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Abstract

Making a robot arm able to reach a target position with its end-effector in a constrained envi-
ronment implies finding a trajectory from the initial configuration of the robot joints to the goal
configuration, avoiding collisions with existing obstacles. A practical example of this situation
is the environment in which a PIRATE robot (i.e. Pipe Inspection Robot for AuTonomous Ex-
ploration) operates. Although the manipulator is able to detect the environment and obstacles
using its laser sensors (or camera), this knowledge however is only approximate. One method
for a robust motion path planner in these conditions is to use a learned movement policy by
applying reinforcement learning algorithms. Reinforcement leaning is an automatic learning
technique which tries to determine how an agent has to select the actions to be performed,
given the current state of the environment in which it is located, with the aim of maximizing a
total predefined reward. Thus, this project focuses on verifying whether an agent, i.e. a planar
manipulator, is able to independently learn how to navigate in a constrained environment with
obstacles applying reinforcement learning techniques. The studied algorithms are SARSA and
Q-learning. To achieve that objective, a MATLAB-based simulation environment and a physical
setup have been implemented, and tests were performed with different configurations. After a
deep analysis of the obtained results, it has been proven that both algorithms allow the agent
to autonomously learn the required motion actions to be able to navigate inside constrained
pipe-like environments. Even though, SARSA has been demonstrated to be a more "conser-
vative" approach with respect to Q-learning: if there is a risk along the shortest path towards
the goal (e.g. an obstacle), Q-learning will probably collide with it and then learn a policy ex-
actly along that risky trajectory to minimize the needed actions to reach the target. On the other
hand, SARSA will try to avoid this path completely, preferring a longer but safer trajectory. Once
a full path has been learned, this acquired knowledge can be easily applied to a similar but not
equal configuration of the pipe in a transfer learning perspective. In this way, the algorithms
have been demonstrated to be able to quickly adapt to different pipes layouts and to different
goal locations.
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1 Introduction

1.1 Context and relative problem statement

Nowadays, robots are more and more autonomously performing jobs that are deemed dan-
gerous, monotonous or unacceptable to humans. Innovative systems such as pipe inspection
robots are used all over the world to get high accuracy in damage detection. There are even
inspection robots capable of climbing 90 meters on a wind blade to inspect the rotor blades of
the plant (1). The kilometers of underground pipe systems are not less complex. These systems
must always operate reliably, therefore regular inspections are absolutely necessary to prevent
damage caused by corrosion, cracks and mechanical wear. However, some points in the pipe
system, which are narrow and tortuous, are often unattainable: in these cases the only solution
is to rely on specific technical solutions.

Under these circumstances, learning-based navigation approaches are advantageous to make
robots able to autonomously move inside (partially) unknown environments, like a pipe. One
learning methodology that has been proven to be efficient in navigation tasks is reinforcement
learning. Reinforcement learning is an automatic learning technique that aims at actuating
systems able to learn and adapt to the changes in the environment in which they are immersed
through the distribution of a "prize", called reward, which evaluates their performance. The
cited approach is able to run without any previous knowledge of the dynamic model of the sys-
tem itself, called agent, and without an accurate knowledge of the environment in which it is
placed. Consequently, it should be appropriate for making a PIRATE robot (i.e. Pipe Inspection
Robot for AuTonomous Exploration) able to autonomously learn the pipe network environ-
ment in which it should operate. The integrated hardware (e.g. laser or torque sensors, camera
etc.) may detect part of the environment, but a reinforcement learning approach should allow
the robot to interact with different pipes configuration in a more productive and goal-oriented
way, without being affected by model inaccuracies.

Thus, summarizing, reinforcement learning algorithms will be analyzed to verify whether an
automatic learning technique can be beneficial in making a robot arm able to autonomously
navigate in a constrained environment with a different obstacles configurations.

1.2 Project goals and expectations

As mentioned beforehand, the primary goal of this project is to make a robot arm able to au-
tonomously navigate in an unknown constrained environment with obstacles, e.g. a pipe net-
work, applying reinforcement learning algorithms to learn an optimal and robust movement
policy. Furthermore, the algorithms to be tested should be chosen and tuned in such a way
that they can be easily adapted to different circumstances, reducing computational time re-
quired to learn new tasks and new environments.

In particular, two RL algorithms will be tested: Q-learning and SARSA, both with discretized
state-space and with continuous state-space. For the discretized state-space case, the agent
implements SARSA/Q-learning methodologies as proposed in the literature, i.e. creating a ta-
ble to estimate the action-value function (see sections 2.1.5 and 2.1.6). On the other hand, in
the continuous-state space situation, the cited table is replaced by a neural network addressed
to approximate the action-value function and, consequently, able to figure out a more detailed
representation of the state of the environment (see section 2.1.8). After the realization of the
elements required by the reinforcement learning approach, the performances of the agents in
the learning phase are evaluated. Thus, depending on the algorithm selection, the configura-
tion of the environment and the tuning of the learning parameters, different conclusions will
be drawn.
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2 Reinforcement Learning for Robot Navigation in Constrained Environments

1.3 Report outline

This report presents the different reinforcement learning algorithms that have been analyzed
and tested both in simulation and on the real setup. Eventually, experimental results will be
discussed and assessed.

In particular, in chapter 2, reinforcement learning approach is presented together with its ap-
plications in robotics domain. Moreover, the mechanical and software configuration of the
existing setup that has been taken as a reference for the actual setup (2) is described. At this
point, visual-guided manipulator state estimation is investigated in order to figure out the im-
age processing strategy that is more efficient for real-time applications. In chapter 3, the solu-
tions proposed in chapter 2 are deeply analyzed from different points of view so that the most
appropriate approach can be employed to satisfy the requirements that are presented herein.
Furthermore, chapter 4 focuses on the actual design choices and correspondent implementa-
tion of the chosen strategy in terms of software and control architectures as well as setup and
simulation development. According to the cited implementation, chapter 5 shows the relative
results and evaluate them based on the parameters presented in section 1.2. Eventually, chap-
ter 6 draws the conclusions about the project and the possible recommendations for future
works.
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2 Background

In the next chapter, fundamentals of reinforcement learning are introduced, describing its key
elements, e.g. Markov decision process and the relative definition of environment as well as
the different existing approaches. Moreover, in section 2.2, the manipulator proposed in (2) is
described in all its components and architectures, since it is taken as a reference and modified
to fit project goals. Eventually, section 2.3 focuses on vision-guided state estimation techniques
that can be applied to track robot configurations.

2.1 Reinforcement Learning
2.1.1 General introduction

An explanatory definition of what reinforcement learning is has been provided in a psychology
book in 1898 (3): "Applying a reward immediately after the occurrence of a response increases
its probability of reoccurring, while providing punishment after the response will decrease the
probability". Therefore, after defining a goal to be achieved, reinforcement learning tries to
maximize the received reward of executing the action or set of actions, in order to allow reach-
ing the cited goal. The system does not know in advance which action is best to choose, as
usually happen in most of machine learning approaches, but it should discover through re-
peated trials which actions will allow it do get the maximum reward (4). Thus, the basic idea
is to capture the most important aspects of a real problem, by interaction between a learning
agent with the environment (see figure 2.1), representing the real problem, in order to achieve
a target. To reach this objective, it is advisable for the agent to be able to interact with the envi-
ronment and observe its state at any time. The agent must be able to perform actions that will
affect the environment by changing its state. Indeed, the formulation of the learning problem
is based on these three aspects: observation, action and goal. Through the observation, the
agent receives some feedback signals (i.e. state and reward) from the environment thanks to
the available sensors. At this point, it decides which action to take in order to maximize the
expected cumulative reward.

/ Environment \

Reward Action

\ Agent /

Figure 2.1: Environment-agent interaction in RL approach

Reinforcement Learning differs from other types of learning as specified in (4). For example,
supervised learning is a learning-based method, which learns from pre-classified examples,
provided by an external supervisor. Supervised learning is one of the most important learning
methods, but by itself, it is not adequate for learning according to environment interaction,
because it is usually impossible to obtain examples of desired behaviors that are both correct
and representative of all possible situations in which the agent has to choose which action to
take. In unexplored areas, where learning is expected to be the most important and beneficial
tool, an agent must be able to learn from its own experience.

One of the main challenges that characterizes reinforcement learning and not other types of
learning is the balance between the exploration of new situations and the exploitation of al-
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4 Reinforcement Learning for Robot Navigation in Constrained Environments

ready learned information (4). To get a high reward, an agent must prefer the actions expe-
rienced in the past, which allowed it to produce a good reward. Therefore, to discover such
actions, the agent must choose to perform actions that it has never experienced before. The
agent must exploit what it already knows in order to maximize the final reward, but at the same
time must explore in order to choose better actions in future executions. The dilemma is that
neither the exploration nor the exploitation of experience, chosen exclusively, allow to com-
plete the task without failing. The agent will therefore have to try a large set of actions and
progressively choose the ones that have appeared more beneficial.

Another key feature of reinforcement learning is that it explicitly considers the whole problem
of the interaction between agent and environment, without focusing on sub-problems (4). All
RL agents are able to observe the environment and then choose which action to take to influ-
ence the environment. Moreover it is assumed from the beginning that the agent will have to
operate and interact with the environment despite the considerable uncertainty in the choice
of actions.

2.1.2 RLelements

In addition to the agent and the environment, four other elements can be identified which are
relevant for RL algorithms analysis (4): a policy, a reward function, a value function and, if
needed, a model of the environment.

The policy defines the behavior that the agent will have at a given moment during the learning
phase. In general, the policy can be defined as the mapping between the observed states of the
environment and the actions to be chosen when the agent is in these states. This corresponds
to what in psychology is called conditioning or a set of stimulus-reaction associations (3)(4).
In some cases, the policy can be a simple function or a look-up table, while in other cases
it may result in more challenging computations, such as a search process. In any case, the
policy represents the nucleus of the agent, in the sense that it alone is sufficient to determine
its behavior.

The reward function in a reinforcement learning problem defines its objective or goal. It maps
each state-action pair (or rather every action taken from a given state) with a single number,
called reward, which intrinsically indicates how desirable is to undertake a certain action in a
given state. The agent’s goal is to maximize the total cumulative reward received over the entire
period of training. The reward function defines the goodness of events for the agent. The re-
wards obtained in the state-action pairs represent for the agent the immediate characteristics
of the problem it is facing (4). For this reason, the agent does not have to be able to alter the re-
ward function but it can use it to alter its behavioral policy. For example, if an action selected by
the policy is followed by a low reward, then the policy may change in order to choose different
actions in the future in that same situation.

While the reward function indicates what is good immediately, the value function specifies
what is good in the long run (4). The value of a state represents the cumulative reward that the
agent can expect to get in the future, starting from the current state and following a certain pol-
icy. While the reward determines the immediate desire to achieve a state of the environment,
the value-function indicates the long-term desire considering not only the state achieved in
the immediate time, but also all the possible following states and the consequent rewards ob-
tained by reaching those states. For example, a state could always be characterized by a low
reward but, at the same time, it could allow to visit other states, which cannot be visited other-
wise, which allow to get a high reward. Similarly for humans, a high reward represents pleasure
while a low reward pain (3). Value-functions, on the other hand, represent a more refined and
forward-looking judgment of how they will be satisfied or dissatisfied if the environment is in a
particular state. The rewards therefore represent a primary reward while value-functions rep-
resent the prediction of the total reward. Without the rewards, value-functions would not exist,
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CHAPTER 2. BACKGROUND 5

since the only purpose of estimating value-functions is to obtain higher total rewards. How-
ever, decisions will be made according to the estimated value-functions, because the agent’s
goal is to maximize the total reward and not the immediate rewards. Unfortunately, determin-
ing the value-functions is more complicated than determining the rewards, since the latter are
supplied to the agent directly from the environment, while the former must be estimated and
re-established by the agent’s observations (4). Precisely for this reason, the most important
component of most reinforcement learning algorithms is the methodology which permits an
effective estimation of the value-functions.

Most reinforcement learning methods are therefore structured around the estimate of the
value-function, even if it is not strictly necessary to solve some RL problems. For example,
meta-heuristic algorithms such as genetic and other functional optimization methods, like
policy gradient methods, have been used to solve reinforcement learning problems (5),(7),(4).
These methods search directly in the policy space optimizing locally around existing policies
parametrized by a set of policy parameters. Consequently, they do not even consider the es-
timation of value-functions. This type of algorithms takes the name of evolutionary methods
(or, sometimes, policy search (9),(10)) because their modalities follow biological evolution. If
the policy space is sufficiently small, or it can be structured in a way to make the process of
getting good policies easier, the evolutionary methods can be valid. Furthermore, evolution-
ary methods have advantages in problems in which the agent is not able to accurately observe
the state of the environment. However, methods based on learning through interaction with
the environment in many cases are more advantageous than evolutionary methods. This con-
sideration is due to the fact that, unlike interaction-based methods, evolutionists ignore most
of the formulation of the problem of RL: they do not exploit the fact that the policy they are
looking for is a function that maps the observed states into actions to be taken. When the
agent is able to perceive and observe the state of the environment, interaction methods allow a
more efficient search. In order to make use of the advantages of both value-function based and
policy-based algorithms, another type of algorithms has been implemented under the name
of "actor-critic" approaches. These methods have the characteristic of separating the memory
structure to make the policy independent from the value function. The block of the policy is
known as actor, because it chooses actions, while the block of the estimated value-function is
known as a critic, in the sense that it makes a critique of the actions performed by the policy
that is being followed (4). From this explanation, it is possible to understand that this approach
is a combination of the previous two methodologies.

The fourth and last element of some reinforcement learning systems, is the model of the en-
vironment (4). A model is an entity able to simulate the behavior of the environment. For
example, given a state and an action, the model is able to predict the result of the next state
and the next reward. Models are used for planning, where planning means any decision mode
based on possible future situations, before they actually occurred.

2.1.3 Markov decision processes

As already mentioned in the previous paragraphs, the learning agent bases its decisions on
the state perceived from the environment. In this section, a property of the environments and
their states is defined: the Markovian property. To maintain simple mathematical formulas,
the states and reward values are assumed to be finite (4). This allows to define the formulas in
terms of probability sums instead of integrals and probability densities.

In the general case, the state of the environment at time step ¢ + 1 after executing action A; at
time step t, can be defined as a probability distribution (4):

P{Ryy1=1,8t11 = 5,|SO,A0yR1»--~,St—1y Ar—1,R:, St Ar} (2.1)
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6 Reinforcement Learning for Robot Navigation in Constrained Environments

where R corresponds to the reward, S to the state and A to the action and R;+; and S;; are
jointly determined.
If the finite set of environment states satisfies Markov property, then the response given by the
environment at the instant ¢ + 1 depends exclusively only on the state and action representing
the instant ¢. In this case, the dynamics of the environment can be defined by the probability
distribution:

P{Ri11=1,8141=51S1, A} 2.2)

for every r,s',S;, A;. In other words, an environment satisfies Markov property if and only if
equation 2.1 is equivalent to equation 2.2 for each r, s’ and every possible sequence of past
events Sy, Ag, R1,...,S¢-1,Ar-1, Rt, St, As.

If an environment satisfies Markov property, then, thanks to equation 2.2, it is possible to pre-
dict the next state and the next reward by knowing only the state-action pair of the previous
instant. For this reason, it is possible to consider equation 2.2 as the basis for the choice of
actions to be taken. In short, the best policy that chooses the action following Markov property
is as good as the best policy that chooses the actions considering the whole sequence of past
events.

Even when the environment does not satisfies Markov property, it is still appropriate to think of
the state in reinforcement learning as an approximation of a Markov state. Markov property is
important in reinforcement learning because all the methods related to learning by reinforce-
ment base their choices by assuming that the values provided by the environment are functions
only of the state and the action taken at a previous instant. A reinforcement learning system
that satisfies Markov property is called Markov Decision Process (MDP). If the set of states and
the set of actions are finite, it is called finite Markov Decision Process (finite MDP). Finite MDPs
are very important for the theoretical definition of reinforcement learning. A finite MDP is de-
fined by a set of states and actions and the single-step dynamics of the environment. Given a
state-action pair, s and a, the probability of any possible next state s’ is:

p(s',rls,a) =P{S; =5, R, =r|Si—1 =5, Ai-1 = @} (2.3)

The conditional property 2.3 is called transitional property.
In the same way, given a state-action pair (s,a) combined together with any next state s’, the
expected reward can be defined as:

r(s,a,s) =E{R/S;-1=$Ai-1=a,S; =5} (2.4)

These values, p(s'ls, a) and r (s, a, s'), provide a complete definition of one of the most impor-
tant aspects concerning the dynamics of a finite MDP.

Figure 2.2: Example of finite MDP with three states {sg, 51, s2} and two actions {ag, @} (18)

Figure 2.2 shows a finite MDP. At each state it is possible to execute one of the possible actions,
ap or a;. The execution of each action from a given state is followed by one or at maximum i

Marta Barbero University of Twente



CHAPTER 2. BACKGROUND 7

transitions, with i = 3 in the analyzed MDP. A value representing p(s;+11s;, ;) is associated to
each transition. Transitions can also have another associated expected value which represents
r(sly ajr Si+1)-

2.1.4 RL algorithms classification

Several algorithms have now been implemented for solving reinforcement learning problems.
At the base of each apporach, it is possible to identify central ideas in common among all. By
comparing the different methods, it is possible to notice that they differ in the way they learn
the value-function, but, in any case, the underlying idea remains the same for all methods
and is called Generalized Policy Iteration (GPI). GPI represents the iterative approach aimed
at approximating policy and value-functions: the value-function is repeatedly altered to ap-
proximate the value-function relative to the policy, and the policy is repeatedly improved with
respect to the current value-function. In the next subsections, an accurate definition of GPI is
provided as well as the correspondent algorithms implementation.

Generalized Policy Iteration

The policy iteration consists in the mutual influence of two processes (4): the first performs the
task of creating the value-function V, consistent with the current policy 7 (process called policy
evaluation), while the second has the task of modifying the policy, in greedy mode, following the
values extracted from the value-function, 7 — greedy(v) (process called policy improvement).
In the generalized policy iteration, these two processes alternate, the second starts when the
first one ends, even if this is not necessary. There are variants in which the processes partially
terminate before starting the following ones. For example, in Temporal Difference methods,
the policy evaluation process updates the value of a single state-action pair at each iteration
before terminating and allowing the policy improvement process to run. If the two processes
iteratively update all the states, the final result is equivalent to the convergence with the optimal
value function v*, following the optimal policy 7*.

Thus, through the GP], it is possible to describe the behavior of all the algorithms treated in
this project, and most of the existing reinforcement learning methods. This means that, in
most methods, it is possible to identify a policy according to which actions are selected and
a value function, where the former is always improved compared to the values estimated by
the second, and the second is always guided by the first, for the calculation of the new value-
function. When both processes stabilize, then the value-function and the obtained policy will
result in being optimal. This is because the value-function will only stabilize when it is consis-
tent with the policy, and the policy will only stabilize when it has a behavior that follows the
current value-function. If the policy changed the behavior with respect to the new value func-
tion, then consequently the value function would also be modified in the following iteration,
to better model the behavior of the policy. For this reason, if the value function and the policy
stabilize, they will be both optimal and consistent with each others. The evaluation process
of the value-function and the process of improving the policy are simultaneously competing
and cooperating with each others. They are competing because, by making the greedy policy
in relation to the value-function, the value function is made incorrect for the new policy, while
making the value-function consistent with the policy, the policy is made greedy than the new
calculated value-function. In the long run, in any case, these two processes interact to find a
solution that coincides with each others, which is equivalent to obtaining optimal results.

In order to fully understand the role of the policy and the value-function, it is good to briefly
summarize the elements of the problem of RL. The agent and the environment interact in a
sequence of discrete steps over time. The actions taken in the environment are chosen by the
agent. The states are the basis on which the agent chooses the actions to be taken, and the
rewards are the basic information to determine the goodness of the action performed by the
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evaluation

N—greedy(V)

improvement

Figure 2.3: GPIL: interaction between policy and value-function up to convergence to optimal solution
4)

agent in a given state of the environment. Everything inside the agent is completely control-
lable from it, while what is outside is not controllable by the agent and may be partly unknown.

The policy is a stochastic rule by which the agent selects the action according to the current
state. Since the agent’s goal is to maximize the total amount of reward accumulated over time,
the policy will have to be greedy with respect to the value-function, preferring the choice of
actions considered better by the value-function, where an action is considered better when it
presents a higher value in a given state.

The value function assigns to each state, or to each state-action pair, the expected return. The
expected return corresponds to the total amount of rewards obtainable as a result of a state
visit. Upon reaching the optimal value-function, each state, or state-action pair, will have as-
signed the highest obtainable expected return following the optimal policy.

It is possible to estimate the value-function from the agent’s experience. For example, if an
agent follows a policy 7 and keeps in memory the rewards obtained for each encountered state,
it can combine them to get the expected return (total reward) of the state. If the agent keeps an
average of the total reward for all the times it has visited such state, with the number of times
tending towards infinity, the average will equal the maximum obtainable expected return by
visiting the state (i.e. expected value).

For MDPs, v, (s) is easily definable as (4):

Un(8) = Ex[G|S; = 5] (2.5)
where E;[G,|S; = s] represents the expected value obtained by the agent when following the
policy 7, at each time step ¢. Equation 2.5 is said state-value function for policy 7.

Similarly is possible to define a value-function which takes into account the value of perform-
ing an action a from a certain state s following policy 7:

qn(s,a) =k [G|S; =5, A = a] (2.6)

where g, (s, a) is called action-value function for policy 7.

It is possible to estimate the expected return, obtainable after visiting one state, through the
following sum:
G;=Ris1+Rys2+...+RT 2.7)

where T represents the final step. Itis assumed that in the environment there is a natural notion
of final step, and, therefore, that the sequences of interaction between environment and agent
are divided into episodes which term coincides with the achievement of one of the possible
terminal states of the environment, e.g. reaching a final goal.
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Since the environment can be of stochastic nature, it is not possible to be sure that in the fol-
lowing episode, by visiting s, one always obtains the same G;. A discounting concept can be

added:
T

Gt=Riy1 +YRps2 +YRi43 = Z Yth+k+1 (2.8)
k=0
with y between 0 and 1, called the discount rate. The discount rate permits to consider with
less weight choices taken in the future with respect to choices made at time step . As you move
away from state s, the obtained rewards have a lower and lower weight in the calculation of the
expected return.

Thanks to the definition of expected return and value function, it is now possible to determine a
fundamental property of the value functions which shows that they satisfy particular recursive
relationships. For any policy = and any state s, the following consistency condition is satisfied
between the value of s and the value of the possible successive state s':

T T
Vr(8) = [En[z Yer+k+1|St =s] =Ez[Rpr1 +y Z Yth+k+2|St =]
k=0 k=0 2.9)

=Eqn(al)Ey p(s'ls, @) [Ri+1 +yvr(s)]

The equation in 2.9 is said Bellman equation and expresses the relation between the value of
a state and the value of the states succeeding it (4). The Bellman equation averages among
all the possibilities, weighing each of them with respect to the relative probability. It states
that the value of the state s must be equivalent to the value of the following state, reduced
by a parameter y, added to the reward obtained by executing the transition. In equation 2.9,
7 (als) represents the probability of choosing action a given the state s. p(s'|s, a) is equivalent to
equation 2.3. Since the consistency property is satisfied by all possible policies 7, it is necessary
to generalize the equation as:

Ex[]1=) 7n(als))_ p(s'ls,a)l] (2.10)
a s

Summarizing, the value of a state is given by the sum of the expected returns, weighted accord-
ing to the probability of the combination of the policy choice of a and possible following states
s, deriving by the stochastic nature of the environment.

Bellman equation represents the basis for calculation, approximation and learning of the value-
function.

Dynamic Programming

The family of algorithms called dynamic programming (DP) was introduced by Bellman (1954),
who showed how these methods can be used to solve a wide range of problems. The following is
a summary of how dynamic programming approaches the decision-making process of Markov.

The DP methods deal with the solution of Markov decision-making processes through the it-
eration of two processes called policy evaluation and policy improvement, as defined in the
previous paragraph on GPI. DP methods operate through the entire set of states assumable by
the environment, following each complete iteration for each state. Each update operation per-
formed by the backup updates the value of a state based on the values of all possible successor
states, weighed for their probability of occurrence, induced by the policy and by the dynamics
of the environment. Full backups are closely related to the Bellman equation 2.9, they are noth-
ing more than the transformation of the equation into assigned instructions. When a complete
backup iteration does not bring any change to the state values, convergence is obtained and
then the final state values fully satisfy the Bellman equation 2.9. The DP methods are appli-
cable only if there is a perfect model of the environment (4), which must be equivalent to a
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Markov decision process. Precisely for this reason, the DP algorithms are of little use in rein-
forcement learning, both for their assumption of a perfect model of the environment, and for
the high and expensive computation, but it is still opportune to mention them because they
represent the theoretical basis of reinforcement learning. In fact, all the methods of RL try to
achieve the same goal of DP methods, only with lower computational cost and without the as-
sumption of a perfect model of the environment. Although DP methods are not practical for
large problems, they are still more efficient than methods based on direct search in the policy
space, such as the genetic algorithms mentioned in paragraph 2.1.2. DP methods converge to
the optimal solution faster with respect to methods based on direct policy search (4).

The DP methods update the estimates of the values of the states based on the estimates of the
values of the successive states, or update the estimates on the basis of past estimates. This
represents a special property, which is called bootstrapping. Several methods of RL perform
bootstrapping, even methods that do not require a perfect model of the environment, as re-
quired by the DP methods. In the following section, a summary of the dynamics and charac-
teristics of methods that do not require an environment model is reported, without the need of
bootstrapping. These two characteristics are separate, but the most interesting and functional
algorithms, such as Q-Learning and SARSA, are able to combine them.

Monte-Carlo methods

Despite DP, Monte Carlo methods do not require the presence of a model of the environment
(4). They are able to learn through the use of the agent’s experience alone or from samples
of state sequences, actions and rewards obtained from the interactions between the agent and
the environment. The experience can be acquired by the agent in line with the learning process
or emulated by a previously populated data-set. The possibility of gaining experience during
learning (on-line learning) is interesting because it allows to obtain excellent behavior even in
the absence of prior knowledge of the dynamics of the environment. Even learning through
an already-populated experience data-set can be interesting, because, if combined with online
learning, it makes automatic policy improvement induced by others’ experiences possible.

In order to solve RL problems, Monte Carlo methods estimate the value function on the basis
of the total sum of rewards, obtained on average in the past episodes. This assumes that the
experience is divided into episodes and that all episodes are composed of a finite number of
iterations. This is because in Monte Carlo methods only once an episode is completed the es-
timate of the new values and the modification of the policy take place. Like GPI, Monte Carlo
methods iteratively estimate policy and value function. In this case, however, each iteration cy-
cle is equivalent to completing an episode, i.e. the new estimates of policy and value function
occur episode by episode. Usually the term Monte Carlo is used for estimation methods, which
operations involve random components; in this case, the term Monte Carlo refers to RL meth-
ods based on total reward averages. Unlike DP methods that calculate the values for each state,
Monte Carlo methods calculate the values for each state-action pair, because in the absence
of a model, the only state values are not sufficient to decide which action is better to perform
from a certain state. It is necessary to explicitly estimate the value of each action to allow the
policy to make the choices. For this reason, in Monte Carlo methods, it is necessary to obtain
the value function g* (s, a). The evaluation process of the action-state values is based on the
estimate of g” (s, a) or the expected return obtained starting from the state s, choosing action
a, following the policy n. There are two main Monte Carlo methods, which differ in terms of
estimated expected returns:

» Every-visit method MC: it estimates the value of a state-action pair (s, a) as the average
of the expected returns obtained after each visit to the state s and choice of the action a.

* First-visit method MC: it estimates (s, a) as the average of the expected returns obtained
just after the first visit of the state s and action a in a given episode.
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Compared to DP methods, the idea behind Monte Carlo methods is much simpler and more
deterministic. However, by simplifying the calculation dynamics of the value-function, a com-
plication arises. It is possible that different state-action pairs relevant to the achievement of
the objective are never visited by following the simple policy that selects the action with higher
expected return at each state (4). In fact, if the pure policy greedy was followed, the behavior
of the agent would become deterministic reducing to zero the exploration factor. Maintaining
sufficient exploration is a problem in Monte Carlo methods. It is not enough to choose the
estimated action considered the best in that situation, because, doing so, would not make the
agent acquire the knowledge about the expected returns obtainable by following alternative
actions, which could lead to learn a better policy.

An approach that can solve the problem of insufficient exploration is based on the use of an
e-greedy policy, where € represents the probability of randomly choosing the action instead of
following the best defined choice from the value-function, as possible to see in the next scheme:

Randomly choose an

Exploration —» h
action

Random number

Exploitation —— Exploit best action

Figure 2.4: e-greedy exploration-exploitation strategy

One of the main advantages of Monte Carlo methods, compared to DP methods, is the feature
of focusing estimates on a smaller subset of states that the environment can acquire. A region
of special interest can be accurately assessed without the need to accurately evaluate the whole
set of states. In addition, Monte Carlo methods differ from DP methods for two reasons. First,
MC methods learn directly from experience samples and then it is possible to learn the dynam-
ics of the environment simultaneously with the acquisition of agent experience in the absence
of a model. Finally, MC methods do not perform bootstraps, they do not estimate expected
return based on other estimates.

In the following section, methods that learn from experience, such as Monte Carlo methods,
but also perform bootstraps, such as DP methods, will be considered.

Temporal Difference methods

Learning by TD is a combination of ideas which stand behind Monte Carlo methods and Dy-
namic Programming (4). TD methods learn directly from experience in the absence of a model
of the dynamics of the environment, an idea which reminds of Monte Carlo methods. In addi-
tion, like DP methods, TD methods update their estimates partly according to past estimates
(executing bootstrap). As already verified for the other methods families, TD methods also fol-
low the idea defined by GPI for the policy iteration.

Unlike MC methods, that wait for the end of an episode before estimating the expected return
according to the agent’s experience, TD methods update the expected return at each time step.
At time step ¢ + 1, they are already able to update the state S;, observing the reward R;+; and
applying the value of the new visited state V(S;+1). In the most simple case, the update of the
value-function is performed according to (4):

VI(S) =V(S) +alRp1 +YV(Se+1) = V(S1)] (2.11)
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where the parameter «a € [0, 1] reflects how is the new value estimate weighted against the old.
From equation 2.11, it is possible to notice that the evaluation of the value of a state depends
on reward obtained at time step ¢+ 1 and on the value of the new visited state S;1, reduced by
a discount factor v, already introduced in equation 2.8. If a = 1, the equation is equivalent to
Bellman’s equation (equation 2.9).

As required in MC methods, the value-function to be estimated is (s, a), since the complete
value of a state v(s) is not sufficient to determine the best movement policy, in absence of a
model of the environment. On the other hand, unlike MC, the estimates of the values occur
step-by-step, considering, instead of the state, the state-action pair.

In order to provide further details, it is necessary to analyze TD methods according to their
classification into:

* On-policy TD learning, e.g. SARSA.
* Off-policy TD learning, e.g. Q-learning

It has been chosen to address full sections to SARSA and Q-learning because they are the algo-
rithms that have been applied in this project.

2.1.5 On-policy learning - SARSA

On-policy algorithms, such as SARSA (acronym for State-Action-Reward-State-Action), update
the policy according to the taken actions. This means that, when making moves, they follow a
control policy and use it to update the Q-values, following the equation (4):

Q(S:, A =Q(Ss, A + a[R1 +YQ(Si41, Ars1) — Q(Sy, Ap)] (2.12)

Thus, in the simplest case, SARSA employs a table to store each state-action pair. SARSA esti-
mates g, according to the behavior of policy 7 and, in the meanwhile, it modifies the greedy
behavior of the policy according to the updated estimates of g;. The convergence of SARSA
and, more generically, of all on-policy TD methods, depends on the nature of the policy. In TD
methods, e-greedy policies are used, as possible to notice in figure 2.5.

Sarsa: An on-policy TD control algorithm

Initialize Q(s,a),Vs € 8, a € A(s), arbitrarily, and Q(terminal-state, ) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S,4) « Q(S, A) +a[R ++Q(S", A') — Q(S, A)]
S8 A A
until S is terminal

Figure 2.5: Pseudo-code SARSA algorithm (4)

2.1.6 Off-policy learning - Q-learning

Q-Learning is a simple method of Temporal Difference learning. It allows an agent to learn
the optimal behavior in a MDP. Q-Learning, like SARSA, estimates the value-function q(s, a)
in incremental mode, updating the state-action pair at each time step, following the logic that
stands behind the update rule in equation 2.11. As already anticipated, Q-Learning, unlike
SARSA, has off-policy features, that is, while the improvement of the policy occurs according
to the values estimated by ¢(s, a), the value-function updates the estimate following a strictly
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greedy secondary policy: given a state, the action choice is always the one that maximizes the
value max,q(s, a). Anyway, the policy 7 has still an important role in values estimates since it
is used to determine the state-action pairs to be visited and updates (4).

QS A = QS A + a[Rpe1 +ymaxq(Q(Si+1,a)) — Q(Sy, Al (2.13)

The equation in 2.13 represents the approach for estimating the state-action pairs in Q-learning
algorithms. As SARSA algorithm in section 2.1.5, Q-learning is characterized by two parame-
ters: v, which is the discounting factor and allows to assign less weight to reward obtained in
the future, while a represents the learning rate.

As SARSA, also Q-learning makes use of a e-greedy policy. Thanks to the Q-Learning off-policy
nature, the analysis of the algorithm is simpler because it assumes a behavior independent
from the chosen policy. As a matter of fact, Christopher J.C.H. Watkins, the creator of Q-
Learning (1989), in collaboration with Peter Dayan in 1992, demonstrated the mathematical
convergence of Q-Learning (6), unlike SARSA, for which in the literature the demonstration of
convergence is not yet present.

In the simplest case, Q-learning employs a table to store each state-action pair. At each step the
agent observes the current state of the environment and, following the policy 7, it selects and
executes the action. By executing the action, the agent obtains the reward R;.; and achieves a
new state S;;;. At this point, the agent is able to calculate Q(S;, A;) updating the estimate (see
figure 2.6 for further details).

Q-learning: An off-policy TD control algorithm

Initialize Q(s,a),Vs € 8, a € A(s), arbitrarily, and Q(terminal-state, ) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
l Q(S,A) + Q(S, A) + a[R + ymax, Q(S',a) — Q(S, A)]
S+ S8
til S is terminal

Figure 2.6: Pseudo-code Q-learning algorithm (4)

2.1.7 SARSAvs Q-learning

SARSA and Q-learning algorithms have been analyzed in the previous sections, but it is also
relevant to highlight which are the differences between the two approaches. In this perspective,
based on the definition of on-policy and off-policy algorithms, SARSA is a more "conservative"
algorithm with respect to Q-learning: if there is a risk across the optimal path (e.g. an obstacle)
represented by a negative reward, Q-learning will probably collide while exploring, whereas
SARSA will try to avoid it, since it updates the policy looking at the value of performing a new
action from the next state. An emblematic example of this risk handling across SARSA and Q-
learning is represented by the so called Cliff-Walking experiment (11), which shows that SARSA
is characterized by a lower chance of risky exploration. On the other hand, if the goal is to
find an optimal policy in simulation or if a slow-moving robot is adopted (and consequently
the damage risk decreases), Q-learning is a better choice because it learns an optimal policy
directly, while SARSA requires a more sophisticated strategy to converge towards it.

2.1.8 Deep Reinforcement Learning

In the previous paragraphs, the estimates of the value-function have been performed by using
a table, in which each cell represents a state, or a state-action pair. The employment of a table
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to represent the value-function allows the creation of simple algorithms and, if the environ-
ment conditions are Markovian, it permits to accurately estimate the value-function, because
it assigns to each possible configuration of the environment the expected return learned dur-
ing policy iterations. The use of the table, however, also leads to limitations: in fact, the tabular
action-value methods are applicable only to environments with reduced number of states and
actions. The problem is not limited only to the large amount of memory required to store the
table, but also to the large number of data and time required to estimate each state-action pair
accurately. In other words, the main problem is generalization (4). A solution to the prob-
lem must be found, generalizing the experience gained on a subset of state-action pairs, so
as to approximate a broader set. Fortunately, generalization based on examples has already
been extensively studied and there is no need to completely invent new methods to be used
in reinforcement learning. The solutions to generalization are based on the combination of RL
approaches with methods of function approximation. Based on a subset of examples of behav-
ior of a given function, function approximation methods try to generalize with respect to them
to obtain an approximation of the whole function (4). As with table-based methods, there are
various techniques of function approximations. In order not to make the treatment too com-
plex, in the following section, just Deep Q-Learning and Deep SARSA are introduced and are
referred as Deep RL. Both are the evolution of Q-learning and SARSA explained respectively in
sections 2.1.6 and 2.1.5.

The term Deep reinforcement learning identifies a RL method based on function approxima-
tion (4). It therefore represents an evolution of the basic RL method since the state-action table
is replaced by a neural network, with the aim of approximating the optimal value function g*.
With respect to the standard approaches, in which the network was structured in a way to use as
input both states and actions and getting as output the correspondent expected reward, Deep
RL analyzed in this report revolutionizes the structure, to require only the state of the environ-
ment as input and supplying as output as many state-action values as there are actions that can
be performed in the environment.

Q-value Q-value 1 Q-value 2 Q-value n

A h

Network Network
/V\ A

State Action State

Figure 2.7: On the left: naive structure. On the right:Deep RL structure (19)

Since for each value update it is necessary to determine max,q(s, a) or g(s', a’) for Q-learning
and SARSA respectively (see equations 2.13 and 2.12), with the naive configuration shown in
figure 2.7, for each step it is necessary to execute n forward steps. On the other side, in deep RL,
the number of forward steps is always equal to 1, whatever the number of executable actions,
because the output of the network is composed of as many neurons as the number of actions,
and the value contained in them represents the expected return of the related actions.

In the simple method with table, the learning is done by accessing the row-column represent-
ing the state-action pair and updating the expected return based on the new estimate follow-
ing formula 2.13 or 2.12. This learning method is not applicable to a neural network because
the only way to modify its behavior is through the adjustment of the weights, by performing
a backward step. The learning of the value-function in the Deep RL method is based on the
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adjustment of the net weights according to the loss function, which corresponds to the mean
squared error between the target and the current value function:

L;=[Target—Q(S;, Apl? (2.14)

where Q(S¢, A;) corresponds to the value estimated by the network and the targets, represent-
ing the optimal expected return, are respectively for Q-learning and SARSA:

Target=[Rir1 +ymax,Q(S¢41,a)l (2.15)

Target = [Rty1 +yQ(St+1,Ars1)] (2.16)

Clearly, the optimal expected return must be estimated. Its estimation can be done with tech-
niques already used in MC methods or using directly the network. In the second case, note that
the target values depend on the configuration of the network weights, to which changes will be
made at each step. Since a loss function is applied, Deep RL treats the estimate of the value-
function as a regression problem. The errors calculated by the loss function will be propagated
backwards in the network through a backward step, following the descent logic of the gradient
with the intent of minimizing the error.

With the made analysis, it is now possible to define a first basic Deep RL algorithm, where the
state-action pairs table is replaced by a neural network initialized with random weights and
the learning of the value-function is obtained by minimizing the errors calculated by the loss
function.

Algorithm 1: Basic Deep Q-learning Algorithm 2: Basic Deep SARSA
Init Q(s, @) with random weights w; Init Q(s, a) with random weights w;
while episode != final episode do while episode != final episode do
Init and observe S; Init and observe S;
while step != final step do Choose A from S using e-greedy 7 derived
Choose A from S using e-greedy 7 from Q;
derived from Q; while step /= final step do
Take action A, observe R and §'; Take action A, observe R and §';
Calculate target T; Choose A’ from S’ using e-greedy 7 derived
if condition then from Q;
| S’ terminal state then T = R; Calculate target T;
else , if condition then
| T=R+ymax,Q(S, a; | S’ terminal state then T = R;
end else
Train the Q-network using ‘ T=R+yQ(S,A);
(T — Q(S, A))? as loss function; end
$=5} Train the Q-network using (T — Q(S, A))?
end as loss function;
end §=S;
A=Al
end
end

Applying the basic algorithms shown in 1 and 2, it turns out that the approximation of the
value-function through a neural network is not stable. To achieve convergence, the basic al-
gorithm should be modified by introducing techniques to avoid oscillations and divergences.
The most important technique is called experience replay (14), (4), (8). During the episodes,
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at each step, the agent’s experience, i.e. e; = (s;, ay, 1y, S;+1) and e = (sg, as, 1y, Se+1, ar+1) for Q-
learning and SARSA respectively, is stored in a dataset D; = {ey, ..., e;} called replay memory. In
the cycle inside the algorithm, instead of performing the network training based on only the
transition just performed, a subset of transitions is selected randomly from the replay memory,
and the training takes place as a function of the loss (e.g. of the quadratic error ) calculated on
the subset of transitions. This type of update takes the name of minibatch update and brings a
significant advantage over the basic method. First of all, every step of experience is potentially
used in various network weight updates, and this allows data to be used more efficiently. Fur-
thermore, learning directly from consecutive transitions is inefficient due to the strong corre-
lation between them. The experience replay technique, by randomly selecting transitions from
replay memory, eliminates the problem of correlation between consecutive transitions and re-
duces variance between different updates. Finally, the use of the experience replay makes pos-
sible avoiding converging into a local minimum or to diverge catastrophically, since the update
of the weights is based on the average of several previous states, smoothing the learning and
avoiding oscillations or divergences in the parameters. In practice, the modified algorithm
stores the last n experiences in the replay memory D and randomly select a subset of experi-
ences from D each time it performs an update of the network weights (see algorithms 3 and 4).

Algorithm 3: Full Deep Q-learning Algorithm 4: Full Deep SARSA

Init replay memory D to capacity N;
Init Q(s, @) with random weights w;
while episode != final episode do

Init replay memory D to capacity N;
Init Q(s, @) with random weights w;
while episode != final episode do
Init and observe S; Init and observe S;

while step != final step do Choose A from S using e-greedy 7 derived
Choose A from S using e-greedy 7 from Q;

derived from Q; while step /= final step do

Take action A, observe R and S';
Store experience (S, A, R, S"Yin D;
Sample random transition

(Ss, As, Rs, Sf) from D;
Calculate target Ts;

if condition then
| S’ terminal state then T = Ry;

else
‘ Ts = Rs+ymax,Q(S,, a);
end
Train the Q-network using
(Ts— Q(Ss, Ay))? as loss function;
§S=9;

Take action A, observe R and §';
Choose A’ from S’ using e-greedy  derived
from Q;
Store experience (S, A, R,S', A') in D;
Sample random transition
(Ss, A, Rs, S, A}) from D;
Calculate target Ts;

if condition then
| S’ terminal state then T = Rg;

else
| Ts=Rs+yQ(S, AY;
end
Train the Q-network using
(Ts— Q(Ss, As))? as loss function;

end §=8}
A=A’
end

end

2.2 Existing setup

In this section, the configuration of the already existing setup that will be modified to fit project
goals is presented. The existing setup is deeply described in (2). It consists of a three degrees of
freedom robotic arm, actuated by three servo-motors and controlled by an Arduino board. In
the next subsections, its mechanical and software architectures are presented.
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2.2.1 Mechanical architecture

The manipulator has been manufactured using laser-cut technology provided by RaM proto-
lab to simplify the production process. In particular, the structure consists of the following
components (see figure 2.8):

Figure 2.8: Existing design of the robotic arm (2)

¢ Box-like base, which supports the robotic arm and in which a servo-motor is placed to
allow the upper plate and, consequently, the first link to rotate. All the electronic compo-
nents lies inside the box as well. The box is assembled using four bolts (to connect the top
of the box) and hooks and slots strategy (see figure 2.9).These hooks slide into place con-
straining all the motions expect one (in sliding direction); if that motion is constrained
externally, the connection is strong and reliable.

* Rotation plate, which is connected to the base through a hollow bearing (i.e. slewing
ring), to make the base more rigid. This rotation plate allows the first link to rotate up-
wards and downwards through a servo-motor which is settled on its top.

e First link, which is attached to the rotation plate. On its tip a third servo-motor is placed
to make the second link to rotate.

» Second link, which is connected to the first thanks to the third servo-motor. Its tip is
smaller to easily represent the end-effector position.

The servo-motors that have been selected to move the mechanical structure are DYNAMIXEL
AX-12A from Robotis (see figure 2.10). They are digital servo-motors provided with different
features, such as half-duplex communication, control parameter tuning, tracking of speed,
temperature, shaft position, voltage and load. A complete data-sheet of those motors is re-
ported in the appendix A.1.

2.2.2 Software architecture

The control architecture of the robotic arm is implemented in MATLAB and is based on screw
theory. Screw theory is a technique which describes the motion of rigid bodies in 3D space
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Figure 2.9: Exploded view of hooks-slots connection of the base (2)

Figure 2.10: Servo-motors AX12A produced by Robotis (20) have been selected to actuate the joints of
the manipulator

through a vector approach. In this perspective, the velocity of the considered body is repre-
sented as a screw-like motion along a line, such that translation and rotational components
are considered together in one vector called twist. After evaluating the twists for the consid-
ered frame of reference, a Jacobian matrix can be extrapolated from which parameters of inter-
est can then be calculated, i.e. joints velocities and, consequently, joints positions. The control
algorithm applied to the robot arm is shown in figure 2.11.

Intergration of joint Send angle's to (;::z:l:x:)e' :::’h Define the error
velocities Arduino P frame vector
A

Calculate the new
twists in the reference
frame

—T—

Plot the simulated Get the real robot's Ca_lculale new rotation velocities determine the
- . using the psuedo inverse of the L 3
and real robot joint position N . jacobian
jacobian and the error vector

Figure 2.11: Control architecture as implemented in MATLAB (2)

As possible to notice from 2.11, the communication between MATLAB and the motors is made
through an Arduino board. Because of half duplex communication of the cited motors (see
section 2.2.1), RX and TX ports of Arduino have to be connected to the same communication
line. This is done by using a tri-state buffer which acts as a switch between the Arduino and the
DYNAMIXEL. In addition, the tri-state protects the Arduino ports.

Even if the motors are provided with encoders, which are able to evaluate motors position and
speed, vision guided configuration estimation strategies are analyzed in the next section in
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order not to rely on other hardware like torque sensors and/or laser scanners to evaluate the
distance between the manipulator structure and other points of interest (e.g. goal and obsta-
cles).

2.3 Vision guided state estimation

In recent years, interest in vision systems has considerably increased. This is because vision
techniques present themselves as the best compromise between cost, flexibility and provided
information. The development of robotic applications in unstructured, dynamic and rapidly
changing environments requires the use of robust and reliable vision systems that are able to
perceive the events that occur in the environment and monitor their evolution. Thus, the ad-
vantage of using vision systems for localization and tracking purposes lies essentially in the
amount of information that can be obtained even without the use of special and expensive
hardware, such as position sensors or torque sensors. Unfortunately, extracting reliable and
accurate information from images is not an easy task and it becomes even less so if the se-
quence of images should be taken and elaborated as much as possible real-time, as in the case
of configuration estimation of robotic arms.

The problem linked to the location and tracking of a body is a problem that is difficult to solve,
especially if, as in this case, the only source of information is a sequence of two-dimensional
images. So, there is the need to find a solution for:

* Extract the elements of interest from the set of pixels that constitute a digital image (clas-
sification).

¢ (Calculate their position in the environment (localization).

» Associate the elements previously identified with the current ones in order to identify the
trajectory followed by each of them (tracking).

What makes localization and tracking a problem of not easy solution is the fact that it contains
within it a large number of sub-problems, such as the extraction of the elements of interest from
the images, the calculation of their position in space, the resolution of the ambiguities due to
the various occlusion situations, the location of the same object in two different frames and so
on. All these sub-problems have to be taken into account when selecting the most appropriate
algorithm.

In this section, an analysis of some of the most interesting applications of vision-guided state
estimation which can be found in literature is provided, in order to find out which is the most
appropriate technique for real-time implementations.

2.3.1 Localization and tracking techniques

One of the problems encountered in the realization of a vision system, which allows localiza-
tion and tracking of the movements of robots, is related to how to calculate their position and
their trajectories within the environment. The localization process has as its main objective
the determination of the position and the possible orientation of the elements of interest. In
the tracking process, on the other hand, it is important to identify the correspondences be-
tween the previous and the current frame, which allow agents to be followed over time. In
other words, it is a question of extracting the elements of interest that characterize the frame at
the instant ¢ — 1, such as points, lines, shapes, etc., determine their position in space (localiza-
tion) and identify their presence in the frame captured at time ¢ by determining a displacement
trajectory (tracking). The techniques used to identify and extract these elements of interest are
substantially two and are distinguished by the employment or not of particular devices called
markers.

Robotics and Mechatronics Marta Barbero



20 Reinforcement Learning for Robot Navigation in Constrained Environments

Localization and tracking with markers

According to this approach, markers and/or devices of various types are fixed on the robot’s
structure (e.g. see figure 2.12) (21)-(26). The signals emitted by these devices can be of differ-
ent kinds, luminous, electro-mechanical, etc., and are captured by the appropriate receiving
device, which has the task of converting these signals into two/three dimensional information.
This technique is widely used in Virtual Reality applications and has the main advantage of ob-
taining the position and orientation of the robot in real time. On the other hand, it presents the
following disadvantages:

* Moving the sensors from their original position causes situations of uncertainty in the
results.

e Particular difficulty in positioning such devices on certain region of the body, such as
narrow areas.

Figure 2.12: AprilTag markers for navigation of mobile robots (26)

However, different types of reliable markers have been identified and tested on different robots.
In (21), fiducial markers developed in the ARToolkit library are attached to the links of a small
manipulator and then tracked through a monocular camera for visual servoing control appli-
cations. Visual servoing control permits to obtain a reliable state estimation and control with-
out using measurements acquired with the encoders placed in the joints of the manipulator.
In order to detect these special markers, first an edge detection is performed, identifying dis-
continuities through Laplacian operator and looking for connections between group of pixels
having similar gray tone. Once edges are extracted, four lines forming a frame are considered
as potential markers. The detection has been proved to be fast but not so robust to changes
in illumination (26). The same markers library have been used, detected and tracked through
a monocular camera also in (22), where the kinematic model of a six degrees of freedom ma-
nipulator is learned together with the geometrical relationships between its body parts as a
function of the joint angles. Furthermore, the predicted internal kinematic model could be
used to adapt it when the robot body changes due to fatigue or failure. The central idea that
stands behind these concepts is learning through non-parametric regression a large set of local
kinematic models and then look for the best arrangement of these models to represent the full
robotic system. In this perspective, a large sequence of random motor commands are given to
the robot and, after each movement, the new configuration of the manipulator is checked, de-
tecting the new location of the markers. But, since arbitrary motion patterns (just constrained
by the geometry of the manipulator) are set, full visibility of the markers is not guaranteed and,
in that case, the configuration is rejected. Thus, the work follows the idea of learning by ex-
planation, i.e. the search for the kinematic structure is guided by the accuracy of observations
and, consequently, depend on how well those observations could explain the model.

Marta Barbero University of Twente



CHAPTER 2. BACKGROUND 21

Markers similar to ARTag have been developed by (26). AprilTags are fiducial markers which
use 2D bar code style "tag" (see figure 2.12), allowing full localization of features from a sin-
gle image. With respect to ARToolkit, this library is completely open and well documented.
In order to detect these markers, a graph-based image segmentation algorithm based on local
gradients has been implemented. As specified in (25), image segmentation is the process of
partitioning an image into meaningful regions. More precisely, segmentation is the process of
classifying image pixels that have common characteristics, so each pixel in a region is similar to
the others in the same region for some property or characteristic (color, intensity, or texture).
Adjacent regions are significantly different than at least one of these features. The result of a
segmented image is a set of segments that, collectively, cover the entire image. Thus, apply-
ing the local gradient means computing the gradient direction and magnitude at every pixel
and then cluster the pixels with similar gradient directions and magnitudes. Moreover, a quad
extraction is performed in order to find line segments that form the quad itself and, once the
quad is found, a 2D barcoding algorithm is applied to extract the digital code of the marker.
The AprilTag detection has been proved to be fast and robust (26).

Following different approaches with respect to the previous ones, other types of markers have
been employed in (23) and (24) and detected by a single monocular camera. Both the re-
searches made use of color markers which are placed on the features of interest of the robots (in
(23) they are placed on the hands of Nao robot, while in (24) they are settled on the joints of the
used manipulator and on its end-effector). In order to detect these kinds of markers, a colour
segmentation technique can be applied. Once the colour has been detected through image
segmentation, a process of blob analysis (25) is employed to detect the contours of the markers
and classify them according to their area. This approach have been proved to be accurate and
fast in real-time applications (23), (24).

Localization and tracking without markers

Methods that do not use markers in the phase of localization and tracking are able to obtain
an estimate of the position of the tracked robot processing only the sequences of images from
video capture systems. The sequence of images can come from a single camera (monocular
vision system), or from two or more cameras (multi-camera vision systems).

In monocular vision systems, the position of the robot is tracked by first extracting the profile
of it and then trying to find the correspondences with a 3D model. An example of this imple-
mentation is described in (27), where a virtual visual servoing algorithm has been applied to
track several parts of a six degrees of freedom manipulator with the use of a single monocular
camera. Then, the obtained information are employed together with the kinematic model of
the robot to estimate its configuration.

This technique, associated with a geometric model of the camera, allow the transition from
two-dimensional image coordinates to three-dimensional ones. It should be noted that the
geometric model of the camera is not sufficient to determine the position of a point in space. In
fact, in addition to knowing the coordinates (u, v) in the image domain, to get a single solution
the distance d that separates the point of interest from the camera is needed. An estimate of
this distance d is provided by applying the methodology mentioned above.

Another possible way to reconstruct the third dimension is based on the use of stereo cameras,
as proposed in (28). In (28), a seven degrees of freedom manipulator is tracked with a binocular
camera. Firstly, an HSV segmentation of a planar patch placed on the end-effector is made (25).
Afterwards, a region of interest is selected, extracting feature points and tracking the latter in all
the video frames. Finally, feature points are used to estimate the homography between world
reference frame and image frame.

These techniques, in which the use of markers or devices of various types is not required, al-
low the robot to move freely. This advantage is paid, however, with greater difficulty in the
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reconstruction of the third dimension. In previously mentioned monocular vision systems, the
estimate of the third dimension turns out to be even more difficult to obtain compared to vision
systems that employ two or more cameras. This is because the formation of a two-dimensional
image is constituted by the superimposition of more three-dimensional information that gov-
ern the scene. As a result, the inverse problem, given a two-dimensional image determining
the three-dimensional scene from which it derives, does not have a single solution.
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3 Analysis

This chapter mainly focuses on analyzing the most appropriate solutions to satisfy project goals
and expectations through the definition of specific requirements.

In the literature, many researches have already been done concerning the integration of RL al-
gorithms in the control architecture of robotic manipulators (see section 3.1), but none of them
actually compare different algorithms with different learning parameters tuning (e.g. different
reward functions). Such a comparison would be of great interest when dealing with a complex
and over-constrained environment like in the case of a pipe: the most appropriate algorithm
could be selected depending on the configuration of the environment that the manipulator
should learn at that time. Thus, in order to test these methods in an efficient and effective way;,
itis necessary to develop a setup which is easy to be used and simply modifiable, so that it can
be adapted effortlessly to fit user requirements.

Summarizing, this chapter is organized as follow: in section 3.1, the state-of-the-art of RL in
robotics applications is analyzed together with its correspondent main challenges. Moreover,
in section 3.2, the domain of interest is inspected, in terms of RL algorithms selection, manip-
ulator configuration and vision-based setup layout. Then, in section 3.3 all the requirements
concerning RL algorithms, setup and tests are specified. Based on the requirements and on
the domain analysis, the methodology adopted in this project is outlined so that conclusions
concerning the feasibility of the chosen alternatives can be assessed.

3.1 State-of-the-art of RL in robotics applications

Reinforcement Learning has become of great importance in robotics applications since it per-
mits to fill the gap towards autonomous robots, providing the necessary data to make a robot
able to perform a specific task without the need of an exact model of the environment around
it (9), (10). Thus, in this section, some of the most relevant applications of RL into robotic arms
domain are analyzed, together with their correspondent approach and tuning choices. Even-
tually, in the last paragraph of this section, the main challenges in robotics-RL environment are
described.

3.1.1 RL and robotics manipulators

As previously stated, in the last decade, many researches have been done towards the integra-
tion of RL algorithms in robotics applications. This trend is due to the fact that RL is strictly
related to the theory of classical optimal control (9), since both the approaches try to find an
optimal policy (i.e. a controller) which is able to maximize an objective function, often called
cost or reward function. However, optimal control approaches require complete knowledge
of the model of the system, i.e. a function which is able to describe, starting from the current
state, which will be the next state if a certain action is performed. On the other hand, RL does
not require this kind of knowledge, because the learning procedure operates through direct
interaction between the agent and the environment according to measured data (see section
2.1.1). Precisely for this last aspect, RL has been increasingly used in arm planning applications.
Arm planning relates to all those sets of solutions which provide the robot arm with the ability
of navigating in an environment, avoiding collisions with possible obstacles and, eventually,
determining the best trajectory to be followed to achieve a predefined objective, e.g. grasping
an object or reaching a certain goal with the end-effector.

Many of the already implemented researches make use of (Deep) Q-learning algorithm to learn
different kinds of tasks. In (12), a two-link manipulator is trained to move the end-effector
to a defined position avoiding obstacles, applying compositional Q-learning together with a
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reward function, which is higher when destination is approached with low velocities, negative
when high velocities are reached and really negative when collision occurs. Q-learning is also
applied in (15), in which a two links rigid manipulator learns how to stabilize at 0 with zero
velocity in minimum time. The state-space has been discretized as well as the action-space,
which corresponds to three torque values for each joint. The reward function is zero when
the goal is reached and -0.5 otherwise. A similar situation is described in (13), where a six
degrees of freedom robot arm learns how to reach a target without any previous knowledge of
the constrained environment in which it is placed. A double neural network together with a Q-
learning algorithm is used as learning approach and combined with a reward function which is
positive when a target is reached without collisions and negative otherwise. On the other hand,
in (14), Deep Q-learning with convolutional neural network is applied to make a six degrees of
freedom robot arm with two grippers and a camera set on the end-effector to learn how to
pick up an object. A trivial linear reward function is applied, which takes into account of the
discounted exponential distance between the end-effector and the object.

With respect to Q-learning, SARSA has not been used a lot in the literature of robotic arms.
However, (16) proposes an interesting application on a three links planar robotic arm: a multi-
agents SARSA algorithm (i.e. each link has is proper Q-table, which update independently) is
tested on making the cited robot arm to reach first a fixed goal and then track a random goal. A
penalty of -1 is assigned at each time step, while a huge reward of +1000 is achieved when the
end-effector reaches the target. Both the action-space and the state-space is considered to be
discrete. Moreover, in (17), a seven degrees of freedom robotic arm is used to learn the so called
"ball-in-a-cup" game applying SARSA with discretized state and action spaces. The learning
goal is to swing the ball with the desired angle and the desired velocity. Each state is rewarded
based on the angle and negative rewards are assigned to prevent the robot to overcome its
stroke-ends. This approach has been compered with a supervised learning technique, based
on dynamic motion primitives.

3.1.2 Challanges in RL-robotics domain

As possible to notice also from the reported literature, one of the main issue concerning RL al-
gorithms in robotic arms domain is related to treat high dimensional state-spaces. Robots op-
erate in high-dimensional state-spaces constituted of both internal states (e.g. joints and links
position and velocity) and external states (e.g. obstacle locations, presence of other robots,
wind conditions, etc.). Under these circumstances, the robot selects its motors commands (i.e.
the actions) according to a certain control policy 7. The motors commands will then alter the
state of the robot and its environment, based on the value function V”".

(9) and (10) reported the main challenges of this domain in a good order:

* Curse of Dimensionality: high dimensional continuous state-action pairs, which require
the implementation of either environment discretization (i.e. just some state-action
pairs are allocated to memory) or value-function approximation through deep-learning
techniques, e.g. neural-networks (see section 2.1.8).

* Curse of Real-World Interactions: Reinforcement Learning algorithms have to operate in
real-time, selecting actions in real-time, so they should be able to deal with delays in the
sensing and execution typical of physical systems.

* Model errors: assumption of complete knowledge of the robot and its environment is un-
realistic. Thus, uncertainties and noise have to be considered when designing the model.

* Shape a proper reward function: it is necessary to design a proper reward function, which
takes into account the available knowledge of the environment as well as learning con-
vergence rate.
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Thus, when implementing a new RL approach in robotics domain, all the cited challenges
should be taken int account and appropriately managed.

3.2 Domain Analysis

This section describes the domain of the project, paying a particular attention towards RL algo-
rithms selection 3.2.1, manipulator configuration 3.2.2 and vision-based setup definition 3.2.3.

3.2.1 RL algorithms selection

The selection of RL algorithms is discussed herein. In particular, the advantages and disad-
vantages of the different algorithms are analyzed together with their relative simplicity in the
implementation.

The section is divided into two subsections: the first presents a comparison between value-
function based and policy based RL algorithms, while the latter focuses on the curse of dimen-
sionality issue (see section 3.1) and on the two approaches that can deal with it: discretized
state space and continuous state space algorithms.

Value-function based vs policy based

As already specified in section 2.1.2, RL approaches can be split into (figure 3.1):

Value-function

based Actor-critic Policy based

Figure 3.1: Venn diagram representing RL algorithms classification

* Value-function based approaches, such as Monte-Carlo methods and Temporal Differ-
ence methods, like Q-learning (section 2.1.6) and SARSA (section 2.1.5).

* Policy based approaches, such as policy gradient algorithms as well as meta-heuristic or
genetic algorithms (4),(5),(7).

* Actor-critic approaches, which can be considered as a combination of the previous two
methodologies.

All the methodologies present pros and cons: if on one hand value-function based approaches
are easier to be implemented and straightforwardly converge to a global (sub)optimal policy,
while policy search approaches usually converge faster but just to alocal 7, the latest better deal
with high dimensional spate-action pairs without the need of implementing a value-function
approximation. Moreover, policy based methods can present a very large variance in gradient
estimators and this happen also in actor-critic approaches (4) and they are both much more
difficult to be implemented since they are based on probabilistic models of the environment.

Thus, after analyzing the state-of-art of RL algorithms in robotics applications (section 3.1),
it has been noticed that both Q-learning and SARSA obtain good results when dealing with
robotic manipulators in both discrete and continuous time (9)-(17) even though they are
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model-free and they require function approximations to deal with continuous state spaces (see
section 2.1.8).

Exactly for these reasons, besides the fact that their implementation is more straightforward
and similar, both the algorithms will be tested and assessed, in order to check which of the
twos presents faster convergence to a (sub)optimal policy and which is more reliable in dealing
with over-constrained environments.

Discretized RL vs deep RL

As already mentioned in section 3.1, the Curse of Dimensionality is an important issue to be
solved. In particular two different approaches could be adopted:

» State-space discretization: as explained in sections 2.1.5 and 2.1.6, the state-space can be
discretized reducing the possible states that the manipulator can assume in the environ-
ment to a finite number of states. For example, applying this approach, the joints could
be able to rotate only of some predefined degrees declared in the discretization sample
and based on the action vector. Thus, the algorithm makes use of a Q-table to store each
state-action pair.

» Continuous state-space: as mentioned in section 2.1.8, the state-space can be kept con-
tinuous by making use of function approximations. According to this approach, the state-
action pairs that have to be allocated to memory in value-function based approaches are
substituted by a function approximator (e.g. neural networks) which approximates the
value of as many Q-functions as there are actions in the action vector.

If on one side Deep RL approaches are able to handle huge state-spaces, their implementa-
tion is not straightforward and they need some extra tuning before working in an appropriate
way. On the other hand, discretized RL algorithms are easy to be used when the available state-
action pairs are not too much, but, when the environment becomes larger, they cannot be ap-
plied accurately anymore: a too high discretization level will necessarily bring to less accurate
results, because the agent would not be able anymore to reach any state of the environment,
but just the discretized states that have been considered. Thus, in a first moment, the state-
space will be discretized not to over-complicate the algorithm structure and, therefore, the in-
terpretation of hypothetical failures. When satisfactory results will be obtained in this context,
the algorithm will be extended to the continuous state-space case through the application of
deep learning techniques as specified in section 2.1.8.

RL parameters tuning

Appropriately tuning the RL parameters is of fundamental importance in order to make an
agent to converge to a (sub)optimal policy as fast as possible applying value-function based
algorithms. In particular, the main parameters that have to be taken into account are the fol-
lowing:

* Number of iterations per episode: a specific number of iterations per episode should be
selected, because they are proportional to the number of actions the agent is allowed to
select (see pseudo-codes in figures 2.5 and 2.6). Infinite iterations, or iterate up to the
goal is reached, can make the agent to fall in some local minima in value-function esti-
mate, never reaching the goal, but just following a policy which is thought to be optimal
even if it is not. On the other hand, not enough iterations could correspond to a never
reaching the goal situation because more actions could be required to achieve the objec-
tive. Thus, it is important to proportion the number of iterations according to the size of
the environment and, consequently, the available state-action pairs.

» e-greedy exploration and exploitation (figure 2.4): with ¢ probability a random action is
chosen, while with probability 1 — e the best action is chosen, according to the estimated
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value-function. Thus, € should be tuned such that a trade-off between exploration and
exploitation phases is figured out. In this way the agent is encouraged not to waste time
exploring non-interesting areas of the environment, but, at the same time, it explores
sufficiently to acquire knowledge of the surroundings (i.e. location of points of interest
s.t. obstacles and goal).

* a (look at equations 2.12 and 2.13), which is called learning rate and determines how is
the new value estimate weighted against the old.

* v (look at equations 2.12 and 2.13), which corresponds to the discount factor. If y is set
equal to 1, it means that future rewards are more relevant when evaluating the value of
the current state-action pair. On the other hand, if y = 0, future rewards do not play any
role during the update.

* Reward function: the reward function is the most important factor in RL, because accord-
ing to it the agent select the most appropriate actions. As a matter of fact, the actions are
chosen so that the cumulative reward is maximized. Reward function can be a simple
bonus when reaching a goal and, consequently, a penalty otherwise (as described in (15),
(13) and (16)), or, on the other hand, it can be more sophisticated and depend on the
distance between the agent and the goal (as described in (14) and (17)).

Thus, an accurate selection of the cited parameters has to be performed in order to understand
their relation with the convergence rate and consequently optimize it.

3.2.2 Manipulator configuration analysis

As specified in section 2.2, the setup implemented in (2) has been taken as a reference for de-
signing the three degrees of freedom planar manipulator that will be employed in this project.
In this section, the cited configuration is analyzed in order to determine which modifications
should be made to its mechanical design and software architecture to allow the integration of
RL approaches.

Current mechanical architecture analysis

The mechanical configuration of the setup presented in (2) is non-planar. As a matter of fact,
the manipulator presents the following degrees of freedom (see figure 3.2):

1. A first degree of freedom, which allows the first link to rotate clockwise and counter-
clockwise around its z-axis (red arrow in figure 3.2).

2. A second degree of freedom, which allows the second link to rotate upwards and down-
wards (yellow arrow in figure 3.2).

3. A third degree of freedom, which allows the third link to rotate upwards and downwards
(green arrow in figure 3.2).

Thus, its design should be modified in order to make the links completely planar and conse-
quently parallel to the work-surface (see section 1.2). The decision to create a planar manip-
ulator is due mainly to the greater simplicity of design and verification of the prototype. Fur-
thermore, a planar manipulator is more easily employed for pipe inspection purposes, since it
can better fit inside small section pipes. On the other hand, a three degrees of freedom con-
figuration is selected to have more motion flexibility and, consequently, to be able to test more
sophisticated, constrained and challenging trajectories, which can better simulate applications
inside a pipe environment. Therefore, the SOLIDWORKS design of the manipulator will be
modified to get a planar configuration. However, the same servo-motors, DYNAMIXEL AX12A
(see A.1), could be employed since they present an integrated position controller, which allows
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Figure 3.2: Degrees of freedom existing setup (2)

to directly send them accurate position commands. This would not be the case if DC motors
would have been used, because the latter require an external control architecture to get the
required current commands.

Current software architecture analysis

As already mentioned in section 2.2.2, the current software architecture of the existing setup
proposed in (2) makes use of screw theory, implemented in MATLAB, together with an Arduino
board. In particular, motor position commands are obtained from the integration of joint ve-
locities acquired from the Jacobian matrix and they are then send to the Arduino board, which
converts them to appropriate signals for the motors.

The connection between the Arduino board and the motors is not straigthfoward, because the
motors are only able to make half-duplex communication and, consequently, RX and TX ports
of Arduino have to be connected to the same communication line through a tri-state buffer, ap-
propriately configuring the respective Arduino scripts. This communication procedure could
be simplified employing another device produced by Robotis (supplier company of the motors)
which allows direct connection between the motors and a PC USB port: USB2Dynamixel (29)
(see figure 3.3).

Figure 3.3: USB2Dynamixel: device which directly connects DYNAMIXEL motors to PC USB port (29)

As specified in (29), on one side USB2Dynamixel have a USB connection which allows it to
directly connect to a serial USB port of a PC, while also 3P and 4P connectors are installed so
that different DYNAMIXEL motors can be connected. This device does not supply power to the
motors but an external power supply can be adopted.
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The main advantages of employing this device instead of Arduino are that it is simple to be
used and a full open source library called DYNAMIXEL SDK has already been implemented by
Robotis team (31) and it can operate with different programming language (i.e. C#, C++, C,
Java, Python, LabVIEW, MATLAB) together with many external environments, such as ROS and
Arduino.

Once the motor are appropriately connected, another point to take into account is the integra-
tion of RL approach into the control architecture of the robotic arm. In this perspective, the
control architecture should be simplified as much as possible in order for it to be flexible and
easily adjustable to combine different RL algorithms. Thus, using the open libraries cited be-
forehand could be of great benefit since they are open and, consequently, modifiable to satisfy
project expectations.

3.2.3 Vision-based setup

In section 2.3, different vision-based localization and tracking techniques have been reported.
The stated techniques have been subdivided into two main categories:

* Localization and tracking with markers (21)-(26), which can be easily attached to the ma-
nipulator structure and to relevant features of the environment, such as obstacles and
goal. These approaches can accurately work in real-time applications and allow to get
precise pixel location of the points of interest, simply employing an uncalibrated monoc-
ular camera. Even though, the main disadvantage of this approach is that these markers
should be visible in most of the video frames not to increase uncertainty in the model.
Thus, their original location should be accurately chosen such that change in the sur-
roundings, i.e. motion of the robot or alteration of light conditions, do not affect or over-
complicate their detection.

* Localization and tracking without markers (27),(28) requires an accurate 3D model of the
environment in order to get correspondences between the actual environment as seen by
the camera and the model. These approaches are more tricky, in particular when adopt-
ing a single camera, because they all need the reconstruction of the depth dimension (i.e.
third dimension) to evaluate the distance between the features of interest and the camera
itself, so that a homography matrix can be generated.

Based on this analysis, it is evident that applying an approach which require the use of markers
is more handy in the current situation, because there is no need to implement a specific model
of the environment as required applying the other technique. The use of a model would also
go against the central idea of Q-learning and SARSA which are both model-free algorithms.

The use of a planar manipulator, which is parallel to the working environment, as well as of a
fixed single camera placed at a specific height above the environment should guarantee that
the markers are always detectable in the scene and should so overcome the main disadvantage
of this approach. Beside that, it is important to place the setup in a location with good light
conditions in order to avoid the presence of shadows that could obscure the camera field of
view and, consequently, impede the markers detection.

3.3 Requirements

This section reports the requirements for the project. In particular, five main topics are cov-
ered: in section 3.3.1, Reinforcement Learning algorithm requirements are described, paying
attention to convergence and tuning issues. Moreover, the setup requirements are shown in
section 3.3.2, while section 3.3.3 deal with tests and simulation requirements. In section 3.3.4,
the requirements concerning the documentation are presented. Finally, section 3.3.5 illustrates
the non-functional requirements that have not been specified beforehand.
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3.3.1 RLrequirements

1.

Employ value-function based RL algorithms

Value-function-based RL algorithms will be adopted in this project, since they have been
proven to be efficient in robotic navigation and manipulation applications (9)-(17). Fur-
thermore, their implementation is more straightforward and completely model-free, so
no previous knowledge of the environment is required. In this perspective, the tested
value-function based RL algorithms have to guarantee convergence to a sub-optimal pol-
icy in at maximum 8 hours, so that they can be fully tested in one working day.

Handle large state-space efficiently

If the state-space is discretized, a proper discretization level should be found out so that
the manipulator will still be able to accurately reach specific goal location. If the dis-
cretization level is too low, the considered state-space representation of the environment
would be too rough and would not allow the end-effector to reach precise locations, while
high discretization level would correspond to not-allocable Q-table. Thus, the discretiza-
tion level should be chosen in such a way that the end-effector can reach states in the
neighborhood of the goal (maximum 5 millimeters away).

On the contrary, if continuous state-spaces are adopted, the Q-table will be substituted
by a neural network (see section 2.1.8), which should be appropriately tuned and trained
to manage the whole state-space. In particular, the training period of the neural network
should not take more than 0.5 seconds so that the manipulator motion remains fluent.

. Find an optimal trade-off between exploration and exploitation

A trade-off between exploration and exploitation phases should be figured out appro-
priately tuning €, to encourage the agent to learn the environment in a smart and goal-
oriented way. In particular, the agent should not waste time in exploring areas far away
from the goal, but, at the same time, it should be able to learn a suboptimal policy in less
than the available 8 working hours.

. Make the algorithm as much as possible environment independent

The algorithm should be able to operate without requiring too many information on the
environment in which the robot is placed. If this requirement is satisfied, the algorithm
becomes flexible and easily adaptable to new conditions and constraints. To test if this
requirement is satisfied, the acquired knowledge (i.e. Q) can be utilized in a transfer
learning perspective, to learn similar environments initializing the Q in the same way. In
particular, the transfer learning approach has to be at least 50% faster than the standard
learning algorithm.

Improve convergence rate appropriately tuning RL parameters

As mentioned beforehand , RL parameters actually affect the convergence of the algo-
rithms. Thus, their tuning has to be justified such that convergence to a (sub)optimal
policy is always guaranteed.

Smart collisions management

A proper interaction between the robot arm and the obstacles should be figured out to
speed up the learning phase. E.g. reset the robot to its initial pose when a obstacle is hit.
Furthermore, the environment could be over-constrained to assess the efficiency of the
algorithm. This requirement is satisfied in the moment in which the number of collisions
is minimized without affecting the learning rate.
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3.3.2
1.

3.3.3

3.3.4

3.3.5

Setup requirements
The setup should be manufactured with RAM facilities.
The setup should be designed in such a way that RaM Group laser cut or 3D printing
prototyping technology could be used to manufacture it.
The necessary components should be low-cost and commercial.
The components required for both the manipulator and the camera should be cheap and
easy to find, considering a maximum available budget of 1000 €.
The communication between different hardware components have to be as fast as possible

The communication between the different systems (camera, motors, control architecture
with RL algorithm) should be fast and reliable, so that signals can be exchanged as much
as possible real-time to avoid implementing complex synchronization procedures. To
satisfy this requirement it is advisable to make use of already tested open-source libraries.

The camera has to localize the markers efficiently

As already stated, markers will be placed in the points of interest to realize visual-guided
localization and tracking. Thus, markers should be selected such that they are easy to be
detected and tracked real-time. The detection algorithm should not take more than 0.5
seconds to detect all the markers present in the scene.

Tests requirements

. Simulation is the first-step for valuable tests.

Before performing tests on the real setup, evaluate the code in simulation is important to
become sure of its outcome. The simulation has to be as much as possible representative
of the real conditions under which the robot will operate.

. Employ virtual obstacles to bypass setup damages.

To avoid actual damages to the setup during possible collisions, virtual obstacles has to
be employed to make the test effective and safe at the same time.

. Prioritize tests on more performing algorithms.

Since RL algorithms require some time to converge, it is necessary to prioritize tests on
more efficient algorithms, such that the full work-ability of such algorithms can be ex-
plored.

Documentation requirements

. The documentation has to be up-to-date.

The project documentation has to be frequently updated, such that all the meaningful
developments and results are always underlined and real-time reviewed. In this way, no
information loss should occur.

. Code documentation has to be well-structured.

In order to make the code user-friendly, the scripts should be clearly commented and
organized to improve readability and maintenance.

Non-functional requirements

. The code should be user-friendly.

The code should be quickly readable and effectively understandable from both a user and
programmer point of view. It can also be provided of an intuitive Graphic User Interface
(GUI) to simplify the interaction with the code itself.
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3.4 Methodology

As already mentioned in section 1.2, the goal of this project is the implementation of a re-
inforcement learning based control architecture aimed at making a robotic arm able to au-
tonomously navigate in a constrained pipe-like environment. In order to test the performances
of the selected reinforcement learning algorithms, which should be value-function based, two
experimental environments have to be built:

e MATLAB-based simulation environment, in which the kinematic model of the robot
arm is taken into account to simulate its RL-based motion.

» Physical setup, which identifies a series of constrained pipe-like environments charac-
terized by the presence of a goal and a planar three degrees of freedom manipulator,
whose state is estimated through a visual-guided system: a fixed monocular camera has
to be placed on the top of the setup, so that it can be used both to track the joints and
end-effector location and to detect distances between points of interest (e.g. obstacles
and goal location) and the manipulator structure. The robotic arm should be designed
and built within RaM laboratory and it should be made of commercial and low-cost com-
ponents. The hardware should be selected in a way that the communication with the
employed RL architecture is reliable and almost real-time.

These two environments are taken as a reference to test two RL algorithms: Q-learning and
SARSA, both with discretized state-space and with continuous state-space. If the discretized
state-space is considered, a proper discretization level should be figured out to make the
manipulator motion accurate and fast. On the other hand, if the continuous state-space is
adopted, the deep neural network applied as a function approximation of the full environment
state should be quick to be trained and able to provide a good estimate of the complete state-
space. After the realization of the elements required by the reinforcement learning approach,
the performances of the agents in the learning phase can be evaluated. The agents’ perfor-
mances are calculated by means of the following parameters:

* Convergence rate: required time before reaching the target with the same amount of
actions and consequently with the maximum cumulative reward.

* Obstacles avoidance: ability in avoiding obstacles and, consequently, reduce the amount
of collisions between the robotic structure and the obstacles markers.

* Tuning of learning parameters: convergence rate comparison based on the correspon-
dent selection of learning elements, including exploration-exploitation trade-off and
deep neural network design.

» Adaptability to new configuration of the environment: applied the acquired knowledge
of the environment to quickly learn a similar but not equal configuration in a transfer
learning perspective.

Thus, analyzing these evaluation criteria for each implemented algorithm, it is possible to as-
sess their learning abilities, so that the most appropriate approach for autonomous navigation
in a pipe-like environment can be found out.

3.5 Conclusions

This section focuses on summarizing the domain analysis and relative requirements in order to
draw the conclusions about the design and implementation approaches that will be selected.

As already mentioned, value-function based RL approaches, i.e. Q-learning and SARSA algo-
rithms, will be validated both in simulation and on a real setup. Their convergence rate and
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their ability in dealing with over-constrained environments will be of central importance in
assessing their performance and efficiency, both with discretized and continuous state-space.
Beside that, learning parameters and reward function shaping will be appropriately investi-
gated in order to find out the correlation between valuable accomplishments and correspon-
dent tuning.

The setup that will be used to test the algorithms will consist of a planar three degrees of free-
dom robotic arm which will be placed in a constrained environment with virtual obstacles, so
that actual damages to the setup will be circumvented. The manipulator will be actuated by
three DYNAMIXEL AX12A motors, that will be connected to the USB serial port of a PC through
a USB2Dynamixel device. All the features of interest (e.g. joints, obstacles, goal, etc.) will be
provided with markers. These markers will be localized and tracked real-time through an ex-
ternal monocular camera, that will be settled at a certain height to record the whole scene.

Eventually, a full documentation on how the setup works will be provided such that every new
user will not face problem in dealing with it. Beside that, the code will be provided with com-
ments in all the sections and, more importantly, with a GUI, so that, without looking directly to
the code, the full setup can be used.
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4 Design and Implementation

As already specified, in this project a physical setup has been developed to effectively test re-
inforcement learning algorithms. To allow the interaction between the environment and the
agent, which characterizes reinforcement learning methods, the environment is recorded by
an external monocular camera, which is able to detect the features of interest (i.e. obstacles,
goal, joints and end-effector of the manipulator). In this way, the distance between those fea-
tures can be easily evaluated depending on their pixel location in the frame: e.g. collisions are
detected when the manipulator markers are touching the obstacles markers, or, on the other
hand, a success is identified when the end-effector marker has the same location of the goal
marker. This approach permits to avoid the use of different hardware: actual obstacles that
can damage the structure of the manipulator, position sensors to detect the distances and/or
torque sensors which can determine a collision.

In order to properly design the required mechanical and software architectures, it is necessary
to define RL elements presented in section 2.1 for the considered context. Thus, the following
components should be clarified (see figure 2.1):

e Environment: the environment corresponds to all the setup components which are
present in the considered system, i.e. manipulator structure, including motors and en-
coders, obstacles and goals markers as well as camera signals. In this context, the envi-
ronment as well as the agent are described by a Markov Decision Process (see equation
2.3) and, consequently, they consist of a set of states (i.e. robotic arm joint positions), a
set of actions (i.e. joint position displacements), a transitional function, which assigns a
probability distribution to each state-action pair, and a reward function, which assigns a
numerical value to each transition.

* Agent: the agent is able to receive some feedback signals from the environment thanks
to the available sensors and, based on those feedback signals, it decides which action to
take and, eventually, it translates those actions into actual motion for the robotic arm
motors, trying to maximize the cumulative reward. In a complex robotic system like the
considered one, the agent consists of the following components: a component which is
able to make high level decisions according to the received input from the environment
and a second component that implements those decisions in the environment. When
selecting an action a, in each time step the agent follows a policy which associates to
each state-action pair a probability to take action a from state s.

Summarizing, the boundary between the considered agent and environment can be specifi-
cally defined only in the moment in which states, actions and rewards are determined together
with a decision making strategy (4).

This chapter presents the design and implementation phases aimed at creating the setup envi-
ronment, whose intent is to test and compare four reinforcement learning algorithms:

¢ SARSA with discretized state-space.

* Q-learning with discretized state-space.

* Deep SARSA with continuous state-space.

* Deep Q-learning with continuous state-space.

All these algorithms will be tuned differently in order to figure out the connection between RL
parameters tuning and actual performance of the methodology (see section 3.2.1).
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In particular, the first section 4.1 deals with the actual design of the setup, in which the envi-
ronment and its dynamics are globally defined. At this point, in section 4.2, the implemented
RL frameworks are described and the differences between the simulation and the real-time
environment are highlighted (section 4.2.3). Moreover, the experimental design approach is
described (section 4.3) in order to give further details about how the different experiments are
performed. In section 4.4, a Graphical User Interface is presented to make the setup easier to
be utilized by different users. Eventually, in section 4.5, the design is assessed according to the
requirements reported in section 3.3.

4.1 Setup configuration

In this section, the configuration of the setup is described in all its details. Firstly, in section
4.1.1, the design and implementation of the manipulator are presented together with its se-
lected hardware components. At this point, the complete setup environment is described both
in real-time (section 4.1.2) and its correspondent simulation (section 4.1.4).

4.1.1 Manipulator design and implementation

SOLIDWORKS has been used to modify the existing setup design (see figure 2.8) and to convert
itinto a planar three degrees of freedom robotic arm. In order to do that, the configuration in (2)
has been modified to get the design in figure 4.1. In particular, the structure of the manipulator
has been tilted of 90 degrees so that a planar layout is obtained. Moreover, the manipulator has
been extended with a third link to get a three planar degrees of freedom layout.
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Figure 4.1: New design of the robotic arm

In the reported configuration, the manipulator is constituted by the following components:

* Base: a base is designed on which the robot links are connected. Inside the base all the
electronic cables are hidden. On one side the base is fixed to a metallic structure provided
with ducts through M6 bolts, to avoid possible tilt of the setup and to counterbalance the
manipulator load. As a matter of fact, on the other side of the box the manipulator will
be attached through the first servo-motor, which allows the first link to rotate clockwise
and counter-clockwise. The box is assembled using four bolts and hooks and slots strat-
egy as depicted in figure 2.9. These hooks slide into place constraining all the motions
expect one (in sliding direction); if that motion is constrained externally, the connection
is strong and reliable.

e First link: the first link is assembled to the base through the servo-motor and 9 bolts.
On the tip of the link a second servo-motor is located to make the second link to rotate
clockwise and counter-clockwise.
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e Second link: a second link is attached to the first one and rotates thanks to the servo-
motor placed at its bottom. A third servo-motor is collocated at its tip to allow the third
link to rotate.

e Third link: a third link with the same configuration of the first one is connected to the
second one. Its clockwise and counter-clockwise rotations are supported by the servo-
motor placed at its bottom. At its tip, a simple end-effector is attached to have a better
visualization of its location. This end-effector have been designed in different lengths
(i.e. 80 mm, 100 mm and 120 mm) so that the robot arm can also reach further locations.

Due to their simple design, all the components can be easily laser-cut with the laser-cut equip-
ment of RaM laboratory. In particular the box as well as the first link are laser-cut from a row
panel 4 mm thick, while all the other components are 3 mm thick. This decision has been taken
because the box and the first link are the ones which should support all the load and, conse-
quently, should be more robust and ductile. Therefore, the obtained manipulator is shown in
figure 4.2.

Figure 4.2: Final layout of the three degrees of freedom manipulator

As possible to notice from figure 4.2, the manipulator presents three degrees of freedom which
are actuated by three DYNAMIXEL AX12A servo-motors (A.1). The motors make the robotic
links able to rotate clockwise and counter-clockwise. As already mentioned in section 4.1, the
interface between the servo-motors and the PC is implemented through a simple device called
USB2Dynamixel (see figure 3.3 and check (29)). USB2Dynamixel is provided by 3P connectors
and a USB input, that allow the PC to directly send position signals to the motors without the
need of any other external control board. Since USB2Dynamixel cannot supply power to the
motors, an external power supply has to be used (see figure in appendix A.2), to which the
ground and power wires of the first motor are connected. The remaining motors are connected
to the first in series through 3P cables, which transmit power, voltage and data signals.

As already specified in section 4.1, Robotis team (29) implemented a full open source library
called DYNAMIXEL SDK (31) to create a communication interface between the motors and the
PC serial port using USB2Dynamixel device. This library has been programmed with different
programming languages (i.e. C#, C++, C, Java, Python, LabVIEW, MATLAB), so that each user
can choose the one that is more suitable for his objective. Based on the fact that the control
architecture for the robot arm designed by Berndsen in (2) has been developed in MATLAB, in
this project MATLAB language (30) will be adopted as well to facilitate the integration between
the existing architecture and the reinforcement learning algorithms. Even if MATLAB is not
considered a pure programming language, but a tool for open-source engineering solutions,
it is widely used in robotics applications because of its simplicity and its built-in toolboxes.
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It is provided by machine learning and deep learning libraries as well as graphical interfaces
and image processing solutions. Other than that, MATLAB permits to design representative
and emblematic simulations of the setup that will be adopted, so that the implementation of
the experimental phase of the project can be more straightforward (see section 3.3.3). Last but
not least, MATLAB codes are easily understandable and modifiable by programmers of differ-
ent backgrounds, not only programming experts, satisfying the requirement defined in section
3.3.5.

Therefore, MATLAB library provided by Robotis team will be adopted to communicate with
the servo-motors. The procedure to install the library in different operating systems (i.e. Linux,
MacOSX, Windows) is well documented in (31). In this project, in particular the following func-
tions have been applied in order to connect the PC with the motors and interchange data:

e openPort (port_number), which open the serial communication between the mo-
tors and the USB port according to the port path specified in port_number.

e writelByteTxRx (), which orders to the DYNAMIXEL motor identifiable with a spe-
cific DXL_ID and with a predefined PROTOCOL_VERSION to communicate with the
port_number, writing 1 byte to activate its torque at the correspondent address
ADDR_AX_TORQUE_ENABLE and, consequently, set its status as being ready to move.

e write2ByteTxRx (), which orders to the DYNAMIXEL motor identifiable with a spe-
cific DXL_ID and with a predefined PROTOCOL_VERSION to communicate with the
port_number, writing 2 bytes for two main purposes:

- send the position value specified in DXI._GOAI_POSITION at the correspondent
address ADDR_AX_GOAL_POSITION and, consequently, move to that position.
The motor can get position values in the range 0-1023, where each unit corresponds
to 0.29 degrees (20).

- send the velocity value specified in DXL_GOAL_VELOCITY at the correspondent
address ADDR_AX_GOAL_VELOCITY and, consequently, move with that velocity.
The motor can get velocity values in the range 0-1023, where each unit corresponds
to 0.111 rpm (20).

* read2ByteTxRx (), which orders to the DYNAMIXEL motor identifiable with a spe-
cific DXIL_ID and with a predefined PROTOCOL_VERSION to communicate with the
port_number, reading 2 bytes for two main purposes:

- read the current position value specified at the address ADDR_AX_GOAIL_POSITION.
- read the current velocity value specified at the address ADDR_AX_GOAL_VELOCITY.

The full "read-write" code is provided in the appendix A.4 together with the control table of
DYNAMIXEL AX12A servo-motors (A.3) in which all the features addresses are defined.

4.1.2 Setup environment design

As already mentioned, a setup should be designed in order to test RL approaches on the real
environment. First of all, the environment must allow the interaction foreseen by reinforce-
ment learning methodologies, as observable in figure 2.1: the environment must be designed
in such a way that an external agent is allowed to perform an action and consequently return
to the agent the relative reward and the new state. Since the environment must be episodic in
nature (see pseudo-codes in 2.5 and 2.6), the agent should eventually reach a terminal state.
Each episode must end whether the goal is achieved or otherwise. Guided by the nature of the
objective of the environment, the terminal state is achieved only in the moment in which the
agent succeeds in reaching the goal. Applying this approach, however, makes the agent not
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able to end an episode if the target has not been reached. For this reason, it is advisable to add
another terminal state which ends the episode after some interaction steps, e.g. if the agent
takes too much time to reach the goal it can be reset to its initial configuration and start ex-
ploring from the beginning. Another aspect that should be taken into account when defining
terminal states is collision. When the robotic arm collides with an environment obstacle, two
choices can be made:

1. The manipulator continues exploring the environment avoiding collisions as much as
possible.

2. The manipulator reset to its initial configuration just after colliding.

Both the situations will be analyzed in more details in section 4.2. In any case, at the end the
manipulator should learn to reach the goal completely avoiding obstacles that can be present
along its trajectory. A good reward function is an important factor for prioritizing trajectories
that make the agent able to achieve the target, because for an agent the ultimate goal remains
to get the most total reward at the end of the episode. For this reason the reward function
must be defined by favoring the achievement of the final objective, avoiding convergences into
local minima. Providing a single positive reward only when the goal has been reached would
make it more complicated and would slow the progress down. For this reason, it is smarter to
add smaller intermediate rewards to direct the agent to the choice of actions that drive it to
reach the final goal. In addition to facilitate correct intermediate actions, it is also necessary
to discourage actions that diverge from the objective by giving back negative rewards to the
agent. A challenging reward function could be the negative distance between the end-effector
and other points of interest (14), (17). In this way, if the end-effector is approaching the goal, it
would get a higher reward than when it is far away from it. In the latter case, the reward would
be more negative the further the end-effector is from the goal.

Therefore, since it is relevant to evaluate the distances between different features in the scene,
the employment of easily detectable and reliable markers is of great importance. MATLAB has
been selected as main software to implement the experiments, so the proposed markers (see
sections 2.3 and 3.2.3) should be tested in MATLAB to evaluate which is more efficient in real-
time applications. Since ARToolkit library is not available for MATLAB, just AprilTag and color
markers have been assessed (see figure 4.3).

Figure 4.3: Test image for detection assessment of AprilTag and color markers in MATLAB

AprilTag markers

To evaluate AprilTag markers, it is sufficient to install the library which can be found in (32).
This library provides a mex-function called apriltags.mex, which reads and detects April-
Tag markers from an input grey-scale image, giving as output the pixel location of the centre
and the corners of each AprilTag. Thus, the following pseudo-code can be applied to identify
AprilTags in the image (5):
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Algorithm 5: AprilTag detection

Read the input image;

Convert the input image into gray-scale through rgb2gray;
Detect the markers with tags = apriltags (image);
Check the euclidean distance between each tag coordinates.

Color markers

To test color markers, two different approaches have been executed. First of all, the MATLAB
example proposed in (33) has been adopted, in which an input un-distorted image is converted
to HSV color space to get its saturation channel and, consequently, threshold to detect all the
colorful regions on white background, i.e. the color markers. Once those regions are obtained,
a blob analysis is performed such that the largest connected components in the segmented
image are classified as markers and, consequently, surrounded by rectangles which identify
their centre and borders (see figure 4.4). The coordinates of the cited rectangles are used to
evaluate the distances between each marker.
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Figure 4.4: Color markers detection and pixel location of their centres

The second approach is similar to the previous one, but, instead of detecting makers of all
possible colors, just RGB markers can be detected (e.g. in figure 4.4 just the blue, green and red
marker). As a matter of fact, the input image is first converted to gray-scale and then each RGB
component is subtracted to it and then combined together with the other obtained images to
get a final image from which red, green and blue features can be easily extracted (see algorithm
in 6 and full code in the appendix B.1).

Algorithm 6: RGB markers detection

Read the input image;

Convert the input image into gray-scale through rgb2gray;

Subtract the gray-scale image to each RGB image according to its channel, applying
imsubtract (input_image (:, :,RGB_channel), gray_image) to obtainan
image with just the selected RGB component;

Apply a medial filter to filter out noise withmedfilt2;

Convert the resulting gray-scale image into a binary image with im2bw ;

Apply a blob analysis, removing all those pixels less than 300 pixels with bwareaopen;

Label all the connected components in the image with bwlabel;

Bound the labelled components into a rectangular box to get boundaries and centroids;

Check the euclidean distance between each marker coordinates.
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The three approaches have been evaluated in terms of computational time, i.e. time required
to detect the markers and evaluate the correspondent distance, obtaining the following average
results (4.1):

Table 4.1: Assessment markers detection algorithms

Types of marker | Elapsed time (seconds)
AprilTag 0.3669
Color markers 1.4766
RGB markers 0.1356

As possible to notice, the faster of the three methodologies is the last one, which requires just
0.1356 seconds on average to detect the red, blue and green markers and evaluate their relative
distance. Thus, these markers have been adopted in the real setup in order to real-time detect
the location of the features of interest in the scene.
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Figure 4.5: Final layout of the setup including markers as seen by the external camera

In this perspective, the setup acquires the configuration shown in figure 4.5. Due to the light
conditions of the lab in which the setup is placed, green markers could not be tracked easily, so
just the following blue and red markers have been employed:

* Two red round-shape markers, one to represent the goal position that the end-effector
should reach and another one is placed at the base of the robotic arm to represent the
origin of the frame of reference of the robotic arm.

* Red rectangular markers, which designate the obstacles that the manipulator should
avoid. As a matter of fact, their location is chosen in a way to simulate a pipe-like en-
vironment as required.

* Three blue round-shape markers, which are settled on the manipulator joints and end-
effector to visualize the location of each link in the cited frame of reference.

The location of the red markers is kept constant during the learning, so the latter are detected
before starting the learning procedure itself and then saved in the workspace for future em-
ployments. On the other hand, the blue markers are real-time detected at each movement of
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the robotic arm to evaluate their new location and consequently the distance between them
and the static parts of the environment (i.e. goal and obstacles).

In order to avoid any calibration of the camera to get real-world distances (i.e. distances in the
metric system), the location of the markers as well as their relative distances are evaluated in
pixels. In this way, the camera application becomes plug-and-play and no further analysis have
to be performed on the images taken by it.

4.1.3 Final setup architecture

In this section the final design of the full setup architecture is shown (see figure 4.6).

—

MATLAB

12V power supply 3 Dynamixel AX12A USB2Dynamixel ]

\0.

Red/blue markers External webcam

Figure 4.6: Final design of the setup architecture

As noticeable from figure 4.6, the final architecture of the setup consists of a power sup-
ply which provides 12 Volts to three DYNAMIXEL motors connected in series. The first DY-
NAMIXEL is also connected to a USB2Dynamixel device, which allows the interaction with
MATLAB. On the other hand, markers are placed in the environment to represent obstacles
and goal (i.e. red markers) and on the manipulator structure (i.e. blue markers) to obtain end-
effector and joints positions. An external camera evaluates the coordinates of these markers in
the shown reference frame as well as the distances of interest and it sends back these features
as signals to the software architecture implemented in MATLAB. The latter is so the fulcrum of
all the implementation, because the software architecture is what makes all the components to
appropriately interact with each others and to reach the objective defined by the user. In this
perspective, the setup environment can be defined and initialized according to the following
pseudo-code:

Algorithm 7: Pseudo-code setup environment implementation and initialization

Connect the motors to the serial port;

Enable motor torque as in A.4;

Set motor velocity to a constant value as in A.4;

Move the robot to initial configuration DXI,_ INITIAL_POSITION asinA.4;
Connect with camera with function webcam;

Take picture of initial configuration with function snapshot;

Detect the markers in the picture with algorithm (6);

Classify the markers in origin, goal and obstacles.

Thus, the pseudo-code in 7 permits to integrate all the different components of the setup, in
particular the encoders and the camera signals, to move the robotic arm to a specific initial po-
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sition and get the details of that configuration with the camera, which can detect the obstacles,
goal and manipulator location thanks to the red and blue markers (see picture 4.5).

4.1.4 Setup in simulation

After implementing a working setup, it is important to design a simulation on which reinforce-
ment learning algorithms can be tested before switching to the setup itself. As specified in
section 3.3.3,the simulation environment should be as much as possible representative of the
real conditions in which the robot arm will operate, such that, when real experiments will be
carried out, results will not be completely unpredictable.

The simulation environment have been implemented in MATLAB as well as all the control ar-
chitecture. In order to simulate the motion of the robotic arm, it is necessary to make use of
its forward kinematic model and plot the new configuration of the robot once an action is per-
formed. Since the robotic arm is provided by three degrees of freedom and is planar, its forward
kinematic model can be derived according to figure 4.7.

~NY

Figure 4.7: Three degrees of freedom planar manipulator

The forward kinematic model allows to evaluate the position of the end-effector (xee, yee) ac-
cording to the pose of the whole manipulator, i.e. to the angles of the motors which are placed
in the joints (gray dots in figure 4.7). Based on the nomenclature and frame of reference of
figure 4.7, the following geometric relations can be derived:

{xee =1l1cos(01) +lrcos(01 +62) + I3cos(01 +62 +63) @)

Yee = llsin(Hl) + leil’l(Gl +05) + lgsin(el +02 +63)

Where 61,0, and 63 are respectively the motor position of the first, second and third joints,
while [}, l, and I3 are the link lengths of the first, second and third links as possible to see in
figure 4.7.

Thus, according to the joints position, it is possible to get the end-effector location. This knowl-
edge is of fundamental importance also when distances of interest have to be evaluated. Of
course in simulation no camera signals are used and, consequently, the distances between the
manipulator structure and static objects in the environment (i.e. goal and obstacles) are ob-
tained based on the forward kinematic model of the manipulator itself. In this perspective, the
simulation model in figure 4.8 has been obtained and it is an accurate representation of the
actual setup in figure 4.5.
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1<

Figure 4.8: Representative setup in simulation environment (MATLAB). The goal is represented by a red
circle and the obstacles are red rectangles. The manipulator structure is simply the combination of three
lines representing the links and four circles, i.e. one circle for the end-effector and three circles for the
manipulator joints.

In figure 4.8, the origin of the frame of reference is placed at the base of the robot exactly as in
figure 4.7, so that the forward kinematic model can be easily applied to obtain the end-effector
location. To get the cited layout, the following pseudo-code can be employed:

Algorithm 8: Pseudo-code simulation environment implementation and initialization

Init origin init_point, goal goal_point and obstacles (obs_x, obs_y);
Init initial configuration of the robotic arm theta_start;

Apply fkine_3DOF (init_point, L, theta_start);

Plot the robot as collection of blue lines (links) and circles (joints);

Hold on;

Plot the obstacles as red rectangles and the goal as red circle.

In the pseudo-code in 8, the origin and the goal are identified by an array of two elements
corresponding to the x and y coordinates of the points. On the other hand, the obstacles are
determined by two matrices, one for the x-coordinates obs_ x and one for the y-coordinates
obs_y, in which each line corresponds to each obstacle relative x or y corner coordinates.
Moreover, the forward kinematic model is collected in fkine_3DOF function (see equation
4.1), which gets as input the origin init_point where the robot should be located, the length
of the links L = [l1, L, [3] and the initial joint configuration theta_start = [0, 02, 03]
and gives as output the x — y coordinates of all the joints, of the centre of mass of the links and
of the end-effector.

4.2 RL architecture design

This section focuses on the design of the RL architecture, i.e. SARSA and Q-learning in both dis-
cretized and continuous state-space, to make the presented robotic arm able to autonomously
learn the environment in which it operates (simulation or setup environment).

For each algorithm, the tuning choices are described in details as well as their correspondent
motivations. In the discretized algorithms (section 4.2.1), i.e. Q-Learning and SARSA with the
realization of Q-table, it was necessary to discretize the values of the environment states and
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actions and reduce their number; as a matter of fact, each possible state-action pair estimated
value should be allocated in a cell inside the Q-table during the learning phase. By discour-
aging and reducing the number of parameters that represent the state of the environment, in-
formation is lost and consequently the states may lose Markov property since the same state
parameters could result in different environment configurations. Because of the discretization
and reduction of inputs, discretized methods may not be able to achieve excellent results; for
this reason a second more advanced method has been implemented, Deep RL (section 4.2.2),
which replaces the Q-table with a neural network to approximate the value-function. As already
defined in detail (see section 2.1.8), thanks to the use of the neural network, there is no real ma-
terialization of the value of every possible state-action pair, but the estimation of the behavior
of the value-function is done through the neural network by modifying its internal weights. The
neural network receives continuous input values and does not require any discretization.

Although different algorithms have been implemented, the mode of interaction between the
agent and the environment remains of episodic nature for all the situations (see pseudo-codes
in 2.5, 2.6 and algorithms 3 and 4). In particular, all the methods present two nested loops, since
each episode (external loop) is constituted of a particular amount of iterations/steps (internal
loop). As already mentioned in section 3.2.1, each episode must be characterized by a prede-
fined number of iterations: each iteration corresponds to an action that the agent is allowed
to perform. Due to this correlation, the number of iterations should be well tuned to avoid the
following circumstances:

* Infinite iterations, which could make the agent to follow non-optimal policies related to
local minimum areas.

* Not enough iterations, which could make the agent not to have sufficient available ac-
tions to reach the goal, since the number of iterations is equal to the number of available
actions per episode.

According to this analysis, the number of iterations have been selected to be 250, considering
that the minimum number of actions required to reach a goal placed as in figure 4.5 corre-
sponds on average to 80.

At the beginning of each new episode, the manipulator is reset to an initial configuration which
is defined in advance, initializing in this way the initial state of the agent in the environment.
In order to end an episode, the agent should reach the goal avoiding the obstacles. Although, if
a collision occurs before reaching the goal, two strategies have been tested:

* Reset after collision: the episode ends if a the manipulator hits an obstacle and so the
agent returns to its initial state before ending the iterations.

* Move one step backwards: if a collision occurs, the iterations continue and the manip-
ulator moves back to its previous state, i.e. the state before the collision, and it should
select a new action from that state.

Summarizing, this section presents the design of the RL architecture, both with discretized
state-space (section 4.2.1) and continuous state-space (section 4.2.2). Eventually, the differ-
ences between the two implementations on the real setup and in simulation (section 4.2.3) are
highlighted.

4.2.1 Discretized RL algorithms

As already mentioned in sections 2.1.5 and 2.1.6, SARSA and Q-learning make use of a Q-table
to store the estimated values of all the possible state-actions pairs. In this perspective, a smart
discretization approach should be figured out in order to circumvent the curse of dimension-
ality issue typical of the robotics domain (see section 3.1 and (9)(10)).
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State discretization

Servo-motors with position control are adopted and, consequently, the state parameters cor-
respond only to the possible joint angles, i.e. the three motors positions that the manipulator
can present in the considered environment. The state-space dimension depends mainly on
two parameters:

* Size of the workspace: the definition of a specific workspace in which the robot arm can
operate is of great importance to have a better visualization of the motion the robotic
arm can perform and of the regions that the end-effector can actually reach in the en-
vironment. Thus, all the servo-motors mounted on the robotic arm have been limited
to specific position ranges to avoid undesired configurations and possible collisions be-
tween different parts of the manipulator structure.

* Discretization level: to select a proper discretization level, it is necessary to look at the
environment in which the robotic arm will operate. In a L-shaped pipe-like environment
(see e.g. figure 4.5), the manipulator should be able to reach quite far targets with its
end-effector, maybe rotating the latter of 90 degrees with respect to the second link and,
at the same time, the first two links should allow the end-effector to enter and explore the
other curve as fast as possible. In this context, both the first motor and the third motor
should have a high resolution so that they can make accurate movements, while, on the
other hand, the second motor, since it is attached to a longer link with respect to the first
one, should present less discretization to allow the end-effector to enter the curve faster.

According to the considerations previously made, the states of the agent can be selected as
follow, obtaining the workspace shown in figure 4.9:

Table 4.2: Definition of the states of the agent

Parameter | Range [motor units] | Discretization sample [motor units] | State size
01 550-900 5 71
0, 400-1000 8 76
03 180-900 5 145
Total state size 782420

As possible to notice from table 4.2, the three states are combined together to get a final state
matrix of dimension 782420x3, in which the rows corresponds to all the possible combinations
of the three column elements, i.e. the states 61, 8, and 63. These states are in motor units
and each unit is equivalent to approximately 0.29 degrees (20); thus, the first and the third
state present a discretization sample of around 1.45°, while the second is sampled every 2.32°,
allowing the end-effector to move faster towards the right/left side of the pipe depending on
the goal location.
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Figure 4.9: Definition of the robotic arm workspace. The lines on the joints represent the motion range
of each joint and, consequently, of each servo-motor of the manipulator, according to the state defini-
tion in table 4.2.

Discretized action-space

According to the described discretization approach, an action vector should be selected to
make the robot arm able to move inside the environment. For each joint of the robot, some
actions have to be defined to increase or decrease their angle. In this way, the manipulator ac-
quires the ability to move clockwise or counter-clockwise depending on the angle sign and on
its state range. In this context, the action vector is discretized as well so that a finite number of
state-action pairs can be identified and then stored in the Q-table. The selection of the actions
depends mainly on two parameters:

* Discretization level: a selection of actions whose values are smaller than the discretiza-
tion sample would make the agent not to change its current state. So, the actions should
be selected to be at least equal or bigger than the discretization sample for each state.

* Workspace: a selection of actions whose value would bring the manipulator out of its
predefined state ranges is not preferable, because in those situations the robot would
not move and would stop at the current state.

Based on the previous analysis, the agent state in the environment should be interpolated such
that, when the robot performs an action, it ends up in a new environment state depending on
the discretization. To implement the stated interpolation, it is necessary to figure out which is
the state closer to the current robot configuration. In this perspective, the euclidean distance
between the current configuration and the available discretized states is evaluated with:

current_state=min|[(state_matrix— them_mutrix)z] 4.2)

In the reported equation, state_matrix corresponds to the full state matrix (see table 4.2), while
theta_matrix is the matrix containing the current configuration of the robot, i.e. theta =
[91, 0, 93] repeated as many times as the available number of states. In this way, each
element of the state matrix can be actually compared to the current configuration of the agent,
calculating the euclidean distance between each element of the state matrix and the current
theta. The minimum obtained value of that distance will actually identify the closer environ-
ment state for the current configuration of the manipulator.

Actions selection strategy

In order to choose the action to be implemented, the e-greedy action selection strategy (see
section 2.4) have been partially modified. The standard e-greedy algorithm is as follow:
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Algorithm 9: e-greedy action selection algorithm

if rand() > € then

‘ Select greedy action derived from Q;
else

‘ Select a random action;
end

Even if e-greedy strategy presents a good balance between exploration and exploitation during
the action selection, it has one main disadvantage in the exploration phase: it selects equally
among all the available actions (4), i.e. all the actions are equally attractive for the agent. This
scenario could be undesirable in the moment in which some actions would bring the agent
to reach environment states which should be avoided or when a full environment exploration
should be guaranteed. In order to solve those issues, the action selection strategy has been
modified as described in algorithm 10.

Algorithm 10: Modified e-greedy action selection algorithm

if rand() > ¢ then
‘ Select greedy action derived from Q;
else
if iteration == 1 then
‘ Select a random action;
else
Check the most and less selected actions;
if The most selected action is unique then
‘ Select randomly among all the actions except the most selected;
else
if The less selected action is unique then
‘ Select that action;
else
‘ Select randomly among all the less selected actions;
end

end

end
end

According to the modified e-greedy action selection proposed in (10), all the selected actions
are stored in MATLAB workspace, such that, once the agent is exploring, instead of selecting a
random action uniformly among all the available actions, it selects a random action uniformly
among all the actions except for the most selected action. If more than one action have been
selected the most, the agent chooses the less selected action or, if even the latter is not unique,
it selects randomly among all the less selected actions.

In this way, the agent is allowed to explore the environment in a more uniform way and, since
RL algorithms have an episodic nature, problem concerning resets of the random generator
in MATLAB are avoided. This latter issue makes the MATLAB function rand () to returns the
same result any time it is executed at the beginning of each episode. Thus, since a completely
random exploration is not possible in a PC but it is always pseudo-random, it should be at least
supervised such that the agent can also explore the whole environment with a more homoge-
neous actions selection.
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In this context, it is so necessary to discover an optimal exploration-exploitation trade-off (see
requirement in 3.3.1), so that the agent does not waste time in exploring remote areas far from
the goal, but, at the same time, it does not exploit too much a specific policy, because, if not,
it could converge to a local optimal policy, which is not actually the generalized optimal one.
In particular, as mentioned in (4), to obtain higher rewards, the agent has to select actions that
it discovered in previous trials and that allowed it to get positive reward in the past, but, to
determine those actions, the agent must test actions that it has never tried beforehand. There-
fore, to learn that some actions may be better than others, the agent has to sufficiently explore
the environment. To converge to optimal policy, the exploration period must be gradually re-
duced, such that the algorithm can behave greedy letting € converging to zero and, once the last
episodes are reached, the agent is allowed to just exploit the optimal policy it discovered. Thus,
at the beginning of the learning phase, a bigger € = 0.3 has been selected (see results in section
5.1.1 and figure 5.4 for comparison about tested e-values), such that the agent can explore 30%
of the time in each episode and, at the end of each episode, its value is decayed by a factor of
0.998. In this way, € — 0 when episode — final episode.

Moreover, during the training period, convergence to the (sub)optimal policy is identified in
the moment in which the agent reaches the goal for 50 successive episodes with the minimum
number of actions. If this situation is reached, the exploration phase is completely stopped, i.e.
€ =0, and the agent is allowed to exploit just the learned policy.

In order to find the greedy action specified in (10), a Q-table must be available in MATLAB
workspace which stores the value of all the available state-action pairs according to the dis-
cretization approach. Thus, this Q-table should have a number of rows equals to the available
states and how many columns as the available actions. As a result the implemented Q-table
would be 782420x6.

As specified in both 2.5 and 2.6, at the beginning of the algorithm, Q(s, @) should be initial-
ized and then updated according to the equations 2.12 and 2.13 for SARSA and Q-learning
respectively. In the literature, the Q-table is usually initialized arbitrarily (4), e.g. Q =
zeros(states,actions), but, to make the initial exploration phase more goal-oriented, it may
be initialized based on the reward function. In this way, states which bring the agent closer to
the goal present higher values with respect to the states which make the agent to move further
from the goal. Of course, since the value of each state-action pair has not been estimated yet
during the initialization of the algorithm, each action presents the same value for each state, i.e.
the resulting Q-table is just the repetition of the reward matrix in all its columns (see equation
4.3 and code in appendix B.2).

Q=[R., .. R"

nxl1 nxl

4.3)

Where n is the number of available states and m is the number of available actions.

Consequently, each action for each state is initialized equally and, so, this aspect should be
taken into account during the exploitation phase: when the agent in state S has to select the
greedy action A* derived from Q (see algorithm 10), it should not always select the first action
for that state, i.e. A;, but it should select randomly among all the available actions with the
highest Q-value, so that, after some iterations, the optimal action A* for that state S can be
actually highlighted by a higher value estimate. Following the described analysis, a second
version of the modified e-greedy algorithm is provided in 11.

According to algorithm 11, in the exploitation period the greedy-action is selected only when
at the current state S the available actions have different value estimates in the correspondent
Q-table. Eventually, at this point, the index of the chosen action is returned so that the manip-
ulator can actually move the correspondent motor to the specified position.
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Algorithm 11: Second modified e-greedy action selection algorithm

if rand() > € then
if all(Q(S,:) == Q(S, Ay)) then
Check the most and less selected actions;
if The most selected action is unique then
‘ Select randomly among all the actions except the most selected;
else
if The less selected action is unique then
‘ Select that action;
else
‘ Select randomly among all the less selected actions;
end

end

else
Select greedy action derived from Q;
end
else
if iteration == 1 then
‘ Select a random action;
else
Check the most and less selected actions;
if The most selected action is unique then
‘ Select randomly among all the actions except the most selected;
else
if The less selected action is unique then
‘ Select that action;

else
‘ Select randomly among all the less selected actions;
end
end
end
end

In section 5.1.1, a graph is reported which compare the action selection distribution among
standard e-greedy algorithm 9 and modified e-greedy algorithm 11 (see figure 5.3) to check if
the modified strategy actually provides a more uniform selection of the actions in each episode.

RL parameters selection

Once the manipulator has moved, the new state S’ of the agent and the reward received for per-
forming that action are observed. As already specified beforehand in section 3.2.1, the reward
could be a simple bonus when reaching the goal and a penalty when a collision occurs, i.e. bi-
nary/sparse reward, or it can depend on the distance between the end-effector and the goal.
This reward function is ideal when the manipulator has to learn an environment like the pipe
one shown in figure 4.5, because it guides the agent towards the goal in a more efficient way. If
the manipulator was rewarded only when the goal has been reached, as in the sparse reward
case, it would not receive any feedback concerning the distance with respect to the goal. In this
research, it is assumed that the agent knows the Euclidean distance between the end-effector
and the goal. This is a realistic assumption because of the fact that the agent makes use of the
markers detection signals provided by the camera. In this perspective, the following distance
reward functions have been investigated and tested:

Robotics and Mechatronics Marta Barbero



50

Reinforcement Learning for Robot Navigation in Constrained Environments

* Euclidean distance: simple Euclidean distance between the end-effector and the goal is
evaluated according to equation 4.4:

Euclidean_reward = —\/(xee — Xgoal)? + (Vee — Ygoal)? (4.4)

* Exponential Euclidean distance: exponential Euclidean distance between the end-
effector and the goal can be evaluated as:

Exponential_reward = a x eV *(~Fuclidean_distancel) _ ;¢ £ oy (4.5)

where v is the decay rate of the exponential, while ¢ and of fset are a multiplication
factor and an offset respectively used to fit exponential units to desired values. The decay
rate can be selected looking at the following plot:
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Figure 4.10: Comparison between different exponential decays. The x-axis represents the euclidean
distance between the end-effector and the goal in pixels, while the y-axis corresponds to the relative
exponential reward value.

Thus, the smaller the decay the higher the slope of the exponential curve. In this per-
spective, all the states closed to the goal would present much higher reward than the one
far away from it. In this case, a decay factor of 0.01 has been selected (blue line in figure
4.10).

* Gaussian Euclidean distance: similar to the exponential Euclidean distance, the Gaus-
sian Euclidean distance presents the following form:

(04 _ |zEuclidean distance|

Gaussian_reward = e 202 (4.6)

oV2n

In this case, two parameters have to be tuned, i.e. the variance o and the multiplication
factor a. The multiplication factor is needed just to adjust the order of magnitude of
the function, while, on the other hand, the variance imposes the slope of the Gaussian
function as shown in figure 4.11.

Thus, as noticeable, decreasing the variance increases the slope of the Gaussian function.
As a result, in reward context, just the states really closed to the goal would be character-
ized by larger rewards. In this case a variance of 100 has been selected.

After defining all these parameters, it is important to highlight how the two algorithms, i.e.
SARSA and Q-learning, estimate the value of each state-action pair. SARSA algorithm updates
the Q-table according to the equation in 2.12, while Q-learning follows equation 2.13. Thus,
the main difference is that Q-learning estimate Q(S;, A;) using the Q-value of the next state
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Figure 4.11: Comparison between different variances in Gaussian function. The x-axis represents the
euclidean distance between the end-effector and the goal in pixels, while the y-axis corresponds to the
relative Gaussian reward value.

S¢+1 and the greedy action a, so it assumes to follow the optimal policy even if it is not. On the
other hand, SARSA updates the Q-table according to the Q-value of the next state S;; and the
next action from that state A1, so it always assume to follow the current policy. This difference
disappears in the moment in which the current policy corresponds to the optimal one. Even
though, both the update rules consist of the following parameters that should be tuned:

* a (equations 2.12 and 2.13), which is the learning rate. It determines how the new learned
information will be weighted against the old information. A factor of 0 would prevent the
agent from learning, on the contrary a factor of 1 would cause the agent to be interested
only in recent information. Since the Q-—table is initialized as the reward function in
a goal-oriented perspective and the initial phase of the learning is not complete explo-
ration, it is meaningful to select a learning rate which is high (e.g. 0.99) so that the learned
information is prioritized.

* v, which is the discount rate parameter (see equations 2.8, 2.12, 2.13 and section 3.2.1). It
represents the contribution given by the values of the successive states in the evaluation
of the value of the current state-action pair. Thus, y = 1 means that only the cumulative
future rewards play a role in updating Q(S;, A;), while y = 0 takes in to account only the
immediate rewards. As specified in the literature (4), discounted rewards are useful in the
moment in which the algorithm does not present episodic nature and, so, the interaction
between the agent and environment is continuous and does not stop when a specifid
situation is faced. On the other hand, undiscounted rewards can be applied when the
algorithm is episodic as in this case. Exactly for this reason, a discount factor of 0.9 has
been selected, because it has been found in the literature (4) to be a good trade-off be-
tween the intrinsic episodic nature of the algorithm and the discretization and reduction
of the environment, that partially affects the Markovian property.

All the tuning choices are summarized in table 4.3:
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Table 4.3: Summary of implemented tuning choices for learning parameters

Parameter | Value | Description

Number of iterations per episode. An episode can last as maximum
250 iterations.

Initial exploration index. It represents the probability of selecting a
€ 0.3 random action with respect to selecting the greed-action (see sec-
tion 5.1.1).

Decay of € at the beginning of each new episode. So that almost full
exploitation is reached in the last episodes. As a matter of fact, 0.3 *
(0.9982000) = 0.0055, which is almost equal to zero exploration after
2000 episodes.

Learningrate. It represents the updating index of the value of a state-
action pair.

Discount index. When assessing the value of a state-action pair, it
declares how important is the value of the future states.

Iterations 250

€ decay 0.998

a 0.99

04 0.9

The full MATLAB code of both SARSA and Q-learning is provided in the appendix B.3 and B.4.

4.2.2 Deep RL algorithms

Since Markov property is affected by the reduction and discretization of the environment, it
is not easy to obtain excellent results in those conditions. Unfortunately, discretization is in-
evitable, since in its absence, the high memory requirement for storing all the state-action pairs
would be prohibitive, but, above all, the number of data and time required to accurately esti-
mate each single state-action pair would be too high. The solution to the problem is to combine
reinforcement learning, both Q-Learning and SARSA, with a function approximation method.
The implementation of Deep RL with experience replay has been selected (see section 2.1.8). In
the Deep RL method, the Q-table is replaced with a neural network for the approximation of the
value-function. The adoption of a neural network allows to use the complete state provided by
the environment without reductions and discretizations. Of course, since the encoders of the
motors have precise resolution of 1 motor unit, i.e. 0.29 degrees, the full state space is intrinsi-
cally discretized with a sample of 1 motor unit.

Concerning the actions choice, Deep RL adopts an e-greedy policy, similar to the policy used
by the first implementation (algorithm 11). In this case, however, the values of the state-action
pairs are obtained by performing a forward step in the neural network. During the learning
phase, the implemented method estimates the target values for the calculation of the loss func-
tion (see equation 2.14), following the logic proposed by Monte Carlo methods (see section
2.1.4) which provides the estimate of the expected return of a state-action pair, using the infor-
mation stored in a class called Replay Memory.

In Deep Q-Learning, at each iteration the agent stores a new tuple in replay memory contain-
ing: the previous state, the performed action, the obtained reward and the new visited state. In
Deep SARSA also the next action from the new visited state is stored (i.e. A;+1). See table 4.5 to
get further details.

At this point, by randomly choosing a replay memory tuple, it is possible to estimate the ex-
pected return (equation 2.8). If the tuple selected in the Replay Memory belongs to a not yet
completed episode, the calculation of the expected return is totally or partly done using the
estimates of the neural network. In this perspective, instead of training the network with only
the just performed transition, as implemented in algorithms 1 and 2, the training is based on
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Table 4.5: Values contained in each tuple of the Replay Memory

Class object | Parameter| Description

obj.S state 1 State of the environment at instant ¢
obj.A action 1 Index of the performed action at instant ¢
obj.R reward Obtained reward when action 1 is performed
. New successive state at ¢+ 1, reached executing ac-
0bj.S_new state 2

tion 1 at state 1
New action selected from state 2 (only in Deep

obj.A_new action 2 SARSA)

a subset of randomly selected transitions from the Replay Memory. This type of update takes
the name of updating with mini-batch (see section 2.1.8) and brings a considerable advantage
with respect to the basic method, since, in the learning phase, fewer episodes are required to
reach convergence.

To create the neural network, MATLAB Neural Network toolbox has been employed. This
package offers a wide variety of architectures and training functions for modeling complex
non-linear systems in a simple way, using artificial neural networks of different type. MAT-
LAB implements different optimization algorithms for gradient descent learning, including
traingdm (35), which is a gradient descent function with momentum back-propagation and
has been proved to be 70% more accurate with respect to the standard gradient descent back-
propagation functions (36). As a matter of fact, since momentum back-propagation is applied,
the network becomes able to respond both to local gradients and to current trends in the er-
ror surface (35); consequently, the momentum behaves as a low-pass filter which filters out all
the small features in the error surface, allowing the network to bypass possible local minimum
points. traingdm makes use of the following formula to change the weights w of the neural

network (35):
d(w) = mc* d(Wprey) + Ir « = ma) » d(perf 4.7
d(w)

In equation 4.7, the next parameters are present:
* d(w), which represents the change of the NN weights.
* d(wprey), which is the previous change to the weight.

* mc, which corresponds to the momentum constant. mc¢ = 0 means no momentum, while
mc = 1 means that the relative network would not learn from the local gradient.

e [risthelearningrate of the network. A too high learning rate cannot ensure convergence
of the network, because the changes of weight values could be so huge that the gradient
descent can overshoot the minimum, making the loss function even worse. On the other
hand, a small learning rate is more reliable but it can make the training slower because
the steps required to minimize the loss function are usually of infinitesimal order. In this
case alearning rate of 0.012 has been selected since the resulting network can be trained
sufficiently fast (see results in table 5.2).

. % corresponds to the derivative of the performance with respect to the weight w.

The performance is evaluated according to the performance function, which in this case
is the mean-squared error as specified in equation 2.14.
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To initialize the Deep RL agent, in addition to the action-space attribute, containing all the
possible actions that the agent is allowed to perform, and the learning parameters ¢, e-decay,
and vy (see table 4.3), additional parameters must be provided:

e Maximum dimension of the Replay Memory class, i.e. mnemory_size.
e Maximum dimension of the mini-batch, i.e. batch_size.

As already mentioned, to perform an action selection, Deep RL implements an e-greedy policy
in a way similar to the methodology applied for the discretized state-space case (see algorithm
10). In this case, the estimates of the values are obtained through the neural network (see algo-
rithm 12).

Algorithm 12: Deep RL e-greedy action selection algorithm

if rand() > ¢ then

‘ Select greedy action derived from Q applying argmax, Q(S, a');
else
if iteration == 1 then

‘ Select a random action;
else
Check the most and less selected actions;
if The most selected action is unique then

‘ Select randomly among all the actions except the most selected;
else

if The less selected action is unique then
‘ Select that action;

else
‘ Select randomly among all the less selected actions;
end
end
end
end

As possible to notice from algorithm 12,if the action with higher expected return (i.e. greedy-
action) is selected, the deep e-greedy algorithm invokes an argmax function that requests as
input parameter the state of the environment S, used internally as input to the neural network
Q, in order to obtain the values related to every possible action that can be performed from that
state. By executing that function, it is possible to interact with the modeled neural network,
making a forward step with the environment state as input. The obtained output corresponds
to a vector of length equal to the number of executable actions. Once the vector is evaluated,
the function returns the index of the action with a higher value (greedy-action).

Once the selected action is performed, the new state and the relative reward are observed.
Thus, the new tuple (i.e. (S;, As, Ry, Se+1) for Deep Q-learning and (S, As, Ry, Srv1, As+1) for
Deep SARSA) is added to the Replay Memory by calling the function store_transition.
store_transition concatenates each parameter of the tuple to the previous ones apply-
ing the MATLAB code provided in appendix B.5. In case the insertion of the new tuple exceeds
the maximum size of the Replay Memory memory_size, the maximum size is maintained by
eliminating the exceeding tuples following FIFO logic.

At this point, the action-value function Q is learned based on a randomly selected subset of
tuples from the Replay Memory. The amount of samples in the subset are determined based
on the chosen batch size. Then, for each selected tuple, the target value is calculated (see equa-
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tions 2.15 and 2.16) in order to determine the error of the network outputs to be minimized by
adjusting the weights. The error is simply the mean-squared error between the evaluated tar-
get and the current value-function Q(Sy, A;), as specified in the loss function (equation 2.14).
Eventually, the network can be trained using the t rain function in MATLAB, providing as pa-
rameters the state vector and the target.

The modeled neural network, represented graphically in figure 4.13, is a deep feed-forward
neural network and is made of three components, one of which is a fully connected hidden
layer:

e Input: the input is made up of three neurons, one for each state parameter of the envi-
ronment (see table 4.2).

* Hidden layer: the hidden layer consists of 300 neurons with hyperbolic tangent activa-
tion, so following the equation:

X _ ,—X
Fo = tanh(x) = S 4.8)
et+e™*

The cited equation results in the plot reported in figure 4.12.

tanh x

10F B

—_— -10F

Figure 4.12: Hyperbolic tangent function behavior

This activation function gives output in the range [-1, 1], so negative inputs to the layer
will correspond to negative outputs, while positive inputs to positive outputs. In this way,
the sign is preserved.

The number of neurons in the hidden layer can be selected according to the considered
number of inputs and outputs ((34) and see results in section 5.1.1).

* Output layer: the output layer provides a neuron for every possible action (in figure two
actions for each joint, i.e. six neurons) with linear activation, since the outputs will have
to estimate the values of the state-action pairs. The linear activation function combined
with nonlinear activation functions in the hidden layer, hyperbolic tangent in this case,
provides good results for nonlinear regression.

The resulting neural network is considered to be deep because the input and the output layers
are connected through another hidden layer. Both the hidden layer neurons and the output
layer neurons are biased, with biases initialized at 0 (b in figure 4.13 are initialized at zero).
The values assumed by the net weights (win figure 4.13) are regularized by using a momentum
constant of 0.9 to avoid local minima, as mentioned beforehand, and they are initialized at
Zero.

All the selected parameters for the neural network are summarized in the table below:
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Figure 4.13: Graphical representation of the adopted feed-forward neural network

Table 4.7: Summary of implemented tuning choices for deep NN parameters

Parameter | Value | Description

. . Number of neurons that constitute the first layer of the neural net-
Dimension . .
. 3 work, amount equivalent to the number of available states of the
input layer .

environment.

Dimension Number of neurons that constitute the hidden layer of the neural
hidden 300 network, single hidden layer of the network (see section 5.1.1 for
layer further details).
Dimension Number of neurons that constitute the output layer, amount equiv-
output 6 alent to the number of available actions, in figure 4.13 corresponds
layer to 6 (see equation 5.1).
Learnin . - .
rate & 0.012 | Learning rate of the neural network, given as an input.
Momentum 0.9 Parameter needed in t raingdm function. It acts as a filter of local
constant ’ irregularities to avoid convergence to local minima.

Concerning the parameters of the Deep RL algorithms with experience replay, the same choices
summarized in table 4.3 remain valid. The only parameters that still have to be tuned are the
ones related to the Replay Memory. As a matter of fact, the maximum dimension of the Replay
Memory has been selected to be memory_size = 250’ 000; this means that, in the worst
case, the Replay Memory can store 1000 episodes, since each episode consists of 250 iterations
(i.e. 250 * 1000 = 250'000). The updates of the weights of the network are executed with mini-
batch of dimension batch_size = 75. Since the network is trained based the available
mini-batches, this number has been selected making the following considerations:

e Small batch_size corresponds to a not accurate training. Since the batches are ran-
domly selected, if a small sample size is considered it can be related just to a specific
portion of the environment and, consequently, the network would be train only for spe-
cific state-space.

e Large batch_size can avoid the previous problem, but it makes the training period
much longer, since the network should be trained for more data.

Thus, a good trade-off of 75 has been selected not to elongate the training period and to ensure
training on larger areas of the environment state-space.

The full MATLAB codes of the implemented Deep SARSA and Deep Q-learning are provided in
the appendix B.6 and B.7.
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4.2.3 RL architecture on real setup vs simulation environment

As already specified in section 4.1.2, the distance between the end-effector and the goal is eval-
uated through the camera, which detects the location of the goal and manipulator markers. On
the other hand, in simulation environment, since no camera signal is available, the end-effector
location is calculated according to the kinematic model in 4.1 and, based on that, its distance
with respect to the predefined goal location in x — y plane can be determined. Thus, since the
reward function is based on the Euclidean distance between the cited points of interest, it is
evaluated in a different way according to the employed environment.

Even though, in the discretized state-space case, the Q-table should be initialized based on the
selected reward function, as specified in section 4.2.1. In this perspective, camera signals can-
not be utilized because it is inefficient to assess in advance all the possible configurations of
the manipulator and, consequently, evaluate the Euclidean distance between the end-effector
and the goal in all the stated configurations. Therefore,the kinematic model is also employed
in the setup environment in order to initialize the reward function and, consequently, the Q-
table, making the necessary adjustments for the unit of measures: to apply forward kinematics,
the joints positions should be in degree, so a conversion is applied to make the motor units
conforming to the kinematic model; at the same time, the links lengths are kept in pixel coordi-
nates, knowing that each pixel corresponds to 0.8824 millimeters in the employed PC display,
since the distances with the camera are evaluated in pixels, which do not require camera cali-
bration.

4.3 Experimental design

In order to test the different RL algorithms, it is necessary to design and plan the series of ex-
periments that will be performed.

The first configuration of the environment that will be considered is the one shown in figure
4.5, on which all the four implemented algorithms will be tested, i.e. discretized SARSA, dis-
cretized Q-learning, Deep SARSA and Deep Q-learning. On this environment, according to the
methodology proposed in section 3.4, each algorithm will be assessed through the following
parameters:

» Convergence rate: required episodes before reaching the target with the same amount
of actions and consequently accumulating the same maximum reward. If convergence
rate is reached, (sub)optimal policy is guaranteed to be found.

* Obstacles avoidance: ability of avoiding collisions with obstacles.

* Number of successes: average number of successes per learning period. An episode
is considered successful if the goal has been achieved. This number is a good perfor-
mance measure because it allows to understand how many times during the all available
episodes the agent is able to reach the goal.

e Reward function selection: performance evaluation based on the chosen reward func-
tion, which can be:
- Euclidean distance (equation 4.4).
- Exponential Euclidean distance (equation 4.5).
— Gaussian Euclidean distance (equation 4.6).

For each experiment, the performance of each algorithm will be analyzed through two types of
graphs:
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1. Average cumulative reward obtained by the agent at the end of each episode evaluated

as:

N
_ R
R= w (4.9)

where R is the average cumulative reward at the end of the episode, N is the number of
iterations that the agent experience per episode (with a maximum of 250) and R(n) is the
reward at considered iteration n.

Reinforcement learning tries to maximize the cumulative reward per episode, so this plot
is useful to verify whether the agent is able to correctly estimate the optimal policy. The
agent should follow this optimal policy to reach the goal without collisions and with the
least amount of actions. In this way, also convergence rate can be assessed, because
complete convergence is achieved in the moment in which the same policy is followed
and, consequently, the average cumulative reward is maximum and constant for the re-
maining episodes. At the same time, since the average cumulative reward depends on
the selected reward function, it is possible to analyze which reward function provides the
best results.

2. Bonus behavior. A sparse reward will be added to the reward function to prioritize ac-
tions that make the agent reach the goal and penalize actions that make the agent col-
liding. In particular, a bonus of +200 is assigned when the agent reach the goal, while a
penalty of -100 is obtained when a collision occurs. Looking at the bonus behavior allows
to understand whether an agent has actually reached the target location at the end of the
episode, maximizing the average cumulative reward, or collided with an obstacle. This
sparse reward is necessary in particular when obstacles are located close to the goal: re-
ward would be high at those points, since the distance between the end-effector and the
goal would be small, even if the goal has not been reached yet.

Based on the results obtained through the proposed assessment, just the most goal-oriented al-
gorithms will be tested in other configurations of the environment during the later experimen-
tal phase. This choice have been made because of the long training period of each algorithm
on the real setup, in the range 1-3 hours per experiment, depending on the selected number of
training episodes and on the chosen approach. In this way, further analysis or modification to
the selected algorithms can be performed to evaluate their efficiency in a more accurate way. In
particular, the environment layouts shown in figure 4.14 will be also taken into consideration
with different goal locations, i.e. goal on the left, goal on the right and straight goal.

These layouts have been chosen because they are representative of some possible standardized
configurations of a pipe network, as shown in figure 4.15. Configuration 4.14a, configuration
4.14d and configuration 4.14e are similar concerning the location of the goal and, therefore,
RL algorithm adaptability to new configurations of the environment can be investigated, i.e.
the acquired knowledge of the already learned environment is applied to learn a similar but
not equal configuration, adopting a transfer learning approach. If adaptability is proved to
work efficiently, the same trained Q can be adopted to similar pipe networks, ensuring a faster
convergence to the (sub)optimal policy.
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Figure 4.14: Possible setup layouts. a) Cross-environment with goal on the left. b) Cross-environment
with goal on the right. c) Cross environment with goal straight. d) Acute curve with goal at the bottom.
e) Obtuse curve with goal at the top.

a) b) C)

Figure 4.15: Standardized pipes configuration. a) 90 degree curve. b) Crossroad. c) Obtuse curve.

4.4 GUI-based software architecture

In order to make the software architecture more user-friendly as required in section 3.3.5, a
Graphical User Interface (GUI) has been developed for the setup environment so that a new
user can easily deal with the implemented algorithms and with the correspondent setup, with-
out actually analyzing the code line-by-line. In this context, MATLAB provides the possibility
to create GUI with point-and-click control, eliminating the need to completely understand the
code or to type commands to run the applications.

First of all, the user should select which kind of environment is using, i.e. simulation or actual
setup from the menu shown in figure 4.16.

Robotics and Mechatronics Marta Barbero



60 Reinforcement Learning for Robot Navigation in Constrained Environments

4 MENU - X
Are you working in simulation or with the real setup?

Simulation

Setup

Figure 4.16: MATLAB GUI for selection of simulation or setup environment

If the simulation environment has been decided, the user is asked to select one of the sample
environments shown in figure 4.17. These three environments have been considered as sample
because they represent the main three types of pipes configurations (see figure 4.15). In this
perspective, also the animation option can be activated to have a better visualization of the
learning procedure.

15l

a) c)

Figure 4.17: Sample simulation environment configurations. a) left curve, b) crossroad, c) right curve

On the other hand, if the actual setup has been chosen, the user will be asked to complete the
following steps;

¢ Check the ID of each motor.

* Connect the servo-motors to the USB2Dynamixel device and the latter to the serial port
of the PC (see section 4.1).

e Check the name of the selected PC serial port.
e Switch on the power supply for the motors and set it to 12 V.
* Connect the external camera to the PC USB port to record the overall scene.
If all these steps are completed correctly, the user could see the manipulator moving to its initial

configuration.

At this point, the user should declare which kind of RL algorithm he wants to execute. Two
multiple-choice menus will appear, one for selecting the algorithm itself (see figure 4.18a) and
another one to select if discretized state-space or continuous state-space should be considered
(see figure 4.18b).

Once the RL algorithm has been completely defined, the user can freely choose which reward
function he would like to test based on the alternatives proposed in section 4.2.1.

Finally, according to the implemented choices, the chosen algorithm will start to run automat-
ically.
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4] MENU - X 4] MENU - X
Which Reinforcement Leaming algorithm do you want to apply? Do you want discretized state space or continuous state space?

Q-leamning ‘ Discretized

SARSA ‘ Continuous

a) b)

Figure 4.18: MATLAB GUI for selection of RL algorithm

4.5 Final design assessment

The requirements specified in section 3.3 can be used as evaluation criteria to assess the de-
sign proposed in the previous paragraphs. Since not all the requirements are related to design
choices but to a greater extent to the results reported in the following chapter (5), just the design
requirements are herein discussed.

4.5.1
1.

4.5.2

Setup requirements
The setup should be manufactured with RAM facilities.
The robotic manipulator adopted in this research has been laser cut with RaM Group
technology.
The necessary components should be low-cost and commercial.

The employed components for the manipulator and the camera are cheap and easy to
find online. Each servo-motor costs approximately 53€, the USB2Dynamixel device is
sold for 50€, while the employed camera 115€, for a total cost of 324€. Thus, the total
amount is in the available budget of 1000€.

The communication between different hardware components has to be as fast as possible.

The communication between different hardware components is fast and reliable thanks
to the open-source library developed by (31). This library allows to connect all the com-
ponents to MATLAB and communicate with them straightforwardly.

The camera has to localize the markers efficiently.

The adopted marker detection algorithm proposed in 6 is available to operate accurately
and to localize the present RGB markers in only 0.1356 seconds, which is much less than
the maximum permitted time of 0.5 seconds.

Tests requirements

. Simulation is the first-step for valuable tests.

A representative simulation environment has been designed to implement valuable tests.
Instead of making use of the camera signals, the simulation environment is characterized
by a forward kinematic model (see figure 4.7 and equation 4.1) that allows the evaluation
of distances between the simulated robotic structure and the simulated obstacles/goal.
To maintain a correspondence between the two environments, the obstacles and goal
location in simulation are in pixels as in the case of the physical setup, so that all the
simulated markers can be placed in the same pixel location of the physical environment.

. Employ virtual obstacles to bypass setup damages.

Red rectangular markers have been adopted to represent the obstacles in the scene. In
this way, no actual collision between the robotic structure and the obstacle can occur.
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3. Prioritize tests on more performing algorithms.

As specified in section 4.3, all the algorithms are first tested in the environment shown
in figure 4.6 to assess the most performing ones. At that point, just the most efficient
algorithms will be tested in other configurations of the environment (see figure 4.14).

4.5.3 Non-functional requirements
1. The code should be user-friendly

In order to make the code more user-friendly, a MATLAB-based graphical user interface
has been developed (see section 4.4), so that new users can easily interact with the im-
plemented RL-based navigation system without the need of directly look at the main
algorithms.
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5 Results

This chapter presents the results obtained by applying RL algorithms on different configura-
tions of the environment. As already explain in section 4.3, the first configuration of the en-
vironment that has been considered is the one shown in figure 4.5, on which all the four im-
plemented algorithms have been tested, i.e. discretized SARSA, discretized Q-learning, Deep
SARSA and Deep Q-learning.

Based on the results obtained through the proposed first experiments, just the most perform-
ing algorithms have been tested in other configurations of the environment (see figure 4.14).
Since configuration 4.14a, configuration 4.14d and configuration 4.14e are similar concerning
the location of the goal, a transfer learning approach can be employed to verify algorithms
adaptability to similar environment layouts.

Thus, this chapter is organized as follow: first of all, the early experimental phase of the project
is presented, with a particular focus towards algorithms adjustments in simulation and tests of
the four possible approaches on the setup environment in figure 4.5. Afterwards, in section 5.2,
the later experiments are described, in which Q-learning and Deep Q-learning have been tested
in different configurations of the environment. Eventually, in section 5.3, a final analysis of the
different implementations is proposed, paying attention towards the strengths and weaknesses
of each technique.

5.1 Early experiments and results

In this section, the first experiments that have been performed both in simulation (section
5.1.1) and on the setup in figure 4.5 are presented (sections 5.1.2 and 5.1.3).

The algorithms have first been tested in simulation environment (see section 5.1.1) in order
to check their work-ability and to optimize the selection of RL and NN parameters (see table
4.3 and 4.7). These parameters cannot be all assessed on the actual setup because of the long
training time. Their selection is correlated to the objective of the algorithm, the environment
configuration and the agent behavior. Since the simulation environment together with the for-
ward kinematic model of the robot is a good approximation of the real environment in which
the robotic arm operates, the results obtained in simulation with specific parameters remain
invariant with respect to the results that would have been achieved in real-time environments.

Once all the parameters are determined, the algorithms are assessed on the real setup (see
sections 5.1.2 and 5.1.3) to verify which of them presents the best performance and so should
be chosen for later and more detailed experiments (see section 5.2).

In all the experiments, the action vector has been defined as follow:
actions=[-5, 5 -8, 8,-5 5] 5.1)

The unit of measure of the action vector is motor units, so in degrees the vector would become:

actions=[-1.45, 145, ,-2.32, 2.32,-1.45, 1.45] (5.2)

The first two elements correspond to actions for the first joint, the third and the forth for the
second joint, while the last two elements correspond to third joint actions. In this perspective,
each joint can move clockwise and counter-clockwise depending on the selected action. As
possible to notice, the actions values are equal to the discretization sample of each state, that
has been actually discretized depending on the size of the workspace and on the motion each
link should be able to perform (see section 4.2.1).
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5.1.1 RLand NN parameters assessment in simulation environment

First of all, discretized Q-learning algorithm initialized with RL parameters in 4.3 has been
taken as a reference to understand how the agent should deal with collisions. As already speci-
fied in section 4.2, once a collision occurs, the agent can behave in two different ways:

e It resets to its initial configuration, ending the episode at that point. The correspondent
Q value function is updated at the end of each iteration.

* It moves back to the state before the collision took place, continuing the iterations. The
correspondent Q value function is updated before moving back to the previous state.

Both the approaches have been tested on the environment in figure 4.8 to understand which
technique makes the agent to reach the goal faster and with less collisions (see figure 5.1 and
figure 5.2).

Comparison among different obstacles avoidance approaches - Discretized Qlearning
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Figure 5.1: Comparison among different obstacles avoidance approaches for discretized Q-learning al-
gorithm, i.e. reset after collision or no reset and, so, move to the previous state. The y-axis of each plot
represents the average cumulative reward 4.9 that the agent gains at the end of each episode, applying a
Euclidean reward function (equation 4.4) and an exploration/exploitation factor € = 0.3. A training time
of 1000 episodes has been chosen.

Looking at the plots in figures 5.1, it is possible to notice that both the approaches converge
to a (sub)optimal policy after around 400 episodes, i.e. the correspondent average cumula-
tive reward is constant from that point onward. The main difference that can be immediately
highlighted between the two methodologies is that, when the manipulator is reset to its initial
configuration after a collision (plots on the left), its respective average cumulative reward is less
negative, even in the moment in which convergence is reached. This situation is due to the fact
that, once a collision occurs after few actions, the manipulator reset itself instead of continuing
exploring states of the environment in which obstacles are present. On the other hand, if the
manipulator is not reset after colliding (plots on the right), it continues moving and it stops only
when either the goal has been reached, a collision occurs or the 250 available actions/iterations
are over. This last situation is well represented in the bonus plot in the lower right-hand corner:
at the end of the episode, the bonus value is often zero, i.e. the agent made use of all the avail-
able actions without neither reaching the goal nor colliding. Thus, the "no-reset" approach
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Number of actions at convergence - Reset vs no-reset

30+

# actions at convergence

Reset No-reset
Obstacle avoidance strategy

Figure 5.2: Comparison among average number of actions required to reach the goal at convergence for
different obstacles avoidance approaches for discretized Q-learning algorithm, i.e. reset after collision
or no reset and, so, move to the previous state.

actually accumulates more negative reward on average, because it lets the agent free to collide
with obstacles from different sides and from different state configurations and, consequently,
it gets stuck exploring areas that actually are not of interest. In this case, when convergence is
reached, the result is that the agent is not able to completely minimize the amount of actions
needed to reach the goal (the correspondent average cumulative reward has a value of -138 ver-
sus the value of -130 which characterizes the "reset" case) because either it may prefer to reach
the goal colliding instead of looking for an obstacle free trajectory, if this path is shorter, or it
does not present enough exploration to figure out the best policy. The agent tries to find out the
shortest path (i.e. minimal number of actions) to the goal, but, since the available environment
states are 782420, it would require more exploration to acquire knowledge about the obstacles
states and the good states which would bring it faster and more safely towards the goal. On the
other hand, the "reset" case has to find out the collision free trajectory for sure. As a matter
of fact, looking at the histogram in figure 5.2, it is possible to notice that the "reset" algorithm
requires 78 actions on average to reach the goal at convergence, while the "no-reset" algorithm
figured out a longer policy which consists of 87 actions.

Last but not least, since the "no-reset" case usually makes use of most of the available actions in
the first exploration phase, it requires more time to execute the whole training of 1000 episodes,
i.e. 677 seconds on average, with respect to the much smaller learning period of the "reset"
case, i.e. 387 seconds on average. This fact has to be taken into account in a real-time perspec-
tive: since the learning in real-time is expected to be much longer than the one in simulation, a
solution that tries to minimize the learning period as much as possible should be selected. For
all the aforementioned reasons, the experiments will be carried out resetting the robotic arm
when a collisions takes place.

The learning period in both simulation and real-time is also affected by the implemented tun-
ing choices (see sections 3.2.1 and 4.2). As already specified, while the choice of discount in-
dex y and RL rate & is more straightforward and driven by what can be found in the litera-
ture (4),(12),(14),(9),(10), the tuning of € parameter, which guides the exploration-exploitation
phases, is more dependent on the target the agent has to achieve: if an agent has to explore
most of the environment in which it is placed, higher values of € should be selected to guaran-
tee more exploration; on the other hand, if the agent must converge to a (sub)optimal policy as
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fast as possible, the exploitation period should be prioritized with lower values of €. In this case,
an optimal trade-off between exploration and exploitation should be figured out to encourage
the robotic arm to learn the environment in a smart and goal-oriented way. In this perspec-
tive, the € is also discounted of a discount factor of 0.998 as specified in table 4.3, so that after
2000 episodes it always reach values closed to zero, to ensure exploitation of the learned pol-
icy. Moreover, when the goal has been reached for 50 successive episodes with approximately
the same number of actions (i.e. number of actions oscillating between +2 and -2 with respect
to the average value), € is decreased to zero not to let the agent to explore the environment
anymore and to just exploit the learned policy.

As already specified in section 4.2.1, the applied e-greedy algorithm has been modified (see
algorithm 11) to make the agent able to more uniformly select the available actions, obtaining
the results in figure 5.3.

Epsilon-greedy action selection strategy Second modified epsilon-greedy action selection strategy
80 25

70

(=2}
o

[}
o

Action choices percentage
w B
o o

Action choices percentage

N
o

10

# actions # actions

Figure 5.3: Comparison between action selection distribution in e-greedy algorithm 9 and modified
e-greedy algorithm 11. Discretized Q-learning algorithm has been applied together in simulation envi-
ronment 4.1.4 with an action vector of six actions, two for each joint. The y-axis represents the number
of times each action (x-axis) has been selected in one episode of 250 iterations.

As easily noticeable from figure 5.3, the standard e-greedy algorithm 9 (histogram on the left)
favors the selection of the first action among all the others (74.4% of probability to be selected
in one episode), since all the actions are inizialized equally as specified in equation 4.3. On the
other hand, the modified e-greedy algorithm 11 allows to obtain a more uniform distribution.
As amatter of fact, action 1 is selected 12.8%, action 2 13.2%, action 3 and action 4 18.4%, action
20.4% and action 6 16.8%.

At this point, since uniform actions selection is guaranteed, it is possible to evaluate which
exploration-exploitation trade-off is preferrable for this kind of applications. Three € values
have been investigated on discretized Q-learning in simulation, i.e. ¢ = 0.1, ¢ =0.3 and € = 0.6,
and the obtained results are shown in figure 5.4.
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Comparison among different epsilon values - Discretized Qlearning
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Figure 5.4: Comparison among different € values in discretized Q-learning algorithm, i.e. € = 0.1, 0.3 and
0.6. In the upper plots, the y-axis of each plot represents the average cumulative reward that the agent
gains at the end of each episode. The considered reward function is the negative Euclidean distance 4.4.
A training time of 2000 episodes has been chosen, but since convergence is always reached before the
end of all the training period, just the first 1000 episodes are considered (x-axis). In the lower plots, the
behavior of the bonus is shown (y-axis) with respect to the number of available episodes.

As possible to notice from figure 5.4, all the proposed exploration-exploitation strategies are
characterized by really negative average cumulative rewards in the first range of episodes, due
to two main reasons:

* Collisions with obstacles far away from the goal: when a collision occurs, the robotic
arm is reset to its initial configuration, i.e. the configuration in figure 4.8) and so, if the
agent hits an obstacle far away from the goal, the average cumulative Euclidean distance
becomes really low.

* The agent makes use of all the available actions for episodes (i.e. 250) without reaching
the goal, obtaining zero as bonus.

In all the presented situation, the selected agent gradually improves its behavior until con-
vergence is achieved. When convergence is reached, the correspondent average cumulative
reward stays almost constant for the whole remaining episodes. This means that, from that
point onward, the agent continues following the same trajectory, selecting the same actions to
reach the goal. Thus, this trajectory is driven by the optimal policy which has been learned
during the training and that, in practice, corresponds to an average cumulative reward of ap-
proximately -130, i.e. the average cumulative Euclidean distance between the end-effector and
the goal becomes almost -130 pixels. The only plot that shows a behavior different with respect
to the others is the one in which € = 0.1, because in that case the agent is not allowed to explore
a lot and, consequently, it reaches the goal exploiting policies which are not the optimal ones,
as possible to see in the episodes range 60-91, 264-321 and 448-527. As a matter of fact, the
correspondent average cumulative rewards in those time frames remain almost constant but
lower than -130 and so non optimal. On the contrary, when € = 0.6, the agent explores a lot and,
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consequently, it takes more episodes to converge to the optimal solution, colliding more times
with obstacles.

In order to assess which e-greedy strategy is the most appropriate for the considered applica-
tion, the different approaches are compared based on the episodes required to converge to the
optimal actions selection and on the average number of successes or collisions in the training
period before convergence is achieved. The following results are obtained for 10 experiments
under the same conditions:

e-value | Convergence episode | Probability of success | Probability of collision
€=0.1 585 71.2% 28.4%
€=03 377 70.6% 29.1%
€=0.6 568 67.8% 31.5%

Table 5.1: Assessment of e-values based on convergence episode and number of successes/collisions
during the whole learning period

According to the results shown in table 5.1, the exploration-exploitation trade-off which guar-
antees faster convergence is the one with € = 0.3 (377 episodes): its convergence episode is
smaller with respect to the ones obtained with € = 0.1 and € = 0.6. Anyway, the amount of colli-
sions and successes are preferable with € = 0.1, but, as previously mentioned, having too small
exploration period does not guarantee convergence to optimal policies but just to non-optimal
ones. On the other hand, larger values of exploration like € = 0.6 make the agent to explore too
much and consequently collide more frequently (31.5% of training period before convergence
with respect to 28.4% and 29.1% of € = 0.1 and € = 0.3 respectively). Eventually, € = 0.3 has been
chosen as exploration-exploitation strategy.

As possible to notice, the percentages of successes and collisions shown in table 5.1 do no add
up to 100% because, in the remaining period, the agent ends an episode making use of all the
available iterations (i.e. 250) without neither colliding nor reaching the goal.

At this point, all the RL parameters are completely defined, so it is possible to focus more on
the choice of NN parameters applied in Deep RL algorithms. While learning rate and momen-
tum constant choices have already been deeply analyzed in section 4.2.2, the dimension of the
hidden layer should be assessed in simulation to figure out the best trade-off between accuracy
of the results and training period required for the neural network.

As already mentioned in section 4.2.2, the number of neurons in the hidden layer depend on
the size of input and output layers. For instance, if the input has a size of three, the output
consists of six neurons and the hidden layer of 50 hidden neurons, the number of unknown
variables to be estimated is equivalent to (3 * 50 + 50 * 6) = 450 and so at least 450 training
examples are needed. In this case, the number of training episodes is huge since it corresponds
to all the possible combinations of states and actions, so three different layouts of the hidden
layer have been investigated on Deep Q-learning in simulation, i.e. 50, 150 and 300 neurons,
and the obtained results are shown in figure 5.5.

As noticeable from figure 5.5, all the three implementations of the hidden layer guarantee con-
vergence, but only if 300 hidden neurons are utilized the algorithm directly converges to the
optimal policy with a average cumulative reward of approximately -130. This result was ex-
pected because of the fact that increasing the number of hidden neurons correspond to an
increment in the number of combinations among the training examples and so an increment
in the accuracy of the network. In the other cases, with 50 and 150 hidden neurons, the al-
gorithm converges to optimal policies only after much more episodes. For instance, when 50
hidden neurons are applied (plot on the left), the number of combinations among training ex-
amples are not sufficient and, consequently, the agent reaches the goal frequently (bonus plot
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Comparison among different number of hidden neurons - Deep Qleaming
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Figure 5.5: Comparison among different number of hidden neurons in Deep Q-learning algorithm, i.e.
HN =50, 150 and 300. In the upper plots, the y-axis of each plot represents the cumulative reward that
the agent gains at the end of each episode. The considered reward function is the negative Euclidean
distance (equation 4.4). A training time of 2000 episodes has been chosen, but since convergence is
always reached before the end of all the training period, just the first 1000 episodes are shown (x-axis).
In the lower plots, the behavior of the bonus is shown (y-axis) with respect to the number of available
episodes.

in episodes range 300-350 is equal to 200) but without being able of finding the shortest path
(average cumulative reward still oscillating in the same episodes range) and continuing mak-
ing use of different number of actions. Therefore, to figure out which hidden layer layout is
actually preferable for this kind of applications, an analysis has been made according to the
convergence episode and average network training period for each batch, as reported in table
5.2.

Number of hidden neurons | Convergence episode | Training period for batch (seconds)
HN =50 801 0.0735
HN =150 631 0.093
HN =300 149 0.1117

Table 5.2: Assessment of HN-values based on convergence episode and network training period

According to the results shown in table 5.2, the number of hidden neurons that ensures faster
convergence is 300, which reach converge in only 149 episodes. As already mentioned, more
hidden neurons correspond to more reliable results, but increasing the number of HN too
much makes the training period longer. As a matter of fact, the faster network training is
achieved with less neurons (0.0735 seconds with HN = 50) and its velocity decreases as the
number of neurons increases, reaching a value of 0.1117 seconds when HN = 300. Neverthe-
less, the latter is the only one that ensures convergence to the optimal policy in a minimum
number of episodes, so, even if the training period becomes larger, this hidden layer configu-
ration has been selected for next experiments of Deep RL.
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5.1.2 First experiments on real setup - Reward function assessment

Since all RL and NN parameters are now completely defined in simulation, first experiments
can be performed on the real setup to assess each algorithm and each correspondent reward
function. In order to implement this analysis, each approach has been tested in the setup
environment in figure 4.5, which is considered to be a good representation of a pipe-like en-
vironment with many constraints and a goal quite hard to be reached due to its closeness to
some obstacles. In this section, all the obtained results are reported and deeply examined to
find out which algorithm is more efficient and which reward function should be selected to
acquire a more goal-oriented learning plan. Each RL algorithm has been tested independently
for each possible reward function (see section 4.2.1), so that the best reward can be figured out
for each RL methodology (see figures 5.1.2, 5.7, 5.8 and 5.9).

Comparison among different reward functions - Discretized Qlearning
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Figure 5.6: Comparison among different reward functions for discretized Q-learning algorithm, i.e. from
the left Euclidean distance, exponential Euclidean distance and Gaussian Euclidean distance (see sec-
tion 4.2.1). In the upper plots, the y-axis of each plot represents the average cumulative reward that the
agent gains at the end of each episode. A training time of 1000 episodes has been chosen. In the lower
plots, the behavior of the bonus is shown (y-axis) with respect to the number of available episodes.
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Comparison among different reward functions - Discretized SARSA

—_ ot —_—
§- £ -120 < 80
3 2 2
S . §'130 & 100
% uw -140 v AR ot
° 9 PR
2" 8 -150 ‘ [k
g g 8
i ® -160 » =140
g- g 2
-170 °
B T [ § -160
5 - 2 -180 e
= [
) @ .190 ) 180
£ ——Average reward g ——Average reward 5 —Auverage reward
z S -200 Z -200
< 0 200 400 600 800 1000 < 0 200 400 600 80 1000 < 0 200 400 600 800 1000
# episodes # episodes # episodes

300 300 300
T 200 T 200 € 200
g t g
g 5 2
S Q H i ©
g 100 £ 100 & 100
3 3 3
S o s 0 [ S o
123 £ [}
g 2 g
o c S
o -100 & -100 o -100

200 -200 -200

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
# episodes # episodes # episodes

Figure 5.7: Comparison among different reward functions for discretized SARSA algorithm, i.e. from the
left Euclidean distance, exponential Euclidean distance and Gaussian Euclidean distance (see section
4.2.1).. In the upper plots, the y-axis of each plot represents the average cumulative reward that the
agent gains at the end of each episode. A training time of 1000 episodes has been chosen. In the lower
plots, the behavior of the bonus is shown (y-axis) with respect to the number of available episodes.

Comparison among different reward functions - Deep Qlearning
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Figure 5.8: Comparison among different reward functions for Deep Q-learning algorithm, i.e. from the
left Euclidean distance, exponential Euclidean distance and Gaussian Euclidean distance (see section
4.2.1). In the upper plots, the y-axis of each plot represents the average cumulative reward that the
agent gains at the end of each episode. A training time of 1000 episodes has been chosen. In the lower
plots, the behavior of the bonus is shown (y-axis) with respect to the number of available episodes.
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Comparison among different reward functions - Deep SARSA
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Figure 5.9: Comparison among different reward functions for Deep SARSA algorithm, i.e. from the left
Euclidean distance, exponential Euclidean distance and Gaussian Euclidean distance (see section 4.2.1).
In the upper plots, the y-axis of each plot represents the average cumulative reward that the agent gains
at the end of each episode. A training time of 1000 episodes has been chosen. In the lower plots, the
behavior of the bonus is shown (y-axis) with respect to the number of available episodes.

In all the graphs presented in figures 5.1.2, 5.7, 5.8 and 5.9, the reward function that provides
the slower convergence to the (sub)optimal policy is the Euclidean distance reward (equation
4.4). Even if the Euclidean distance can be considered a challenging reward, it presents a sig-
nificant problem, that is two states that are both really closed to the goal are characterized by
almost the same reward, while the closer should be represented by a significantly higher reward
to motivate the agent to move to that state. The same issue arises also with Gaussian Euclidean
distance (see figure 4.11). Even though Gaussian function presents a average greater slope with
respect to Euclidean distance, around the goal (see figure 4.11) the slope of the curve starts to
decrease due to the selected variance and, consequently, the correspondent reward is no more
increasing as fast as before. This problem has been completely solved applying exponential Eu-
clidean distance reward in equation 4.5, which is characterized by an always increasing trend,
in particular in proximity of the goal, where the exponential function continues growing even
more, as possible to notice from figure 4.10; as a matter of fact, in mathematical terms this
function is considered a strictly increasing function, i.e. a function where for each interval I,
f(b) > f(a) with b > a. In RL perspective, this property ensures always increasing rewards in
proximity of the goal and always decreasing rewards as the agent moves away from it. Conse-
quently, this behavior persuades the agent to select actions that bring it as closer as possible
to the goal, reaching a faster convergence to (sub)optimal policies for all the presented RL ap-
proaches.

As already mentioned, the ultimate goal of each reinforcement learning agent is to maximize
its cumulative reward, selecting those actions that reward it more in the long-term. With this
idea in mind, the agent should be able to improve its behavior in time reaching the goal more
often and with less amount of actions. Consequently, the average cumulative reward at the end
of each episode should gradually increase with training up to a stable value when the optimal
policy has been completely learned and no more exploration is performed. In the previously
reported plots, this continuous improvement does not actually occur so clearly, because of the
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presence of obstacles in the environment. While exploring, the agent can end up in a new en-
vironment state far away from the goal, that corresponds to a collision state. Thus, after the
collision occurs, the agent reset to its initial configuration, accumulating a really negative total
reward, due to the fact that the obstacle has been hit when the Euclidean distance between the
end-effector and the goal was really high. This condition is well highlighted in the bonus graphs
(lower plots of each figure), where it is possible to notice that the agent performance oscillates
between successes, +200 when the goal has been reached, and failures, -100 when a collision
takes place. Really negative cumulative rewards (upper plots) are most likely correlated to colli-
sions in the bonus plots. This statement cannot be considered as a general rule, because some-
times the manipulator also collides with obstacles which are closed to the optimal trajectory
towards the goal (in figure 4.5 the obstacles with centre pixel coordinates (204,248), (145,256)
and (223,89)). Some failures in the bonus plots are related to higher average cumulative re-
wards, which could also be considered as successes even if they are not. This latter trend can
be easily noticed in the Euclidean distance reward plots on the left of figure 5.9, in the episode
range 500-600. In that case, the average cumulative reward of Deep SARSA algorithm seems to
have almost reached convergence, but the correspondent bonus in that phase demonstrates
that actually the agent was colliding with obstacles near the goal at that time.

Even though a sub-optimal convergence is achieved under all the reported conditions, the av-
erage cumulative reward of each algorithm continues to be of oscillatory nature also after con-
vergence, situation that does not occur in simulation (see plots 5.4 and 5.5). These oscillations
are due mainly to two factors:

* All the reward functions are in pixels. Since a pixel corresponds to 0.8824 millimeters
with the predefined camera location and PC screen resolution, the goal is considered
to be achieved in the moment in which the distance between its marker centre and the
end-effector marker centre becomes smaller than 5 pixels, i.e. 4.412 millimeters. This
trade-off has been chosen because, from an external observer point of view, the end-
effector has reached the goal even if it is not perfectly on it and with the discretized action
vectors it is hard to reach precise pixel locations. Consequently, the reward function value
oscillates between -5 and 0 depending on how close the end-effector is with respect to the
goal.

* The policy learned at convergence is just sub-optimal. In order to learn a global move-
ment policy, it is necessary to train the agent for at least 5000 episodes. This training
period is too high for real-time experiments, because it would require more than one
working day. Thus, 1000 episodes have been considered sufficient to learn a sub-optimal
policy, which is a good approximation of the global one.

Otherwise, this oscillation was not present in simulation (see plots in figure 5.4 and 5.5). As a
matter of fact, in the simulation environment the locations of the markers as well as of the ma-
nipulator itself are more accurate since they are not evaluated through external signals mea-
surements (camera and encoders signals) but through kinematic-based mathematical models.

In order to finally assess the more efficient reward function, it is interesting to analyze the con-
vergence episode and the probability of success and collision before convergence of each RL
algorithm (see table 5.3).

The results presented in table 5.3 are in line with what has been previously stated: exponen-
tial Euclidean distance reward function is the one that guarantees faster convergence for each
algorithm (smaller convergence episode in the table). In this perspective, it has been noticed
that having an always increasing reward trend in the proximity of the goal makes the agent to
be more goal-oriented and able to discern between environment states really close to the goal
and environment states which are just in the goal larger neighborhood. As a consequence, the
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Discretized Q-learning

Convergence | Probability | Probability

episode of success of collision
Euclidean distance 777 64.2% 34.7%
Exponential Euclidean distance || 385 71.1% 28.4%
Gaussian Euclidean distance 474 68.5% 31.4%

Discretized SARSA

Convergence | Probability | Probability

episode of success of collision
Euclidean distance 747 61.9% 34.5%
Exponential Euclidean distance || 398 69.4% 28.3%
Gaussian Euclidean distance 437 66.8% 30.8%

Deep Q-learning

Convergence | Probability | Probability

episode of success of collision
Euclidean distance 765 17.5% 82.4%
Exponential Euclidean distance || 260 70.6% 29.3%
Gaussian Euclidean distance 677 50% 49.9%

Deep SARSA

Convergence | Probability | Probability

episode of success of collision
Euclidean distance 762 6.6% 93.4%
Exponential Euclidean distance || 372 62.8% 36.2%
Gaussian Euclidean distance 764 50.7% 44.3%

Table 5.3: Comparison among convergence episode, probability of success and collision for each reward
function for each algorithm.

cited reward function is also the one that ensures higher probability of succeeding at the end of
an episode instead of colliding (highlighted probability of success and collision in the table). If
a collision occurs in proximity of the goal in a certain environment state, that state will be then
characterized by a much lower estimated value with respect to its neighbors in Q and so the
agent will never select the action that makes it to reach that state anymore, but it would priori-
tize the greedy actions with higher estimated values. This lower estimated value is due mainly
by the sparse bonus reward that has been added to the algorithm, i.e. -100 of penalty when a
state closed to the goal is reached. If just the reward function was adopted, a state closed to the
goal would be identified by a quite high reward even if it would correspond to a collision state.

The other reward function that provides acceptable outcomes is the Gaussian Euclidean reward
function. As already specified, this reward function has a trend similar to the exponential one,
except the fact that its increasing trend decreases in proximity of its mean (zero in the selected
Gaussian distribution in equation 4.6). Consequently, it becomes less efficient in the range
closer to the goal. This drawback does not influence too much the results of discretized Q-
learning and discretized SARSA, because both approaches present a convergence rate as well
as success/collision probability which are comparable to the ones of exponential Euclidean
distance reward. On the contrary, Deep Q-learning and Deep SARSA need much more episodes
to converge if Gaussian Euclidean distance is employed. Deep Q-learning and Deep SARSA are
both characterized by a continuous state-space, consequently the agent is allowed to reach
any environment state in the state-space according to the correspondent action vector. Thus,
if the reward does not allow a good prioritization of the environment states close to the goal,
it makes continuous state-space agents require more episodes to understand which states are
actually closer to the goal and which bring the agent colliding with obstacles in proximity of
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the goal. Moreover, both this last algorithms adopt experience replay with mini-batches (2.1.8)
and, consequently, the relative Q feed-forward neural network is just trained according to 75
random samples (mini-batches) from the learned experience. As a result, if many collisions
occur in proximity of the goal, their agent will tend to exploit that knowledge colliding even
more times in states close to the ones where it has already collided with.

The same situation happens applying the simple Euclidean distance reward, which is the least
performing for all the algorithms, both in terms of convergence episode and in success/colli-
sion probability. In particular, it is completely inefficient in continuous state space cases, i.e.
Deep Q-learning and Deep SARSA, because, as already mentioned in the previous paragraph,
these approaches present a much larger state-space and they are more correlated to the ex-
perience they made while exploiting and, consequently, if the reward does not provide a good
prioritization of the states near the goal, they tend to fail more times than succeeding.

Due to all the performed considerations, exponential reward function is adopted for all the
successive experiments.

5.1.3 First experiments on real setup - Algorithms assessment

After defining all the necessary RL parameters both in simulation and on the real setup, it is
now time to identify which RL algorithm actually presents the best performance. Thus, the
results introduced in section 5.1.2 are now assessed from different points of view:

» Convergence episode: required episodes before reaching the target with the minimum
number of actions and consequently maximizing the cumulative reward.

* Actions at convergence: number of actions required on average to reach the goal when
convergence is achieved.

* Success/collision probability: probability to collide with obstacles versus probability of
successfully reaching the goal without collisions.

* Training period: time required to train the agent for 1000 episodes with 250 iterations
each.

Considering the cited evaluation parameters and exponential Euclidean distance as reward
function, the distribution in figure 5.10 is obtained.

As possible to notice from figure 5.10 and table 5.3, each algorithm presents some pros and
cons. Deep Q-learning is the one that guarantees faster convergence to the (sub)optimal policy;
as a matter of fact, it takes 260 episodes (4746 seconds, i.e. approximately 1 hour and 20 min-
utes) to converge to the maximum average cumulative reward which corresponds to 78 agent
actions on average to reach the goal. The same number of actions are required by Q-learning
with discretized state-space, but this last approach necessitates at least 385 episodes (6308 sec-
onds, i.e. approximately one hour and 45 minutes) to achieve convergence. Thanks to the
possibility of using the complete non-discretized state-space, at each step the Deep Q-learning
agent obtains more detailed state of the environment with respect to discretized Q-learning,
allowing a more accurate approximation of the value function and, consequently, faster con-
vergence. Even though, larger state-space makes also the agent to collide with obstacles more
times (29.3% with respect to 28.4% of discretized Q-lerning), because larger state-space corre-
sponds to a wider range of collision states as well.

The same comparative analysis can be performed across discretized SARSA and Deep SARSA:
the former presents a collision probability of 28.3% with respect to 36.2% of Deep SARSA, but
the latter achieves convergence in 372 episodes (6059 seconds, i.e. approximately one hour and
40 minutes) with respect to 398 episodes (6618 seconds, i.e. approximately one hour and 50

Robotics and Mechatronics Marta Barbero



76 Reinforcement Learning for Robot Navigation in Constrained Environments

Assessment of different RL algorithms
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Figure 5.10: Assessment of RL algorithms according to convergence episode (magenta, upper left-hand
corner), number of actions required at convergence (cyan, upper right-hand corner), success/collision
probability (blue/red respectively, lower left-hand corner) and necessary training time (green, lower
right-hand corner). Exponential Euclidean distance is considered as a reference reward function.

minutes) of discretized SARSA. Therefore, both resulting agents perform 93 actions on average
to reach the goal while convergence is achieved.

In order to make a final assessment about the considered RL algorithms, it is now necessary
to highlight the differences between off-policy learning (Q-learning) and on-policy learning
(SARSA) approaches. As already mentioned in section 2.1.7, on-policy learning algorithms are
more "conservative" with respect to off-policy algorithms, because they update the current
Q(S;, A;) value-function estimate according to next action that can be taken from the next state
Q(S¢+1,A+1), assuming that the current policy is followed (see equation 2.12). Thus, this up-
date strategy makes these algorithms to care more about their performance during the learn-
ing phase and, consequently, to avoid states that are considered to be dangerous, like states
closed to obstacles, because a random action that provokes collision can be selected from those
states (e-greedy algorithm). On the other hand, off-policy algorithms always update the current
Q(S;, A;) value-function estimate according to the greedy action that can be taken from the
next state max,(Q(S;+1,a)), assuming that the optimal policy is followed (see equation 2.13).
In other words, off-policy algorithms always privileges the shortest trajectory, while on-policy
algorithms can prefer longer but safer trajectories to reach the goal. This conditions has ac-
tually been met during the performed experiments; as a matter of fact, both the implemented
on-policy RL algorithms (i.e. discretized SARSA and Deep SARSA) converge to a non-optimal
policy which corresponds to 93 actions required to reach the goal with respect to the 78 actions
of the off-policy RL algorithms (i.e. discretized Q-learning and Deep Q-learning). Thus, on-
policy algorithms do not ensure convergence to an optimal short policy, but, at same time, they
most often present a lower probability of colliding with obstacles, as possible to notice from ta-
ble 5.3. Nevertheless, the difference between the two collision probabilities is not so significant
as expected, i.e. 28.3% versus 28.4% for discretized SARSA versus discretized Q-learning when
exponential Euclidean reward is applied. In continuous state-space, Deep SARSA collides even
more than Deep Q-learning with exponential Euclidean reward, 36.2% versus 29.3% for Deep
SARSA versus Deep Q-learning, because of the fact that the considered environment is over-
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constrained and, consequently, avoiding the collision from one side can make the robotic arm
to collide on the other side. As a result, off-policy approaches are preferable for this kind of
applications, because they guarantee a better convergence to a sub-optimal and shorter trajec-
tory without colliding with obstacles much more frequently than when on-policy algorithms
are employed.

In line with the considerations made so far, discretized Q-learning and Deep Q-learning algo-
rithms have been taken as a reference during the last experimental phases of the project.

5.2 Later experiments and results

This section describes the last experimental phase of the project. As mentioned in the previ-
ous paragraph, discretized Q-learning and Deep Q-learning algorithms with exponential Eu-
clidean distance reward have been employed in this stage in order to perform further analysis
and modifications to the existing architecture, making it more efficient and goal-oriented. In
particular, both algorithms have first been tested on the cross configuration of the pipe-like
environment with goal on the left, on the right of the pipe and straight (see figures 4.14a, 4.14b
and 4.14c¢). The cross configuration is the most generic configuration that the robotic arm can
be asked to learn, because in that situation it is allowed to go left, right or continue straight in
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