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Summary

Most of the research in autonomous driving currently involves using the on-board
sensors on the vehicle to collect the information of the surroundings and using that
information for controlling the autonomous vehicle. This research investigates how
Machine Learning can be used with cooperative driving for self-driving vehicles.
Here the self-driving vehicles can use the vehicle information of the surrounding
vehicles to manoeuvre around them. Therefore, it does not need to rely on just its
on-board sensors to navigate through the traffic.

In this research Reinforcement learning is used for designing a driving algorithm
to control a self-driving vehicle in a highway environment which is simulated using
SUMO (Simulation of Urban Mobility). This research focuses on the method to
design the driving algorithm which involves choosing the correct input features and
actions for the driving agent and the design of the reward structure. It also explains
how the performance of the driving algorithm is effected with change in the rein-
forcement learning parameters. Except the self-driving vehicle, the other vehicles
are controlled by SUMO itself. The aim is to check if the self-driving vehicle is able
to manoeuvre through the traffic in the highway by overtaking other vehicles and
when needed allowing the faster moving vehicles to overtake it.

The driving algorithm is trained and tested in a 2 lane highway environment and
a three lane highway environment. It was found that having collision detection as
just a part of the rewarding policy did not give the desired results, as the collision
percentage was found to be in the confidence interval between 20.5% to 28.4% in
a 2 lane highway. Hence collision detection and avoidance was done by a separate
entity outside the learning algorithm. This helped in reducing the collision percent-
age to be in the confidence interval of 0.015 and 0.048 for a two lane system and
between 0.08 and 0.14 for a 3 lane system. The research also analyses the perfor-
mance of the driving algorithm in case of packet loss and change in communication
range. A method to cope with the packet loss is also discussed in this report.

This research can be used as a basis for using cooperative driving for self-driving
vehicles, but further research needs to be conducted to make the self-driving vehi-
cles safer and reliable as the collision rates achieved using this method is still sig-
nificantly high.
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Introduction

1. Introduction

1.1 Motivation

With the current developments in technology, self-driving vehicles also known
as Autonomous vehicles, have become a reality. Autonomous vehicles are the type
of vehicles that are capable of sensing its environment and navigating without
human input [1] [2].

There are different levels of autonomous driving defined by the Society of Auto-
motive Engineers (SAE). These levels are shown in Figure 1. Until level 3, the
vehicle is not fully automated and it still requires a driver for taking certain deci-
sions. There are already vehicles in market that support level 2 automation and
Audi have also been able to integrate level 3 automation in their new A8 sedan [3].
Intensive research is being done to bring full automation in driving and it won’t be
long before we have a level 5 autonomous vehicle in the market. This research is
related to level 4 and level 5 automation.

SAE AUTOMATION LEVELS

Full Automation ===

S Qe NN eTT NN
¥ Q_ IUI:‘:\?L\ lu.?-ﬁ\ﬁ\
Lt - d Lt Jio A

No Driver Partial Conditional High Full
Automation Assistance Automation Automation Automation Automation
Zero autonomy; Vehicle is controlled Vehicle has combined Driver is a necessity, The vehicle is capable The vehicle is capable
the driver performs by the driver, but automated functions, but is not required of performing all of performing all
all driving tasks. some driving assist like acceleration and to monitor the driving functions driving functions
features may be steering, but the driver environment. under certain under all conditions.
included in the must remain engaged The driver must be conditions. The driver The driver may
vehicle design. with the driving task ready to take control may have the option have the option to
and monitor the of the vehicle at all to control the vehicle. control the vehicle.
environment at times with notice.

all times.

Figure 1 Different Automation Levels [4]

Most of the research being done for level 4 and level 5 automation is done using
several sensors for finding the information of the surrounding environment as shown
in Figure 2.
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AUTOMATED/CONNECTED VEHICLE

wheel encoder

On-Board Unit, emaps
ultrasonic sensors

Figure 2 Sensors used in an autonomous vehicle [5]

In this research a different approach would be analysed for fully autonomous
vehicles. Here machine learning would be used with cooperative driving. In cooper-
ative driving, the vehicles would be able to communicate with each other and the
environment around it as shown in Figure 3. Hence with this approach, the vehicle
parameters of the surrounding vehicles can be attained. These vehicle parameters
could consist of the vehicle’s position and their velocity, which can be used by the
machine learning algorithm of the autonomous vehicle to manoeuvre it through the
traffic. Here the self-driving vehicle takes its decision based on the information it
received from the vehicles around it.

Figure 3 Cooperative Driving. Image taken from Sproul Company [6]

Using cooperative driving would involve more reliance on the sensors required
for the inter vehicle communication and the communication network and less reli-
ance on the on board cameras and other sensors of the autonomous vehicle. A
learning system involving cooperative driving would be more advantageous, as us-
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ing this the vehicle can get the information of all the vehicles within the commu-
nication range. Hence the autonomous vehicle can make better decisions than what
is possible by using just the sensors in the vehicle that give the information of just
the immediate surrounding. To illustrate this point here is an example. Imagine a
single lane road. In cooperative driving the autonomous vehicle will not only get
the information of the vehicle just in front of it, but also of the vehicle which is
way ahead of it provided it is within the communication range. Hence when that
vehicle starts to brake the autonomous vehicle will know that it would also need
to decrease its speed in some time and hence can already start preparing to gradu-
ally reduce its speed. Now if the autonomous vehicle was not using cooperative
driving, then it would have to rely on its on board cameras and other sensors for
the information of the surrounding vehicles. In this case the information that it
would get would be just the information of the immediate vehicle in the front.
Hence only when it starts to brake will the autonomous vehicle also have the
knowledge that a braking action needs to be performed. Hence the reaction time it
has to do this action is less than what it had with cooperative driving. Another
advantage of using cooperative driving, is that the vehicles can communicate with
each other before taking an action. For example, if two vehicle want to change to
the same lane which might cause a collision, then they can negotiate with each
other using the communication network and decide who can change to that lane.
Hence using cooperative driving can drastically improve driving efficiency by

reducing the number of accidents.

1.2 Research Goals and Contributions
The aims of this research are:

1) To investigate to what extent reinforcement learning using Q learning can
be used with cooperative driving to manoeuvre an autonomous vehicle in a
multi-lane highway.

2) To investigate the influence with change in the number of hidden layers and
the number of nodes in a deep () network on the performance of the driving
algorithm by monitoring the number of collisions initiated by the autono-
mous vehicle and the average speed it travelled in, with these settings.

3) To investigate the role of communication range on the performance of the
driving algorithm by again monitoring the number of collisions with the au-
tonomous vehicle.

4) To investigate the effect of packet loss due to communication error on the
performance of the driving algorithm. The performance is again estimated

based on the number of collisions caused by the autonomous vehicle.
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The contributions done to achieve the above mentioned goals are:

1) A method to create a driving algorithm is designed using which a driving
algorithm is developed based on Q learning technique, a type of reinforced
machine learning technique for a self-driving vehicle in a highway environ-
ment. The algorithm was developed for a two lane highway with one driving
lane and an overtaking lane. The algorithm was later extended to also sup-
port multi-lane highway environment with more than one overtaking lane.

2) The establishment of an environment for training and testing cooperative
driving algorithms, based on SUMO (Simulation of Urban Mobility) [7] and
Q learning algorithm.

3) An error concealment technique was designed for the driving algorithm to
follow in case of packet loss due to communication error.

The entire research is conducted with respect to the basic driving rules. Hence

the vehicles keep to the right lane and overtaking is done through the left side.

1.3 Structure of the Report

To achieve the various goals presented in Section 1.2, a systematic procedure
was followed. Hence at the start, previous works were studied to find which type
of machine learning technique can be used for autonomous driving and why rein-
forcement learning is the best type of machine learning technique for this research.
Previous research on using cooperative driving for self-driving vehicles were also
studied, which gave a basis for this research. These are explained in Chapter 2.

The methodology followed for designing and evaluating the driving algorithm in
this research is explained in Chapter 3. It gives a general idea of how the overall
research is conducted.

An important part for this research is to be able to test the developed driving
algorithm. As using a real vehicle and traffic scenario would prove costly and re-
quire more time, it was decided to use simulations to prove the efficiency of the
driving algorithms designed in this research. Chapter 4 introduces the simulation
environment (SUMO) used in this research and how it is linked with the driving
algorithm that is developed using the Python programming language.

Based on the knowledge gained from previous works stated in Chapter 2, differ-
ent approaches were analysed to create the driving algorithm to manoeuvre a self-
driving vehicle in a 2 lane environment. Analysis was done on how to choose the
input features, the actions and the rewards for the driving algorithm. These are
discussed in Chapter 5 . This chapter also discusses the various measures that can
be used to determine the performance of the driving algorithm, as the aim of the
research is to develop an efficient driving algorithm.
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Based on the analysis in Chapter 5, a driving algorithm was designed and imple-
mented. This was then tested in SUMO with different Deep Q learning configura-
tions and reward values. The results of these simulations gave an understanding of
how the various Q learning parameters and reward configurations influence the
performance of the driving algorithm. These results were used to further improve
the driving algorithm. Chapter 6 describes these initial and intermediate designs
and how it affected the performance of the driving algorithm. Hence one of the
research goals which is to find the influence of various Q learning parameters on
the performance of the driving algorithm is discussed in this chapter.

The Final design and implementation is described in Chapter 7. This was de-
signed based on the knowledge gained from the intermediate iterations of designs
explained in Chapter 6. Chapter 5 only described the driving algorithm in a 2 lane
highway environment. Chapter 6 extends this to a multilane highway environment
so the driving algorithm developed is a generic algorithm that can be used in a
highway with more than 2 lanes. This chapter also talks about the performance of
the driving algorithm in case of loss of data due to communication error and how
this problem can be overcome.

Chapter 8 describes the results of the final implementation given in Chapter 7,
based on which conclusions are drawn and recommendation given in Chapter 9.
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Background and Related Work

2. Background and Related Work

This chapter gives a short description of different types of machine learning
techniques and gives an introduction about reinforcement learning and gives the
reason why this is the preferred learning method for this research. An introduction
about QQ learning, a type of reinforcement learning is also given in this chapter.

It also talks about the approach taken by two previous research papers by Shota
Ishikawa and Sachiyo Arai [8] and Xin Li, Xin Xu and Lei Zuo [9], which used
reinforcement learning with cooperative driving.

2.1 Machine Learning

Machine learning can be mainly classified into three types [10], namely:
1) Supervised learning
2) Unsupervised learning
3) Reinforcement learning

In supervised learning, an algorithm is created based on training data. There is
already existing data with inputs and its corresponding outputs. This data is used
to create the learning algorithm, which can then be used on new inputs to predict
the output. An example of the application of supervised learning is in spam filtering
of emails, where the algorithm can be first trained with the emails that are correctly
marked as spam or not and later use the algorithm on the new emails to classify
them as spam or not. In case of driving, there is no definite outputs for each scenario
and also it is not possible to train the driving algorithm for each driving scenario
that can occur. Hence supervised learning cannot be used for designing the driving
algorithm.

In unsupervised learning, the output of the system is not known. The algorithm
uses the inputs available and group them based on their similarities or differences
to produce the outputs. An example would be to differentiate between cats and
dogs. If a learning algorithm is given random pictures of cats and dogs, it would be
possible to differentiate the pictures into two groups of cats and dogs based on the
similarity in the pictures of cats and that of dogs [11]. Unsupervised learning is
quite unpredictable in complex tasks as it does not have any knowledge of the
expected output and relies completely on the inputs to find the output. Hence it is
not a good learning algorithm to be used in autonomous driving.

Reinforcement learning [8] is a type of learning algorithm that adapts the learn-
ing algorithm based on changes in the environment. Therefore, the autonomous

vehicles can adapt to different traffic scenarios. Here, a specific output is not known
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beforehand for any input, but goal of the algorithm is predefined and the learning
algorithm uses rewards to decide which output to choose such that the goal is
reached. In the case of an autonomous vehicle, one of the important goals is to
avoid collision, hence this can be used in reinforcement learning such that the out-
put produced from the driving algorithm does not lead to collisions. In a similar
way other general requirements of driving can be used for designing a driving algo-
rithm based on reinforcement learning [12]. Reinforcement learning is explained in

more detail in the next section.

Hence most of the research papers currently published like by Shota Ishikawa
and Sachiyo Arai [8] and Xin Li, Xin Xu and Lei Zuo [9] use reinforcement learning
for autonomous driving.

Reinforcement Learning

Reinforcement learning involves learning what to do and how to map situations
to actions so as to maximize a numerical reward signal. [13] This can be modelled
as a closed loop system shown in Figure 4. Here the Agent is the learner and the
decision maker and the Environment is the thing it interacts with. The interaction
between the agent and the environment happen at each of a sequence of discreet
time steps, t= 0, 1, 2, 3, ... [13]. The Agent selects the action (A;) from the set of
possible actions, A, € A(S,), where A(S,)is the set of actions available in state S;.
Si, S, € S (S is set of possible states)is the state of the environment at time t,
which is the input to the agent. This action leads to a reward (R:) which is used
by the agent to learn about the most effective action to take for that particular
input state. Also the action taken by the agent will influence the environment and
change its state to a new state (Si;1), which would be the new input to the agent.
The aim of the agent is to maximise the reward it gains over time.

';l Agent ||

state reward

| 181_1 Environment

Figure 4 Agent environment interaction in reinforcement learning taken from [13]

action

Rewards

Rewards are one of the most important parts of reinforcement learning. The
agent decides the action it should take based on the reward it gets it. At each time
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step, the reward is a simple number, R, € R. As mentioned in the previous section,
the goal of the agent is to maximise the overall reward in the long run and not just
to select the action which gives a large reward in the current time step [13]. For
example, an agent could take an action with a lower reward to reach a new state,
which in turn opens up new possibility of action with higher rewards such that the
total reward at the end is higher than if it had chosen the action with the higher
reward at the start.

Choosing a good rewarding scheme is critical for a good learning algorithm. For
example, in a learning algorithm which controls the movements of a robot trying
to escape from a maze, the reward is often -1 for every time step it remains inside
the maze, so that the learning algorithm is encouraged to get the robot out of the
maze faster [13] and a large reward when it finally gets out of the maze. It is
important to give rewards such that the goal of the agent is finally achieved. The
agent always tries to maximize its total rewards, hence if positive rewards are given
for even intermediate steps, then it could be possible that the agent finds a way to
maximize its reward without actually reaching its goal, which in the previous ex-
ample is to get out of the maze. Hence the reward scheme is a way of communi-
cating to the agent what needs to be achieved and not how it has to be achieved
[13].

Model of the Environment

The model of the environment is one of the elements of Model based reinforce-
ment learning. This allows the agent to know how the environment would behave
for a particular action even before the action is taken. That is given a state and
action, the model can predict the resultant next state and the reward. Hence they
are used for planning a course of action by considering possible future situations
before they are actually taken [13].

Reinforcement learning methods that use Models are called model based methods
and the reinforcement learning methods that do not use Model but uses trial and
error for learning are called model free methods.

Model based methods requires another entity called the transition probability
function where T'(s,,,|s,,a,) specifies the probability of reaching state si;1 from
state s; when action a; is taken. The problem though is that the transition proba-
bility and the reward values for each state action pair is not known beforehand.
Hence the agent needs to first learn the model of how the environment works by
observing the different states possible and the actions which leads to these states
and also the rewards that are attained by these actions. Using this the agent can
create the transition probability function and the reward function which can then
be used as a planning algorithm to take the best possible decisions so as to get

maximum overall rewards.
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In autonomous driving, the number of states of the environment is not fixed as
this is related to the positions of the surrounding vehicles and also their velocities.
Hence there would be a large number of input states possible. Hence it would be
difficult to learn the transition probability function for such an environment. Hence
model free learning methods are used in such cases. One such model free learning
method is Q learning which is discussed in the next section.

Q Learning

Q learning is a model free based reinforcement learning. It provides agents with
the capability of learning to act optimally by experiencing the consequences of
actions, without requiring them to build maps of the environment domain [14]. In
Q learning a particular action is taken based on Q values. The formula for finding
the Q value is given in Equation (1) below taken from [15].

Q(spar) « (1—a) X Q(sg,ar) + a X (i +y X maxQ(sei1,a)) (1)

In the above equation, s:is the current input state to the agent and a; is the
action taken by the agent. Q(sy,a:) is the Q value for the action a; to occur when
state is s; at time t. At the start the ) values are initialized as random values.
During the learning stages the Q values are updated based on Equation (1). In the
equation « is the learning rate which determines to what extent the newly acquired
information overrides the old information. Hence o could determine how quickly
the Q learning converges. ( learning is said to have converged if each state action
pair is performed infinitely often [16]. If the learning rate is low, then according to
Equation (1), the Q values would change slowly over each iteration as the current
Q value would be given more prominence. Hence for the (Q learning to converge it
would take a lot of training. However, the advantage of having a low learning rate
is that at the end the Q learning will surely converge as the () values vary really
less during each iteration. With a large learning rate, it is possible that the new Q
value overshoots the convergence point, such that the ( learning does not converge
[17]. ¢ is the reward that is got for performing the action a; from state s. v is the
discount factor. It determines the importance of the future rewards. A lower dis-
count factor means the algorithm would focus on current rewards as y X
max Q(S;41, @) will become negligible. With increase in v, it would try for higher
long term rewards. The term max Q(si.1, a) signifies the maximum Q value from
the next state for all possible actions. Hence Q(si,a:) is the expected discounted
reward for executing action a; from state s;, which maximizes the total discounted
expected reward.

Using the given Equation (1), the Q values are updated with change in the
environment and the action is taken based on the action contributing to the highest
Q value from the current input state. At the start the learning algorithm is unin-
formed. Hence it chooses actions randomly and as it gets educated, the actions
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would be chosen based on the () values. Hence for this the exploration rate (¢) is
used. A higher ¢ allows the algorithm to choose the actions randomly. The reason
for using the exploration rate is explained in detail in [18].

Deep Q Learning

In the Q learning algorithm, the ) values are used for prescribing the action to
be taken by the learning algorithm. For example, if there are 4 possible input states
and 2 actions. Then the QQ value matrix will be a 4x2 matrix such that there will
be a total of 8 Q values. Depending on the current state the action which contains
the maximum Q value is selected.

In complex learning algorithms, the input states can have different values. Hence
a simple Q table based on the input state and action pair cannot be created. This
is where Neural networks are used. In this method, the look up table of Q values
is replaced with a neural network. In a neural network, the input features are taken
as the input to the neural network and the output actions are taken as the output
of the neural network. Hence to determine an action to be taken, the learning
algorithm would run the network once for every action and select the action that
gives the highest output of the network from the given input state based on the
weights of nodes in the neural network [19].

At the start of the learning process the neural networks are assigned with random
weights. The feedback from the environment which in this case would be in the
form of rewards is compared with the expected reward to adjust its weights and
improve its interpretation of state action pairs [20].

Experience Replay

Experience replay can be used with Deep Q learning for improving the efficiency
of the learning algorithm. In a standard learning algorithm, the knowledge gained
by a certain action is discarded as soon as the action is performed [21]. The expe-
rience from each time step like the input state to the agent (s:), action performed
(a¢), reward achieved (r¢) and the new state (si41) got due to the action (a¢) can be
stored and this information can again be used to retrain the learning algorithm.
This will allow the learning algorithm to learn better during the training period, as
it does not just learn from actions taken during the simulation but also from the
results of the previous simulations.

A pseudo code of how experience replay works for Q learning [21] is shown below
in Algorithm 1. A memory buffer is created with size N which stores the current
state, action, reward and the next achieved state during execution of each time
step. If the buffer is full, the data inside is overwritten, in a first in first out format.
That is if N is 100. Then at any time it can hold information of the last 100 time
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steps. For experience replay, m number of experiences are taken at random from
the buffer and this is used to again retrain the neural network.

Input: memory size N, minibatch size m, learning rate a, discount factor y, Total steps T, initial weights Oo,
update policy mo.

Initialize replay memory buffer with capacity N
Observe initial state so
For t=1to T do
Take action a: based on rts(st)
Observe rrand st
Store transition (st, ay, ry, St+1) in the memory buffer
For j=1to m do
Sample a transition (s;, aj, r;, si+1) randomly from the memory buffer
Retrain the neural network and update its weights
End for

End for

Algorithm 1 Reinforcement learning with experience replay based on [19]

2.2 Previous Research Work

In the researched papers [8] and [9], a driving algorithm is developed to manoeu-
vre through traffic in a one way environment. In the paper by Shota Ishikawa and
Sachiyo Arai [8], this is done with the autonomous vehicle applying brake whenever
required. Xin Li, Xin Xu and Lei Zuo gets the autonomous vehicle to change lanes
and overtake the slower moving vehicles in their paper [9]. Both these papers have
similar input features, which consists of:

1) The velocity of autonomous vehicle
2) The distance with the vehicle in front

In addition to these two features Xin Li et al. also uses, few more input features

which is required for the vehicle to safely overtake. They are:

1) Velocity of the other vehicles around it

2) Maximum allowed velocity for the autonomous vehicle

3) Distance with the other vehicles

4) Current lane, the autonomous vehicle is in.

The other vehicles are the vehicles directly in front and behind of the autono-
mous vehicle in the driving lane and the overtaking lane as shown in Figure 5.
Here di, d», dsand dsare the distance of the autonomous vehicle with the immediate

vehicles in front and behind it and vi, v, vs and vy are their respective velocities
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and v, is the velocity of the autonomous vehicle being controlled by the driving
algorithm and vyis its maximum allowed speed. The current lane the autonomous
vehicle is in is represented by L.

Hence the current state si = {Vas, Vie, Vie, dig, L}, i= 1,2,3,4

The possible input states for this driving agent is S = {s| t=0,1,2, 3...}

Figure 5 Vehicle position layout used in [9]

In [8], the action is to brake or not to brake. Hence here the autonomous vehicle
tries to follow the vehicle in front without colliding. In [9] though, as the aim is to
overtake the vehicle in front, the action set is a little larger. It consists of 4 actions:

1) Move to Overtaking lane

2) Move to Driving lane

3) Stay in Overtaking lane

4) Stay in Driving lane

The reward is given in such a way that the maximum negative reward is given
to the most undesirable result and the reward value increases as results become
desirable. The reward system used by Xin Li et al. in [9] is shown as an example
in Table 1.

Reward Value Condition
-300 c=1
-150 c=0&vqi> 10
-0.1vq Else & v. > v¢
Va— vi - 0.1vqg Else & 1 =2
Va— Vi - 0.1vg— (dy — vy) Else & 1 =1

Table 1 Reward function used in [9]

Here a reward of -300 is given if a collision occurs. A reward of -150 is given if
the velocity changes abruptly by more than or equal to 10 m/s between two time
steps. vqis the velocity difference between the current moment and the last moment.
v.is the velocity of the autonomous vehicle, v is the maximum allowed velocity of
the autonomous vehicle, d; is the distance between the autonomous vehicle and the
vehicle in front and v, is the velocity of the vehicle in front. 1=1 signifies that the
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autonomous vehicle is the driving lane and 1 =2 signifies that it is in the overtaking
lane [12].

The performance of the driving algorithm using machine learning was compared
with the traditional method without using machine learning. In the traditional
method, the action to be done is fixed based on the values of the distances between
the vehicles and their velocities as shown in Table 2.

The Current Lane Action Condition
1 Move to Lane 2 (i< 50| virve<-3) &
ds > 80 &(ds — di > 10)
& (vavy > 1)
Keep in Lane 1 Else
2 Keep in Lane 2 ((dp > 150 & vy — v¢ >
1) | vi—wvs) & dy > 60
Move to Lane 1 Else

Table 2 Decision making without using Q learning [9]

It was found that the performance of the algorithm was better using machine
learning than by using the traditional method.

In this research a combination of the researches done by Shota ishikawa [8] and
Xin Li [9] is performed. The autonomous vehicle will be able to change lanes accel-
erate and also decelerate to manoeuvre through the traffic in a highway environ-
ment. Also in this research SUMO [22] is used as the simulation environment and
the learning algorithm is developed in Python.

Detailed analysis of the related work was done during the research phase and is
given in [12].

Aashik Chandramohan (S1789619) 14 Master of Science Thesis



Methodology

3. Methodology

This chapters gives the methodology followed for designing and evaluating the
driving algorithm to control an autonomous vehicle in a highway environment using

the vehicle parameters of the immediate surrounding vehicles.

3.1 Reinforcement learning

Based on Chapter 2.1, Reinforcement learning using Deep Q-learning is used for
designing the driving algorithm. Two types of driving algorithm are designed. The
first one is designed to manoeuvre a vehicle in a 2 lane highway. This is then
modified support a generic highway environment where the number of lanes are
not fixed.

In this research the driving algorithm consists of the Driving agent and the en-
vironment as shown in Figure 4 in Chapter 2.1. This environment should not be
confused with the highway environment where the simulation takes place. The
environment of the driving algorithm is also a part of the autonomous vehicle. It
senses the surrounding positions of the vehicles and determines the current state of
the autonomous vehicle. It is also responsible for performing the actions given by
the driving agent and calculating the resulting rewards. Hence for this research
Figure 4 is modified as shown in Figure 6 .

Driving Algorithm
™| Agent
state reward action
S: Rz Ar
Rt-: (
_S.. | Environment ]4—

-2

Pass the action for the autonomous Pass current information of all the vehicles in the
vehicle simulation

Simulation Environment

Figure 6 Interaction between the driving algorithm and the simulation environment

Here the simulation environment is the actual surrounding for the vehicle. In
this research it is a highway environment. The driving algorithm is part of the
autonomous vehicle. The environment of the driving algorithm would include the
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communication receiver in the vehicle which receives the information of all the
surrounding vehicles within the communication range and the electronic control
unit which can use the received information to create the input state for the
agent. It also takes the output action from the agent for controlling the vehicle
accordingly and calculates the reward.

Rewarding Scheme

The goal of the autonomous vehicle is to move forward in a good speed on the
highway without colliding with other vehicles. Hence the rewarding scheme is de-
signed such that this goal is attained. Details regarding the rewarding scheme used
are given in Chapter 5.3. Two types of rewarding scheme are discussed, one which
gives importance to short term goals like changing lanes, overtaking etc. and the
other one gives importance to overall goals like maintaining speed limit, etc. Finally,
the rewarding scheme which gives importance to overall goals was implemented as
it can be easily modified to support the autonomous vehicle in a multi-lane envi-
ronment.

Input State

The input state set of the driving algorithm should contain the current features
of the autonomous vehicle and the vehicles immediately surrounding it, as this
information is required by the agent to make the decision on how the autonomous
vehicle should move so as to avoid collision with its neighbour. Hence the input
state used is similar to the one discussed by Xin Li et al. which is discussed in
Chapter 2.2. The input state set used in this research for a two lane highway is
discussed in Chapter 5.1 and for a multi-lane highway is discussed in Chapter 7.1.

Actions

The major actions of a vehicle when in a highway is to either change the lanes
or to accelerate or brake. Hence the possible actions by the driving agent are also
the same. The action set consists of 4 features which include moving to the over-
taking lane, moving to the driving lane, accelerate and decelerate, for a two lane
highway environment. The selection of action features for a 2 lane highway is
given in more detail in Chapter 5.2. For a multi-lane highway, the action state
features will change as the number of lanes are not limited. Hence the possible ac-
tions will now be among changing to the left lane, changing to the right lane, ac-
celerate, decelerate or idle action which means no action is performed. This is ex-
plained in Chapter 7.2.
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Training and Testing Period

The agent needs to first learn about the environment and find out which actions
are best suited for each state. Based on this the neural network is trained such that
the optimal action is selected for each state. Hence Training period is used for
training the neural network. At the start the agent selects actions at random and
as the training continues, it starts taking less and less random actions and more
actions based on the calculated Q values for each action from the corresponding
state. This is where the exploration rate (€) comes into play. Higher the € higher
the chance of actions being taken in random and as the exploration rate decreases
the action starts being taken based on the Q values.

In this research the training of the neural network is done using experience replay
explained in Chapter 2.1. The Q learning algorithm used in this research is given
in Algorithm 2 and is based on [23]. For learning the experiments are done in the
form of episodes. One episode is one full simulation of the autonomous vehicle. An
episode finishes when either the number of time steps reaches T or the autonomous
vehicle collides with another vehicle. The learning happens during each time step.
As already explained in Chapter 2.1, the current state, action, reward and new
state is stored in a memory buffer during each time step. In this algorithm another
parameter is also used which tells if the episode has ended or not. As already men-
tioned, an episode ends if there is a collision or the time step reaches its maximum
which is T in Algorithm 2. This is represented by the done variable. From this
memory, random number of elements are sampled which are used to calculate the
Q values. If the simulation had ended in that time step (done = true), then there
won’t be any next state possible hence v{lr%gixaQ(sjﬂ,a) = 0. Therefore in such

cases Qarget(8),8;) = the reward gained in that state. In other cases, the Qe value
needs to be calculated and using this the neural network is trained. After each
episode as the neural network is getting trained the exploration rate is decreased
by a small factor to decrease the random selection of actions by the agent. Once
the algorithm is full trained the selection of the action will be based on the Q values.

Once the neural network is trained it can be tested on new simulations. The
testing algorithm is similar to the training algorithm shown in Algorithm 2, except
that here the actions are always selected based on the maximum Q value and as
the algorithm is already trained, the neural network need not be trained during
testing.
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For episode =1to N
For time stept=1toT
With probability € select a random valid action at
Otherwise select the valid action a:with the maximum Q value
Get the reward r: and state st+1 and done status
Store (st, a, rt, St+1, done) in memory buffer
For memory(s;, aj, r;, sj+1, done) in sampled minibatch
Perform gradient descent on Q(s;, a;) using the target value
7 done is true
Quarget (5, 4;) = {7}- + v max Q(sj41,a) otherwise
valid a
Retrain the Deep Q network
End for
End for
Decrease €

End for

Algorithm 2 Deep Q learning algorithm adapted from [20]

3.2 Testing the Driving Algorithm

Testing of the driving algorithm requires a simulator where the highway envi-
ronment can be modelled. In this research SUMO (Simulation of Urban Mobility)
[22] is used for modelling a highway environment to run the traffic simulation. The
highway consists of some traffic which includes a number of slow moving vehicles
and a number of fast moving vehicles, so that the autonomous vehicle will be able
to learn to overtake and also at the same time will learn to allow the faster moving
vehicles to overtake it by not unnecessarily occupying an overtaking lane. To test
the performance of the driving algorithm in an ideal traffic situation, all other
vehicles are considered to be following the traffic rules. That is, they maintain a
certain safe distance between the vehicle in front of them and only change lanes for
overtaking and also maintain the speed limit. This means that none of the collisions
in the simulation would be initiated by the other vehicles and if any collision were
to occur, it would be due to a mistake by the driving algorithm of the autonomous
vehicle.

The frequency of generation of the traffic needs to be random so that the agent
can learn for different conditions. If the traffic is not random, then each episode
will be exactly the same, and hence the driving algorithm will not learn for all the
conditions. With traffic generation being random, it is possible that the autonomous
vehicle is inserted into the simulation just at the next time step after insertion of
another vehicle. Hence at such times it is possible for a collision to occur as the
autonomous vehicle will not have enough time to react. These types of situation
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should be avoided and in this research if the collision occurred due to such a situ-
ation then that result is not considered.

In cooperative driving the vehicle parameters of all the vehicles within the com-
munication range is received by the autonomous vehicle. The driving agent though
only requires the vehicle parameters of the immediate surrounding vehicle to the
autonomous vehicle as its input features. Hence an algorithm to find the immediate
surrounding vehicles from all the vehicle information is designed. This is discussed
in detail in Chapter 6.1.

One of the goals in this research is to test the behaviour of the driving algorithm
with change in communication range and during packet loss. As a simulation envi-
ronment is used for testing the driving algorithm, these scenarios need to be imple-
mented separately. The simulation environment gives information of all the vehicles
active in the simulation. Hence to simulate unavailability of vehicle information of
the vehicles outside the communication range, the environment in the driving al-
gorithm only considers the positions of the surrounding vehicles within the com-
munication range for the input state of the driving agent. For simulating packet
loss. A random function is used in the environment of the driving algorithm that
feeds the default values as the features for the input state of the driving agent.
These functions are discussed in detail in Chapter 7.4.

3.3 Evaluation of the performance of the Driving algo-

rithm

The performance of the driving algorithm is assessed based on how well the
autonomous vehicle manoeuvres on the highway. As the main goal of the algorithm
is to avoid collision with other vehicles, collisions are taken as one of performance
criteria for the driving algorithm. Other than this the average speed of the auton-
omous vehicle is also taken as another performance criterion. Measuring the number
of overtakes by the autonomous vehicle is difficult with the experiment setup in
this research as SUMO does not give the count of the overtook vehicles. Also writ-
ing an algorithm for measuring this would be quite complex as it requires to keep
track of the vehicles in front of the autonomous vehicle and record when that
particular vehicle goes behind the autonomous vehicle. Also it is not necessary that
each time the autonomous vehicle changes to the overtaking lane, it overtakes a
vehicle. Hence lane changes cannot be used for measuring the number of overtakes.
It is however possible to tell if the vehicle has done any overtakes from its average
speed. If the average speed of the vehicle is higher than the maximum speed of the
slower moving vehicle in the simulation, then it means that the autonomous vehicle
would have overtaken a few slower moving vehicles. For this the traffic density
should be such that there are slower moving already in the highway before the
autonomous vehicle is inserted. Another performance criterion to assess the driving
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agent is to observe the total rewards achieved in each episode. The aim of the
learning agent is to maximize the total reward.

Details of how to evaluate the performance of the driving algorithm is given in
Chapter 5.4.
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4. Experiment Setup

To test the driving algorithm in a highway environment, SUMO (Simulation of
Urban Mobility) [7] is used. This chapter gives an introduction about SUMO and
describes how the simulation environment is set up using SUMO.

The driving agent is designed in Python using Keras [24] and Tensorflow [25].
An introduction about these Machine learning libraries are also given in this chap-
ter.

Finally, the interface between the simulation environment and Learning algo-
rithm is described.

4.1 SUMO - Simulation of Urban Mobility

SUMO is a free and open traffic simulation suite by DLR [26] Institute of Trans-
portation Systems [7]. It allows design of different types of road networks and traffic
scenarios. This section describes how the highway environment is designed and
configured using SUMO.

Design of the Road Layout

The highway environment is designed in SUMO using the tool NetEdit [27].
NetEdit allows the user to design road layouts and set rules to be maintained while
driving on them. Figure 7 shows the highway layout designed in NetEdit.

The left side pane in Figure 7 shows the properties of the designed path. Paths
are called as edges in SUMO. ‘Lane’ is the id of this edge. Ids are required for
modifying the parameters through TraCl (Traffic Control Interface) and also for
designating the routes the vehicles should take. Networks of roads are created using
series of junctions. Junctions are the end points of the edge. As in this research a
straight road is used, just one edge is required and hence two junctions are used
which are denoted by ‘gneJ0’ and ‘gneJ1’ and their positions are (0,0) and (5000,0)
respectively in the x, y axis. The speed parameter denotes the maximum speed to
be maintained (speed limit) in this edge. For this research the maximum speed is
set to 22.22m/s (80 Km/hr). The priority parameter denotes the priority of the
vehicles going through the particular edge. This is used in junctions connecting
more than one edge for denoting the right of way for the vehicles. Higher the value,
more the priority. In this research as only one edge is used, the priority value is ‘no
value’. The ‘numLanes’ denotes the number of lanes for the edge. Initially this is
set to 2 for having a driving lane and an overtaking lane. The ‘allow’ and ‘disallow’
fields are used to regulate the type of vehicles entering the edge. In this research
the only type of vehicles used are passenger cars.
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Figure 7 Road layout designed using NetEdit

‘Shape’ allows the user to specify the geometry of the edge [28]. The length specifies
the distance covered by the edge in meters. In this research the length has been set
such that the autonomous vehicle does not go past the end of the edge within the
simulation time. Hence the length is set to be 40000 meters (40 km). As the posi-
tions of the junctions are (0,0) and (5000,0), each distance unit of the road layout
corresponds to 8 meters. ‘spreadType’ is again related to the geometry of the edge.
It describes how the lanes should be spread [29]. ‘name’ is the street name for this
edge. ‘width’ determines the width of the lanes in meters. In this research the
default width prescribed by SUMO is used. The ‘endOffset’ field determines if the
edge should end before the actual endpoint, allowing the intersection with the other
edge to be bigger [29]. ‘startShape’ and ‘endShape’ are used to specify the starting
point and the ending point of the edges if ‘shape’ is used.

The designed road network is saved as .net.xml file so that it can be used by the
simulation environment. In this research the road network is named as
StraightRoad.net.xml and is shown in Appendix A: Configuration Files.
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Design of vehicle routes

Before the simulation, the routes the vehicle should take must be specified. This
is specified in a .rou.xml file. The snapshot of the route file used in the initial design
is shown in Figure 8 and the complete file is given in Appendix A: Configuration
Files.

Figure 8 Route file for initial design

The route file should contain the characteristics of the vehicles used in the sim-
ulation and the route followed by it. In this research as the idea is to simulate
vehicle overtaking scenarios on a highway, three types of passenger vehicles are
used.

The vehicle with id as ‘Auto’ is the autonomous vehicle that is going to be
controlled by the driving algorithm. The ‘accel’ and ‘decel’ are the maximum ac-
celeration and deceleration capability of the vehicle. These value are used when
SUMO controls the speed of the vehicles in the simulation. ‘sigma’ represents the
value for the car following model denoting the driver imperfection [30]. Its default
value is 0.5. Car following model prevents the vehicles from colliding with each
other as the vehicle will automatically brake if it comes close to another vehicle. In
this design, the car following model is disabled for the autonomous vehicle through
TraCl which would be explained in a later section. Disabling the car following
model will enable the autonomous vehicle to collide with the vehicle in front of it
or the vehicle beside it during lane change. ‘maxSpeed’ is the maximum speed the
vehicle can achieve. ‘length’ and ‘colour’ are for representation purposes during the
simulation. ‘length’ specifies the vehicle length in meters and ‘color’ specifies the
RGB (red, green, blue) code for the vehicle colour. The type of vehicle is determined
by the ‘vClass’. In this research all vehicles are from the passenger class. ‘minGap’
is the minimum gap a vehicle should maintain from the vehicle in front. A zero
value of minimum gap means that the vehicle behind can be really close to the
vehicle in front. ‘tau’ gives the minimum time headway between the rear of the
vehicle in front and the front of the vehicle [30]. Minimum time headway is the
difference between the time when the front of a vehicle arrives at a point on the
highway and the time the front of the next vehicle arrives at the same point [31].

In a similar way the parameters of the other two type of vehicles are also set.
The vehicle with id ‘Car’ is a slower moving vehicle with a maximum speed of
11.1m/s (40 Km/hr) and the other vehicle with id ‘FastCar’ is a faster moving
vehicle with a maximum speed of 55.55m/s (200Km/hr). For the fast moving ve-
hicle, the ‘IcKeepRight’ parameter is set to a high value. This ensures that the
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vehicle will move back to the driving lane as soon as possible [32]. This is not
required for the slower moving vehicle as it would mostly stay in the driving lane
as it is the slowest moving vehicle in the simulation. The lane change mechanism
for the autonomous vehicle is controlled by the driving algorithm. Hence the
‘lcKeepRight’ parameter needn’t be used with the vehicle id ‘Auto’. The car fol-
lowing model of both these types of vehicles are turned on so that no collisions
would be triggered by them. The car following model used is the KrauB-model [33].
The reason for having a slower moving vehicle is so that the overtaking scenarios
can be created easily. The velocities of the vehicles are taken to be quite low to
help in debugging, as the movement of the vehicle in each time step would be less.
Time step of 1 second is used for the simulation.

To randomize the traffic consisting of the manually driven vehicles, flows [34]
are used. Flows allow the same type of vehicles to be to emitted into a simulation
with a given probability each second [35]. The begin and end time determines
within what time period should the emission of the vehicles be considered. The
probability of emission of the slower moving vehicle is set to 0.1 and the faster
moving vehicle is set to 0.01. Hence there would be enough vehicles for the auton-
omous vehicle to overtake and also there would be some vehicles which would
overtake the autonomous vehicle as well. The route ‘edges’ state the edges the
vehicle should take. As there is only one edge in this simulation, the id of that edge
is given for the route.

There will be only one autonomous vehicle which will start at the 60" second, so
that by the time it starts there will already be some vehicles in the route.

The route file for this simulation is saved as StraightRoad.rou.xml.

SUMO Configuration

SUMO configuration file [36] is a .sumocfg file. This file combines the route file
and the network file with the simulation settings for running the simulation. An
example of the configuration file used is shown in Figure 9. The location paths of
the route file and network file are mentioned in the input section. In this case all
these files are in the same location. Hence just the file names needed to be specified.
Other than the file paths, the action to be taken during a collision needs to be
specified. The actions that can be performed in case of a collision are [37]:

o Teleport: The follower vehicle is teleported to the next edge in the route.
This is the default setting.

e Warn: a warning is issued.

e None: no action is taken.

e Remove: The vehicles involved in the collision are removed from the simu-

lation.
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Remove is used as this will allow the learning algorithm in detecting the collision.
The driving algorithm will monitor the vehicle information of the autonomous ve-
hicle and if the vehicle information is missing before the end of the simulation then

the driving algorithm can deduce that an accident has occurred.

kconfiguration>
<input>
<net-file valus="StraightRoad.net.zml"/>
<route-files value="StraightRoad.rou.zml"/>
<collision.action value="remove"/>
</input>
<time>
<begin value="0"/>
</time>
<report>
<verbose valus="true"/>
<no-step-log value="trus"/>
</report>
<gui only>
<quit-on-end value="true" />
<start value="true" />
</gui_only>
<random_numberType>
<random value="true" />
</random_numberType>
<processing>
<lanechange.overtake-right value="false" />
</processing>
</configuration>

Figure 9 Example of a SUMO configuration file

The begin value in the time section specifies when the simulation should begin
[38]. In this case the simulation will begin as soon as it is invoked. The report
section is used for specifying how the progress of the simulation should be reported.
SUMO simulation can be invoked in two ways, with the GUI, where the user can
visualise the simulation or through command line which puts less load on host’s
processing unit. Reports are important to know the progress of the simulation when
it is run through the command line. ‘gui_only’ section specifies the settings while
using the SUMO GUI for simulation. The ‘start’ value and the ‘quite on end’ value
will start the simulation on loading of the configuration and quit the GUI after the
simulation ends respectively.

In the earlier section it was explained that flows are used to generate the traffic
randomly. For this the ‘random value’ needs to be set to true, else each simulation
would be exactly identical, which is not useful for the driving algorithm to learn.

The ‘lanechange.overtake-right” value specifies if overtaking through the right
side is permitted. By default, it is set to false, hence it is not necessary to specify
it in the configuration file.

The full set of the settings that can be used in the configuration file is given in
[22]. The SUMO configuration file used in this research is shown in Appendix A:
Configuration Files.
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Another advantage of SUMO is that it can be enhanced with custom models
and provides various APIs to remotely control the simulation. One such API is
TraCI [39] which is explained in Chapter 4.4.

4.2 TensorFlow

TensorFlow [25] is an open source software library based on Python used for
numerical computation using dataflow graphs. It contains wide range of function-
alities for machine learning mainly related to deep neural networks. In this research
the APIs from TensorFlow are used by Keras [24]. [12]

4.3 Keras

Keras [24] is a high level neural networks API capable of running on top of
TensorFlow. It provides simple APIs for most of the machine learning tasks like
learning and model creation and modification of neural networks. The list of APIs
used from Keras for this research is given in Appendix B: External APIs used.

4.4 Interaction between the Simulator and the driving
algorithm

Figure 10 describes the interaction between the driving algorithm developed in
Python and the simulation environment in SUMO.

+ ¥

TensorFlow

Keras/with Tenso

Figure 10 Block diagram describing the experiment setup reused from [12]

TraCI allows other applications to access the functionalities inside SUMO.
These functionalities could involve modifying the simulation environment or the
vehicle behaviour. In this research TraCl is used for controlling the autonomous
vehicle by the driving algorithm. The APIs used from TraCl is given in Appendix
B: External APIs used.
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5. Approach for defining the elements of rein-

forcement learning

As discussed in Chapter 3, reinforcement learning using Deep Q learning is used
for developing the driving agent. For using reinforcement learning, input features,
output actions and the reward mechanism need to be established. This chapter
explains how these are selected and also discusses the evaluation criteria for the
performance of the driving algorithm in a 2 lane highway environment.

5.1 Selection of input features of the input state

In a two lane highway environment, vehicles can travel in either the first lane
also called as the driving lane or the second lane, which is called as the overtaking
lane. Hence at any point in time, there could be a vehicle in front or behind the
vehicle being controlled and also in front and behind the autonomous vehicle in the
other lane as shown in Figure 11. Here di, ds, ds and d4 are the distances of the
immediate surrounding vehicles of the autonomous car (maroon coloured car). The
distances are taken from the centre of the front bumper of the vehicles [40]. Only
the distances with the immediate surrounding vehicles are taken as this information
is enough for the autonomous vehicle to decide what action to take. If the distance
with the vehicle in front is decreasing, then the autonomous vehicle could change
to the overtaking lane provided that lane is free which can be found from the value
of ds and d4 or it can reduce its speed. In the same way if d, is decreasing, that is
the vehicle behind is approaching the autonomous vehicle, then if the path in front

is clear and the vehicle is under the speed limit, it can speed up.
dy

d

d;

Figure 11 Positioning of vehicles in a two lane road

The information of the velocities of the surrounding vehicles are also useful. In
Figure 11, these are labelled as vi, v2, v3 and vs. The velocity of the autonomous
vehicle is labelled as v.. Knowledge of the current velocity of the vehicles will allow
the driving algorithm to make better decisions. For example, if the vehicle in front
is close by, i.e. d; is small, but v, is greater than v,, then this means that the vehicle
in front has started going faster than the autonomous vehicle. Hence there is no
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point for the autonomous vehicle to move to the overtaking lane. Also, as control-
ling the vehicle would also involve accelerating or decelerating it when required,
the current acceleration rate of the autonomous vehicle (v..) is also required as an
input to the driving agent. Another important input state is the current lane the
autonomous vehicle is occupying. In different lanes the vehicle has to behave dif-
ferently. The vehicle should only try to go to the overtaking lane which is shown
as L; in Figure 11 to overtake and then should come back to the driving lane
represented by Lj in Figure 11. Hence the lane position is also vital for the driving
algorithm. As the length of all the vehicles are the same as shown in Chapter 4.1,
it does not influence the measurement of the distance between the vehicles. Hence
the input features for this research was fixed to be:
1) Current velocity of the autonomous vehicle (v,).
2) Current velocity of the vehicle in front in the driving lane (v1).
3) Distance the autonomous vehicle is from the vehicle in front in the driving
lane (d,).
4) Current velocity of the vehicle behind in the driving lane (v).
5) Distance the autonomous vehicle is from the vehicle behind in the driving
lane (dz).
6) Current velocity of the vehicle in front in the overtaking lane (vs).
7) Distance the autonomous vehicle is from the vehicle in front in the over-
taking lane (ds).
8) Current velocity of the vehicle behind in the overtaking lane (vy).
9) Distance the autonomous vehicle is from the vehicle behind in the overtak-
ing lane (di).
10) Current lane the autonomous vehicle is occupying (L=0 or L=1).

11) Current Acceleration rate of the autonomous vehicle (Vac).

If there are no vehicles in the corresponding position, for example if there is no
vehicle in front in the driving lane, then it can be considered as there is a vehicle
far away in front, which would not interfere with the driving algorithm. Hence in
such a condition the corresponding distance is given a high value and the velocity
is given as 0. Hence if there is no vehicle in front in the driving lane, then d; will
be a high value and v, will be 0. The values that are given and its units will be
discussed in detail during design in Chapter 6.

The possible input states for this driving agent will include the features {va, vi,
dy, vo, day v, dsy Vi, day Ly Vaee}-

5.2 Selection of Output actions

In a highway environment, the basic actions a vehicle can do are to change lanes
or to change its velocity. Hence based on these the actions states would be:
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Move to overtaking lane.
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Move to driving lane.
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Increase velocity of the autonomous vehicle.
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Decrease velocity of the autonomous vehicle.

As there are only two lanes in this environment, if the autonomous vehicle is
already in the driving lane, then action 2 will have no effect on the state of the
vehicle. In the same way if the autonomous vehicle is in the overtaking lane, then
action 1 will not have any effect on the state of the vehicle. Hence an idle action
for the autonomous vehicle to stay in the same lane is not used. Actions 3 and 4
were used in the initial implementations, where the vehicle maximum speed were
quite low (around 10 m/s). If action 3 was selected, then the velocity of the auton-
omous vehicle would be increased by a small constant. In the same way, if action
4 was selected, the velocity of the autonomous vehicle would be decreased by a
small constant. The problem with this approach is that, though it works well with
vehicles with low max speed, when the maximum speed is a large value, around 55
m/s, then the time required to get the velocity to this value would be quite high.
Hence in later iteration, actions 3 and 4 were modified to acceleration and deceler-
ation. In this vehicle will either accelerate or decelerate with a constant acceleration
or deceleration rate. This constant will vary based on the next immediate action.
If there are continuous actions for acceleration, then the acceleration rate will also
increase and in the same way, if there are continuous actions for deceleration, then
the deceleration rate will increase. The principle used for changing the acceleration

rate and the deceleration rate is explained in the Actions section of Chapter 6.

5.3 Reward System

The reward system is really important in a reinforcement based learning algo-
rithm. A good reward system will enable the learning algorithm to learn faster and
produce favourable outputs as explained in Chapter 2.1.

In this research, the reward system was altered from time to time to get the best
performance for the driving algorithm.

Two types of reward systems were mainly considered. One was a lower level
reward system where the reward was given for almost all the possible conditions.
Hence the vehicle was almost directed to do as expected. An overview of this reward
system is given in Table 3. The main aim for having the reward structure as shown
in Table 3 is to have total control in the way the autonomous vehicle moves.
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Motivation for Lower Level Reward System

Avoiding collisions is the most important part of the driving agent. Hence no
actions taken by the agent should lead to an accident. Therefore, the maximum
negative reward is given if the action taken leads to a collision. This reward is
denoted by Rimavegetive-

The autonomous vehicle should only move to the overtaking lane if there is a
vehicle moving nearby at front in the driving lane. The distance the autonomous
vehicle needs to consider before moving to the overtaking lane is given by ’d’. Hence
if there is a vehicle at a distance of d in front of the autonomous vehicle and if it
is moving slower than the autonomous vehicle, then it means that the autonomous
vehicle should try to overtake it if the overtaking lane is free or if the overtaking
lane is not free then it should try to reduce its speed so that it does not come very
close to the vehicle in front. This is depicted in the conditions in row 2, 6, 7 and 8
of Table 3. In row 2, L, = Ly to L; means that the autonomous vehicle is changing
to the overtaking lane. Hence if this is done because the vehicle in front in the
driving lane is nearer and slower than the autonomous vehicle and also while chang-
ing the overtaking lane is free, i.e. there are no vehicles in the proximity of the
autonomous vehicle in the overtaking lane, then a positive reward is given as rep-
resented by Ryesitive. Similarly, in Row 6, for the same situation if the autonomous
vehicle does not move to the overtaking lane, then a negative reward is given as
this might lead to a collision. The reward given is not a constant but a variable
which depends on the distance with the vehicle in front in the driving lane. If the
vehicle in front is very near, then a high negative reward is given and if it is not
that near then a lower negative reward is given. Row 7 and 8 depicts when a
positive reward is given in such a condition. In row 7, even though there is a vehicle
nearby in the front, its velocity is higher than the velocity of the autonomous
vehicle. Hence there is no way the autonomous vehicle will catch up to the vehicle
in front. Hence it is the right decision to stay in the driving lane itself. Therefore,
a positive reward is given. In row 8, the possibility of the overtaking lane not being
free in such a situation is considered. Hence then the only action the driving agent
can do is to reduce its velocity. Hence if the velocity of the autonomous vehicle is
lower than its velocity at the previous time step (va.i1), then a positive reward is
given.

Aashik Chandramohan (S1789619) 30 Master of Science Thesis



Approach for defining the elements of reinforcement learning

S.No Reward Value Reward Condition
RimaxNegative Collision occurrence
2 Ripositive Else K Li=LetoLi & di < d &
Vi < Va & Lifee
3 Riegative Else S Li=IotoLi & di < d &
Vi < Va & Lipusy
Rucgativevariable Else & L.= Ly to L; & vi > va
Riuceativevariable Else & Li=Loto L1 & d; > d
Roncgativevariable Else & L. = Ly & di < d & Lifree
& va> vy
7 Ripositive Else & L. = Lo & di < d & Lifee
& va< 1
8 Ropositive Else & L. = Lo & di < d & Lipusy
and via<vaii
9 RncgativeVariablo Ese & L, =1o& di >d & (Va <
speed limit | v, > speed limit)
10 Rpostive Else & L. =Lo& di > d & v, =
speed limit
11 RucaativeVariable Else S L.=Li& ds <d & v <
Va
12 RiesativeVariable Else & L. =Li& dy >d & ds >
d
13 Ripositive Else & L. = Li & va > Va1 & ds
> d
14 Zero Reward Else

Table 3 Lower level Reward system

If the autonomous vehicle moves to the overtaking lane unnecessarily, then a
negative reward needs to be given as that is an undesired action. Hence rewards
for such scenarios are given in rows 3, 4 and 5 of Table 3. Row 3 considers the
scenario, where the autonomous vehicle moves to the overtaking lane if the vehicle
in front is slower and nearby, but the overtaking lane is not free. If the vehicle
moves to the overtaking lane when there is already a vehicle present nearby in the
overtaking lane, then there is a high possibility for the autonomous vehicle to collide
with the vehicle in the overtaking lane. Hence a negative reward is given in such a
case, so that the autonomous vehicle will only move to the overtaking lane when it
is free. Row 4 and Row 5 depicts a scenario where the autonomous vehicle change
to the overtaking lane when either the vehicle in front in the driving lane is slower
or it is far away (> d). In both these cases there is no need to move to the over-
taking lane as there is no possibility for the autonomous vehicle to be near the
vehicle in front and hence it could have just continued with the same velocity in
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the driving lane. Therefore, a variable negative reward (Rxegativevariaie) is given which
depends on the distance between the autonomous vehicle and the vehicle in front
in the driving lane. If the distance is high, this means that the autonomous vehicle
changed lanes very early and hence a higher negative reward is given. If the distance
is low but it is still greater than d, then a lower negative reward is given.

Another aim of the autonomous vehicle is to go at a good speed so as to decrease
the journey time provided that it follows the speed limit. This is given by the
reward scheme in row 9 and 10 of Table 3. In row 10 a positive reward is given if
the vehicle maintains the speed limit. The reason for checking if the vehicle in front
is far away is only then can the autonomous vehicle move in its desired speed. If
there is a vehicle nearby then that would influence the speed of the autonomous
vehicle as the vehicle may have to slow down which is again not an undesirable
action for that situation. Hence this is only monitored if the vehicle in front is far
away. A variable negative reward is given if the vehicle is either slower than the
speed limit or exceeds the speed limit. The negative rewards are based on how
further the vehicle’s velocity is when compared with the speed limit. If the velocity
is closer to the speed limit then the negative reward value is lower and it increases
with increase in the difference between the vehicle’s velocity and the speed limit.
This is given in row 10.

The autonomous vehicle should try to be in the driving lane as much as possible
and the overtaking lane should only be used for overtaking. Therefore, after over-
taking the vehicle should come back to the driving lane. This is taken care by the
rewarding scheme given in row 12 of Table 3. If the autonomous vehicle remains
unnecessarily in the overtaking lane. That is if there is no vehicle in front in the
driving lane for a long distance (d;>d) to overtake and there is no vehicle behind
in the driving lane for a long distance(d2>d). Hence there is no possibility of colli-
sion while moving back to the driving lane. Then a negative reward is given if the
vehicle continues in the overtaking lane. This reward is based on the distances of
the vehicles ahead and behind the autonomous vehicle in the driving lane. Hence if
these distances are high, then the negative reward will be high and if it is low then
the negative reward will also be low.

There is also a possibility for the autonomous vehicle to encounter a vehicle in
front in the overtaking lane while overtaking. In such a case the autonomous vehicle
cannot again change to a higher lane as there are no other lanes available. Hence
in such a case a negative reward is given if the velocity of the autonomous vehicle
is greater than the velocity of the vehicle ahead. This negative reward is again
based on the distance between the two vehicles. If the distance is less the negative
reward is higher and if the distance is high the negative reward is lower. The con-
dition for giving this reward is shown in row 11 of Table 3. Also the idea is that
the overtaking should be done as quickly as possible and that the vehicle should
not slow down unnecessarily in the overtaking lane. Hence if the vehicle increases
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its speed while in the overtaking lane as shown in row 13, then a positive reward
is given.

As can be seen, in this method of assigning reward, rewards are assigned for most
of the scenarios. This makes the reward system quite complex as there are quite a
lot of scenarios possible. If a new scenario were to occur, it could make the driving
algorithm vulnerable to errors. Another problem with this reward system is that,
it is very specific to the environment, it would be difficult to generalize the reward
system for using it in another highway environment like highways with more than
two lanes which is one of the goals of this research.

To tackle this problem a more generalised reward system is used which does not
completely control how the vehicle would behave, but mainly takes into account
that the vehicle follows the basic road and safety rules. This reward system is
shown in Table 4.

Motivation for Generic Reward System

S.No Reward Value Reward Condition

1 Reottision Collision occurrence

2 Rstandstill Else & v, = 0

3 Raucar Else & L. = Lo & di <
d

4 RiancChange Else & L. = L; & di<d
& Va > Vara

5 Rianer Else & L, = L & dy >
d

6 RLane1Approachvehice Else & L. = L1 & ds <
d & va < Vara

7 -RLane1ApproachVehicle Else & L. = L1 & ds <
d & v >= vaa

8 Rovespeeding Else & v, > speed limit

9 Rspeding Else & va > Vaia

10 RtaintainSpecdLimit Else & v, = speed limit

11 Zero Reward Else

Table 4 Generic Reward system

In Table 4, rewards are mainly given for undesirable traffic situations. Again for
collision a very high negative reward is given as it is still the most undesirable
outcome. This is depicted by Rcoision-

A large negative reward is also given if the vehicle stops on the highway as this
can cause a traffic jam. In this research, it is assumed that all the other vehicles
will follow the traffic rules as they are being driven manually. Hence there is no

Aashik Chandramohan (S1789619) 33 Master of Science Thesis



Approach for defining the elements of reinforcement learning

possibility of a collision with the autonomous vehicle, from the vehicle behind.
Hence if the autonomous vehicle stops, then the vehicle behind will have to either
stop as well or move to the overtaking lane and overtake. In any case this situation
will disrupt the flow of traffic. Hence a large negative reward Regtanastin is given when
the vehicle stops. This is depicted in the second row of Table 4.

To discourage the vehicle from coming close to the vehicle in front on the driving
lane(d1<d) a negative reward R is given to avoid chances of the vehicles colliding.
This is represented in row 3.

To encourage the autonomous vehicle to go to the overtaking lane when there is
a vehicle in front at a close distance, a small positive reward Rianecnange iS given on
changing to the overtaking lane as depicted in row 4 of Table 4. Here it is not
checked if the overtaking lane is free because, if it is not free and a collision does
happen then anyway the Reuision Will be given and not the Rrancchange-

To avoid the vehicle from staying unnecessarily in the overtaking lane a negative
reward Riane is given if there is no vehicle ahead in the vicinity in the driving lane
for the autonomous vehicle to overtake. This is given in row 5 of Table 4.

As this implementation is for a 2 lane highway, if the autonomous vehicle is in
the overtaking lane and there is a vehicle in front of it in the overtaking lane, it
needs to decrease its speed to avoid a collision with that vehicle. Hence in such a
scenario, if the autonomous vehicle decreases its speed from what it was in the
previous time step, a positive reward Rianeiapproachvenice 1S given as shown in row 6
and if it does not decrease its speed then -Rianeiapproachvenice is given as the reward as
shown in row 7 of Table 4.

Rows 8, 9 and 10 are the rewarding schemes for the vehicle to obey the speed
limit. An efficient driving agent should try to reduce the travel time. This can be
done by travelling at high speed. For safety reasons the vehicle needs to maintain
the speed limit. Hence travelling at v,=speed limit would be the fastest way to
reach the destination. Hence a high reward Rimintainspecdrimic 1S given when the speed
of the vehicle is the same as the speed limit as shown in row 10. It is not always
possible to travel at the speed limit, hence to encourage the driving agent to accel-
erate until it reaches the speed limit, a positive reward Rspedins lower than Rawintain-
speedLimit 18 given as depicted in row 9. Again to avoid going over the speed limit, a
higher negative reward Rovespeeding iS given as shown in row 8 of Table 4. For this
reward scheme there is no need to check for the distance with the vehicle in front
as if there is a vehicle in front nearby automatically the reward condition in row 3
is invoked and these reward conditions are not considered.

The advantage of this reward system is that it is a lot more generic than the
previous reward system and it only dictates on how the vehicle should behave to
avoid potential collisions or traffic disruptions. This reward system can also be used
for environments with more than one lane with a small change in conditions from
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row 3 to row 7 to handle multi lanes. The reward system for multilane highway is
discussed in Chapter 7.3.

5.4 Performance Evaluation of the Driving Algorithm

Efficiency of the driving algorithm depends on how well it is able to manoeuvre
the autonomous vehicle through traffic. The performance of the algorithm can be
evaluated based on number of times the autonomous vehicle is responsible for an
accident. This can be calculated by using a feature in SUMO, where the vehicles
involved in a collision are removed from the simulation. This is discussed in the
section SUMO Configuration in Chapter 4.1. During the simulation the number of
collisions can be plotted over the number of simulations to get the collision ratio.
The lesser the collisions, more efficient the driving algorithm is. The problem of
using just the collision ratio as an evaluation for the performance is that a vehicle
can avoid collision by going really slow. As all other vehicle are assumed to be
careful, they will not initiate a collision. Hence even though the collision ratio is
low, the driving algorithm may not be behaving properly as the vehicle does not
go for overtaking of the slower moving vehicles. Hence another evaluation based on
the distance travelled by the vehicle in the simulation is also used as a criterion for
evaluating the performance of the driving algorithm. The total distance travelled
by the autonomous vehicle in each episode can be plotted. From this the average
distance travelled by the autonomous vehicle in each simulation can be calculated.
As the simulation time is known, the average speed of the vehicle can be calculated
and if this speed is greater than the maximum speed of the slower moving vehicles,
then it means that the autonomous vehicle has done some overtaking. As this is
used to check if the driving algorithm is performing well in case of no collision, The
distance total distance travelled is plotted only for simulations that end without a
collision. The total rewards achieved in each simulation is also used as a criterion
to check if the driving algorithm is trained correctly. If the vehicle finishes the
simulation successfully by following all the rules, then the total reward achieved
for that simulation would be higher than when a collision occurs or if the vehicle
breaks any rules, for example if it remains in the overtaking lane unnecessarily.
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6. Design of the Driving Algorithm for driving in
a 2 Lane Highway

Based on the analysis in Chapter 5, a driving algorithm was designed and simu-
lated for controlling a vehicle in a 2 lane highway. This chapter talks about the
design of the driving algorithm and results from the simulation of this driving
algorithm. It also talks about changes in the reinforcement learning parameters
affecting the performance of the driving algorithm.

This chapter is mainly divided into two parts. Design of the Driving algorithm
in Python and the results obtained during testing this driving algorithm in the
simulation setup described in Chapter 4.1. These results were used to improve the
driving algorithm such that it can be used in a generic multilane highway environ-

ment.

6.1 Design of The Driving Algorithm

The driving algorithm is responsible of learning based on the actions performed
by the autonomous vehicle. It also invokes the communication with SUMO to start
and proceed with the simulation. As explained in Chapter 4, Keras is used for
designing and implementing the Neural network for the driving algorithm.

For the driving algorithm to communicate with the simulation environment, a
new environment based on Gym [41] is used. Gym is a toolkit used for developing
the environment used in machine learning. It provides the structure required in the
environment that can be used by the learning algorithm [12]. The main structure
of the Gym environment is [42]:

1) Initialization state: The environment is initialized. The input states and the
actions are initialised.

2) Reset state: This state sets up the environment in sumo and starts the
simulation. This state is maintained until the autonomous vehicle has be-
come active in the simulation. The learning algorithm only starts after this
state.

3) Step state: Each time an action is taken by the driving algorithm; it leads
to a new step. The step state performs the action desired by the driving
algorithm, calculates the rewards and gets the new input state.

Figure 12 shows the class diagram of the driving algorithm.
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Figure 12 Class Diagram of the Driving algorithm

The design contains three user defined classes, the ‘Main’ class, ‘DQNAgent’
class and the ‘HighwayEnv’ class as shown in Figure 12. The ‘Main’ class is invoked
to start the training process. It uses the ‘DQNAgent’ class for learning and the
‘HighwayEnv’ class to realise the results of the driving algorithm and to calculate
the rewards. Here the ‘DQNAgent’ class is the equivalent of agent and the ‘High-
wayEnv’ class is the equivalent of environment in Figure 6 in Chapter 3.1.

The weights of the neural network need to be first trained, as at the start they
are all assigned to random values. Hence the training period is used to train the
neural network. The resulting neural network model is then saved to be used for
testing on new simulations. The training needs to be long enough such that the
neural network can learn to the maximum. From simulations it was found that
training the algorithm for 7000 episodes was enough as training longer than this
did not have a big impact on the performance. Figure 13 shows the collision per-
centage of the autonomous vehicle with increase in the training episodes.
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Figure 13 Percentage of collisions of the autonomous vehicles during training

Episode is an entire simulation from when the autonomous vehicle is inserted to
when the simulation ends due to either the end of simulation time or due to a
collision as explained in Chapter 2.1. It can be seen from the figure that the plot
almost converges at around 7000 episodes. For the simulations done in this research,
the simulation time is kept to be 100 steps with each step being 1 second long. The
driving agent is trained during each time step.

‘DQNAgent’ class in Figure 12 creates and trains the neural network based on
the results from the simulation which is got from the ‘HighwayEnv’ class and
passed on by the ‘Main’ class. It also contains a memory buffer queue of length
2000 that stores the results from each time step. This means that if an entire
episode is completed without a collision, the memory buffer can hold information
of 20 full episodes. This information include, the episode index, current input state,
action taken, reward achieved, next input state and information about whether the
episode ended or not which are required for the training the driving agent using
experience replay as explained in Chapter 2.1. A batch of 32 random items from
the memory buffer is taken and the neural network is trained again with this data
using the algorithm already explained in Algorithm 1. As this is used for training
the neural network it is only done during the training period and not during the
testing period.

As mentioned in Chapter 2, the actions by the driving algorithm are first taken
at random and as the algorithm learns it is taken based on the maximum output
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form the neural network. The convergence of the exploration rate is exponential.
At the start of the training the exploration rate () is set to 0.9 so that the driving
agent can learn the consequence of all the actions. This is then decreased exponen-
tially by a factor of 0.9992 after each episode until it reaches the minimum explo-
ration rate of 0.1. After this the actions are mostly taken purely based on the
outputs of the neural network. In this implementation It takes around 2747 episodes
for the exploration rate to decrease to 0.1. Hence until then the actions are taken
at random from time to time.

The learning rate (o) is chosen to be 0.001 which is a very low value, so that the
Q function will have a higher chance of converging to its optima and not go past
it as discussed in Chapter 2.1. The discount factor (y) is chosen to be 0.9 so that
the algorithm tries to maximise the long term rewards [12] according to Equation
(1) in Chapter 2.1.

Sequential neural network is used for reinforcement learning as explained in
Chapter 2.1. In this layers are stacked in front of each other for propagation of
data through them [43]. Keras provides the APIs required for creating these models
[44]. The first and the last layer of the neural network are the input and the output
layer respectively. The layers in between these are called the hidden layers. Each
layer contains certain number of nodes. The input layer contains the nodes equal
to the number of input features, which in this case is 10 and the output layer
contains the number of nodes equal to number of actions which is 4. The nodes in
the hidden layer can be of any amount. In this research varying hidden layer con-
figurations from 1 hidden layer to 5 hidden layers with varying nodes between 1 to
2001 were used to check the performance of the learning algorithm. Unfortunately,
there is no direct relation between the number of nodes and hidden layers and the
performance of the driving algorithm. The nodes in the neural network are acti-
vated using an activation function. This activation function is used to get the out-
put from the nodes. The action corresponding to the max output among the nodes
from the output layer is chosen as the action of the learning algorithm. The most
common activation function used is the Rectified Linear Unit (ReLU) activation
function. Here the output is 0 if the input is less than 0 or it is the input if the
input is greater than or equal to 0 [45].

‘HighwayEnv’ class in Figure 12 takes care of incorporating the actions given by
the driving algorithm into the simulation in SUMO and returns the new input state
and the reward for the action back to the Main class. It inherits the properties of
the ‘Gym.Core.Env’ as shown in Figure 12 and hence implements the definitions
for initialization, reset and step. It is also associated with the classes in TraClI for
communication with the SUMO environment. The classes associated with ‘High-
waykEnv’ are ‘VehicleDomain’, ‘VehicleTypeDomain’ and ‘LaneDomain’ as shown
in Figure 12. ‘VehicleDomain’ class contains the APIs for accessing and modifying
the current vehicle parameters of the vehicles that are in the simulation. These

Aashik Chandramohan (S1789619) 40 Master of Science Thesis



Design of the Driving Algorithm for driving in a 2 Lane Highway

parameters include, the current velocity, lane number, position and other vehicle
parameters [46]. It also contains the APIs for activating and deactivating the car
following model that activates collision avoidance. TraCl supports object variable
subscription [47]. Using this the vehicle parameters of the vehicle can be subscribed
at the start of the simulation and the response of the subscription contains the
vehicle parameters of the previous time step. This is used for getting the vehicle
parameters which are the position, vehicle speed, lane index and distance travelled
of all the vehicles that are currently active in the simulation.

The APIs from the other two classes of ‘VehicleTypeDomain’ [48] and ‘Lane-
Domain’ [49] are used to access the maximum speed of the vehicle and the speed
limit in the lane respectively.

The entire list of APIs used in the implementation is given in Appendix B: Ex-
ternal APIs used.

Finding the position of the surrounding vehicles

As described in Selection of input features in Chapter 5.1, the driving agent only
uses the distance between the autonomous vehicle and the immediate surrounding
vehicles and their velocities for learning. TraCI does not contain any API for giving
this information directly. Hence the environment in the driving algorithm which is
the ‘HighwayEnv’ class in Figure 12, needs to segregate this information from the
received information of all the vehicles in simulation. This section describes how
the vehicle information of the immediate surrounding vehicles to the autonomous
vehicle is found.

Firstly, the positions and the vehicle ids and the lane number of all the vehicles
currently active in the simulation are accessed. The vehicle position returns the x
axis and the y axis position. As the highway used here is a horizontal road as shown
in Figure 7, only the x axis value is required for knowing the position of the vehicle.
This list of information with the vehicle id, x axis position and the lane number
are sorted with respect to the x axis position. The corresponding index of the list
containing the autonomous vehicle’s Id is its positon on the road. The next index
with the lane number as 0 is the vehicle in front in Ly, next index with lane number
1 is the vehicle in front in L, previous index with lane number 0 is the vehicle
behind in Ly and the previous index with lane number 1 is the vehicle behind in L;.
If either the last index in the list or the first index in the list is reached without
finding a vehicle, then it means that there are no vehicles in front or behind the
autonomous vehicle in that lane respectively. The value for that distance is given
as the maximum distance value for the input state and the velocities for those input
states is given as 0 m/s. From the positions of the surrounding vehicles, the x axis
distances di, d», d; and ds can be found. Using the vehicle Ids their velocities vi, va,
vs and vy can also be found. Also if the distances di, d», ds or d4 are greater than
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the max distance for the input states, then it means that the vehicle is not in the
vicinity of the communication range and again the max distance of the input state
is given as the distance for that vehicle and its velocity is taken as 0 m/s.

Actions of the driving algorithm

As mentioned in Chapter 5.2, four types of action were chosen. As there are just
2 lanes in this scenario, the vehicle can either move to the overtaking lane or to
the driving lane. The other two actions were to increase or decrease the vehicle
velocities. The problem with increasing or decreasing the vehicle velocity is that it
will take the vehicle some time to reach a high velocity. For example, if the vehicle
can only increase by a constant speed of 0.5 m/s, then to reach the speed limit of
22.5m/s it would take around 45 seconds of continuous same action of increasing
the vehicle velocity. As a result the vehicle’s average velocity was quite low as
shown by one of the average distance travelled plots in Figure 14.

Histogram Distance Travelled, Mean 1214.84, 5D 369.16
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Figure 14 Frequency distribution of distance travelled in a simulation with 500 episodes

As each episode was for 100 seconds the average [50] velocity of the autonomous
vehicle was found to be 12.14m/s.

Another method was then used for increasing or decreasing the vehicle velocity.
This was in line with what usually happens while driving, which is increasing speed
based on the acceleration or deceleration rate. At the start a constant acceleration
and deceleration rate is set at 1.26 m/s* and 0.63 m/s® respectively. This rate is
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doubled on immediate actions of acceleration or deceleration. That is, the first time
acceleration is selected as the action, the acceleration rate of the vehicle will be
1.26 m/s* If the next action is also acceleration, then the new acceleration rate will
be 1.26 X 2 = 2.52m/s? and if the next action is also acceleration then it will be
1.26 X 3 = 3.78m/s?. If the next action is deceleration, then the deceleration
rate will be taken into account to slow the vehicle and the acceleration rate will
again go back to the stating value of 1.26m /s’

To calculate the time, the vehicle should accelerate, the time required for the
vehicle to reach its maximum speed with the current acceleration rate is calculated.
The vehicle will then try to increase to its maximum speed in the calculated time,
provided that it does not get an action to decelerate within that time period.

In the same way to change the velocity based on declaration, time taken for the
vehicle to come to rest is calculated with the set deceleration rate. The vehicle will
then reduce its speed gradually to Om/s? within the given time provided that an
action for acceleration does not occur during that time.

Another advantage of this method is that here the vehicle does not directly go
to a certain velocity but the velocity increases gradually as it happens in a real
vehicle. The distance plot of the autonomous vehicle using this method in the same
environment and traffic rate is shown in Figure 15.
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Figure 15 Frequency distribution of distance travelled in a simulation with 500 episodes
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The mean velocity of the autonomous vehicle using acceleration and deceleration
as actions were found to be 14.33m/s, which is higher than the velocity found in
Figure 14.

Rewarding Scheme

Generic reward system explained in Chapter 5.3 in Table 4 is used for calculating
the rewards. In this section values are given for the parameters described in Table
4. The values for the rewards were found by testing the driving algorithm with
different combinations of reward values and observing its performance as described
in Chapter 3.3. The value combinations which gave a low collision rate as well as
a good average speed for the autonomous vehicle was selected.

Reotiision, which is reward for collision in Table 4 of Chapter 5.3 is given a value
of -101. This is the highest individual negative value as collision is the most unde-
sired outcome for the driving agent. Rganasin is given a value of -50 which is less
than the negative reward for collision but is still a fairly big reward so that the
vehicle does not come to rest on the highway. The reason for this reward is because
it was noticed that in some cases to avoid getting the negative rewards, the vehicle
would just come to rest in the driving lane. To avoid this scenario Rstanastin is used.

The distance ‘d’ which represents the gap to be maintained between the vehicles
in Table 4 is given a value of 160m. It is explained in the simulation setup in
Chapter 4.1 that the endpoints of the highway in coordinate system are (0,0) and
(5000,0) while the length of the highway is 40Km. Hence each unit in the x axis
corresponds to 8m. The positions of the vehicles got from SUMO are in coordinate
system. Hence the calculated di, ds, ds, ds and d are in coordinate system. Hence
160m is equivalent to 20 units which is used in calculation of the rewards.

Ruear is given a value of -5, when the autonomous value gets near the vehicle in
front (di<d). During each time step the vehicle is in this range the negative reward
is added up. The idea here is that, once the driving agent senses that it has started
getting the negative reward it can either change lanes if possible or try to decrease
the velocity of the vehicle such that the vehicle comes out of this range (di > 160m).

The next reward in row 4 uses Rianechange a8 50 — d4. This is to make sure that
the vehicle finishes the overtaking quickly. As d; will decrease during overtake, the
reward got will increase during the overtaking period. This also make sure that the
vehicle does not brake unnecessarily when it is in the overtaking lane. If when in
the overtaking lane there is a vehicle in front (ds<160m) then the reward value
given in row 6 or row 7 comes into play. Here Rjqne1approachingvenicie = 0.5. Hence
if the vehicle decreases its speed +0.5 is given as the reward until ds<160m and if
the vehicle does not decrease its speed then -0.5 is given as the reward during each
time step.
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Also Rpaei= -1.5xd; as shown in row 5. This is to avoid the vehicle from staying
in the overtaking lane unnecessarily. This becomes active when d; > 160m. Hence
as d; increases, Rrame will also increase negatively.

As already mentioned in Design of the Road Layout in Chapter 4.1, the speed
limit in the highway is 22.2m/s. Hence a negative reward needs to be given when
the vehicle is breaking the speed limit. Hence Royerspeeding=-1. Also as mentioned in
Motivation for Generic Reward System in Chapter 5.3, If the vehicle maintains its
velocity to be equal to the speed limit, a positive reward is given which is set to be
Raintainspeeaimit=-+2 and to encourage the vehicle to get to the speed limit a smaller
positive reward of Rgpeeains = +1 is given when the vehicle accelerates towards the
speed limit.

The reward scheme is showed in Table 5.

S.No Reward Value Reward Condition
-101 Collision occurrence
2 -50 Else & v, = 0
-5 Else & L.=Ly & di <
160m
4 50 — d; Else & L.=L; & d
<160m & vy > Vara
5 15 x dy Else & L.=L; & di >
160m
6 0.5 Else & L.=L; & ds <
160m & vy < Vara
7 -0.5 Else & L.=L1 & ds <
160m & va > Vaa
8 -1 Else & v, > 22.5m/s
9 1 Else & va > Vaea
10 2 Else & v. = 22.5m/s
11 0 Else

Table 5 Calculation of Rewards adapted from Table 4

Changing this combination for the reward values meant that the driving algo-
rithm did not perform as expected. For example, having a higher negative reward
of -500 for collision meant that the autonomous vehicle would just stop as soon as
it becomes active in the simulation even though it would get a negative reward for
not moving, as the reward for collision highly outweighed the reward for stopping.
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6.2 Results and Discussions from the Initial Design

The best performance got with this design during the test simulation was a col-
lision percentage in the confidence interval between 20.5% to 28.4% found by Clop-
per Perason Binomial confidence method [51]. The test simulation consisted of test-
ing the driving algorithm on 500 episodes.

This collision ratio is still very high. To solve this problem, the negative rewards
for collision can be increased. This definitely solves the problem of collisions, but it
also changes the autonomous vehicle into a car following vehicle in the driving lane
which never goes for an overtake. Hence this means that there needs to be an
external entity that prevents the collisions, so that the driving algorithm can only
focus on manoeuvring through the traffic. To do this the collision avoidance system
provided by SUMO was enabled, such that the autonomous vehicle will automati-
cally brake if it comes very close (within 10 meters) to the vehicle in front. Still
collisions are possible during lane change. Using this modification, the collision rate
was bought down to be between 5.4% and 10.2%.

As explained before it was not possible to establish a direct relation between the
configuration of the neural network and the performance of the driving algorithm.
To test the neural network configuration best suited for this driving agent, the
training and testing was done with different number of hidden layers and different
number of nodes in each layer. The collision percentage during training and testing
and the average total distance travelled during testing with 2 hidden layer, 3 hidden
layer and 5 hidden layers are shown in Figure 16, Figure 17 and Figure 18 respec-
tively. The number of nodes are varied from 1 to 2001 with an increment of 100.
Having zero nodes in a hidden layer is equivalent to having no layer at all and
hence the number of nodes were selected from 1.

From Figure 16, it can be seen that the driving agent trained with 3 hidden
layers have slightly lower collisions than when trained with 2 hidden layers. In case
of using 5 layers the fluctuation in the collision percentage with changes in nodes
is quite high. The collision percentage when the number of nodes are 1 in each layer
is however higher with 3 and 5 hidden layers than with 2 hidden layers. It was
however noticed that, having just one node in the layers gave highly unpredictable
results during each simulation as with another simulation for the same configura-
tion with 2 hidden layers, collision percentage was found to be around 55% during

training.
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Figure 16 Collision percentage for different number of nodes and hidden layers during training

Figure 17 shows the collision percentage occurring with 2, 3 and 5 hidden layers
during testing. The network was trained for 7000 episodes whose collision percent-
age is given in Figure 16. For testing the simulation was run for 500 episodes. For
an ideal driving algorithm, the collision percentage should be very low and at the
same time the vehicle should also travel at a good speed such that the travel time
is low, as already mentioned in earlier chapters, it is possible to have a low collision
percentage by staying in the driving lane itself and not going for any overtakes. To
check if this is happening Figure 18 is used. It shows the average distance travelled
by the autonomous vehicle during test simulations for each of the DQN (Deep Q
Neural Network) layer configurations. The maximum speed of the slower moving
vehicles is 11.1m/s. Hence if the average distance in the plot is less than 11100
meters then it means that the autonomous vehicle was behind a slower moving
vehicle for a long time and hence did not do any overtaking.

From Figure 17, it can be seen that, with 5 hidden layers, the collision percentage
is zero for most of the node configuration, but this is because the vehicle does not
do any overtakes as can be seen from the average distance plot in Figure 18 where
the average distance travelled by the vehicle during 0% collision with 5 hidden
layers is less than 11000 meters. Also for other node configurations with 5 hidden
layers where the collisions are lower, the average distance travelled by the vehicle
is also quite low when compared with the average distance of the vehicle which
used 3 hidden layers for learning.
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Figure 17 Collision percentage for different number of nodes and hidden layers during testing
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Figure 18 Average distance travelled by the autonomous vehicle for different node and layer configuration
during testing
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For the simulations with 2 hidden layers and 3 hidden layers, with just one node
in each of the hidden layers, the driving algorithm does not learn much and it just
learns to avoid the maximum negative reward and hence drives slowly in the driv-
ing lane. As the number of nodes increases, comparing these two configurations
become difficult as they both show mixed performance for different node configu-
rations in both the number of collisions and the average distance travelled. Hence
foe the experiment 3 hidden layers were chosen as it gave a lower collision percent-
age during training.

Another strange observation in Figure 17 was at 1401 nodes in each hidden layer
for a 3 layer DQN, the collision percentage was found to be 0% and the average
distance travelled by the autonomous vehicle was also greater than 2000 meters,
making it the best configuration for this learning algorithm. However, it was not
able to reproduce this performance as again simulating with this configuration and
testing it gave a collision percentage of 11%. Using 1500 nodes for each hidden
layer for a 3-layer neural network gave a stable performance with the collision rate
always being below 10%.

6.3 Conclusions from the Initial Design

The main aim of the initial design was to create a driving algorithm using Rein-
forcement learning which works on a 2 lane environment. The selection of input
features, actions and the reward system in this design can be modified to create a
generic driving algorithm for multi-lane highway environment, but the principle of
selecting these features are the same.

From the results section in Section 6.2 which compared different layer and node
configurations for the Deep Q network. It was found that having 3 hidden layers
gave more stable performance during the training period than other configurations
as shown in Figure 16. Hence three hidden layers is chosen as the number of layers
for the DQN for the final experiment. Deciding the number of nodes for the hidden
layers was trickier as there were quite a few node configurations possible which
gave low number of collisions, especially between 1400 and 1700 nodes for a 3 layer
neural network as shown in Figure 17. Hence further study needs to done to decide
exactly how to choose the number of nodes for the hidden layer. For the final
experiment 1500 nodes were chosen for each hidden layer, as with this configuration
the collision percentage deviation between different simulations were found to be
low (=2.5%).

Another important thing to take in consideration while choosing the number of
layers and the number of nodes is that, with increase in the number of nodes or
number of hidden layers the time required to train the neural network increases.
This is the reason for not considering hidden layers greater than 5 for testing the
performance of the driving algorithm.
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7. Final Experiment for driving in a Multilane

Highway Environment

Based on the results of the initial implementation in Chapter 6, a generic driving
algorithm is designed which can be used on a multilane highway environment. For
designing this new algorithm changes had to be made in the number of input fea-
tures and the output actions. The same rewarding scheme that was used in the
previous design given in Chapter 6.1 is used even here with slight modifications.
The rewarding scheme for the previous design only took into account two lanes
whereas here the number of lanes can be more than two. Hence this is incorporated
in the rewarding scheme for this design.

This chapter talks about the design and implementation of this driving algo-
rithm. It also talks about the implementation done to test the performance of the
driving algorithm in case of packet loss due to communication error and also with
change in communication range.

7.1 Input Features

In highways with more than 2 lanes the required information of the surrounding
vehicles changes as shown in Figure 19. This is true when the autonomous vehicle
is in any of the overtaking lane other than the last lane, which in this case is Lo.

ds

d;

Figure 19 Position of vehicles when the autonomous vehicle is in one of the middle lanes

The earlier design in Chapter 6 used the positions of surrounding vehicles with
respect to the lane it was associated with. That is d; and d» were the gap with the
vehicles in lane 0 (driving lane) and ds and d; were the gaps between the vehicles
in lane 1 (overtaking lane). In this design the position of the surrounding vehicle is
decided with respect to the lane the autonomous vehicle is in. Hence if the auton-
omous vehicle is in lane 1 as shown in Figure 19, then d; and d; are distances with
the vehicles in that lane and vy, v» being their respective velocity. d; and dy are the
distance with the vehicles in the lane left to the autonomous vehicle, which will
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then be the overtaking lane and v; and vy will be the velocities of those vehicles.
The distances d; and dg will be for the vehicles in the right lane and v; and ve will
be their velocity.

Now if the vehicle is in the driving lane or in the last overtaking lane then the
states will change as shown in Figure 20 and Figure 21. Figure 20 shows when the
autonomous vehicle is in Ly (driving lane). Then as there are no more lanes to its
right side, ds, ds, vs, ve will not exist. Hence default values are given for these
parameters. Usually when d; or dg is 800m, then it means that there is a vehicle
only at a distance of 800m in the left lane and that the autonomous vehicle is in
the overtaking lane unnecessarily, but the lane number which is another input state
can be used to determine if the vehicle is in any of the overtaking lanes or in the
driving lane. This is explained in the reward calculation section.

Figure 21 shows the changes in distance between the vehicle states and vehicle
velocity states when the autonomous vehicle is in the left most lane. Here as there
won’t be any more vehicles to the left side, ds, ds4, v3 and vy wont exist. Hence they
are all given the default values.

ds =800 m d,
ds=800m
vs=0m/s
Ve =0m/s

d,

Figure 20 Position of vehicles when the autonomous vehicle is in the driving lane

d d

d; =800m dg
d,=800m
v;=0m/s
v, =0m/s

Figure 21 Position of vehicles when the autonomous vehicle is in the last overtaking lane
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The new input features will be:

D
2)
3)

10
11

12
13

14

Current velocity of the autonomous vehicle (v,).
Current velocity of the vehicle in front in the same lane (vy).
Distance the autonomous vehicle is from the vehicle in front in the same
lane (d,).
Current velocity of the vehicle behind in the same lane (vs).
Distance the autonomous vehicle is from the vehicle behind in the same
lane (dz).
Current velocity of the vehicle in front in the left lane (vs).
Distance the autonomous vehicle is from the vehicle in front in the left lane
(ds).
Current velocity of the vehicle behind in the left lane (v).
Distance the autonomous vehicle is from the vehicle behind in the left lane
(ds).

) Current velocity of the vehicle in front in the right lane (vs).

) Distance the autonomous vehicle is from the vehicle in front in the right
lane (ds).

) Current velocity of the vehicle behind in the right lane (vg).

) Distance the autonomous vehicle is from the vehicle behind in the right
lane (ds).

) Current lane the autonomous vehicle is occupying (L=0 to maximum num-

ber of lanes).

15) Current acceleration rate of the autonomous vehicle (Vi)

The input state s; at time t will be a collection of {va, vi, di, v2, da, vs, ds, vy,
d4, Vs, da, Ve, dﬁ, L., Va(‘c}

7.

2 Output Actions of the Driving Agent

The number of action states has been changed to be more generic. The new

action states are:

D

Changing to the left lane provided that the vehicle is not already at the left
most lane.

Changing to the right lane provided that the vehicle is not already at the
right most lane.

Increase velocity of the autonomous vehicle.

Decrease velocity of the autonomous vehicle.

Idle action.
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An additional idle action is added to remain in the same lane. In the previous
action state for two lane highway the number of lanes were fixed. Hence if the
vehicle was in Lane 0, then to remain in the same lane the driving agent could
choose ‘Move to Lane 0’ as the action. In this design as the number of lanes are
not fixed. The action for Lane change cannot be used for staying in the same lane.

Hence an idle action is used for remaining in the same lane.

7.3 Reward System

Rewarding Scheme similar to the one used in Table 5 in Chapter 6.1 is used for
this design and is given in Table 6. The differences between both the reward sys-
tems are that the reward system in Table 5 considered the highway to have only
two lanes. Hence Ly was the driving lane and L, was the overtaking lane. Therefore,
if there was a vehicle getting close in front of the autonomous vehicle in the driving
lane, a negative reward was given. In this implementation as the number of lanes
can be more than two, the driving and the overtaking lane will depend on which
lane the autonomous vehicle is driving on. Unless the autonomous vehicle is not at
the Max Lane number (L) which is the left most lane, it can change to an over-
taking lane to overtake the vehicle in front. This is the reason in row 3 of Table 6
La#Lmax is checked before giving the negative reward.

As explained in Section 7.1 in establishing the input features for this design is
different to the ones used in the design in Chapter 6. Here the distance with the
vehicle in front in the right lane is given by ds. The information given by ds is the
same as what d; gave in Table 5. Also all the lanes other than the first lane (Lo)
are overtaking lanes. Hence to check that the vehicle finishes the overtaking quickly
and also to avoid having the vehicle in the overtaking lane unnecessarily, rewards
in row 4 and 5 are used.

As it is not possible to overtake vehicles in the last lane, rewards in row 6 and
row 7 are used. In Table 5, the max lane was always 1, but here as this is a generic
reward system, L,=Lmn. is used to define the max lane number.

The values for the rewards are the same as what is given in Table 5.
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S.No Reward Value Reward Condition
-101 Collision occurrence
2 -50 Else & vo =0
-5 Else & La #Lnax & di <
160m
4 50 — ds Else & L. #Lo & ds
<160m & v. > Vi
5 -1.5 x d; Else & L. #Lo & d5 >
160m
6 0.5 Else & L.=Lunx & ds <
160m & v < Vaga
7 -0.5 Else & Li=Lunx & d3 <
160m & va > va,e
8 -1 Else & v. > speed limit
(22.5m/s)
9 1 Else & v, > Vara
10 2 Else & v, = speed limit
(22.5m/s)
11 0 Else

Table 6 Reward calculation for multilane Driving algorithm

7.4 Handling Communication Error

A provision is implemented to induce communication error as it is possible during
vehicle to vehicle communication. This allows to test the performance of the driving
algorithm in case of unavailability of vehicle information required by the learning
algorithm. The type of communication error tested in this simulation is shown in
Figure 22.

As shown in Figure 22, for the vehicles lying outside the communication range,
the probability of successfully receiving its vehicle parameters by the autonomous
vehicle is 0. This means that the vehicle information of these vehicles are not re-
ceived by the autonomous vehicle. Hence the driving algorithm assumes that there
is no vehicle in those positions. The default communication range used for this
research is 800 meters. For the vehicles lying inside the communication range, the
error of receiving the vehicle information by the autonomous vehicle is determined
by the error probability. If the error probability is 0.5 then it means that there is
a 50% possibility of not receiving the communication packet during each time step.
The results of this simulation is shown in Chapter 8.
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Figure 22 Probability of successful reception with respect to the communication range and error probabil-
ity

To cope with the communication error, a modification was made in the design
of the driving algorithm. A buffer is maintained in the environment side of the
driving algorithm (shown in Figure 6) which stores the vehicle parameter received
in the last successful communication. If it is observed that a communication error
has occurred, then the vehicle information from the last communication is used as
the current vehicle information by the driving algorithm. The driving algorithm
performed better with this approach which is also discussed in Chapter 8.
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8. Results and Discussions

This chapter discusses the results of the implementation of the generic driving
algorithm discussed in Chapter 7.

The values of the different parameters which includes the simulation settings
and also the machine learning parameters are given in Table 7.

Speed limit in the highway 22.22m/s
(80Km/Hr)

Maximum possible speed of the autonomous vehicle 55.55m /s
(200Km /Hr)

Maximum possible speed of the slow moving vehicles 11.1m/s
(40Km/Hr)

Maximum possible speed of the other vehicles 55.55m /s
(200Km /Hr)

Number of input features for the driving agent 14

Number of possible output actions from the driving agent 5

Number of hidden layers in the neural network 3

Number of nodes in each hidden layer 1500

Learning rate (o) 0.001

Discount factor (y) 0.9

Exploration rate (¢) 0.9

Probability of Traffic rate of slow moving vehicles per second | 0.1

Probability of Traffic rate of normal speed vehicles per sec- 0.01

ond

Training Period 7000 episodes

Testing Period 500 episodes

Table 7 Parameters for Reinforcement learning and SUMO simulation used in the final implementation

8.1 Performance of the driving Algorithm in a 3 lane
highway and a 2 lane highway

The collision percentage during the training period trained on a three lane high-
way is shown in Figure 23. Even though the training was done for 7000 episodes,
the plot shows episodes fewer than 7000. This is because as the vehicles are inserted
in the simulation randomly, there is a possibility that the autonomous vehicle col-
lides with another vehicle within the first time step as explained in Chapter 3.3.
These episodes are not taken into account for evaluating the performance of the
driving algorithm. Hence the number of episodes in Figure 23 is lower than 7000.
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Figure 23 change in collision percentage during training period

As mentioned earlier in Chapter 6, an exploration rate of 0.9 is used at the start
which is then decreased as the simulation progresses. When the exploration rate is
0.9, 90% of the actions that are taken are in random and not based on the Q values.
For this value to reduce to 0.5, it takes close to 735 episodes. Hence for the first
735 episodes the actions are mainly taken in random, that is the reason for the
curve to have a spike and high collisions until that number of episodes. After that,
as the actions are taken mainly based on the learning done by the driving algorithm
until 2746 episodes. There is a steady decrease in the collisions. By 6500 episodes,
the curve has started decreasing very slowly, meaning that the performance is not
improving much beyond this point. The training was also done for 10000 episodes,
but the results found were similar to what is shown in Figure 23.

The total reward attained during each episode while training the driving agent
is shown in Figure 24. It can be observed that until around 2000 episodes, the total
rewards obtained are mostly negative. This is again because during this time period
the driving agent is trying to learn by choosing random actions based on its explo-
ration rate. With progression of episodes, the frequency of positive rewards in-
creases, but there are still cases where a low reward is earned. This is because there
might have been scenarios where the vehicle would not have had an available action
that gave a positive reward, as the reward system is designed mainly to discourage
the driving agent in making the wrong decisions. Hence most of the rewarding
scheme deals with giving negative rewards as shown in Table 6 and positive rewards
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are given only for few conditions. One example that could lead to a negative reward
without the vehicle making any mistake is if the autonomous vehicle is close to the
vehicle in front and the overtaking lane is not free. As the vehicle is close to the
vehicle in front, a negative reward of -5 (based on row 3 of Table 6) is given to the
driving agent during each time step the vehicle is below 160m to the vehicle in
front. The vehicle cannot also move to the overtaking lane as that would give a
higher negative reward of -101 (in case of collision). Hence to avoid getting the
negative reward it needs to slow down, such that when the vehicle in front is at a
distance greater than 160m, it will start getting a reward of 0. Hence it avoids
getting the negative reward but the already attained negative reward is not com-
pensated with positive reward. Hence the total reward in the episode might still be
negative even though the driving agent behaved as expected.
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Figure 24 Total Rewards attained by the driving agent in each episode

The snapshots of the simulation output showing the overtaking procedure in a 3
lane highway environment is shown in Figure 25 to Figure 30.

In Figure 25, the autonomous vehicle(blue coloured vehicle) is just inserted in
the driving lane. Hence the driving algorithm will base its decision only based on
the vehicle parameters of the vehicles in front and in the left lane. As there is a
vehicle close by in front, the action taken by the vehicle is to move to the overtaking
lane. Which is the lane to the left as shown in Figure 26.
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Figure 25 The autonomous vehicle (blue) is inserted into the simulation

Once in the second lane, the driving algorithm uses the vehicle parameters of the
surrounding vehicle in the first lane, second lane and also the third lane to take the
appropriate action. As there is a vehicle close by in front and the third lane is free,
the driving algorithm decides to change to the third lane as shown in Figure 27.

Figure 26 The autonomous vehicle (blue) moves to the 2 lane for overtake

Figure 27 The autonomous vehicle (blue) moves to the third lane for overtake

As the third lane is free, the autonomous vehicle increases its velocity and over-
takes the vehicles in the second lane as shown in Figure 28. Once it has finished
overtaking and the second lane becomes free, the autonomous vehicle returns to
the second lane to avoid accumulating negative rewards as shown in Figure 29.
Once back in the second lane the driving algorithm again uses the vehicle parame-
ters of the surrounding vehicles of all the three lanes and it finds out that even lane
1 is free. Hence the vehicle is moved back to lane 1 (driving lane) to avoid accu-
mulating negative rewards for being in an overtaking lane unnecessarily. This is
shown in Figure 30.
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Figure 28 Overtaking the vehicle in second lane

Figure 29 Autonomous vehicle (blue) back in the second lane after overtake

Figure 30 Autonomous vehicle (blue) back in the driving lane

The probability of collision with this trained driving algorithm on test simula-
tions is was found to be between the confidence interval of 0.08 and 0.14 using the
Clopper Pearson Binomial confidence method. Figure 31 shows the frequency dis-
tribution of the distance travelled by the autonomous vehicle during the test sim-
ulation in a 3 lane highway environment. The average distance travelled by the
vehicle was 1842m, which means that its average speed was 18.42m/s.

The performance of the same driving algorithm on a 2 lane highway environment
with the same traffic density was also tested and the probability of collision was
found to be between 0.015 and 0.048 in a simulation of 500 episodes. Figure 32
shows the frequency distribution of the distance travelled by the autonomous vehi-
cle during the test simulation in the 2 lane highway environment. The average
distance travelled was 1340.1m, which means that the average speed of the auton-
omous vehicle was 13.4m/s.
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Histogram Distance Travelled, Mean 1842.45, 5D 138.779
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Figure 31 Frequency distribution of distance travelled in a simulation with 500 episodes

It can be observed from the collision probabilities that the probability of collision
is lower in a two lane system than in a 3 lane system with this driving algorithm.
The reason for this is because, the number of overtaking possible in the 3 lane
system is higher than in a 2 lane system, as the traffic density is the same. Hence
in a 2 lane system, the vehicle would have to follow the vehicle in front more than
overtaking it. This can be shown by the average distance travelled by the autono-
mous vehicle in both these environments shown in Figure 31 for a 3 lane system
and Figure 32 for a 2 lane system.

In Figure 31, the mean distance travelled by the autonomous vehicle is 1842.45
meters which means the average speed of the vehicle in that simulation was 18.42
m/s (as the simulation was for 100 seconds) which is a lot higher than the average
velocity calculated from Figure 32 which comes to be 13.4 m/s. Hence in the 2 lane
system, the vehicle is not able to do a lot of overtakes as in a 3 lane system due to
lower number of lanes for the same traffic density.

In the current driving algorithm as the collisions are possible only during lane
change and as the number of lane changes are higher than the lane changes in a 2
lane environment, the collisions in a 3 lane environment is higher.
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Histogram Distance Travelled, Mean 1340.1, SD 372.979
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Figure 32 Frequency distribution of distance travelled in a simulation with 500 episodes

It can also be observed that the probability of collision in the two lane highway
with this method is way lower than the probability of collision measured with the
initial design which gave a collision percentage between 5.4% and 10.2%. This
might be because of the extra output action in the generic implementation which
tells the vehicle to maintain the same state. This was not present in the initial
design as there were only two lanes and hence it was assumed that if the vehicle
had to remain in the same state, then the action corresponding to moving to that
lane can be selected. This means there are two actions that is related to staying in
the same state and the driving algorithm needed to select the correct one based on
the current input state. This might have reduced the performance of the driving
algorithm which resulted in higher number of collisions.

8.2 Performance of the driving algorithm during com-

munication error and limited communication range

As discussed in Section 7.4, The performance of the driving algorithm was tested
with limited communication range and during loss of communication packets. The
testing was done by inducing a probability of packet loss for different communica-
tion ranges in a 2 lane highway environment. It was observed that, by training the
driving agent with packet loss, the agent did not learn much as its input states
were not accurate due to packet loss. Hence the agent learnt to be cautious and
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drive the autonomous vehicle at very low speed below 9m/s so as to avoid any
collisions. This also prevented the vehicle from overtaking any other vehicle in the
highway. Therefore, training the driving algorithm was done with no packet loss so
as to test how a fully learnt driving agent can cope with packet loss.

Figure 33 shows the percentage of collisions for 3 scenarios of packet loss with
increase in communication range and the average distance travelled by the auton-
omous vehicle during these simulations is given in Figure 34. It can be seen that
when the communication range is 0, then it means that the vehicle does not get
the information of any surrounding vehicles, but the collision percentage of all the
three plots are 0%. This is because, as the driving algorithm assumes there are no
vehicles in the vicinity, the autonomous vehicle will only travel in the driving lane.
As it approaches a vehicle in front, the collision avoidance system in the autono-
mous vehicle will automatically detect the vehicle in front and slow down the au-
tonomous vehicle. This can be seen in Figure 34 where the average distance trav-
elled by the autonomous vehicle for all the three plots when the communication
range is 0, is very low at 900m. The average speed of the autonomous vehicle was
9m/s which is slower than the velocity of all the other vehicles in the simulation.
When there is no packet loss, then until the communication range is 200 meters
the average collision percentage is quite high especially until 30 meters where the
collision percentage is around 61%. Above the communication range of 200 meters
the collision percentage is quite close to the normal collision percentage achieved
during this research which is below 10%. Hence this means that the driving algo-
rithm should at least get the vehicle parameters of the vehicles within a range of
200 meters from the autonomous vehicle to make correct and safe decisions even
when there is no possibility of packet loss.

The number of collisions increases drastically when there is loss of packets as
shown by the plot corresponding to collision percentage in case of 50% packet loss.
As data is missing at random times, the driving agent senses that a vehicle is not
present even when it is there. Most of the collisions that happen here is when the
autonomous vehicle tries to move back to the driving lane from the overtaking lane,
when the driving agent mistakenly senses that there is no vehicle present in the
driving lane to overtake. For example, suppose the autonomous vehicle is in the
driving lane and there is a vehicle close to it in the front. If the communication
takes place in this step, then the driving agent knows that a vehicle is present in
the front and it decides to move the autonomous vehicle to the overtaking lane.
Now while overtaking if there is an error in communication and data doesn’t come
through, then the autonomous vehicle will have no clue of the position of the sur-
rounding vehicles. Hence the driving agent will assume that the autonomous vehicle
is in the overtaking lane unnecessarily and will move it back to the driving lane
based on the current reward mechanism. In reality though, as there is already a
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vehicle in the driving lane, there is a high possibility of collision with this vehicle
while moving back to the driving lane. Hence the high amount of collisions.
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Figure 33 Collision percentage with increase in communication range for different packet loss

From Figure 34, it can be observed that there is a large variation in the plot
corresponding to the average distance travelled by the autonomous vehicle during
50% packet loss. The reason for this is still not clear, but one of the reasons for this
might be that the average distance is calculated on the episodes where the auton-
omous vehicle successfully finishes its episode without a collision. When the packet
loss is 50%, the collision percentage was around 98% as can be seen from Figure
33. As testing is done on 500 episodes, this means only distances covered in 10
episodes are taken for calculating the average distance. Hence as the average dis-
tance is calculated in less number of episodes, there might be a big deviation in the
average distance travelled by the autonomous vehicle.
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Figure 34 Average distance travelled with increase in communication range for different packet loss

When there is packet loss at all time, then the scenario is similar to when the
communication range is Om. As the driving agent will not have any idea of the
distances with the vehicles around it, it would assume that there are no vehicle
surrounding it and the autonomous vehicle will be driven only in the driving lane.
Hence the collision avoidance system on the vehicle will prevent collisions with the
vehicle in front. As a result the collision percentage during 100% packet loss is 0%
as shown in Figure 33. Also as the vehicle only moves in the driving lane, it does
not do any overtakes and hence the average distance travelled by the autonomous
vehicle is also quite low at around 900m as shown in Figure 34.

The change in collision percentage with increase in packet loss is shown in Figure
35. It can be seen that as the probability of communication error increases, the
collision percentage also increases and finally when the communication error prob-
ability is 1, that is the autonomous vehicle does not receive any information of the
vehicles around it, it moves only in the driving lane and as a result the collision
avoidance system of the vehicle takes care that it doesn’t collide with the vehicle
in front. Hence the collision percentage becomes zero when the communication error
probability is 1.
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Figure 35 Collision Percentage with change in Communication Error Probability for communication range of
800m

8.3 Performance of the Driving algorithm with Error
Concealment Technique

In Chapter 7.4, to handle packet loss, an error concealment technique was de-
signed. The performance of the driving algorithm with this error concealment tech-
nique is given in Figure 36 and Figure 37. Figure 36 gives the collision percentage
of the autonomous vehicle for different communication range and three types of
packet loss. It can be seen that when there is no packet loss or when there is 100%
packet loss during the entire episode, then the collision plots are similar to the one
in Figure 33. This means that the error concealment technique does not affect the
performance of the driving agent in case of zero packet loss. When there is 100%
packet loss, this technique is not useful as it works based on the previous successful
reception of the surrounding vehicle information. Hence when packet loss is 100%,
the vehicle information of the surrounding vehicles is never got during the entire
episode and hence the algorithm works as it did without the error concealment
technique.

When there is a packet loss of 50% during the episode, the collision percentage
is 0% when the communication range is Om. This is again because the autonomous
vehicle keeps to the driving lane at all times and hence the collision avoidance
algorithm of the autonomous vehicle prevents it from colliding with the vehicle in
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front resulting in the autonomous vehicles moving at a slower velocity than the
slowest vehicle in the simulation as can be calculated from the average distance
plot given in Figure 37. Until around 30m of communication range, the collisions
are still higher, close to 70%. The percentage of collisions though is less than what
was observed in Figure 33 where it was above 90%. This is because, now even if
there is a communication error, the last known position of the vehicle is used as
the current position and hence the vehicle can still react based on that. As the
average speed of the autonomous vehicles is around 14m/s. The reaction time it
has when the surrounding vehicle is within 30m, is around 2.14s. This means 2 time
steps. Hence if there is a gap in communication for two consecutive, time step and
there is a vehicle nearby, within 30m then the possibility of collision is very high.
With increase in communication range the collisions decreases, as the autonomous

vehicle has more time to react using the last correct communicated information.
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Figure 36 Collision percentage for different communication ranges and different packet loss probabilities
and with implementation of error concealment technique

It can be observed from Figure 36 that the collision percentage is slightly lower
in case of 50% packet loss than when there is no packet loss. The reason for this
might be as the vehicles all travel in the same direction, taking an action based on
the last position of the vehicle may not create a scenario for collision. As already
explained, in this research collisions are only possible during lane change. Hence a
collision can happen if the autonomous vehicle tries to change from the driving lane
to the overtaking lane or when the autonomous vehicle tries to change from the
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overtaking lane to the driving lane. Suppose there is a loss of packet during a time
step when the autonomous vehicle is behind another vehicle in the driving lane. To
decide whether to move to the overtaking lane or not, the driving agent will use
the previous distances with the surrounding vehicles. By this time the vehicle in
front would have already moved further and hence using the previous distances will
not cause a collision with that vehicle while coming back to the driving lane after
overtaking. However, there is a possibility of colliding with a vehicle while changing
to the overtaking lane. This is possible if there was a vehicle further behind in the
overtaking lane while there was no loss in communication packets, but due to
packet loss at the time of overtaking, that distance is used by the agent to decide
to move to the overtaking lane. This might lead to a collision for the autonomous
vehicle and the vehicle behind in the overtaking lane. As can be calculated from
Figure 37 the average speed of the autonomous vehicle during 50% packet loss is
between 12 and 15m/s. Hence for a vehicle to overtake the autonomous vehicle, it
should have a maximum speed greater than 12m/s. As can be seen from Table 7,
only one type of vehicle have a maximum speed great than 14m/s. Hence only they
are capable of overtaking the autonomous vehicle. As the probability of insertion
of this vehicle into the simulation is quite low (=0.01), the chance of this condition
occurring is also quite low. This might be the reason for lower number of collisions.
Still more study and testing needs to be done with different traffic rates to find if
this is the correct reason for this behaviour.

2600

gigg —— Average Distance travelled with no packet loss
2300 Average Distance travelled with 50% packet loss

%%88 —— Average Distance travelled with 100% packet loss

2000
1900
1800
1700
1600
1500
1400 .'\-‘\h A
%ggg ||| '\va\,v_ﬂwﬂ-'v-‘—mu' i ‘W ‘-"“-’M L
1100 |
1000 1
800
700
600
500
400
300
200
100

Average Distance Travelled {(m)

RN LA UL LA ELL B AL AL AL I LR DAL LI AL DAL AL AL I LA UL BLELL UL LI B
0 100 200 300 400 500 600 700 800
Communication Range (m)

Figure 37 Average distance travelled by autonomous vehicle for different communication range and
packet loss probabilities
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The change in collision percentage for the driving algorithm with the implemen-
tation for error concealment with respect to increase in communication error prob-
ability is shown in Figure 38. It can be seen that the collision percentage is very
low when compared with the one got in Figure 35 and is within 6%. Hence it is
possible to use certain techniques in the driving algorithm to cope with communi-
cation packet loss.
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Figure 38 Collision Percentage with change in Communication Error Probability for communication range of
400m
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9. Conclusion and Recommendation

Four research goals were introduced in Section 1.2. This chapter gives the con-
clusions reached on these goals and also give certain recommendations that can be
used for further improving and continuing with this research.

9.1 Conclusion

The first goal of this research was to investigate to what extent reinforcement
learning using Q learning can be used with cooperative driving to manoeuvre an
autonomous vehicle in a multi-lane highway. For this a driving algorithm was de-
signed with a driving agent using Deep Q Neural Networks for controlling a vehicle
in a highway environment by changing the lanes or by accelerating or decelerating
depending on the vehicle information got from the surrounding vehicles. The sim-
ulation of the driving algorithm produced around 20.5% to 28.4% of collisions in
500 episodes, even though collision avoidance was the main criteria in the reward
system. Hence it is better to have collision avoidance as an external entity to the
driving agent, such that the action taken by the driving agent is only executed by
the driving algorithm if it does not lead to a collision. An implementation similar
to this where the collision avoidance entity takes care of not causing a rear end
collision with the vehicle in front was tested and this bought the collision percent-
age to below 10% as now the collisions that happen are only during lane changes.
Hence if an intelligent collision avoidance system can be designed which can take
the output from the driving agent and check if that could cause a collision or not
before the vehicle performs that action, then the collisions can completely be
avoided. Other than the high collisions, the driving algorithm worked as expected,
with the autonomous vehicle being able to overtake the slow moving vehicles and
also allowing the faster moving vehicles to overtake it by getting back to the driving
lane after overtaking. Hence reinforcement learning can be used with cooperative
driving to control the vehicle effectively, but another entity is required to prevent
the vehicle from colliding with the surrounding vehicles.

The second goal of this research was to investigate the influence with change in
the number of hidden layers and the number of nodes in a deep Q network on the
performance of the driving algorithm. It was observed in this research based on the
results given in Chapter 6.2, that there are no direct relations between the number
of nodes and number of hidden layers of the neural network and the performance
of the driving algorithm. In this research the best performance was achieved by
using 3 hidden layers and between 1400 to 1700 nodes in each of the hidden layers.
Having low number of nodes in each hidden layer gave a bad performance, with
high number of collisions or the driving algorithm only trying to avoid collisions by
not making any overtakes and travelling slowly.

Aashik Chandramohan (S1789619) 71 Master of Science Thesis



Conclusion and Recommendation

The third goal of this research was to investigate the role of communication
range on the performance of the driving algorithm. From the results in Chapter 8.2
it is found that the minimum communication range should be at least 200m, for
the driving agent to take the correct decisions as for the communication range
below this the collisions taking place were a lot higher.

The final goal of this research was to investigate the effect of packet loss due to
communication error on the performance of the driving algorithm. Again based on
the results in Chapter 8.2, loss of communication packets have a large negative
influence on the performance of the driving algorithm. The collision percentage
when the probability of packet loss was 0.5 during each time step was found to be
more than 95% even when the communication range was greater than 200m. To
solve this problem an error concealment technique was designed that used the in-
formation from the previous successfully received packet as the current packet in
case of packet loss. By doing so the collision percentage was again brought down
to be below 10% which is within the normal performance achieved in this research.

Having a higher level reward system for the driving algorithm helped in making
the driving algorithm more generic which can be used in multilane highway envi-
ronment as here the rewards are mainly based on the road rules like following the
speed limit, avoiding an accident, overtaking from the left side and maintaining a
certain gap from the vehicle in front, which are the same in all the highways.

Finally, it can be concluded that reinforcement learning using cooperative driving
is a prospective approach for autonomous driving, but more research needs to be
conducted to make sure that the actions resulting from the learning agent is does
not cause any undesirable consequences. Reinforcement learning is mainly based on
the reward system, as actions are taken to maximize the rewards. Hence having a
good reward system is crucial for using reinforcement learning in autonomous driv-

ing.

9.2 Recommendations

In this research the rear end collision is avoided by SUMO. Hence no implemen-
tation for that had to be done in the driving algorithm. In the real scenario though
a mechanism needs to be designed outside the driving algorithm that can monitor
for possibilities of collisions and give outputs to the driving algorithm such that it
can take the appropriate action to avoid the collision.

The driving algorithm can be made more efficient with the experience replay
running parallel to the actual simulations. This would mean that the learning would
be a lot faster, but achieving this design would be complex as both the experience
replay and the simulations would modify the neural network. This would mean
there would be a high chance of data sharing between the two threads which could
lead to data corruption.
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In this research the communication error was considered in the receiver side such
that in case of error in communication, the autonomous vehicle would not receive
information of all the surrounding vehicles. Another possibility is if there is a com-
munication error in the transmission side, such that the autonomous vehicle would
receive information of certain vehicles but not of all the vehicles surrounding it.
Another problem related to communication could be, if the message being trans-
mitted is corrupted or if there is a delay in receiving the message. The performance
of the driving algorithm for these cases also needs to be tested.

The handling of communication error in this research was done by using the
previous positions of the surrounding vehicles and using this positon as the new
position of these vehicles in case of communication error. A better approach would
be to calculate the new position of the surrounding vehicles based on their older
positions and their current velocity and acceleration rates. As the communication
is considered to happen during every time step, which is in every second. If the
time when the successful communication occurred is known, the new position can
be found based on the time elapsed. This would give more accurate information of
the surrounding vehicle’s position which is an important detail for avoiding colli-
sions. This method of course would assume that the vehicle’s velocity and its rate
of acceleration are still the same. Hence this is useful, if the communication error
is only for a few seconds as within this time there won’t be a big difference in its
positon.

The driving algorithm developed in this research only used the vehicle parame-
ters of the immediate surrounding vehicles. Having the information of the vehicles
in the next level, that is the surrounding vehicles of the surrounding vehicles to the
autonomous vehicle might help the driving algorithm to get more knowledge about
what is about to happen in the environment.

This research assumed that other surrounding vehicles are all manually driven
and that the drivers drive perfectly without making any errors. Testing also needs
to be done on how the driving algorithm behaves on imperfect driving of the other
vehicles and how the performance would be if all vehicles in the simulation were
also autonomous vehicles.
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The SUMO configuration files used for this research are given in this Appendix.

Road Network file

<net version="0.27" xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://sumo.dIr.de/xsd/net_file.xsd">

<location netOffset="0.00,0.00" convBoundary="0.00,0.00,5000.00,0.00" origBoundary="-10000000000.00,-
10000000000.00,10000000000.00,10000000000.00" projParameter="1"/>

<edge id="Lane" from="gnel0" to="gneJ1" priority="1" length="40000.00">
<lane id="Lane_0" index="0" speed="22.22" length="40000.00" shape="0.00,-4.95 5000.00,-4.95"/>
<lane id="Lane_1" index="1" speed="22.22" length="40000.00" shape="0.00,-1.65 5000.00,-1.65"/>

</edge>

<junction id="gnelJ0" type="dead_end" x="0.00" y="0.00" incLanes="" intLanes="" shape="0.00,-0.05 0.00,-
6.55"/>

<junction id="gneJ1" type="dead_end" x="5000.00" y="0.00" incLanes="Lane_0 Lane_1" intLanes=
shape="5000.00,-6.55 5000.00,-0.05"/>

</net>

Algorithm 3 The Highway Net file defining the read layout
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Vehicle Route file

<routes>

<vType id="Auto" accel="30.000000" decel="30.000000" sigma="0.500000" maxSpeed = "55.550000"
length="3.000000" color="0,0,255" vClass="passenger" minGap="0" tau="0.1"/>

<vType id= "Car" accel="30.000000" decel="30.000000" sigma="0.500000" maxSpeed ="11.100"
length="3.000000" color="255,0,0" vClass="passenger" minGap="10" tau="0.1"/>

<vType id= "FastCar" IcKeepRight="100" accel="30.000000" decel="30.000000" sigma="0.500000" maxSpeed =
"55.550000" length="3.000000" color="255,0,255" vClass="passenger" minGap="10" tau="0.1"/>

<route id="Straight" edges="Lane"/>

<flow id="SlowCar" color="255,0,0" begin="0" end="200" probability="0.1" type="Car">
<route edges="Lane"/>

</flow>

<flow id="FastCar" color="255,0,255" begin="0" end="200" probability="0.01" type="FastCar">
<route edges="Lane"/>

</flow>

<vehicle id="Auto" color="0,0,255" depart="60" route="Straight" type="Auto"/>

</routes>

Algorithm 4 Vehicle Route File used without collision avoidance
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<configuration>
<input>
<net-file value="StraightRoad.net.xml"/>
<route-files value="StraightRoad.rou.xml"/>
<collision.action value="remove"/>
</input>
<time>
<begin value="0"/>
</time>
<report>
<verbose value="true"/>
<no-step-log value="true"/>
</report>
<gui_only>
<quit-on-end value="true" />
<start value="true" />
</gui_only>
<random_numberType>
<random value="true" />
</random_numberType>
<processing>
<lanechange.overtake-right value="false" />
</processing>
</configuration>

Algorithm 5 SUMO Configuration file
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Details about the APIs from TraCl and Keras used in this research is given in

this chapter.

APIs from TraClIl

Table 8 below shows the APIs from TraCI used in this research for controlling

the simulation environment and for accessing the vehicle information from the sim-

ulation and to give out the actions to the autonomous vehicle. The entire list of all
the APIs available in TraClI can be found in [39]

S.No Name of the Function Description

1 traci.close() Close interface  with
SUMO.

2 traci.start(sumoCommand) Start SUMO and load
the SUMO configuration.

3 traci.load(sumoCommand) Load SUMO configura-
tion.

4 traci.simulationStep() Run one time step in the
simulation.

5 traci.vehicle.getIDList() Returns the ids of all the
vehicles currently active
in the simulation.

6 traci.simulation.getCurrent Time() | Returns the current sim-
ulation time in ms.

7 traci.vehicle.subscribe(vehID, param- | The parameters sub-

eters to subscribe)

scribed by this command
for the vehicle id is up-
dated after each simula-
tion step and can be got
with the next function.
The parameters sub-
scribed are :- VehSpeed
(m/s), VehPosition (in
X,y coordinate),
VehLanelndex, Ve-
hTravellDistance (in m).
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8 traci.vehicle.getSubscriptionResults() | Returns the latest values
of the subscribed param-
eters of all the subscribed

vehicles.

9 traci.vehicle.getSpeedMode() Used to find the car fol-
lowing model, returns a 5
bit number

10 traci.vehicle.setSpeedMode(vehID, | To set the car following

modeValue) model for the VehID. For

disabling the automatic
collision avoidance sys-
tem, the 3 and 4™ bit of
modeValue should be 0.

11 traci.vehicle.setLaneChangeMode(ve- | This is used for disabling

hID, modeValue) automatic lane change of
the autonomous vehicle
by the simulator as this
action needs to be done
by the driving algorithm.
For this the modeValue
needs to be 0.

12 traci.vehicle.changeLane(vehlID, Moves the vehicle with id
lanelndex, time) vehID to the lane given
by lanelndex for the time
provided. The time is
given to be very long so
that the vehicle remains
in that lane until another
action changes it to a dif-
ferent lane.

13 traci.vehicletype.getMaxSpeed(ve- | Gets the maximum speed
hID) the vehicle can travel at.

14 traci.vehicle.slowDown(vehID, tar- | Accelerates or deceler-
getSpeed, time) ates the vehicle to the

target speed(m/s) in the
time(ms) provided.

15 traci.lane.getMaxSpeed(lanelD) Returns the speed limit

of the lane.
Table 8 APIs from TraCl used in this Research
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APlIs from Keras

Table 9 below gives the functions from the Keras library used in this research
for the driving agent. The list of all APIs available in Keras is given in [52].

S.No Name of The Function Description
1 model. Add(LayerProperties) This is used to add a
layer to the neural net-

work. The LayerProper-
ties consists of the num-
ber of nodes in the layer,
its activation method
and the initial weights
for the nodes.

2 model.compile(lossFunction, opti- Configures the model for
mizer) training.
3 model.predict(stateSet) Generate the output Q

values for each of the
state from the current

State.
4 model.fit(stateSet, TargetValues, Trains the neural net-
epochs) work for the given num-

ber of epochs.
5 model.load_weights(filePath) Loads the weights of the
nodes in the neural net-

work from an existing file
so that the agent need
not be retrained during

each simulation.

6 model.save_ weights(filePath) Save the weights of the
nodes in the neural net-
work to filePath.

Table 9 APIs from Keras used in this Research
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