUE = actions ( action_Idx ) +theta ( 2 ) ;
50 i f DXL2_NEW_POSITION_VALUE < theta2_min | |

DXL2_NEW_POSITION_VALUE > theta2_max
51 DXL2_NEW_POSITION_VALUE = theta ( 2 ) ;
52 end
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53 [ dxl2_present_position ] = move_robot_3DOF_ax (
dxl_comm_result , dxl_error , DXL2_NEW_POSITION_VALUE
, 2) ;

54 else
55 DXL3_NEW_POSITION_VALUE = actions ( action_Idx ) +theta ( 3 ) ;
56 i f DXL3_NEW_POSITION_VALUE < theta3_min | |

DXL3_NEW_POSITION_VALUE > theta3_max
57 DXL3_NEW_POSITION_VALUE = theta ( 3 ) ;
58 end
59 [ dxl3_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL3_NEW_POSITION_VALUE
, 3) ;

60 end
61

62 theta_new = [ dxl1_present_position , dxl2_present_position ,
dxl3_present_position ] ;

63

64 [ centroids , boundaries ] = take_image (cam, 1) ;
65 i f length ( centroids ( : , 1 ) ) < 3
66 disp ( ’ Adjust l i g h t conditions and then press a key to

continue ’ ) ;
67 pause ;
68 else
69 [ x1 , y1 , x2 , y2 , xEE , yEE , link_x , l ink_y ] = kinematics

( centroids , boundaries , Origin ) ;
70 end
71

72 xEE_saved ( : , step ) = xEE ;
73 yEE_saved ( : , step ) = yEE ;
74

75 %% UPDATE Q°MATRIX
76

77 [~ , state_new_Idx ] = min(sum( ( s t a t e s ° repmat ( theta_new , [
s i z e ( states , 1 ) , 1 ] ) ) . ^ 2 , 2 ) ) ; % Interpolate again to find

the new s t a t e the system i s c l o s e s t to .
78

79 reward = reward_evaluation ( theta ) ;
80

81

82 c o l l i s i o n _ t o t a l = c o l l i s i o n_ d e te c t i o n ( link_x , link_y ,
boundaries_obs ) ;

83 i f ismember ( 1 , c o l l i s i o n _ t o t a l )
84 bonus = °100;
85 count_hit = count_hit + 1 ;
86 disp ( ’ Obstacle h i t ! ’ ) ;
87 success = 0 ;
88 c o l l i s i o n = 1 ;
89 count_reach_goal ( : , episode ) = 0 ;
90 e l s e i f reward > tradeoff_DEMO
91 bonus = 200;
92 count_success = count_success + 1 ;
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93 count_step ( : , episode ) = 1 ;
94 required_actions ( : , episode ) = step ;
95 s p r i n t f ( ’ Goal reached in %d actions ’ , step )
96 count_reach_goal ( : , episode ) = 1 ;
97 success = 1 ;
98 c o l l i s i o n = 0 ;
99 else

100 bonus = 0 ;
101 success = 0 ;
102 c o l l i s i o n = 0 ;
103 count_reach_goal ( : , episode ) = 0 ;
104 end
105

106 cumReward = cum_reward_evaluation ( reward , cumReward, step ) ;
107 cumReward_ep ( : , episode ) = cumReward ;
108

109 % Update Q°table
110 Q( state_Idx , action_Idx ) = Q( state_Idx , action_Idx ) + alpha *

( reward + gamma*max(Q( state_new_Idx , : ) ) ° Q( state_Idx
, action_Idx ) + bonus ) ;

111 Q_saved ( : , episode ) = Q( state_Idx , action_Idx ) ;
112 R_saved ( : , episode ) = reward ;
113 bonus_saved ( : , episode ) = bonus ;
114

115 % Count the selected action
116 [ count_new , count_max , count_min ] = action_probabil i ty (

action_Idx , count_tot , num_actions ) ;
117 count_tot = count_new ;
118

119 % Check c o l l i s i o n s t a t e
120 i f c o l l i s i o n == 1
121 [~ , col ] = find ( c o l l i s i o n _ t o t a l == 1) ;
122 for index = 1 : length ( col )
123 c o l l i s i o n _ l o c = cat ( 1 , c o l l i s i o n _ l o c , [ l ink_x ( col (

index ) ) l ink_y ( col ( index ) ) ] ) ;
124 end
125 end
126

127 theta = theta_new ;
128 state_Idx = state_new_Idx ;
129

130 i f success == 1 | | c o l l i s i o n == 1
131 break
132 end
133 end
134

135 epsilon = epsilon * epsilon_decay ;
136 cumReward_ep ( : , episode ) = °cumReward ;
137

138 i f episode > 50
139 i f count_reach_goal ( ( episode°49) : episode ) == ones ( 1 , 50)
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140 epsilon = 0 ;
141 disp ( ’JUST EXPLOITING ! ! ’ ) ;
142 e l s e i f episode > 85*max_episode/100
143 epsilon = 0 ;
144 disp ( ’JUST EXPLOITING ! ! ’ ) ;
145 end
146 end
147

148 end
149 toc ;
150 time = toc ;
⌃ ⇧

Listing B.3: Initialization of the Q-table based on the selected reward function

B.5 Deep RL - store new experience in the replay memory

This code shows how to store the new experienced tuple in the Replay Memory when Deep
Q-learning is applied. The same code is adopted also to store the experience in SARSA, but the
only difference is that also the new action selected from the new state is stored.
⌥ ⌅

1 function store_transit ion_Qlearn ( obj , s , a , r , s_new )
2 % Add t r a n s i t i o n to the Replay Memory
3 obj . S = cat ( 1 , obj . S , s ) ;
4 obj . A = cat ( 1 , obj . A , a ) ;
5 obj . R = cat ( 1 , obj . R, r ) ;
6 obj . S_new = cat ( 1 , obj . S_new , s_new ) ;
7

8 % Update num of elements in the memory
9 obj . elemsInBuffer = obj . elemsInBuffer +1;

10

11 % Check i f the memory i s f u l l , and i f so ° delete from the
beginning ( FIFO )

12 i f ( obj . elemsInBuffer >obj . memory_size )
13 obj . S ( 1 , : ) = [ ] ;
14 obj . A ( 1 , : ) = [ ] ;
15 obj . R ( 1 , : ) = [ ] ;
16 obj . S_new ( 1 , : ) = [ ] ;
17

18 % Update num of elements in the memory
19 obj . elemsInBuffer = obj . elemsInBuffer °1;
20 end
21

22 end
⌃ ⇧

B.6 SARSA with continuous state-space - Deep SARSA

In this section, the main code of the implemented SARSA algorithm with continuous state-
space is provided.
⌥ ⌅

1 %% SARSA algorithm
2 t i c ;
3 for episode = 1 : max_episode
4
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5 disp ( [ ’ episodes l e f t : ’ , num2str ( max_episode°episode ) ] ) ;
6

7 i f episode > 1
8 % Reset the robot at the beginning of each new episode
9 [ dxl1_present_position , dxl2_present_position ,

dxl3_present_position ] = move_robot_3DOF(
dxl_comm_result , dxl_error , DXL_INITIAL_POSITION_VALUE1
, DXL_INITIAL_POSITION_VALUE2 ,
DXL_INITIAL_POSITION_VALUE3) ;

10 [ centroids , boundaries ] = take_image (cam, 1) ;
11 end
12

13 theta = [ dxl1_present_position , dxl2_present_position ,
dxl3_present_position ] ;

14

15 %% PICK AN ACTION
16 % Choose an action :
17 % EITHER 1) pick the best action according the Q matrix (

EXPLOITATION) . OR
18 % 2) Pick a random action (EXPLORATION)
19 i f ( rand ( ) >epsilon | | episode == max_episode ) && episode >

1
20 [~ , action_Idx ] = max(Q( theta ’ ) ) ; % Pick the action the

Q matrix thinks i s best !
21 e l s e i f episode == 1
22 action_Idx = randi ( length ( actions ) , 1 ) ;
23 else
24 action_Idx = action_selection ( count_tot , count_max ,

count_min , num_actions ) ;
25 end
26 cumReward = 0 ;
27

28 for step = 1 : max_steps
29

30 i f action_Idx < 3
31 DXL1_NEW_POSITION_VALUE = actions ( action_Idx ) +

dxl1_present_position ;
32 i f DXL1_NEW_POSITION_VALUE < theta1_min | |

DXL1_NEW_POSITION_VALUE > theta1_max % i f the
new_angle i s out of robot angle°range , do not
update i t

33 DXL1_NEW_POSITION_VALUE = dxl1_present_position ;
34 end
35 [ dxl1_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL1_NEW_POSITION_VALUE
, 1) ;

36

37 e l s e i f action_Idx < 5
38 DXL2_NEW_POSITION_VALUE = actions ( action_Idx ) +

dxl2_present_position ;
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39 i f DXL2_NEW_POSITION_VALUE < theta2_min | |
DXL2_NEW_POSITION_VALUE > theta2_max

40 DXL2_NEW_POSITION_VALUE = dxl2_present_position ;
41 end
42 [ dxl2_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL2_NEW_POSITION_VALUE
, 2) ;

43 else
44 DXL3_NEW_POSITION_VALUE = actions ( action_Idx ) +

dxl3_present_position ;
45 i f DXL3_NEW_POSITION_VALUE < theta3_min | |

DXL3_NEW_POSITION_VALUE > theta3_max
46 DXL3_NEW_POSITION_VALUE = dxl3_present_position ;
47 end
48 [ dxl3_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL3_NEW_POSITION_VALUE
, 3) ;

49 end
50

51 theta_new = [ dxl1_present_position , dxl2_present_position ,
dxl3_present_position ] ;

52

53 [ centroids , boundaries ] = take_image (cam, 1) ;
54

55 i f length ( centroids ( : , 1 ) ) < 3
56 disp ( ’ Adjust l i g h t conditions and then press a key to

continue ’ ) ;
57 pause ;
58 else
59 [ x1 , y1 , x2 , y2 , xEE , yEE , link_x , l ink_y ] = kinematics

( centroids , boundaries , Origin ) ;
60 end
61

62 xEE_saved ( : , step ) = xEE ;
63 yEE_saved ( : , step ) = yEE ;
64

65 reward = reward_evaluation ( theta ) ;
66

67 %% PICK AN ACTION
68 % Choose an action :
69 % EITHER 1) pick the best action according the Q matrix (

EXPLOITATION) . OR
70 % 2) Pick a random action (EXPLORATION)
71 i f ( rand ( ) >epsilon | | episode == max_episode ) && episode >

1
72 [~ , action_Idx_2 ] = max(Q( theta_new ’ ) ) ; % Pick the

action the Q matrix thinks i s best !
73 e l s e i f episode == 1
74 action_Idx_2 = randi ( length ( actions ) , 1 ) ;
75 else
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76 action_Idx_2 = action_selection ( count_tot , count_max ,
count_min , num_actions ) ;

77 end
78

79 c o l l i s i o n _ t o t a l = c o l l i s i o n_ d e te c t i o n ( link_x , link_y ,
boundaries_obs ) ;

80 i f ismember ( 1 , c o l l i s i o n _ t o t a l )
81 bonus = °100;
82 count_hit = count_hit + 1 ;
83 disp ( ’ Obstacle h i t ! ’ ) ;
84 success = 0 ;
85 c o l l i s i o n = 1 ;
86 count_reach_goal ( : , episode ) = 0 ;
87 e l s e i f reward > tradeoff_DEMO
88 bonus = 200;
89 count_success = count_success + 1 ;
90 count_step ( : , episode ) = 1 ;
91 required_actions ( : , episode ) = step ;
92 s p r i n t f ( ’ Goal reached in %d actions ’ , step )
93 count_reach_goal ( : , episode ) = 1 ;
94 success = 1 ;
95 c o l l i s i o n = 0 ;
96 else
97 bonus = 0 ;
98 success = 0 ;
99 c o l l i s i o n = 0 ;

100 count_reach_goal ( : , episode ) = 0 ;
101 end
102

103 % Count the selected actions
104 [ count_new , count_max , count_min ] = action_probabil i ty (

action_Idx , count_tot , num_actions ) ;
105 count_tot = count_new ;
106

107 %% TRAIN Q°NETWORK
108

109 reward_tot = reward + bonus ;
110 R_saved ( : , episode ) = reward ;
111

112 cumReward = cum_reward_evaluation ( reward , cumReward, step ) ;
113 cumReward_ep ( : , episode ) = cumReward ;
114

115

116 %% Store ( S , A , R, S ’ ) in the ReplayMemory
117

118 memory_buffer . s t o r e _ t r a n s i t i o n ( theta , action_Idx ,
reward_tot , theta_new , action_Idx_2 ) ;

119

120 theta = theta_new ;
121 action_Idx = action_Idx_2 ;
122
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123 %%
124

125 for mini_batch = 1 : batches
126

127 %% Sample batch for training t r a n s i t i o n s ( s , a , r , s ’ )
from memory_size

128 [ temp_s , temp_a , temp_r , temp_s_new , temp_a_new ] =
memory_buffer . sample_mini_batch ( batch_size ) ;

129

130 %% Gradient descent Q
131 Y = Q( temp_s ’ ) ; %s i s in rows and the NN accepts s

as a column vector
132 Q_next = Q_target ( temp_s_new ’ ) ;
133

134 for i =1: batch_size
135

136 Y( temp_a ( i ) , i ) = temp_r ( i ) + gamma*Q_next (
temp_a_new( i ) , i ) ;

137

138 end
139

140 % t r a i n on estimated Q_next and rewards
141 Q = t r a i n (Q, temp_s ’ , Y) ;
142 end
143

144 i f success == 1 | | c o l l i s i o n == 1
145 break
146 end
147

148 end
149

150 i f ( mod( episode ,C) ==0)
151 Q_target=Q;
152 disp ( ’ updated t a r g e t network ’ ) ;
153 end
154

155 epsilon = epsilon * epsilon_decay ;
156

157 i f episode > 50
158 i f count_reach_goal ( ( episode°49) : episode ) == ones ( 1 , 50)
159 epsilon = 0 ;
160 disp ( ’JUST EXPLOITING ! ! ’ ) ;
161 e l s e i f episode > 85*max_episode/100
162 epsilon = 0 ;
163 disp ( ’JUST EXPLOITING ! ! ’ ) ;
164 end
165 end
166

167 end
168 toc ;
169 time = toc ;
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⌃ ⇧

Listing B.4: Initialization of the Q-table based on the selected reward function

B.7 Q-learning with continuous state-space - Deep Q-learning

In this section, the main code of the implemented Q-learning algorithm with continuous state-
space is provided.
⌥ ⌅

1 %% Q°learning algorithm
2 t i c ;
3 for episode = 1 : max_episode
4

5 disp ( [ ’ episodes l e f t : ’ , num2str ( max_episode°episode ) ] ) ;
6

7 i f episode > 1
8 % Reset the robot at the beginning of each new episode
9 [ dxl1_present_position , dxl2_present_position ,

dxl3_present_position ] = move_robot_3DOF(
dxl_comm_result , dxl_error , DXL_INITIAL_POSITION_VALUE1
, DXL_INITIAL_POSITION_VALUE2 ,
DXL_INITIAL_POSITION_VALUE3) ;

10 [ centroids , boundaries ] = take_image (cam, 1) ;
11 end
12

13 theta = [ dxl1_present_position , dxl2_present_position ,
dxl3_present_position ] ;

14

15 cumReward = 0 ;
16

17 for step = 1 : max_steps
18

19 %% PICK AN ACTION
20 % Choose an action :
21 % EITHER 1) pick the best action according the Q matrix (

EXPLOITATION) . OR
22 % 2) Pick a random action (EXPLORATION)
23 i f ( rand ( ) >epsilon | | episode == max_episode ) && episode >

1
24 [~ , action_Idx ] = max(Q( theta ’ ) ) ; % Pick the action the

Q matrix thinks i s best !
25 e l s e i f episode == 1
26 action_Idx = randi ( length ( actions ) , 1 ) ;
27 else
28 action_Idx = action_selection ( count_tot , count_max ,

count_min , num_actions ) ;
29 end
30

31

32 i f action_Idx < 3
33 DXL1_NEW_POSITION_VALUE = actions ( action_Idx ) +

dxl1_present_position ;
34 i f DXL1_NEW_POSITION_VALUE < theta1_min | |

DXL1_NEW_POSITION_VALUE > theta1_max % i f the
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new_angle i s out of robot angle°range , do not
update i t

35 DXL1_NEW_POSITION_VALUE = dxl1_present_position ;
36 end
37 [ dxl1_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL1_NEW_POSITION_VALUE
, 1) ;

38

39 e l s e i f action_Idx < 5
40 DXL2_NEW_POSITION_VALUE = actions ( action_Idx ) +

dxl2_present_position ;
41 i f DXL2_NEW_POSITION_VALUE < theta2_min | |

DXL2_NEW_POSITION_VALUE > theta2_max
42 DXL2_NEW_POSITION_VALUE = dxl2_present_position ;
43 end
44 [ dxl2_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL2_NEW_POSITION_VALUE
, 2) ;

45 else
46 DXL3_NEW_POSITION_VALUE = actions ( action_Idx ) +

dxl3_present_position ;
47 i f DXL3_NEW_POSITION_VALUE < theta3_min | |

DXL3_NEW_POSITION_VALUE > theta3_max
48 DXL3_NEW_POSITION_VALUE = dxl3_present_position ;
49 end
50 [ dxl3_present_position ] = move_robot_3DOF_ax (

dxl_comm_result , dxl_error , DXL3_NEW_POSITION_VALUE
, 3) ;

51 end
52

53 theta_new = [ dxl1_present_position , dxl2_present_position ,
dxl3_present_position ] ;

54

55 [ centroids , boundaries ] = take_image (cam, 1) ;
56

57 i f length ( centroids ( : , 1 ) ) < 3
58 disp ( ’ Adjust l i g h t conditions and then press a key to

continue ’ ) ;
59 pause ;
60 else
61 [ x1 , y1 , x2 , y2 , xEE , yEE , link_x , l ink_y ] = kinematics

( centroids , boundaries , Origin ) ;
62

63 end
64

65 xEE_saved ( : , step ) = xEE ;
66 yEE_saved ( : , step ) = yEE ;
67

68 reward = reward_evaluation ( theta ) ;
69
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70 c o l l i s i o n _ t o t a l = c o l l i s i o n_ d e te c t i o n ( link_x , link_y ,
boundaries_obs ) ;

71 i f ismember ( 1 , c o l l i s i o n _ t o t a l )
72 bonus = °100;
73 count_hit = count_hit + 1 ;
74 disp ( ’ Obstacle h i t ! ’ ) ;
75 success = 0 ;
76 c o l l i s i o n = 1 ;
77 count_reach_goal ( : , episode ) = 0 ;
78 e l s e i f reward > tradeoff_DEMO
79 bonus = 200;
80 count_success = count_success + 1 ;
81 count_step ( : , episode ) = 1 ;
82 required_actions ( : , episode ) = step ;
83 s p r i n t f ( ’ Goal reached in %d actions ’ , step )
84 count_reach_goal ( : , episode ) = 1 ;
85 success = 1 ;
86 c o l l i s i o n = 0 ;
87 else
88 bonus = 0 ;
89 success = 0 ;
90 c o l l i s i o n = 0 ;
91 count_reach_goal ( : , episode ) = 0 ;
92 end
93

94 cumReward = cum_reward_evaluation ( reward , cumReward, step ) ;
95 cumReward_ep ( : , episode ) = cumReward ;
96

97 i f c o l l i s i o n == 1
98 [~ , col ] = find ( c o l l i s i o n _ t o t a l == 1) ;
99 for index = 1 : length ( col )

100 c o l l i s i o n _ l o c = cat ( 1 , c o l l i s i o n _ l o c , [ l ink_x ( col (
index ) ) l ink_y ( col ( index ) ) ] ) ;

101 end
102 end
103

104 % Count the selected actions
105 [ count_new , count_max , count_min ] = action_probabil i ty (

action_Idx , count_tot , num_actions ) ;
106 count_tot = count_new ;
107

108 %% TRAIN Q°NETWORK
109

110 reward_tot = reward + bonus ;
111 R_saved ( : , episode ) = reward ;
112

113 %% Store ( S , A , R, S ’ ) in the ReplayMemory
114

115 memory_buffer . s t o r e _ t r a n s i t i o n ( theta , action_Idx ,
reward_tot , theta_new ) ;

116
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117 theta = theta_new ;
118

119 %%
120 for mini_batch = 1 : batches
121

122 %% Sample batch for training t r a n s i t i o n s ( s , a , r , s ’ )
from memory_size

123 [ temp_s , temp_a , temp_r , temp_s_new ] = memory_buffer .
sample_mini_batch ( batch_size ) ;

124

125 %% Gradient descent Q
126 Y = Q( temp_s ’ ) ; %s i s in rows and the nn accepts s

as a column vector
127 Q_next = Q_target ( temp_s_new ’ ) ;
128 Q_next_max = max( Q_next ) ;
129

130 for i =1: batch_size
131

132 Y( temp_a ( i ) , i ) = temp_r ( i ) + gamma*Q_next_max ( i ) ;
133

134 end
135

136 % t r a i n on estimated Q_next and rewards
137 Q = t r a i n (Q, temp_s ’ , Y) ;
138 end
139

140

141

142 %% I f number of loop s i n g l e s =c : Q_target=Q
143

144 i f success == 1 | | c o l l i s i o n == 1
145 break
146 end
147

148 end
149

150 epsilon = epsilon * epsilon_decay ;
151 cumReward_ep ( : , episode ) = °cumReward ;
152

153 i f ( mod( episode ,C) ==0)
154 Q_target=Q;
155 disp ( ’ updated t a r g e t network ’ ) ;
156 end
157

158 i f episode > 50
159 i f count_reach_goal ( ( episode°49) : episode ) == ones ( 1 , 50)
160 epsilon = 0 ;
161 disp ( ’JUST EXPLOITING ! ! ’ ) ;
162 e l s e i f episode > 85*max_episode/100
163 epsilon = 0 ;
164 disp ( ’JUST EXPLOITING ! ! ’ ) ;
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165 end
166 end
167

168 end
169 toc ;
170 time = toc ;
⌃ ⇧

Listing B.5: Initialization of the Q-table based on the selected reward function
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C Acronyms

DP Dynamic Programming

GPI Generalized Policy Iteration

GUI Graphical User Interface

HN Hidden Neurons

MC Monte-Carlo

MDP Markov Desicion Process

NN Neural Network

RaM Robotics and Mechatronics

RL Reinforcement Learning

TD Temporal Difference
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