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Abstract 
 

Introduction. Object detection algorithms are already applied to tomographical medical data 

(i.e. X-Ray scans), but not to video data of intra-abdominal minimally invasive surgery. This 

research made a start to work on anatomical structure recognition using machine learning 

algorithms.  

Method. The YOLOv2 algorithm was applied to a dataset of 8 videos of colorectal surgery, 

with the goal to identify five anatomical structures (ureter, tendon, artery, white line of Toldt, 

colon) purely on visual information. 7 videos (6189 images) were used for training and 

validation, 1 video (1185 images) was used a test set, all annotated with bounding boxes around 

the target structures. Training parameters with the Adam optimizer were α = 0.0001 and batch 

size 8, trained for 100 epochs with a checkpoint on the lowest validation loss. A 3-layer LSTM 

network was added after the YOLOv2 algorithm for better performance, which was trained at 

α = 0.00001 for 300 epochs with a batch size of 32 and dropout of 0.2. 

Results. The LSTM implementation failed to produce reliable results, with indications that the 

loss function was implemented falsely. The standalone YOLOv2 network had a mean average 

precision (mAP) of 43.72% on our test set, which is comparable to its performance on the 

standard object detection dataset COCO.  

Discussion. The faulty LSTM implementation was narrowed down to probably a fault in the 

loss function. Annotation in medical data requires skill, anatomical background, and time, and 

is still difficult and inconsistent. Performance of YOLOv2 can be improved by training on a 

larger dataset, removing the ‘Toldt’ class, correctly implement the LSTM network, and keep 

testing for optimal settings in thresholds and learning parameters.  

Conclusion. Object detection algorithms can be applied to video data of minimally invasive 

abdominal surgery with an acceptable precision. 
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Introduction 
1.1 Rise of AI in healthcare and thus surgery 

As the application of artificial intelligence in the medical world steadily grows and spreads 

across multiple specializations, its implementation in the Operating Room (OR) seems a matter 

of time. Surgery has evolved in several major steps, the first of which is laparoscopic surgery 

in 60’s and 70’s [1]. The next game changer is the introduction of the tele-manipulator DaVinci 

some twenty years ago, which allows surgeons to operate from a distance, and is conventionally 

called robotic surgery. Actual robotic surgery, in which computers give feedback to surgeons 

during surgery, will change the field of surgery for the third time. Machine learning (ML) is a 

form of artificial intelligence most suitable to give feedback, be self-learning, and to recognize 

and classify new data. 

 

The performance of ML algorithms at a specific task improves with experience. [2] As the 

computational power of computers surges, so does popularity of ML algorithms. The ability to 

process large amounts of data in short times nowadays yields the possibility for ML algorithms 

to quickly gain experience, which thus enhances their performance. The application of ML in 

the medical field is a field of interest since the dawn of computers in the 50’s – 60’s. [3] 

Contemporary applications are e.g. computer-aided diagnosis [4-7], lesion detection [8-10] , 

image annotation [11], or structure segmentation [12], all in different imaging modalities [13]. 

Research is more focused on tomographical imaging modalities (i.e. x-ray, CT, MRI, or US), 

and less on natural medical imaging modalities (i.e. endoscopies and minimally invasive 

surgery). A main reason is that (annotated) tomography data is more readily available than 

natural medical video data [14]. 

 

 

1.2 Ureter recognition / prediction 
In abdominal surgery the organs and anatomical structures are not fixed in their position. 

Instead, these organs have a patient-specific anatomical variation, they vary with respiratory, 

cardiac, or bowel movement, or are manipulated by the surgeon during a procedure. The larger 

spatial and anatomical variation of the abdominal structures makes it more difficult to find inter-

structural relations. So, even larger and more complex training data sets are needed for training 

ML algorithms. Though these variations have a negative effect on the efficiency of ML 

algorithms, it also provides the clinical relevance.  

 The ureter, the connection between a kidney and the bladder, has a relatively stable 

position and almost no patient-specific anatomical variation. That does not mean that the ureter 

is clearly visible during minimally invasive surgery. The sigmoid colon passes over the middle 

part of the ureter, and as the ureter lies retroperitoneal it can be obscured by adhesions, fatty 

tissue, or the peritoneum. This can cause its localization during surgery to be complex. All the 

while ureter localization is an obligated step during various colorectal and gynecological 

surgeries, to ensure that there is no ureteral damage. As the ureter is not visible at the start of 

surgery, that means the surgeon has to carefully look for ureter so as to work around it. To 

autonomously recognize the ureter, and perhaps even guide the surgeon to the ureter, means the 

surgeon can work faster and more secure.  

 

The incidence of iatrogenic ureteric damage has dropped as medicine progressed, from 1-5% 

[15-17] to 0.15% [18] for open procedures. Parpala et al. [19] noted an increase in ureteric 

injury after the adoption of laparoscopy, while contemporary ureteric injury rates of 

laparoscopic procedures lie between 0.18-1.39% [18, 20-22] (depending on the type of 

procedure). Though the incidence is not particularly high, the complications are severe [23]. 
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Iatrogenic ureter damage is not detected intraoperatively in 50-91.4% of the cases [18, 24-26]. 

Also, as the symptoms are indistinct, the diagnosis duration can take days to several weeks [27]. 

Treatment of ureteral complications is almost always via reintervention, in 43.3-77.6% of the 

cases a laparotomy is the mode of repair [24]. Even if the diagnosis was made intraoperatively, 

the conversion rate is 33.3% [24] and in all cases the surgery duration is prolonged. [26] 
 

 

1.3 Computer vision and object detection 
Computer vision is an old division of computer science, originating in the late 1960’s. The rise 

of AI applications also occurred within computer vision research. Nowadays, AI applications 

in computer vision problems can be subdivided in three main subdomains, from a coarse to fine 

inference based on the level of data annotation (Table 1).  
 

Table 1. Computer vision subdomains and their annotation level. 

Annotation level Subdomain 

Image level Image classification 

Bounding box level Object detection 

Pixel level Semantic segmentation 

 

Annotating the whole image, a bounding box within the image, or each pixel of the image, 

determines what kind of output you get, namely the same as the input. While semantic 

segmentation is the most precise and is becoming more and more common, it still has some 

major downfalls. Annotating the data this way is extremely time-consuming, training the 

network is computational expensive, and training requires large amounts of data [28].  

In comparison is annotating bounding boxes relatively fast, and training is also relatively 

computationally inexpensive. Compared to image level annotations, bounding boxes actually 

localize the object. Also, the annotation times and computational resources necessary are 

comparable between image classification and object detection [28].  

 

Convolutional Neural Networks (CNN) were introduced by LeCun et al. in 1998 [29], with the 

first implementation respectfully called the LeNet. Ever since Krizhevsky et al. [30] won the 

ImageNet challenge in 2012 with a CNN architecture, CNNs have become the gold standard 

for image classification. In general CNNs consist of four main operations: convolutions,  

activation, pooling, and classification.  

 Convolutions are the first step in 

CNNs. These layers extract spatial features 

from the input images. Filters (also called 

kernels) are matrices which slide over the 

input image. The filters compute the dot 

product (sum of the element-wise 

multiplication between filter and input 

image) and the result is a single element of 

the 2D output matrix, called the feature map. 

See Figure 1 for clarification. Learning a 

CNN means to allow the algorithm itself to 

determine the values for these filters, and 

optimize them using annotated data. Though, 

one still needs to guide the learning by 

specifying the number of filters, filter size, 

number of layers etcetera.  

 
Figure 1. Illustration of a filter of a convolutional operation. 

[31] 
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The size of the result of a convolutional layer is dependent on three variables, namely the depth, 

stride, and zero-padding. The depth is the number of filters used for convolution. Each filter 

creates an own 2D feature map, and using multiple filters thus yields multiple feature maps. 

Stacking these feature maps together yields a 3D feature map, dependent on the number of 

filters (Figure 2). The filters slide over the input image (or feature map of the previous layer), 

and does so with a certain step size called the stride. With a stride of 1 the filter moves 1 pixel 

at a time, a stride of 2 moves the filter 2 pixels over. That means have a larger stride will produce 

a smaller feature map. In order to retain the same size before and after convolution, the edges 

of the input are padded with elements of zero: zero-padding (depicted in Figure 3).  

After each convolution layer the feature map passes through an activation function, most 

commonly used is the Rectified Linear Unit (ReLU), seen in Figure 4. ReLU replaces all 

negative pixel values from the feature map by zero: 
 

g(z) = max(0, z)  (1) 

 

 
Figure 4. The ReLU activation function. [33] 

An activation function is to introduce a non-linearity into the equation. As convolution is a 

linear function, adding extra layers will not affect the output if no non-linearity is introduced. 

Other activation functions exist, such as the tanh or sigmoid function, but ReLU has proven to 

work best in most cases for convolutional layers [34]. The activation function is not seen as a 

separate layer, but as part of the convolution layer.  

  

 The pooling layer reduces the dimensionality of each feature map. Reducing the 

dimensionality means reduce the number of parameters to train, which shortens training time 

and battles overfitting. Each feature map is downsampled independently. The most common 

type is max pooling, which takes the max value in the pooling window, see Figure 5. Average 

or sum pooling are two of the alternatives. A window slides over the input, as with convolution, 

 
 

Figure 2. Each filter creates its own 2D feature map, stacking 

these together results in a 3D output. [32] 

 
Figure 3 . Illustration of (zero-)padding, needed to retain 

the same size after a convolutional layer. [32] 
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so one can specify the size and stride of the pooling filter. Usually a stride equal to the filter 

size is used.  
 

F

 
Figure 5. An illustration of a maximum pooling layer. [32] 

 

 The last layer(s) of a CNN is usually a fully connected (FC) layer, meaning each node 

of the layer is connected to all the nodes of the input (seen in Figure 6Fout! Verwijzingsbron 

niet gevonden.). The 3D output of the last pooling layer is reshaped into a 1D vector, so that it 

can be used as input for the FC layer. If you use multiclass classification, the last layer will be 

a FC layer with the number of nodes corresponding to the number of classes, to predict a 

probability for each class (for binary classification this number is two). The output of the 

convolutional and pooling layers are high-level features of the input image. The FC layer 

functions to classify those features into various classes. Next to that, it is another way to 

introduce non-linearity into the algorithm. As a high-level feature may be good for the 

classification task, the combination of features might be better.   
 

 

 

 
Figure 6. A vanilla neural network, with multiple fully connected layers. [32] 
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 The concept of using multiple layers in a neural network is called ‘deep learning’. In 

CNNs it is common to use multiple convolutional plus pooling layers, followed by FC layers. 

The convolutional layers usually use filters of size 3x3, with a stride of 1. Throughout the layers 

the size of feature map is usually reduced and the number of filters increased. The pooling layer 

are most commonly of size 2x2, with a stride of 2. That reduces the dimensionality of each 

feature map by half. A schematic overview of a CNN architecture is given in Figure 7.  
 

 
Figure 7. A schematic overview of a standard convolutional neural network. [35] 

 Learning a neural network is done through backpropagation. In the case of a CNN an 

image is passed forward through the network and for example a prediction for an object is made 

in that image. The network learns by comparing its prediction to the annotated ground truth and 

update its weights accordingly. 

 Comparing the prediction with the ground truth is done with a loss function. A loss 

function computes the difference between the prediction and the ground truth. The mean 

difference across all the training samples is called the cost. The goal of training is minimizing 

the cost, so the network predicts with the highest possible accuracy.  

 The weights of a CNN are the values of the elements of the filters. The loss function 

calculates the cost, and for each weight is the partial derivative of the loss function calculated, 

called the gradient. The neural network then updates its weights with the gradients, such that it 

will predict a bit better in the next iteration. Updating the weights is a process called 

backpropagation. So training a CNN means to update the values of the filters to obtain a filter 

which predicts best for your dataset.  

 
 

1.4 Video data 
In a way that CNNs are well equipped to handle spatial information, RNNs process temporal 

data exceptionally well. Andrej Karpathy eloquently described this in his online blogpost ‘The 

Unreasonable Effectiveness of Recurrent Neural Networks’ [36]. One of the most obvious 

advantages of RNN compared to vanilla neural networks or CNNs, is that RNNs are not 

constrained to a fixed input or output size. For example, a CNN inputs an image and outputs a 

probability of classes, both fixed sizes. RNNs operate on sequences of data, as input, output, or 

often both.  
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Figure 8. Overview of RNN models, copied from [36]. 

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are 

in blue and green vectors hold the RNN's cell state. From left to right: (1) Vanilla mode of processing without RNN, from 

fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an image 

and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a sentence is classified as positive of 

negative). (4) Sequence input and sequence output (e.g. Machine Translation: inputs a sentence in French and outputs in 

English). (5) Synced sequence input and output (e.g. video classification in which each frame of the video is labelled)   

 

RNNs can be used for several types of problems, which can be structured in the categories 

depicted in Figure 8. The data collected from the minimally invasive procedures are videos, and 

we wish to predict bounding boxes in each frame. The location of the bounding boxes in the 

previous frames gives information to where the bounding boxes in the current frame might be, 

so that makes it a many-to-many problem with synchronised sequence input and output.  

RNNs are very capable in handling temporal data, because they can retain information from 

previous inputs, a ‘memory’ of sorts. A RNN can be seen as a chain, in which each unit is a 

neural network. The output of each unit is then also passed to its successor (Figure 9). A RNN 

processes an input xt, and computes with neural network At an output ht, similarly to vanilla 

neural networks. Only, the next output of the next layer, ht+1, is not based solely on the input 

xt+1, but also on the computation of the previous layer At. They are the natural architecture to 

use with sequenced data.  

 

Though in theory RNNs can make use of sequences of arbitrary length, in practice they are 

limited to retaining data for a few steps. The ‘long-term dependencies’ have proven difficult to 

learn for RNNs, due to vanishing or exploding gradients [38]. Suppose, an arbitrary unit passes 

its information to the next unit with a local error. When backpropagating through time to 

calculate the gradient to update the weights of the neural network, as one moves further 

backwards, this error signal in- or decreases with each timestep, and thus exponentially. The 

gradient is a sum of all its temporal components. In exploding gradients, the long-term 

components grow exponentially more than the short-term ones, blowing up the error signal. In 

vanishing gradients, the long-term dependencies go exponentially fast to zero, making it 

impossible for the model to learn a correlation with temporally distant units. [39-42]  That 

 
Figure 9. A schematic overview of a RNN. Short notation of the left, unrolled notation on the right.[37] 
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means the network has difficulty retaining information from far away in the sequence, and 

makes predictions based on only the most recent inputs from the sequence (Figure 10).   
 

 
Figure 10. A RNN making prediction based on short term input (left), and long term input (right). [37] 

 

Nowadays, a variation of the RNN is more commonly used, the Long Short-Term Memory 

network (LSTM). The LSTM is specifically designed to counter the vanishing (and exploding) 

gradient problem. More on these networks in the Related Works and Method chapters. 

 

 

1.5 Goal of research 

The eventual goal the research line is to predict the location of the ureter during surgery. As the 

ureter is not visible at the start of surgery, it is helpful to be able to guide the surgeon to the 

ureter for identification.  

The goal of this research project is to use object detection on video data of minimally invasive 

surgery, and determine how well a machine learning algorithm can recognize and localize 

anatomical structures in this data. The target structures for this task are: ureter, colon, (psoas 

minor muscle) tendon, (common iliac) artery, (white line of) Toldt. 
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Related work 
This chapter is a survey of the object detection problem in computer vision, with also an 

elaboration on recurrent networks. The main components of the proposed method (YOLO and 

LSTM, chapter 3.2) are highlighted and discussed in-depth. The combination of a CNN and a 

RNN, and its applications, is also discussed. 
 

2.1 Object detection algorithms 
In video data, not only increasing the accuracy of object detection algorithms is important, but 

also the computational efficiency in order to detect objects in real-time. Two main streams of 

CNN-based object detection exist, tackling the problem either as a classification or a regression 

problem. Classification algorithms crop the image in selected parts and feeds these cropped 

images to an image classifier. Regression algorithms look at the entire image and directly learn 

class probabilities and bounding box coordinates. Generally, classification algorithms are 

highly accurate, but are computationally inefficient, and vice versa for regression algorithms.  
 

2.1.1 Region-based Convolutional Neural Networks (R-CNN) 
The R-CNN method, proposed by Girshick et al. [43], is a classification algorithm and consists 

of three different parts. 1. It generates around 2000 category-independent region proposals 

using Selective Search [44]. 2. These region proposals are processed by a CNN described by 

Krizhevsky et al. [30], which extracts a fixed-length feature vector. 3. Then each region is 

classified with a set of category-specific linear Support Vector Machines. When all regions in 

an image are scored, a non-maximum suppression is applied for each class independently, 

which filters out the regions that overlap with a higher scoring region of the same class. 

 The first version of R-CNN was still too slow to use on real-time data, averaging around 

47 seconds per image. Prompting research towards speed, Fast R-CNN [45] was developed. 

Fast R-CNN works faster as it does not propagate each region proposal through the entire CNN. 

Instead it computes a CNN-representation for the entire image once, and uses that to calculate 

the CNN-representation of each region proposal. Girshick et al. [45] also added bounding box 

regression to the neural network training, which updates the region proposals of Selective 

Search throughout training.  

 At a processing time of 2 seconds per image, Fast R-CNN came closer to real-time data 

processing. The latest version is Faster R-CNN [46], averaging around 0.2 seconds per image. 

The slowest part of its predecessors was the Selective Search, which they replaced with a small 

CNN called Region Proposal Network (RPN). The RPN uses a sliding window to move through 

the image, and at each sliding position 9 region proposals are predicted. The proposals are 

parameterized relative to 9 reference boxes, called anchors. That means that the RPN does not 

predict the bounding box coordinates directly, but instead defines the predicted bounding boxes 

relative to a priori defined boxes. If x, y, w, h denote the coordinates of the box center, width, 

and height,  and x, xa, x
* are for the predicted box, anchor box and ground truth box respectively 

(same for y, w, h). Then the bounding box regression from an anchor box to a nearby ground 

truth box uses the parameterizations for the 4 coordinates as follows: 

 

tx =
x−xa

wa
, ty =

y−ya

ha
 , tw = log (

w

wa
) , th = log (

h

ha
)   (2) 

 

tx
∗ =

x∗−xa

wa
, ty

∗ =
y∗−ya

ha
 , tw

∗ = log (
w∗

wa
) , th

∗ = log (
h∗

ha
)   (3) 
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2.1.2 You Only Look Once (YOLO) 
In 2015, Redmon et al. [47] created the regression-based YOLO algorithm. Instead of proposing 

regions and classifying those regions, YOLO divides the image with a S x S grid and each grid 

cell predicts B bounding boxes and confidence scores for those boxes. Each bounding box 

consists of 5 predictions: x, y, w, h, and confidence. The (x, y) coordinates represent the center 

of the box relative to the bounds of the grid cell. The width and height are predicted relative to 

the whole image. The confidence reflects the accuracy of the bounding box and whether the 

bounding box contains an object (regardless of class). YOLO also predicts the classification 

score, C, for each box for each class in training. These two combined give a probability of each 

class being present in a predicted box. So in total YOLO makes S x S x (B * 5 + C) predictions. 

The resulting bounding boxes are compared with a probability threshold and filtered on overlap 

with other bounding boxes of the same class. Notice that you only run the image once through 

the CNN. Hence, it is possible to process images real-time. Also, processing the complete image 

also yields contextual information, which helps in avoiding false positives (e.g. mistaking 

background patches for objects). The original YOLO algorithm is exceptionally fast at 45 

frames per second, and twice as accurate as other real-time algorithms of that time. Though, it 

still lagged behind in accuracy compared to e.g. R-CNN. 

 YOLOv2 focused on improving the recall and localization [48]. A variety of past ideas 

and novel concepts were combined to improve YOLO’s performance. The most important of 

those being the introduction of anchor boxes, as proposed in the Faster R-CNN algorithm. 

YOLOv2’s variation on the RPN still predicts the location coordinates relative to the grid cell, 

instead of the predicting the offset to the anchor boxes (as RPN does). YOLOv2 predicts 5 

bounding boxes per grid cell in the output feature map, and each bounding box is defined by 5 

coordinates: tx, ty, tw, th, and to. The cell is offset from the top left corner of the image by (cx, cy), 

and the anchor box has width and height pw, ph, the predictions are visualized in Figure 11. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Prediction of a bounding box in YOLOv2, with the width and height as offsets to the anchor 

box. The center coordinates are relative to the location of the filter, using a sigmoid function. [48] 
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Still, using anchor boxes instead of directly calculating bounding box coordinates simplifies the 

problem and makes it easier for the network to learn. YOLOv2 works on input images of 416 

x 416 pixels, and its convolutional and pooling layers downsample the image by a factor 32 to 

a S x S feature map of size 13 x 13. That has as extra advantage that it has a single center cell. 

Large objects tend to occupy the center of the image, so it helps to have a single center cell to 

predict these objects, instead of 4 close-by cells.  

 YOLOv3 is another iteration of the algorithm with incremental improvements [49]. A 

objectness score based on logistic regression is predicted, which is 1 when the anchor box 

overlaps a ground truth box more than any other anchor box. Also, instead of using a SoftMax 

classifier to predict the classes of a predicted bounding box, they use independent logistic 

classifiers for each class. A SoftMax classifier was unnecessary for good performance, and a 

SoftMax classifier imposes the assumption that each box has exactly one class. In some datasets 

a multilabel approach better suits the data (e.g. a bounding box containing the label ‘women’ 

and ‘person’). 
 

 

2.2 Recurrent Neural Networks (RNN) 
RNNs are special in that they not only map an output to a specific input, the output is dependent 

on the history of inputs. With the introduction of the Long Short-Term Memory (LSTM) 

architecture in 1997 [40] the effectiveness of RNNs was significantly changed. That is, due to 

vanishing or exploding error signals earlier RNNs were not able to store weights over a larger 

number of time steps.  

The core idea of LSTMs is the cell state. Each cell takes the cell state from the previous time-

step, and it removes or adds information to update the cell state. A process which is carefully 

regulated by structures called gates. A schematic overview of a LSTM cell is given in Figure 

12. 
 

 
Figure 12. A LSTM cell with its different gates to forget, update, and output the cell state.[50] 
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Originally, the LSTM has separate input, forget, and output gates. The input gate controls the 

extent to which the cell state is updated with new values. The forget gate determines to what 

extent the value of the previous cell state remains in the cell. Lastly, the output gate controls 

the extent to which the cell state is used to compute the output activation of the cell.  

 The cell state of a LSTM cell is also expressed in the following equations: 

 

c̃<t> = tanh (Wc[a<t−1>, x<t>] + bc  (4) 

Γu =  σ(Wu[a<t−1>, x<t>] +  bu)   (5) 

Γf =  σ(Wf[a<t−1>, x<t>] +  bf)   (6) 

Γo =  σ(Wo[a<t−1>, x<t>] + bo)   (7) 

c<t> =  Γu  ∗  c̃<t> + Γf  ∗  c<t−1>   (8) 

a<t> =  Γo  ∗ tanh c<t>    (9) 

 

In which c̃<t> is the candidate value for updating the cell state, dependent on the output of the 

previous cell, a<t−1>, and the current input, x<t>. Γu, Γf, Γo are the update, forget, and output 

gates, respectively, which control the cell state, c<t>.  

 

 A lot of variants on the original LSTM were proposed through the years, and a more 

recent one is called the Gated Recurrent Unit, proposed by Cho et al. [51]. It combines the 

forget and input gate into the ‘update gate’, and it merges the cell state and hidden state, amongst 

other changes. The result is that a GRU is a simpler unit that a LSTM unit, though they work 

comparably well. [52, 53] 
 

 

2.3 A combined CNN-RNN architecture 
A combined CNN-RNN architecture is becoming increasingly popular, especially when 

handling video data. While a CNN can process images for spatial information, the RNN can 

process the spatial information of a frame in relation to the previous frames. Performing object 

detection with only a CNN, thus on one image at a time, does not make use of the temporal 

information available in videos. In the ROLO (recurrent YOLO) architecture, proposed by Ning 

et al. [54], the YOLO algorithm is used to predict bounding boxes, which are then fed to a 

LSTM. This way the predicted bounding boxes are propagated over time.  

 Closely related is the use of such a model in tracking objects in video data. Multiple 

Object Tracking (MOT) uses object detection propagated over time to track an object, for 

example when it is temporarily obscured from view by a different object. While video data may 

seem smooth to the eye, motion blur and compression artefacts can cause substantial frame-to-

frame variability [55]. Several machine learning pipelines are proposed to tackle these 

variabilities [55-58], though it is too early to define a clear winner. 

 CNN-RNN combinations are used in various computer vision tasks (i.e. video 

description [59], video classification [60], frame-level video classification [61], semantic video 

segmentation [62]). Audio and text identification and generation tasks are also well suited for 

this architecture [63-65]. 
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Method 
3.1 Dataset 

Four different types of surgical procedures were recorded to gather the dataset, consisting of  

sigmoid resection, rectum resections, low anterior resections, and left-sided hemicolectomies. 

All procedures were colorectal, as the ureter lies in that surgical area. 

 In total 8 videos were collected. The videos were downsampled to a framerate of 0.5 

Hz. The framerate is a trade-off between more data and similarity between the individual 

images. If the training samples are too much alike, the algorithm will overfit on these samples. 

The 8 videos yielded around 12000 raw images, including unusable ones. Annotation was done 

for the five target structures (ureter, colon, tendon, artery, Toldt), and the images without any 

target structure were excluded from training. In total, the dataset comprised of roughly 7000 

images. The images were preprocessed to normalize the pixel value and reshape them to match 

the input size of the networks. 

 The CNN dataset comprised of 7 video’s in the training-validation set, and 1 video in 

the test set. The training-validation set was split 90%-10%. Resulting in 5570-619-1185 images 

per respective dataset. A validation and test set of these sizes is big enough to notice sub-

percental improvements in accuracy. The dataset was shuffled randomly to battle overfitting of 

the network.  

The LSTM requires non-shuffled data as its underlying principle is the temporal 

relation. The dataset was split the same way as with the CNN. A LSTM requires sequences of 

data instead of single images. Sequences were created in a sliding windows style, by grouping 

together subsequent frames (with a sequence length of 15), and then moving along one frame. 

So sequence 1 contained frame 1 – 15, and sequence 2 contained frame 2 – 16, etcetera. As a 

result, the total training-validation and the test set were both reduced with 15 frames. 
 

 

3.2 Proposed method 
The goal is to infer bounding boxes from image data, using a CNN to generate a spatial feature 

map of the image, which is fed into a RNN to capture the temporal information of the video 

data. The CNN is first trained on the dataset, and its performance is evaluated as a separate 

model. Then, the dataset is passed through the CNN to produce feature maps of the images, 

which are fed to the LSTM model. The LSTM model is separately trained on the same data. 

Training the two models separately reduces training time; the downside is that trained 

parameters are not shared between the two models. The two models are also evaluated 

separately and compared to each other.  
 

3.2.1 YOLO algorithm 
The YOLO algorithm is used to generate the feature map of the input image. The algorithm 

consists of 22 convolutional and 5 maxpooling layers in total, an overview is given in Table 2 

. The images are resized to a size of 416 by 416 pixels. Similar to the VGG models [66] mostly 

3 x 3 filters are used and the number of channels is doubled after each pooling layer. Following 

the Network in Network style, a 1 x 1 filter is used to compress the feature representation 

between the 3 x 3 convolutions. Batch normalization is applied after each convolutional layer 

to stabilize training, speed up convergence, and regularize the model. The last convolutional 

layer has a filter of size 1 x 1, with the number of filters equal to the number of outputs needed 

for detection. So, he output of the model is a tensor of size S x S x (N*(C + 5)), with N = C = 

5 in our case, the output is 13 x 13 x 50. N being the number of predicted bounding boxes per 

grid cell, and C the number of classes. A passthrough layer from the final 3 x 3 x 512 layer to 

the second to last convolutional layer is added so that the model can use fine grain features. 
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Table 2. YOLOv2 model summary. 

Type Filters Size / Stride Output 

Convolutional 32 3 x 3 416 x 416 

Maxpool  2 x 2 / 2 208 x 208 

Convolutional 64 3 x 3 208 x 208 

Maxpool  2 x 2 / 2 104 x 104 

Convolutional 128 3 x 3 104 x 104 

Convolutional 64 1 x 1 104 x 104 

Convolutional 128 3 x 3 104 x 104 

Maxpool  2 x 2 / 2 52 x 52 

Convolutional 256 3 x 3 52 x 52 

Convolutional 128 1 x 1 52 x 52 

Convolutional 256 3 x 3 52 x 52 

Maxpool  2 x 2 / 2 26 x 26 

Convolutional 512 3 x 3 26 x 26 

Convolutional 256 1 x 1 26 x 26 

Convolutional 512 3 x 3 26 x 26 

Convolutional 256 1 x 1 26 x 26 

Convolutional 512 3 x 3 26 x 26 

Maxpool  2 x 2 / 2 13 x 13 

Convolutional 1024 3 x 3 13 x 13 

Convolutional 512 1 x 1 13 x 13 

Convolutional 1024 3 x 3 13 x 13 

Convolutional 512 1 x 1 13 x 13 

Convolutional 1024 3 x 3 13 x 13 

    

Convolutional 1024 3 x 3 13 x 13 

Convolutional 1024 3 x 3 13 x 13 

Convolutional 1024 3 x 3 13 x 13 

Convolutional 50 1 x 1 13 x 13 

 

The model output is then converted to bounding box predictions, which is subsequently filtered. 

The bounding boxes are first filtered on a score threshold, set to 0.6. The remaining bounding 

boxes are filtered on an intersection-over-union (IOU) score, set to 0.5. That means that 

bounding box predictions are filtered out if they overlap more than 0.5 with a bounding box 

pertaining to the class, with a higher confidence.  
 

3.2.2 Expansion with LSTM layer as final layer 
The input for the LSTM is the output of the CNN model before conversion to bounding box 

predictions (a tensor of 13 x 13 x 50); the feature map is flattened to a feature vector of size 

8450. The LSTM consists of three layers, the first one of 1024 cells, the second and third of 

512 cells. Following are two fully connected layers, both of the same size as the input was: 

8450. The first FC layer uses a ReLU activation function, the second uses a linear activation 

function which follows the style of the CNN model (which also has a linear activation function 

in the last layer). A dropout of 0.2 was used in all layers but the last to prevent overfitting. 

Lastly, the 8450-sized output vector of the last fully connected layer is reshaped into same shape 

as the output of the CNN model: 13 x 13 x 50. So the LSTM model’s output can be processed 

in the same way as the CNN’s. An overview is supplied in Table 3.  
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Table 3. LSTM model summary. None means a unspecified size, in this case this is number of training examples. 

Type Units Dropout Output 

LSTM 1024 0.2 (None, 512) 

LSTM 512 0.2 (None, 512) 

LSTM 512 0.2 (None, 512) 

Dense 8450  (None, 8450) 

Dropout 8450 0.2 (None, 8450) 

Dense 8450  (None, 8450) 

Reshape   (None, 13, 13, 50) 

 

3.2.3 Loss function and evaluation metrics 
The loss function for training the two models is the same as the loss function proposed in the 

YOLO paper [47]. The loss function is comprised of multiple parts, based upon the sum of 

squared errors: 

 

λcoord ∑ ∑ 𝟙 𝑖𝑗
obj[(𝑥𝑖 −  𝑥̂𝑖)2 + (𝑦𝑖 − 𝑦̂𝑖)

2]

B

j=0

S2

i=0

 

+ λcoord ∑ ∑ 𝟙 𝑖𝑗
obj

[(√𝑤𝑖 −  √𝑤̂𝑖)
2

+  (√ℎ𝑖 − √ℎ̂𝑖)

2

]

B

j=0

 

S2

i=0

 

+ ∑ ∑ 𝟙 𝑖𝑗
obj

(𝐶𝑖 −  𝐶̂𝑖)2

B

j=0

 

S2

i=0

 

+ λnoobj ∑ ∑ 𝟙 𝑖𝑗
noobj

(𝐶𝑖 −  𝐶̂𝑖)2

B

j=0

 

S2

i=0

 

+ ∑ 𝟙 𝑖
obj

∑ (𝑝𝑖(𝑐) −  𝑝̂𝑖(𝑐))2

𝑐∈𝑐𝑙𝑎𝑠𝑒𝑠

 

S2

i=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10) 

Where 𝟙 𝑖
obj

 denotes if the object appears in cell i, and 𝟙 𝑖𝑗
obj

 denotes that the jth bounding 

box predictor in cell i is “responsible” for that prediction. The original YOLO paper [47] states 

some remarks about the loss function, which are reproduced here below. 

 In every image many grid cells do not contain any object. That pushes the confidence 

scores of those cells towards zero, often overpowering the gradient from cells that do contain 

objects. That can lead to model instability, causing training to diverge early on. This is remedied 

by increasing the loss from bounding box coordinate predictions and decrease the loss from 

confidence prediction for boxes that do not contain objects. The parameters λcoord and λnoobj 

accomplish this, and are set to 5 and 1 respectively.  

 The sum-squared error also equally weights errors in large boxes and small boxes. Small 

deviations in large boxes matter less than in small boxes. To partially address this, the error 

metric  uses the square root of the width and height, instead of directly using the width and 

height. 

 YOLO predicts multiple bounding boxes per grid cell. At training you only want one 

bounding box predictor to be responsible for each object. This is the predictor with the highest 

current IOU with the ground truth box. That leads to specialization between the bounding box 

predictors, so each predictor gets better at predicting certain sizes, aspect ratios, or classes, 

improving overall recall. 
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Both the CNN and LSTM model are evaluated with the mean average precision (mAP). 

That is the precision at different recall values, averaged for each class (the AP). These averaged 

precisions per class are then averaged across the classes, defining the mAP. An exemplary 

precision-recall curve, Figure 13, illustrates the mAP. The precision here is monotonically 

decreasing (in light red), meaning that the precision for a recall value r is the maximal precision 

of all recall values r’ > r. The average precision is the area under the curve, here shown in light 

blue. 

 
Figure 13. Exemplary precision-recall curve of a class in object detection. In 

light red is monotonically decreasing precision. The average precision is the 

area under the curve, shown in light blue. 

 

The precision and recall are defined in Equations 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (11) and 

𝑅𝑒𝑐𝑎𝑙𝑙= 
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (12), with TP the number of true positives, FP the false positives, 

and FN the false negatives. A predicted bounding box is considered a true positive when the 

IOU is greater than 0.5 and it shares the same label with a ground truth box. A ground truth box 

is only used for one predictions, to avoid multiple detections of the same object. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (11) 

 

      𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (12) 

  

3.3 Training 
The optimization algorithm for both networks is Adam. For the CNN the learning rate α is set 

at 0.0001, β1 is 0.9, β2 is 0.999, ε is 10-8, and the weight decay is not used. With a batch size 

of 8, the CNN was trained for 100 epochs. The initial weights of the YOLO network were 

trained on the Pascal VOC dataset. Early stopping was not used, but two checkpoints were used 

at the lowest training and validation loss. To prevent overfitting, YOLO uses batch 

normalization, which leads to significant improvements in convergence. It also eliminates the 

need for other forms of regularization. [67] 

The weights were randomly initialized, so the training schedule for the LSTM is two-staged, to 

decrease the loss from the initial high values. Starting with 25 epochs with α at 0.0001. Training 

is continued with α at 0.00001 for 300 epochs. In both training set was the batch size 32. The 

LSTM network uses dropout to prevent overfitting. A dropout with rate 0.2 is used in the LSTM 

layer, equal to the dropout of 0.2 between the two dense layers.  
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A separate test set comprised of a single annotated video, yielding a test set of 1161 images. 

The mAP of both networks was calculated on this test set.   

Results 
Two networks are trained separately: the stand-alone YOLO algorithm and a LSTM extension 

on YOLO. The input to the LSTM network are feature maps generated by YOLO. Both are 

trained on medical video data. The two networks are foremostly inter-compared to each other. 

Its outcomes are also compared with the results of YOLO on standard object detection dataset 

such as Pascal VOC and COCO. [68, 69] 

 

 The predicted bounding boxes made by the networks were first filtered on a score 

threshold, set at 0.6, and a IOU threshold of 0.5 with boxes of the same class (described in 

Section 2.1.2). The LSTM architecture performed so horribly that these thresholds were 

lowered to 0.05 and 0.1 respectively, on which the LSTM outputted a few comparable bounding 

boxes for all images. The systematic error causing this malfunctioning has not been found at 

the time of writing. 
 

Table 4. Training and validation loss of the training cycles of both the YOLO and the LSTM network. 

YOLO LSTM 

Training loss Validation loss Training loss Validation loss 

5.6328 20.3050 98.1360 97.8421 

  91.6159 96.2977 

  90.8865 96.3805 

 

 

  
Figure 14. Training (blue) and validation (orange) loss of both networks. The YOLO network is left, the second training of 

the LSTM on the right. 

 

 

 

4.1 Training 
The YOLO network was trained for 100 epochs. The training loss gradually decreased from 

around 22.5 to around 5.5. The validation loss’ minimum was around the 4th epoch, and had a 

value of 17.8487, on which the training loss was around 13. The validation loss stabilized after 

around 10 epochs, fluctuating around a loss of 19-20. The LSTM network’s loss dropped 

sharply in the first few epochs, due to the random initialization of the weights. Notable is that 

the validation loss quickly stabilized around 96 and minimally deviated thereafter until around 

50 epochs. This is tipping point after which the LSTM network started overfitting on its training 

set, as can be seen from the gradually decreasing training loss and gradually increasing 

validation loss. For both networks the training and validation losses are summarized in Table 
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4, and plotted in Figure 14. The YOLO model uses the weights from the point of its lowest 

validation loss, so around epoch 4. The LSTM model also uses the weights at the minimum 

validation loss.  

 
Figure 15. Example of two colon instances (annotated in light orange), they are visually quite varying. 

 

 
Figure 16. Annotated image with 3 of the 5 classes present: artery, tendon, and (left and right) ureter. 

 

The training data itself is heterogenous in appearance. For example, Figure 15, shows two 

instances of the colon, both quite different in show and color. In other cases, the structures are 

more easily identifiable, such as in Figure 16.  
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4.2 Test set 
The test set contained images on which the networks were not trained. For each network the 

true and false positives are computed, found in Figure 17. Precision-recall curves for each of 

the five classes were plotted based on these distributions. These precision-recall curves are 

found in appendix A. The mAP for each network is derived from those curves, resulting in a 

mAP of 43.72% for the YOLO network, and a mAP of 0.00% for the LSTM architecture. The 

average precision per class is found in Figure 18.  

 

When the CNN predicted a bounding box of class ‘colon’, it did so with a high precision: 0.88. 

That its average precision (AP) is still the second lowest with 0.38 is caused because the CNN 

predicted few instances compared with the ground truths. The ground truth instances for each 

class are in Table 5. 

 
Table 5. Ground truth instances in the test set. 

Class: Instances: 

Colon 958 (944 for LSTM) 

Tendon 267 

Artery 225 

Ureter 118 

Toldt 80 

  

 

  
Figure 17. Number of predictions per class made by the YOLO algorithm (left), and the LSTM algorithm (right). 

  
Figure 18. The average precision per class and the mean average precision (mAP) of the YOLO network (left) and LSTM 

network (right). 
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The CNN predicted 54 + 382 = 436 instances of colon, and there were 958 ground truths 

annotated, that resulted in a lower AP. In comparison, the class ‘artery’ has the highest AP with 

0.56, mostly because it predicted 93 + 158 = 251 bounding boxes. The CNN also predicted the 

most false positives in the class ‘artery’. 

 

The LSTM predicted only a few different bounding boxes, at different locations but minimally 

differing in size and shape per prediction. These predictions were irrespective of input image 

and of prediction class. It predicted a single true positive, only based on pure luck that a ground 

truth box overlapped with the prediction. Figure 19 shows two images with predictions made 

by the LSTM. It is abundantly clear that the pipeline for predicting bounding boxes with the 

LSTM architecture is faulty. The resulting mAP and precision-recall curves are thus unusable. 
 

  

  
Figure 19. Two examples of the highly comparable predictions made by the LSTM network. On the left it had a match, by 

chance, on the right a false prediction. 
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Figure 20 shows four predictions of the ureter, made by the CNN. The false predictions can be 

subdivided in either an incomplete prediction (upper right) or a completely wrongful 

classification (bottom left). In the bottom right instance of Figure 20 the prediction is arguably 

a better fit than the ground truth annotation.  
 

 

  

  
Figure 20. Four predictions for the ureter made by the YOLO algorithm. 
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Discussion 
The YOLOv2 algorithm is tested on several datasets, most relevant for comparison are the 

Pascal VOC and COCO datasets. Both focus on object detection, also expressed in the mAP. 

The Pascal VOC dataset has 20 annotated classes. The dataset from 2007 contains around 

24,000 images, combined with the 2012 dataset its total lies around 50,000 images.  [68] The 

COCO dataset is comprised of 200,000 images for 80 classes. [69] The performance of the 

YOLOv2 algorithm on these datasets, together with its performance on our dataset, are found 

in Table 6.  

 
Table 6. YOLOv2 performance on different datasets. Results from [48]. 

Algorithm Pascal VOC 2007 Pascal VOC 2007+2012 COCO Own dataset 

YOLOv2 73.4 mAP 78.6 mAP 44.0 mAP 43.7 mAP 

 

 A larger dataset (though also for more classes) does not necessarily mean a better 

performance, proven by the difference between YOLO’s performance on Pascal VOC and 

COCO. COCO is considered more difficult than Pascal VOC as the objects annotated are more 

heterogenous. Some objects are in the background of the image, partially obscured by other 

objects, and are depicted in numerous orientations. Pascal VOC tends to have the objects central 

to the image and clearly depicted. Our own dataset can be definitely described as a more 

challenging dataset than Pascal VOC, more in line with the COCO dataset. Our dataset only 

has 5 classes, but instances between these classes can differ heavily (see Figure 15). The objects 

are regularly partially obscured, smudged or blurred, or in the background (out of focus) of the 

image. On top of that differ the hardware settings per recorded video in terms of light source 

strength, robotic versus laparoscopic surgery, and type/brand of camera used in laparoscopic 

procedures. These are all factors which influence the performance, though it also trains a more 

robust algorithm which can locate structures in varying conditions.  

 

Annotation itself is troublesome and has a flat learning curve. A lot of images are blurred, 

smeared, or out of focus. Recognizing anatomical structures is easier in the video data, but 

single stationary images are difficult. The temporal information plays a crucial role in 

identifying structures. For example, the ureter can be difficult to recognize, but its peristaltic 

movement reveals whether it actually is the ureter or something different. Also, the annotator 

is constantly challenged with the choice whether something is still recognizable as a structure, 

or whether it is too much obscured or moved out of the image. Especially when following a 

structure through time, and annotating it in every image, there comes a point when the structure 

is not recognizable anymore as the structure. Purely the temporal information from previous 

images hints that the structure is still in view. This inherently causes a grey area in annotation, 

which reflects onto the choices the algorithm makes.  

 Other difficulties which the annotator faces are obscuration by an instrument or another 

anatomical structure (e.g. fat). Does one draw a bounding boxes around the entire structure 

including the obscuration, or does one annotate the structure partially, or in multiple bounding 

boxes? Being consistent in these choices is important as it defines the dataset, and thus the 

performance of the algorithm. 

 Consistently missing structures is also a pitfall to look out for. When a lot of structures 

are present in a single image, it is easier to miss something. An incidental miss does not affect 

the algorithm, but consistently missing structures causes the algorithm to learn as not a 

structure, achieving the opposite of the goal.  

 The bounding boxes itself are not the best choice for annotating anatomical structures. 

Especially the diagonally orientated structures are annotated in large bounding boxes, including 
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a lot of other structures. It is an inherent disadvantage of object detection, but annotating pixels 

(semantic segmentation) would definitively improve performance.  

 The classes were chosen based on a preliminary, unpublished research into the 

anatomical structures present during such surgeries. The white line of Toldt was thought to be 

an well-defined structure, was proved not to be on stationary images. It is lateral of the colon, 

so the bounding boxes always overlap with the boxes of the colon. Also, it is a structure that is 

torn apart as one mobilizes the colon. Overall, the white line of Toldt was underrepresented in 

the training data. Which could be solved by adding a class weight during training. Though, 

Toldt is also uncommon in the test data, so the algorithm should focus to much on detecting it. 

It might be a good idea to remove the class altogether.  

 

Trained on our dataset, the difference between the loss of the YOLO model on the training set 

and validation set is a few points, implying room for improvement. A training loss of 12 and a 

validation loss of 18 implies both a bias and variance available in the network. Still, the network 

does not overfit (when stopped on time with training), and generalizes well to new data. The 

variance (difference between training and validation loss) means that more training data can 

definitively help in its performance. More data doesn’t help per se for the bias (high training 

loss), though it will presumably reduce the training set error, as the dataset is still quite small 

for object detection standards.  

 No data augmentation was used on the dataset, which is also an easy option to generate 

more data. The anatomical structures have a quite constant locations in the images, information 

which is lost if data augmentation is applied.  

 

 Other options generally include trying a bigger network, training longer, or trying a different 

architecture. Training longer does not seem feasible, as the YOLO model started overfitting 

itself to training set. In this case, a bigger network and/or a different architecture is exactly what 

we tried with the LSTM expansion.  

 

The pipeline for predicting bounding boxes with the LSTM network is as follow: 

1. Inputting an image in the YOLO algorithm, resulting in a 13 x 13 x 50 feature map 

2. Flatten the feature map to a 8450-sized feature vector 

3. Sequence the feature vectors, as explained in the method (Section 3.1) 

4. The sequences are fed to the LSTM network 

5. The output is a 8450-sized vector, reshaped to 13 x 13 x 50 

6. Post-processed the same way as with YOLO: filtering on a score threshold and IOU 

 

The systematic error in this pipeline was narrowed down to the LSTM network itself. The 

feature vectors, and its sequences, are different from one to another (though they are quite alike, 

which is logical as the input images are visibly similar). The output from the LSTM is almost 

identical for each input. Different weights from training times do have influence on the output 

of the LSTM, but the results are still similar. The network itself was varied by changing the 

number of layers and the number of units per layer. All variations resulted in similar, faulty 

outputs. The network is trained to output a few bounding boxes as predictions, regardless of its 

input and the class it tried to predict.  

 How this dysfunctionality has come to be is still unknown at the time of writing. 

Variations in input, network layers and units, and learning parameters did not result in better 

output. A simple network of one layer and only 128 or 256 units, should work fine but would 

not give the best results. There probably is either a mismatch between the output of the loss 

function and the actual training of the network, or an error in the actual implementation itself.  
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The results of the YOLOv2 network are filtered on a score threshold of 0.6, meaning that only 

the better predictions remain. These bounding boxes are then compared to the ground truths, on 

which the mAP is based. Lowering the threshold means more predicted bounding boxes per 

image, but likely also in more false positives. So a tradeoff has to be made between predicting 

enough bounding boxes and predicting not too many, as it has direct influence on the mAP.  

 The classes ‘colon’ and ‘Toldt’ have the lowest AP, though they are the largest and 

smallest datasets, respectively. Both predict only about half as many bounding boxes as there 

are ground truths of those classes, making it impossible to raise above a AP of 0.5.  

 The predictions and the ground truths per image are matched to each other. So, only 

images with a ground truth box and a predicted box were included in the calculation of the 

mAP. Predictions in images without a ground truth were thus excluded. Including those lowers 

the mAP, as these are false negative predictions.  

 A manual survey of the false predictions, e.g. in Figure 19 and Figure 20, shows that the 

YOLO network does not make a lot of completely wrongful predictions. Most false predictions 

have a too low IOU with the ground truths, so changes in the IOU threshold also influence the 

mAP. Following convention, we maintained a IOU threshold of 0.5.  
 

 

5.1 Future work 
The adaptation of YOLO to work on medical video data worked well. Its performance can be 

improved by foremostly enlarging the dataset. This can be done by annotating more data, and 

by augmenting the existing dataset. As of yet the dataset is small in object detection terms, 

implying a larger dataset will boost performance. The classes with which the data is annotated 

can be re-evaluated. Removing the ‘Toldt’ class will speed up annotation time and increase 

overall performance.  

 

The bias in the model suggests that a more complex model will help performance. This is a 

strong indication that the LSTM extension should be feasible. At the moment it still doesn’t 

work, so getting the implementation working is a second priority. The pipeline as of yet can be 

checked whether it contains any faulty implementations, with special regard to the loss function.  

Otherwise, another extension of the CNN should be considered, such as a Gated Recurrent Unit 

(also a type of a recurrent neural network). 

 

Some small improvements to network can be made by calculating the mAP at different 

thresholds for class score and the IOU. Finding an optimum between the score and IOU 

threshold could help the algorithm gain a few percent points in mAP. Another addition is to 

keep testing to find the optimal values for the learning parameters, for example the learning 

rate, number of epochs, Adam settings, and the weight decay.  
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Conclusion 
This research shows that object detection can be used in natural medical video data, even though 

the data is inherently challenging due to high similarities between images and the structures 

therein, and high differences between different video’s. The network can recognize and localize 

5 different anatomical structures after retraining on our dataset. The results are acceptable, with 

a mean averaged precision of 43.7% the result is comparable to its performance on the standard 

object detection dataset COCO. Its performance can be boosted by training on more annotated 

data and using a more complex architecture. A more complex architecture was designed by 

applying a LSTM layer after the YOLO network, though the implementation proved to be 

faulty. Better results can be achieved by increasing the dataset, increasing the complexity of the 

network, and keep testing to find the optimal learning parameters. 
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