
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

SimpleNLG-NL:
Natural Language Generation

for Dutch

Ruud de Jong
M.Sc. Thesis
August 2018

Supervisors:
Dr. Mariët Theune

Prof. dr. D.K.J. Heylen

Human Media Interaction
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Summary

This thesis presents SimpleNLG-NL, a Dutch adaptation of SimpleNLG.
SimpleNLG is a Java-based surface realiser, which performs the last step
in Natural Language Generation. Natural Language Generation is the pro-
cess of transforming non-linguistic information into understandable texts.
With SimpleNLG-NL, developers and researchers can generate Dutch sen-
tences based on dynamically generated input. SimpleNLG-NL was devel-
oped using an iterative process recreating sentences from a Wikipedia
corpus. After four rounds, out of 86 sentences for which the input was
manually written, a total of 75 (87.2%) could be generated in an accept-
able manner. 69 of those were exact matches (80.2%). A proof-of-concept
demonstrates that dependency trees can be automatically converted into
input code for SimpleNLG-NL. In the current state, the proof-of-concept
can only handle basic sentences, but the coverage can be increased by
continuing the same development method. A more advanced version can
be useful to quickly generate multiple variants of a sentence, for instance.

SimpleNLG-NL will be released as open source software. Several sug-
gestions for further development are made.

iii

IV SUMMARY

Contents

Summary iii

List of Figures ix

List of Listings xi

List of Tables xiii

1 Introduction 1

2 What is NLG? 7
2.1 Uses of NLG . 7
2.2 Steps of NLG . 8
2.3 Rule-based NLG . 9
2.4 Template-based NLG . 10
2.5 Corpus-based NLG . 11
2.6 Conclusion . 12

3 SimpleNLG 13
3.1 Using SimpleNLG . 14
3.2 Technical structure . 17
3.3 Other languages . 18

3.3.1 French . 18
3.3.2 German . 19
3.3.3 Italian . 19
3.3.4 Brazilian Portuguese 20
3.3.5 Filipino . 21
3.3.6 Telegu . 21
3.3.7 Spanish . 22

v

VI CONTENTS

3.4 Conclusion . 22

4 Method 25
4.1 Four rounds . 27

4.1.1 Round 1 . 27
4.1.2 Round 2 . 27
4.1.3 Round 3 . 28
4.1.4 Round 4 . 29

4.2 Correctness criteria . 29

5 Implementing Dutch grammar 31
5.1 Grammar rules implemented 31

5.1.1 General spelling rules 31
5.1.2 Lexicon . 32
5.1.3 Nouns . 33
5.1.4 Verbs . 34
5.1.5 Adjectives . 39
5.1.6 Word order . 42
5.1.7 Aggregation . 45
5.1.8 Interrogative sentences 47
5.1.9 Punctuation . 47

5.2 Files changed . 48
5.3 Results . 48
5.4 Known issues . 50
5.5 Conclusion and discussion 51

6 Using SimpleNLG-NL with parse trees 57
6.1 Introduction . 57
6.2 Method . 59

6.2.1 Alpino XML structure 61
6.2.2 Subjects . 64
6.2.3 Verb phrases . 64
6.2.4 Objects . 67
6.2.5 Modifiers . 67
6.2.6 Complements . 67

6.3 Evaluation . 69
6.4 Conclusion and discussion 75

CONTENTS VII

7 Discussion 79

8 Conclusions 81

9 Future work 83

References 87

Appendices

A Sentence generation results 91

B Proof-of-concept results 101

VIII CONTENTS

List of Figures

6.1 Interaction between the three modules of the proof-of-concept. 60
6.2 Parse tree generated by Alpino. 62
6.3 Dependency tree as used in SimpleNLG-NL. 63
6.4 Dependency tree showing Java methods of SimpleNLG-NL. 63
6.5 Parse tree for a future perfect sentence with a prepositional

phrase. 74

ix

X LIST OF FIGURES

List of Listings

3.1 Example of the minimum input for SimpleNLG. 15
3.2 Example input for SimpleNLG. 16
5.1 Example lexicon entry. 32
5.2 Example usage of the premodifier method. 42
5.3 Example of aggregation. 45
5.4 Example input for a sentence with a relative clause. 46
6.1 Example of an Alpino XML dependency tree. 61
6.2 Source code for converting Alpino subject to SimpleNLG-NL. 65
6.3 Pseudo-code for retrieving the main verb. 66
6.4 XML dependency tree for Marie probeert de bal te gooien. . 68
6.5 The grammatical coverage of the converter. 70
6.6 Example of using a string as input for setVerb(). 71
6.7 Example of using a VPPhraseSpec as input for setVerb(). . 72

xi

XII LIST OF LISTINGS

List of Tables

5.1 Noun pluralisation . 35
5.2 Verb inflection . 37
5.3 Adjective inflection . 41
5.4 Reflexive pronouns. 45
5.5 Interrogative sentences supported by SimpleNLG-NL. . . . 47
5.6 Interrogative sentences supported by SimpleNLG-NL. . . . 54
5.7 Final results. 55

6.1 Input sentences resulting in the same SimpleNLG-NL tree. 75
6.2 Input sentences with objects resulting in the same SimpleNLG-

NL tree. 76
6.3 Input sentences with prepositional phrases. 77

A.1 Sentence results of Round 1. 93
A.2 Sentence results of Round 2. 96
A.3 Sentence results of Round 3 (medium length). 97
A.4 Sentence results of Round 3 (long). 99

B.1 Initial results of converted sentence realised in multiple ways,
using a string as input for setVerb(). 102

B.2 Results of converted sentence realised in multiple ways, us-
ing a VPPhraseSpec as input for setVerb(). 103

B.3 Final results of converted sentence realised in multiple ways,
using a string as input for setVerb(). 104

B.4 Input sentences with modifiers. 105

xiii

XIV LIST OF TABLES

Chapter 1

Introduction

Natural Language Generation (NLG) is the process of generating under-
standable texts from non-linguistic information using computational knowl-
edge of the desired output language (Reiter & Dale, 2000). For example,
an NLG system can take weather predictions in the form of numbers and
transform that data into text that is understandable by humans. Creating
text computationally has the advantages of being quicker than humans
writing it manually, allowing for quick production of large amounts of text.
It can also make sure that every requirement for the text is fulfilled, with-
out human errors, although new problems may occur if the system is not
accurate or complete. Because NLG systems use a non-linguistic repre-
sentation of information as their starting point, output can be generated in
multiple languages.

An NLG system can be made up of multiple steps, from planning the
content to be described, all the way to applying the grammar rules of the
output language (see Section 2.2). The first step, as described by Re-
iter and Dale (2000), is to plan the document: what information should
be communicated and in what order? Next, the sentences have to be
planned. The words to use have to be chosen, referring expressions, such
as names and pronouns, have to be planned and in the case of multi-
ple sentences being merged (‘aggregation’), words may be left out or re-
placed. Lastly, the words are inflected and ordered correctly, together with
punctuation being added. This final step, called ‘surface realisation’, re-
sults in an understandable sentence. It is this surface realisation that this
thesis will focus on.

There are three main approaches for NLG: template-based, corpus-

1

2 CHAPTER 1. INTRODUCTION

based and rule-based. Template-based NLG uses templates similar to
the mail merge function in Microsoft Word: preprogrammed sentences
have gaps that are filled dynamically to form complete sentences. The
level of complexity of templates can differ. To a large extent, the docu-
ment and sentence planning is performed by writing the template. Corpus-
based NLG analyses a corpus of text and derives statistics from it. These
statistics can be used for, for example, lexicalisation (choosing words) and
surface realisation. Thirdly, the rule-based approach uses predetermined
rules in all three steps. A rule can prescribe to leave the chance of snow
out of a weather prediction if it is summer; the sentence planner may
choose words based on readability; and the surface realiser uses pro-
grammed grammar rules to realise a sentence. This thesis focuses on
surface realisation using a rule-based approach to NLG. A more detailed
comparison between the three approaches can be found in Chapter 2.

There are a few NLG systems available, only some of which are open
source. A few open source examples are NaturalOWL1 (Androutsopoulos
et al., 2013), OpenCCG2 and KPML3 (Bateman, 1997). All these systems
try to accomplish multiple steps in the sequential process of NLG.

In contrast, SimpleNLG (Gatt & Reiter, 2009) is a so called surface re-
aliser, taking the rule-based approach. It only performs surface realisation:
the last step in the sequential process of NLG. When generating texts from
non-linguistic information, the information about a sentence that has been
generated by the sentence planner has to be realised, that is, the chosen
words have to be put in the desired order and inflected according to the
grammatical rules built into the surface realiser.

SimpleNLG is a surface realiser that was built to be simple to use.
It is written in Java, which makes it usable on most operating systems.
The input for SimpleNLG consists of a clause in the form of a variable of
the class PhraseElement, to which the subject, verb and other elements
can be added using Java methods like sentence.setSubject("he") and
sentence.setVerb("run"). In this minimal example, the system would re-
turn “He runs.”. A more detailed description of using SimpleNLG can be
found in Section 3.1. Since its development in 2009, SimpleNLG has been

1http://nlp.cs.aueb.gr/software.html
2https://github.com/OpenCCG/openccg
3http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/README.html

http://nlp.cs.aueb.gr/software.html
https://github.com/OpenCCG/openccg
http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/README.html

3

adapted for multiple other languages besides the original English, how-
ever, it has not been adapted for Dutch. Having a Dutch version would
allow researchers and companies alike to realise sentences in Dutch cre-
ated by their own sentence planner. Such a Dutch adaptation was devel-
oped during this research and will be called ‘SimpleNLG-NL’.

SimpleNLG-NL will probably be used in the POSTHCARD4 project.
The POSTHCARD project is developing a simulation of Alzheimer pa-
tients. Such simulations can be used as a training for caregivers and
help them in their interaction with patients. While simulations for En-
glish and French will be built using a bilingual version of SimpleNLG,
SimpleNLG-EnFr (Vaudry & Lapalme, 2013), the Dutch simulation will
be using SimpleNLG-NL. Another project for which it may be useful is
Data2Game5, a project that researches the use of a serious game in a
training for crisis teams. Such teams are formed by the regional emer-
gency services and the municipality, a.o. The project group Data2Game
intends to build a simulation of a crisis scenario, such as a derailed train
releasing toxic gasses, which will train the personnel to handle the situa-
tion correctly. SimpleNLG-NL can be used to realise dynamically created
content, such as fake news articles or tweets, which inform or purposefully
distract the player.

The research described in this thesis tried to answer the following re-
search questions:

R1: How can SimpleNLG be adapted for Dutch? This is the main
question that will be answered using the answers to its subquestions.

R1.1: How can the subset of Dutch grammar to be implemented be
determined? Dutch grammar is a large collection of rules and excep-
tions. A subset has to be determined to simplify the grammar to a complex-
ity that is feasible to implement in SimpleNLG-NL. In this context, Dutch
grammar’ covers phonology, morphology and syntax.

4http://posthcard.eu/
5https://www.nwo.nl/en/research-and-results/research-projects/i/02/

28502.html

http://posthcard.eu/
https://www.nwo.nl/en/research-and-results/research-projects/i/02/28502.html
https://www.nwo.nl/en/research-and-results/research-projects/i/02/28502.html

4 CHAPTER 1. INTRODUCTION

SimpleNLG-NL was developed using a process that iteratively increased
the coverage of Dutch grammar in SimpleNLG-NL. Using the bilingual
SimpleNLG-EnFr as a basis, sentences from a Wikipedia corpus were
used as realisation targets. For each sentence, the input code for Simple-
NLG-NL was written and the system was run to realise the input. The
resulting sentence was compared to the target sentence and any differ-
ences were analysed. This analysis was then used to determine the Dutch
grammar rules that needed to be implemented in SimpleNLG-NL. As the
system was based on the French part of SimpleNLG-EnFr, the first sen-
tences would use French grammar. As the process went along, the Dutch
grammar became more and more prevalent. The development process is
described in Chapter 4.

R1.2 ”What parts of SimpleNLG have to be changed to implement
Dutch grammar?” SimpleNLG is divided into modules, with each multi-
ple classes inside. This research question explores the internal structure
of SimpleNLG and what parts of it have to be changed to adapt it for Dutch.
The structure of SimpleNLG is described in Chapter 3, while the specific
files that were changed are noted in Section 5.2.

R1.3: How can SimpleNLG-NL be evaluated? Evaluating Natural Lan-
guage Generation systems can be done in multiple ways. In the case of
SimpleNLG-NL, it was evaluated during the iterations of development. Af-
ter each iteration, the resulting generated sentence was manually checked
by comparing it with the target sentence. A sentence was accepted as be-
ing correct if it met one of the correctness criteria described in Section 4.2.
If the result did not match the target sentence exactly, but differed only in a
way that kept the meaning intact (e.g. extra, unnecessary punctuation or
word order), the sentence was accepted as correct.

R2: How can SimpleNLG-NL be used to generate sentence varia-
tions? The second main question is aimed at a potential use case of
SimpleNLG-NL. It explores how scenario writers for serious games can
use SimpleNLG-NL to writes sentence variants in a semi-automated fash-
ion. The answer to its subquestion will be used to answer this.

5

After SimpleNLG-NL was built, a prototype was created to show a po-
tential use case. This proof-of-concept consisted of a Java program that
converts dependency trees of sentences into input for SimpleNLG-NL, al-
lowing the user to generate multiple variations of the same input sentence.

These variations allow, for example, game copywriters to quickly pick a
different variant of their sentence to increase variety. It can also be used
to rewrite articles when the described future events have turned into past
events.

R2.1: ”How can parse trees be used with SimpleNLG-NL?” The an-
swer to this question will provide a method of using parse trees with Simple-
NLG-NL, which can then be part of the system answering question R2.

The proof-of-concept built after SimpleNLG-NL uses dependency trees
to gain information about an input sentence. The user can feed it a sen-
tence, which will be parsed by the Dutch Alpino parser (Bosch et al., 2007).
The resulting tree, containing information about the words and their roles
in the sentence, is read by a converter, which traverses the tree and writes
the corresponding input for SimpleNLG-NL. SimpleNLG-NL then realises
the input in multiple tenses, voices (active and passive) and forms (per-
fect).

This research consisted of two phases in accordance with the two main
research questions. The first phase was used to build SimpleNLG-NL. The
second phase was aimed at answering research question R2 by building
a proof-of-concept system.

This document starts with describing Natural Language Generation,
its uses and multiple approaches to it (Chapter 2). It then focuses on
SimpleNLG in Chapter 3 to explain how it is used and its technical architec-
ture. Also, adaptations for other languages, such as Spanish and German,
are described. Chapter 4 explains the method used to build SimpleNLG-
NL, while Chapter 5 describes the subset of Dutch grammar covered by
SimpleNLG-NL and how it was implemented. The proof-of-concept that
generates sentence variants is described in Chapter 6. The results of both
phases are discussed in Chapter 7. Finally, the thesis is concluded in
Chapter 8 and future work is suggested in Chapter 9.

6 CHAPTER 1. INTRODUCTION

Chapter 2

What is NLG?

This chapter describes what Natural Language Generation is and how it
can be used. It also makes the distinction between three approaches to
NLG. This chapter is based on work performed by the author in preparation
of this graduation project.

2.1 Uses of NLG

NLG has been researched since the 1950s, and even more since the
1980s (Reiter & Dale, 2000, pp 19-20), but has only started to become
commercially viable in the last decade. With the large amount of data col-
lected by sensors and online user analysis, effective reporting of insights
gathered from the data has become a greater and more difficult task for
human workers. The time consuming task of writing understandable re-
ports can now be (partially) automated by the use of NLG. NLG systems
can take the data and turn it into information within minutes, if not seconds.

The simplest example, and one of the first examples, of a real-world
use of NLG is generating weather reports with systems like FOG (Goldberg
et al., 1994). The computer models used to forecast weather output large
amounts of numbers. The NLG system then takes those numbers, extracts
useful data from them and generates a text describing the most important
points. With this technology, weather forecasts can be generated live and
need not be (re)written manually by human forecasters. This saves time,
but also makes sure the user gets the most up-to-date information, when-
ever he requests it.

7

8 CHAPTER 2. WHAT IS NLG?

Similar to weather reports are reports on business intelligence. Busi-
nesses are constantly tracking large amounts of metrics, ranging from
sales numbers and client on-boarding to employee performance and web-
site usage. To make use of this data, the companies write reports. Under-
standably, this process takes a lot of time and effort. This is where NLG
comes in. Several companies (like Arria NLG1, Automated Insights2 and
Yseop3) allow businesses to input all their data, from which a report is gen-
erated automatically. As with the weather reports, this has the advantages
of saving time and effort, as well as having the very latest insights almost
instantly.

Besides reports, NLG can also be used in direct user interaction. This
can include chatbots4, but also (video) games5. Implementing NLG in such
systems allows the sentences to be different each time, making the user
feel more like he is interacting with a human, instead of a robot with pre-
programmed dialog. One step further would be to adapt the output based
on user preferences and/or behaviour. This would require an extra step in
choosing what to say and using which words.

Like many technologies, NLG, too, can be found in marketing. Phrasee6

uses an unspecified NLG method to generate copy with the optimal amount
of directness, friendliness and other marketing-specific ratios. The system
uses machine learning to optimise email subject headings, email bodies
and other texts. The company claims that their generated language out-
performs human language more than 95% of the time.

2.2 Steps of NLG

There are three main approaches for NLG: rule-based, template-based
and corpus-based. These approaches are described in Sections 2.3, 2.4
and 2.5, respectively. An NLG system has to perform multiple sequential
tasks. Reiter and Dale (2000) divide the tasks into three modules: docu-

1https://www.arria.com/
2https://automatedinsights.com
3https://yseop.com/
4https://dialogflow.com/docs/dialogs
5http://botcolony.com/
6https://phrasee.co/

https://www.arria.com/
https://automatedinsights.com
https://yseop.com/
https://dialogflow.com/docs/dialogs
http://botcolony.com/
https://phrasee.co/

2.3. RULE-BASED NLG 9

ment planning, microplanning and surface realisation.

1. Document planning

• Content determination: Determining the information to be com-
municated in the text.

• Document structuring: Structuring the story (by grouping and
ordering information).

2. Microplanning/sentence planning

• Lexicalisation: Choosing the words to use.

• Referring expression generation: Planning the use of referring
expressions (pronouns, names, descriptions, etc.).

• Aggregation: Merging sentences to increase information den-
sity and readability. For example, two sentences with the same
subject can probably be merged and the second mention of the
subject can be left out.

3. Surface realisation

• Linguistic realisation: Applying grammar, morphology and punc-
tuation to the sentence structures and their words. This con-
verts the abstract information into text.

• Structure realisation: Adding mark-up (like HTML or TeX) for
document presentation.

2.3 Rule-based NLG

As mentioned before, there are three main approaches to NLG: rule-based,
template-based and corpus-based. This section describes rule-based NLG.
During each step in this approach to the NLG process, rules determine the
outcome. For instance, the document planner may decide to leave out in-
formation based on a rule that determines the relevancy of that content.
Similarly, the sentence planner uses lexicalisation rules to choose the best
fitting words. In the last step of the NLG process, the surface realisation
engine will also use rules. Here, the set of rules describes the grammar

10 CHAPTER 2. WHAT IS NLG?

and semantics of the target language. These rules are then applied to the
words, based on the grammatical function they have each been given by
the sentence planner.

This method has the advantage of the rules being domain independent:
unlike grammar rules extracted from a context-specific corpus using statis-
tics, the rules in the rule-based approach are universal and not tailored to
just the systems context. The only limits are the systems knowledge of
vocabulary (in the form of a lexicon) and the completeness of the grammar
implemented in its rules. Another advantage is that, given great complete-
ness of the grammar, the generated text will be grammatically correct. Al-
though the use of proper grammar may result in texts that differ in writing
style from spoken words, the result may be suitable for use in business
reports and other documents requiring proper style.

One disadvantage is that applications may require specific rules or do-
main knowledge. More generally, each language requires its own set of
rules to be implemented. Some individual grammar rules may be usable
in other languages, but adding a new language requires a lot of work up-
front. This thesis describes an Dutch adaptation of the SimpleNLG surface
realiser, which required adding Dutch grammar rules.

2.4 Template-based NLG

A second approach is template-based: not unlike mail merge in text pro-
cessors like Microsoft Word, template-based NLG uses a template that is
populated with the required data, such as names. Some variables in the
template are replaced by single words or short sentences, often with only
simple inflection like plural rules applied. In the scientific research field,
this is often performed on individual sentences, creating more advanced
sentences by populating them with phrases, modifiers or other linguistic
elements (Reiter, 1995).

The advantage of this approach is that a template is created easily, the
author has great control over the final result and it is easy to instantiate
variables and add new ones. Since templates are often written on the
sentence level, the author takes the roles of both the document planner
and the sentence planner. Computationally, populating a template is very

2.5. CORPUS-BASED NLG 11

cheap and quick, as there are often only a few variables to be changed.
However, the downside of templates is the manual work that the author
has to put into the creation and maintenance of the template. Another
disadvantage is that, depending on the complexity of the templates and
the number of templates, the results often use a similar structure and/or
wording, therefore increasing the chances of a reader noticing that the text
is generated automatically. Both of these disadvantages can be reduced
by implementing more variables and more randomly chosen text elements
(Deemter et al., 2005). However, this would increase the amount of manual
labour during both creation and maintenance of the template. Research is
being done on the automated extraction of template from corpora, which
would reduce the manual work required, e.g. by Ell and Harth (2014).

2.5 Corpus-based NLG

Then there is corpus-based generation. Corpus-based NLG uses a body
of text to generate statistical models that can be used to choose words
(Gatt & Krahmer, 2018). This machine learning approach mimics the av-
erage writing style of the corpus. One simple approach would be to gather
statistics on n-grams (a sequence of n words) in the corpus. With those
statistics, one word can be given as input and the most common next word
can be calculated. This has the downside that it only has a ‘memory’ of
the last n words to base the choice of the next word on, which can result
in ungrammatical sentences. Another approach is to use a neural network
or a similar model that can also be used to plan the sentences. One ad-
vantage of using a corpus is the flexibility of the system: when (informal)
language evolves, the text domain is changed or another language is cho-
sen, the system can be updated by simply using a different corpus to train
the model. The structure and word choice of the generated sentences will
then be based on the new corpus. A disadvantage is that there is no guar-
antee for the grammatical correctness of the text, depending on the corpus
and the machine learning method. The corpus would need to be checked
for correctness and completeness of the used grammar and vocabulary
(Reiter et al., 2003).

12 CHAPTER 2. WHAT IS NLG?

2.6 Conclusion

The NLG process can be divided into three steps: document planning,
sentence planning and surface realisation. Each step requires input from
the step above. Surface realisation is the last step in the process and it is
the step on which this thesis focuses.

The surface realiser that will be adapted for Dutch is SimpleNLG, which
uses a rule-based approach. This has the advantage of being domain
independent. It requires only a lexicon that can be very general, or easily
extended with domain-specific jargon.

When combined with (a document planner and) a sentence planner,
SimpleNLG-NL may be useful for generating reports, dialog or other texts.
This will be explored to answer research question R2.

Chapter 3

SimpleNLG

SimpleNLG is an open source project started in 2006 by Ehud Reiter
(Reiter, 2016). It is a surface realiser library for Java, which allows it to
be used in applications on many platforms. It takes the rule-based ap-
proach to NLG and uses a lexicon to get its information about words and
their grammatical roles and inflections. The lexicon is a word list written
in Extensible Markup Language (XML). As SimpleNLGs first use was de-
scribing medical baby data, the lexicon was partially based on the NIH
Specialist Lexicon1, which includes medical terms and phrases (Gatt &
Reiter, 2009). The other part included general English entries. The re-
sulting lexicon contains over 300,000 entries. This lexicon is still available
for use in SimpleNLG, but by default, a much smaller lexicon with only
6314 entries is used. This much smaller file size (349 MB and 670 kB,
respectively) decreases the memory load of SimpleNLG, making it more
efficient.

Currently at version 4.4.8, SimpleNLG has seen several big changes.
The biggest change came with version 4.0: by removing the dependency
on a commercial library, SimpleNLG could be released under the Mozilla
Public License2, granting commercial use, too. With this new license, com-
panies are free to adapt and use SimpleNLG and sell it or its results. On a
code level, version 4 has brought modularization, described in Section 3.2,
which makes it easier for outside developers to adapt the system to their
needs.

1https://lsg3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/web/

index.html
2https://www.mozilla.org/en-US/MPL/

13

https://lsg3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/web/index.html
https://lsg3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/web/index.html
https://www.mozilla.org/en-US/MPL/

14 CHAPTER 3. SIMPLENLG

The efficiency of SimpleNLG was evaluated by measuring the time it
took to generate 26 summaries (Gatt & Reiter, 2009). Each summary was
generated 100 times, to be able to measure timing accurately. This is only
one way of assessing its performance, as will be shown in the sections
describing adaptations of SimpleNLG, under Section 3.3. This chapter
is largely based on work performed by the author in preparation of this
document. The next section will describe how to use SimpleNLG.

3.1 Using SimpleNLG

As SimpleNLG is just a surface realiser, all previous steps of NLG have to
be performed by another system. SimpleNLG requires input in the form
of words and their role in the sentence that it is supposed to build. It is
the task of the sentence planner to generate the input for SimpleNLG.
SimpleNLG was designed to allow (a combination of) both canned and
‘non-canned’ text as input (Gatt & Reiter, 2009). Canned text is text that
should not be inflected and should be printed as is, e.g. names. The
‘non-canned’ text will be subjected to the grammar rules programmed into
SimpleNLG. The developer using SimpleNLG will have to make sure that
the sentence planner output is written in or mapped to SimpleNLG input.

At the very least, every sentence in SimpleNLG needs a subject and
a verb. A sentence is started using the createClause() method and is
stored in a variable. This variable has methods to set its subject and verb.
A demonstration of this minimal code can be found in Listing 3.1. The
first three lines of code describe the initialisation of the lexicon, factory
and realiser. The lexicon is used to get information on word categories,
irregular inflections, usage and more. The factory is used to create the
sentence elements, e.g. the SPhraseSpec that is used as a variable class
for clauses. The realiser is used to actually perform the realisation of the
sentence. Note that it defaults to using the present simple tense.

3.1. USING SIMPLENLG 15

// These first lines are required regardless of the sentence

final static Lexicon lexicon = new XMLLexicon();

final static NLGFactory factory = new NLGFactory(lexicon);

final static Realiser realiser = new Realiser();

// Start the creation of a new clause

SPhraseSpec sentence = factory.createClause();

// Add the subject and verb to the sentence

sentence.setSubject("Marie);

sentence.setVerb("run");

// Realise the sentence and print the results

String output = realiser.realiseSentence(sentence);

System.out.println(output);

// OUTPUT: Marie runs.

Listing 3.1: Example of the minimum input required for SimpleNLG. It
requires a subject (e.g. Marie) and a verb (e.g. run). These
are added to a clause created with factory.createClause()

Excluded are the import statements that import the library.

A slightly more advanced example of input code involves using tempo-
rary variables of types NPPhraseSpec and VPPhraseSpec, see Listing 3.2.
These temporary variables allow the user to alter the phrase after initial-
isation by adding features, modifiers or other elements. In this example,
the noun phrase experiment was extended with a determiner using the
NPPhraseSpec method setDeterminer. In the example, a clause, a noun
phrase as subject, a verb and another noun phrase as object are created.
By using methods like setSubject(), setVerb() and setObject(), the re-
lationships between the elements can be established. More phrase types
are available, such as prepositional phrases. The setFeature() method
provides the opportunity to apply extra features to a sentence, phrase or
other element. An example of a feature is the TENSE feature, which can
be used to set the tense of the sentence. Note that all sentence ele-
ment classes are extensions of the NLGElement class. Methods available
to NLGElements are available to all sentence elements. Methods such as
setFeature are such methods that can be applied to any element. The
way the realiser handles features often depends on the type of element is

16 CHAPTER 3. SIMPLENLG

was applied to.

// Import the library

import simplenlg.framework.*;

import simplenlg.lexicon.*;

import simplenlg.realiser.english.*;

import simplenlg.phrasespec.*;

import simplenlg.features.*;

// These first lines are required regardless of the sentence

final static Lexicon lexicon = new XMLLexicon();

final static NLGFactory factory = new NLGFactory(lexicon);

final static Realiser realiser = new Realiser();

// Start the creation of a new clause

SPhraseSpec sentence = factory.createClause();

NPPhraseSpec thisExperiment = factory.createNounPhrase("experiment"

↪→);

thisExperiment.setDeterminer("this");

VPPhraseSpec verb = factory.createVerbPhrase("be");

NPPhraseSpec object = factory.createNounPhrase("a success");

// Add the subject, verb and object to the phrase and set the

↪→ features

sentence.setSubject(thisExperiment);

sentence.setVerb(verb);

sentence.setObject(object);

sentence.setFeature(Feature.TENSE, Tense.PAST);

// Realise the sentence and print the results

String output = realiser.realiseSentence(sentence);

System.out.println(output);

// OUTPUT: This experiment was a success.

Listing 3.2: Example input for SimpleNLG.

3.2. TECHNICAL STRUCTURE 17

3.2 Technical structure

In version 4 of SimpleNLG, its architecture was divided into modules with
each their function. This allows external developers to build their own mod-
ules more easily. The other reason for the change was the previous use of
components that had proprietary licenses. In the new version, all compo-
nents are licensed in a way that allows commercial use, too (Westwater,
2009).

SimpleNLG is divided into the following modules:

• aggregation applies aggregation according to specified rules;

• features houses the many possible features, such as sentence type,
tense, negation, etc.;

• format.english formats the text by adding indentation, headers and
titles, etc.;

• framework keeps all element types that are used throughout, such
as PhraseElement, WordElement and NLGFactory;

• lexicon contains the lexica, as well as conversion tools to import
lexica;

• morphology applies morphology rules that it contains, such as in-
flection rules;

• morphophonology applies morphophonology rules, which focus mainly
on the sound changes and spelling changes when words are com-
bined, e.g. in French ”de” + ”le” = ”du”;

• orthography adds orthographical elements like capitals, periods and
question marks;

• phrasesspec defines the types of phrases;

• realiser contains the realiser class itself;

• syntax contains helper functions which create the syntax.

When a realisation request is made, every word is looked up in the
lexicon and, based on the findings, inflected and positioned.

18 CHAPTER 3. SIMPLENLG

3.3 Other languages

SimpleNLG has been adapted for other languages. The following sections
provide an overview of the adaptation efforts that were described in pa-
pers. The papers describe methods used for adapting the software, gath-
ering lexicon data and evaluating the performance of the system. These
methods were considered for the creation and evaluation of SimpleNLG-
NL.

3.3.1 French

(SimpleNLG-EnFr) The most noteworthy adaptation is the one in French,
named SimpleNLG-EnFr. Not only did this project implement French, but
it also rebuilt some of SimpleNLGs architecture in a way that makes the
system multi-lingual. It was created by Vaudry and Lapalme (2013) at the
Universit de Montral, Canada, which explains the need for a bilingual sys-
tem.

The code was based on version 4.2 of SimpleNLG, with its new license
and internal architecture. Vaudry and Lapalme rewrote some modules and
classes by creating abstract classes, which are extended by classes for the
selected language. This abstraction allows the use of more than just two
languages and, with that, formed a base for some other adaptations, as
described in later sections.

Lexicon To create the lexicon, the researchers created the closed part
(e.g. determiners and pronouns) manually. The lexicon of the English
SimpleNLG uses alphanumerical identifiers from the NIH lexicon, which
act as an extra way of retrieving the right lexicon entry if the sentence
planner has knowledge of these identifiers. The French kept the identifiers
of the words English counterparts. This allows a sentence planner to plan
for bilingual surface realisation. The open part (e.g. nouns and verbs)
were taken from L’chelle Dubois-Buyse d’orthographe usuelle franaise, an
overview of the most important and most commonly used French vocabu-
lary. This resulted in a lexicon with 3871 entries.

3.3. OTHER LANGUAGES 19

Evaluation There was no mention of an evaluation process. However,
the code did include jUnit tests that were used to test each of the imple-
mented classes (mostly by generating example sentences).

3.3.2 German

(SimpleNLG for German) The German adaptation was started by Boll-
mann (2011). It was based on SimpleNLG version 3.8, with its non-modular
architecture. Bollmann calls the grammatical coverage of his system al-
ready considerable, although far from being complete. It has the following
features (quoted from the paper):

• Morphological operations, including handling of imperfection classes,
separable verb prefixes, compounding, and preposition-article-
contraction;

• modal verb clusters and perfect formation;

• relative clauses and relative clause extraposition; and

• constituent reordering.

As Dutch is considered a Germanic language, SimpleNLG for German
may seem an obvious choice as a starting point for SimpleNLG-NL. How-
ever, it was unsuitable due to SimpleNLGv4s new architecture.

Evaluation To evaluate the performance of the system, five Wikipedia ar-
ticles were recreated, with the result of 115 out of 152 sentences (75.66%)
being recreated correctly. No efficiency evaluation was performed.

3.3.3 Italian

(SimpleNLG-IT) Years after the German adaptation, an Italian version
was written by Mazzei et al. (2016). Unlike the French and German adap-
tations, this system was not based on the main SimpleNLG. Instead, it
made use of the multilingual structure of SimpleNLG-EnFr, version 1.1.

Some statistics give an indication of the amount of code (re)written: ten
new packages were written and 28 existing classes were modified in order
to accommodate 33 new lexical features.

20 CHAPTER 3. SIMPLENLG

Lexicon The Italian lexicon was created by combining two sources. One
provided a large list of words with their lexical properties. The second
source contained a shorter list of words. Only the words present in both
sources were used. To get information about the type of verbs (regular or
irregular), verb lists on Wikipedia were used.

Similar to the lexicon of SimpleNLG-EnFr, the closed part of SimpleNLG-
ITs lexicon was created manually. The final lexicon contained 6690 words.

Evaluation The evaluation method was related to that of SimpleNLG for
German: the features were tested by generating 96 sentences, partially
from the SimpleNLG-EnFr jUnit tests, partially from the grammar reference
book used3. All tests were passed successfully, while keeping track of the
total time it took to execute them. The loading of the lexicon into memory
tot 1,433 ms and the generation of the sentences finished in 3,145 ms.

A second test was performed to determine its usability in an application
context. A total of 20 sentences was selected from the Universal Depen-
dency Treebank4. Of those sentences, 10 were declarative and 10 inter-
rogative. The test was to recreate the sentences in the treebank. The
generated, declarative sentences differed from the treebank sentences in
several ways: word order, clitics, missing lexicon entry and an irregular
verb being handled as regular verb. The interrogative sentences also had
problems: word order, missing lexicon entry and certain questions that
were not handled.

3.3.4 Brazilian Portuguese

(SimpleNLG-BP) Similar to SimpleNLG-IT, SimpleNLG-BP was based
on SimpleNLG-EnFr. This was chosen mainly because both French and
Brazilian Portuguese feature preposition contraction, e.g. de + le becomes
du in French, and de + a becomes da in Brazilian Portuguese.

SimpleNLG-BP was built by De Oliveira et al. (2014) at the University
of Aberdeen, home of the original SimpleNLG.

3Patota, G., Grammatica di referimento dellitaliano comtemporaneo, Guide linguis-
tiche, 2006.

4http://universaldependencies.org/

http://universaldependencies.org/

3.3. OTHER LANGUAGES 21

Lexicon The lexicon comprised of a selection from a large (880.000)
lexicon of inflected words. As SimpleNLG loads the lexica into memory,
the full lexicon turned out to be too large for processing at a workable
speed (it took 2.5 seconds to build the lexicon in memory), which was
reason to pick 57 irregular verbs, which took only 0.17 seconds to build.

Evaluation Besides the ability to build 80 different forms for the same
verb, person and number (of which 22 seem not to be used in the lan-
guage), there was no evaluation presented.

3.3.5 Filipino

(FilSuRe) As the Filipino language differs much from Western languages,
Ong et al. (2011) used SimpleNLG only as a pattern for their Filipino sur-
face realiser. The system handles the following features:

• Verb phrases;

• Noun phrases;

• Prepositional phrases;

• Sentences with the so-called ‘karaniwan’ word order structure;

• Sentences with the so-called ‘di-karaniwan’ word order structure.

Evaluation The realiser was linked to a story generator developed ear-
lier (Solis et al., 2009), which used the original SimpleNLG. The results
were assessed by a linguist. Several problems were noted in the paper.

3.3.6 Telegu

Like Filippino, Telugu, a language spoken in India, differs much from West-
ern languages. Dokkara, Penumathsa and Sripada (Dokkara et al., 2015)
decided to build a realiser from scratch, using the structure of SimpleNLG.

22 CHAPTER 3. SIMPLENLG

Evaluation For evaluating the system, a batch mode was used. Simi-
lar to the SimpleNLG-BP, the realiser for Telugu was tested by generating
many forms of the same input words. Only the grammatical features were
changed. As a second test, attempts were made to recreate 738 sen-
tences from examples in the used grammar reference book5. Out of 738
sentences, 419 (57%) were recreated exactly. Acceptable mismatches
were not mentioned.

3.3.7 Spanish

(SimpleNLG-ES) The most recently published adaptation is, like Simple-
NLG-PB and SimpleNLG-IT, based on the bilingual SimpleNLG-EnFr (Soto
et al., 2017). It replaced the French part, keeping the result bilingual. The
lexicon was a ready-built dictionary containing 550,000 forms of 76,000
lemmas, which was converted to XML.

Evaluation The jUnit tests present in SimpleNLG-EnFr were adapted for
Spanish and ran. Secondly, SimpleNLG-ES was linked to a weather re-
port writing, template-based NLG system. Both the original system and
SimpleNLG-ES generated 76 weather forecasts, of which only 7 showed
small, non-relevant differences between the two systems. As a third test,
the library is currently being used in three running projects in the fields of
weather warnings, official statistical data and business intelligence.

3.4 Conclusion

Dutch is derived from both Latin and German languages. Because of the
many remaining similarities between Dutch and German, SimpleNLG for
German may seem an obvious choice to use as a base for SimpleNLG-
NL. However, because it was based on an older version of SimpleNLG
with a different architecture, it was unsuitable. Instead, the bilingual adap-
tation for English and French was more suitable. SimpleNLG-EnFr offers

5Krishnamurti, B. & Gwynn, J.P.L., A Grammar of Modern Telugu, Oxford University
Press, 1985.

3.4. CONCLUSION 23

a clear separation between language dependent and language indepen-
dent classes and methods, which makes it easier to add a third language.
The bilingual SimpleNLG-EnFr has already been used to create those for
Italian, Brazilian-Portuguese and Spanish.

For evaluation, several methods were used. One method is to use
unit testing, which is already built into SimpleNLG. The sentences that are
tested would have to be adapted for a new language, as well as checked
their grammatical coverage.

Gathering sentences to recreate is often done from the grammar ref-
erence book that is referenced during the project. These books often pro-
vide example sentences, which, altogether, should cover many (common)
grammatical concepts. Besides reference books, Wikipedia articles have
been used. Although it is unlikely that a small number of articles cover
many grammatical rules, it can show that the system is capable of gener-
ating real world sentences.

Other evaluation measures found in the papers are the time it takes to
perform a set of realisation tasks and the number of inflections that the
system in able to generate.

All these methods were considered for use. SimpleNLG-NL was it-
eratively built and evaluated using Wikipedia sentences, unit tests and a
proof-of-concept, as described in Chapters 4 and 6.

24 CHAPTER 3. SIMPLENLG

Chapter 4

Method

The method of adapting SimpleNLG for Dutch differs from those used for
the other adaptations described in Section 3.3. Whenever the method
was explained, the researchers seemed to use grammar references to
determine what grammar rules to implement in their version of SimpleNLG.
For example, Vaudry and Lapalme (2013) used a reference containing
fundamental French grammar, of which “almost all” grammar points are
covered by SimpleNLG-EnFr.

The Italian SimpleNLG-IT and SimpleNLG for German used sentences
to evaluate the system. For SimpleNLG-IT, a set of unit tests was adapted
from sentences in a grammar reference book and the sentences were gen-
erated using SimpleNLG-IT (Mazzei et al., 2016). Secondly, real world
sentences coming from a treebank were tested. SimpleNLG for German
picked Wikipedia articles from which sentences were recreated.

SimpleNLG-NL also used target sentences, but extended their use to
the development phase. Real world sentences from a Wikipedia corpus
were used. For each sentence, the SimpleNLG-NL input was written man-
ually and resulting generated sentence was compared with the target sen-
tence. Any differences were analysed and the corresponding grammar
rules were corrected. To implement correct rules, the following grammar
references were used: Taalportaal (Landsbergen et al., 2014), E-ANS
(Haeseryn et al., 1997) and web articles of the Dutch Language Union
(Nederlandse Taalunie)1 and Genootschap Onze Taal2. Using this iter-
ative approach, SimpleNLG-NL’s coverage of Dutch grammar increased

1http://taalunie.org/
2https://onzetaal.nl/

25

http://taalunie.org/
https://onzetaal.nl/

26 CHAPTER 4. METHOD

with each sentence. This approach had the advantage that the subset of
Dutch grammar covered was based on real world sentences. Also, it pro-
vided the possibility to base the code on an existing adaptation of Simple-
NLG. Instead of starting with no grammar rules and search for and reuse
implementations in other languages, the grammar rules were copied and
then adapted or removed when necessary.

As a starting point, SimpleNLG-EnFr was used. All French parts were
cloned and renamed to Dutch. French was chosen over English, because
its more complex features seemed more related to Dutch than the English
features, especially the morphology. Because of that, the realisation of the
first sentences used French grammar. With each sentence, the grammar
showed more aspects of Dutch grammar.

Implementing the Dutch grammar in SimpleNLG-NL was done in four
rounds. The rounds are described in Section 4.1. Rounds 1 and 3 used
target sentences from a corpus, while Rounds 2 and 4 used newly written
unit tests.

Sentence selection The target sentences used in Rounds 1 and 3 were
randomly selected, based on the word count needed for the round, from
the Wikipedia corpus available in Dact3, a viewer for Alpino corpora. Alpino4

(Bouma et al., 2001) is a dependency parser for Dutch. The corpus con-
tains 100,000 sentences. After a sentence was picked, it was tested for
two requirements. First, the sentence had to be grammatically correct.
Some ‘sentences’ were just headings of articles, while some others were
only part of a sentence. To meet the second requirement, the sentence
could not include embedded direct speech. For example: “That was nice”,
said John. While the spoken sentences themselves can be generated,
the English SimpleNLG does not support properly embedding them within
another sentence. The same applies to SimpleNLG-NL.

After a sentence was selected, the corresponding input code for Simple-
NLG-NL was written manually. To aid in this process, the Alpino parse tree
already present in Dact was used as reference. The parse tree was con-
verted to SimpleNLG-NL code as closely as possible, in a process not
dissimilar to the one later used for a proof-of-concept as described in Sec-

3https://rug-compling.github.io/dact/
4http://www.let.rug.nl/vannoord/alp/Alpino/

https://rug-compling.github.io/dact/
http://www.let.rug.nl/vannoord/alp/Alpino/

4.1. FOUR ROUNDS 27

tion 6.2. It was made sure not to use canned text (except for names and
fixed expressions) and no information on word order or punctuation was
provided. After the input was written, SimpleNLG-NL would realise the
sentence. The result would be compared with the target sentence and any
differences would be analysed. The grammar rule or lexicon entry related
to the problem would then be corrected and the whole cycle would repeat
with the next target sentence.

The second round consisted of unit tests designed to test individual
features and structure, as described in Section 4.1.2.

The four rounds are described in Section 4.1, followed by the criteria
by which the generated sentences would be judged in Section 4.2.

4.1 Four rounds

4.1.1 Round 1

In the first round, twelve sentences were picked from the Wikipedia corpus.
These sentences had an increasing word count, which was assumed to
also increase the complexity of the sentence structure. The sentences
were iteratively generated, compared and corrected until the desired result
was reached (see Section 4.2). After completing a sentence, the input
for the next sentence was written and SimpleNLG-NL would be iteratively
improved. The sentences (and their results) can be found in Appendix
Table A.1

4.1.2 Round 2

In the second round, simple unit tests were written. These consisted of
short sentences that were specifically written for testing SimpleNLG-NL’s
features in isolation. This has the advantage that processes such as syn-
tax and morphology could be tested without potentially inducing problems
due to complex sentence structures.

Ten sentences tested the inflection of both regular and irregular verbs,
and adjectives and their inflection. Multiple verb types were tested: verbs
that required modifications to their stem or specific suffixes (for reasons

28 CHAPTER 4. METHOD

described in Section 5.1.4), as well as irregular verbs, both with and with-
out a lexicon entry. Irregular verbs without a lexicon entry were expected
to fail by being inflected as if they were regular verbs. Adjectives were
tested for proper detection of the person and number of its noun, based
on the lexicon or the article.

Five sentences tested syntax of negated sentences. Two sentences
contained different kinds of verbs, which should have no influence on the
negation, such as position of the negation adverb niet ‘not’. One sentence
added an object and adjectives, which added more possibility of failure.
The last two sentences replace the negation adverb niet ‘not’ with geen
‘no/none’.

The next 12 sentences use different tenses to test the morphology of
different verb groups.

The unit tests also provided the opportunity to test features that were
not present in the first round of test sentences. One such feature was
that of interrogative sentences (10 sentences). The choice of interrogative
types was based on the types available for French and English. These
were translated into Dutch.

All unit tests, including short descriptions and the results, can be found
in Appendix Table A.2.

4.1.3 Round 3

The third round consisted of twenty-one more Wikipedia sentences. The
first eleven sentences were of a length of up to thirteen words, which
roughly corresponds to the sentence length recommended for writing texts
suited for the end of primary education, which is found to be twelve words
(Taalunieversum, 2018). The next ten sentences had a word count be-
tween fourteen and twenty. In this third round, the input for all twenty
sentences was created first, to test the state of the system at that point in
time. It was afterwards that SimpleNLG-NL was corrected and improved
for each sentence.

4.2. CORRECTNESS CRITERIA 29

4.1.4 Round 4

The fourth round was added after the prototype was built as described
in Chapter 6. The prototype revealed incorrect placement of objects in
the future and conditional tenses and in the perfect form. The unit tests of
Round 2 that tested those features did not include an object, without which
the results were correct. The mistakes were deemed important enough to
correct. Therefore, an extra set of unit tests was written. The sentence
Marie gooit de bal. ‘Marie throws the ball.’ was realised in 16 different
variants: for each of the four tenses (present, past, future, conditional)
four different sets of features were applied, namely active-simple, active-
perfect, passive-simple and passive-perfect.

4.2 Correctness criteria

A sentence generated by SimpleNLG-NL was deemed correct if the output
matched at least one of the following criteria. These criteria are ordered by
level of tolerance, with the first being the preferred outcome. A generated
sentence was successfully generated if:

• the output matched the target sentences exactly; or

• the output differed from the target in terms of punctuation in the form
of commas and quotation marks, but kept the same meaning to read-
ers; or

• the output differed from the target in terms of word order, but kept the
same meaning to readers.

It has to be noted that commas, quotation marks and word order can
change the stress of a sentence. These cases had to be evaluated in-
dividually.

30 CHAPTER 4. METHOD

Chapter 5

Implementing Dutch grammar

This chapter outlines the largest changes made to SimpleNLG-EnFr, sum-
marised by subject, and the results of the implementation. It also lists the
files that had to be created, copied and/or edited to create SimpleNLG-NL.

5.1 Grammar rules implemented

The following sections describe the grammar rules implemented in Simple-
NLG-NL.

5.1.1 General spelling rules

Dutch spelling aims to keep the spelling as consistent as possible between
forms and inflections (’gelijkvormigheid’)1. However, there are a few rules
that limit this consistency. These rules apply to all word categories and are
implemented in SimpleNLG-NL per category. The leidraad (Nederlandse
Taalunie, 2015) mentions three rules as the most important:

• No v or z at the end of a syllable.

• No repeated consonant at the end of a word.

• If a word ends in a sibilant (s, sh, sj, etc.), the next suffix will drop the
s, e.g. nerveus-st (’most nervous’) becomes nerveus-t.

1http://woordenlijst.org/leidraad/1/2

31

http://woordenlijst.org/leidraad/1/2

32 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

5.1.2 Lexicon

Lexicons used for SimpleNLG are written in XML. During the preparation
phase of this project, a simple lexicon was built based on the Open Dutch
WordNet (Postma et al., 2016). This lexicon provided word category, plural
forms, articles, auxiliary verbs, past tense forms and past participles. How-
ever, it did not include critical information like irregular verb forms. While
there are lexicons available for Dutch, most don’t allow commercial use.
Commercial use should be possible if the lexicon is to be released under
the same license as the rest of SimpleNLG-NL. This license was also one
of the advantages of version 4 of SimpleNLG. Therefore, the information
missing in the current lexicon will have to be sourced elsewhere. This
lexicon is still work in progress.

In order to test the capabilities of SimpleNLG-NL during the implemen-
tation, a new lexicon was started. It included only the manual part that
would be added to the final, generated lexicon. This closed part consists
of the irregular auxiliary verbs zijn (’be’) and hebben (’have’), prepositions,
articles and pronouns. During the four rounds of implementing the Dutch
grammar rules, the lexicon was appended with the necessary information
when simply the base form of a word was not enough to determine its
correct syntax or morphology. For example, the very first verb encoun-
tered (vrijkomen ‘to be released’) was an irregular verb, which means that
the regular inflection rules do not apply. An example entry for the lexicon
can be found in Listing 5.1. Adding the correct forms to the lexicon gave
SimpleNLG-NL the desired solution, helping with generating the sentence
correctly.

<word>

<base>vertrekken</base>

<category>verb</category>

<past>vertrok</past>

</word>

Listing 5.1: Basic example entry in the lexicon for the verb vertrekken
‘leave’. This verb is irregular, which is why the past field is
set.

5.1. GRAMMAR RULES IMPLEMENTED 33

5.1.3 Nouns

In SimpleNLG-NL, the morphology of nouns consists of pluralisation. Dutch
grammar also has four grammatical cases (nominative, genitive, dative
and accusative), but these are used rarely in modern Dutch (Nederlandse
Taalunie, 2018a). Therefore, cases were not implemented in SimpleNLG-
NL.

Pluralisation of nouns

The short rule for pluralisation is simple: add the suffix -en if the last syl-
lable of the noun is stressed, add -s if it is not. Since the lexicon does
not contain information on stress, the suffix was determined by matching
the ending of the noun with a list, found in the e-ANS grammar reference2.
When adding suffixes, other morphological rules may apply to ensure the
correct form.

One of these rules is to keep the sound consistent: rijkdom (’richness’)
is pronounced /"rEikdOm/, but if the plural form would just add -en rijk-
domen, its pronunciation would change to /"rEikdom@n/. Instead, the /O/
sound should be kept by repeating the consonant following it: rijkdommen
/"rEikdOmm@n/.

Following the same sound consistency rule, the opposite can also be
needed: if the singular form ends in a repeated vowel followed by a sin-
gle consonant, the plural form can remove one of the vowels. Technically
speaking, this is due to the stem having only one vowel, which needs to
be repeated in the singular form in order to keep the sound. In the case
of SimpleNLG-NL, however, the lexicon and/or user input contains the sin-
gular form, not the stem, so the double vowel will have to be reduced. For
example, Italiaan (’Italian’, noun) only needs one a in plural to keep the /a/

sound: Italianen.
A test of pluralisation after the new implementation can be found in

Table 5.1. These results show two cases in which the system fails: kopie
and bacterie. While most words ending in -ie are appended by an -s, these
words should get -en instead, both with different morphological rules. If the
last syllable was stressed, the resulting ending would be -ieën (e.g. kopie

2http://ans.ruhosting.nl/e-ans/03/05/03/body.html

http://ans.ruhosting.nl/e-ans/03/05/03/body.html

34 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

→ kopieën). If it was unstressed, one e would be left out (e.g. bacterie →
bacteriën).

The default suffix for nouns ending in -ie is -s. Special cases, such as
the previous examples, should be specified in the lexicon.

The input for pluralisation is kept the same as for English and French:
nounPhrase.setFeature(Feature.Number, NumberAgreement.PLURAL).

5.1.4 Verbs

This section describes the morphology of verbs and the syntax in verb
phrases used in SimpleNLG-NL. The first sections describe regular and
irregular verbs. A separate section is dedicated to so-called ’Separable
Comlex Verbs’, which require different rules. Most changes were made in
the VerbPhraseHelper.java and the MorphologyRules.java files, the for-
mer containing mostly syntax rules for verb phrases, the latter describing
morphology rules for all word groups.

Tenses

When inflecting verbs, the morphology part of SimpleNLG-NL first looks
in the lexicon for matching forms. If it does not find the form it is looking
for, based on tense, number and person, it resorts to rules for regular
verbs. Inflections are based on the stem of the verb. This stem can be
deduced from either the infinitive or the first person singular. Having some
exceptions, the stem is the infinitive minus the trailing -en. It can then be
inflected by adding prefixes or suffixes, sometimes requiring extra rules to
keep the sound consistent.

In any tense, the letters v and z at the end of a the stem will be replaced
by f and s, respectively.

Present simple The tegenwoordige tijd (’present simple’) requires little
inflection. The first person singular uses the bare stem, the other singular
form get a -t as suffix, the plural forms all use the infinitive. Some morpho-
logical rules apply, such as not appending the -t if the stem already ends
in a t. Also, similar to nouns, vowels may need to be repeated to keep the

5.1. GRAMMAR RULES IMPLEMENTED 35

Singular Output Expected
oma oma’s oma’s
radio radio’s radio’s
bureau bureaus bureaus
metselaar metselaars metselaars
grijsaard grijsaarden grijsaarden
wijzer wijzers wijzers
reservoir reservoirs reservoirs
leeuw leeuwen leeuwen
rijkdom rijkdommen rijkdommen
opponent opponent opponent
stommerik stommerikken stommerikken
prinses prinsessen prinsessen
bijzonderheid bijzonderheden bijzonderheden
maatschappij maatschappijen maatschappijen
Italiaan Italianen Italianen
travestiet travestieten travestieten
boerin boerinnen boerinnen
woning woningen woningen
violist violisten violisten
calamiteit calamiteiten calamiteiten
leerling leerlingen leerlingen
hindernis hindernissen hindernissen
wetenschap wetenschappen wetenschappen
apotheek apotheken apotheken
fabriek fabrieken fabrieken
zeef zeven zeven
lijf lijven lijven
duif duiven duiven
reis reizen reizen
kopie kopies kopieën
bacterie bacteries bacteriën

Table 5.1: Plural forms generated after applying most rules for regular plu-
rals. Marked in bold are two results that were incorrect, as
those nouns have irregular plural. Such irregularities can be
accounted for by providing the correct form in the lexicon.

36 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

sound consistent. For example, the first person of dromen (’to dream’) is
droom, so the /o/ sound is preserved.

Several types of verbs were tested (see Table 5.2).

Past simple The onvoltooid verleden tijd (’past simple’) of regular verbs
is formed by adding one of the suffixes -de or -te to the stem. And extra -n
should be added in the plural case. Which of these suffixes to use depends
on the ending sound of the stem: if it ends in an unvoiced consonant, the
suffix will be -te, in all other cases it’s -de. The list of unvoiced conso-
nants can be remembered using the mnemonic ’t kofschip. Because this
mnemonic is based on sound, it is extended to ’t kofschiptaxietje (Onze
Taal, 2018), which adds the /ks/ as in ’flex’ and the /St/ as in ’match’, as
well as similar sounds. SimpleNLG-NL tests the string for one of the fol-
lowing endings: t, k, f, s, ch, p, x, sj, c. If this test fails to apply the correct
suffix, it can be corrected by adding the past field or the more specific
past<person><number> such as past2p to the verb’s lexicon entry.

Irregular verbs have to be specified in the lexicon. The general inflec-
tion rules are to use the past stem for a singular number, and the past stem
+ -en for the plural case. For example: lopen (’to walk’) has a present stem
of lop, but a past stem of liep. The first person singular would therefore be
ik liep, whereas the first person plural is inflected as wij liepen.

Past perfect Past participles of regular verbs are built use the prefix ge-
and the suffix -d or -t. The suffix is determined using the same mnemonic
as used for the past tense. In some cases, the prefix ge- is replaced
with be-. This is not implemented in SimpleNLG-NL, but mistakes can be
prevented with a lexicon entry, similar to irregular verb with irregular past
participles.

Future tense The future tense in the second round, because the sen-
tences form round one did not require its implementation. This tense uses
the auxiliary verb zullen ’will’. This auxiliary verb is inflected according to
the person and number of the subject. Its position is the same as that
of other auxiliary verbs. As can be seen in the results of Round 4 (Sec-
tion 5.3), there are cases in which the other auxiliary verbs need to be

5.1. GRAMMAR RULES IMPLEMENTED 37

Verb Tense Output Expected
vrijkomen present komt vrij komt vrij

past kwam vrij kwam vrij
rennen present rent rent

past rende rende
zetten present zet zet

past zette zette
vrezen present vreest vreest

past vreesde vreesde
leven present leeft leeft

past leefde leefde
lopen present loopt loopt

past liep liep
komen present komt komt

past kwam kwam
dromen present droomt droomt

past droomde droomde
weglopen present wegloopt loopt weg

past liep weg liep weg
weg|lopen present loopt (...) weg loopt (...) weg

past liep (...) weg liep (...) weg
wegrennen present wegrent rent weg

past wegrende rende weg
weg|rennen present rent (...) weg rent (...) weg

past rende (...) weg rende (...) weg

Table 5.2: Verb inflections of the third person singular. Verbs were chosen
to reflect most inflection rules. Weglopen was in the lexicon,
but only included the past form. Wegrennen was not in the
lexicon at all, explaining the assumption of it being a normal,
regular verb. Adding a pipe between the two parts of the word
solves the problem, but also places the preverb at the end of
the phrase.

38 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

pushed to a different position. This is not yet implemented in SimpleNLG-
NL. The main verb is used in its infinitive form.

Conditional tense The implementation of the conditional tense is very
similar to that of the future tense. The difference is in the tense of the
auxiliary verb. Where the future tense uses the present tense auxiliary,
the conditional tense uses the past tense auxiliary ’zouden’ ’would’.

Separable Complex Verbs

Perhaps the most challenging aspect of adapting SimpleNLG for Dutch
was the morphology and syntax scheidbaar samengestelde werkwoorden
(’Seperable Complex Verbs’ or SCVs). SCVs are a class of verbs that
consist of a main verb prefixed by another word, called a ’preverb’ (Booij &
Audring, 2018). Preverbs are not to be inflected or changed, which causes
the inflection of SCVs to be complex. In this section, toekennen ’assign’
will be used as an example. In this SCV, the preverb is toe ’to’. This section
describes the difficulties of detecting and inflecting SCVs.

Firstly, in the present simple, SCVs are split into their preverb and main
verb and their order is reversed. The main verb is inflected as it would if it
were on its own. For example: ik ken toe (’I assign’).

The position of the preverb is often very flexible: direct objects, indirect
objects, prepositional phrases and even entire subclauses can be placed
between the main verb and its preverb. However, it can be the stylistic
preference to move the preverb to immediately after the main verb. In
SimpleNLG-NL, it was decided to be positioned at the end of the sen-
tence. Positioning is different in subordinate clauses. The preverb is kept
attached to the main verb and objects are often placed between the sub-
ject and the verb. The main verb is still inflected normally, but the preverb
is prefixed to it after inflection. This would result in, as per the example, ...,
dat ik hem toeken (’..., that I assign to him’).

The verb vrijkomen (’to get released’) is an SCV that occurred in the
very first sentence of the first round. Its main verb is komen and its preverb
is vrij. After implementing the rules for SCVs,the user input can either be
vrijkomen or vrij—komen. The first input looks for vrijkomen in the lexicon.
It will find it and use its predefined forms. The second input will split the

5.1. GRAMMAR RULES IMPLEMENTED 39

verb komen from the preverb vrij. It will then look for komen in the lexicon
and inflect it appropriately (either from lexicon data or regular verb rules).

Komen happens to be a special irregular verb. While most irregular
verbs only are irregular in their past forms, komen is also irregular in the
present tense. Compare: komen and ik kom with dromen and ik droom.
As komen is irregular, SimpleNLG-NL needs more information from the
lexicon.

SCVs are again proving difficult in the case of past participles. With
SCVs, the ge-prefix is added between the preposition and the stem. How-
ever, the prefix is left out of verbs that are prefixed by a preposition, which
look exactly like SCVs with the difference being the stress. For example,
doorboren can be stressed in two ways: /"door­boren/ (’to go on drilling’)
and /­door"boren/ (’to perforate’)3. The first would make the participle
doorgeboord, while the second would make doorboord. It is this kind of
cases where the sense of the word is important. However, the difference
should be reflected in the lexicon.

An attempt was made to detect SCVs. Five methods were used se-
quentially. If the first method failed, the next was tried. SCVs are detected
using the following methods (using voor as an example preverb):

1. The preverb being set in the lexicon: <preverb>voor</preverb>

2. Using a pipe (’|’) in the input to separate the preverb from the main
verb: sentence.setVerb("voor|komen")

3. Detected based on prefixes: bij, in, na, uit, op, af, mee, tegen, tussen,
terug, toe

5.1.5 Adjectives

Dutch adjectives can be used attributively or predicatively (Audring, 2018).
SimpleNLG currently only supports attributive use. A variable has been
added to the features for predicative use, but it is not implemented yet. For
now, SimpleNLG-NL will also only support attributive adjectives.

There are four cases in which the adjective gets the suffix -e:

3http://taalportaal.org/taalportaal/topic/pid/topic-13998813296768009#

section svl rtr rk

http://taalportaal.org/taalportaal/topic/pid/topic-13998813296768009#section_svl_rtr_rk
http://taalportaal.org/taalportaal/topic/pid/topic-13998813296768009#section_svl_rtr_rk

40 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

1. the noun is plural;

2. the noun has the COMMON gender;

3. the noun is preceded by a possessive pronoun; or

4. the noun is preceded by a definite determiner (de or het).

In total, seven different adjectives were tested. These were selected
to cover the inflection rules and the results of combining those rules. An
overview can be found in Table 5.3.

If the adjective requires the suffix, inflection is based on the pronun-
ciation. As with other word groups, there are many exceptions to some
general adjective inflection rules. For instance, if the adjective ends in
a double vowel followed by one consonant, one of the vowels has to be
removed (e.g. duur ’expensive’ becomes dure).

Adjectives that match the pattern for so-called ’regular doubles’ have
their trailing single consonant repeated. Regular doubles are adjectives (or
verbs) that end in a vowel and a single consonant, of which the consonant
has to be repeated in order to keep the sound of the vowel consistent. For
example, snel ‘quick’ is pronounced /snEl/, but simply adding the suffix
-e would result in a change in the pronunciation of the vowel: /snel@/.
To follow the spelling rules, the last consonant is repeated (snelle), which
results in /snEl@/. If the pattern matching returns a false negative, the
user can set the feature.PATTERN feature to Pattern.REGULAR_DOUBLE.
An example result would be snel being inflected as snelle.

If the base form already ended in a -e, the suffix should not be added.
For example, stupide ’stupid’ stays stupide.

As with other word categories, an f or s as ending consonant after a
vowel should be replaced by a v or z, respectively, as seen in grijs and
grijze4.

4The ij is a digraph: two characters forming one sound. Even though the j is not a
vowel, the digraph is traditionally considered a vowel in Dutch. In this example, it should
be treated as a vowel in order to comply with the sound consistency guidelines.

5.1. GRAMMAR RULES IMPLEMENTED 41

Adjective -e suffix Comparative Superlative
duur dure duurder duurst
snel snelle sneller snelst
stupide stupide stupider meest stupide
grijs grijze grijzer grijst
komisch komische komischer komischte (or meest komisch)
erg erge erger ergst
accentloos accentloze accentlozer accentloost

Table 5.3: Adjectives and their different inflections. The italic forms are
exceptions that can to be added to the lexicon.

Comparatives The comparative form of an adjective is generally the ad-
jective appended by -er. If the positive form already ends with /@/ (or sim-
plified: -e), it only requires an -r (Haeseryn et al., 1997, section 6.4.3.1).
As with the positive form, the comparative may receive an extra -e as suf-
fix. The comparative of snel becomes sneller or snellere.

A second way of using comparative adjectives is to add the adverb
meer ’more’ to the phrase. The use of meer is similar to the use of more
in English. Still, the suffix -e may need to be applied to the adjective. The
choice between adding -er or using meer is often based on pronunciation
difficulties or style. The preferred method is adding the suffix, but meer is
often used with:

• predicative adjectives (not supported in SimpleNLG-NL);

• adjectives formed from a participle (actually requires meer);

• adjectives ending in -st, -sd, -s, -sch, -sk or -de;

• adjectives that create an odd or difficult pronunciation (e.g. gebruike-
lijkere /G@"brœyk@l@k@r@/ (Nederlandse Taalunie, 2018b)

As predicative adjectives are treated as attributive, and participles and dif-
ficult pronunciation are not detected, only the word endings are imple-
mented in SimpleNLG-NL. The other cases can be corrected by adding a
lexicon entry.

42 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

Superlatives Very similar to comparatives, superlatives can be either
appended by a suffix (-st + -e if necessary) or accompanied by the adverb
meest ’most’. The same ending matching is implemented to choose to use
meest. Inflection is based on the sound: if the adjective ends in -s or -sch
(both sounding as /s/), then only a -t is a appended. In all other cases, -st
is used.

5.1.6 Word order

Dutch word order uses multiple constructions (Kooij, 1978, pp. 33-36). It
does not adhere to a standard like subject-verb-object (SVO) or subject-
object-verb. Luckily, SimpleNLG is fairly flexible. It provides the user three
types of modifier: ’premodifier’, ’modifier’ and ’postmodifier’, which place
the selected element before or after its parent element. An example of
a premodifier being used in the input can be seen in Listing 5.2. In this
example, the premodifier is treated as an adjective, because that is the
default behaviour if the word category is not specified. However, other
elements, such as prepositional phrases, can also be set as premodifier,
which will then not be inflected as if it were an adjective. This flexibility
allows the user to position sentence elements in many different ways. It
has to be noted, though, that if an NLG system wants to take advantage
of this flexibility, the sentence planner will have to be built in a way that
uses these types of modifiers, even though it is strictly not the task of a
sentence planner.

NPPhraseSpec np = factory.createNounPhrase("aap");

np.addPreModifier("snel");

np.setSpecifier("een");

// Result after realisation: "Een snelle aap."

Listing 5.2: Example usage of the premodifier method.

While Dutch word order is flexible, SimpleNLG-NL requires some de-
faults. Based on the target sentences, it was chosen to use the SVO order
for main clauses and the SOV order for subordinate clauses. For example,
the target sentence De Sectie 3 is de staf-afdeling die zich bezighoudt met
het functiegebied Operaties. matches that structure: subject(de Sectie 3)

5.1. GRAMMAR RULES IMPLEMENTED 43

verb(is) object(de afdeling), subject(die) object(zich) verb(bezighoudt) (...).
This decision has allowed for the generation of the target sentences to an
extent described in Section 5.3.

To-infinitives Dutch has three types of phrases with infinitive verbs: te-
infinitive, om + te-infinitive and the bare infinitive without any additional
words (Broekhuis, 2018).

Bare infinitive verb phrases consist of only the infinitive verb and its
modifiers and complements. In comparison to English, Dutch infinitive
verbs are not always accompanied by te ’to’. For example, the sentence Ik
wil rennen. ‘I want to run.’ does not include te.

Te-infinitive phrases consist of the infinitive verb, modifiers and comple-
ment, as a whole preceded by te which is similar to the English ‘to’.

The positioning of te-infinitive verb phrases is a stylistic choice. They
can be positioned directly after the object (Marie probeert de bal te gooien
naar de aap., literally Marie tries the ball to throw to the monkey ‘Marie
tries to throw the ball to the monkey.’) or at the end of the sentence (Marie
probeert de ball naar de aap te gooien, literally Marie tries the ball to
the monkey to throw ‘Marie tries to throw the ball to the monkey’). From
personal observations, it seems that it is preferred to position it closer to
the main verb phrase if the remaining sentence is ’too long’. However,
this is a stylistic choice, which is not built into SimpleNLG-NL. By default,
infinitive phrases are positioned at the end of the sentence (e.g. Het schip
... werd op 7 juni 1998 naar een dok van het Maritieme Museum in de
haven van La Rochelle overgebracht).

Adding a te-infinitive or a bare infinitive can be done by creating a verb
phrase (factory.createVerbPhrase("verb")) to be added to the sentence
using sentence.addComplement(). The choice between te-infinitive and
bare infinitive should be made by the sentence planner, which can add
one of two features to the verb phrase: bare infinitive can be used by set-
ting the FORM feature to INFINITIVE, while for te-infinitives, a new feature
was added. The sentence planner can set DutchFeature.TE_INFINITIVE
to true in order to set the verb to its infinitive form and add te to the verb
group.

The third form of infinitive phrases, om + te-infinitive, precedes the verb
phrase with the complementiser om ‘to’ or ‘in order to’, e.g. Marie heeft

44 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

zin om te zingen ‘Marie feels like singing’. It is the task of the sentence
planner to decide whether or not to add om, as it can be omitted depending
on the context. For instance, when accompanying the verb proberen ‘try’,
om can be omitted, but can also be included: Marie probeert te zingen.
‘Marie tries to sing’ and Marie probeert om te zingen. are both correct.
To add this complementiser in SimpleNLG-NL, the sentence planner can
use set the Feature.COMPLEMENTISER feature of the verb phrase to "om".
The support of om + te-infinitives in SimpleNLG-NL is limited when objects
are added. Because the verb phrase element is realised as a whole, any
objects added to the sentence element are placed before it. This leads
to, for example, the incorrect Marie probeert het lied om te zingen, literally
‘Marie tries the song to sing’. To correct this, the object can be added
to the verb phrase element itself, which causes SimpleNLG-NL to position
the object in the verb phrase, such as Marie probeert om het lied te zingen.
‘Marie tries to sing the song’. This would have to be done by the sentence
planner.

Past participles Past participles are positioned similar to te-infinitives.
They can be positioned directly behind the main verb or at the end of
the sentence. In the target sentences, past participles were often placed
at the end of the sentence by SimpleNLG-NL. For example, in sentence
wik part0229/333218-12-7.xml (Het schip ... werd ... naar een dok ...
overgebracht. ‘The ship was transported to the dock.’), the past partici-
ple overgebracht was placed at the end of the sentence. Similar to te-
infinitives, past participles seem to be moved to the front in ‘long’ sen-
tences, as may be the case in this sentence, with 17 words between the
auxiliary verb and the participle. The result would become: Het schip ...
werd ... overgebracht naar een dok.... However, this is a stylistic choice
and it is not implemented in SimpleNLG-NL.

Reflexive pronouns Pronominal verbs need a reflexive pronoun, like
zich, added to the front of the verb group. In SimpleNLG-EnFr, reflexive
pronouns are added by setting them as objects. However, the positioning
of reflexive pronouns and that of objects is not the same in Dutch. Instead,
reflexive pronouns are set as object of the verb. The default position for
objects is right after the verb. Reflexive pronouns as objects are detected

5.1. GRAMMAR RULES IMPLEMENTED 45

Person Number Personal pronoun Reflexive pronoun
first singular ik me
second singular jij je
third singular hij/zij/het/u zich
first plural wij ons
second plural jullie je
third plural zij/u zich

Table 5.4: Reflexive pronouns.

as reflexive pronouns because of the lexicon and are inflected based on
the number of the subject, according to Table 5.4.

Prepositions Verbs with predetermined prepositions require the prepo-
sition to be chosen by the sentence planner. The lexicon of the sentence
planner can include the preposition for each sense.

5.1.7 Aggregation

SimpleNLG supports some basic aggregation. If two aggregated clauses
have the same subject, SimpleNLG will not render it the second time.
Equality of subject is detected if the user created a new noun phrase with
the same word or directly reused the first noun phrase variable. And ex-
ample input for aggregation can be found in Listing 5.3.

ClauseCoordinationRule coord = new ClauseCoordinationRule();

List<NLGElement> elements = Arrays.asList(clause1, clause2);

List<NLGElement> result = coord.apply(elements);

NLGElement aggregated = result.get(0);

String result = realiser.realiseSentence(aggregated);

Listing 5.3: Example input for the aggregation of two clauses: clause1
and clause2.

SimpleNLG-EnFr (and now SimpleNLG-NL) also supports relative clauses.
The user can set the DutchFeature.RELATIVE_PHRASE to be a noun phrase

46 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

mentioned earlier (either the subject or an object of the previous clause).
An example can be found in Listing 5.4. Notice that the second clause has
to be set as an complement of the target element (either subject, object
or clause). The gender and number of the target element will be used to
determine the proper relative pronoun. If it is neuter and singular, dat is
used, otherwise die is chosen.

SPhraseSpec clause1 = factory.createClause();

clause1.setSubject("Marie");

clause1.setVerb("hoort");

NPPhraseSpec clause1_object = factory.createNounPhrase("jongen");

clause1_object.setSpecifier("een");

clause1.setObject(clause1_object);

SPhraseSpec clause2 = factory.createClause();

clause2.setFeature(DutchFeature.RELATIVE_PHRASE, clause1_object);

clause2.setVerb("roepen");

clause1_object.addComplement(clause2);

System.out.println(realiser.realiseSentence(clause1));

// Result after realisation: "Marie hoort een jongen die roept"

Listing 5.4: Example input for a sentence with a relative clause.

Relative clauses

In the last sentence of the first round, a conjunction phrase was used. In
SimpleNLG, coordinated phrases are used to create conjunction phrases,
but the CoordinatedPhraseElement class can not be used directly as a
clause by itself. The coordinated phrase has to be part of a regular clause
element, which requires the regular input of a subject and a verb. This
is where the problem becomes apparent. In one of the target sentences,
the conjunction phrase is a mere enumeration, which does not include a
verb, just multiple subjects (zoals probleemtaken, actietaken, studietaken
en discussietaken ’like problem tasks, action tasks, study tasks and dis-
cussion tasks’). SimpleNLG does not support this kind of sentences.

5.1. GRAMMAR RULES IMPLEMENTED 47

Interrogative type Dutch keyword Example
yes-no - Fietst Marie?
why waarom Waarom fietst Marie?
where waar Waar fietst Marie?
how-many hoeveel Hoeveel ballen gooit Marie?
who-subject wie Wie fietst?
who-object wie Wie zoent Marie?
who-indirect-object wie Naar wie gooit Marie een bal?
what-object wat Wat gooit Marie?

Table 5.5: The eight types of interrogative sentences supported by
SimpleNLG-NL.

5.1.8 Interrogative sentences

SimpleNLG and SimpleNLG-NL support basic interrogative sentences, see
Table 5.5. The input for interrogative sentences is similar to that for reg-
ular sentences, with the addition of having to specify the interrogative
type by setting the feature Feature.INTERROGATIVE_TYPE on the clause
to InterrogativeType.<sometype>. Currently, SimpleNLG-NL does not
check for neuter gender, which requires the keyword for who-type ques-
tions to be wat ‘what’ instead of wie ‘who’. The word order for interrogative
sentences is changed from SVO to VSO.

Who-indirect-object questions use the preposition given to the indirect
object. For example, Naar wie gooit Marie een bal? ‘Who does Marie
throw the ball to?’ uses the preposition naar from the indirect object in the
original sentence Marie gooit een bal naar de aap. ‘Marie throws a ball to
the monkey.’.

5.1.9 Punctuation

The punctuation remains mostly similar to French. Some small changes
were made. Clauses within clauses (e.g. starting with maar ’but’) should
start with a comma appended to the beginning. The orthographyHelper

class now checks after every element whether the next element will be of

48 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

the type CLAUSE, in which case it will append a comma to the end of the
current element. This works for coordinating clauses. However, this is not
the only reason to add a comma when using subclauses. Relative clauses
get surrounded by two commas, but only based on the semantic meaning5.
As of now, these cases are not handled.

5.2 Files changed

SimpleNLG is divided into multiple folders. These folders correspond with
a module as described in Section 3.2. Inside the folders are files, which
each describe one object class. Building SimpleNLG-NL using SimpleNLG-
EnFr as a basis required the copying of all 12 French-specific files and
changing the 8 language independent files to include Dutch as a new
addition. That formed the initial setup for SimpleNLG-NL. After that, im-
plementing Dutch grammar as described earlier resulted in the editing of
16 Java files, 7 of which were language independent files. When changing
these language independent files, extra care had to be taken to not change
the behaviour of the realiser for other languages. Nine files only affected
Dutch realisation. The changed files and a summary of the changes are
listed in Table 5.6.

5.3 Results

The final coverage of SimpleNLG-NL after all four rounds can be found
in Table 5.7. Each sentence was checked for correctness based on the
criteria described in Section 4.2. The use of automated evaluation metrics
such as BLEU (Papineni et al., 2002) was considered, but because the
number of sentences was small, it seemed unnecessary. More importantly,
such metrics would not take the relatively free word order in Dutch into
account. Therefore, it was chosen to evaluate the sentences manually.

5http://taaladvies.net/taal/advies/vraag/459/komma bij beperkende en

uitbreidende bijvoeglijke bijzinnen/

http://taaladvies.net/taal/advies/vraag/459/komma_bij_beperkende_en_uitbreidende_bijvoeglijke_bijzinnen/
http://taaladvies.net/taal/advies/vraag/459/komma_bij_beperkende_en_uitbreidende_bijvoeglijke_bijzinnen/

5.3. RESULTS 49

Results Round 1 Out of 12 sentences, 11 were generated correctly
(91.7%). One of the three incorrect sentences that were accepted placed
the past participle at the end of the sentence, which is a stylistic difference.
A second one used topicalisation, but without it, the sentence was still ac-
cepted as having the same meaning. The third added non-mandatory
commas. After the first round of sentences, SimpleNLG-NL generated 8
exact matches (66.7%).

The results found in Table A.1 in Appendix A are the result after all four
rounds. While the second and third round were performed with the inten-
tion to not break working solutions, the rounds could improve results from
the earlier rounds. In this case, the incorrect positioning of the negation
auxiliary adverb niet was corrected in a later round.

Results Round 2 This round consisted of 37 short sentences as a means
of testing individual features. The first ten sentences were aimed at the
basic verb inflection, both regular and irregular. It also tested adjectives
and their inflection. Next were five negated sentences. During these sen-
tences, the positioning of the negation auxiliary adverb niet was corrected.
Another twelve sentences tested verb tenses. And finally, ten sentences
were set to interrogative types. In Round 2, all 37 short test sentences
were generated correctly (100%).

Results Round 3 To test the capabilities of the system, 21 new sen-
tences were selected from the Wikipedia corpus. Eleven sentences had a
word count between seven and thirteen, ten more sentences had a length
of fourteen to twenty words. The results can be found in Tables A.3 and
A.4 in Appendix A.

Nine out of 11 medium long sentences were generated correctly (81.8%).
These were all exact matches. Seven out of 10 long sentences were gen-
erated successfully (70%). This includes two sentences that did not match
exactly, but are grammatically correct and have not changed in meaning.

Results Round 4 The last round generated 16 different variants of the
same sentence. Ten variants were generated exactly and there were no
mismatches accepted as correct. The future perfect (e.g. ...zal hebben

50 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

gegooid.) and conditional perfect (e.g. ...zou hebben gegooid) incor-
rectly placed the auxiliary verb hebben ‘have’ before the object: Marie
zal hebben de bal gegooid. ‘Marie will have the ball thrown.’, instead of
Marie zal de bal gegooid hebben.. This is due to all auxiliary verbs (in this
example: zal and hebben) being realised immediately after each other.
The same problem causes mistakes in the perfect passive sentences. For
example, the future perfect passive De bal zal zijn geweest gegooid door
Marie. contains three auxiliary verbs followed by the main verb. Instead,
the main verb should be placed after the first auxiliary verb, forming De
bal zal gegooid zijn geweest door Marie.. A stylistic choice could be to
swap the last auxiliary verbs zijn and geweest. From empirical experience,
perfect passive sentences are not common and building support for them
in SimpleNLG-NL was considered future work.

Overall results After four rounds, 74 out of 86 sentences were gener-
ated correctly (86.0%). 69 (80.2%) were exact matches. Leaving out the
unit tests from Rounds 2 an 4, 22 out of 33 Wikipedia sentences matched
exactly (66.7%). When including the accepted mismatches, 27 sentences
were generated correctly (81.8%).

5.4 Known issues

There are some known issues. Some originate from SimpleNLG and its
architecture, others were created in SimpleNLG-EnFr and SimpleNLG-NL.
This section describes problems that came up.

Topicalisation is the restructuring of a sentence element to put more
stress on said element. In Dutch, as in English, this is done by moving
the element to the front of the sentence. In the first sentence Op 1 okto-
ber 1966 kwam hij vrij., the element is op 1 oktober. Normally, it would
be placed at the end of the sentence, but to stress its importance, it is
moved to the front. The bilingual SimpleNLG-EnFr does not include a
proper method for this kind of structure. The generated sentences will still
have the same meaning, but lack the stress on the element.

5.5. CONCLUSION AND DISCUSSION 51

Using the ClauseCoordinationRule to aggregate clauses having the
same subject, requires that not only the subject, but also premodifiers and
postmodifiers are equal between the clauses. That means that the clauses
can not have different modifiers added and, instead, elements such as
prepositional phrases should be added as complements. The downside to
using complements is that they appear in the order they were added. This
might also be seen as an advantage, as it gives the user more control over
word order.

When using a relative phrase, the debug mode built into SimpleNLG
(activated using realiser.setDebugMode(true)) results in a StackOver-
flowError. Also printing the relative phrase in other places results in the
same error. This is due to a bug in toString() for relative clauses. Java’s
Hashmap.toString() can not print Hashmaps that contain a self reference.
This was the case when setting an object in the relative phrase feature
DutchFeature.RELATIVE_PHRASE.

In aggregated sentences, modifiers and postmodifiers must match be-
tween the two clauses. If not, the aggregation will fail and only the first
clause will be returned. Postmodifiers can be added by adding them to the
verbs directly.

Known error: in Sentence wik part0461/958283-5-1.xml, the word or-
der in the om-te-infinitive is incorrect. The correct order would require
splitting the verb group elders in Amerika wonen, which the current archi-
tecture of SimpleNLG makes difficult.

5.5 Conclusion and discussion

The iterative development process consisted of four rounds and resulted
in 86.0% of all sentences being generated correctly. However, that num-
ber does not necessarily represent SimpleNLG-NL’s coverage of the Dutch
grammar. It represents the coverage of the grammar rules used in the tar-
get sentences and unit tests. The idea of the iterative approach was that
it would provide a set of rules that would cover real world sentences and
increase the capabilities of SimpleNLG-NL. The more target sentences
were used, the larger the set of rules covered would be. However, this
also means that grammar rules may not get implemented if the target sen-

52 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

tences did not require the rule. Also, there is no end to the process of
adding more target sentences, unless a coverage goal is set, for example
by choosing a set of sentences or unit tests. A grammar reference would
have provided a finite set of rules to implement and with that, a goal. On
the other hand, grammar references can also be incomplete or may con-
tain a rule set too large to be feasible for implementation, which may cause
the developer to define his own subset of rules.

Then there is the potential of (small) differences between the official
grammar and the common written language. Over time, languages change
and evolve, but official grammar may not keep up with that. One has
to choose between following the official, potentially archaic rules and the
more up-to-date, yet potentially more chaotic or random language. That
decision may depend on the NLG system’s use case. For example, the
second person singular of the verb kunnen ‘can’ is kunt in formal lan-
guage, but the informal form has evolved to be kan. When generating
conversational texts to simulate natural conversations, it may be suitable
to base the system on commonly used grammar. For generating business
reports, a more formal style is probably preferable.

Dutch grammar has shown to contain many exceptions and much flex-
ibility. This is especially true for word order.

Word order has shown to be the most difficult to implement. Often a
verb group had to be split apart and its objects had to be repositioned.
In the case of Separable Complex Verbs, the separation of the preverb
posed extra challenges, such as preverb positioning and extra steps during
inflection.

Other challenging aspects were the pronunciation-based morphology
rules. The lexicon does not contain information about pronunciation and
SimpleNLG-NL and other versions of SimpleNLG do not support it. In-
stead, SimpleNLG-NL uses generalised rules based on spelling. While
these rules seem to cover many cases, their coverage may not be com-
plete. A system based on pronunciation data may be more complete, as-
suming that rules regarding Dutch pronunciation are more consistent than
those for spelling.

In Chapter 9, future work on SimpleNLG-NL is described. One pro-
posal would be to create a different, more flexible approach to word order.
SimpleNLG for German (Bollmann, 2011) uses an extra feature in the in-

5.5. CONCLUSION AND DISCUSSION 53

put to determine the order. This allows more variation and control, but
it has to be taken into consideration that that approach would move the
choice of word order to the sentence planner. Another possibility would
be to expand the analysis of the input structure and pick a different word
order based on that. SimpleNLG-NL could have more word order rules
for more situations. This could be achieved using the iterative develop-
ment approach taken to build SimpleNLG-NL. However, it has to be made
sure not to make large generalisations that cause other sentences to be
generated incorrectly. Preventing generalisations requires many variations
and situations to be covered. This approach can have the advantage of
not having to alter the use of SimpleNLG-NL compared to that of Simple-
NLG any more. Currently, the only Dutch-specific use is the addition of the
feature for te-infitives. Keeping the use as consistent as possible would
make multilingual generation easier, as the sentence planner would re-
quire fewer or no Dutch-specific rules.

54 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

File Summary of changes
res/small-test.xml created the minimal lexicon used

during development

features/Gender.java added COMMON gender

features/Pattern.java updated Javadoc

features/dutch/DutchFeature.java added PREVERB and TE_INFINITIVE

features/dutch/DutchLexical-
Feature.java

added past forms and PREVERB

features/dutch/PronounType.java added REFLEXIVE type

framework/LexicalCategory.java added (unused) NUMERAL type

framework/NLGFactory.java detect words with hyphens as words

lexicon/Lexicon.java defined Dutch default words, e.g. co-
ordination conjunction en ‘and’

lexicon/dutch/default-dutch-
lexicon.xml

created a default lexicon (work in
progress)

morphology/dutch/Morphology-
Rules.java

added Dutch morphology rules

morphophonology/dutch/Morpho-
phonologyRules.java

removed vowel elision rules

orthography/dutch/Orthography-
Helper.java

added Dutch punctuation rules

phrasespec/SPhraseSpec.java added check for Dutch
RELATIVE_PHRASE feature

syntax/AbstractVerbPhrase-
Helper.java

added handling of PREVERB

syntax/dutch/ClauseHelper.java changed interrogative sentences and
detection of subordinate clauses

syntax/dutch/NounPhrase-
Helper.java

changed handling of adjective
phrases

syntax/dutch/VerbPhraseHelper.java changed syntax for verb phrases

Table 5.6: The files that were changed to implement Dutch grammar. Only
the files changed after the initial copying of French grammar
files and updating language independent files to include a third
language are shown.

5.5. CONCLUSION AND DISCUSSION 55

Sentence set Exact match Accepted as correct # total
% of total # % of total

Round 1 8 66.7% 11 91.7% 12
Round 2 37 100.0% 37 100.0% 37
Round 3 (medium) 9 81.8% 9 81.8% 11
Round 3 (long) 5 50.0% 7 70.0% 10
Round 4 10 62.5% 10 62.5% 16
Total 69 80.2% 74 86.0% 86

Table 5.7: The final results of implementing SimpleNLG-NL. A generated
sentence was considered an exact match only if every charac-
ter, including punctuation, matched the target sentence. The
sentence was ’accepted as correct’ if it followed the criteria de-
scribed in Section 4.2.

56 CHAPTER 5. IMPLEMENTING DUTCH GRAMMAR

Chapter 6

Using SimpleNLG-NL with parse
trees

6.1 Introduction

After the development of SimpleNLG-NL had ended, a small proof-of-
concept was built to demonstrate a possible use case for SimpleNLG-NL.
SimpleNLG-NL is just a surface realiser. Adhering to Reiter and Dale’s
(Reiter & Dale, 2000) steps of NLG described in Section 2.2, a surface
realiser needs input from a sentence planner. When using an existing
sentence planner, its output has to be converted into input suitable for the
surface realiser.

Sentence planner In the case of SimpleNLG-NL, an attempt was made
to link it to the Narrator, a story generator developed at the University of
Twente (Theune et al., 2007). The Narrator contains it own basic surface
realiser. The goal was to replace that surface realiser with SimpleNLG-NL.
However, converting the sentence plans generated by the system proved
difficult due to the Narrator’s architecture being not clearly separable at
the stage where SimpleNLG-NL could take over its surface realisation.
Another attempt was made with a newer version of the Narrator, which has
a slightly different architecture, however, that attempt was also stopped for
similar reasons.

57

58 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

Other use cases One of the use cases for SimpleNLG-NL would be a
content writer for (serious) games. The goal of this proof-of-concept was
to enable content writers to write one sentence and get multiple variations
of that sentence in return. The variations could differ in tense or any of the
other features of SimpleNLG-NL. The writer would then pick one or more
of the variations to use in the game. It is assumed that the system would
make writing with more variety easier and speed up the writing process.

This method could also prove useful in other situations, like teachers
writing learning material. Additional research may find it suitable for para-
phrasing and text adaptation, which should increase the readability of the
text, e.g. by reducing the number of modifiers or using easier synonyms.
It could also quickly rewrite texts into a different tense, for example based
on the end time of an event: a news website could write a report about a
current event and, after the event has ended, generate it in the past tense.
That would automate the manual rewriting of articles.

SimpleNLG-NL could also be used in a mix between template-based
and rule-based NLG. It would then perhaps only realise parts of a sen-
tence, or even just be used for inflection. This is how SimpleNLG-NL will
probably be used in the POSTHCARD1 project. This project is currently
developing a simulation of Alzheimer patients to provide caregivers with
realistic situations that can help them in their interaction with patients. The
simulations will be built in English, French and Dutch. For the Dutch part,
SimpleNLG-NL will be used.

For this proof-of-concept, the use case of the content writer for games
will be used.

Parsers Instead of using a full NLG system, it was chosen to use a parse
tree as input. A parse tree is the result of a dependency parser and con-
tains information about the words and phrases in a sentence and their
relations (dependencies). The information it contains is similar to that of a
sentence planner. This information can then be converted for SimpleNLG-
NL. Three parsers capable of parsing Dutch were considered. The Stan-
ford POS Tagger supports Dutch (Toutanova et al., 2003). However, it only
assigns parts-of-speech without dependency structures, which makes it

1http://posthcard.eu/

http://posthcard.eu/

6.2. METHOD 59

unsuitable for this project. Sadly, the sibling project Stanford Parser does
not support Dutch. A second option would be Frog (Bosch et al., 2007).
Frog is a project that consists of multiple modules, one of which is a de-
pendency parser. The outcome of this parser would be usable for con-
version. The third option is using Alpino. As Alpino was also used when
manually writing the input code for the target sentences while developing
SimpleNLG-NL, it had already shown to be useful. The parse trees it gen-
erates contain detailed information about the constituents of a sentence
and can be exported in XML, which is easy to use in software. Note that
the Frog dependency parser was trained on the Alpino treebank. Alpino
was chosen as the parser to generate parse trees that can be converted
to SimpleNLG-NL input.

Converter As part of the proof-of-concept, a converter was written. This
converter would take the parse tree from Alpino and generate the input
for SimpleNLG-NL. The method of conversion is described in Section 6.2.
The following features were used for the alternative sentences: tenses,
perfect form and active or passive form.

This chapter describes the process of developing the proof-of-concept
and the subset of Dutch grammar it covers. The system has no graphical
user interface, yet.

6.2 Method

The proof-of-concept consists of three modules: the parser, the converter
and the realiser. The Alpino parser reads the input sentence and writes the
parse tree it generated to an XML file. This file is read by the converter.
The converter then calls SimpleNLG-NL functions corresponding to the
tree structure it finds in the XML file. This would result in what Simple-
NLG calls the ‘initial tree’ of SimpleNLG elements, before any realisation
is performed. Lastly, SimpleNLG-NL realises multiple variants based on
the initial tree. An overview of these steps can be found in Figure 6.1.

To write the converter, an iterative process similar to that of the devel-
opment of SimpleNLG-NL was used. Simple sentences were parsed by
Alpino, of which the results were manually checked to confirm their cor-

60 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

”Marie gooit de bal.”

Alpino parser

Converter

SimpleNLG-NL

”Marie gooit de bal.”
”Marie gooide de bal.”

”Marie heeft de bal gegooid.”

XML parse tree

SimpleNLG-NL input code

Figure 6.1: An overview of the three modules that comprise the proof-of-
concept system modules and their interaction.

rectness. The code architecture of the converter was loosely based on
that of ‘nlgserv’2, a server written in Python that converts JSON objects
into SimpleNLG input. It was written as part of the PhD project of data
scientist Darren Richardson3 and the project forks indicate it is being used
by business intelligence company Nugit and Zato Novo, which focuses on
financial data and social media analysis. After the basic methods of the
converter were written, they were extended when a new node structure
was found. A match had to be made between the XML structure and the
tree structure required for SimpleNLG-NL. In the following subsections,

2https://github.com/mnestis/nlgserv
3https://mnestis.net/

https://github.com/mnestis/nlgserv
https://mnestis.net/

6.2. METHOD 61

this conversion is explained.

6.2.1 Alpino XML structure

An XML parse tree consists of <node></node> elements which can have
child nodes. Each node has attributes that provide information about the
node. For example, the rel attribute contains the dependency label, such
as mod for ‘modifier’ or su for ‘subject’. An example tree can be found in
Listing 6.1.

<?xml version="1.0" encoding="UTF-8"?>

<alpino_ds version="1.6">

<parser .../>

<node cat="top" rel="top">

<node cat="smain" rel="--" ...>

<node cat="np" rel="su">

<node lemma="mijn" infl="pron" rel="det" .../>

<node lemma="zoon" getal="ev" pos="noun" rel="hd" .../>

</node>

<node lemma="zitten" pos="verb" rel="hd" .../>

<node cat="pp" rel="ld">

<node lemma="in" pos="prep" rel="hd" .../>

<node cat="np" rel="obj1 ...">

<node lemma="die" pos="det" rel="det" .../>

<node lemma="zaal" pos="noun" rel="hd" .../>

</node>

</node>

</node>

</node>

<sentence sentid="27">mijn zoon zit in die zaal</sentence>

<comments>

<comment>Q#27|mijn zoon zit in die zaal|1|1|-3.550817951410001</

↪→ comment>

</comments>

</alpino_ds>

Listing 6.1: Example of an Alpino XML dependency tree. Unused
attributes have been left out for readability.

The dependency label rel attribute has shown to be useful for the con-
version process, as it is the attribute that has values similar to the names
of the elements and methods used in SimpleNLG-NL. The most straight-

62 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

top

−−

ld

obj1

hd

zaal

det

die

hd

in

hd

zit

su

hd

zoon

det

mijn

Figure 6.2: The parse tree for the sentence Mijn zoon zit in die zaal. ‘My
son is in that room.’ as Alpino returns it. Every node in this
graph is a representation of a node element in the XML file
and is named after the rel attribute of the node.

forward example of this is the node with the value of rel being su: this
node contains the subject, which could be set for SimpleNLG-NL using
sentence.setSubject("<subject>") where <subject> is retrieved from
the parse tree by reading the value of a different attribute of the node, in
this case the lemma attribute. This small example demonstrates the pro-
cess of writing the converter. For each possible value of rel, determine
what element of SimpleNLG-NL it corresponds to and then find the data
required by SimpleNLG-NL in the dependency tree. In some cases, this
was simply a case of reading a different attribute from the same element,
in other cases it required traversing the tree to look for the required at-
tribute of child elements. In this example, the process was straightforward,
as can be seen by comparing the graph structure coming from Alpino (6.2)
with the input tree for SimpleNLG-NL (6.3). The tree structure is the same
when looking at the SimpleNLG-NL variable classes. However, building
the elements and populating them takes a slightly different approach. The
tree in Figure 6.4 shows the methods (functions) used to build the example
sentence. It shows that SimpleNLG-NL variables are highly dependent on
each other.

6.2. METHOD 63

SPhraseSpec

PPPhraseSpec

NPPhraseSpec

head

zaal

specifier

die

preposition

in

VPPhraseSpec

zitten

NPPhraseSpec

head

zoon

specifier

mijn

Figure 6.3: The dependency tree for the sentence used in Figure 6.2 us-
ing SimpleNLG-NL element types. Every node in this graph
represents an element used in SimpleNLG-NL.

createClause()

addComplement(PPPhraseSpec)

createPrepositionalPhrase(”in”)

setObject(NPPhraseSpec)

createNounPhrase(”zaal”)

setSpecifier(”die”)

setVerb(”zitten”)setSubject(NPPhraseSpec)

createNounPhrase(”zoon”)

setSpecifier(”mijn”)

Figure 6.4: The tree for the sentence used in Figure 6.2 in the form of
SimpleNLG-NL methods. While this strictly not a dependency
tree, it provides a visual comparison between the structure of
a sentence and the structure of SimpleNLG-NL input. Every
node in this graph shows the Java method used to create the
required element. Methods in child nodes are applied to the
variable created by their parent. If a class name is used as a
parameter, it means that the parameter is of that type and is
created using the method in its child node.

64 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

6.2.2 Subjects

Every sentence has to have a subject. As stated earlier, retrieving the
subject from the XML tree is potentially very straightforward: simply navi-
gate the tree until a node with attribute rel="su" is found and then read its
lemma attribute. However, as can be seen in the example of Listing 6.1, that
node has child nodes and is parsed as being of category np (noun phrase).
Such child nodes make the code for SimpleNLG-NL more complex than
simply e.g. sentence.setSubject("hij"). Instead, a NPPhraseSpec noun
phrase element is created and populated with the available data: the head
noun and the specifier/determiner, as can be seen in Listing 6.2. The head
noun and specifier have to be collected from the children with rel="det"

or rel="hd". Note that the code also removes any underscores in lemma,
which were added in compound words by Alpino, but are not wanted in the
input for SimpleNLG-NL.

Lastly, any modifiers have to be applied. If one of the children has the
dependency label mod, its lemma is used as input for np.addModifier().
While the parse tree can provide information about the position of a mod-
ifier (e.g. positie="prenom"), this information is not used, as it should
not be the task of a sentence planner to determine the correct word or-
der. Instead, it is the task of SimpleNLG-NL to position it accurately. Note
that modifiers are not necessarily mere adjectives, but can also be prepo-
sitional phrases or other complex structures. Because of this fact, each
rel="mod" node has to be checked for children, which have to be handled
according to their own dependency labels, as described in Section 6.2.5.

6.2.3 Verb phrases

The second input that is required by SimpleNLG-NL, is the verb. The verb
node can be identified by the rel="hd" (‘relation=head’) attribute in com-
bination with the pos="verb" attribute. However, in cases of perfect, fu-
ture or conditional tenses, that node is just the auxiliary verb. Dutch verb
phrases can have multiple auxiliary verbs. A proper analysis of the sen-
tences should result in the same initial SimpleNLG-NL input tree, regard-
less of any syntax and inflection based on tenses. Features like tense and

6.2. METHOD 65

// Variable elem contains the node with attribute rel="su"

// Create the SimpleNLG-NL noun phrase element

NPPhraseSpec np = factory.createNounPhrase();

GetHeadElementReturn headElement = getHeadElement(elem);

// Rejoin lemma that was split into original words by Alpino

String head = headElement.lemma.replaceAll("_", "");

// Set lemma

np.setNoun(head);

// Set determiner

np.setSpecifier(getNPSpecifier(elem));

// Add copied feature

np.setFeature(Feature.NUMBER, headElement.number);

processModifiers(np, elem);

Listing 6.2: Source code for converting a Alpino subject element
(rel="su") to a SimpleNLG-NL noun phrase. First, an empty
noun phrase is created, which is then populated with the head
noun and a specifier. Lastly, the number (singular or plural) is
copied from the parse tree element to the new noun phrase.

form can be reapplied later, which should result in the auxiliary verbs be-
ing added back by SimpleNLG-NL. Verb phrases can not only be found
directly under the root of the sentence, but also within complements. This
is described in Section 6.2.6.

While traversing the tree, an element with the attributes rel="hd" and
pos="verb" will be found. This is the head verb node. Usually, this node
is the main verb, of which the lemma attribute contains the verb that can be
sent to SimpleNLG-NL’s sentence.setVerb(). However, in some cases
this node will be found to be just an auxiliary verb indistinguishable from
the main verb based on the attributes added by Alpino. This is the case if
one of the nodes found later in the tree traversal is a passive/perfect par-
ticiple (cat="ppart"), present participle (cat="ppres") or a verbal com-
plement (rel="vc"). This particle or verbal complement indicates that the

66 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

previously found verb was only an auxiliary verb. To find the main verb, the
converter has to read the lemma attribute of the participle node or one of its
child nodes, see the pseudo-code given in Listing 6.3. For all cases, the
converter looks for the node with the rel="hd" attribute and use its lemma
in sentence.setVerb(<lemma>).

for node in tree:

if node has rel=hd and pos=verb:

// This node has a head verb. For now, assume it is the

↪→ main verb. A later loop may find this verb was only

↪→ an auxiliary verb.

set e = getVerbElementUsingNodeLemma()

else if node has cat=ppart, cat=ppres or rel=vc:

// The node is a participle or verbal complement, so the

↪→ earlier found verb was only an auxiliary verb. Find

↪→ the main verb in this node or its children instead.

set e = getVerbElementFromChildNodes()

// Use the generated verb phrase element as verb

sentence.setVerb(e)

function getVerbElementFromChildNodes():

if node has no children:

return getVerbElementUsingNodeLemma()

else:

// The node has children, so find the head element.

create empty verb phrase

get head verb from child lemma

add head verb to verb phrase

return verb phrase

Listing 6.3: Pseudo-code describing how the main verb of a phrase is
found.

6.2. METHOD 67

6.2.4 Objects

Objects are identified by rel="obj1" (direct object) or rel="obj2" (indi-
rect object). Either of those can have child nodes. If they do not, the value
of the lemma attribute of the current node is taken and used as a string in
sentence.setObject(<lemma>) or sentence.setIndirectObject(<lemma>),
respectively. If the node does have children, the node is unpacked as a
noun phrase, similar to noun phrases used as subjects. This allows the
object to have a specifier and modifiers.

6.2.5 Modifiers

Modifiers can be applied to NPPhraseSpec, VPPhraseSpec and the prepo-
sitional phrase PPPhraseSpec, but also to SPhraseSpec, the main clause.
Nodes are marked as modifiers using the rel="mod" attribute. While Simple-
NLG only differentiates between adverbs and adjectives, Alpino parse trees
can have more complex structures. Based on the cat attribute, the con-
verter only supports single adjectives (adj), single adverbs(adv) and prepo-
sitional phrases (pp) as modifiers. Multi-word adjectival or adverbial phrases
are not supported, as those are not properly supported by SimpleNLG.
Other more complex structures, such as noun phrases as modifiers, are
also not handled by the converter.

6.2.6 Complements

Similar to modifiers, complements come in many shapes in Alpino parse
trees. Based on their rel and cat attributes, the types currently supported
are adjective phrases (with both attributes rel="predc" and cat="ap"),
noun phrases (rel="predc" and cat="np"), locative or directional phrases
(rel="ld" and cat="pp") as prepositional phrases, other prepositional
complements (rel="pc" and cat="pp") and te-infinitive verbal comple-
ments (rel="vc" and cat="ti"). Each of these types can be expanded
if the node has child nodes.

Two structures are particularly interesting: prepositional complements
require the unpacking of the child nodes to find the preposition node and
use its lemma in SimpleNLG-NL’s pp.setPreposition(<lemma>). They can

68 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

also contain a direct object, which can be either a single noun or a noun
phrase.

The other interesting structure is the te-infinitive. Even though it has the
attribute rel="vc", this type of complement is excluded from the search
for the main verb described in Section 6.2.3, as the infinitive should not
be used as the main verb in SimpleNLG-NL, but as a complement. Te-
infinitive structures consist of a main verb that is followed by to and an
infinitive. For example: probeert te gooien ‘tries to throw’. The main verb
can be found in the same place as other main verbs in Alpino parse trees
and the te is marked as the complementiser of a verbal complement. How-
ever, the infinitive is buried within a node with rel="body". This node can
also contain noun phrases as objects, such as de ball ‘the ball’ in Marie
probeert de bal te gooien. ‘Marie tries to throw the ball.’. An example
of this structure can be found in Listing 6.4. Currently not supported are
om-te-infinitives, which contain the extra adverb om (‘to’) to be set as a
complementiser.

...

<node cat="ti" rel="vc" ...>

<node lemma="te" rel="cmp" .../>

<node cat="inf" rel="body" ...>

<node rel="su" .../> <!-- Empty node. -->

<node cat="np" rel="obj1" ...>

<node lemma="de" pos="det" rel="det" .../>

<node lemma="bal" pos="noun" rel="hd" .../>

</node>

<node lemma="gooien" pos="verb" wvorm="inf" rel="hd" .../>

</node>

</node>

...

Listing 6.4: Part of the Alpino XML dependency tree for the sentence
Marie probeert de bal te gooien. ‘Marie tries to throw the ball’,
containing the te-infinitive phrase te gooien. The number of
attributes per node has been limited for readability.

6.3. EVALUATION 69

6.3 Evaluation

The proof-of-concept consists of three modules: the Alpino parser, the
converter and SimpleNLG-NL. Each of these modules can make mistakes.
SimpleNLG-NL is evaluated as described in Section 5.3. The now follow-
ing section describes the results of the converter. It assumes that the
Alpino parser is perfect and will provide a dependency tree that can be
used to generate the sentence, given that the conversion and SimpleNLG-
NL are correct, too.

Grammatical coverage The grammatical coverage of the converter can
be described using a tree structure. The order of siblings does not matter,
but the relations between parent and child do. The tree can be found in
Listing 6.5.

The conversion does not cover the entirety of Alpino’s parse options.
While the converter aims to use as general attributes as possible, it may
come across structures that use more specific attributes or unexpected
branch structures. Another possibility is that SimpleNLG and SimpleNLG-
NL do not support the grammatical features. One example are als..., dan...
‘if..., then’ sentences. There is currently no feature in SimpleNLG-NL that
allows such sentences. Therefore, input sentences with such structures
are not analysed by the converter.

A structure that is supported by SimpleNLG-NL, but not by the con-
verter, is the multi-word unit. For instance, names or dates consisting
of multiple words can be used as input for SimpleNLG-NL in the form of
canned text. The converter currently has no method built-in to handle such
nodes, but such a method could easily be implemented by concatenating
the word attribute values of the node that make up the multi-word unit.

Verb phrases A simple test was performed using eight different forms of
the same sentence as input for the converter, see Table 6.1. All parsings
and conversions result in the same SimpleNLG-NL input tree, which was
manually checked and compared with the tree of a manual input. One dif-
ference between manual and generated trees occurring in specific cases,
is the extra nested VPPhraseSpec that could be added by SimpleNLG itself.

70 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

subject:

noun

OR

noun phrase:

specifier

noun

modifiers

modifiers

verb:

verb

OR

verb phrase:

object: (noun OR noun phrase)

verb

modifiers:

adjective:

comparative/superlative

adverb

prepositional phrase:

preposition

object: (noun OR noun phrase)

modifiers

predicative adjective:

comparative/superlative

direct object: (noun OR noun phrase)

indirect object: (noun OR noun phrase)

complements:

adjective phrase:

adjective

noun phrase: (noun OR noun phrase)

directional complement:

preposition

OR

prepositional phrase: ...

te-infinitive:

verb

object (np)

modifiers

complements (first level)

Listing 6.5: The grammatical coverage of the converter. The structure
of a noun phrase and a prepositional phrase is expanded
only once in this notation. The converter reuses methods to
generate the elements.

6.3. EVALUATION 71

Verbs in SimpleNLG can be passed to the sentence.setVerb() method as
a parameter in the form of a text string or a VPPhraseSpec object.

When a string is used, see Listing 6.6, SimpleNLG creates a VPPhraseSpec

object and adds a child element of type WordElement (the word itself) to it.
In the sentence tree of SimpleNLG, just these two elements are added.

// Create the clause element

SPhraseSpec sentence = factory.createClause();

// Set the subject

sentence.setSubject("Marie");

// Set the main verb using a string

sentence.setVerb("gooien");

System.out.println(realiser.realiseSentence(sentence));

// Prints: Marie gooit. ‘Marie throws.’

Listing 6.6: Example of using a string as input for setVerb().

The sentence planner (or, in this case, the converter) can also want
to pass a VPPhraseSpec object, instead of a string, because it allows for
the addition of modifiers, complements and features to the verb itself.
This is needed, for example, when setting the verb form of this specific
verb phrase to infinitive. To take this approach, the converter creates
a new VPPhraseSpec object using factory.createVerbPhrase("gooien")

and storing it in a variable. That variable is then passed as parameter
to sentence.setVerb(verbPhrase). An example of this is shown in List-
ing 6.7. The resulting tree in SimpleNLG contains a VPPhraseSpec (cre-
ated by default) with a child in the form of the VPPhraseSpec created by the
converter, which in turn has a WordElement as child. The automatic cre-
ation of the VPPhraseSpec by SimpleNLG should not be necessary if the
verb phrase created by the sentence planner can be used or copied, but
currently, this is strange behaviour of the original SimpleNLG which can
be classified as a bug. SimpleNLG-NL currently is not able to handle this
extra layer under some circumstances.

When using a VPPhraseSpec as input, SimpleNLG-NL behaves in an
unexpected way. At the end of the verb phrase, the main verb is repeated
in its infinitive form (e.g. zal hebben gooien gooien instead of the ex-

72 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

pected zal hebben gegooid). This seems to be caused by an error in the
VerbPhraseHelper.java, where both the parent and child VPPhraseSpecs
are realised. This is an odd bug in SimpleNLG-NL that only happens for fu-
ture and conditional tenses and should be resolved. It can possibly also be
solved by solving the bug in the setVerb() method of the original Simple-
NLG mentioned earlier.

// Create the clause element

SPhraseSpec sentence = factory.createClause();

// Set the subject

sentence.setSubject("Marie");

// Create the verb phrase

VPPhraseSpec verbPhrase = factory.createVerbPhrase("gooien");

// Add modifiers, complements and features directly to this verb

gooien.addModifier("hard");

// Use the verb phrase as the main verb

sentence.setVerb(verbPhrase);

System.out.println(realiser.realiseSentence(sentence));

// Prints: Marie gooit hard. ‘Marie throws fast.’

Listing 6.7: Example of using a VPPhraseSpec as input for setVerb().

As shown in Appendix B Table B.1, there were some problems when
using a string as input for the future and conditional tenses. While building
the proof-of-concept, it became clear that a fourth round of development
of SimpleNLG-NL was needed, because of an error in the positioning of
objects in the future and conditional tenses. The object was placed in the
SVO position, while these tenses require SOV ordering. The future and
conditional tenses did not appear in the Wikipedia sentences, which is
why the word order changes were not accounted for. Note that the short
test sentences of Round 2 did include those tenses, but the sentences
did not include objects, without which the order seemed correct. Round 4
solved the problem. However, there are still problems related to Simple-
NLG positioning auxiliary verbs incorrectly, but the input for it is generated
as expected.

6.3. EVALUATION 73

The final output results can be found in Appendix B Table B.3. This
test after Round 4 included 16 combinations of the following features:
Feature.TENSE (present, past, future and conditional), Feature.PASSIVE
(true and false) and Feature.PERFECT (true and false). The features cho-
sen for this proof-of-concept were: four tenses (present, past, future and
conditional), two voices (active and passive) and both simple and perfect
form. This resulted in 16 variants of the same sentence.

Another feature SimpleNLG-NL found to be lacking, is the gerund form
(e.g. het gooien ‘the throwing’). It was not part of the Wikipedia sentences,
and did not get implemented.

Testing more complex sentences To be able to generate variants of a
sentence, the base sentence has to be extracted from the input sentence
written by the human author. To test that functionality of the converter,
simple sentences were written with increasing complexity as a form of unit
tests. Each sentence was written with different combinations of tenses and
perfect forms. Currently, passive voice is not supported, but it is detected
and marked by the Alpino parser, so support can be added to the converter
in future work.

The first set of input variations was based on the basic sentence Marie
gooit. ‘Marie throws’, see Table 6.1. These sentences were fed into the
converter and should all result in the same SimpleNLG tree. If this is the
case, the human writer can write the input sentences in any of these forms
and the system will generate variations of them. For these tests, only
the present simple was generated, which confirms that all input variations
were converted correctly.

The second set of input sentences include an object: Marie gooit de
bal. ‘Marie throws the ball.’ As shown in Table 6.2, all eight sentences
were converted correctly. Internally, SimpleNLG and SimpleNLG-NL add
objects as children to the verb phrase, while Alpino sees the object node as
siblings of the main verb node. The converter uses sentence.setObject()

as input (not verbPhrase.setObject()), which is the method described on
the SimpleNLG Wiki4. This demonstrates one of the differences between
the structure of Alpino and SimpleNLG-NL.

4https://github.com/simplenlg/simplenlg/wiki/Section-V-%E2%80%93

-Generating-a-simple-sentence

https://github.com/simplenlg/simplenlg/wiki/Section-V-%E2%80%93-Generating-a-simple-sentence
https://github.com/simplenlg/simplenlg/wiki/Section-V-%E2%80%93-Generating-a-simple-sentence

74 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

top

−−

vc

vc

ld (pp)

obj1

hd

aap

det

de

hd

naar

hd

gooien

obj1

hd

bal

det

de

su

empty

hd

hebben

su

empty

hd

zal

su

Marie

Figure 6.5: Parse tree for the future perfect sentence Marie zal de bal
gegooid hebben naar de aap ‘Marie will have thrown the ball
to the monkey’. This structure was found to be too complex
for the converter.

The third set added a prepositional phrase: Marie gooit de bal naar de
aap. ‘Marie thows the ball to the monkey’, see Table 6.3. It also tested
two different positions for the prepositional phrase, which requires Alpino
to detect the phrase properly and use similar markings as with the other
positioning, so the converter can handle it. The future perfect and condi-
tional perfect sentences fail, because the converter is not able the extra
complexity in Alpino’s output. Alpino uses a structure that includes nested
verbal complements, of which the deepest has its own complement, see
Figure 6.5. This last complement (the prepositional phrase) is not handled
by the converter.

The fourth set tested the addition of modifiers to the object (de zware
bal ‘the heavy ball’), the subject (Sterke Marie ‘Strong Marie’) and the
object of the prepositional phrase (de snelle aap ‘the quick monkey’), re-
spectively. The results are similar to those of the fourth set, see Appendix
Table B.4.

Lastly, an adverb was added to the sentence. Two sentences contained
the adverb hard ‘hard’/‘fast’ in different positions, which should result in the

6.4. CONCLUSION AND DISCUSSION 75

same input for SimpleNLG-NL. The adverb was placed either before or af-
ter the object. The converter handled both cases correctly and applied the
adverb to the SimpleNLG-NL sentence element. SimpleNLG-NL gener-
ated the sentences with the adverb being placed before the object: Sterke
Marie gooit hard de zware bal naar de snelle aap ‘Strong Marie throws the
heavy ball to the monkey fast.’

Input sentence Tense Form Output sentence
present simple

Marie gooit present simple Marie gooit.
Marie heeft gegooid present perfect Marie gooit.
Marie gooide past simple Marie gooit.
Marie had gegooid past perfect Marie gooit.
Marie zal gooien future simple Marie gooit.
Marie zal gegooid hebben future perfect Marie gooit.
Marie zou gooien cond. simple Marie gooit.
Marie zou gegooid hebben cond. perfect Marie gooit.

Table 6.1: Eight different input sentences resulting in the same tree struc-
ture when converted. The present simple is generated as Marie
gooit, which is the desired outcome.

6.4 Conclusion and discussion

The proof-of-concept shows that it is possible to create a converter that
converts Alpino parse trees into input code for SimpleNLG-NL. The con-
verter developed for this proof-of-concept is capable of reading basic tree
structures in multiple tenses and forms and convert them into input code
for SimpleNLG-NL. It also applies a set of features to the generated ini-
tial tree, which result in SimpleNLG-NL realising multiple variants of the
same input sentence. The features chosen for this proof-of-concept were:

76 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

Input sentence Tense Form Output sentence
present simple

Marie gooit de bal present simple Marie gooit de bal
Marie heeft de bal gegooid present perfect Marie gooit de bal
Marie gooide de bal past simple Marie gooit de bal
Marie had de bal gegooid past perfect Marie gooit de bal
Marie zal de bal gooien future simple Marie gooit de bal
Marie zal de bal gegooid hebben future perfect Marie gooit de bal
Marie zou de bal gooien cond. simple Marie gooit de bal
Marie zou de bal gegooid hebben cond. perfect Marie gooit de bal

Table 6.2: Eight different input sentences with added objects resulting in
the same tree structure when converted.

four tenses (present, past, future and conditional), two voices (active and
passive) and both simple and perfect form. This resulted in 16 variants
of the same sentence. Note that perfect passive sentences and perfect
active senses in the future and conditional tenses were not generated cor-
rectly by SimpleNLG-NL, see Appendix B Table B.3. A total of 10 different
variants were generated correctly.

Rather than simply creating many variants of a sentence at once, other
use cases may require specific features to be chosen, for instance when
rewriting text in a different tense. One case to which this could be applied
is news articles that describe events that have completed after the original
text was written in the future tense.

The converter is very basic. Not all sentence structures provided by
the Alpino parser can be handled by the converter. More work can be
done to increase the overlap. However, even if the converter could read
all sentences structures properly, the structures may not be supported
by SimpleNLG-NL. SimpleNLG-NL can also be improved upon. Because
none of these modules is perfect, there is a risk of multiplying errors if the
next module receives incorrect input.

While it needs additional work to support more than just basic sen-
tences, the proof-of-concept shows that the approach is suitable for read-
ing parse trees and converting them into input for SimpleNLG-NL, which
can then generate 10 sentence variants.

6.4. CONCLUSION AND DISCUSSION 77

Input sentence Tense Form Output sentence
present simple

Marie gooit de bal naar de aap pres. simple Marie gooit de bal naar de aap.
Marie heeft de bal gegooid naar de aap pres. perfect Marie gooit de bal naar de aap.
Marie heeft de bal naar de aap gegooid pres. perfect Marie gooit de bal naar de aap.
Marie gooide de bal naar de aap past simple Marie gooit de bal naar de aap.
Marie had de bal gegooid naar de aap past perfect Marie gooit de bal naar de aap.
Marie had de bal naar de aap gegooid past perfect Marie gooit de bal naar de aap.
Marie zal de bal gooien naar de aap fut. simple Marie gooit de bal naar de aap.
Marie zal de bal naar de aap gooien fut. simple Marie gooit de bal naar de aap.
Marie zal de bal gegooid hebben naar de aap fut. perfect Marie gooit de bal.
Marie zal de bal naar de aap gegooid hebben fut. perfect Marie gooit de bal.
Marie zou de bal gooien naar de aap cond. simple Marie gooit de bal naar de aap.
Marie zou de bal naar de aap gooien cond. simple Marie gooit de bal naar de aap.
Marie zou de bal gegooid hebben naar de aap cond. perfect Marie gooit de bal
Marie zou de bal naar de aap gegooid hebben cond. perfect Marie gooit de bal

Table 6.3: Fourteen different input sentences with prepositional phrases
which should have resulted in the same tree structure when
converted. The difference between two sentences of the same
tense and form is the word order, which is a stylistic choice in
these cases. The sentences in italic are missing the preposi-
tional phrase. This is due to the extra complexity in Alpino’s
output, which is currently not supported by the converter.

78 CHAPTER 6. USING SIMPLENLG-NL WITH PARSE TREES

Chapter 7

Discussion

Developing SimpleNLG-NL in an iterative manner was a novel approach.
This approach had the advantage of resulting in real-world sentences be-
ing realised. Another advantage was the ability to re-use existing French
grammar rules as a base. With every sentence, the grammatical coverage
of SimpleNLG-NL increased.

The downside of this approach is that there is no predetermined end to
the process. While languages themselves are of an ever-changing nature,
working through a (basic) grammar reference would have set a clear goal
and increased the confidence that the result is a usable product. Instead,
the limit was set by the number of sentences, their complexity and time.
Grammar references were only used to determine the rules for the problem
encountered. The current approach shows there is room for improvement
of the grammatical coverage, but it also provides a method that can be
used to continue the work.

Writing unit tests for an NLG system has shown to be difficult. There
are many small components that can be tested individually, but it is unprac-
tical to test all possible combinations. Grammatical references could have
provided example sentences to be adapted. This could have provided
more small, specific unit tests. Ideally, they would also include more com-
plex examples. Also, the unit tests used for other languages could have
been adapted more literally as far as the tested features were not specific
for that particular language. Currently, the unit tests are only loosely based
on those for the English SimpleNLG. While those tests can not guarantee
to test all combinations either, future work may be to adapt them to Dutch
more literally.

79

80 CHAPTER 7. DISCUSSION

While other adaptations of SimpleNLG used real world sentences for
evaluation, SimpleNLG-NL was evaluated during the development itera-
tions. This was part of the iterative approach, but it may not give a statistic
representation of the subset of grammar covered because of the relatively
small number of sentences. A good test would be to generate another,
large set of sentences without changing SimpleNLG-NL.

The proof-of-concept demonstrated that it is possible to use parse trees
to generate SimpleNLG-NL input from. Currently, only basic sentences
can be generated using this method. Alpino can parse sentences in great
detail and it is the task of the converter to recognise all structures and
translate it into a structure suitable for SimpleNLG-NL. However, since
SimpleNLG-NL has a more simplified structure, elements can be lost in
that translation. Alpino was probably the best choice of parser because
of its completeness, but an extra project could be dedicated to making a
converter that can handle more sentence structures.

Chapter 8

Conclusions

This project resulted in SimpleNLG-NL and an Alpino to SimpleNLG-NL
converter. SimpleNLG-NL provides surface realisation in Dutch. Using an
iterative development process, the grammatical coverage was increased
to over 80% of the test sentences, with a few differences in punctuation
and word order. However, this number only represents the coverage of
grammar used in the target sentences. The way the user or sentence
planner can manipulate word order can probably be improved upon, as
described in Chapter 9.

The iterative development process of SimpleNLG-NL answered research
questions R1.1, R1.2 and R1.3. The development method showed a way
to implement Dutch grammar by evaluating the results intermediately based
on correctness criteria. After a round of development, unit tests were writ-
ten to evaluate the state of the system and improve upon it. A third round of
medium and long sentences acted as another form of evaluation and revi-
sion. After building the converter, a fourth round corrected some mistakes
in the future and conditional tenses. In total, 16 files had to be changed
to implement Dutch grammar after initially copying 12 French-specific files
and changing 8 language independent files to add the support for the third
language. Research question R2 was answered by describing a use case
and building a prototype for it. The prototype made use of parse trees
by reading its structure and converting it to input code for SimpleNLG-NL.
This allows the user to enter a sentence and receive 16 variations on that
sentence in return, based on tense, perfect and active/passive form. This
can speed up the process of writing scenarios, dialog or other texts used
in serious games.

81

82 CHAPTER 8. CONCLUSIONS

There are many possible uses for Natural Language Generation. For
example, other NLG systems are used for generating reports on weather
or business intelligence. SimpleNLG-NL will be used in the POSTHCARD
project, performing surface realisation for the simulation of an Alzheimer
patient. This project will give SimpleNLG-NL the opportunity to prove its
usefulness for society.

SimpleNLG-NL will be released under the Mozilla Public License 1,
which is the same as SimpleNLG. The source code is accompanied by
comments and Javadoc information. Additionally, the SimpleNLG Wiki 2

will be adapted for Dutch. The converter built for the proof-of-concept will
be available on request.

A short paper describing SimpleNLG-NL has been submitted to a con-
ference and is awaiting approval.

Hopefully, the tools developed during this project will be useful to re-
searchers, companies or anyone else interested in Natural Language Gen-
eration.

1https://www.mozilla.org/en-US/MPL/
2https://github.com/simplenlg/simplenlg/wiki

https://www.mozilla.org/en-US/MPL/
https://github.com/simplenlg/simplenlg/wiki

Chapter 9

Future work

The iterative process of improving SimpleNLG-NL will never truly end.
More work needs to be done to make sure all features in SimpleNLG work
correctly for Dutch. After that, new features can be added to further en-
hance its capabilities. One feature that could be added is topicalisation.

Another grammatical aspect which could be handled differently is that
of word order. Currently, the sentence planner can alter word order us-
ing premodifiers, postmodifiers and complements. While this does make
many structures possible, it is not very flexible when changing the order af-
terwards, because it would require restructuring the input tree itself, rather
than just the realisation order. A better approach may be that of Simple-
NLG for German, in which Bollmann (2011) provided a feature to choose
the word order. This feature would have to be adapted for the new architec-
ture of SimpleNLG version 4. When giving the sentence planner the ability
to change the word order, more variants can be generated. This would
provide interesting research opportunities on stylistic choices or affective
language. Note that this feature would have to be set by the sentence plan-
ner, essentially moving the decision of word order to the sentence planner,
which it should not do.

There are many uses for NLG systems. More research could be done
for the use in paraphrasing and text adaptation. Also, SimpleNLG-NL could
be linked to an existing sentence planer, perhaps the Narrator.

The current converter used in the proof-of-concept is very basic. Im-
provements could be made by adding support for more Alpino categories
and dependency labels. If the sentence rewriting process is to be used, a
graphical user interface would make it easier to use.

83

84 CHAPTER 9. FUTURE WORK

The use of SimpleNLG-NL in the POSTHCARD project may add new
requirements for the system. New features may be added based on such
requirements.

Acknowledgements

I would like to express my greatest gratitude towards dr. Mariët Theune.
As my main supervisor she provided me with many insights and feedback.
We had many interesting discussions on unusual grammatical features
and other linguistic issues. While this was my first encounter with Natural
Language Generation, she sparked my interest in the field and helped me
get familiar with it. My second committee member, prof. dr. D.K.J. Heylen
has provided direct and constructive feedback on the draft version for this
thesis, for which I am thankful.

I would also like to thank my mother, the rest of my family and my
friends. After losing my father at the beginning of this project, they pro-
vided me with the confidence and strength to finish my thesis and graduate
successfully, which is a milestone my father often steered me towards. A
year ago, I knew very little about NLG, but I am very happy that I chose this
subject for my thesis. It has been a great learning opportunity, as well as
a provider for my first job in the POSTHCARD project. I hope to have con-
tributed to the scientific community and perhaps even society by building
SimpleNLG-NL.

85

86 CHAPTER 9. FUTURE WORK

References

Androutsopoulos, I., Lampouras, G., & Galanis, D. (2013). Generating Nat-
ural Language Descriptions from OWL Ontologies: the NaturalOWL
system. Journal of Artificial Intelligence Research, 48, 671–715.

Audring, J. (2018, March 15). Adjectival Inflection. Retrieved
from http://www.taalportaal.org/taalportaal/topic/pid/topic

-13998813296919801

Bateman, J. A. (1997). Enabling Technology for Multilingual Natural Lan-
guage Generation: the KPML Development Environment. Natural
Language Engineering, 3(1), 15–55.

Bollmann, M. (2011). Adapting SimpleNLG to German. In Proceedings
of the 13th european workshop on natural language generation (pp.
133–138).

Booij, G., & Audring, J. (2018, March 15). Separable Complex
Verbs (SCVs). Retrieved from http://www.taalportaal.org/

taalportaal/topic/pid/topic-13998813296768009

Bosch, A. v. d., Busser, B., Canisius, S., & Daelemans, W. (2007). An Ef-
ficient Memory-based Morphosyntactic Tagger and Parser for Dutch.
LOT Occasional Series, 7 , 191–206.

Bouma, G., Van Noord, G., & Malouf, R. (2001). Alpino: Wide-Coverage
Computational Analysis of Dutch. Language and Computers, 37 ,
45–59.

Broekhuis, N., Hans; Corver. (2018, March 15). 4.4. Three
Main Types of infinitival Argument Clauses. Retrieved from
http://www.taalportaal.org/taalportaal/topic/link/

syntax Dutch vp V4 41 dependent clauses introduction

V4 41 dependent clauses introduction.4.4.xml

Deemter, K. V., Theune, M., & Krahmer, E. (2005). Real versus Template-
based Natural Language Generation: A False Opposition? Compu-

87

http://www.taalportaal.org/taalportaal/topic/pid/topic-13998813296919801
http://www.taalportaal.org/taalportaal/topic/pid/topic-13998813296919801
http://www.taalportaal.org/taalportaal/topic/pid/topic-13998813296768009
http://www.taalportaal.org/taalportaal/topic/pid/topic-13998813296768009
http://www.taalportaal.org/taalportaal/topic/link/syntax__Dutch__vp__V4_41_dependent_clauses_introduction__V4_41_dependent_clauses_introduction.4.4.xml
http://www.taalportaal.org/taalportaal/topic/link/syntax__Dutch__vp__V4_41_dependent_clauses_introduction__V4_41_dependent_clauses_introduction.4.4.xml
http://www.taalportaal.org/taalportaal/topic/link/syntax__Dutch__vp__V4_41_dependent_clauses_introduction__V4_41_dependent_clauses_introduction.4.4.xml

88 REFERENCES

tational Linguistics, 31(1), 15–24.
De Oliveira, R., & Sripada, S. (2014). Adapting SimpleNLG for Brazil-

ian Portuguese Realisation. In Proceedings of the 8th international
natural language generation conference (inlg) (pp. 93–94).

Dokkara, S. R. S., Penumathsa, S. V., & Sripada, S. G. (2015). A Simple
Surface Realization Engine for Telugu. In Proceedings of the 15th
european workshop on natural language generation (enlg) (pp. 1–
8).

Ell, B., & Harth, A. (2014). A Language-Independent Method for the Ex-
traction of RDF Verbalization Templates. In Proceedings of the 8th
international natural language generation conference (inlg) (pp. 26–
34).

Gatt, A., & Krahmer, E. (2018). Survey of the State of the Art in Natu-
ral Language Generation: Core tasks, applications and evaluation.
Journal of Artificial Intelligence Research, 61, 65–170.

Gatt, A., & Reiter, E. (2009). SimpleNLG: A Realisation Engine for Practi-
cal Applications. In Proceedings of the 12th european workshop on
natural language generation (pp. 90–93).

Goldberg, E., Driedger, N., & Kittredge, R. I. (1994). Using Natural-
Language Processing to Produce Weather Forecasts. IEEE Intel-
ligent Systems, 9(2), 45–53.

Haeseryn, W., Romijn, K., Geerts, G., de Rooij, J., & van den Toorn, M.
(1997). Algemene Nederlandse Spraakkunst. Groningen/Deurne:
Martinus Nijhoff uitgevers/Wolters Plantyn. Retrieved from http://

ans.ruhosting.nl/

Kooij, J. (1978). Aspekten van Woordvolgorde in het Nederlands. Leiden:
Publikaties van de Vakgroep Nederlandse Taal- en Letterkunde.

Landsbergen, F., Tiberius, C., & Dernison, R. (2014, may). Taalportaal: an
online grammar of dutch and frisian. In N. C. C. Chair) et al. (Eds.),
Proceedings of the ninth international conference on language re-
sources and evaluation (lrec’14). Reykjavik, Iceland: European Lan-
guage Resources Association (ELRA).

Mazzei, A., Battaglino, C., & Bosco, C. (2016). SimpleNLG-IT: Adapting
SimpleNLG to Italian. In Proceedings of the 9th international natural
language generation conference (pp. 184–192).

Nederlandse Taalunie. (2015). Leidraad. Retrieved from http://

http://ans.ruhosting.nl/
http://ans.ruhosting.nl/
http://woordenlijst.org/leidraad
http://woordenlijst.org/leidraad

REFERENCES 89

woordenlijst.org/leidraad

Nederlandse Taalunie. (2018a). Naamvallen (Algemeen). Retrieved
from http://taaladvies.net/taal/advies/tekst/30/naamvallen

algemeen/

Nederlandse Taalunie. (2018b). Omschreven Trappen van Vergelijking
(Algemeen). Retrieved from http://taaladvies.net/taal/advies/

tekst/92/omschreven trappen van vergelijking algemeen/

Ong, E., Abella, S., Santos, L., & Tiu, D. (2011). A Simple Surface Realizer
for Filipino. In Proceedings of the 25th pacific asia conference on
language, information and computation.

Onze Taal. (2018). t Kofschip. Retrieved from https://onzetaal.nl/

taaladvies/t-kofschip/

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: a Method
for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th annual meeting on association for computational linguistics
(pp. 311–318).

Postma, M., van Miltenburg, E., Segers, R., Schoen, A., & Vossen, P.
(2016). Open Dutch WordNet. In Proceedings of the eight global
wordnet conference. Bucharest, Romania.

Reiter, E. (1995). NLG vs. Templates. arXiv preprint cmp-lg/9504013.
Reiter, E. (2016, 12). The Story of SimpleNLG. Retrieved from https://

ehudreiter.com/2016/12/15/the-story-of-simplenlg/

Reiter, E., & Dale, R. (2000). Building Natural Language Generation Sys-
tems. Cambridge university press.

Reiter, E., Sripada, S. G., & Robertson, R. (2003). Acquiring Correct
Knowledge for Natural Language Generation. Journal of Artificial
Intelligence Research, 18, 491–516.

Solis, C. J., Siy, J. T., Tabirao, E., & Ong, E. (2009). Planning Author and
Character Goals for Story Generation. In Proceedings of the Work-
shop on Computational Approaches to Linguistic Creativity (pp. 63–
70). Stroudsburg, PA, USA: Association for Computational Linguis-
tics. Retrieved from http://dl.acm.org/citation.cfm?id=1642011

.1642020

Soto, A. R., Gallardo, J. J., & Diz, A. B. (2017). Adapting SimpleNLG
to Spanish. In Proceedings of the 10th international conference on
natural language generation (pp. 144–148).

http://woordenlijst.org/leidraad
http://woordenlijst.org/leidraad
http://woordenlijst.org/leidraad
http://taaladvies.net/taal/advies/tekst/30/naamvallen_algemeen/
http://taaladvies.net/taal/advies/tekst/30/naamvallen_algemeen/
http://taaladvies.net/taal/advies/tekst/92/omschreven_trappen_van_vergelijking_algemeen/
http://taaladvies.net/taal/advies/tekst/92/omschreven_trappen_van_vergelijking_algemeen/
https://onzetaal.nl/taaladvies/t-kofschip/
https://onzetaal.nl/taaladvies/t-kofschip/
https://ehudreiter.com/2016/12/15/the-story-of-simplenlg/
https://ehudreiter.com/2016/12/15/the-story-of-simplenlg/
http://dl.acm.org/citation.cfm?id=1642011.1642020
http://dl.acm.org/citation.cfm?id=1642011.1642020

90 REFERENCES

Taalunieversum. (2018). Toelichting bij het Keurmerk Makkelijk Lezen. Re-
trieved from http://taalunieversum.org/algemeen/toelichting

-bij-het-keurmerk-makkelijk-lezen

Theune, M., Slabbers, N., & Hielkema, F. (2007, 6). The Narrator: NLG
for Digital Storytelling. In S. Busemann (Ed.), Enlg-07 11th euro-
pean workshop on natural language generation (pp. 109–112). DFKI
(Deutsches Forschungszentrum für Künstliche Intelligenz GmbH).

Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-
rich Part-of-Speech Tagging with a Cyclic Dependency Network. In
Proceedings of the 2003 conference of the north american chapter
of the association for computational linguistics on human language
technology-volume 1 (pp. 173–180).

Vaudry, P.-L., & Lapalme, G. (2013). Adapting SimpleNLG for Bilingual
English-French Realisation. In Proceedings of the 14th european
workshop on natural language generation (pp. 183–187).

Westwater, D. (2009). SimpleNLGv4. Retrieved from
https://github.com/simplenlg/simplenlg/blob/master/docs/

SimpleNLGv4%20Architecture.pdf

http://taalunieversum.org/algemeen/toelichting-bij-het-keurmerk-makkelijk-lezen
http://taalunieversum.org/algemeen/toelichting-bij-het-keurmerk-makkelijk-lezen
https://github.com/simplenlg/simplenlg/blob/master/docs/SimpleNLGv4%20Architecture.pdf
https://github.com/simplenlg/simplenlg/blob/master/docs/SimpleNLGv4%20Architecture.pdf

Appendix A

Sentence generation results

The sentence IDs correspond with those used in the Wikipedia corpus in
Dact.

91

92 APPENDIX A. SENTENCE GENERATION RESULTS

Sentence ID
Target result
Final result

wik part0001/1-19-
5.xml

Op 1 oktober 1966 kwam hij vrij.
Hij kwam vrij op 1 oktober 1966.

wik part0232/340263-
9-5.xml

Zij maakten hem tot mikpunt van spot.
Zij maakten hem tot mikpunt van spot.

wik part0239/357277-
5-2.xml

Zijn echte naam is niet precies bekend.
Zijn echte naam is niet precies bekend.

wik part0009/4-30-
4.xml

Veel boeren hebben zich toegelegd op de veeteelt.
Veel boeren hebben zich toegelegd op de veeteelt.

wik part0239/358263-
13-8.xml

Ik moest me concentreren op de komende ontmoeting.
Ik moest me concentreren op de komende ontmoeting.

wik part0395/760363-
11-4.xml

Dit was, tot nu toe, haar succesvolste album.
Dit was tot nu toe haar succesvolste album.

wik part0230/336374-
2-2.xml

De race startte in Lissabon en eindigde in Dakar.
De race startte in Lissabon en eindigde in Dakar.

wik part0225/325191-
4-2.xml

De Spanjaarden hadden in Groningen een solide uitvalsbasis
voor verschillende plundertochten.
De Spanjaarden hadden in Groningen een solide uitvalsbasis
voor verschillende plundertochten.

wik part0004/764-
25-8.xml

Hij werkte aan een aantal romans, maar wist deze niet te
voltooien.
Hij werkte aan een aantal romans, maar wist deze niet te
voltooien.

wik part0223/320068-
12-3.xml

De coureurs van de autos hebben ook contact met de perso-
nen in de volgautos.
De coureurs van de auto’s hebben ook contact met de per-
sonen in de volgauto’s.

wik part0229/333218-
12-7.xml

Het schip verbleef daar een tijdje en werd op 7 juni 1998
overgebracht naar een dok van het Maritieme Museum in de
haven van La Rochelle.
Het schip verbleef daar een tijdje en werd op 7 juni 1998
naar een dok van het Maritieme Museum in de haven van La
Rochelle overgebracht.

wik part0229/334066-
5-1.xml

Het onderwijsmateriaal bestaat uit een reeks van taken, zoals
probleemtaken, actietaken, studietaken en discussietaken,
waardoor studenten op verschillende manieren de te behan-
delen stof dienen te benaderen.

93

Sentence ID
Target result
Final result
Het onderwijsmateriaal bestaat uit een reeks van ’taken’,
waardoor studenten dienen de stof te behandelen te be-
naderen op verschillende manieren.

Table A.1: Results for the first round of sentences, after having completed
all four rounds. The sentence IDs correspond with those used in the
Wikipedia corpus in Dact. Sentences in italic were accepted as correct,
even though there was no exact match; sentences in bold were marked
as incorrect. Sentence wik part0004/764-25-8.xml originally contained the
incorrect (non-existent) ‘voltooiten’. This is corrected in the target.

94 APPENDIX A. SENTENCE GENERATION RESULTS

Feature Target result
Final result

Verb group types and adjec-
tives

01 verb: remove double consonant
to get stem

Marie rent.
Marie rent.

02 verb: repeat vowel from stem Marie loopt.
Marie loopt.

03 verb: ’t kofschip Marie fietst.
Marie fietst.

04 verb: irregular, not in lexicon Marie moogt.1

Marie moogt.
05 verb: irregular, in lexicon Marie heeft een aap.

Marie heeft een aap.
06 detect person & number from

subject (singular)
Zij heeft een aap.
Zij heeft een aap.

07 detect person & number from
subject (plural)

Wij hebben een aap.
Wij hebben een aap.

08 indefinite article; neuter
adjective not in lexicon

Wij hebben een snel aap.2

Wij hebben een snel aap.
09 definite article de; neuter

adjective not in lexicon
Wij hebben de snelle aap.
Wij hebben de snelle aap.

10 definite article het ; neuter
adjective not in lexicon

De snelle aap rent naar het vuile raam.
De snelle aap rent naar het vuile raam.

Negation
11 verb: remove double consonant

+ negation
Marie rent niet.
Marie rent niet.

12 verb: repeated vowel + negation Marie loopt niet.
Marie loopt niet.

13 definite article, neuter adjective
not in lexicon, negation

De snelle aap rent niet naar het vuile
raam.

1Both the target and the result are grammatically incorrect, because the verb is an
irregular verb being inflected as if it were a regular verb. This is the expected result for
irregular verbs that are not in the lexicon.

2Both the target and the result are grammatically incorrect. This tests the adjectival
inflection when the noun is accompanied by a neuter determiner and the gender of the
noun is not in the lexicon. This is the expected result.

95

Feature Target result
Final result
De snelle aap rent niet naar het vuile
raam.

14 use geen as negation auxiliary De aap heeft geen zin.
De aap heeft geen zin.

15 repeated vowel plural + geen as
negation auxiliary

De aap heeft geen poten.
De aap heeft geen poten.

Tenses
16 past simple regular Marie rende.

Marie rende.
17 past simple (’t kofschip) Marie fietste.

Marie fietste.
18 present perfect Marie heeft gerend.

Marie heeft gerend.
19 present perfect (’t kofschip) Marie heeft gefietst.

Marie heeft gefietst.
20 past perfect Marie had gerend.

Marie had gerend.
21 past perfect (’t kofschip) Marie had gefietst.

Marie had gefietst.
22 future Marie zal rennen.

Marie zal rennen.
23 future (’t kofschip) Marie zal fietsen.

Marie zal fietsen.
24 future perfect Marie zal hebben gerend.

Marie zal hebben gerend.
25 future perfect (’t kofschip) Marie zal hebben gefietst.

Marie zal hebben gefietst.
26 conditional Marie zou rennen.

Marie zou rennen.
27 conditional (’t kofschip) Marie zou hebben gefietst.

Marie zou hebben gefietst.

Interrogative sentences
28 yes/no interrogative Fietst Marie?

Fietst Marie?
29 how interrogative Hoe fietst Marie?

96 APPENDIX A. SENTENCE GENERATION RESULTS

Feature Target result
Final result
Hoe fietst Marie?

30 what (object) interrogative Wat gooit Marie?
Wat gooit Marie?

31 who (subject) interrogative Wie fietst?
Wie fietst?

32 who (indirect object) interroga-
tive

Naar wie gooit Marie een bal?

Naar wie gooit Marie een bal?
33 why interrogative Waarom gooit Marie een bal naar de

aap?
Waarom gooit Marie een bal naar de
aap?

34 where interrogative Waar gooit Marie een bal naar de aap?
Waar gooit Marie een bal naar de aap?

35 how many interrogative Hoeveel apen geven de bal aan Marie?
Hoeveel apen geven de bal aan Marie?

36 how many interrogative +
separable compound verb

Hoeveel apen gooien de bal terug naar
Marie?
Hoeveel apen gooien de bal terug naar
Marie?

37 who (object) interrogative Wie zoent Marie?
Wie zoent Marie?

Table A.2: Results for the unit tests. The double horizontal lines divide the
tests into sections. All tests were successful.

97

Sentence ID
Target result
Final result

wik part0043/23522-
2-3.xml

Zij werd vervangen door Justyna Majkowska.
Zij werd vervangen door Justyna Majkowska.

wik part0109/98833-
14-3.xml

Het kan enkel via het water en via de lucht bereikt worden.
Het kan bereikt enkel via het water en via de lucht wor-
den.

wik part0230/337851-
3-4.xml

De verhalen blijven nog lange tijd onder supervisie van Willy
Vandersteen.
De verhalen blijven nog lange tijd onder supervisie van Willy
Vandersteen.

wik part0317/530745-
4-1.xml

De zaal was ook speelzaal van de vorstin.
De zaal was ook speelzaal van de vorstin.

wik part0377/709379-
13-2.xml

Hij en Captain America zetten hun persoonlijke oorlog voort.
Hij en Captain America zetten hun persoonlijke oorlog voort.

wik part0428/864874-
11-7.xml

Bijna alle Vlamingen werden gedood of gevangengenomen.
Alle bijna Vlamingen werden gedood of gevan-
gengenomen.

wik part0521/1120494-
4-3.xml

Hij wierp in Athene een nieuw persoonlijk record van 84,95.
Hij wierp in Athene een nieuw persoonlijk record van 84,95.

wik part0569/1284172-
17-2.xml

Het stinkende walvisstation en de slachterijen werden ges-
loten.
Het stinkende walvisstation en de slachterijen werden ges-
loten.

wik part0665/1624550-
2-7.xml

Hij speelde ook mee in een aantal films en TV-producties.
Hij speelde ook mee in een aantal films en TV-producties.

wik part0667/1633610-
4-6.xml

De toelatingsperiode gaat in op 1 april 2010 en duurt 10 jaar.
De toelatingsperiode gaat in op 1 april 2010 en duurt 10 jaar.

wik part0691/1706818-
19-1.xml

De Sectie 3 is de staf-afdeling die zich bezighoudt met het
functiegebied Operaties.
De Sectie 3 is de staf-afdeling die zich bezighoudt met het
functiegebied Operaties.

Table A.3: Results for medium long sentences (7-13 words) in round 3.
Sentences in italic were accepted as correct, even though there was no
exact match; sentences in bold were marked as incorrect.

98 APPENDIX A. SENTENCE GENERATION RESULTS

Sentence ID
Target result
Final result

wik part0028/13662-
11-2.xml

Carmen 7 is een lofrede op zijn schoonvader Avitus ter gele-
genheid van diens inauguratie als keizer.
Carmen 7 is een lofrede op zijn schoonvader Avitus ter gele-
genheid van diens inauguratie als keizer.

wik part0073/50154-
12-3.xml

Spyker kreeg op 27 mei 2004 een notering aan de Euronext
Amsterdam; de introductiekoers was 15,50.
Spyker kreeg op 27 mei 2004 een notering aan de Eu-
ronext Amsterdam.

wik part0117/111546-
173-2.xml

De huidige Afrikaners stammen af van de Nederlandse
kolonisten die zich daar in de loop der tijd vestigden.
De huidige Afrikaners stammen af van de Nederlandse
kolonisten die zich daar in de loop der tijd vestigden.

wik part0156/181464-
26-2.xml

De stemgerechtigden kozen er op 3 november voor dat hun
grondwet moest worden aangepast om het homohuwelijk te
verbieden.
De stemgerechtigden kozen er op 3 november voor, dat hun
grondwet moest worden aangepast om het homohuwelijk te
verbieden.

wik part0221/315278-
5-1.xml

De naam van het aangrenzende sportpark Parkschouwburg
herinnert aan het theater dat hier tot 1911 stond.
De naam van het aangrenzende sportpark Parkschouwburg
herinnert aan het theater dat hier tot 1911 stond.

wik part0289/464781-
6-2.xml

Ze worden echter aangevallen door de Barban die koste
wat het kost de komst van de nieuwe Gingaman willen
voorkomen.
Ze worden echter aangevallen door de Barban die de
komst van de nieuwe Gingaman willen voorkomen koste
wat het kost.

wik part0352/625806-
2-3.xml

Het verwerkt 83 miljoen reizigers per jaar en behoort
daarmee tot de drie drukste stations van Parijs.
Het verwerkt 83 miljoen reizigers per jaar en behoort
daarmee tot de drie drukste stations van Parijs.

wik part0406/794098-
6-1.xml

De plant komt voor op in de zomer droogvallende plaatsen in
heidegebieden en kalkarme duinen bij en in vennen.

99

De plant komt op droogvallende plaatsen in de zomer in hei-
degebieden en kalkarme duinen bij en in vennen voor.

wik part0461/958283-
5-1.xml

Crain vertrok daarop om elders in Amerika te gaan wonen,
maar stierf binnen korte tijd door verdrinking.
Crain vertrok daarop om wonen elders in Amerika te
gaan, maar stierf binnen korte tijd door verdrinking.

wik part0553/1224231-
2-3.xml

Hij vertolkt zowel het Nederlandse lied, als het Gronings en
is regelmatig te zien op het Mega Piraten Festijn.
Hij vertolkt zowel het Nederlandse lied, als het Gronings en
is regelmatig te zien op het Mega Piraten Festijn.

Table A.4: Results for long sentences (14-20 words). Sentences in italic
were accepted as correct, even though there was no exact match; sen-
tences in bold were marked as incorrect.

100 APPENDIX A. SENTENCE GENERATION RESULTS

Appendix B

Proof-of-concept results

101

102 APPENDIX B. PROOF-OF-CONCEPT RESULTS

Output
tense

Output
form

Voice Output sentence

present simple active Marie gooit de bal.
past simple active Marie gooide de bal.
future simple active Marie zal gooien de bal.
conditional simple active Marie zou gooien de bal.
present perfect active Marie heeft gegooid de bal.
past perfect active Marie had gegooid de bal.
future perfect active Marie zal hebben gegooid de bal.
conditional perfect active Marie zou hebben gegooid de bal.
present simple passive De bal is gegooid door Marie.
past simple passive De bal was gegooid door Marie.
future simple passive De bal zal zijn gegooid door Marie.
conditional simple passive De bal zou zijn gegooid door Marie.
present perfect passive De bal is geweest gegooid door Marie.
past perfect passive De bal was geweest gegooid door Marie.
future perfect passive De bal zal zijn geweest gegooid door Marie.
conditional perfect passive De bal zou zijn geweest gegooid door Marie.

Table B.1: Initial results of the tenses, forms and voices of a sentence
passing a string to setVerb(). While the input was written
manually, it could be generated automatically with a small
tweak of the converter. Sentences in bold are incorrect. The
results have been improved during Round 4, of which the re-
sults can be found in Table B.3

103

Output
tense

Output
form

Voice Output sentence

present simple active Marie gooit de bal.
past simple active Marie gooide de bal.
future simple active Marie zal gooien gooien de bal.
conditional simple active Marie zou gooien gooien de bal.
present perfect active Marie heeft gegooid de bal.
past perfect active Marie had gegooid de bal.
future perfect active Marie zal hebben gooien gooien de bal.
conditional perfect active Marie zou hebben gooien gooien de bal.
present simple passive De bal is gegooid door Marie.
past simple passive De bal was gegooid door Marie.
future simple passive De bal zal zijn gooien gooien door Marie.
conditional simple passive De bal zou zijn gooien gooien door Marie.
present perfect passive De bal is geweest gegooid door Marie.
past perfect passive De bal was geweest gegooid door Marie.
future perfect passive De bal zal zijn geweest gooien gooien door Marie.
conditional perfect passive De bal zou zijn geweest gooien gooien door Marie.

Table B.2: Results of the tenses and forms of a sentence passing a
VPPhraseSpec to setVerb(). The input was generated using
the converter. Marked in italic are the sentences that differ
from the sentences generated using a string input, shown in
Table B.1. Sentences in bold are incorrect.

104 APPENDIX B. PROOF-OF-CONCEPT RESULTS

Output
tense

Output
form

Voice Output sentence

present simple active Marie gooit de bal.
past simple active Marie gooide de bal.
future simple active Marie zal de bal gooien.
conditional simple active Marie zou de bal gooien.
present perfect active Marie heeft de bal gegooid.
past perfect active Marie had de bal gegooid.
future perfect active Marie zal hebben de bal gegooid.
conditional perfect active Marie zou hebben de bal gegooid.
present simple passive De bal is gegooid door Marie.
past simple passive De bal was gegooid door Marie.
future simple passive De bal zal zijn gegooid door Marie.
conditional simple passive De bal zou zijn gegooid door Marie.
present perfect passive De bal is geweest gegooid door Marie.
past perfect passive De bal was geweest gegooid door Marie.
future perfect passive De bal zal zijn geweest gegooid door Marie.
conditional perfect passive De bal zou zijn geweest gegooid door Marie.

Table B.3: Final results of the tenses, forms and voices of a sentence
passing a string to setVerb() after Round 4. While the in-
put was written manually, it could be generated automatically
with a small tweak of the converter. Sentences in bold are still
incorrect.

105

Input sentence Tense Form

Sterke Marie gooit de zware bal naar de snelle aap present simple
Sterke Marie heeft de zware bal gegooid naar de snelle aap present perfect
Sterke Marie heeft de zware bal naar de snelle aap gegooid present perfect
Sterke Marie gooide de zware bal naar de snelle aap past simple
Sterke Marie had de zware bal gegooid naar de snelle aap past perfect
Sterke Marie had de zware bal naar de snelle aap gegooid past perfect
Sterke Marie zal de zware bal gooien naar de snelle aap future simple
Sterke Marie zal de zware bal naar de snelle aap gooien future simple
Sterke Marie zal de zware bal gegooid hebben naar de snelle aap future perfect
Sterke Marie zal de zware bal naar de snelle aap gegooid hebben future perfect
Sterke Marie zou de zware bal gooien naar de snelle aap cond. simple
Sterke Marie zou de zware bal naar de snelle aap gooien cond. simple
Sterke Marie zou de zware bal gegooid hebben naar de snelle aap cond. perfect
Sterke Marie zou de zware bal naar de snelle aap gegooid hebben cond. perfect

Table B.4: Fourteen different input sentences with the modifiers sterk
‘strong’ added to the elements which should have resulted in
the same tree structure when converted. The difference be-
tween two sentences of the same tense and form is the word
order, which is based on a stylistic choice. The expected result
was: Sterke Marie gooit de zware bal naar de snelle aap. The
conversion results of the sentences in bold missed the prepo-
sitional phrase and therefore the input for SimpleNLG-NL was
incomplete. This is due to the extra complexity in Alpino’s out-
put, which is currently not supported by the converter.

	Summary
	List of Figures
	List of Listings
	List of Tables
	Introduction
	What is NLG?
	Uses of NLG
	Steps of NLG
	Rule-based NLG
	Template-based NLG
	Corpus-based NLG
	Conclusion

	SimpleNLG
	Using SimpleNLG
	Technical structure
	Other languages
	French
	German
	Italian
	Brazilian Portuguese
	Filipino
	Telegu
	Spanish

	Conclusion

	Method
	Four rounds
	Round 1
	Round 2
	Round 3
	Round 4

	Correctness criteria

	Implementing Dutch grammar
	Grammar rules implemented
	General spelling rules
	Lexicon
	Nouns
	Verbs
	Adjectives
	Word order
	Aggregation
	Interrogative sentences
	Punctuation

	Files changed
	Results
	Known issues
	Conclusion and discussion

	Using SimpleNLG-NL with parse trees
	Introduction
	Method
	Alpino XML structure
	Subjects
	Verb phrases
	Objects
	Modifiers
	Complements

	Evaluation
	Conclusion and discussion

	Discussion
	Conclusions
	Future work
	References
	Sentence generation results
	Proof-of-concept results

