
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Logical Structure Extraction of Electronic
Documents Using Contextual Information

M.Sc. Thesis

by

Semere Kiros Bitew

Department of Computer Science
Specialization of Data Science & Smart Services

August 2018

Supervisors:
Dr. M. Theune

Dr. ir. D. Hiemstra
Dr. S. Petridis (Elsevier)

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

2

University Of Twente

Masters Thesis

Logical Structure Extraction of Electronic
Documents using Contextual Information

Author:
Semere Kiros Bitew

semerebitew@gmail.com

Supervisors:
Dr. Mariet Theune

Dr.ir. Djoerd Hiemstra

Dr. Sergios Petridis

A thesis submitted in fulfillment of requirements
for the degree of Master of Science

in

Computer Science
Data Science and Smart Services

Faculty of Electrical Engineering, Mathematics and
Computer Science

August 31, 2018

Acknowledgement

I am thankful to many people for their support, contribution and friendship, which made two years

of my Master’s studies at the University of Twente very exciting.

I would like to thank my supervisors Mariet Theune and Djoerd Hiemstra for their guid-

ance, critical feedback and time reading (and re-reading) my earlier versions of this master’s thesis.

I would like to thank you both for the countless meetings, email communications and constructive

feedbacks, which helped me develop a research mindset. Mariet, I am grateful for helping me

contact Elsevier to work on this interesting topic.

Next, I want to thank Sergios Petridis from Elsevier for the day to day supervision. His

support, motivation and above all giving me freedom to pursue my own ideas; greatly helped

me get a better practical understanding of NLP and machine learning. I also want to thank my

colleagues in the Apollo project at Elsevier; Timos, Yi, Ehsan and Arash that made my graduation

project pleasant to do. In particular, I learned a lot from Timos, who has constantly explained me

how different machine learning models work.

Finally, I am very thankful to my family and friends for the love, support and encourage-

ment.

Abstract

Logical document structure extraction refers to the process of coupling the semantic mean-

ings (logical labels) such as title, authors, affiliation, etc., to physical sections in a document.

For example, in scientific papers the first paragraph is usually a title. Logical document

structure extraction is a challenging natural language processing problem.

Elsevier, as one of the biggest scientific publishers in the world, is working on recovering

logical structure from article submissions in its project called the Apollo project. The current

process in this project requires the involvement of human annotators to make sure logical

entities in articles are labeled with correct tags, such as title, abstract, heading, reference-item

and so on. This process can be more efficient in producing correct tags and in providing high

quality and consistent publishable article papers if it is automated. A lot of research has been

done to automatically extract the logical structure of documents.

In this thesis, a document is defined as a sequence of paragraphs and recovering the labels

for each paragraph yields the logical structure of a document. For this purpose, we proposed a

novel approach that combines random forests with conditional random fields (RF-CRFs) and

long short-term memory with CRFs (LSTM-CRFs). Two variants of CRFs called linear-chain

CRFs (LCRFs) and dynamic CRFs (DCRFs) are used in both of the proposed approaches.

These approaches consider the label information of surrounding paragraphs when classifying

paragraphs.

Three categories of features namely, textual, linguistic and markup features are extracted

to build the RF-CRF models. A word embedding is used as an input to build the LSTM-CRF

models.

Our models were evaluated for extracting reference-items on Elsevier’s Apollo dataset

of 146,333 paragraphs. Our results show that LSTM-CRF models trained on the dataset

outperform the RF-CRF models and existing approaches. We show that the LSTM component

efficiently uses past feature inputs within a paragraph. The CRF component is able to exploit

the contextual information using the tag information of surrounding paragraphs.

It was observed that the feature categories are complementary. They produce the best

performance when all the features are used. On the other hand, this manual feature extrac-

tion can be replaced with an LSTM, where no handcrafted features are used, achieving a

better performance. Additionally, the inclusion of features generated for the previous and

next paragraph as part of the feature vector for classifying the current paragraph improved

the performance of all the models.

ii

Contents

Acknowledgement i

Abstract ii

1 Introduction 1

1.1 Introduction to Elsevier and Apollo project . 2

1.2 Research Questions . 3

1.3 Contribution . 4

1.4 Structure of the Thesis . 5

2 Background & Related Work 6

2.1 Document Structure Recognition . 6

2.2 Logical Document Structure . 7

2.3 Techniques for Logical Structure Extraction . 9

2.3.1 Rule Based Approaches . 9

2.3.2 Machine Learning Approaches . 11

2.4 Conclusion . 13

3 Elsevier’s Apollo Dataset 15

3.1 Article Manuscripts . 16

3.2 Published Articles . 17

3.3 Summary . 18

4 Methods 20

4.1 Modeling the Problem . 20

4.2 Feature Extraction . 21

4.3 Random Forest . 26

iii

4.4 Conditional Random Fields (CRF) . 28

4.4.1 Linear chain CRFs . 31

4.4.2 Dynamic CRFs . 31

4.5 Long Short-Term Memory (LSTM) . 32

4.6 Summary . 35

5 Experiments and Results 37

5.1 Experimental Setup . 37

5.1.1 Dataset Preparation . 37

5.1.2 Baselines . 39

5.1.3 Experimental setup of Linear CRFs . 40

5.1.4 Experimental setup of Dynamic CRFs . 41

5.1.5 Performance Measures . 42

5.1.6 Implementation Environment . 43

5.2 Results . 45

5.2.1 Baselines . 45

5.2.2 Linear Chain CRFs . 46

5.2.3 Dynamic CRFs . 48

5.2.4 The Effect of Using Contextual Features . 51

5.2.5 Conclusion . 51

6 Discussion 53

7 Conclusion and Future work 55

7.1 Conclusion . 55

7.2 Future works . 56

Appendices 58

iv

A Preliminary results of LSTM-LCRF for the whole document 58

B Source Code Listings 59

B.1 Source code for including continuous features . 59

B.2 Source code for predicting class labels from a trained model 60

References 63

v

List of Figures

2.1 Sample first page of a paper (Source: Bloechle 2010) 8

2.2 Tree structure and formalized XML description (Bloechle 2010) 9

3.1 Initial manuscript submission with all contents and files 17

3.2 Final published article . 18

4.1 Sequence of paragraphs with possible multi-level labels 21

4.2 Font family feature example . 25

4.3 Sample Dataset For Random Forest . 27

4.4 Example of Random Forest . 27

4.5 Text snippet from Paaß and Konya 2011 . 28

4.6 Word and State Vectors from Paaß and Konya 2011 28

4.7 One LSTM . 34

4.8 Multiple gates . 35

5.1 Class Label Distribution . 38

5.2 Two level labels for DCRF . 42

A.1 Class Label Distribution For six classes . 59

vi

List of Tables

4.1 List of Extracted Features . 23

5.1 Performance of Random Forest classifer . 45

5.2 Random Forest binary classifier confusion matrix with all features 46

5.3 Performance of LSTM binary classifier . 46

5.4 LSTM binary classifier confusion matrix . 46

5.5 Performance of Linear Chain CRF with direct features 47

5.6 LCRF confusion matrix . 47

5.7 Performance of RF-LCRF . 47

5.8 RF-LCRF confusion matrix . 47

5.9 Performance of LSTM-LCRF binary classifier . 48

5.10 LSTM-LCRF binary classifier confusion matrix . 48

5.11 Performance of Dynamic CRF with direct features 49

5.12 DCRF confusion matrix with all features . 49

5.13 Performance of RF-DCRF . 49

5.14 RF-DCRF confusion matrix . 50

5.15 Performance of LSTM-DCRF . 50

5.16 LSTM-DCRF confusion matrix . 50

5.17 The effect of using contextual features on the performance of models 51

A.1 F1-scores for LSTM-LCRF . 58

A.2 Confusion Matrix for LSTM-LCRF . 58

vii

List Of Acronyms

CRF Conditional Random Fields

CSV Comma Separated Values

DCRF Dynamic Conditional Random Fields

DT Decision Tree

GRMM Graphical Models for Mallet

LCRF Linear-Chain Conditional Random Fields

LSTM Long-short Term Memory

ML Machine Learning

NB Naive Bayes

PDF Portable Document Format

PII Publisher Item Identifier

POS Part Of Speech

RF Random Forest

RNN Recurrent Neural Network

SSVM Structural Support Vector Machine

SVM Support Vector Machine

XML Extensible Markup Language

viii

1 Introduction

Electronic documents are increasingly becoming an important medium of communi-

cation between humans since the introduction of computers. Electronic documents

are easy to distribute, search and store. The structure of electronic document can

be explicitly represented into physical layout and logical structure. Physical lay-

out refers to what physically exists on a document page when it is viewed. The

perceived document may be composed of a paper and ink or bits and pixels, and

these small units form larger structures that convey information to human readers

(e.g. a page consists of some blocks, a block consists of some text line, a text line

is composed of some words etc.). In contrast, logical structure refers to what the

physical layout components actually are in terms of understanding how to interpret

the contents in a page of a document. For example, a set of pixels may form a

paragraph, title and section which are logical components. Extracting such kind of

logical structural information can be very useful in many applications. For exam-

ple, such structures which enable documents to be easily reedited and restyled help

build citation-indexing systems that greatly improve indexing, retrieving and reuse

of document content. While it is easy for humans to understand the structure of

such documents, computers are only good at processing content without attaching

any interpretation to it (Mao, Rosenfeld, and Kanungo 2003).

Logical document structure extraction refers to the process of extracting log-

ical components such as title, abstract, affiliation etc. from documents. Logical

structure extraction is not a trivial process. For instance, authors use different

styles and typesetting while writing papers, which results in completely different

structures. Moreover, research articles from different fields of study tend to have

different structures. For example, research articles from computer science and social

sciences have completely different structure.

In this master’s thesis the focus is on studying the problem domain, defining

what is being solved, exploring the existing research and methods, and implement-

ing machine learning models to achieve a high performance in extracting logical

document structure. The logical document structure extraction is formulated as a

sequential learning problem. Sequential learning refers to learning a sequence of

1

labels for a sequence of input data (Jurafsky 2000). For example, a document can

be viewed as a sequence of paragraphs, sentences or words. By assigning labels

(classes) to these paragraphs, sentences or words the structure of a document can

be recovered.

1.1 Introduction to Elsevier and Apollo project

Elsevier1, established in 1880, is one of the biggest scientific publishers in the world.

Elsevier publishes approximately 400,000 papers annually in more than 2,500 jour-

nals. The company works on different innovative projects in a quest to become a

leading information provider for the scientific and corporate research community.

One project called the Apollo project at Elsevier is working on recovering

logical structure from article submissions. This project focuses on automating the

process between first article submission of an author’s manuscripts and final struc-

tured publishable form with high quality. Starting from the author’s manuscript,

it undergoes a series of editing steps that guarantees a high-quality publication.

A typical work flow for revising the article includes preflight, auto-structuring and

copy-editing stages. In preflight, initial submissions are checked for missing files. In

the auto-structuring stage, rearranging of the content with specific structure is done.

Finally in copy-editing, final revision of the content of the article is done before the

publishable form is produced.

In the auto-structuring stage, human annotators are involved to make sure

articles are labeled with correct tags, such as abstract, heading, title, reference-item

and so on. This task can be more efficient in producing correct tags and thereby

providing high quality and consistent data if automated. However, the automatic

extraction of structure is not a trivial process. Some articles are submitted with

semi-structured information and unstructured in the worst case.

The aim of this master’s thesis is to automate the auto-structuring stage by

utilizing existing machine learning models. With present developments of machine

learning approaches, it is possible to automate the structuring process by replacing

the role of humans achieving quite a good performance.
1https://www.elsevier.com/en-gb

2

1.2 Research Questions

The thesis work is an extension to the work done by He 2017. The author used

textual and visual information to extract logical structure of documents. My thesis

focuses on the use of models that take into account the contextual information to

improve the task of document structure extraction. In our case, documents exhibit

sequential structure at different levels such as paragraphs, sentences, words etc.

Hence, contextual information refers to the information that can be exploited from

surrounding paragraphs, words, sections to assist us in extracting structure from

documents. The thesis addresses the following research question:

Given a word document (e.g. doc, docx format), how do machine

learning approaches perform for the task of logical document structure

extraction by leveraging the textual, linguistic, markup and contextual

information?

To answer this research question it is important to consider the following

subquestions:

1. What kind of features should be extracted to apply machine learning algorithms

to the task of logical structure extraction? Feature selection is an important step

towards developing high performing machine learning models. This research

subquestion explores the set of features that should be extracted to achieve

high performance in the task of logical document structure extraction.

2. How to take into account the contextual information? Different machine learn-

ing models take contextual information into account differently. This research

subquestion will answer how contextual information is utilized for extracting

the structure of documents.

3. Given a context considering machine learning approach, what is the utility of

linguistic, textual and markup features? This research subquestion will answer

the extent markup (visual), linguistic and textual features affect performance

of machine learning models.

4. Can the feature extraction step be left out by using alternative deep learn-

ing methods (Long short-term memory) for extracting document structure ele-

3

ments? This subquestion will answer if the extraction and selection of manual

handcrafted features, which is a requirement for traditional machine learning

approaches, can be totally cut out by introducing deep learning methods.

1.3 Contribution

The main contributions of this thesis are grouped into categories. The first group

lists the contribution from research point of view and the second group discusses

from the company’s (Elsevier) perspective.

From a research point of view, the contribution of the thesis can be summarized as

follows:

1. We developed a novel approach that combines LSTM with CRFs, which outper-

forms existing approaches on Elsevier’s Apollo dataset of 146,333 paragraphs

for the purpose of logical structure extraction.

2. Two ways of using contextual information in building machine learning models

for logical structure extraction are proposed, which can be of a good insight for

other researchers.

3. The underlying learning code of GRMM (Graphical Models for Mallet) supports

continuous features but the interfaces provided by the software only support bi-

nary features. Hence, a modification of a Java interface in the GRMM package

of Mallet to include continuous features was done.

4. Several feature categories for the task of logical document structure extraction

are proposed, which can act as insights for other researchers.

From Elsevier’s perspective, automating the process of structuring articles with

minimal human involvement will solve the following problems:

1. The manual work of annotating sections of an article is a routine task and

susceptible to mistakes, which can lead to a drop of the quality of article pub-

lications.

2. There is inconsistency in the quality of data because article structuring is done

by different people.

4

3. It costs time and money to manually annotate sections of articles and it is a

bottleneck to the overall work flow of publishing articles.

1.4 Structure of the Thesis

The rest of the thesis is structured as follows: Chapter 2 presents the background

and prior research works for sequential learning and logical document structure

extraction. The data that is available in the Apollo project at Elsevier is described

in Chapter 3. Chapter 4 discusses how the problem is formulated, the features used

and theoretical working principles of the models used in the thesis. In Chapter 5 the

experimental setting and results of the developed models are presented. Discussion

of the results is presented in Chapter 6. Finally, the thesis is concluded by giving

an outlook on future activities (Chapter 7) and conclusions.

5

2 Background & Related Work

Several researches have been carried out in document structure recovering and se-

quential learning. Sequential learning refers to a type of structured prediction of

sequence of labels to a sequence of input data (Jurafsky 2000) . Document struc-

ture extraction refers to extracting structural elements from documents. This section

starts with defining document structure extraction and logical document structure.

Next, techniques for labeling sequential data are explored by discussing related works

from other researchers and how they applied them.

2.1 Document Structure Recognition

Document structure recognition also known as document understanding is defined

in different ways by different authors. Paaß and Konya (2011) define a document

understanding system as a "system that produces a complete representation of a doc-

ument’s logical structure, ranging from semantically high-level components to lowest

level components for a given text representation input." The output of a document

understanding system may range from a representation useful for document sorting

(e.g. terms and their frequency) to a structured message with attribute-value pairs

describing all aspects of communication necessary to drive particular work-flows.

Document understanding can also be thought of as the exact reverse process

of document authoring/production (Aiello et al. 2002; Bloechle 2010). Document

authoring is the process of creating documents whereby authors start with a rough

idea of the content they will write and then structure it by considering the logical

organization of the material. For example, the author may decide to organize the

document in chapters, decide its reading order and use some layout typesetting

convention such as font size, indentation etc. Therefore, it is crucial to consider the

choices the author makes while writing a document. How to include the choices

made by authors such as font size, font style etc in developing document structure

recognizing systems is discussed in section 4.2.

Document understanding may depend on readers’ interpretation but docu-

ments generally have a physical layout and logical structure. Document structure

6

recognition exploits these two basic sources of information from documents. Phys-

ical layout is the layout of text on the printed page and logical layout contains the

rich set of features of the wording and contents. The physical/geometric layout gives

many clues about the relationship between different units such as headings, body

text and figures. The logical layout can be exploited to recognize the existing in-

terrelation and semantics of the text representation of the document (Rahman and

Finin 2017; Mao, Rosenfeld, and Kanungo 2003; Dengel and Shafait 2014; Mehler

et al. 2011; Klink, Dengel, and Kieninger 2000; Paaß and Konya 2011).

Extraction of the layout structure from scanned documents, which is called

physical layout analysis (Geometric analysis or page segmentation) is further dis-

cussed in Klink, Dengel, and Kieninger 2000; Namboodiri and Jain 2007; Mao,

Rosenfeld, and Kanungo 2003; Nagy 2000; Shafait, Keysers, and Breuel 2008. Clas-

sifying the layout structure into logical structure, which is called logical labeling, will

be the point of interest in this thesis and hence will be discussed in the subsequent

sections.

2.2 Logical Document Structure

The logical document structure couples the semantic meaning (logical label) to a

physical section/zone of a document. It conveys the way information is structured

in terms of logical units (e.g. title, figure, paragraph etc.) and how these units

are interrelated with each other for example to determine the reading order. The

relationships among the logical units are presented usually in the form of hierarchical

include and sequence relations. For example, an article contains title, abstract,

affiliation and a sequence of chapters, each of them including chapter title and

sequence of section etc. The possible set of logical labels differs from document

to document. For example: title, abstract, paragraph, section, table, figure and

footnote are typical logical objects for technical papers whereas a business letter

will have a sender, receiver, date, body, logical entities (Paaß and Konya 2011).

Logical structure is commonly represented as a hierarchical tree structure to

reveal the relationships among the logical units of the document. Figure 2.2 shows

an example tree structure of a paper given in Figure 2.1, borrowed from Bloechle

7

2010.

Figure 2.1: Sample first page of a paper (Source: Bloechle 2010)

8

Figure 2.2: Tree structure and formalized XML description (Bloechle 2010)

2.3 Techniques for Logical Structure Extraction

There are different approaches to extracting logical structure. Rule based approaches

and machine learning approaches are discussed in the following sections.

2.3.1 Rule Based Approaches

Niyogi and Srihari 1995 developed a system called DeLoS which is knowledge-based

to extract logical structure. This computational model is composed of a general

rule-based control structure and a hierarchical multi-level knowledge representa-

9

tion. Rules governing document layouts are encoded to the domain knowledge base

and the system has a global data structure to store document image data and in-

cremental inferences. It has three types of rules: knowledge rules, control rules and

strategy rules. The control rules manage the application of the knowledge rules and

the strategy rules determine the use of control rules. The DeLoS system accepts

images of documents, classifies them into blocks (segments) and finally produces

the logical tree structure as an output. They tested their system on 44 binary im-

ages of newspaper pages and reported their results in terms of block classification,

block grouping and read-ordering accuracy. The system achieved block classification

accuracy of 88.65%.

Summers 1995 proposed an approach to automatically classify logical doc-

ument structure based on the distance between the documents and predefined pro-

totypes. The approach is composed of dividing a document into text zones and

assigning logical labels to these zones. These logical structures are obtained by

computing distance between a text zone and predefined prototypes. Distance be-

tween a prototype and an actual segment (text zone) is found by combining their

attribute differences. Attributes include contours, successor, context, height, sym-

bols and children. Shallow linguistic information is included to achieve higher ac-

curacy. Nine randomly selected computer science technical reports which had 196

pages were used for testing. Summers reported performance that is greater than

86% accuracy.

All the above discussed approaches are rigid rule based methods. These

methods cannot be extended to include more scenarios since all possible scenarios

should be known before rules are formulated. We need to adopt solutions that will

help us discover the rules from a variety of data. The rule based approaches are

impractical nowadays due to the existence of big data which is semi-structured or

unstructured and coming from different sources. As a result, in recent years research

has shifted away towards machine learning approaches. In the next section, related

work using machine learning approaches to logical document structure derivation is

presented.

10

2.3.2 Machine Learning Approaches

In this subsection, previous related works which used machine learning models to

solve their respective problems are discussed.

In the thesis by He 2017, different sections of scientific articles were extracted

using machine learning models. He 2017 represented the problem of document

structure extraction as a multi-class classification problem. He used six classes

namely: "Title", "Author Group", "Affiliation", "Section Heading", "Table and figure

caption" and "Reference". Basically, each paragraph in a document was classified

as one of the classes. He used three categories of features to train his machine

learning algorithms. The first group of features were visual features which included

features like the percentage of bold, italic and underlined tokens in a paragraph.

The second group called shallow textual features contained features such as the

total number of commas, digits, words etc. found in a paragraph. The third group

called syntactic textual features had features such as POS ratio (percentage of tokens

marked with a certain POS tag) in a paragraph. He compared different machine

learning models to extract the sections discussed above on Elsevier’s Apollo dataset

of 19,000 paragraphs. Random Forest classifier was reported to have achieved over

all F1-score of 0.961. He further compared the contribution of each feature category

to the performance of the Random Forest model and concluded shallow textual

features have higher contributions.

Lopez 2009 developed a tool called GROBID (Generation of Bibliographic

data) which is based on CRFs. GROBID works only on PDF documents. It extracts

bibliographical data from scholar articles corresponding to the header information

(title, author, abstract etc.) and to each reference-item (title, authors, journal title,

etc.). It was trained on 1000 training examples for the header information and 1200

training examples for cited references. Both of these training examples are samples

from a structured and hand curated published scientific articles. An evaluation was

done on the publicly available CORA dataset. The results indicate an accuracy of

98.6% per header field and 74.9% per complete header instance, 95.7% per citation

field and 78.9% per citation instance.

Beusekom et al. 2007 proposed an example based approach for labeling title

11

pages of scientific papers. The authors use "Title", "Abstract", "Affiliation" and

"Author" as their logical labels. The method takes a new document page segmented

into blocks as input and finds the best matching document from the set of labeled

document layouts. The method is composed of two steps. First step is to find the

best matching document from the training set to the unlabeled document. Second

step involves assigning labels to the new unlabeled blocks of the document based

on the best matching document layout. The similarity measures combined both

geometrical layout and textual features at a block-level information. They applied

their lightweight approach on a publicly available dataset called MARG database

(1553 page images) and achieved accuracy rates ranging from 94.8% to 99.6%.

Zhang et al. 2010 proposed an approach to automatically extract biblio-

graphic data from parsing references. They used the MEDLINE source of medical

journal papers as their source of references. Their goal involved extracting 7 enti-

ties from a given reference, namely "Citation Number", "Author Names", "Article

Title", "Journal title", "Volume", "Pagination", "Publication Year". The rest of the

words in a reference were labeled as "Other". They extracted 14 binary features

and one normalized position feature from each of the tokens they produced after

preprocessing references. They applied CRF, Structural SVMs and SVMs to 2400

training references. Their performance shows above 98% accuracy for CRFs and

Structural SVMs, and 95% for SVMs. They claim both CRFs and Structural SVMs

high accuracy as the result of their strong sequence learning ability.

Rahman and Finin 2017 developed a framework to identify logical and se-

mantic structure from large documents. Their system architecture basically consists

of four units: pre-processing unit, annotation unit, classification unit and seman-

tic annotation unit. The pre-processing unit takes PDF documents as input and

produces CSV files where each row contains information about meta-data and text

content for each line. The meta-data information includes font information, inden-

tation, line spacing of each line etc. The annotation unit (Human Annotators) takes

the layout and text information stored in the CSV file and annotates each line as a

section-header or regular-text. The classification unit takes the annotated data and

trains different classifiers to identify sections. It has sub units for line and section

classification. The line sub unit outputs section-header or regular-text classes using

Support Vector Machines (SVM), Decision Tree (DT), Naive Bayes (NB) and Recur-

12

rent Neural Networks (RNN). The section classifiers module takes the section-header

as an input and classifies them as top-level, subsection or sub-subsection header us-

ing RNN. Finally the Semantic Annotation Unit labels each physically segmented

section with a descriptive semantic name. It implements a topic modeling algorithm

called Latent Dirichlet Allocation to get semantic concepts from each section and

labels it with human understandable semantic concepts. It also produces a sum-

mary of a document and table of contents. The authors tested their methods on

articles uploaded to the arXiv repository2 in the period between 2000 to 2006. They

reported their evaluation of their framework at line classification level and section

classification level. They claim RNN performs better than SVM, DT and NB in line

classification achieving an F1 score of 0.96. They also reported an F1 score of 0.81

for Section classification using RNN.

In the study by Tang et al. 2015, chemical entities embedded in the abstract

of scientific biomedical articles were extracted. They used the BIO tags, a typical

representation for named entities, where "B", "I", "O" denote beginning, inside and

outside of an entity respectively. They used different features to train their machine

learning models. Bag-of-words, Orthographical Information such as capital letters,

Morphological Information (prefixes/suffixes), POS, Domain knowledge were among

the features they used. They compared CRF (Conditional Random Field) and

SSVM (structural SVM) on their sequence learning problem. They used 10,000

manually annotated abstracts from the CHEMDNER3 corpus. The data was divided

into a training set of 3,500 abstracts, a development set of 3,500 abstracts and a test

set of 3000 abstracts. They report SSVM F-measure of 85.2% as compared to CRF’s

85.05%. The authors also argue it is due to the higher recall of the SSVM-based

systems that they outperformed the CRFs.

2.4 Conclusion

Summarizing, prior works show that a lot of research has been done on document

structure extraction. We have seen that there are mainly two methods for extracting
2https://arxiv.org/
3 CHEMDNER is a corpus of abstracts that contains chemical entity mentions labeled manually by expert chem-

istry literature curators. (https://mayoclinic.pure.elsevier.com/en/publications/the-chemdner-corpus-of-chemicals-

and-drugs-and-its-annotation-pri)

13

logical document structure. The first one is the rule based approach where rigid

predefined rules are used for extraction of entities from documents. It is impractical

to formulate all the possible rules due to the existing of a lot of data with complex

patterns. As a solution to this pitfall, a need to adopt solutions that will help us

discover the rules from a variety of data is proposed, which leads to machine learning

approaches.

Machine learning models unlike the rigid rule based methods, try to find

patterns and rules automatically from available big training data, which can be

semi-structured or unstructured and coming from different sources. The work by

He 2017 and Lopez 2009 are two important prior works that applied machine learn-

ing methods to document structure extraction. He 2017 developed a system that

classifies paragraphs of a document into different classes, but fails to consider the

interdependence between consecutive paragraphs. On the other hand, GROBID, the

tool developed by Lopez 2009 is trained using already published PDF documents

and accepts PDFs as an input.

This thesis is different from these two prior works mainly for two reasons.

First, it considers the fact that paragraphs occur in a sequential fashion and have

dependence between each other. This sequential nature should be exploited in docu-

ment structure extraction. Second, the thesis deals with article manuscripts that are

not published yet. These documents are semi-structured or unstructured unlike the

hand curated and well structured scientific articles used to build GROBID, which

makes the problem challenging.

14

3 Elsevier’s Apollo Dataset

In chapter two we have seen several publicly available datasets, which were used for

the task of logical structure extraction. All the datasets are comprised of published

papers, which are structured. The available dataset in Elsevier’s Apollo project is,

however, composed of raw semi-structured article manuscripts that are not published

yet. This poses a greater challenge to the task of logical structure extraction. In

this chapter, the available dataset in Apollo project at Elsevier is discussed.

It is known that available data plays a vital role in building machine learning

models. As discussed in the first chapter, an author’s article manuscript submitted

to Elsevier goes through different phases before the final publishable document is

produced. The Apollo project aims at innovating the process of how structured

publishable documents are generated from raw article manuscripts. A typical work

flow in the Apollo project at Elsevier is broken down into three stages namely

preflight, auto-structuring and copy-editing. These phases each produce several

versions of the article manuscript, which are called generations. Elsevier stores

these different generations of a vast number of article manuscripts. Each article,

which has many generations, is uniquely identified by an identifier called Publisher

Item Identifier (PII). The use of the PIIs helps manage article manuscripts and

provides a transparent way of looking into the changes introduced to the accepted

article manuscripts during the several stages of the work flow. In the scope of the

Apollo project, articles are collected from many fields and disciplines including the

following journals:

• Carbon

• Journal of Molecular Structure

• Materials Chemistry and Physics

• Journal of Food Engineering

• Computers in Human Behavior

• Journal of Cleaner Production

• Renewable Energy

15

• Journal of African Earth Sciences

• Chemosphere

• Food Hydrocolloids

• Journal of Cereal Science

• Food Microbiology

• Superlattices and Microstructures

The list of journals covers quite a broad area and fields of studies. This

variety of journals introduces different structures to documents and makes it chal-

lenging to recover logical structure elements. On the other hand, the existence of

such a variety can be exploited to build robust machine learning models. In the

scope of this thesis, total of 1000 PIIs are used as a dataset for building machine

learning models.

Among the several generations, the initial article submission generation and

the final published generation are of interest in this thesis. The Initial article sub-

mission is generated as an output of the preflight stage. The final published article

is generated after the whole work flow is carried out. These two generations are

specifically important because what the thesis intends to do is, given the initial sub-

mission, to extract the document structure and produce the final publishable article,

bypassing all the generations produced by the human involvement in between. In

the next sections these two datasets (generations) are discussed.

3.1 Article Manuscripts

In the preflight step, the author’s initial article submission to Elsevier is checked

for missing files through an iterative process of communication between the author

and a clerk called Apollo Data Administrator (ADA). During these iterative com-

munications several versions of the article manuscript are produced and recorded in

Elsevier.

The preflight process culminates in a stable generation of the submitted

article manuscript which contains all the required files and information. We will

16

refer to this stable generation as initial manuscript submission generation. There

is no standard to how authors provide their articles and the type of the files they

submit. For example, the main body of the article can be provided in a doc, docx

or PDF format. Figures can be provided as separate image files or embedded within

the Word file. In other cases, the title, affiliation and abstract can be provided in a

different Word file. A typical folder which contains one initial manuscript submission

is shown below in figure 3.1.

Figure 3.1: Initial manuscript submission with all contents and files

In the context of the thesis, document structure extraction from articles sub-

mitted to Elsevier in MS-WORD format are of highest importance. Word documents

have both layout information and rich textual and visual mark up features that can

facilitate extraction of structure. Moreover, the other files such as image files and

PDFs are disregarded because roughly more than 95% of the total submissions are

submitted in Word files.

3.2 Published Articles

In the auto-structuring stage, human annotators are involved in rearranging the

content of the initial submission to a specific acceptable structure. They manually

label each section of the article, which produces many versions of the submissions.

The final stage of the process, which is the copy-editing stage, the final revision of

the content of the article such as spelling checking is done. The published article

generation is produced as the result of this final stage. Figure 3.2 shows one PII

which contains all the image files, final publishable PDF and the corresponding XML

file with all the meta-data of the article.

17

Figure 3.2: Final published article

The XML file stores all the article information in a tree like structure. It

represents the hierarchical structure that exists in an article in terms of different

entities and their relationship. For example, the "Head" element has child elements

such as the "title", "affiliation","authors-group" and "keyword". The "Body" element

contains elements like "section-title", and many "simple-paragraphs" since the body

section is expected to have most of the content. The "Tail" element contains many

"Reference-Item" elements within it. Figure 2.2 depicts a typical XML meta-data

representation of an article.

To build supervised machine learning models, having a labeled dataset is

obligatory. The labels in the published articles should be mapped into the initial

article manuscript submissions. The Apollo team at Elsevier has done this trans-

ferring of labels which is called alignment task and produced an annotated dataset.

The team produced a total of annotated 1000 PIIs that are used for our experiments.

3.3 Summary

Several versions of the same article submitted to Elsevier are produced, which are

called generations. There are mainly two generations that are important to build

18

machine learning models in this thesis. The first one is the complete package of

initial submission which contains all the required contents and files. There is no

standard to the number of files submitted per author’s article and the formats of

these files. The second one is a final publishable article which exists as an XML

format. This XML contains correct labels for each section of a given article in a tree

like format.

19

4 Methods

In this chapter, we start by explaining how the problem of document structure

extraction is modeled in the context of the thesis. The features used to develop

our machine learning models are discussed next. Finally, a brief explanation of the

theoretical working principles of Random Forest (section 4.3), Conditional Random

Fields (section 4.4) and Long short-term memory (section 4.5) are presented. Ran-

dom forest is chosen because it was the best performing model reported by He 2017,

who used the same dataset (Elsevier’s Apollo dataset) for the purpose of logical

structure extraction. It serves as a baseline model. The choice behind CRFs lies on

their suitability for this type of problem. They have been successfully applied by

other researchers (Lopez 2009; Councill, Giles, and Kan 2008). LSTMs are selected

because they don’t require manual feature extraction. Moreover, they achieve state

of the art performance in sequential learning problems (Huang, Xu, and Yu 2015).

The details about these models are discussed at the end of this chapter.

4.1 Modeling the Problem

There are many different ways of describing a document structure as discussed in

Chapter 2. He 2017 in his thesis defined a document as a list of paragraphs, where

the order of the paragraphs is disregarded. In our context, a document is seen as

a sequence of paragraphs. Other than in He 2017’s research, the interdependence

between paragraphs (context) in a given document is taken into account. He 2017

clearly leaves out the dependence between consecutive paragraphs while representing

the problem of document structure extraction. In this thesis, the problem of logical

document structure extraction is formulated as a sequential learning problem. For

example, if the previous paragraph is classified as a "reference-item", it is unlikely

that the current paragraph will be classified as "abstract" because "reference-items"

are found at the end of a document while "abstract" is found at the beginning

of a document. He 2017 does not take into account this unlikely transition from

"reference-item" to "abstract" while classifying paragraphs into classes. In contrast,

in this thesis we exploit the sequential structure of paragraphs by considering the

possible transitions from one class to other.

20

Figure 4.1 shows the representation of a document as a sequence of para-

graphs. Each paragraph can have multiple labels forming a hierarchical structure.

The labels are categorized into levels. For example, in the figure there are two levels,

lower and top level labels. The top level labels can be used to segment a document

into "Head", "Body" and "Tail". The lower level labels can be used to classify para-

graphs into structural elements such as "Title", "Abstract" ,"Reference-item" and

so on. The labels at a given level are dependent with each other. For example,

"Abstract" comes after "Title" in a document. The labels at different levels are also

dependent on each other. For example, "Reference-item" is usually found at the last

part of a document, in this case the "Tail" label as depicted in figure 4.1. Jancsary

2008 refers to these dependencies as the in-chain and between-chain dependencies

respectively.

Figure 4.1: Sequence of paragraphs with possible multi-level labels

4.2 Feature Extraction

Feature extraction or feature generation is an important step in building high per-

formance machine learning models such as RFs and CRFs. Features are extracted

and fed to models in a way computers can understand. Features need to be pro-

vided for each instance (i.e paragraph instance in our case) of an article. These

21

features are expected to indicate as strongly as possible which class labels need to

be assigned to which paragraphs. Random Forests and CRFs try to find out which

features typically occur in conjunction with which class labels; this is the foundation

for predicting class labels of unseen paragraphs in article documents.

A lot of feature extraction strategies and grouping feature sets into categories

has been proposed and used by other researchers. For example, Jancsary 2008 used

n-gram features, textual features, syntactic features, relative position features of

entities to segment medical reports into different sections. Bloechle 2010 proposed

two categories of features, self-related features and cross-related features in his work

to recover structure from PDF documents. The self-related features are features such

as the height of a paragraph, the number of tokens in a text-block, the percentage of

spaces in a text-block. The cross-related features were features like the font-size of

adjacent blocks, the position of the text-block in relation with the whole page etc.

He 2017 proposed three categories of features, shallow textual, visual and syntactic

features in his document structure extraction task. He used features such as total

number of dots in a paragraph and if a paragraph starts with a capital letter from

the shallow textual category. In the visual feature category, features like average

font size of a paragraph and italic percentage of tokens in a paragraph were used.

In the syntactic features category, noun percentage, verb percentage and adverb

percentage of tokens in a paragraph were among the features he used. Inspired by

these prior researchers we propose our own set of features. The extracted features

are categorized into three groups; textual, markup and linguistic features as shown

in table 4.1 along with a short description for each extracted feature.

• Textual features: these are features related to the statistical properties of the

tokens inside a paragraph (e.g., count of tokens, percentage of commas from all

tokens in a paragraph) and information that is obtained by a shallow checking

of the appearance of tokens in a paragraph (e.g., if the first token of a paragraph

is capitalized). For example, reference-items usually are part of an enumerated

list of paragraphs. So, features such as Begins_digit and Begins_bracket can

be important to encode such information.

A new feature we came up with in this thesis is the author_in_list feature. For

a non-numbered citation style, for every in-text citation in a paper, there must

22

Feature Name Description

Textual Features

Paragraph_length The total number of tokens in a paragraph

Is_first_token_title
A binary feature indicating if the first letter of a paragraph is

a capital letter

Is_first_token_capital A binary feature indicating if the first token of a paragraph is all capitalized

Paragraph_len_norm Normalized number of tokens in a paragraph in a given document

Begins_with_bracket
Binary feature indicating if a paragraph starts with a round bracket or a

square bracket

Comma_per_paragraph Percentage of commas from total number of tokens in a paragraph

Comma_doc_norm
The number of commas in a paragraph normalized by total commas in a

document

Comma_count Total count of commas in a paragraph

Dot_per_paragraph Percentage of dots from total number of tokens in a paragraph

Dot_doc_norm The number of dots in a paragraph normalized by total dots in a document

Dot_count Total count of dots in a paragraph

Begins_with_digit Binary feature indicating if a paragraph starts with a number

author_name_in_list
Binary feature that indicates if the any of the first ten tokens in a paragraph

are found in a list of author names for specific document.

Mark up Features

background-color
A normalized feature that indicates how different is the background-color

of the paragraph with respect to the document

color
A normalized feature that indicates how different the color of the text in

the paragraph with respect to the document

font-family
A normalized feature that indicates how different the font family of the text

in the paragraph with respect to the document

font-size
A normalized feature that indicates how different the font size of the text

in the paragraph with respect to the document

font-style
A normalized feature that indicates how different the font style (i.e italics)

of the text in the paragraph with respect to the document

font-weight
A normalized feature that indicates how different the font weight of the

text in the paragraph with respect to the document

text-align
A normalized feature that indicates how different the text alignment of the text

in the paragraph with respect to the document

text-decoration
A normalized feature that indicates how different the text decoration (i.e underline,

strike-through) of the text in the paragraph with respect to the document

Linguistic Features

Noun_percentage Percentage of noun tokens in a paragraph

Verb_percentage Percentage of verb tokens in a paragraph

Adjective_percentage Percentage of adjective tokens in a paragraph

Adverb_percentage Percentage of adverb tokens in a paragraph

Conjunction_percentage Percentage of conjunction tokens in a paragraph

Determiner_percentage Percentage of determiner tokens in a paragraph

Table 4.1: List of Extracted Features

23

be a corresponding entry in the reference-items list. This feature is introduced

by looking closely into how these reference-items are structured. Reference-

items usually start with the names of the authors, then title of the article etc.

The author names occurring at the beginning part of these reference-items usu-

ally are cited elsewhere in the body of the article. Hence, the author_in_list

feature is a regular expression based feature that indicates if a paragraph con-

tains an author name which is cited in the document. This regular expression

first looks for the in-text citations of author names in the article. It produces

a dictionary that contains all the author names cited in an article. This binary

feature is activated if the first 10 tokens of a given paragraph contains an author

name which already exists in the dictionary produced by the regular expression

for an article.

Textual features proposed by He 2017 such as comma_per_paragraph and

dot_per_paragraph, which are normalized by the total number of tokens found

in a paragraph are also used. In addition to these features, we introduced new

features such comma_doc_norm and dot_doc_norm, which are commas and

dots found in a paragraph but are normalized at a document level. This way of

normalizing gives an indication of how different a paragraph is in relation with

the other paragraphs in that specific document.

• Markup features: Authors apply specific formatting styles to different en-

tities of their document while editing their articles. To emphasize a part of

text authors use bold, different font family, different font size etc. A typical

example is the title of an article. The title is often bold, underlined and has

bigger font size when compared to the rest of the paragraphs in an article.

Another example is, journal/conference names found in reference-items can be

italic. To accommodate such information markup features that are listed in

table 4.1 are used in this thesis. All these visual markup features indicate how

much emphasis is given to a paragraph by an author with respect to the whole

document. The normalization of these features is done per document to reflect

that the choices made by authors are specific to documents. The font size used

for title and section headings can be consistent in a document but is usually

inconsistent among documents (for example one author can use 12 points of

font size for all section headings and another author can use same font size for

24

all the paragraphs) . To have a consistent feature representation throughout all

the documents, we devised a method to compute the feature values as explained

below.

Let us take the Font-family feature as an example. Let us assume a document

is written 10% with Times New Roman and 90% with Courier New.

Figure 4.2: Font family feature example

The paragraph shown in figure 4.2 contains 16 characters where 4 characters

are Courier New and 12 characters are Times New Roman. The Font-family

feature value for the paragraph is calculated by taking the weighted average of

the count of letters in each font-family subtracted from one.

feature_value = 1−
[4× 0.9

16 + 12× 0.1
16

]
= 0.7 (1)

The weighted average as shown in the parenthesis in equation 1 calculates

how similar the paragraph is with the whole document. The feature value is

then calculated by subtracting the weighted average from one to show how

different the paragraph is (i.e emphasis given to the paragraph) from the whole

document. Therefore, a feature value closer to one indicates high emphasis and

a feature value closer to zero encodes lower emphasis is given to the paragraph.

• Linguistic features: these are features that provide possible syntactic cat-

egories of tokens in a paragraph. These features are introduced to encode

information for families of tokens. For instance, one can argue that reference-

items contain more noun phrases than the other document structure elements

because there will be names of authors and journals, which convinces us that

the POS tags contain useful information to help our machine learning models

learn from the data.

The above discussed three categories are adopted from He 2017. The features

in each category are a combination of features from prior works and new features we

introduced. The normalization of features done per document, the regular expression

25

based author_in_list feature and the computation of the visual markup feature

values are among the new features.

All the features are generated for each paragraph instance. However, the

features generated for surrounding paragraphs can also be used to predict the class of

the current paragraph instance. To include such an information from the neighboring

paragraphs in classifying the current paragraph instance, the features generated

for the previous and next paragraphs are used in this thesis. This implies that

the feature vector used for each instance will be 3 times bigger since the features

generated for the previous, current and next paragraph are concatenated. This

combination of the features will be referred to as contextual features in the rest of

the thesis.

4.3 Random Forest

Random forests are an ensemble learning method for classification. For classification

tasks, random forests construct several decision trees at training time and produce

the class label based on the majority decisions of these individual trees. A random

forest classifier creates a set of decision trees from a randomly selected subset of the

training set. It then aggregates the votes from different decision trees to decide the

final class. Random forests are called random because they randomness in selecting

the subset of training instances and also in selecting subset of features the algorithm

will train on. Let’s consider the task of binary classification of paragraphs into a

reference-item or other paragraph. Let the matrix M in Figure 4.3 be a training data

set which has a total number of N paragraph instances as rows and K number of

features extracted from each paragraph as columns. The last column in the matrix

shows the possible class labels for each paragraph (i.e for example reference-item or

normal paragraph). To build a random forest from this matrix the following steps

are done.

First, three parameters; the percentage of N paragraph instances, the per-

centage of K features and the total number of decision trees to be built are specified.

Next, based on the first two parameters the random forest algorithm randomly se-

lects a subset of the paragraph instances and a subset of the features to grow a

26

M =


f11 f12 f13 . . . f1K L1

f21 f22 f23 . . . f2K L2

. .

fN1 fN2 fN3 . . . fNK LN


Figure 4.3: Sample Dataset For Random Forest

decision tree. This process is done several times until the required number of deci-

sion trees have been built based on the third parameter.

Each of these built decision trees predict if a paragraph is a reference-item or

normal text. Finally, a prediction is given based on the aggregation of the predictions

from the individual grown decision trees.

Figure 4.4: Example of Random Forest

Figure 4.4 shows three decision trees built on a randomly selected set of four

features. Based on this random forest the class label prediction will be reference-

item, since two of the grown decision trees predicted reference-item as the class label

for the given paragraph instance.

Random Forest has been proven to be a robust and easy to use algorithm in

classification tasks. It is easy to understand because the number of hyper-parameters

are not that high and default parameters often produce a good prediction result, as

shown by He 2017. Breiman 2001 in the original paper of Random Forests states that

27

the problem of overfitting, which is one big problem in machine learning, doesn’t

apply to Random Forest if there is enough data and enough trees are built. Since

we have a considerable amount of data, overfitting will not be an issue in this

work. It is important to note that random forests does not take into account the

dependency that exists among sequential instances for example the dependency that

exists between consecutive reference-items that are found at the end of a document.

4.4 Conditional Random Fields (CRF)

Conditional Random Fields (CRFs) were proposed as a framework for building prob-

abilistic models to segment and label sequence data by Lafferty, Andrew McCallum,

and Pereira 2001. To understand how CRFs work let us consider the problem of

identifying the author and title from the text snippet in figure 4.5.

Figure 4.5: Text snippet from Paaß and Konya 2011

We can rewrite this text snippet in terms of words with their respective tags.

For simplicity let us mark the words including newlines with T if they belong to a

the title, with A if they belong to the authors, and with O if they don’t belong to

author name or title of the text snippet. This results with two vectors: x words and

y labels as shown below in figure 4.6.

Figure 4.6: Word and State Vectors from Paaß and Konya 2011

To infer the unknown labels one approach can be to use generative models.

Generative models such as Hidden Markov models explicitly attempt to model the

joint probability p(x, y) over the input (words) and output (states) sequence. This

approach explicitly models the interaction between the input features. Features of

28

a word we want to use can be like its identity, capitalization, prefixes, neighboring

words, and category in semantic databases like WordNet4. Modeling these kind of

input features leads to two important limitations. First, the dimensionality of x

(input features) can be very large. Second, the features can have complex inter-

dependencies. Constructing a probability distribution over such kind of features

becomes very difficult. Modeling the dependencies can lead to intractable models

and leaving them out can lead to performance reduction (Sutton, Andrew McCal-

lum, and Rohanimanesh 2007).

Another approach is discriminative approach which directly models the con-

ditional distributions p(y|x) over the input and output sequences. This is the ap-

proach taken by CRFs. CRFs can model multivariate outputs with the ability to

leverage a large number of input features used for prediction. The advantage of

conditional models such as CRFs is that dependencies that involve only the input

features play no role for prediction and hence are not modeled.

CRFs are represented by undirected graphs. In these undirected graphi-

cal models, nodes represent random variables and edges indicate the dependency

between them. The dependencies between variables are expressed in the form of po-

tential functions (factors). These factors are non-negative functions of the variables

they are defined over. These factors are defined over cliques5 in the graph.

Having introduced the general principle and advantage of CRFs in sequen-

tial learning, let us formally describe how p(y|x) is defined by Lafferty, Andrew

McCallum, and Pereira 2001.

Let G be undirected graph model over a set of random variables y and a

fixed observed variable x. A CRF is then a conditional distribution p(y|x), where :

p(y|x) = 1
Z(x)

∏
ψAεG

ψA(yA, xA; θ) (2)

and the factors ψA of the undirected graph model G are parameterized as :

ψA(xA, yA; θ) = exp(
K(A)∑
k=1

λAkfAk(xA, yA)) (3)

K(A) is the number of feature functions fAk defining factor ψA, and θ ε RN = {λAk}

are real valued parameters of the CRF. The normalization function Z(x) is defined
4https://wordnet.princeton.edu/
5A clique is a set of pairwise adjacent nodes in an undirected graph

29

as:

Z(x) =
∑
y

∏
ψAεG

ψA(yA, xA; θ) (4)

and it sums over all possible assignments of y.

The factors above can be partitioned into set of clique templates C =

{C1, C2...Cp} , where each of the clique templates Cp is a set of factors whose pa-

rameters θp ε RN are tied (i.e. factors from the same template share the same

parameters). Hence the equation to CRF can be rewritten as:

p(y|x) = 1
Z(x)

∏
CpεC

∏
ψcεCp

ψc(yc, xc; θp) (5)

and the normalization function Z(x) is defined accordingly as:

Z(x) =
∑
y

∏
CpεC

∏
ψcεCp

ψc(yc, xc; θp) (6)

Let us further discuss from the formal definitions of CRF the important

points that are related with the sequential labeling task this thesis intends to solve.

The following points are inherited from comments stated in the thesis by Jancsary

2008 and apply to our case.

• In sequence labeling x is typically a sequence of input data. Here, the input

data is sequence of paragraphs that forms a document.

• A separate random variable yi ε y is linked with each node in the undirected

graphical model G. The random variables are discrete for the purpose of se-

quential labeling since the outcomes of these variables correspond to the labels

that can be assigned to the input sequences. If variables are adjacent in the

graph G then there is a dependency between them.

• Factors ψc are defined over cliques c of G. These factors assign potential to

variables of a clique. If G is a pairwise graph, there are only univariate or

bivariate factors. Bivariate factors define potentials for the joint outcomes of

the two vertex variables in a two node clique.

• The feature functions fck for a clique template Cp determine the value of vari-

ables of factor ψc over the clique c. Typically G has a repetitive structure

and the parameters θp = {λpk} of each clique template are tied across time.

30

Feature functions are often binary which depend on the local context xc and

the variable assignment yc of clique c. A typical example of a feature function

can be a binary test that has value of 1 if and only if the previous label is

"adjective", current label is "proper noun", and the current word begins with a

capital letter. It can be defined as follows:

fck(yc, xc) =

1 if yc = (ADJ,NNP) and xc = (begins with a capital letter , ...)

0 otherwise
(7)

Having introduced the general working principles of CRFs let us briefly de-

scribe the two types of CRFs that are used in this thesis.

Many families of CRFs are described in Andrew McCallum, Rohanimanesh,

and Sutton 2003 in detail. The different families are identified based on the structure

of the graphical model and the form in which the parameters are tied. Among these

families, Linear CRFs and Dynamic CRFs are applied in this thesis and hence are

discussed next.

4.4.1 Linear chain CRFs

Linear chain CRFs are one well known type of CRFs and are similar to HMMs.

Linear chain CRFs have only one connected chain of labels where their parameters

are tied across time. Factors are typically defined over single-node and two-node

cliques. These factors capture the local probabilities and transition probabilities

respectively. In section 4.1 we discussed the possible multi-level labels a sequence

of paragraphs can have. The linear-chain CRFs have only one level of labels. For

example, from figure 4.1 only the lower level labels are used to build a linear-chain

CRF.

4.4.2 Dynamic CRFs

Dynamic CRFs are sequence models which allow multiple labels at each time step,

rather than single labels as in linear-chain CRFs. Dynamic CRFs are generalizations

of linear-chain CRFs. In this thesis, a two-level dynamic CRF for document structure

31

extraction is used. Each instance (i.e. paragraph) has two class labels. For example,

the first category of labels identifies if a paragraph is a reference-item or not. The

second category can further group paragraphs and identify if a paragraph is found

in the first part of the document, middle part or the end of the document.

Dynamic CRFs learn the dependencies between the categories of labels

rather than learning two different classifiers for each category. Ghamrawi and An-

drew McCallum 2005 shows that improved classification performance is achieved

using dynamic CRFs than using different classifiers for each category.

4.5 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is one variant of recurrent neural networks. To

get better understanding of LSTMs let us first discuss artificial neural networks

and recurrent neural networks. Artificial neural networks (ANNs) are weighted

directed graphs in which artificial neurons are nodes and weighted directed edges are

connections between neuron outputs and neuron inputs. Based on the architecture,

ANNs are grouped into two types. (Jain, J. Mao, and Mohiuddin 1996)

• Feed-forward neural networks - graphs with no loop and neurons have unidi-

rectional connections between them.

• Recurrent (Feedback) neural networks (RNNs) - loops occur because of feed-

back connections. These loops allow information to persist unlike Feed-forward

networks.

In theory RNNs can be applied to connect contextual information from any

time in the past (also known as long-term dependency) to a present task since their

feedback loops allow information to persist. However in practice they suffer a prob-

lem called error back-flow problem. Error signals flowing backwards in time tend to

either blow up or vanish. Before discussing the two types of error back-flow prob-

lems let’s discuss how RNNs are trained. Training of RNNs is an iterative process.

Both the inputs and outputs are provided to the network. The network processes

the inputs and compares the actual outputs with the predicted outputs. The dif-

ference (error) between the actual and predicted outputs is then back propagated

32

through the network to adjust the weights, which control the network. Error gra-

dient is the direction and magnitude calculated in training RNNs, which is used to

update network weights in the right direction and by the right amount. Therefore,

the exploding gradient problem is created, when repeatedly multiplying gradients

through the layers of the network that have values larger than 1.0. This yields an

unstable network. In contrast, vanishing gradients occur when the weight doesn’t

change. This stops networks from learning long-term dependencies. Consider a lan-

guage model that predicts a next word given the previous ones. In a text "I grew up

in the Netherlands ... I speak fluent Dutch."; to predict the last word in this case

Dutch, the context of Netherlands is needed. When the gap between the relevant

information and the point where it is needed grows RNNs become unable to learn

the long-term dependency (Bengio, Simard, and Frasconi 1994).

Hochreiter and Schmidhuber 1997 introduced a variant of RNN called Long

Short-Term Memory (LSTM) designed to overcome the error back-flow problems

that exist in the traditional RNNs. LTSM can learn to bridge time intervals in excess

of 1000 steps in input sequences without the loss of short time lag capabilities. This

is achieved by enforcing constant (neither exploding nor vanishing) flow of error via

the hidden states of the network.

Figure 4.7 shows the building block of one LSTM unit in an LSTM network.

The network takes three inputs. Xt is the input of the current time step, ht − 1 is

the output of the previous LSTM unit and Ct − 1 is the memory of the previous

unit. It has two outputs, ht and Ct are the output and the memory of the current

unit respectively.

The top pipe in the diagram is the memory pipe (also called memory state).

The input is Ct − 1 which is old memory. The first cross (×) it passes through

is called the forget gate. This gate controls how much of the previous memory is

needed. It is an element-wise multiplication operation. For example, if you multiply

old memory Ct−1 with a vector close to 0, most of the old memory will be forgotten.

The next operation the memory flow goes through is the + operation. This operator

sums up the old memory and the new memory. How much of the new memory should

be merged is controlled by another gate called input gate, the × below the + sign.

After these operations, new memory Ct is produced.

33

Figure 4.7: Architecture of one LSTM block 6

Let’s discuss the gates in detail. The forget gate shown in 4.8a is controlled

by a simple one layer neural network and its inputs are the output of the previous

LSTM block (ht − 1), input for the current LSTM block (Xt), the memory from

the previous block (Ct − 1), and a bias vector b0. This neural network has a

sigmoid function as activation and its output is the forget gate which is applied to

the previous memory Ct − 1 by element-wise operation.

The next gate is called the input gate depicted in 4.8b. It is also controlled

by a simple neural network that takes same inputs as the forget gate. This gate

controls how much of the new memory should influence the old memory. The new

memory however is generated by another neural network. It is a one layer network,

but uses tanh as the activation function. The output of this network is element-wise

multiplied with the output of the input gate and is added to the old memory to

form the new memory.

Finally, output for this LSTM unit should be generated. This step has the

output gate (shown in 4.8c) that is controlled by new memory, the previous output,
6Source: https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

34

https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

(a) Forget Gate (b) Input gate

(c) Output gate

Figure 4.8: LSTM gates 7

the input and bias vector. This gate controls how much new memory should be

produced as an output to the next LSTM unit.

In this thesis, the LSTM based classifier is used to classify paragraphs into

predefined categories such as "title", "abstract", "reference-item" etc . Paragraphs are

seen as a sequence of words (tokens). The LSTM makes use of the interdependency

that exists between the sequence of tokens in a paragraph. The use of LSTMs for

sequential text classification into categories has been successfully applied by Hassan

and Mahmood 2017; Huang, Xu, and Yu 2015. In addition, several researches have

shown that feature extraction can be done jointly along with training RNNs such

as LSTMs achieving a better performance when compared with the cumbersome

manual feature extraction (Saeed 2017) that is required for traditional machine

learning models such as CRFs and RFs.

4.6 Summary

Summarizing, the problem of logical document structure extraction is formulated as

a sequential learning problem. In our context, a document is defined as a sequence
7Source: https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

35

https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

of paragraphs where there is an interdependence between consecutive paragraphs.

Three set of feature categories that are textual, linguistic and markup fea-

tures are extracted. Textual features are related to the appearance and statistical

properties of the tokens in a paragraph such as percentage of dots in a paragraph

and the capitalization of a token. Markup features catch the information introduced

by the formatting styles applied to paragraphs in a document by authors (for exam-

ple font size and font-family). Linguistic features encode information for families of

tokens in a paragraph (e.g. percentage of noun tokens in a paragraph).

The theoretical working principles of Random forests, CRFs and LSTMs are

also discussed. Random forest are an ensemble learning method for classification.

They build many decision trees by randomly using subsets of the training instances

and the features to classify instances into classes. The final class of an instance is

the aggregation of the decisions from the grown trees. This method does not take

into account the sequential structure that exists in documents.

CRFs are probabilistic models to segment and label sequential data. Linear-

chain CRFs (LCRFs) have one chain of connected labels. Dynamic CRFs (DCRFs)

are generalizations of LCRFs. They can have multiple chains of connected labels.

This feature of DCRFs allows for further introduction of context (structure) into

sequential data, which in turn allows the use of multi-level labels unlike the LCRFs.

LSTMs are one variant of recurrent neural networks. They are designed

to overcome the error back-flow problems that exist in traditional RNNs. LSTMs

are successfully applied in sequential text classification achieving high classification

accuracy, because they take into account long range dependencies among tokens. In

addition, manual feature extraction is not required in training LSTMs unlike CRFs

and RFs.

36

5 Experiments and Results

5.1 Experimental Setup

In this section, the design of the different experiments carried out is discussed. In

addition, how the data was prepared, the performance measures used and the imple-

mentation setup is covered. The experiments ideally can be applied to all sections

of an article document. One special case of document structure recognition is the

reference-item structuring. In this section the experiments are done for extraction of

the reference-items. The reference-items are selected mainly for two reasons. First,

there are several reference-items in articles providing us with enough training sam-

ples. The second reason is that the consecutive nature that exists in reference-items

list makes them ideal to experiment with sequence learning algorithms.

5.1.1 Dataset Preparation

The quality of the ground truth data plays an important role in building machine

learning models. The dataset that is used for experiments is produced by the Apollo

team and the quality depends on the alignment process carried out. The alignment

task is the process of transferring labels of entities from structured final publishable

XMLs into the initial manuscript submissions to produce an annotated dataset for

training machine learning models. How the alignment process was done is out of

the scope of this thesis. However, there are some errors that are introduced in

the alignment process such as an article manuscript with all paragraphs tagged as

"Normal_text". Mistakes such as this one were corrected by excluding submissions,

which have all paragraphs tagged "Normal_text" from the corpus. This resulted

a total of 1000 PII annotated submissions that are used in the experiments. As

discussed in chapter 3, one PII usually contains many files such as image files, word

files and PDFs. The word files are used for experiments. But again, usually there

are multiple doc, or docx files for one PII. For a given PII, all the Word files in the

directory are parsed and the one with most paragraphs is selected as the main file

to train our models. A total of 146333 paragraphs were collected from these 1000

submission package PIIs.

37

Two class labels are used for extracting the reference-items of article docu-

ments, namely "Reference" and "Other" tags. All paragraphs other than the reference-

items are tagged as "Other". The class label distribution is 32% reference-items to

68% other paragraphs as shown in 5.1.

Figure 5.1: Class Label Distribution

The dataset was split randomly into 50% train set and 50% test set. Since

the sequential nature of paragraphs in documents has to be preserved, the split was

done on document level. It resulted in 500 PII submissions in each set. A two fold

cross validation is used because the number of training instances is big enough. In

this approach, the skill of the machine learning model on unseen data is estimated.

Initially, the first fold is used as training set and the second fold is used as a test set.

Then the folds are swapped, where the second field is used as a training set and the

first fold is used as a testing set. Finally, the result of the two fold cross validation

is summarized with the mean of the scores from the models.

38

5.1.2 Baselines

Our baselines are a random forest based binary classifier and an LSTM based binary

classifier to identify if a paragraph is a reference-item or not. The random forest is

selected because it was used by He 2017 in his thesis in extracting document structure

and is a flexible, easy to use machine learning algorithm that produces, even without

hyper-parameter tuning, a great result most of the time. It is also one of the most

used algorithms, because of its simplicity. An LSTM based binary classifier is used

because it does not require feature engineering and can learn informative features

from data.

For the LSTM, word embedding was used as the input to the model. A

word embedding is a class of approaches for representing words and documents

using a dense vector representation. It is an improvement to the bag-of-words model

encoding scheme where large sparse vectors were used to represent each word within

a vector to represent an entire vocabulary. This representation is sparse because the

vocabulary is vast and a given word would be represented by a large vector comprised

of mostly zeros. In contrast, in word embeddings, words are represented by dense

vectors where each vector represents the projection of the word into continuous

vector space. The position of a word within the vector space is learned from text

and is based on the words that surround the word when it is used. The position

of a word in the learned vector space is referred to as its embedding. In building

LSTM models (generally deep learning models) there are two ways to use word

embeddings. One approach is to use pre-trained word embedding models such as

GloVE8 and Word2Vec9 . The second approach is to learn word embedding while

fitting the LSTMs. Learning word embeddings can be a slower approach, but tailors

the model to a specific training dataset. In this experiment, the second approach

was used since the dataset was specific to article manuscripts (Mikolov et al. 2013).

Both of these baseline models were considered to motivate the use of lin-

ear conditional random fields and dynamic conditional random fields for sequential

learning. The examined baseline models do not take the sequential nature of docu-

ments into account. Every instance (which is a paragraph) is treated independently
8https://nlp.stanford.edu/projects/glove/
9https://en.wikipedia.org/wiki/Word2vec

39

with respect to the others, which is not true for documents since nearby paragraphs

have a strong interdependence with each other. However, the LSTM classifier base-

line model can be seen as an improvement over the random forest model since

hand-crafted features are not provided to the LSTM and it is able to utilize the

dependence between tokens local to each paragraph.

5.1.3 Experimental setup of Linear CRFs

Three experiments are carried out with respect to Linear CRFs.

1. Linear CRF using direct features: This experiment trains the Linear CRF

directly on the extracted features listed in table 4.1. Fair comparison of a

Random Forest and Linear CRF can be done since the same feature vector is

used for both of the models.

2. Random Forest followed by Linear CRF: The first experiment does not

consider the differences that can be possibly introduced due to how the feature

vector is utilized by random forest and linear-chain CRF. To make it an even

more fair comparison, and to see if considering context really adds to the per-

formance of extracting document structure, we have designed this experiment.

This experiment as in the first experiment is done to test the effect of taking

into account the sequential nature of documents (i.e. sequence of paragraphs).

First the Random Forest binary classifier is trained based on the handcrafted

list of extracted features (Table 4.1) on the training dataset to predict if a

paragraph is a reference-item or not. The Random Forest gives two probabili-

ties as an output. The first probability is the probability of a paragraph being

a reference-item and the second probability is the probability of a paragraph

being other. These two probabilities sum up to one. These probability pre-

dictions of the Random Forest are used as the only two features to build the

Linear CRF model.

3. LSTM followed by Linear CRF: This experiment also follows the same pro-

cedure as the previous experiment. The main difference is that manual feature

extraction is not required to train the LSTM binary classifier. The LSTM dur-

ing training learns important features by itself if provided with enough data.

40

The Linear CRF uses the two probability outputs of the LSTM as features to

assign the sequence paragraphs a reference-item or other tag.

5.1.4 Experimental setup of Dynamic CRFs

The dynamic CRF unlike the linear-chain CRF allows us to use multi-level labels.

The experimental design of Dynamic CRF slightly differs from the linear CRF be-

cause higher level labels were added to the dataset. In the experimental design of

linear-chain CRFs we discussed that two labels (i.e. "Reference" and "Other") were

considered that can be assigned to each paragraph. Here, we go one level higher.

The new level labels were added to the dataset in the following manner. All the

paragraphs tagged as "Other" before the first "Reference-item" tag were tagged with

an extra higher level label called "Body". Second, all the paragraphs which have

"Reference-item" tags were added with "Tail" label as a higher level tag. Any para-

graphs that come after these "Reference-item" paragraphs were tagged as "AfterTail"

label. Using this procedure a dataset the dynamic CRF can train on was prepared.

Figure 5.2 depicts the multi-level labels used for building the dynamic CRF model.

At the lowest level the sequence of paragraphs are shown. The next level in the hier-

archy shows the possible labels that can be assigned to each paragraph. The highest

level introduces another level of structure grouping the sequence of paragraphs into

"Body", "Tail" and "AfterTail" sections. In section 4.1 we discussed the higher level

labels to be "Head", "Body", "Reference" as a general labels that can be used for doc-

ument structures. However, here the focus is on the "reference-items" structuring

and we used the aforementioned labels to effectively represent the problem.

As with the linear CRFs, three experiments are carried out. The first exper-

iment uses directly the computed features in table 4.1 to train the dynamic CRF.

This experiment is designed to test if performance of extracting document elements

is improved by introducing another level of structure.

The second experiment builds the dynamic CRF using probability predic-

tions from random forest binary classifier as the only two features. Similarly as

presented in the experimental design of linear-chain CRFs, a fair comparison be-

tween random forest and dynamic CRFs can be achieved by fixing how the feature

vector is utilized.

41

The last experiment trains a dynamic CRF using output probability predic-

tions from an LSTM based binary classifier.

Figure 5.2: Two level labels for DCRF

5.1.5 Performance Measures

The classification correctness can be evaluated using the number of correctly pre-

dicted class instances (true positives), the number of correctly predicted instances

that do not belong to the class (true negatives), the number of instances that were

incorrectly assigned to the class (false positives) and the number of instances that

were incorrectly not assigned to the class (false negatives). These counts form a

confusion matrix (Sokolova and Lapalme 2009).

In this thesis, the performance of the models is evaluated using a widely used

metric called F1-score which takes into account the four counts discussed above. F1-

score is the harmonic mean of precision and recall. Precision is the percentage of true

positives from all positive results returned by the classifier. Recall is the percentage

of truly positive instances from all instances that should have been identified as

positive by the model. The formulae for precision, recall and F1-score are given

below:

Precision = tp

tp+ fp
(8)

Recall = tp

tp+ fn
(9)

42

F1-score = 2× Precision× Recall
Precision + Recall (10)

where tp, fp and fn denote true positive, false positive and false negative

instances respectively for a given class.

5.1.6 Implementation Environment

The Python programming language is used to experiment with the different machine

learning algorithms. Due to its active community and intuitive syntax it is widely

used in scientific and research communities. It contains many built in libraries for

AI and Machine learning such as scikit-learn. Since it is easy to experiment with

new ideas and code prototypes and algorithms for ML it was used for implementing

the data preparation, feature extraction and binary Random Forest classifier.

A Python deep learning library called Keras is used in experimenting with

neural networks specifically LSTMs. Keras10 is a high level neural network API

capable of running on top of Tensorflow11, CNTK12 or Theano13 back-ends. It

was developed with a focus on going from idea to result with the least possible

delay providing fast prototyping. As open source product of Google, Tensorflow is

widely used by a lot of researchers and there is a huge support. Another aspect of

using Tensorflow is that it can run on large scale servers. Hence it was used in the

experiments.

A tool called GRMM14 (Graphical models in Mallet) which is a Java based

toolkit for performing inference and learning in graphical models of arbitrary struc-

ture is used to implement both linear and Dynamic CRFs (AK McCallum 2002).

There are a of lot available packages for linear chain CRFs such as CRFSuite,

CRF++ but not for dynamic-CRFs. We used GRMM because it has packages

implemented for both the linear-chain CRFs and Dynamic CRFs. To make fair

comparison of these two models it is required to use the same implementation.

Even though the underlying Java code of GRMM supports continuous features, the
10https://keras.io/
11https://www.tensorflow.org/
12https://docs.microsoft.com/en-us/cognitive-toolkit/
13http://deeplearning.net/software/theano/
14http://mallet.cs.umass.edu/grmm/index.php

43

interfaces that are provided support only binary features. For this purpose, an in-

terface in the GRMM package was modified to support continuous feature values

since we have a lot of continuous features in our feature vector as it can be seen in

table 4.1. The modified code can be found in the source code listing in Appendix

B.1. The command-line interface GRMM provides accepts both the training data

and testing data as an input, builds the model. In order to track the time taken for

training and predicting, a separate interface Java code is written that predicts class

labels from a trained model (See Appendix B.2).

44

5.2 Results

In this section, the results obtained from the carried out experiments are presented.

The results are presented in terms of precision, recall and F1-score metrics taking the

"Reference" class label as a positive class. Confusion matrices for best performing

models in each category of experiments are also shown. First, the evaluation of the

baselines is presented. Next, the results of several variants of Linear-chain CRFs

and Dynamic CRFs are presented.

5.2.1 Baselines

The two baselines as discussed in section 5.1.2 are the random forest binary classifier

and LSTM based binary classifier. Both baselines accept paragraphs and determine

which class (i.e. "Normal Text" or "Reference") these paragraphs belong to.

Result 1: LSTM based binary classifier performed better than the random forest

binary classifier model.

We first evaluate the baseline models as their classification performance will

be compared with the proposed models in the subsequent sections. The 2-fold cross

validation results for the random forest model is shown in table 5.1. This table

shows the results obtained for each feature category and the combination of feature

categories. The random forest model achieves the best F1-score of 0.931 with all the

features. The confusion matrix for the random forest model with all the features is

presented in table 5.2.

Features Precision Recall F1-Score

Textual 0.96 0.897 0.928

Linguistic 0.96 0.877 0.862

Markup 0.778 0.108 0.190

Textual+Linguistic 0.967 0.885 0.924

All features 0.967 0.897 0.931

Table 5.1: Performance of Random Forest classifer

The second baseline (i.e. LSTM based binary classifier) shows an improve-

ment over the random forest model with an F1-score of 0.964 as shown in table

45

Actual/Predicted Normal Text Reference

Normal Text 99055 1428

Reference 4698 41252

Table 5.2: Random Forest binary classifier confusion matrix with all features

5.3. The corresponding confusion matrix for this model is presented in table 5.4.

This improvement suggests that LSTMs learn the interdependencies between the

sequence of tokens within a paragraph.

Precision Recall F1-Score

LSTM binary classifier 0.947 0.981 0.964

Table 5.3: Performance of LSTM binary classifier

Actual/Predicted Normal Text Reference

Normal Text 98009 2485

Reference 846 45104

Table 5.4: LSTM binary classifier confusion matrix

5.2.2 Linear Chain CRFs

Linear chain CRF with various experiments results are discussed in this section.

Result 2: Linear Chain CRF with direct features performed better than the random

forest binary classifier model.

The linear chain CRF achieved the best F1-score of 0.955 with all the features

as compared to random forest baseline model with 0.931 F1-score. This suggests

that linear chain CRF, which takes into account the dependency between adjacent

paragraphs by exploiting the tag information, outperforms a random forest model

that neglects the interdependence between paragraphs while predicting class labels.

Table 5.5 shows the scores achieved with the different feature categories.

The model achieved its best performance combining all the feature cate-

gories. This implies that the feature categories complement each other. The confu-

sion matrix for the model with all the features is shown in table 5.6.

Result 3: The random forest followed by linear CRF (RF-LCRF) model performed

46

Features Precision Recall F1-Score

Textual 0.969 0.936 0.952

Linguistic 0.860 0.760 0.807

Markup 0.733 0.594 0.656

Textual+Linguistic 0.969 0.938 0.954

All features 0.969 0.940 0.955

Table 5.5: Performance of Linear Chain CRF with direct features

Actual/Predicted Normal Text Reference

Normal Text 99125 1358

Reference 2753 43197

Table 5.6: LCRF confusion matrix

better than the random forest baseline model.

This experiment was introduced to make a fair comparison between random

forest and linear chain CRF. Here we want to test the effect of considering contextual

information that exists in sequence of paragraphs in a document while also fixing,

how the features are utilized by two models, to be the same. This experiment

achieves an F1-score of 0.944 compared to the random forest’s F1-score of 0.931 as

shown in 5.7. The confusion matrix for the best performing model with all features

is presented in table 5.8.

Features Precision Recall F1-Score

Textual 0.970 0.898 0.933

Linguistic 0.958 0.937 0.947

Markup 0.934 0.074 0.136

Textual+Linguistic 0.970 0.910 0.939

All features 0.973 0.918 0.944

Table 5.7: Performance of RF-LCRF

Actual/Predicted Normal Text Reference

Normal Text 99301 1182

Reference 371 42169

Table 5.8: RF-LCRF confusion matrix

47

Result 4: The LSTM followed by linear CRF (LSTM-LCRF) model outperformed

the LSTM based binary classifier baseline model.

The LSTM-LCRF model achieved F1-score of 0.974 improving the baseline

LSTM binary classifier F1-score of 0.964. This suggests that considering the tag

information of the adjacent paragraphs (i.e. context) improves the performance

of models for extracting document structure. The table 5.10 shows the confusion

matrix for the LSTM-LCRF model.

Precision Recall F1-Score

LSTM-CRF model 0.968 0.979 0.974

Table 5.9: Performance of LSTM-LCRF binary classifier

Actual/Predicted Normal Text Reference

Normal Text 99036 1458

Reference 939 45011

Table 5.10: LSTM-LCRF binary classifier confusion matrix

Result 5: The LSTM-LCRF model outperformed the RF-LCRF model.

The LSTM-LCRF with 0.974 F1-score outperforms the best performing vari-

ant of RF-CRF with F1-score of 0.944. This implies that the manual feature ex-

traction can be replaced with an LSTM, where no handcrafted features are used,

achieving a better performance.

5.2.3 Dynamic CRFs

The results obtained from the various Dynamic CRF experiments are discussed in

this section.

Result 6: The DCRF model with direct features outperformed the CRF with direct

features model.

Table 5.11 compares the performance of DCRF using the different feature

categories. As in the previous results, the combination of all the features produces

the best F1-score with 0.959. There is a slight improvement over the linear chain

CRF which has F1-score of 0.955. This suggests that the introduction of a higher

48

level of structure (multi-level labels) indeed increases the performance of classifying

paragraphs.

Features Precision Recall F1-Score

Textual 0.965 0.941 0.954

Linguistic 0.877 0.783 0.827

Markup 0.767 0.632 0.693

Textual+Linguistic 0.971 0.939 0.955

All features 0.970 0.952 0.961

Table 5.11: Performance of Dynamic CRF with direct features

Actual/Predicted Normal Text Reference

Normal Text 99161 1349

Reference 2203 43720

Table 5.12: DCRF confusion matrix with all features

The confusion matrix for DCRF with all the features is given in table 5.12.

The number of true positives (i.e. correctly predicted "Reference-items") raised to

43720 when compared to LCRF’s 43197.

Result 7: The RF-DCRF model outperformed the RF-LCRF model

In this experimental setting, DCRF and LCRF are trained using the proba-

bility predictions of a random forest binary classifier as their only two features. The

RF-DCRF model achieves an F1-score of 0.953 beating the F1-score 0.944 recorded

by RF-LCRF. This improvement is result of introducing a higher level structure

as discussed above. The best score is achieved by combining all the features as

illustrated in table 5.13.

Features Precision Recall F1-Score

Textual 0.974 0.916 0.945

Linguistic 0.961 0.938 0.950

Markup 0.969 0.089 0.164

Textual+Linguistic 0.974 0.927 0.951

All features 0.976 0.930 0.953

Table 5.13: Performance of RF-DCRF

The confusion matrix for the RF-DCRF is shown in table 5.14. The number

49

Actual/Predicted Normal Text Reference

Normal Text 102890 1339

Reference 3259 42691

Table 5.14: RF-DCRF confusion matrix

of correctly classified "Reference-items" increased by 522 paragraphs when compared

with the RF-LCRF.

Result 8: The LSTM-DCRF model outperformed the LSTM-LCRF model.

The comparison of LSTM-LCRF and LSTM-DCRF is again to show that

if a structure is added then the performance of extracting the document elements

increases. Both the LCRF and DCRF are trained by two features. These features

are the predictions for each paragraph instance produced by an LSTM binary clas-

sifier. The F1-score for the LSTM-DCRF as can be seen in table 5.15 is 0.982 when

compared to LSTM-LCRF’s F1-score of 0.974.

Precision Recall F1-Score

LSTM-DCRF model 0.979 0.985 0.982

Table 5.15: Performance of LSTM-DCRF

Actual/Predicted Normal Text Reference

Normal Text 99499 984

Reference 676 45274

Table 5.16: LSTM-DCRF confusion matrix

The confusion matrix for the LSTM-DCRF is shown in table 5.16.

Result 9: The LSTM-DCRF model outperformed the RF-DCRF model.

A DCRF trained by the probability outputs of an LSTM outperforms a

DCRF trained by the probability outputs of a random forest. This implies again

that LSTMs capability to automatically learn highly discriminative features data as

compared with the manual feature extraction used by RF.

50

5.2.4 The Effect of Using Contextual Features

So far, the comparisons were focused on the ability of models like linear chain CRF

and dynamic CRF to consider the context by taking into account the tag information

of surrounding paragraphs. Taking into account the dependency that occurs between

nearby paragraphs is the success factor in the better performance of the sequential

models as compared to Random Forest. In this section, we test the effect of using

the features generated for surrounding paragraphs as part of the input feature vector

while predicting class labels.

Model F1-score without contextual features F1-score with contextual features

RF 0.931 0.954

CRF 0.955 0.968

RF-LCRF 0.944 0.955

LSTM-LCRF 0.974 0.975

DCRF 0.961 0.971

RF-DCRF 0.953 0.971

LSTM-DCRF 0.982 0.986

Table 5.17: The effect of using contextual features on the performance of models

Result 10: The inclusion of contextual features improves performance of document

structure extraction

The features for the previous paragraph and the next paragraph in addition

to the features for the current paragraph are used to evaluate the effect of includ-

ing contextual features. The goal was to see if performance can be improved for

"Reference-item" extraction by including the contextual features. Table 5.17 illus-

trates the comparison of the models with and without the use of contextual features.

Including the contextual features improved the F1-scores of all the models.

5.2.5 Conclusion

From the carried out experiments, it can be observed that the feature categories

are complementary. Combining the feature categories improves the performance of

the models. Considering the structure of a document also proved to improve the

performance of extraction of elements. The general order of performance of docu-

51

ment structure extraction was found out to be DCRF, LCRF and RF respectively.

RF doesn’t consider the dependency that exists between consecutive paragraphs in

a document accounting to its lowest F1-score when compared to linear-chain CRF

and dynamic CRF. Linear-CRF as a sequential learning model improved the per-

formance of RF. Dynamic CRF which adds another layer of structure at the top of

the linear-chain CRF is able to achieve the best performance.

Another important observation from the experiments is that the LSTM can

be used as an alternative to handcrafted feature extraction that is inherent in models

like RF. LSTM’s better classification accuracy is the result of learning the interde-

pendency among tokens that are local to each paragraph. The use of LCRFs and

DCRFs in conjunction with LSTM achieved the best performance. The inclusion

of contextual features (i.e. features generated for the previous and next paragraph)

improved the F1-scores of all the models.

52

6 Discussion

After the background research and carrying out several experiments, the results

from the previous chapter and the challenges faced with implementing the models

will be discussed here.

The use of context has shown to improve the overall "Reference-item" ex-

traction from scientific articles. The random forest model, which is a robust and

widely used model doesn’t consider the dependency among paragraphs accounting

to its lowest F1-score. Linear-chain CRFs on the other hand consider the depen-

dency between consecutive paragraphs and thereby improve the F1-score achieved

by random forest. Further introducing another level of hierarchy into the para-

graphs (i.e structure or context) on the top of the linear-chain CRFs produced an

even better extraction performance. Dynamic CRFs, which are generalizations of

linear-chain CRFs are able to use multi-level labels (i.e. hierarchical tag information)

and improved the F1-score of linear-chain CRFs. The more context (structure) was

introduced the better extraction performance of document entities was achieved.

The best F1-score reported for "Reference-items" extraction in the work by

He 2017 was 0.974. The best F1-score achieved in this thesis is 0.986 using LSTM in

conjunction with DCRF. This reasonable F1-score is achieved because LSTM learns

efficiently discriminative features local to each paragraph. The DCRF is able to

learn the contextual information through the use of tag information of surrounding

paragraphs.

The generated feature categories were textual, markup and linguistic fea-

tures. The textual features were found to be crucial features when compared with

the other two features, linguistic features being the next best. However, the com-

bination of all these three categories produced the best performance, which means

they complement each other.

The markup feature category for extracting the "Reference-items" showed a

very low F1-score throughout all the experiments. As discussed in section 4.2 the

computation of these features is done for the whole paragraph. However, if we look

into the "Reference-items" closely, the markup visual effects are not applied to the

paragraph as a whole by authors. One solution for this problem could be to divide

53

paragraphs into subparts and compute the markup features for these subparts. For

example, the journal and conference names that are found in a bibliographic-items

usually are italic and are found at end part of bibliographic-items. So, generating

features for these subparts can be more informative. Another interesting observation

of the markup features is that when used directly by DCRF and LCRF they achieved

an F1-score of 0.65 and 0.69. But the F1-score of RF using markup features is as

low as 0.19. This significant improvement of F1-score is the result of using context

considering machine learning models.

The GRMM package of Mallet, which was used to implement LCRF and

DCRF, is an excellent and very flexible toolkit written in Java. However, the flex-

ibility comes at a price. The code makes generous use of runtime polymorphism.

Runtime polymorphism refers to resolving which implementation of the same method

to invoke during runtime. This runtime polymorphism basically degrades the per-

formance as decisions are taken at runtime. The training time of DCRF was taking

too much time (around one and half hours for 70,000 paragraph instances) and was

a major challenge. For the small improvement in F1-score the DCRF gives over

LCRFs is not worth using because it takes less than ten minutes to train the LCRFs

on the same number of training instances. The memory requirements for GRMM is

also quite substantial.

Initial investigation for extracting the head section, which includes "title",

"author", "affiliation", "abstract", "keywords" and the tail section, which has "reference-

items" from manuscript submissions was carried out using the LSTM-LCRF model.

The F1-scores and the confusion matrix for LSTM-LCRF is depicted in Appendix

A. Generally, the accuracy of extracting labels in the head section proved to achieve

a lower performance when compared with extracting the reference-items. The first

reason for this reduced performance is the data imbalance that exists between the

distribution of the labels. The class distribution for the labels is shown in the bar

chart A.1. The second reason is two elements do occur in the same paragraph. For

example, an abstract and an affiliation co-occur in the same paragraph in many

cases.

54

7 Conclusion and Future work

In this thesis, we illustrated mainly how the contextual information that exists

in sequence of paragraphs in a document can be exploited to improve the over-

all performance of document structure extraction, particularly with extracting the

reference-items that appear at the end of scientific articles. In the conclusion, how

the research questions are answered is explained. The remaining challenges to be

solved and directions for future work is discussed in the future work section.

7.1 Conclusion

The main research question was decomposed into 4 subquestions. Let us discuss

how these subquestions were answered.

"What kind of features should be extracted to apply machine learning algo-

rithms to the task of logical structure extraction?"

Three categories of features were selected to build our machine learning

models; textual, linguistic and visual markup features. Each of the feature cate-

gories provide information from which our models can learn to extract the document

structure extraction. As can be shown from the results, the extraction of "Reference-

items" was achieved at a high accuracy without conducting a complicated feature

analysis and selection.

"How to take into account the contextual information?"

To answer this subquestion, experiments were done in two settings. First,

context considering sequential learning models (i.e that take into account the tag

information of surrounding paragraphs) such as linear-CRFs and Dynamic CRFs

were compared with a random forest that does not take contextual information into

account. It was shown that linear-Chain CRFs and dynamic CRFs achieve better

performance in extracting "Reference-items" from documents. They exploit the tag

information at a paragraph level.

The second way of incorporating contextual information is using contextual

features. In this thesis, the features extracted from the previous and the next

55

paragraph were used as contextual features. The inclusion of contextual features

improved the performance of all the models.

"Given a context considering machine learning approach, what is the utility

of linguistic, textual and markup features?"

It was consistently shown from the experiments that the order of importance

of the category of features to be textual features, linguistic features and markup fea-

tures respectively. Another important observation is that all the feature categories

complement each other. The combination of all the features proved to give best

performance in all the experiments.

"Can the feature extraction step be left out by using alternative deep learning

methods (Long-Short term memory) for extracting document structure elements?"

Manual feature engineering is a requirement of traditional machine learning

algorithms such as random forest and CRF. This process is sometimes cumbersome,

time consuming and limited by the ability of the researcher to create discrimina-

tive features, something which requires extensive domain knowledge. Alternatively,

we showed that by using a recurrent neural network architecture (in particular, an

LSTM architecture) we can obtain even a superior performance to handcrafted fea-

ture extraction for document structure recognition. This shows that the capability

of LSTM to learn highly discriminative features directly from data with no feature

engineering. The conjunction of an LSTM architecture with CRF improves the

overall performance of extracting document structure elements.

7.2 Future works

Reference-item structuring is a special case of document structure extraction, which

was the core part in this thesis. However, these experiments should be extended

to extract other elements of article manuscripts such as "Title", "Section head-

ings","Affiliation", "Caption" etc. This means that not only word files should be

considered but also PDFs and images. From the preliminary results it was indicated

that extracting the likes of "authors" and "affiliation", which usually occur in the

same paragraph, can lead to a reduced performance. One possible solution can be

to build models that work on a at token level instead of at paragraph level.

56

It was shown that LSTM can be used to replace the manual feature engi-

neering required in traditional machine learning models. It can be further enhanced

by using Bi-directional LSTMs. Bi-directional LSTMs are a variant of LSTMs that

can both use the future and past feature inputs unlike the LSTM that uses only the

past feature inputs.

In the future, it may be a good approach to experiment with CRFs that

make use of both manually generated handcrafted features and features generated

by LSTMs.

Training DCRF in GRMM is very slow because the Java code makes gen-

erous use of runtime polymorphism and leaves a lot of room for micro optimization

that can be handy for mass production. If the code can be optimized, the well

written and organized software can be used for the future.

57

Appendices

A Preliminary results of LSTM-LCRF for the whole docu-

ment

Sections F1-Score

Title 0.818

Authors 0.713

Affiliations 0.864

Other 0.978

Abstract 0.764

Keywords 0.800

Reference-items 0.981

Table A.1: F1-scores for LSTM-LCRF

Actual/Predicted Title Authors Affiliations Other Abstract Keywords Reference-items

Title 824 8 11 199 5 1 15

Authors 9 578 23 235 0 3 4

Affiliations 3 13 2052 287 26 10 4

Other 91 124 258 91378 224 56 975

Abstract 1 0 4 546 1316 6 1

Keywords 9 9 5 306 5 851 8

Reference-items 0 0 3 760 0 1 45186

Table A.2: Confusion Matrix for LSTM-LCRF

58

Figure A.1: Class Label Distribution For six classes

B Source Code Listings

B.1 Source code for including continuous features

/∗

The GenericAcrfData2TokenSequence . java f i l e i s modi f i ed to to in c lude the

cont inuous f e a t u r e s . The under ly ing code f o r GRMM supports cont inuous f e a t u r e s

but the i n t e r f a c e only supports the binary f e a t u r e s as s ta t ed in the GRMM

homepage (http :// mal l e t . c s . umass . edu/grmm/ gene ra l_c r f s . php) .

Modif ied May 8 ,2018

by Semere Bitew

∗/

/∗ Or ig ina l code sn ippet from GenericAcrfData2TokenSequence . java that only supports

binary f e a t u r e s ∗/

whi l e (j < maxFeatureIdx) {

span . setFeatureValue (toks [j] . i n t e rn () , 1 . 0) ;

System . out . p r i n t l n (toks [j] . i n t e rn ()) ;

j++;

}

59

/∗New code that supports cont inuous f e a t u r e s ∗/

//Added code to in c lude cont inuous f e a t u r e s separated by the token "=" in the

GenericAcrfData2TokenSequence . java

St r ing f eatVa lueSeparator = "=" ;

S t r ing [] featAndValue ;

whi l e (j < maxFeatureIdx) {

featAndValue = toks [j] . s p l i t (f ea tVa lueSeparator) ;

span . setFeatureValue (featAndValue [0] . i n t e rn () , Double . parseDouble (

featAndValue [1])) ;

System . out . p r i n t l n (featAndValue [1]) ;

//System . out . p r i n t l n (maxFeatureIdx) ;

j++;

}

B.2 Source code for predicting class labels from a trained model

/∗A new i n t e r f a c e c a l l e d PredictedFromSavedmodel . java . This i n t e r f a c e i s wr i t t en

f o r p r ed i c t i n g l a b e l s based on a t ra in ed model . ∗/

package edu . umass . c s . ma l l e t . grmm. l e a rn i ng ;

import java . i o . Buf feredWriter ;

import java . i o . FileNotFoundException ;

import java . i o . Fi leReader ;

import java . i o . F i l eWr i t e r ;

import java . i o . IOException ;

import java . i o . Pr intWriter ;

import java . n io . f i l e . F i l e s ;

import java . n io . f i l e . Path ;

import java . n io . f i l e . Paths ;

import java . u t i l . L i s t ;

import java . u t i l . regex . Pattern ;

import edu . umass . c s . ma l l e t . base . p ipe . i t e r a t o r . L ineGroupIterator ;

import edu . umass . c s . ma l l e t . base . p ipe . i t e r a t o r . P ipe Input I t e r a to r ;

import edu . umass . c s . ma l l e t . base . types . I n s t an c eL i s t ;

import edu . umass . c s . ma l l e t . base . u t i l . CommandOption ;

import edu . umass . c s . ma l l e t . base . u t i l . F i l eU t i l s ;

import edu . umass . c s . ma l l e t . base . p ipe . ∗ ;

import edu . umass . c s . ma l l e t . grmm. l e a rn i ng .ACRF. Template ;

import edu . umass . c s . ma l l e t . grmm. l e a rn i ng . ACRFEvaluator ;

import edu . umass . c s . ma l l e t . grmm. l e a rn i ng . ACRFTrainer . LogEvaluator ;

pub l i c c l a s s PredictFromSavedModel {

60

// p r i va t e s t a t i c CommandOption . F i l e t e s t F i l e = new CommandOption . F i l e

// (GenericAcrfTui . c l a s s , " t e s t i n g " , "FILENAME" , true , nu l l , " F i l e

conta in ing t e s t i n g data . " , nu l l) ;

pub l i c s t a t i c void main (S t r ing [] a rgs) throws FileNotFoundException {

// TODO Auto−generated method stub

St r ing t e s t f i l e = args [1] ;

S t r ing tra inedmodel = args [0] ;

P ipe Input I t e r a to r t e s tSour c e ;

t e s tSour c e = new LineGroupIterator (new Fi leReader (t e s t f i l e) ,

Pattern . compi le (" ^\\ s ∗$ ") , t rue) ;

ACRF ac r f = (ACRF) F i l eU t i l s . readObject (Paths . get ("

BOD_EOD_Lstm_CRF_head_tail_fold_one_500_train . s e r . gz ") . t oF i l e

()) ;

Pipe pipe = a c r f . getInputPipe () ;

I n s t an c eL i s t t e s t i n g = new In s t an c eL i s t (p ipe) ;

t e s t i n g . add (t e s tSour c e) ;

L i s t p r ed i c t edLabe l s = a c r f . ge tBestLabe l s (t e s t i n g) ;

ACRFTrainer acr fTr = new ACRFTrainer () ;

ACRFEvaluator myeval = new ACRFEvaluator () {

@Override

pub l i c void t e s t (I n s t an c eL i s t gold , L i s t returned , S t r ing

d e s c r i p t i o n) {

// TODO Auto−generated method stub

}

@Override

pub l i c boolean eva luate (ACRF acr f , i n t i t e r , I n s t an c eL i s t

t r a in ing , I n s t an c eL i s t va l i da t i on , I n s t an c eL i s t t e s t i n g

) {

// TODO Auto−generated method stub

return f a l s e ;

}

} ;

acr fTr . t e s t (ac r f , t e s t i ng , myeval) ;

LogEvaluator lg_eval = new LogEvaluator () ;

a c r f . p r i n t (System . out) ;

lg_eval . t e s t (ac r f , t e s t i ng , " Tes t ingPred i c t i on ") ;

t ry {

Pr intWriter out_new = new PrintWriter (new Buf feredWriter (new

Fi l eWr i t e r ("C:\\ Users \\ bitews \\Documents\\grmm−0.1.3\\ data \\

grmm\\new_predictions_from_savedModel_200 . txt " , t rue))) ;

out_new . p r i n t l n (p r ed i c t edLabe l s) ;

61

out_new . c l o s e () ;

}

catch (IOException e) {

//do nothing

}

}

}

62

References

Aiello, Marco et al. (2002). “Document understanding for a broad class of documents”. In: Inter-

national Journal on Document Analysis and Recognition 5.1, pp. 1–16.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning long-term dependencies

with gradient descent is difficult”. In: IEEE transactions on neural networks 5.2, pp. 157–166.

Beusekom, J. v. et al. (2007). “Example-Based Logical Labeling of Document Title Page Images”.

In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007).

Vol. 2, pp. 919–923. doi: 10.1109/ICDAR.2007.4377049.

Bloechle, Jean-Luc (2010). “Physical and logical structure recognition of pdf documents”. PhD

thesis. University of Fribourg (Switzerland).

Breiman, Leo (2001). “Random forests”. In: Machine learning 45.1, pp. 5–32.

Councill, Isaac G., C. Lee Giles, and Min-yen Kan (2008). “ParsCit: An open-source CRF reference

string parsing package”. In: INTERNATIONAL LANGUAGE RESOURCES AND EVALUA-

TION. European Language Resources Association.

Dengel, Andreas and Faisal Shafait (2014). “Analysis of the logical layout of documents”. In:

Handbook of Document Image Processing and Recognition, pp. 177–222.

Ghamrawi, Nadia and Andrew McCallum (2005). “Collective multi-label classification”. In: Pro-

ceedings of the 14th ACM international conference on Information and knowledge management.

ACM, pp. 195–200.

Hassan, A. and A. Mahmood (2017). “Deep learning for sentence classification”. In: 2017 IEEE

Long Island Systems, Applications and Technology Conference (LISAT), pp. 1–5. doi: 10.1109/

LISAT.2017.8001979.

He, Yi (2017). "Extracting document structure of a text with visual and textual cues". Masters

thesis, University of Twente. url: http://essay.utwente.nl/72979/.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural compu-

tation 9.8, pp. 1735–1780.

Huang, Zhiheng, Wei Xu, and Kai Yu (2015). “Bidirectional LSTM-CRF Models for Sequence

Tagging”. In: CoRR abs/1508.01991. arXiv: 1508.01991. url: http://arxiv.org/abs/1508.

01991.

Jain, Anil K, Jianchang Mao, and K Moidin Mohiuddin (1996). “Artificial neural networks: A

tutorial”. In: Computer 29.3, pp. 31–44.

Jancsary, Jeremy (2008). “Recognizing structure in report transcripts”. MA thesis. Faculty of

Informatics, Vienna University of Technology.

Jurafsky, Dan (2000). Speech & language processing. Pearson Education India.

Klink, Stefan, Andreas Dengel, and Thomas Kieninger (2000). “Document Structure Analysis

Based on Layout and Textual Features”. In: Proc. of International Workshop on Document

Analysis Systems, DAS2000. IAPR, pp. 99–111.

63

http://dx.doi.org/10.1109/ICDAR.2007.4377049
http://dx.doi.org/10.1109/LISAT.2017.8001979
http://dx.doi.org/10.1109/LISAT.2017.8001979
http://essay.utwente.nl/72979/
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991

Lafferty, John D., Andrew McCallum, and Fernando C. N. Pereira (2001). “Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling Sequence Data”. In: Proceedings

of the Eighteenth International Conference on Machine Learning. ICML ’01. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., pp. 282–289. isbn: 1-55860-778-1. url: http:

//dl.acm.org/citation.cfm?id=645530.655813.

Lopez, Patrice (2009). “GROBID: Combining automatic bibliographic data recognition and term

extraction for scholarship publications”. In: International Conference on Theory and Practice

of Digital Libraries. Springer, pp. 473–474.

Mao, Azriel Rosenfeld, and Tapas Kanungo (2003). “Document structure analysis algorithms: a

literature survey”. In: Proc. SPIE Electronic Imaging. Vol. 5010. International Society for Optics

and Photonics, pp. 197–208.

McCallum, AK (2002). “MALLET: A Machine Learning for Language Toolkit”. In: http://mallet.

cs. umass. edu.

McCallum, Andrew, Khashayar Rohanimanesh, and Charles Sutton (2003). “Dynamic conditional

random fields for jointly labeling multiple sequences”. In: NIPS-2003 Workshop on Syntax,

Semantics and Statistics.

Mehler, Alexander et al. (2011). Modeling, learning, and processing of text-technological data struc-

tures. Vol. 370. Springer.

Mikolov, Tomas et al. (2013). “Distributed representations of words and phrases and their compo-

sitionality”. In: Advances in neural information processing systems, pp. 3111–3119.

Nagy, George (2000). “Twenty years of document image analysis in PAMI”. In: IEEE Transactions

on Pattern Analysis and Machine Intelligence 22.1, pp. 38–62.

Namboodiri, Anoop M and Anil K Jain (2007). “Document Structure and Layout Analysis”. In:

Digital Document Processing: Major Directions and Recent Advances. Ed. by Bidyut B. Chaud-

huri. London: Springer London, pp. 29–48. isbn: 978-1-84628-726-8. doi: 10.1007/978- 1-

84628-726-8_2. url: https://doi.org/10.1007/978-1-84628-726-8_2.

Niyogi, Debashish and Sargur N Srihari (1995). “Knowledge-based derivation of document logical

structure”. In: Document Analysis and Recognition, 1995., Proceedings of the Third Interna-

tional Conference on. Vol. 1. IEEE, pp. 472–475.

Paaß, Gerhard and Iuliu Konya (2011). “Machine learning for document structure recognition”. In:

Modeling, Learning, and Processing of Text Technological Data Structures. Springer, pp. 221–

247.

Rahman, Muhammad Mahbubur and Tim Finin (2017). “Understanding the Logical and Semantic

Structure of Large Documents”. In: CoRR abs/1709.00770. arXiv: 1709.00770. url: http:

//arxiv.org/abs/1709.00770.

Saeed, Aaqib (2017). Deep physiological arousal detection in a driving simulator. url: http://

essay.utwente.nl/73268/.

64

http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://dx.doi.org/10.1007/978-1-84628-726-8_2
http://dx.doi.org/10.1007/978-1-84628-726-8_2
https://doi.org/10.1007/978-1-84628-726-8_2
http://arxiv.org/abs/1709.00770
http://arxiv.org/abs/1709.00770
http://arxiv.org/abs/1709.00770
http://essay.utwente.nl/73268/
http://essay.utwente.nl/73268/

Shafait, Faisal, Daniel Keysers, and Thomas M Breuel (2008). “Efficient implementation of local

adaptive thresholding techniques using integral images”. In: Document Recognition and Re-

trieval XV. Vol. 6815. International Society for Optics and Photonics, p. 681510.

Sokolova, Marina and Guy Lapalme (2009). “A systematic analysis of performance measures for

classification tasks”. In: Information Processing & Management 45.4, pp. 427–437.

Summers, K. (1995). “Near-wordless document structure classification”. In: Proceedings of 3rd

International Conference on Document Analysis and Recognition. Vol. 1, 462–465 vol.1. doi:

10.1109/ICDAR.1995.599036.

Sutton, Charles, Andrew McCallum, and Khashayar Rohanimanesh (2007). “Dynamic conditional

random fields: Factorized probabilistic models for labeling and segmenting sequence data”. In:

Journal of Machine Learning Research 8.Mar, pp. 693–723.

Tang, Buzhou et al. (2015). “A comparison of conditional random fields and structured support

vector machines for chemical entity recognition in biomedical literature”. In: Journal of Chem-

informatics 7.S1, S8.

Zhang, X. et al. (2010). “A Structural SVM Approach for Reference Parsing”. In: 2010 Ninth

International Conference on Machine Learning and Applications, pp. 479–484. doi: 10.1109/

ICMLA.2010.77.

65

http://dx.doi.org/10.1109/ICDAR.1995.599036
http://dx.doi.org/10.1109/ICMLA.2010.77
http://dx.doi.org/10.1109/ICMLA.2010.77

	Acknowledgement
	Abstract
	Introduction
	Introduction to Elsevier and Apollo project
	Research Questions
	Contribution
	Structure of the Thesis

	Background & Related Work
	Document Structure Recognition
	Logical Document Structure
	Techniques for Logical Structure Extraction
	Rule Based Approaches
	Machine Learning Approaches

	Conclusion

	Elsevier's Apollo Dataset
	Article Manuscripts
	Published Articles
	Summary

	Methods
	Modeling the Problem
	Feature Extraction
	Random Forest
	Conditional Random Fields (CRF)
	Linear chain CRFs
	Dynamic CRFs

	Long Short-Term Memory (LSTM)
	Summary

	Experiments and Results
	Experimental Setup
	Dataset Preparation
	Baselines
	Experimental setup of Linear CRFs
	Experimental setup of Dynamic CRFs
	Performance Measures
	Implementation Environment

	Results
	Baselines
	Linear Chain CRFs
	Dynamic CRFs
	The Effect of Using Contextual Features
	Conclusion

	Discussion
	Conclusion and Future work
	Conclusion
	Future works

	Appendices
	Preliminary results of LSTM-LCRF for the whole document
	Source Code Listings
	Source code for including continuous features
	Source code for predicting class labels from a trained model

	References

