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Abstract 

Introduction: Bronchoscopy is a very complex skill, and surgeons seem to differ at 

learning this skill. In order to minimize patient risk, it is crucial to only enable proficient 

surgeons to perform bronchoscopies. However, adequate selection and assessment methods do 

not exist at present. A promising solution would be to include simulator-base prediction of 

surgical performance. The current study aims at exploring whether bronchoscopy simulator 

performance can be used to individually assess prospective trainees based on the maximum 

performance they are expected to reach after training, based on learning curves. By means of 

this assessment method, it is explored which individuals are more suitable for becoming a 

bronchoscopist and which individuals will experience more difficulties. First, it was analysed 

whether learning curves exist in the performance of basic bronchoscopy simulator tasks. 

Moreover, it was explored whether individual differences exist in acquiring bronchoscopic 

skills to confirm the need for individualized training. Finally, it was tested whether the 

simulator tasks together form a reliable test to select prospective trainees based on their 

performance.  

Method: Nineteen students took part in a repeated-measure study. Participants had to 

perform two or three basic bronchoscopy simulator tasks fifteen times each on the GI-

BRONCH Mentor TM. Exponential learning curves have been estimated per task and 

participant. Maximum performance, based on time-on-task, was the primary parameter of 

interest. Correlations between the asymptote for each task on population-level were 

calculated.  

Results: All participants improved performance over time for all three tasks, as the 

time to complete each trial decreased. Moreover, individual differences in acquiring 

bronchoscopic skills have been found. The internal consistency between the three simulator 

tasks was low and highly uncertain.  
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Discussion: The internal consistency of the three simulator tasks was low. However, 

all findings were highly uncertain due to a small sample size. A possible limitation of the 

current study is the lack of an external criterion to validate simulator performance. Moreover, 

using time-on-task as a performance measure might not be the most suitable performance 

variable for bronchoscopic skills. Finally, the Basic Scope Manipulation and Step-by-Step 

Diagnostic Manoeuvres tasks might be too easy to able to discriminate between the levels of 

psychomotor ability. We encourage medical education institutes to implement and further 

develop performance-based selection. A useful extension to the current study would be to 

include expert performance as cut-off scores. The most promising task as predictor of future 

surgical performance is the Guided Anatomical Navigation, however results were highly 

uncertain. On the long run, it is recommended to explore the relationship between basic 

simulator tasks and the whole bronchoscopic procedures. 
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The number of performed minimally invasive surgeries (MIS) has rapidly increased 

over the last years (Tsui, Klein, & Garabrant, 2013). A frequently performed MIS procedure is 

bronchoscopy. Bronchoscopy enables visual inspection and tissue sampling from the airways 

by inserting a bronchoscope through the nose or mouth (Evison & Munavvar, 2016; Shah, 

2003). MIS offers several short-term and long-term advantages over traditional open surgery, 

such as less blood loss, reduced pain and shorter length of hospital stay (Pache, Hubner, Jurt, 

Demartines, & Grass, 2017). However, in contrast to traditional surgery, surgeons need to 

master different complex skills while performing MIS procedures (Gallagher, Leonard, & 

Traynor, 2009). Challenges in learning MIS include interpreting 3D information about the 

human body from 2D images presented on a screen, a lack of haptic feedback, visual-spatial 

ability and psychomotor skills (Gallagher et al., 2009). As a consequence, surgeons showed 

prolonged learning curves, in contrast to conventional open surgery (Fuchs, 2002). Thus, 

patient safety during MIS might be endangered since surgeons may not have achieved 

competency (yet).    

It has been found that surgical residents differ in the amount of performed procedures 

necessary to acquire proficiency in MIS skills, with estimations that some individuals will not 

even reach proficiency at all despite practice (Grantcharov & Funch-Jensen, 2009; Louridas et 

al., 2017). Identifying the expected performance level and skill acquisition rate of residents is 

crucial to ensure effective individualized training. Residents who show proficiency could be 

allowed for taking the next step in surgery training, while those who experience difficulties 

may benefit from either providing intensified training or the recommendation to pursue a 

different career (Hofstad et al., 2013). To ensure learning efficiency, it is crucial to predict 

applicant’s future surgical performance at an early stage in surgical training.  

However, international accepted benchmarks on how to select, train and assess 

(future) pulmonologists do not exist at present (Ernst & Herth, 2013). Current selection of 
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prospective trainees still relies on cognitive selection tools, such as pre-university 

performance and aptitude tests, and non-cognitive selection tools including unstructured 

interviews, reference letters, personal references and psychometric questionnaires (Epstein & 

Hundert, 2002). However, as current selection tools do not align with skills necessary to 

perform bronchoscopy, the validity of these objective selection methods is widely criticized 

(Fielding, Maldonado, & Murgu, 2014).  

Moreover, surgical trainees are still being inconsistently assessed based on the number 

of performed MIS procedures and supervisors’ subjective evaluations (Fielding, Maldonado, 

& Murgu, 2014). For example, according to the American College of Chest Physicians, 

pulmonary trainees should perform at least 100 supervised flexible bronchoscopies to achieve 

basic competency (Ernst, Silvestri, & Johnstone, 2003).  However, according to Konge et al. 

(2011), such threshold numbers are neither scientifically proven nor universally accepted by 

bronchoscopists. While one trainee might need only 25 simulation procedures to reach a pre-

set performance level, another one still struggles with acquiring technical bronchoscopy skills 

after the 50th procedure (Wahidi et al., 2010). By developing a method for predicting skill 

acquisition, it may also become possible to predict the amount of procedures an individual 

needs before mastering technical bronchoscopic skills in the future.  

An alternative approach to the current selection and assessment in bronchoscopy 

education would be to include simulator-based prediction of surgical performance and skill 

acquisition. Besides providing bronchoscopy training in a zero-risk environment, 

bronchoscopy simulators enable new means to tailor surgery training to the needs of an 

individual. Performance metrics provided by simulators, such as procedural time and wall 

contact, could provide objective and structured assessments about a trainee’s proficiency 

level, track the training progress over time and provide continuous feedback and motivation 

for learning and evaluating the training curricula (Epstein & Hundert, 2002; Grantcharov, 
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2008). In addition, feedback based on performance metrics enhances MIS learning (Samia, 

Khan, Lawrence, & Delaney, 2013). However, little research has been conducted about using 

simulators as assessment and selection instruments within the field of bronchoscopy (Ernst & 

Herth, 2013).  

The present study explores individual differences in learning bronchoscopy while 

aiming for a valid and reliable tool to predict future bronchoscopic performance among 

novices. We aim at exploring whether bronchoscopy simulator performance can be used to 

individually assess prospective trainees based on the maximum performance they are 

expected to reach after training, based on learning curves. By means of this assessment 

method, we want to identify which individuals are more suitable for becoming a 

bronchoscopist and which individuals will experience more difficulties. First, we are 

interested in whether learning curves exist in the performance of basic bronchoscopy 

simulator tasks. Moreover, we will explore whether individual differences exist in acquiring 

bronchoscopic skills to confirm the need for individualized training. Finally, we will explore 

whether the simulator tasks together form a reliable test to select prospective trainees based 

on their performance. 

1. Background 

1.1 Risks and Challenges of Bronchoscopy 

Flexible bronchoscopy is a frequently performed MIS procedure in respiratory medicine, 

which enables visual inspection and tissue sampling from the respiratory tract by inserting a 

bronchoscope through the nose or mouth (Evison & Munavvar, 2016; Shah, 2003). A flexible 

bronchoscope contains a fibreoptic system which transmits live images captured by the tip of 

the instrument to a video screen. The bronchoscope can be controlled by moving the lever to 

flex or extend the bronchoscope’s tip and by gently turning the wrist for clockwise and anti-

clockwise rotation of the scope. If an abnormality is detected, biopsies can be taken by 
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inserting sampling tools, such as brushes, forceps and needles, into the working channel 

(Leiten, Martinse, Bakke, Eagan & Gronseth, 2016) (see Figure 1). 

 

Figure 1. Visualization of a flexible bronchoscopic 

procedure. Retrieved from http://iacharitygolf.com/ 

project/electromagnetic-bronchoscopy/ 

on 16-08-2018 

1.1.1 Complications. Flexible bronchoscopy is a generally save procedure, but rare 

complications often have life threatening consequences. The most common complication 

during flexible bronchoscopy is hypoxemia, an abnormal low level of oxygen in the blood 

(Schramm et al., 2017; Shah, 2003). Other bronchoscopy-induced injuries include 

pneumothorax, pneumonia and intrabronchial bleedings, although these major complications 

occur in less than 1 % of the cases (Ernst, Silvestri, & Johnstone, 2003). Because lungs are 

one of the vital organs of the human body, exchanging gas between the lungs and the blood, it 

is crucial to avoid complications during and after bronchoscopy. However, as MIS in general 

is a very hard-to-learn skill, bronchoscopists with less experience showed higher complication 

rates, higher procedures time and higher amounts of sedation required than bronchoscopists 

with more experience (Stather, MacEachern, Chee, Dumoulin, & Tremblay, 2013). More 
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specific, novice bronchoscopists show increased complication rates when performing 

bronchoscopy during the acquisition phase, the first trimester, of bronchoscopist training 

(Ouellette, 2006). Notably, even after several years of MIS training complications persist 

among bronchoscopic surgeons (Wahidi et al., 2010).  

1.1.2 Psychomotor ability. In contrast to traditional open surgery minimally invasive 

surgeries, such as bronchoscopy, require a completely different set of complex skills. During 

bronchoscopy, the surgeon needs to perform several complex actions simultaneously: 

withdrawing or advancing the shaft, flexing or extending the scope’s tip, and rotating the 

scope’s shaft and tip. Simultaneously, the surgeon has to observe a screen for visual feedback 

(Colley & Freund, 1997). During open surgery, the surgeon has direct visual and manual 

access to the operation side, whereas MIS-procedures, such as bronchoscopy, involve remote 

manipulation of instruments together with an indirect view of the surgical field provided by a 

camera (Fuchs, 2002). Interpreting 3D information about human anatomical structures from 

2D images presented on a screen results in a lack of depth perception. Moreover, as the 

surgeon no longer manipulates the instrument directly, haptic feedback is reduced. Since 

bronchoscopy requires the integration of, among others, spatial perception, dexterity and 

muscle function, it is a very complex technical skill (Silvennoinen, Mecklin, Saariluoma, & 

Antikainen, 2009). 

The success of a surgery depends to a large extent upon the use of adequate 

psychomotor skills by the surgeon. Psychomotor ability is defined as “the relatively innate 

potential to acquire psychomotor skill after practice” (Kaufman, Wiegand, & Tunick, 1987, p. 

1). Psychomotor skills required to keep the bronchoscope in the centre of the airway to avoid 

scope-induced discomfort and injury include fine and gross motor functioning, hand-eye 

coordination, bimanual dexterity and spatial perception (Herth, Shah, & Gompelmann, 2017; 

Kaufman et al., 1987). Due to indirect vision and manipulation during bronchoscopic surgery, 
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depth perception and eye-hand coordination are two of the main challenges for surgeons 

(Breedveld, Stassen, Meijer, & Stassen, 1999). For this reason, these two components of 

psychomotor ability will be explained in more depth. 

Compensation for insufficient depth cues. Due to indirect sight of the operative field, 

the surgeon’s depth perception is reduced during bronchoscopy. Spatial perception is the 

ability to “judge the relations of objects in space, to judge their shapes and sizes, to 

manipulate them mentally, and to visualize the effects of putting them together of turning 

them around.” (Breedveld, Stassen, Meijer, & Stassen, 1999, p. 3). Spatial perception is an 

important factor in psychomotor functioning in bronchoscopic skills, on the contrary, it is 

crucial during bronchoscopy to deal with a loss in depth perception (Fielding et al., 2014; 

Madan et al., 2005). Three-dimensional anatomical structures of the airways are presented on 

a two-dimensional video screen which results in a lack of depth indicators, such as pictorial 

cues, visuomotor cues and the comparison of pictures seen by the right and left eye. 

Additionally, bronchoscopists cannot use shadows as depth cues, since the tip of the 

bronchoscope includes a light source to increase brightness of the picture. The lack of depth-

perception cues interfere with accurately determining spatial relations of the scope with 

respect to anatomical structures and performing. As a result, surgical residents require time-

consuming and intensive training curricula to learn to compensate for the absence of depth 

cues (Breedveld et al., 1999). 

Disturbed hand-eye coordination. As a consequence of reduced depth perception 

hand-eye coordination is impaired as well. Hand-eye coordination refers to “the ability to 

produce goal-oriented hand- and arm movements that are guided by visual information from 

the eyes” (Lee, Junghans, Ryan, Khuu, & Suttle, 2014, p. 51). Effective and efficient hand 

movements depend on accurate coordination between visual-, cognitive- and motor- systems. 

To plan, control and adapt hand- and arm movements sensory input of the environment is 
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required, which includes e.g. the shape, motion, orientation and size of objects. The visual 

cortex sends visual-spatial information to the motor cortex, which elicit muscle controlling 

signals to coordinate contractions hand- and arm muscles. Information about perceived 

positions of the hand and the target are used to send motor signals to the muscles (Breedveld 

et al., 1999; Lee et al., 2014). In contrast to direct observation of the instruments and 

operative field by looking down during open surgery, a surgeon indirectly observes the 

operative field via a camera view displayed on a screen during bronchoscopy. The distance 

between the operative field, displayed on a screen, and the surgeon’s hands, makes it 

impossible to observe both the operative field and the hands simultaneously (Breedveld et al., 

1999; Wentink, Breedveld, Meijer, & Stassen, 2000). In addition, the use of a long scope 

results in a lack of direct haptic feedback, the bronchoscope’s camera has a different point of 

view than when the surgeon had direct visual access to the surgical field, and the scope as 

well as the screen magnify the operative field (Lee et al., 2014). Consequently, similar to 

compensate for insufficient depth cues, surgeons need intensive training to adapt to impaired 

eye-hand coordination during bronchoscopy (Konge et al., 2011). Thus, both impaired depth 

perception and eye-hand coordination suggest that bronchoscopy is a procedure of higher 

cognitive demand in contrast to traditional open surgery, which indicate the need of adequate 

long-term training.  

1.2 Psychomotor Skill Acquisition in MIS 

According to the theory of Fitts and Posner (1967), three stages are completed during 

psychomotor learning: a cognitive, an associative and an autonomous stage. During the 

cognitive stage, the surgeon relies on past experience, reasoning and instructions to 

cognitively understand the requirements of performing the task. However, findings of studies 

of students at the University of Twente gave no indication of a cognitive stage (Huijser, 

Schmettow, & Groenier, 2015; Kaschub, Schmettow, & Groenier, 2016; Arendt, Schmettow, 
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& Groenier, 2017). This might be due to the fact that the used simulator tasks were rather 

simple to understand, which could indicate that the cognitive stage is only applicable to 

complex procedures. 

After gaining experience with the task, cognitive strategies will be improved during 

the associative stage. The surgeon works on reducing errors and making skill performance 

more efficient by optimizing and integrating strategies. According to Fitts and Posner, the 

ultimate goal of the learner is being able to perform the task at the autonomous stage: 

achieving advanced levels of performance by requiring little or no attention with few or no 

errors. Although bronchoscopists aim for as few errors as possible, it is crucial to keep 

optimizing strategies which means that total automatization of bronchoscopic procedures is 

not desirable. As a bronchoscopist gains more experience with bronchoscopy, less attention is 

required to perform these skills. Due to limited working memory’s capacity, the 

automatization of motor skills frees up cognitive resources for other processes, such as 

communication with nurses or diagnosis of anatomical abnormalities (Gallagher et al., 2009).  

Learning new skills should not only aim at achieving successful task performance, but 

an individual should also be able to apply these skills to a wide range of contexts. Successful 

learning of a new skill which enables both successful task performance and transferability to 

other situations, is called holistic skill acquisition. For instance, skills that a surgeon acquired 

by simulation-based training should be transferable to real-life surgery in the operating room. 

A study on motor sequence learning in acquiring complex motor skills by a student of the 

University of Twente emphasized the importance of variability in simulator tasks to improve 

the transferability of simulator-learned laparoscopic skills to real surgery (David, Schmettow, 

& Groenier, 2018). It was assumed that memorization of a specific motor sequence has a 

small role in the improvement of performing complex motor procedures, such as we have in 

bronchoscopy.  
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1.3 Predicting MIS-performance Using Learning Curves 

The current study investigates how individuals learn complex bronchoscopic skills by 

exploring individual learning curves for different simulator tasks. According to Wanzel, Ward 

and Reznick (2002) learning curves are suitable as prediction and assessment tools for 

surgical performance. Learning curves enable quantitative exploration of an individual’s 

learning process of skills over time, including previous experience, improvement and 

maximum performance. Rather than one-time performance measurements, learning curves 

focus on repeated measurements of performance over time. Previous research on learning 

curves in minimally invasive surgery mainly focused on visualizing (averaged) data using 

learning curves. In contrast, to our knowledge, statistical estimation of learning curves is 

actually rather new. An exponential learning curve model based on the law of practice was 

already applied to explore learning of laparoscopy in previous theses of students of the 

University of Twente (Huijser, Schmettow, & Groenier, 2015; Kaschub, Schmettow, & 

Groenier, 2016; Arendt, Schmettow, & Groenier, 2017) 

Improvements in performance due to practice and training proceed in a non-linear 

way. During early trials, improvement rates in performance outcomes, such as reduced error 

and increased speed, will be high but slows down with increased practice, which is known as 

a learning curve (Heathcote, Brown, & Mewhort, 2000). Once an individual reached its 

maximum performance, additional training won’t lead to performance increasement due to 

boundaries in performance caused by physical constraints, including neural integration time 

and motor response time. This is called a saturation effect: the more training is performed, the 

closer the level of performance gets to the individual performance limits and the less 

additional training adds (Schmettow, 2018b). These boundaries of performance measures 

result in non-linear relationships between predictors and outcome.  
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Figure 2. Exponential learning curve. Trials is depicted on the x-axis, 

whereas the y-axis shows time-on-task (Arendt et al., 2017). 

 Factors influencing the shape of a surgeon’s learning curve include the nature of the 

task, experience, manual dexterity and anatomical knowledge (White, Rodger, & Tang, 2016). 

For instance, it has been found that minimally invasive procedures show longer learning 

curves than open surgical procedures (White et al., 2016). According to Heathcote, Brown and 

Mewhort (2000) the exponential law of practice learning curve’s structure consists of tree 

parameters: amplitude (δ, amount of learning), rate (ρ, speed of learning) and asymptote (ω, 

maximum performance) (See Figure 2). Each of these parameters represents a person-specific 

learning parameter. Amplitude represents the individual’s amount of improvement, so how 

much someone learns (initial performance minus asymptote). The rate represents the speed of 

learning; the faster an individual reaches maximum performance, the higher his or her rate. 

Finally, the asymptote represents the participant’s expected maximum performance which will 

be reached after ongoing practice. Since we are interested in predicting whether someone will 

reach proficiency, the asymptote, or maximum performance, is our main parameter of interest.  
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Learning curves based on performance data could provide valuable information about 

surgical performance during simulator training. Simulator-based prediction of surgical 

performance and skill acquisition is a more structured and performance-based alternative to 

the current unstructured selection and assessment in bronchoscopy education. Besides 

providing training in a zero-risk environment, simulators enable new means to tailor surgery 

training to the needs of an individual. Individual learning curves based on performance 

metrics provided by simulators, such as procedural time and wall contact, could provide 

objective and structured assessments about a trainee’s proficiency level, track the training 

progress over time and provide continuous feedback and motivation for learning and 

evaluating the training curricula (Epstein & Hundert, 2002; Grantcharov, 2008). 

Unfortunately, simulator training is highly expensive which impede the global implementation 

of simulator-based training and assessment. In addition, since most evidence on minimally 

invasive surgery is derived from laparoscopic surgery, less is known about using simulators as 

assessment and selection instruments within the field of bronchoscopy (Ernst & Herth, 2013). 

This indicates the need for research on using simulators as selection and assessment methods. 

1.4 Individual Differences in Learning and Performing Bronchoscopy 

Surgical trainees differ in the learning rate of acquiring technical skills, while some 

students are unable to achieve competence despite training. Recent studies were able to 

discriminate subsets of students who differed in learning curves patterns for laparoscopic 

skills training (Alvand, Auplish, Khan, Gill, & Rees, 2011; Grantcharov & Funch-Jensen, 

2009; Louridas et al., 2017; Schijven & Jakimowicz, 2004). Studies differed in among others 

in tasks and performance parameters. High performers (6-22%), students who were 

hypothesized to have an innate psychomotor ability, acquired skills and reached proficiency 

after just a few trials. However, the majority of trainees (37-70%) were moderate performers 

who improved their performance by practice and eventually will reach proficiency. A striking 
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finding is that 8-24% of the individuals, low performers, experienced difficulties to learn 

technical skills and were unable to achieve an acceptable performance level despite training. 

More precisely, Grantcharov and Fuch-Jensen (2009) identified percentages of high, moderate 

and low performers of 5.4, 70.3 and 24.3, respectively, whereas Louridas et al. (2017) 

identified percentages of 21, 71 and 8, respectively.   

At present, evidence for individual differences in surgical skills, as well as for the 

cost-effectiveness, improved patient safety and efficacy of simulator-based training within 

other medical fields exceeds the amount of studies covering simulator-based training in 

bronchoscopy (Pastis et al., 2014). In general, most evidence on minimally invasive surgery 

skill acquisition is derived from laparoscopic surgery, whereas bronchoscopic skill acquisition 

is far less covered. Therefore, careful translations from laparoscopic research to bronchoscopy 

are necessary. Nevertheless, individual differences within technical bronchoscopic skills have 

been found for learning bronchoscopic skills as well. A study of Wahidi et al. (2010) on 

competency metrics in learning bronchoscopy among novices bronchoscopy fellows found 

that participants still showed significant differences in performance at the 50th bronchoscopy. 

In addition, Dalal and colleagues (2011) demonstrated that a wide variation exists in learning 

curves among novice resident performing fiberoptic upper airway endoscopy. The number of 

attempts necessary to achieve proficiency varied between 27 and 58. Moreover, 

corresponding to studies within the field of laparoscopy, Dalal and colleagues (2010) were 

able to discriminate between three learning curve patterns: Participants who reached 

proficiency after minimal amount of training, those who did not achieve proficiency but 

showed improvement after intensified training and those who neither improved performance 

nor reached proficiency despite training. Since a large variation exists in the learning curves 

of bronchoscopy residents, bronchoscopy education should aim at competence-based learning, 

which enables education tailored to individual needs. 
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Individual differences in MIS-performance could be due to differences in innate 

abilities. It has been found that cognitive abilities, such as perceptual ability and visuospatial 

ability, are related to the learning curve of surgeons for minimally invasive surgery 

performance (Groenier, Schraagen, Miedema, & Broeders, 2014; Luursema, Buzink, Verwey, 

& Jakimowicz, 2010; Maan, Maan, Darzi, & Aggarwal, 2012). However, individuals show 

differences in the visual-spatial ability they possess (Madan et al., 2005). In addition, 

Gallagher et al (2003) were able to identify different levels of laparoscopic basic psychomotor 

skills among experienced surgeons by means of basic laparoscopic tasks. Notably, among 

experienced surgeons (> 50 laparoscopic procedures) between 2 and 12% of surgeons showed 

deficits in basic psychomotor skills. Psychomotor ability affects the rate at which actions 

automatize: it has been found that when task complexity increases, surgical trainees with 

lower psychomotor ability experience more difficulties in automating their performance 

(Jabbour, Reihsen, Sweet, & Sidman, 2011). To compensate for lesser psychomotor ability, an 

individual needs more practice in order to reach necessary levels of competence in 

psychomotor skills. But the acquisition of psychomotor skills is unattainable if an individual 

does not possess psychomotor ability. According to Jabbour et al (2011), prospective 

bronchoscopic surgical trainees with low levels of psychomotor ability, who will need high 

amounts of training which extend regular training curricula, should be advised to pursue 

different careers during screening of prospective surgeons.  

1.5 History of Bronchoscopy Education 

During the last years, bronchoscopy education underwent major developments to 

ensure patient safety and education efficiency (Fielding et al., 2014). Formal training for 

surgeons was achieved through observing procedures before acquiring skills and competence 

by training on real patients, following the apprenticeship model. However, because of patient 

safety concerns training on patients is now undesirable (Fielding et al., 2014). Moreover, 
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since surgery training curricula strive for more efficient education, there is a rising interest in 

the prediction of surgical skill acquisition and performance. On the contrary, as previously 

discussed, surgeons differ in the amount of innate ability they possess and the acquisition of 

technical surgical skills. Early prediction of surgical skill performance and acquisition enables 

both training tailored to individual skill acquisition rates and baseline performance, as well as 

recommendations to pursue different career paths for those who will not meet the 

requirements despite practice (Ernst et al., 2015). However, as described earlier, international 

accepted and scientific proven benchmarks on how to select future pulmonologists do not 

exist yet (Ernst & Herth, 2013). Fortunately, during the last years, a growing interest exists 

towards factors predicting bronchoscopy performance and international objective benchmarks 

at which to aim (Konge et al., 2012; Wahidi et al., 2010). 

The virtual reality simulator is a ground-breaking invention within the field of medical 

education. As a response to the need for training and assessment within the medical field, VR-

training simulators provide a complete different approach by enabling bronchoscopic skills to 

be trained and assessed in a zero-risk and efficient environment (Herth, Shah, & 

Gompelmann, 2017). Bronchoscopy simulators provide a more patient centred and individual 

tailored alternative to the conventional training- and assessment methods due to several 

reasons. First off all, simulation-based training of technical bronchoscopy skills improves 

surgical skill proficiency (Ost et al., 2001). Secondly, simulators provide objective 

performance metrics, such as procedural time and scope-wall contact, which enables 

structured and equal performance level evaluation for every trainee. Moreover, performance 

measures also track the training progress of an individual over time and provide feedback and 

motivation for learning and evaluating the training programs (Epstein & Hundert, 2002). In 

contrast to e.g. cognitive aptitude tests, bronchoscopy simulators assess the integration of 

complex cognitive and psychomotor skills into a holistic view by incorporating a realistic 
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environment. Last but not least: simulator-based prediction of skill performance increases 

patient safety (Konge et al., 2012). Instead of procedural training and assessment on alive 

patients, residents can train in a zero-risk environment. Moreover, by identifying which 

individuals will become proficient surgeons and who will not, and by assessing residents 

based on proficiency, residents will be allowed to operate on patients only after possessing the 

necessary skills. Thus, bronchoscopy simulation education ensures patient safety, and learning 

effectiveness and efficiency. However, due to the scarcity of these highly expensive 

simulators, working hours restrictions and variable training durations due to individual 

differences simulator-based training and assessment is not widely implemented in the field of 

medical education yet (Sadideen, Hamaoui, Saadeddin, & Kneebone, 2012).  

1.5.1  Current state of research on the prediction of MIS-performance.  

The misconception of cognitive aptitude testing. Recently, there has been growing 

interest in the predictive value of innate aptitude for minimally invasive surgery performance, 

to enable controlled and systematic trainee selection. Innate abilities, including visual-spatial 

and perceptual abilities, of surgeons are related to the duration of learning to acquire 

competency in minimally invasive surgery (Gallagher, Cowie, Crothers, Jordan-Black, & 

Satava, 2003; Luursema et al., 2010; Schlickum, Hedman et al. 2011; Groenier, Schraagen et 

al. 2014). Based on the hypothesis that aptitude predicts surgical performance, cognitive 

aptitude tests are widely applied selection methods within the medical field. Since most 

studies covering the prediction of MIS performance focus on laparoscopy, we will discuss 

laparoscopic skill prediction first before we continue to bronchoscopy. A systematic review of 

studies exploring surgical performance predictors by Maan, Maan, Darzi and Aggarwal 

(2012) examined the predictive value of attributes which have impact on laparoscopic 

performance. According to this systematic review, psychomotor aptitude, as well as 

intermediate- and high-level visual-spatial perception are suitable criteria for assessing 
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prospective laparoscopy trainees for surgical training. More specifically, Stefanidis (2006) 

stated that psychomotor testing by means of innate ability tests has limited value in prediction 

of baseline laparoscopic performance, but these innate tests would be more suitable for 

predicting the skill acquisition speed. 

 However, research of Groenier, Schraagen, Miedema and Broeders (2014) concluded 

that cognitive aptitude tests did not predict laparoscopic performance as the relationship 

between MIS performance and cognitive aptitude is very complex. Groenier et al (2014) 

showed that independently examined individual cognitive abilities only mediated parts of MIS 

performance. Therefore, they suggested the importance of more general reasoning and 

cognitive abilities. Given the mixed results in the literature for cognitive aptitude, a study of 

Huijser, Schmettow and Groenier (2016) aimed at providing more insight in the relationship 

between cognitive aptitude and laparoscopic simulator task performance. However, no 

predictive relationship was found for visual spatial ability and maximum performance, neither 

for spatial memory and learning speed. In 2004, Veenman, Wilhelm & Beishuizen already 

stated that independently assessing single cognitive abilities does not predict the amount of 

training needed to reach proficiency or the learning rate on laparoscopic tasks. Thus, it can be 

concluded that the predictive value of cognitive aptitude tests is insufficient to allow for 

laparoscopy applicant solution.  

As far as we know, no previous research has investigated whether single cognitive 

tests predict bronchoscopy performance. In contrast, most studies covering this topic concern 

laparoscopic procedures. We concluded that splitting up cognitive aptitude into separate 

abilities by means of cognitive aptitude tests may not resemble the complexity of abilities 

when integrated in a task like a bronchoscopic procedure. Since bronchoscopy and 

laparoscopy are both complex, cognitive demanding procedures, which require psychomotor 

skills, such as eye-hand coordination for scope manipulation and visual-spatial ability to 
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compensate for a lack of depth perception (Hofstad et al., 2013; Simoff, 2018), we tend to 

expect that cognitive aptitude tests may not resemble the complexity of bronchoscopy. To 

perform bronchoscopic procedures successfully, it requires the coordination of several skills, 

so it is impossible to attribute bronchoscopic performance to one single skill. Therefore, our 

surmise is that cognitive aptitude tests may not be valid prediction tools for future 

bronchoscopy performance either, whereas taking a more holistic approach could be more 

adequate. To explore a holistic approach to resident selection, we will apply the resemblance 

spectrum. 

The resemblance spectrum. The resemblance spectrum provides a framework for 

exploring the resemblance of test suites to reliably predict future surgery performance. 

Previous studies used it to categorize psychometric tests in terms of resemblance to real 

laparoscopic procedures (Arendt et a., 2017; David et al., 2018). While innate ability tests 

resemble real-life laparoscopy surgery the least and real-life laparoscopic tasks the most, basic 

simulator tasks are in between both (see Figure 3). Thus, the spectrum varies from low-

fidelity to high-fidelity techniques. It is expected that these different techniques rely on 

different combinations of cognitive skills and different cognitive demand levels, instead of 

relying on a single construct. Although existing research on the resemblance spectrum focused 

on laparoscopy, we expect the resemblance spectrum framework also to be applicable to 

bronchoscopy, since both procedures are highly complex and rely on different cognitive skills.  
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Figure 3. The resemblance spectrum. 

The resemblance spectrum could be an explanation for the finding of Groenier et al. 

(2014) that cognitive aptitude tests do not predict laparoscopic performance, since cognitive 

aptitude tests are not as complex as real laparoscopic tasks. According to Arendt et al. (2017), 

it might be that cognitive aptitude tests do not cover the combination of manual dexterity and 

cognitive demand which is necessary for performing laparoscopic skills. However, it remains 

unclear how far psychometric tests should be on the right part of the spectrum to reliably 

predict laparoscopic performance. In order to evaluate the applicability of the resemblance 

spectrum, the concepts validity and internal consistency will be applied. 

Validity refers to whether multiple tests measure the same underlying construct. Suites 

that are placed next to each other on the continuum have a more valid link to each other than 

those which are placed further apart. High correlations between tests indicate that tests can 

replace each other. Thus, the current study aims at exploring which suites on the left part of 

the spectrum show high correlation with real procedures. In addition, internal consistency 

relies on the combination of multiple items to obtain a reliable prediction of performance 

(Groenier, Schmettow & Huijser, 2017). A high correlating set of items results in low 

measurement error, which is the underlying construct of psychometric tests as intelligence 

tests. Only high-correlating items, in this case simulator tasks, will be added to the test suite. 

The current study aims at identifying which tasks contribute to a valid and reliable assessment 
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suite. The concepts validity and internal consistency are necessary to evaluate the 

resemblance of a test suite.  

1.6 Low-fidelity Assessment 

Several studies by students of the University of Twente focused towards (subparts of) 

the prediction of minimally invasive surgery skill acquisition (Arendt, Schmettow, & 

Groenier, 2017; Mührmann, Schmettow, & Groenier, 2018; Warnke, Schmettow, & Groenier, 

2018; Küpper, Schmettow, & Groenier, 2018). A recent study of Arendt et al. (2017) focused 

on exploring what it takes to adequately predict laparoscopic performance. They estimated 

exponential learning curves on time-on-task to explore whether basic laparoscopic tasks and 

dexterity tasks enable valid and reliable prediction of MIS-performance to allow for 

systematic selection of prospective surgeons. In accordance with previously described studies, 

Arendt et al. (2017) found individual differences in maximum performance. However, they 

concluded that low-fidelity assessment, such as dexterity tasks, might be less feasible, 

whereas laparoscopy simulator tasks are more promising for surgeon selection due to higher 

resemblance to the real surgical tasks. Thus, in terms of the resemblance spectrum, dexterity 

tasks are not resembling enough for applicant selection. Moreover, studies of Mührmann et al. 

(2018) and Küpper et al. (2018) originally planned to test whether a low-fidelity boxtrainer 

can improve bronchoscopic simulator task performance. However, due to unforeseen 

circumstances Mührmann et al. (2018) shifted their focus on exploring the association 

between time on task and wall contact. They found that as participants made more mistakes, 

they needed more time for completing a simulator task. Moreover, the low-fi boxtrainer is not 

suitable as a substitute of a high-fidelity VR-simulator. Thus, as well as cognitive aptitude 

tests, low-fidelity tasks such as boxtrainers and dexterity tasks may not be adequate prediction 

tools for MIS-performance either. This means, in terms of the resemblance spectrum, both 

innate ability tests and dexterity tasks have proven to be not resembling enough to real 
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laparoscopic surgery to predict laparoscopic performance. On the contrary, Kramp (2016) 

suggested the implementation of simulator-based assessment. While innate ability tests only 

predict part of individual differences in MIS performance, simulator-based assessment 

provides a more holistic approach by measuring several innate abilities in a more realistic 

environment at once. Consequently, the aim of the current study is to take one step right on 

the resemblance spectrum and to explore the test suite of basic simulator tasks. 

1.7 High-fidelity Simulator Assessment 

Although research has illuminated the usefulness of simulator-based training in the 

medical field, only few studies have examined the use of simulators as prediction and 

assessment tools of bronchoscopic skill acquisition. The studies of Ost (2001) and Pastis 

(2014) demonstrated construct validity of two different bronchoscopy simulators in 

differentiating between levels of experience. Ost (2001) was able to distinguish between 

novices (0 bronchoscopies, n = 11), intermediates (25 to 500 bronchoscopies, n = 8) and 

expert bronchoscopists (> 500 bronchoscopies, n = 9) in terms of wall collisions, percentage 

of segments visualized and procedure time measured by a bronchoscopy simulator. In 

addition, Pastis et al. (2014) demonstrated construct validity of the Simbionix GI-BRONCH 

Mentor™ in discriminating skill level in scope manipulation and airway anatomy among 

novice (<10 bronchoscopies, n = 7), experienced (200 to 1000 bronchoscopies, n = 6) and 

expert pulmonologists (> 1000 bronchoscopies, n = 7).  

A closer look to the literature on simulators in bronchoscopy education, however, 

reveals a number of gaps and shortcomings. In the study of Pastis et al. (2014) it remains 

unknown how individuals learn bronchoscopic skills on a simulator over time, as participants 

only performed each task once. To estimate an individual’s performance with high certainty, 

repeated performance measures are necessary (Schmettow, 2018b). In contrast, the study of 

Ost (2001) did include twenty repetitions of each task, but learning curves were estimated 
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over the population mean. On the other hand, studies which do report a wide variation in 

bronchoscopic skill acquisition used either manual performance assessment tools (Wahidi et 

al., 2010) or an unknown performance algorithm including time and number of collisions 

(Dalal et al., 2011), instead of raw simulator metrics such as time or wall-contact. Since 

predicting bronchoscopic performance, or minimally invasive surgery performance in general, 

by means of individual simulator performance is still in its infancy, the current study will 

cover this approach from the ground up.  

1.8 Research Questions 

The aim of our work is to explore whether basic bronchoscopy simulator tasks can be 

used to allow for a valid prediction of bronchoscopic skills. Bronchoscopic skills are very 

complex and hard to learn: bronchoscopists show increased complication rates when 

performing bronchoscopy during the first trimester of training (Quellette, 2006). Moreover, 

individuals differ at learning bronchoscopic skills which might be due to differences in innate 

psychomotor ability (Dalal et al., 2011; Ernst et al., 2015). In order to ensure patient safety, 

adequate selection, training and assessment are crucial. To explore individual differences in 

bronchoscopic skill acquisition, the current study uses three basic simulator tasks which are 

expected to rely on psychomotor ability.  

As current research in simulator-based learning of bronchoscopic skills remains 

limited due to methodological shortcomings, this study addresses learning bronchoscopic 

skills on a simulator by starting from scratch. We will estimate individual exponential learning 

curves based on time-on-task, our main parameter of interest is maximum performance 

(asymptote). Firstly, we will check whether individuals show learning in all three simulator 

tasks by decreased time-on-task using estimated learning curves. Next, we will investigate 

whether individuals differ in acquiring basic bronchoscopic tasks by exploring individual 

differences in the asymptote parameter. Finally, in order to answer the question whether the 



PREDICITING BRONCHOSCOPIC SKILL ACQUISITION  28 

basic simulator tasks are predictors of individual performance of technical bronchoscopic 

skills, we will test whether the asymptote of the three tasks correlate with each other in the 

performance parameter time-on-task. The current study is exploratory in nature, no 

hypotheses were formulated.  

2. Method 

2.1 Participants 

The current study consists of a convenience sample of nineteen students of the 

University of Twente (68.4% female, Mage = 20.2 years, age range: 19-24 years) who 

participated voluntarily in turn for three course credits. Five participants were Dutch, thirteen 

were German and one was Bulgarian. Two participants reported to be left-handed. One 

participant wore eyeglasses. All participants were novices without prior endoscopy 

experience. Fifteen participants were recruited by use of the test subject pool SONA of the 

faculty of Behavioural, Management and Social sciences of the University of Twente. Four 

participants were recruited from the direct environment of the researchers. Participants were 

included if they had the minimum age of 18 years, speak and understand English and have 

normal or corrected to normal vision. Prior to participation, all participants gave written 

permission by signing an informed consent form (See Appendix C). Ethical approval was 

obtained from the Ethics Committee at the Faculty of Behavioural Sciences of the University 

of Twente, The Netherlands (request number: BCE18198). 

2.2 Design 

The current study has a repeated-measures within-subjects design. All participants 

carried out at least two tasks of a training curriculum on the virtual-reality bronchoscopy 

simulator GI-BRONCH Mentor™. Due to time constraints and technical problems with the 

simulator, only five participants completed all three tasks. All tasks were repeated fifteen 

times. First, participants completed the Basic Scope Manipulation task, after which they 
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completed the Guided Anatomical Navigation task. The routes in the Basic Scope 

Manipulation task were randomly assigned. Participants had to identify ten lightbulbs for the 

Guided Anatomical Navigation task. During an optional second session, participants 

performed the Step-by-Step Diagnostic Manoeuvres task, first taking a forceps sample and 

then taking a brush sample, but only after having completed the first and second task. For all 

three tasks, a workload questionnaire was conducted after each uneven trial, starting with the 

first. 1 

2.3 Materials 

2.3.1 GI-BRONCH Mentor™ . The three simulator tasks were administered with the 

GI-BRONCH Mentor™ virtual reality simulator. The GI-BRONCH Mentor™, developed by 

3D Systems, Cleveland, OH, USA (formerly Simbionix), is a flexible bronchoscopy training 

simulator used for the simulation of a wide range of basic bronchoscopy tasks and clinical 

bronchoscopy procedures(Simbionix, 2018b). The GI-BRONCH Mentor™ consists of a 

plastic mannequin with a mouth and nose entrance for bronchoscopy or upper endoscopy (see 

Figure 4). The simulator provides a realistic training environment including an authentic 

bronchoscope with tactile feedback (Pentax ECS-3804F) and bronchoscopy tools, such as a 

biopsy forceps, cytology brush and aspirating needle (See Figure 12 and 13 in Appendix A). 

The computer generates a dynamic endoscopic view, based on the bronchoscope’s movement 

captured by a sensor on the tip of the scope. The endoscopic view is displayed on a 24-inch 

LCD touch screen. The software running on the simulator is MentorLearn LMS (version 

1.4.0.68). 

                                                 
1 The workload questionnaire is beyond the scope of the current study. The current study is part of a 

broader study about individual differences in learning bronchoscopic skills among novices, measured by a virtual 

bronchoscopy simulator and self-reported workload. Three other students from the University of Twente worked 

on the study with each different research questions. With respect to the completeness of the method section, parts 

which are irrelevant for the current study are mentioned as well.   
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Figure 4. BronchMentor™ (Simbionix, 2018a)  

The GI-BRONCH Mentor™ incorporates a bronchoscopy training curriculum with 

scenarios with varying degrees of complexity of tasks and difficulty of anatomy, divided over 

four modules: Essential Bronchoscopy, Emergency Bronchoscopy, Essential EBUS and 

CHEST Standardized Curriculum. The current study only uses three basic skill tasks, Basic 

Scope Manipulation (Cyberscopy) and Guided Anatomic Navigation, from the Essential 

Bronchoscopy module. This module provides tasks to acquire and integrate bronchoscopic 

capabilities to accelerate the trainee’s learning curve. Objectives of the module are for 

instance to acquire basic bronchoscope manoeuvring capabilities, to improve hand-eye 

coordination, to enhance 3D anatomical perception and to objectively assess bronchoscopic 

skills level. 

The current study only focused on the Basic Scope Manipulation, Guided Anatomical 

Navigation and Step-By-Step Diagnostic Manoeuvres, because we expect these three tasks to 

be related to innate psychomotor ability. Since the current study focuses on the psychomotor 

ability component of bronchoscopic skills, it is not necessary to include participants with e.g. 

anatomical knowledge in the target group. According to Jabbour et al. (2011) complex 
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bronchoscopy motor skills should be trained by breaking down one task into component parts, 

both for training and assessment. Task deconstruction into easier subtasks improves learning 

because it decreases frustrations and mental demands, and provides a feeling of success when 

mastering easier to acquire subtasks (Gallagher, Smith, et al., 2003; Jabbour et al., 2011). In a 

previous study, the Basic Scope Manipulation task was able to discriminate between various 

degrees of skills among novice, experienced and expert bronchoscopists based on final score, 

total time, % at mid-lumen and total wall hits (Pastis et al., 2014).  

Basic Scope Manipulation (Cyberscopy). The first skill task was Basic Scope 

Manipulation. This task aimed at acquiring basic scope control skills such as developing 

hand-eye coordination. The user should follow a blue ball in a cyber environment while trying 

to stay in the centre of the lumen and avoiding wall contact (see Figure 5). The computer 

randomly selected a path. To account for differences in difficulty of the randomly chosen 

paths, paths were taken into account at the data analysis.  

 

Figure 5. Simulator task 1: Basic Scope Manipulation (Simbionix, 2018a).  



PREDICITING BRONCHOSCOPIC SKILL ACQUISITION  32 

Guided Anatomic Navigation. The second skill task was Guided Anatomic 

Navigation. The goal of this task was to learn and practice correct scope navigation within the 

anatomical environment in order to perform a complete airway inspection by passing all 

bifurcations of the trachea. By matching the bronchoscope’s view finder to a presented light 

bulb, directional guidance was provided to help the user find the right scope roll and tip 

flexion or extension to pass the carina (see Figure 6). Correct alignment of the scope’s view 

finder to the presented light bulb resulted in a change in colour and auditory feedback. Wall 

contact was indicated by visual and auditory feedback as well. 

It was expected that novice participants without prior anatomical knowledge could 

experience difficulties with reaching hard to reach lumen, such as right and left upper lobe, 

because they will overlook these carinas. Furthermore, during the task no indication is given 

about the amount of to-be-completed bifurcations; it is expected that novices do not know 

how many they have to complete. Thus, we decided that participants had to identify ten of 

twenty-eight available light bulbs per trial. 

 

Figure 6. Simulator task 2. Guided Anatomic Navigation (Simbionix, 2018a).  
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Step-by-Step Diagnostic Manoeuvres. The third skill task was Step-by-Step 

Diagnostic Manoeuvres. The goal of this task was to acquire skills needed to perform forceps, 

brush and transbronchial needle biopsy from a purple-marked area of interest. However, the 

current study only used the tools for brush and forceps biopsy, due to the complexity of the 

transbronchial needle biopsy. Step-by-step instructions were provided on the screen for each 

diagnostic manoeuvre (See Figure 7). After completion of each diagnostic manoeuvre, 

feedback was provided on the screen about whether tissue was obtained successfully and 

whether or not the tool was used correctly during sampling. Participants took a forceps biopsy 

and then a brush biopsy. 

 

Figure 7. Simulator task 3. Step-by-Step Diagnostic Manoeuvres (Simbionix, 2018a) 

2.4 Procedure 

The study took place in the advanced Simulation Room 2 at the Experimental Centre 

for Technical Medicine (ECTM) at the University of Twente. Participants were tested 

individually. 

2.4.1 Briefing. The experimenter instructed participants about the procedure of the 

research, after which informed consent was obtained (See Appendix C for the informed 
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consent form). Next, a demographic questionnaire was conducted with questions concerning 

gender, age, nationality, vision, gaming experience and bronchoscopic experience (See 

Appendix for the demographic questionnaire). In order to prevent fatigue, the experiment was 

divided over two sessions of 120 and 60 minutes, respectively. The first and second task were 

performed during the first session, whereas the third task was performed during the second 

session which was at least 24 hours after the first session, with a maximum of three weeks. 

Participants repeated all three tasks fifteen times. The simulator digitally stored the data in the 

MentorLearn cloud. After each uneven trial number of each task, starting with the first trial, 

participants filled out the six subscales of the NASA-TLX questionnaire on a laptop. After the 

fifteenth trial, participants ranked the perceived impact of these six subscales from high to low 

as part two of the NASA-TLX scale. All instructions which were given to the participants can 

be found in Appendix D.  

Simulator task 1: Basic Scope Manipulation. In the first part of the first session, 

participants performed the Basic Scope Manipulation task. First, participants were instructed 

about the simulator and scope handling by means of a short video instruction, after which they 

started the first task on the simulator. Instruction about the basic scope manipulation task was 

presented on the simulator’s screen. During this task, routes differed in difficulty.  

Simulator task 2: Guided Anatomic Navigation. After a five-minute break, 

participants started with the second part of the first session by performing the Guided 

Anatomic Navigation task. Like the first simulator task, instruction about the guided anatomic 

navigation was presented on the simulator’s screen. Participants had to identify ten of twenty-

eight available light bulbs.  

Simulator task 3: Step-by-Step Diagnostic Manoeuvres. During an optional second 

session, participants performed the third task. First, participants were instructed about the 

functioning and use of the diagnostic tools by means of a short video instruction, after which 
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they started the first task on the simulator. Participants were instructed to always take the left 

carina when arriving at a bifurcation. A step-by-step instruction about the procedure was 

presented on the simulator’s screen. Participants had to take a forceps tissue sample first, after 

which they performed a brush tissue sampling. During both procedures, tissue samples should 

be taken from a purple-marked area of interest in the simulated lung. First, the researcher 

handed the sample tool over to the participant when arriving at the location of interest. After 

inserting the tool into the working channel, the participant had to choose the correct sampling 

tool on the screen. Then, the researcher handed the tool to the non-dominant hand. The tissue 

sample was obtained by holding the scope at the sampling area and either pushing the lever up 

or down. When the feedback on the screen showed a successful tissue sample, the tool needed 

to be rejected until the tool-selection screen was shown again. Next, the sampling brush had to 

be chosen. A brush sample was obtained by holding the scope at the sampling area and 

moving the tool back and forth in the working channel. After completing the second tissue 

sampling correctly, the trial was finished.  

2.4.2 Debriefing. After completion of the second or third task, depending on whether 

the participant would participate in the second session or not, the participants were debriefed. 

A short explanation of the study and its aim was given, after which the participants had the 

opportunity to ask questions and finally were thanked for participation.  

2.5 Measures 

2.5.1 BronchMentor™. The BronchMentor™ provides a wide range of performance 

parameters. Performance parameters computed by the simulator include, but are not limited 

to, total performance time, final score, % time at mid-lumen, % time in contact with the 

wall, % time with clear visibility, list of bifurcations where manoeuvre was performed and a 

lobe or segment was entered satisfactorily (first, second or third and up attempt) and list of 
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skipped bifurcations. However, as the simulator is designed for educational rather than for 

research purposes, not all data were useful for our study. 

The main parameter of the current study was time on task. Van Dongen et al. 2007 

stated that the amount of time needed to complete a task is a suitable indicator of the 

participant’s skill. However, using the duration to complete a task as a performance measure 

has both benefits and drawbacks. On one hand, time as an performance parameter does not 

indicate whether a procedure was performed successfully and safe. However, as time is an 

important patient safety factor due to possible complications and the performance under 

moderate sedation (Jabbour et al., 2011), time-on-task (in minutes) was used as the primary 

performance parameter. According to a study of Pastis and colleagues (2014) on the construct 

validity of the Simbionix BronchMentor™ the parameters final score, total time, % at mid-

lumen and total wall hits of task 1 were able to discriminate correctly between experts, 

experienced and novice bronchoscopists. In order to include accuracy of performance, we also 

included all hits of the Basic Scope Manipulation task as a parameter. Unfortunately, the 

parameter Wall Hits was not available for the tasks Guided Anatomical Navigation and Step-

by-Step Diagnostic Manoeuvres. Due to the unknown formula of the final score, this 

parameter was not used in current study. For each task and trial, time-on-task was measured in 

seconds. This performance parameter was used to establish individual learning curves for all 

tasks and participants. 

For the first simulator task, the total procedural time provided by the simulator was 

used as time-on-task parameter. However, for the second and third task, times were 

administered by means of a stopwatch due to a brief delay in the time provided by the 

simulator in contrast to the real time-on-task. Besides the total time-on-task, for the second 

task the time until passing the vocal cords and for every identified lightbulb the duration in 

seconds was measured as well. Moreover, for the third task, we measured the duration in 
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seconds until passing the vocal cords, handling the instrument to the participant, completing 

the forceps biopsy and completing the brush biopsy.  

2.5.2 Workload Questionnaire. For assessing self-reported workload of the three 

tasks the multi-dimensional NASA Task Load Index (NASA-TLX) scale was used. As 

described earlier, the workload questionnaire is described for the sake of completion, as it was 

not covered by the current research questions. The NASA-TLX provides an overall workload 

score based on a weighted average of ratings on six subscales: mental demand (How mentally 

demanding was the task?), physical demand (How physically demanding was the task?), 

temporal demand (How stressed were you by the speed of the task?), own effort (How hard 

did you have to work to achieve your result?) and frustration (How frustrated were you about 

the task or parts of it?) (National Aeronautics and Space Administration (NASA), n.d.). After 

completing fifteen trials, the participant had to rank the weight of the factors, beginning with 

the factors with the highest impact. The overall workload score per trial per task for each 

participant was computed by multiplying each rating by the weight given to that factor by the 

participant (NASA, n.d.). Then, the sum of the weighted ratings for each task was divided by 

fifteen, which is the sum of the weights.  

2.6 Statistical Analysis 

A non-linear mixed-effects model with an exponential learning curve as a likelihood function 

was performed to create regression models for estimating learning curves for each participant 

(Heathcote et al., 2000). No major data cleanings were performed. 

2.6.1 Learning curve model. The analysis aims at estimating learning curves to 

explore skill acquisition among individuals. According to Heathcote, Brown and Mewhort 

(2000), the exponential learning curve model is an appropriate method to explore individual 

learning progress. This model uses the exponential law of practice to compute expected 

performance after practice trials. The function described by Heatcote et al. is (2000):  
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YptN = Asympt + Amplptexp(-RateptN) 

The exponential learning curve model includes the parameters maximum performance 

(asymptote), amplitude and rate, as described earlier in the introduction. A learning curve has 

been estimated for each participant and task based on time-on-task, including the parameters 

summarizing previous trials or the initial performance, the learning rate and the estimated 

maximum performance. The nonlinear multilevel mixed effect model was performed using 

the regression package ‘brms’ 2.3.0 (Bürkner, 2018) in the statistical computing environment 

R version 3.5.0 (R Core Team, 2018). The multilevel model was used to estimate individual 

learning curves per task and combine these separate learning curves, which allowed for an 

variation analysis on population-level. Non-linear functions were built using the package 

Asymptote (Schmettow, 2018a).  

2.6.2 Non-linear regression. We set up the LARY (Linked Amplitude Rate 

Asymptote) model which was used to compute the expected performance (ToT) after practice 

trials based on the exponential law of practice (Schmettow, 2018a). Random effects indicate 

the variance in a population which is caused by individual performance differences. In order 

to explore random effects, the parametrizations amplitude and asymptote were linearized 

through link functions on a log-scale and logit-scale, all with a range from  -∞ to +∞. 

Generalized linear mixed-effects models were estimated using the Bayr package (version 

0.8.8). The Generalized Linear Models (GLM) framework consists of three elements: A 

random probability distribution, a linear predictor and a link function. Random distributions  

take into account the relationship of variance and mean, and the expected pattern of 

randomness, while linear predictors contain information about the model’s independent 

variables (Schmettow, 2018b). The link function establishes the relationship between the 

mean of the distribution function, the expected value μ, and the linear predictor θ. As a 

consequence, the range of the non-linearly transformed mean ranges from -∞ to ∞ and thus 
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linearity is established between μ and θ. In doing so, link functions meet two essential 

requirements: Firstly, the order in magnitude in link functions must be maintained, a so-called 

monotonically increasing function. Moreover, to ensure linearity, link functions are required 

to map variables to the range [-∞; ∞]. 

The LARY model estimated random effects for the amplitude, rate and asymptote 

parametrizations for each task, based on the parameter time-on-task with credibility intervals 

of 95%. Weakly informative priors were used for this data model. To allow for the variance in 

the difficulty of randomly chosen routes during task one, the model included route as a 

variable for computing the parameters asymptote and amplitude.  

We used the Gamma distribution of random probability for modelling the error 

component within the LARY model instead of the Gaussian distribution, because time-on-task 

measures typically show left-skewed random patterns and by approaching maximal 

performance, variance of residuals decreases. Errors in time-on-task are typically negatively-

skewed distributed, which means that the mean is to left of the peak. Moreover, time-on-task 

measures are continuous and positive, but lower boundaries are rather at the lowest human 

possible time to complete a task than at zero. Additionally, exponential distribution rises only 

if all events have the same probability to occur. However, this will never happen in 

behavioural research. As a solution, we use the gamma distribution since, in contrast to 

exponential distributions, the peak of the gamma distribution can move along the x-axis rather 

than fixed at zero.  

Then, the parameters amplitude, rate and asymptote were computed for each task by 

means of the posterior probability distribution of the LARY model, both on individual- and 

population-level. Correlations between the asymptote parameter for each task on population-

level were calculated, again with credibility intervals of 95%. Finally, learning curves on 

expected maximum performance (ToT) were estimated for each participant per task. 
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3. Results 

First, exploratory plots of raw time-on-task data will be given to provide an overview 

of the collected data. Next, we established the LARY-model to estimate the performance 

parameters on population-level, followed by an analysis on participant-level. Then, we 

calculated correlations between the parameters of the three task. Finally, we criticised our 

used model to determine the robustness of the performed analyses.   

3.1 Compliance and Overview of Collected Data 

Nineteen participants performed task 1 and 2, whereas only five participants 

completed the third task due to technical difficulties with the simulator and time constraints. 

Moreover, since six participants took part in the study of Küpper, Schmettow and Groenier 

(2018) as well, the number of trials performed by these participants was constrained by the 

experiment’s duration. The average amount of performed trials per task are 13.6 for Basic 

Scope Manipulation (SD  = 2.63, range = 7-16), 12.2 for the Guided Anatomical Navigation 

(SD = 4.7, range = 4-15) and 14.0 for Step-By-Step Diagnostic Manoeuvres (SD = 1, range =  

5-15). For a full syntax and an overview of the dataset see Appendix E.  

3.1.1 Simulator tasks. Next, it is explored whether a non-linear model fitted to the 

time-on-task performance parameter of all three basic bronchoscopy simulator tasks. Prior to 

model fitting, we introduce some exploratory plots on raw time-on-task data. Figure 8 shows 

curves smoothed using locally weighted scatterplot smoothing (LOESS) fitted to raw time-on-

task of all participants for the three simulator tasks (See Figure 15 in Appendix B for raw 

time-on-task per participant). The x-axis shows the number of trials. On the y-axis, the time-

on-task is displayed in seconds. Colours indicate each of the three simulator tasks.  
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Figure 8. Raw time-on-task of participants for the three simulator tasks.  

Time-on-task (in seconds) on the y-axis, amount of trials on the x-axis. 

The performance on the first task, Basic Scope Manipulation, looks more homogenous 

than on the second and third task, Guided Anatomical Navigation and Step-By-Step 

Diagnostic Manoeuvres, respectively. Since time-on-task is a reaction-time performance 

parameter, a lower score on the y-axis indicates a better performance. As all participants show 

decreasing time-on-task values over time for all three tasks, this indicates that performance 

increases and thus participants become better at performing the three basic tasks. However, 

the decline in ToT differs in magnitude among both participants and tasks. During the first 

task, only one participant shows a steep initial decrease in ToT ending in approaching the 

asymptote, whereas all other participants show curves approaching the asymptote initially. For 

the second task, we see an initially steep fall, after which curves become less steep. Moreover, 

almost all participants show a general parallel decline of time-on-task on the second task.  

Although task 3 was only performed by five participants, results are relatively 

consistent. Curves fall steep during the first trials and increase again between the eight and 

tenth trial. Curves did not completely stabilize, so the asymptote was not reached during the 

third task. As all three tasks show curves which fall (steep) initially followed by approaching 
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the asymptote or increasing again, we can conclude that the ToT performance depicts non-

linear curves.  

Notable is the finding that of randomly chosen routes of task 1, route 1 shows the 

highest spread in ToT. Figure 9 shows the ToT distribution per route of task 1. The x-axis 

depicts the route, the y-axis the time-on-task in seconds. The median weights of most routes 

are estimated to be centred between 40 and 50 seconds, whereas routes 1 and 5 show median 

weights estimated around 55 and 65 seconds respectively. However, time-on-task-scores are 

highly variable for route 1 of the task Basic Scope Manipulation, since values lie between 20 

and 205 seconds. Moreover, it is estimated that 25% of the measurements of route showed a 

task completion time between 55 and 120 seconds. Thus, we conclude that it is recommended 

to add route as a control variable to our model in order to account for variation in task 

duration.  

 

Figure 9. Time-on-Task distribution (in seconds) per route of task 1. 

3.2 Bronchoscopic Skills Acquisition 

To explore whether individuals show learning in all three simulator tasks by decreased 

time-on-task, and whether it is possible to estimate individual learning curves, we estimated 

non-linear multilevel mixed-effects models for the parameters time-on-task and wall contact. 

The LARY model estimated random effects for amplitude, rate and asymptote 
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parametrizations for each task, including the Gamma distribution for modelling the error 

component. Since we found that routes of the Basic Scope Navigation task showed variation 

in time-on-task, we included route as a random level effect variable for computing the 

parameters asymptote and amplitude. First, a visual exploration from individual learning 

curves was performed, after which a population-level analyse was conducted to explore the 

learning of individuals in all three simulator tasks.  

3.2.1 Time-on-task.  

In order to explore whether individuals show learning in all three simulator tasks by 

decreased time-on-task, learning curves were estimated for each participant. Figure 10 shows 

the individual learning curves of all participants for all three tasks, whereas Figure 16 in 

Appendix D shows learning curves per individual. 

 

Figure 10. Estimated time-on-task learning curves of all participants for the three simulator tasks. Low 

values on the y-axis indicate superior performance. 

As can be seen in Figure 10, learning curves were estimated for all three tasks. 

However, differences are visible between the three tasks’ learning curves. For the first task, 

several participants show low improvement in performance and reach the relatively low 

asymptote between the eight and tenth trial during the first task. This means that some 

individuals are able to learn this task quite fast, which could indicate that the first task is 
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relatively easy to complete. In contrast to the first task, learning curves on the second task 

show lower initial performance, followed by a more gradual decrease resulting in reaching the 

asymptote between the tenth and twelfth trial. Notable is the coherence between asymptote 

and amplitude as curves run in parallel: low asymptote is associated with low amplitude and 

vice versa. Whereas only five participants performed Step-by-Step Diagnostic Manoeuvres, 

relatively consistent individual learning curves are visible. Notably is the low initial 

performance, followed by a sudden steep fall which results in reaching the asymptote between 

the sixth and eight trial.  

Next, to establish population-level effects for the three learning parameters over three 

tasks, the posterior distribution of our LARY-model was used. The population’s average, 

indicated by fixed effects, per task and parameter can be found in Table 1 on the next page. 

The population-level fixed effect of maximum performance for the task Basic Scope 

Manipulation (3.60, 95% CI [3.34; 3.82]) was lower than for maximum performance of 

Guided Anatomical Navigation and Step-by-Step Diagnostic Manoeuvres (4.47, 95% CI 

[4.24; 4.68] and 4.53, 95% CI [4.26; 4.79], respectively). All three simulator tasks show low 

levels of certainty, as credibility limits deviate more than 0.2. In addition, the amplitude for 

task 1 (4.19; 95% CI [3.69; 4.61]) is again lower than for task 2 (5.11; 95% CI [4.75; 5.45]) 

and 3 (6.06; 95% CI [4.86; 7.11]). Notably, the predicted values of amplitude and asymptote 

run more or less in parallel. Thus, based on the population’s average, initial performance 

might provide some information about the expected maximum performance.    
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Table 1 

Fixed effects and corresponding random factor variation of the three parameters per 

task 

 Fixed Effects Random Factor Variation 

Parameter Task Center Lower 

CI95 

Upper 

CI95 

Center Lower 

CI95 

Upper 

CI95 

Amplitude Basic Scope 

Manipulation 

4.19 3.69 4.61 0.77  0.44 1.33 

Amplitude Guided 

Anatomical 

Navigation  

5.11 4.75 5.45 0.44 0.14 0.78 

Amplitude Step-by-Step 

Diagnostic 

Manoeuvres 

6.06 4.86 7.11 0.60 0.04 2.91 

Rate Basic Scope 

Manipulation 

-1.24 -1.96 -0.68 0.63 0.27 1.25 

Rate Guided 

Anatomical 

Navigation  

-1.34 -1.98 -0.78 0.62 0.12 1.23 

Rate Step-by-Step 

Diagnostic 

Manoeuvres 

-0.04 -0.72 0.66 0.33 0.01 1.78 

Asymptote Basic Scope 

Manipulation 

3.60 3.34 3.82 0.31 0.19 0.51 

Asymptote Guided 

Anatomical 

Navigation  

4.47 4.24 4.68 0.19 0.04 0.51 

Asymptote Step-by-Step 

Diagnostic 

Manoeuvres 

4.53 4.26 4.79 0.21 0.04 0.81 

Note. Estimates with 95% credibility  

3.2.2 Wall contact. Next to estimating population-level effects for time-on-task, we 

also estimated fixed effects for the amount of wall contacts during task Basic Scope 

Manipulation. Population-level effects for amplitude (-0.18, 95% [-10.24; 7.28]), rate (0.80, 

95% [-8.38; 10.83]) and maximum performance (0.89, 95% [-9.37; 1.39]) are highly 

uncertain, since credibility limits deviate more than 0.2.  
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3.3 Individual Differences in Bronchoscopic Skill Acquisition 

In order to explore whether individuals show differences in learning bronchoscopic 

skills, we conducted the following two analysis. Since performance prediction of trainees is 

only required if participants differ at performance, this question will be answered next. We 

estimated the maximum performance parameters on participant-level using the posterior 

distribution of the LARY-model. As described in the data analysis section, maximum 

performance runs on the log scale. First, a visual exploration from individual learning curves 

was performed, after which a group-level analyse was conducted to explore the diversity of 

performance in the sample. 

3.3.1 Individual learning curves. To explore whether individuals differ in acquiring 

basic bronchoscopic tasks, learning curves were estimated for each participant. Figure 10 on 

page 41 shows the individual learning curves of all participants for all three tasks, whereas 

figure 16 in Appendix D shows learning curves per individual. For all three tasks, participants 

show variation in performance. The first task depicts the most homogenous curves, which 

indicates a lower inter-individual variability compared to the other two tasks. In contrast, the 

greatest individual differences are visible within the second task, Guided Anatomical 

Navigation. We see that most learning curves run in parallel but differences exist in initial- 

and maximum performance. Since learning curves for the second task run in parallel, 

including the first and last trials, it may be possible that initial performance could be a 

predictor of maximum performance.   

3.3.2 Random factor variation. 

Time-on-task. Next to visually exploring individual learning curves, we explored 

whether individual show differences in learning bronchoscopic skills by means of standard 

deviations from the population-level average. Table 1 shows the population average, 

represented by the fixed effects, per task and parameter on log-scale. The random factor 



PREDICITING BRONCHOSCOPIC SKILL ACQUISITION  47 

variation, which indicates the standard deviations of the population average, can be extracted 

from the posterior of the mixed-effects model. Thus, the we’ll explore the overall variation of 

performance in the population by analysing the random factor variation. The random factor 

variation of maximum performance was highest for the task Basic Scope Manipulation (0.31, 

95% CI [0.19; 0.51]), followed by Step-by-Step Diagnostic Manoeuvres (0.21, 95% CI [0.04; 

0.51]) and Guided Anatomical Navigation (0.19, 95% CI [0.04; 0.81]). This means that the 

greatest variation from the population-average of maximum performance is within the Basic 

Scope Manipulation task. The first task shows a moderate level of certainty, whereas 

uncertainty is high for the second and third task. Fixed effects random effects variation for the 

three parameters are presented in Table 1.  

3.4.2 Wall contacts. Examination of random effects of wall contacts for the first task 

suggested that variation in maximum performance exists across individuals, which indicates 

that the population mean of maximum performance of wall contacts is not applicable to 

everyone. Figure 11 displays the random effect size per parameter for each participant of the 

first task. Variation is highest for maximum performance (asymptote) as the deviations range 

from -0.5 to 0.75. Amplitude and rate are less spread since values are centred around zero. 

However, all values are highly uncertain, as can be seen in the appendix which includes a list 

of participant-level parameters for all parameters.  
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Figure 11. Participant-level random effects per parameter for  

wall-contact of task 2. 

3.4 Internal Consistency Reliability of Simulator Tasks 

In order to answer the question whether the basic simulator tasks are predictors of 

individual performance of technical bronchoscopic skills, we tested whether the three tasks 

correlate with each other. Firstly, correlations were estimated between the three tasks on 

population-level amplitude, rate and maximum performance for time-on-task. Table 2 presents 

the correlation between the three simulator tasks for the amplitude, rate and asymptote 

parameters. As maximum performance is our parameter of interest, we will mainly focus on 

this parameter. Next, correlations were estimated between population-level amplitude, rate 

and maximum performance for wall contacts during the Basic Scope Manipulation task.  

To assess the certainty of the estimated correlations, we calculated 95% credibility 

limits. So, there is a 95% probability that the true value of the population parameter lies 

within the calculated range. Credibility limits running from the centre to higher values are 

most valuable, because they state that the true value could be higher than the observed value 

(Arendt et al., 2017). High certainty is indicated by credibility limits deviating only by a 
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maximum of 0.2, whereas credibility limits which include values between -0.1 and 0 indicate 

high uncertainty. In the current study, positive correlations were expected between the 

performances on the simulator tasks.  

3.4.1 Time-on-task. A weak positive correlation was found between population-level 

maximum performance of Basic Scope Manipulation and Guided Anatomical Navigation (r = 

0.32). Moreover, no correlation was found between population-level maximum performance 

of Basic Scope Manipulation and Step-By-Step Diagnostic Manoeuvres (r = -0.04). Finally, a 

weak positive correlation was found between population-level maximum performance of 

Guided Anatomical Navigation and Step-By-Step Diagnostic Manoeuvres (r = 0.31). All 

correlations of population-level ARY-parameters per task are presented in Table 2 on the next 

page. All correlations between the simulator tasks are highly uncertain (0.32, 95% CI [-0.48; 

0.90], -0.04, 95% CI [-0.90; 0.85] and 0.31, 95% CI [-0.88; 0.90], respectively). Although 

amplitude was not our main parameter of interest, we report the correlation for amplitude 

between Basic Scope Manipulation and Guided Anatomical Navigation since it was the 

highest correlation we found. A moderate positive correlation on the population-level 

amplitude parameter between the tasks Basic Scope Manipulation and Guided Anatomical 

Navigation (0.58, 95% CI [-0.13; 0.94]). However, this outcome is highly uncertain too. Since 

the credibility limits for all four reported correlations include zero, it cannot be concluded 

with certainty if the simulator tasks are correlated at all. Although the reported correlations 

might suggest the possibility that simulator tasks are suitable as performance assessment 

tools, no further conclusions can be drawn. 
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Table 2 

Correlation between simulator tasks for the three parameters 

Parameter Correlation1 Correlation2 Estimate Lower CI95 Upper CI95 

Amplitude Basic Scope 

Manipulation 

Guided 

Anatomical 

Navigation  

 0.58 -0.13 0.94 

Amplitude Basic Scope 

Manipulation 

Step-by-Step 

Diagnostic 

Manoeuvres 

 0.25 -0.82 0.94 

Amplitude Guided 

Anatomical 

Navigation 

Step-by-Step 

Diagnostic 

Manoeuvres 

 0.24 -0.81 0.92 

Rate Basic Scope 

Manipulation 

Guided 

Anatomical 

Navigation 

 0.32 -0.48 0.90 

Rate Basic Scope 

Manipulation 

Step-by-Step 

Diagnostic 

Manoeuvres 

-0.04 -0.90 0.85 

Rate Guided 

Anatomical 

Navigation 

Step-by-Step 

Diagnostic 

Manoeuvres 

 0.31 -0.79 0.95 

Asymptote Basic Scope 

Manipulation 

Guided 

Anatomical 

Navigation 

-0.41 -0.92 0.47 

Asymptote Basic Scope 

Manipulation 

Step-by-Step 

Diagnostic 

Manoeuvres 

-0.11 -0.88 0.91 

Asymptote Guided 

Anatomical 

Navigation 

Step-by-Step 

Diagnostic 

Manoeuvres 

-0.02 0.88 0.90 

Note. 95% estimated credibility limits in square brackets. 

4. Discussion 

The aim of the current study was to explore whether basic bronchoscopic simulator 

tasks can be used to allow for a valid prediction of bronchoscopic simulator performance. 

Firstly, we were interested whether individuals show learning in all three simulator tasks by 

decreased time-on-task. Secondly, we explored whether individuals differ in acquiring basic 

bronchoscopic skills by exploring individual learning curves. Finally, it was analysed whether 
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the three simulator tasks correlate with each other. Individual learning curves were estimated 

to answer these research questions.  

4.1 Findings 

Bronchoscopy is a highly complex procedure which requires the integration of several 

skills to accurately control the bronchoscope without creating discomfort and trauma. To 

compensate for reduced depth perception and disturbed hand-eye coordination, surgeons are 

required to possess psychomotor ability. In the current study, the tasks Basic Scope 

Manipulation, Guided Anatomical Navigation and Step-by-Step Diagnostic Manoeuvres of 

the Simbionix GI-BRONCH Mentor™ were selected to explore how individuals learn 

complex psychomotor skills, such as bronchoscopic procedures. 

4.1.1 Bronchoscopic skill acquisition. Firstly, we checked whether individuals show 

learning in all three simulator tasks by decreased time-on-task. We found that all participants 

improved their performance over time for all three tasks, as the time to complete each trial 

decreased. In line with previous studies, improvement rates slowed down after a few trials. 

Thus, we were able to estimate individual learning curves based on time-on-task as our main 

performance parameter. 

4.1.2 Individual differences in bronchoscopic skill acquisition. Since candidate 

selection makes only sense if individuals differ at learning bronchoscopic skills, we explored 

whether individuals differ in acquiring basic bronchoscopic tasks. Based on our analysis and 

visually exploring individual learning curves, we were able to identify differences in 

performance between participants. Exploring variation of random effects revealed that 

maximum performance on tasks was scattered across individuals. This means that the 

population mean of performance is not representative for individuals, since many individuals 

deviate from the mean. We agree with previous studies reporting individual differences in 
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MIS-skill acquisition (Grantcharov & Funch-Jensen, 2009; Louridas et al., 2017). Thus, our 

findings emphasize the need for effective individualized training and assessment. 

Based on our analysis, the largest individual differences were found in the Basic Scope 

Manipulation task. This finding is in line with Pastis (2014), who stated that the time-

parameter for Basic Scope Manipulation differentiates between performance levels. 

Moreover, participants did not only differ at the maximum performance on all tasks, large 

individual differences were also found for amplitude and rate. These findings were highly 

uncertain. However, effect sizes showed that the first task was completed the fastest which 

may indicate that the Basic Scope Manipulation task is the easiest to complete.  

For the second task, Guided Anatomical Navigation, individual differences were 

clearly visual in learning curves between initial performance and maximum performance. As 

most curves were parallel, it might indicate that initial performance predicts maximum 

performance. However, due to high uncertainty of our results more research is required. 

4.1.3 Internal consistency of simulator tasks. To explore which of the three tasks 

contribute to a reliable and valid psychometric test, we tested whether the three tasks correlate 

with each other in the performance parameter time-on-task. Based on our analysis, we cannot 

state with certainty whether or not the used basic bronchoscopy simulator tasks are suitable 

predictors of basic bronchoscopic technical skill acquisition. Since internal consistency 

between the three basic simulator tasks was low and highly uncertain, it remains unclear if 

there is internal consistency at all between Basic Scope Manipulation, Guided Anatomical 

Navigation and Step-by-Step Diagnostic Manoeuvres. Notably, we found the highest internal 

consistency between Basic Scope Manipulation and Guided Anatomical Navigation for 

amplitude. Hence, certainty was low. Overall, our findings implicate weak reliability between 

three basic bronchoscopy simulator tasks, which questions the potential for using the 

simulator tasks as psychometric testing. We concluded that, at this moment, the three tests 
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together are not a valid objective assessment for selection of prospective surgeons. However, 

it is important to note that our study faces some limitations, which will be discussed later.  

A possible explanation of these findings could be that the three tasks require different 

skills. The highest internal consistency were found between Basic Scope Manipulation and 

Guided Anatomical Navigation for all three learning parameters. These two tasks show the 

highest similarity between tasks, since both depend mainly on being able to navigate the 

scope. However, the second task may be more cognitive complex, since participants keep 

searching for unidentified lightbulbs in an environment which might feel like a labyrinth due 

to a lack of anatomical knowledge. In contrast, the first and third task do not show any 

internal consistency at all. A possible explanation is that the Step-by-Step Diagnostic 

Manoeuvres task deviates the most from the first task, since it requires a relatively small part 

of repeatedly navigating to the same tissue whereas keeping the scope still and controlling 

tools represent the main part of the task. The increased cognitive complexity might be also an 

explanation for the weak correlations between the second and third task. However, it is 

important to note the high uncertainty of all correlations.  

We expected the third task to be the most advanced since participants had to integrate 

what they learned so far in terms of manoeuvring the scope while acquiring additional fine 

motor skills to use the diagnostic tool. However, participants reached maximum performance 

at a similar pace to the first task, which is against our expectations. Notably was the finding 

that for the Step-by-Step Diagnostic Manoeuvres, participants showed low initial 

performance, followed by a high increase in performance and resulting in constant 

performance quite early. Results for the third task are highly uncertain in particular due to an 

extreme small sample size, which again emphasizes the need to interpret current findings with 

great care. Nevertheless, a possible explanation for the fast increase in performance could be 

that the Step-by-Step Diagnostic Manoeuvres task placed higher demands on cognitive 
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resources rather than on psychomotor ability. It may be possible that in terms of psychomotor 

challenge the Step-by-Step diagnostic Manoeuvres was similar or even lower to prior tasks, 

while it was more difficult to understand the aim of the task. This task differed from the first 

and second task as participants were handed an additional tool to operate the forceps and 

brush. It was observed that participants asked questions more frequently about the third task 

compared to the first and second task, which may indicate that it was unclear to participants 

what was expected from them during the Step-by-Step Diagnostic Manoeuvres. What also 

may have contributed to this is that we developed an instructional video ourselves, while for 

the first and second task we used instruction videos developed by experts of CHEST. Thus, 

the low initial performance could be explained by unclarity how to perform the task. Since 

manoeuvring the scope was similar to prior tasks, once the aim and how-to of the task became 

clear, participants were able to apply frequently trained skills and complete the task faster.  

4.2 Limitations of the Current Study 

After having explored the results of the current study, we will address shortcomings 

within our study. Firstly, our concerns towards the lack of an external criterion to validate our 

findings will be discussed. Then, we will discuss our concerns towards using time-on-task as 

our main performance measure. After that, we will address limitations concerning the ability 

of the used tasks to discriminate between performance levels. 

4.2.1 Lack of external validation. The main limitation of the current study is the lack 

of an external criterion to validate. Ultimately, the goal of bronchoscopic assessment is to use 

simulator performance as a predictor of real bronchoscopic performance. However, although 

the current study explored the internal consistency of the three simulator tasks, the external 

validity of simulator performance for real bronchoscopic performance was not covered. If a 

surgical test task highly correlates with valid external criteria, a surgical test can be 

considered valid. Both measures should reflect the same underlying construct (Stommel & 
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Wills, 2004). However, in the current study, we do not know whether simulator performance 

predicts real bronchoscopic performance, since this was not measured.  

4.2.2 Time-on-task. A possible drawback of the current study is the use of time-on-

task as a primary performance parameter. Although wall contact was used as a parameter for 

the first task, this measurement was not included for the second and third task. Procedure 

duration is an important patient safety factor due to possible complications and performance 

under moderate sedation, but airway trauma can have life-threatening consequences as well. A 

recent study of Mührmann et al. (2018) emphasizes considering both time and wall contact for 

an adequate performance estimation, as participants made more mistakes the more time they 

needed for completing a task. Bronchoscopy trainee selection based only on time performance 

would wrongly exclude those who perform slow but without mistakes, whereas fast but 

imprecise trainees would be allowed to operate on real patients.  

4.2.3 Task discrimination. Another limitation of this study is that the Basic Scope 

Manipulation and Step-by-Step Diagnostic Manoeuvres tasks might be too easy to be able to 

discriminate between levels of psychomotor ability. For both tasks, all participants were able 

to reach maximum performance within low amounts of trials. A lack of difficulty leads to low 

task discrimination since it does not differentiate accurately between performance levels of 

participants. During the first task individuals had to follow a blue ball, which aimed for 

developing hand-eye coordination. During the Step-by-Step Diagnostic Manoeuvres task 

participants had to cover a relatively short distance by the bronchoscope before obtaining 

tissue samples. In addition, as we discussed before, we believe that the third task depends 

more on cognitive resources rather than on psychomotor ability. Thus, we question the ability 

of the first and third task to differentiate individuals who are talented enough for surgical 

trainees from those who are less suitable (yet).    
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4.3 Implications for Future Research 

First of all, we encourage medical education institutes to implement and further 

develop performance-based selection and -training since individuals differ at bronchoscopic 

skill acquisition. Individuals show differences in the maximum performance they’ll reach and 

the speed of bronchoscopic skill acquisition. Estimation of individual learning curves using 

repeated performance measures seems to be a promising method to predict individual’s 

capacity, which enables individual-tailored surgery training to increase educational efficiency.  

In the future, it will become crucial to explore the transferability of bronchoscopy 

simulator tasks to the real surgery room. It is not only relevant to test whether simulator-

acquired skills are transferable to real life MIS, but also to examine whether simulator 

performance predicts real surgical performance. Besides technical psychomotor skills, 

surgeons also need to master working under pressure, cooperating within a team and making 

major decisions. Thus, on the long run, the relationship between basic simulator tasks and 

whole bronchoscopic procedures could be explored. Novices with a medical background, such 

as surgical trainees without prior endoscopic experiences but with a solid theoretical 

background would be suitable participants. However, since the prediction of bronchoscopic 

performance is still in its infancy, a stepwise approach is recommended to tackle this complex 

issue gradually.  

We would recommend to replicate the current study with a greater sample size to 

ensure certainty and to implement some improvements. The first task can be used to get used 

to the simulator, for instance by performing a few exercise trials. Afterwards, the second 

should be performed similar to the current study. As findings of the third task are highly 

uncertain, the Step-by-Step Diagnostic Manoeuvres should be repeated as well. Here, 

instructions prior to the task should be improved. In general, we recommend to include both 
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time-on-task and wall contact as performance measures for all task to accurately establish 

individual capacity.  

An useful extension to the current study would be to include expert performance as cut 

off scores. Currently, we are able to identify individual differences in maximum performance 

by means of individual learning curves, but we do not know yet which participants can be 

seen as talented. However, as the ultimate goal is to identify talented future bronchoscopists, 

it is crucial to establish reliable performance-based assessment guidelines. If a simulator task 

is proven as valid, the next step is to include a performance boundary to distinguish between 

suitable and unsuitable candidates. A study of  Groenier, Schmettow and Huijser (2017) 

suggested that it might be possible to identify trainees who will struggle learning laparoscopy 

using simulator-based assessment. Individuals performing below or around an estimated cut-

off score were permitted to continue surgery training, whereas two participants performing 

above the cut-off score will most likely not achieve proficiency. By applying an evidence-

based cut-off score to the current study, it might also be possible to enable sufficient 

performing candidates to continue surgical training, whereas lower performing individuals 

would be rejected.  

4.4 Implications for Medical Education 

In terms of surgical performance assessment or -selection within medical education, 

current findings enable careful suggestions for implementation. Since selection of future 

surgeons has enormous consequences to student’s future as well as to patients safety, we 

strongly recommend caution with interpreting our highly uncertain findings and emphasize 

the need for more research towards using basic bronchoscopy tasks as selection tools before 

implementing these. Nevertheless, we will present some suggestions for MIS-education in the 

next section. 
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As described earlier, we encourage medical education institutes to implement and 

further develop performance-based selection and -training, since individuals differ at 

bronchoscopic skill acquisition. However, we cannot say with certainty whether or not the 

three simulator tasks are a valid psychometric tool for predicting future basic bronchoscopic 

performance. Since the Basic Scope Navigation task revealed not to be an optimal predictor of 

simulator performance, we tend towards using this task as an exercise to get used to 

performing tasks on the BRONCH Mentor™ by means of a few exercise trials. In contrast, 

the Guided Anatomical Navigation task seems to be the most promising task as predictor of 

future surgical performance. This task enables estimating individual learning curves and 

differentiates between performance levels. Since our data suggest that initial performance 

might predict maximum performance, this needs further exploration. Next, on the first glance 

the Step-by-Step Diagnostic Manoeuvres task shows consistent results, but lacks predictive 

ability. However, due to extremely high uncertainty of the second and third task, more 

research is required on exploring the validity of these tasks as predictor of future performance. 

In general, to gain an accurate prediction of individual’s surgical capacity, it is recommended 

to consider both time and accuracy as performance measures. 

4.5 Conclusion 

This study provides new insights about the applicability of individual learning curves 

to explore the acquisition of skills required for minimally invasive surgery. Based on our 

findings we can conclude that individuals differ at acquiring basic bronchoscopic skills. This, 

again, emphasizes the need for performance-based selection and assessment of future 

surgeons. Hence, due to high uncertainty, we were not able to conclude whether the three 

basic simulator tasks used in the current study are valid psychometric tools to predict basic 

bronchoscopic performance. As simulation-based prediction of bronchoscopic skills is still in 
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its infancy, further research is required to determine which basic tasks and skills underly real-

life bronchoscopic procedures. 
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Appendix A. Materials 

    

Figure 12. Handle to control the bronchoscope.  Figure 13. Sampling tool to insert in working  

       channel 

Appendix B. Instructions 

1.1 General Introduction 

 

This study consists of two simulator tasks. Before you start with a task, you will receive 

instructions on the specific task. First, you will be requested to fill out an informed consent 

form.  

→ Please provide the informed consent form to the participant and check whether the 

participant signs the form. 

After that, you are requested to fill out a demographics questionnaire with questions 

regarding your age, nationality and so on. Next, you will perform two tasks on the simulator. 

You have to repeat both tasks 20 times. Please do not hesitate to ask questions. Do you have 

any questions so far? 

→ Please provide the demographics questionnaire to the participant. Fill in 

participant’s participant number, task number and session number. 

 

 

 

→ Please write down the participant number on the form.  

 



PREDICITING BRONCHOSCOPIC SKILL ACQUISITION  67 

1.2 Explanation Tasks 

 

1.2.1 Instruction Video Task 1 and 2 (MentorLearn, n.d.) 

 

Figure 14 Instruction video bronchoscopy (Simbionix, n.d.) 

Today you will practice two basic bronchoscopic tasks. Bronchoscopy is a procedure to 

examine the airways for abnormalities, such as infections, tumors or obstruction, by inserting 

a bronchoscope through the nose or mouths. 

 First, you will view two instruction videos about the use of the simulator and how to 

handle the scope. Instructions about the specific task will be presented on the screen before 

you start with the task. 

→ Please show the first two instruction videos to the participant. 

After watching the video instruction, you will start with the first basic scope handling 

task. You complete the first task, then the second task. After each trial, you have to fill out a 

short questionnaire. Repeat each task 20 times. Please try to be as accurate and quick as 

possible. Do not get discouraged from low scores, professionals train many years on these 

difficult tasks. We will mainly observe possible progress, less focus is on your actual 

performance. 
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1.2.2 Instruction Scope 

 

1.2.3 Task 1. Basic Scope Manipulation (Simbionix, 2018c) 

 

1.2.4 Task 2. Guided Anatomical Navigation (Simbionix, 2018c) 

 

How to use the bronchoscope:  

• Control unit’s lever: to move the bronchoscope’s tip up and down 

• Turn arm AND move the handle to navigate the scope 

• Do NOT bend scope to a very small angle, this will cause damage to the fiberoptic 

fibres! 

• Keep insertion tube straight when inserting the scope into the mouth. 

Learn to navigate the bronchoscope in a cyber environment to further develop hand-eye 

coordination.  

Introduce the scope through the mouth until reaching a “Start” sign. 

Navigate the scope in a narrowing industrial lumen, following a guiding light.  

Keep insertion tube straight and use the control unit’s roll and lever to keep scope’s tip in 

mid-lumen and avoid wall contact. 

Your score will drop with each wall contact based on lumen’s width. The path is randomly 

selected by the software each time you start. 

Good Luck! 

This task was developed in conjunction with and endorsed by the American Association for 

Bronchology and Interventional Pulmonology – AABIP 

 

Learn and practice correct scope navigation within the anatomical environment. 

Perform a complete airway inspection using directional guidance: match the scope’s 

‘viewfinder’ to a light bulb figure, which indicates the optimal scope roll and flex/extent for 

each anatomical carina. 

Audio visual indications will show whether the maneuver was performed satisfactorily. 

This task was developed in conjunction with and endorsed by the American Association for 

Bronchology and Interventional Pulmonology – AABIP” 
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1.2.5 Instruction Video Task 3 

 

1.2.6 Task 3. Step-By-Step Diagnostic Maneuvers (Simbionix, 2018c) 

 

Acquire the skills needed to perform a forceps, brush and transbronchial needle biopsy.  

Follow the step by step instructions to obtain tissue sample from a defined region and get 

immediate feedback about the quality and the efficacy of the maneuver. 

This task was developed in conjunction with and endorsed by the American Association for 

Bronchology and Interventional Pulmonology – AABIP 
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Appendix C. Informed Consent 

Informed Consent 

 

Title Research: Learning bronchoscopy on a simulator 

Doctor(s) Directing Research: Dr. Martin Schmettow, Dr. Marleen Groenier 

Undergraduate students conducting experiments: Marlise Westerhof, Luise Warnke 

 

‘I hereby declare that I have been informed in a manner which is clear to me about the nature 

and method of the research. My questions have been answered to my satisfaction. I agree of my 

own free will to participate in this research. I reserve the right to withdraw this consent without 

the need to give any reason and I am aware that I may withdraw from the experiment at any 

time. If my research results are to be used in scientific publications or made public in any other 

manner, then they will be made completely anonymous. My personal data will not be disclosed 

to third parties without my express permission. If I request further information about the 

research, now or in the future, I may contact Marlise Westerhof 

(m.w.westerhof@student.utwente.nl).  

If you have any complaints about this research, please direct them to the secretary of the 

Ethics Committee of the Faculty of Behavioural Sciences at the University of Twente, Drs. L. 

Kamphuis-Blikman P.O. Box 217, 7500 AE Enschede (NL), telephone: +31 (0)53 489 3399; 

email: l.j.m.blikman@utwente.nl).  

 

Signed in duplicate: 

 

……………………………  …………………………… …………………………… 

Name subject          Signature  Date 

 

 

I have provided explanatory notes about the research. I declare myself willing to answer to the 

best of my ability any questions which may still arise about the research.’ 

 

……………………………  ……………………………   …………………………… 

Name researcher    Signature    Date 

mailto:m.w.westerhof@student.utwente.nl
mailto:l.j.m.blikman@utwente.nl
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Appendix D. Figures 

 

Figure 15. Raw time-on-task for the three simulator tasks per individual. Time-on-task 

(in seconds) on the y-axis, amount of trials on the x-axis (low values on the y-axis 

indicate superior performance).  
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Figure 16. Estimated individual learning curves for maximum  

performance on time-on-task. Low values on the y-axis 

indicate superior performance. 
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Appendix E. R-Syntax 

Data analysis 

Author: Martin Schmettow 

Date: 20 July, 2018 

knitr::opts_knit$set(warning = F, message = F) 

purp.data = F 
purp.mcmc = F 
 
library(tidyverse) 

## -- Attaching packages --------------------------------------------------
------- tidyverse 1.2.1 -- 

## v ggplot2 2.2.1     v purrr   0.2.4 
## v tibble  1.4.2     v dplyr   0.7.4 
## v tidyr   0.8.0     v stringr 1.3.1 
## v readr   1.1.1     v forcats 0.3.0 

## -- Conflicts -----------------------------------------------------------
- tidyverse_conflicts() -- 
## x dplyr::filter() masks stats::filter() 
## x dplyr::lag()    masks stats::lag() 

library(readxl) 
library(stringr) 
library(brms) 

## Loading required package: Rcpp 

## Loading 'brms' package (version 2.3.0). Useful instructions 
## can be found by typing help('brms'). A more detailed introduction 
## to the package is available through vignette('brms_overview'). 
## Run theme_set(theme_default()) to use the default bayesplot theme. 

options(mc.cores = 6) 
library(mascutils) 
library(asymptote) 

##  
## Attaching package: 'asymptote' 

## The following objects are masked from 'package:mascutils': 
##  
##     inv_logit, logit 

library(bayr) 

##  
## Attaching package: 'bayr' 
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## The following objects are masked from 'package:brms': 
##  
##     fixef, ranef 

## The following object is masked from 'package:stats': 
##  
##     predict 

load("MW18.Rda") 

Data preparation 

sim_task1 <-  
  c( 
  dir(path = "raw_data/MW/",  
      pattern = "^Participant\\d{2}_Participant\\d{2}_Essential Bronchoscop
y_columns.csv", 
      full.names = T), 
  dir(path = "raw_data/AK/",  
      pattern = "^Participant\\d{3}_Participant\\d{3}_Essential Bronchoscop
y_columns.csv", 
     full.names = T, 
     recursive = T) 
  ) %>% print() 

##  [1] "raw_data/MW/Participant01_Participant01_Essential Bronchoscopy_col
umns.csv"                   
##  [2] "raw_data/MW/Participant02_Participant02_Essential Bronchoscopy_col
umns.csv"                   
##  [3] "raw_data/MW/Participant03_Participant03_Essential Bronchoscopy_col
umns.csv"                   
##  [4] "raw_data/MW/Participant04_Participant04_Essential Bronchoscopy_col
umns.csv"                   
##  [5] "raw_data/MW/Participant05_Participant05_Essential Bronchoscopy_col
umns.csv"                   
##  [6] "raw_data/MW/Participant06_Participant06_Essential Bronchoscopy_col
umns.csv"                   
##  [7] "raw_data/MW/Participant07_Participant07_Essential Bronchoscopy_col
umns.csv"                   
##  [8] "raw_data/MW/Participant08_Participant08_Essential Bronchoscopy_col
umns.csv"                   
##  [9] "raw_data/MW/Participant09_Participant09_Essential Bronchoscopy_col
umns.csv"                   
## [10] "raw_data/MW/Participant10_Participant10_Essential Bronchoscopy_col
umns.csv"                   
## [11] "raw_data/MW/Participant11_Participant11_Essential Bronchoscopy_col
umns.csv"                   
## [12] "raw_data/MW/Participant12_Participant12_Essential Bronchoscopy_col
umns.csv"                   
## [13] "raw_data/MW/Participant13_Participant13_Essential Bronchoscopy_col
umns.csv"                   
## [14] "raw_data/AK//Participant103/Participant103_Participant103_Essentia
l Bronchoscopy_columns.csv" 
## [15] "raw_data/AK//Participant109/Participant109_Participant109_Essentia
l Bronchoscopy_columns.csv" 
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## [16] "raw_data/AK//Participant110/Participant110_Participant110_Essentia
l Bronchoscopy_columns.csv" 
## [17] "raw_data/AK//Participant112/Participant112_Participant112_Essentia
l Bronchoscopy_columns.csv" 
## [18] "raw_data/AK//Participant113/Participant113_Participant113_Essentia
l Bronchoscopy_columns.csv" 
## [19] "raw_data/AK//Participant117/Participant117_Participant117_Essentia
l Bronchoscopy_columns.csv" 

sim_task23 <-  
  c( 
  dir(path = "raw_data/MW/",  
      pattern = "^Participant\\d{2}_Participant\\d{2}_Essential Bronchoscop
y_rows.csv", 
      full.names = T), 
  dir(path = "raw_data/AK/",  
      pattern = "^Participant\\d{3}_Participant\\d{3}_Essential Bronchoscop
y_rows.csv", 
     full.names = T, 
     recursive = T) 
  ) %>% print() 

##  [1] "raw_data/MW/Participant01_Participant01_Essential Bronchoscopy_row
s.csv"                   
##  [2] "raw_data/MW/Participant02_Participant02_Essential Bronchoscopy_row
s.csv"                   
##  [3] "raw_data/MW/Participant03_Participant03_Essential Bronchoscopy_row
s.csv"                   
##  [4] "raw_data/MW/Participant04_Participant04_Essential Bronchoscopy_row
s.csv"                   
##  [5] "raw_data/MW/Participant05_Participant05_Essential Bronchoscopy_row
s.csv"                   
##  [6] "raw_data/MW/Participant06_Participant06_Essential Bronchoscopy_row
s.csv"                   
##  [7] "raw_data/MW/Participant07_Participant07_Essential Bronchoscopy_row
s.csv"                   
##  [8] "raw_data/MW/Participant08_Participant08_Essential Bronchoscopy_row
s.csv"                   
##  [9] "raw_data/MW/Participant09_Participant09_Essential Bronchoscopy_row
s.csv"                   
## [10] "raw_data/MW/Participant10_Participant10_Essential Bronchoscopy_row
s.csv"                   
## [11] "raw_data/MW/Participant11_Participant11_Essential Bronchoscopy_row
s.csv"                   
## [12] "raw_data/MW/Participant12_Participant12_Essential Bronchoscopy_row
s.csv"                   
## [13] "raw_data/MW/Participant13_Participant13_Essential Bronchoscopy_row
s.csv"                   
## [14] "raw_data/AK//Participant103/Participant103_Participant103_Essentia
l Bronchoscopy_rows.csv" 
## [15] "raw_data/AK//Participant109/Participant109_Participant109_Essentia
l Bronchoscopy_rows.csv" 
## [16] "raw_data/AK//Participant110/Participant110_Participant110_Essentia
l Bronchoscopy_rows.csv" 
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## [17] "raw_data/AK//Participant112/Participant112_Participant112_Essentia
l Bronchoscopy_rows.csv" 
## [18] "raw_data/AK//Participant113/Participant113_Participant113_Essentia
l Bronchoscopy_rows.csv" 
## [19] "raw_data/AK//Participant117/Participant117_Participant117_Essentia
l Bronchoscopy_rows.csv" 

time_task23 <-  
  c( 
    dir(path = "raw_data/MW/",  
        pattern = "Participant\\d{2}_task[23]_time.xlsx",  
        full.names = T), 
    dir(path = "raw_data/AK/", 
        pattern = "Participant\\d{3}_task2_time.xls", 
        full.names = T, 
        recursive = T) 
  ) %>% print() 

##  [1] "raw_data/MW/Participant01_task2_time.xlsx"                 
##  [2] "raw_data/MW/Participant02_task2_time.xlsx"                 
##  [3] "raw_data/MW/Participant03_task2_time.xlsx"                 
##  [4] "raw_data/MW/Participant03_task3_time.xlsx"                 
##  [5] "raw_data/MW/Participant04_task2_time.xlsx"                 
##  [6] "raw_data/MW/Participant05_task2_time.xlsx"                 
##  [7] "raw_data/MW/Participant05_task3_time.xlsx"                 
##  [8] "raw_data/MW/Participant06_task2_time.xlsx"                 
##  [9] "raw_data/MW/Participant06_task3_time.xlsx"                 
## [10] "raw_data/MW/Participant07_task2_time.xlsx"                 
## [11] "raw_data/MW/Participant08_task2_time.xlsx"                 
## [12] "raw_data/MW/Participant08_task3_time.xlsx"                 
## [13] "raw_data/MW/Participant09_task2_time.xlsx"                 
## [14] "raw_data/MW/Participant10_task2_time.xlsx"                 
## [15] "raw_data/MW/Participant10_task3_time.xlsx"                 
## [16] "raw_data/MW/Participant11_task2_time.xlsx"                 
## [17] "raw_data/MW/Participant12_task2_time.xlsx"                 
## [18] "raw_data/MW/Participant13_task2_time.xlsx"                 
## [19] "raw_data/AK//Participant103/Participant103_task2_time.xls" 
## [20] "raw_data/AK//Participant109/Participant109_task2_time.xls" 
## [21] "raw_data/AK//Participant110/Participant110_task2_time.xls" 
## [22] "raw_data/AK//Participant112/Participant112_task2_time.xls" 
## [23] "raw_data/AK//Participant113/Participant113_task2_time.xls" 
## [24] "raw_data/AK//Participant117/Participant117_task2_time.xls" 

read_sim_task1 <- function(x) { 
  out <- read_csv(x)  
  colnames(out) <- str_replace_all(colnames(out), "\\s", "") 
#  print(colnames(out)) 
  out %>% 
    dplyr::mutate( 
      Part = str_extract(LastName, "\\d+"), 
      Task = as.integer(1), 
      Device = "BronchoSim", 
      File = as.character(x), 
      trial = as.integer(Repetition - min(Repetition) +1), 
      Researcher = if_else(str_detect(x, "AK"), "AK", "MW"), 
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      Route = if_else(Researcher == "AK", NA_character_, as.character(Text
5)), 
      ToT = if_else(Researcher == "AK", as.character(Text1), as.character(T
ext4)), 
      ToT = as.numeric(seconds(hms(ToT))), 
      wall_contacts = if_else(Researcher == "AK", NA_integer_, as.integer(N
um3)), 
      perc_wall = as.numeric(if_else(Researcher == "AK", NA_real_, as.numer
ic(Num2))) 
      )  %>% 
  select(Part, Task, trial, Route, ToT, wall_contacts, perc_wall, Device) #
# TEMPLATE 
} 
read_sim_task1(sim_task1[1]) 
read_sim_task1(sim_task1[18]) 
 
 
 
# read_sim_task23 <- function(x){ 
#   out <- read_csv(x)  
#   colnames(out) <- str_replace_all(colnames(out), "\\s", "") 
#   out %>%  
#     mutate( 
#     Part = str_extract(LastName, "\\d+"), 
#       Task = as.integer(1), 
#       Device = "BronchoSim", 
#       File = as.character(x), 
#       trial = as.integer(Repetition - min(Repetition) +1), 
#       Researcher = if_else(str_detect(x, "AK"), "AK", "MW")) %>%  
#     select(Part, Task, trial, Device) 
#     #select(Part, Task, trial, Route, ToT, wall_contacts, perc_wall, Devi
ce) 
# } 
# str(read_sim_task23(sim_task23[1])) 
# str(read_sim_task23(sim_task23[18])) 
#  
 
 
#  
#  
#  
#  
# Sim_task23 <- 
#   set_names(sim_task23) %>%  
#   map_df(read_sim_task23) 
 
 
## HERE 
 
 
read_time_task23 <- function(x) { 
  out <- read_excel(x) 
  print(colnames(out)) 
  if(! ("Time_Task3_Total" %in% colnames(out))) out$Time_Task3_Total <- NA 
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  if(! ("TimeOnTask" %in% colnames(out))) out$TimeOnTask <- NA 
  out %>%  
    mutate(Part = str_extract(as.character(Participant), "\\d+"), 
           Device = "BronchoSim", 
           trial = as.integer(Repetition), 
           wall_contacts = NA_integer_, 
           perc_wall =  NA_real_, 
           Route = NA_character_, 
           ToT = as.numeric(if_else(Task == 2, as.character(TimeOnTask), a
s.character(Time_Task3_Total)))) %>% 
    select(Part, Task, trial, Route, ToT, wall_contacts, perc_wall, Device) 
} 
read_time_task23(time_task23[1]) 
read_time_task23(time_task23[4]) 
read_time_task23(time_task23[16]) 
 
 
Sim_task1 <- 
  set_names(sim_task1) %>% 
  map_df(read_sim_task1) %>%  
  print() 
 
Time_task23 <- 
  set_names(time_task23) %>%  
  map_df(read_time_task23) %>%  
  print() 
   
MW18 <-  
  bind_rows(Sim_task1, Time_task23) %>%  
  mutate(Task = as.factor(Task)) %>% 
  filter(!is.na(ToT)) %>%  
  mascutils::as_tbl_obs() %>%  
  print() 
 
summary(MW18) 
 
save(MW18, file = "MW18.Rda") 

Wall contact data 

read_wall_1 <-  
  function(x){ 
    read_excel(x) %>%  
      select(Part = `Last Name`, `Case Number`, Repetition, ) 
  } 

Data exploration 

load("MW18.Rda") 

Descriptives 

Number of observations 
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MW18 %>%  
  group_by(Part, Task) %>%  
  summarize(N_trials = n()) %>%  
  ungroup() %>%  
  group_by(Task) %>%  
  summarize(N_Part = n(),  
            min(N_trials), median(N_trials), max(N_trials)) %>%  
  knitr::kable() 

Task N_Part min(N_trials) median(N_trials) max(N_trials) 

1 19 7 15 16 

2 19 4 15 20 

3 5 13 14 15 

Plots 

load("MW18.Rda") 

MW18 

Data set: showing 8 of 560 observations 

Obs Part Task trial Route ToT wall_contacts perc_wall Device 

274 01 2 15 NA 121.80 NA NA BronchoSim 

94 07 1 12 6 62.00 2 1 BronchoSim 

96 07 1 14 6 44.00 2 8 BronchoSim 

406 07 2 14 NA 65.73 NA NA BronchoSim 

411 08 2 4 NA 120.00 NA NA BronchoSim 

138 10 1 11 6 52.00 0 0 BronchoSim 

204 109 1 4 NA 72.00 NA NA BronchoSim 

553 117 2 1 NA 117.00 NA NA BronchoSim 

MW18 %>%  
  ggplot(aes(x = trial, color = Task, y = ToT)) + 
  facet_wrap(~Part, ncol = 7) + 
  geom_point() + 
  geom_smooth(se = F, span = 1) 

## `geom_smooth()` using method = 'loess' 
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MW18 %>%  
  ggplot(aes(x = trial, color = Task, y = ToT)) + 
  facet_wrap(~Task, ncol = 3) + 
  geom_smooth(se = F, aes(group = Part), span = 1.5) 

## `geom_smooth()` using method = 'loess' 

 

MW18 %>%  
  filter(!is.na(Route)) %>%  
  ggplot(aes(x = Route, y = ToT)) + 
  geom_boxplot() 
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Time on task 

Setting up the LARY model: 

lazyeval::f_lhs(LARY) <- quote(ToT) 
LARY 

## ToT ~ exp(ampl) * exp(-exp(rate) * trial) + exp(asym) 
## <environment: namespace:asymptote> 

# Random effects and correlations 
F_ef_lary_1 <- list( 
  formula(ampl ~ 0 + Task + (0 + Task|corr1|Part)), 
  formula(rate ~ 0 + Task + (0 + Task|corr2|Part)), 
  formula(asym ~ 0 + Task + (0 + Task|corr3|Part))) 
 
# INcluding difficulty of Route (asym and ampl only) 
F_ef_lary_2 <- list( 
  formula(ampl ~ 0 + Task + Route + (0 + Task|corr1|Part)), 
  formula(rate ~ 0 + Task + (0 + Task|corr1|Part)), 
  formula(asym ~ 0 + Task + Route + (0 + Task|corr1|Part))) 
 
# log scale weak priors 
F_pr_lary_1 <- c(set_prior("normal(1, 5)", nlpar = "ampl"), 
               set_prior("normal(-1, 5)", nlpar = "rate"), 
               set_prior("normal(0.5, 5)", nlpar = "asym")) 
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M_2 LARY gamma 

M_2 <-  
  brm(bf(LARY,  
         flist = F_ef_lary_1, nl = TRUE), 
      prior = F_pr_lary_1, 
      family = Gamma(link = identity), 
      data = MW18, 
      iter = 0) 
 
M_2 <-  
  brm(fit = M_2, 
      data = MW18, 
      iter = 3000, warmup = 2000, chains = 5, 
      init = "0", 
      control = list(adapt_delta = 0.999, 
                     max_treedepth = 12)) 
 
save(M_2, file = "M_2.Rda") 

# load("M_1.Rda") 
load("M_2.Rda") 
M_2 

## Warning: There were 1 divergent transitions after warmup. Increasing ada
pt_delta above 0.999 may help. 
## See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-wa
rmup 

##  Family: gamma  
##   Links: mu = identity; shape = identity  
## Formula: ToT ~ exp(ampl) * exp(-exp(rate) * trial) + exp(asym)  
##          ampl ~ 0 + Task + (0 + Task | corr1 | Part) 
##          rate ~ 0 + Task + (0 + Task | corr2 | Part) 
##          asym ~ 0 + Task + (0 + Task | corr3 | Part) 
##    Data: MW18 (Number of observations: 560)  
## Samples: 5 chains, each with iter = 3000; warmup = 2000; thin = 1; 
##          total post-warmup samples = 5000 
##  
## Group-Level Effects:  
## ~Part (Number of levels: 19)  
##                            Estimate Est.Error l-95% CI u-95% CI Eff.Samp
le 
## sd(ampl_Task1)                 0.81      0.23     0.44     1.33       20
84 
## sd(ampl_Task2)                 0.45      0.16     0.14     0.78       14
18 
## sd(ampl_Task3)                 0.81      0.92     0.04     2.91       22
64 
## sd(rate_Task1)                 0.66      0.25     0.27     1.25       15
44 
## sd(rate_Task2)                 0.63      0.27     0.12     1.23       11
45 
## sd(rate_Task3)                 0.47      0.52     0.01     1.78       28
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16 
## sd(asym_Task1)                 0.32      0.08     0.19     0.51       19
62 
## sd(asym_Task2)                 0.21      0.12     0.04     0.51        6
39 
## sd(asym_Task3)                 0.26      0.22     0.04     0.81       20
33 
## cor(ampl_Task1,ampl_Task2)     0.53      0.28    -0.13     0.94       28
39 
## cor(ampl_Task1,ampl_Task3)     0.19      0.51    -0.82     0.94       50
00 
## cor(ampl_Task2,ampl_Task3)     0.18      0.49    -0.81     0.92       50
00 
## cor(rate_Task1,rate_Task2)    -0.36      0.37    -0.92     0.47       13
24 
## cor(rate_Task1,rate_Task3)     0.07      0.52    -0.88     0.91       50
00 
## cor(rate_Task2,rate_Task3)     0.01      0.51    -0.88     0.90       50
00 
## cor(asym_Task1,asym_Task2)     0.29      0.37    -0.48     0.90       16
24 
## cor(asym_Task1,asym_Task3)    -0.04      0.51    -0.90     0.85       35
83 
## cor(asym_Task2,asym_Task3)     0.24      0.49    -0.79     0.95       29
00 
##                            Rhat 
## sd(ampl_Task1)             1.00 
## sd(ampl_Task2)             1.00 
## sd(ampl_Task3)             1.00 
## sd(rate_Task1)             1.00 
## sd(rate_Task2)             1.00 
## sd(rate_Task3)             1.00 
## sd(asym_Task1)             1.00 
## sd(asym_Task2)             1.00 
## sd(asym_Task3)             1.00 
## cor(ampl_Task1,ampl_Task2) 1.00 
## cor(ampl_Task1,ampl_Task3) 1.00 
## cor(ampl_Task2,ampl_Task3) 1.00 
## cor(rate_Task1,rate_Task2) 1.00 
## cor(rate_Task1,rate_Task3) 1.00 
## cor(rate_Task2,rate_Task3) 1.00 
## cor(asym_Task1,asym_Task2) 1.00 
## cor(asym_Task1,asym_Task3) 1.00 
## cor(asym_Task2,asym_Task3) 1.00 
##  
## Population-Level Effects:  
##            Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat 
## ampl_Task1     4.19      0.23     3.69     4.61       2386 1.00 
## ampl_Task2     5.11      0.18     4.75     5.45       2564 1.00 
## ampl_Task3     6.04      0.59     4.86     7.11       2435 1.00 
## rate_Task1    -1.26      0.33    -1.96    -0.68       1407 1.00 
## rate_Task2    -1.35      0.30    -1.98    -0.78       2525 1.00 
## rate_Task3    -0.04      0.36    -0.72     0.66       3862 1.00 
## asym_Task1     3.59      0.12     3.34     3.82       1264 1.00 
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## asym_Task2     4.47      0.11     4.24     4.68       1554 1.00 
## asym_Task3     4.53      0.13     4.26     4.79       2348 1.00 
##  
## Family Specific Parameters:  
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat 
## shape    12.21      0.78    10.76    13.80       5000 1.00 
##  
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample  
## is a crude measure of effective sample size, and Rhat is the potential  
## scale reduction factor on split chains (at convergence, Rhat = 1). 

PP_2 <- post_pred(M_2) 
P_2 <- posterior(M_2) 

ARY parameters by task: 

fixef(P_2) 

Estimates with 95% credibility limits 

nonlin fixef center lower upper 

ampl Task1 4.1943808 3.6947096 4.6142470 

ampl Task2 5.1095258 4.7509152 5.4521104 

ampl Task3 6.0573316 4.8625955 7.1077443 

rate Task1 -1.2435748 -1.9646393 -0.6779146 

rate Task2 -1.3437421 -1.9828356 -0.7752111 

rate Task3 -0.0424568 -0.7158604 0.6607809 

asym Task1 3.5984714 3.3381816 3.8178155 

asym Task2 4.4719664 4.2363012 4.6787783 

asym Task3 4.5278499 4.2584186 4.7850494 

Individual differences as standard deviations by task and ARY parameters: 

grpef(P_2) 

Estimates with 95% credibility limits 

nonlin fixef center lower upper 

ampl Task1 0.7746708 0.4436903 1.3254961 

ampl Task2 0.4352048 0.1447338 0.7776277 

ampl Task3 0.5950534 0.0362137 2.9078687 

rate Task1 0.6322952 0.2726400 1.2487957 

rate Task2 0.6184308 0.1166074 1.2326481 

rate Task3 0.3303223 0.0142953 1.7823352 

asym Task1 0.3149380 0.1852992 0.5107994 

asym Task2 0.1864147 0.0377349 0.5139578 

asym Task3 0.2072504 0.0438200 0.8087418 

Correlations between tasks 
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P_2 %>%  
  filter(type == "cor") %>%  
  group_by(parameter) %>%  
  summarize(center = median(value), 
            lower = quantile(value, .025), 
            upper = quantile(value, .975)) %>%  
  separate(parameter, into = c("type", "level", "nonlin", "Cor_1", "X", "Co
r_2")) %>%  
  select(nonlin, Cor_1, Cor_2, center, lower, upper) %>%  
  knitr::kable() 

nonlin Cor_1 Cor_2 center lower upper 

ampl Task1 Task2 0.5811647 -0.1277042 0.9379199 

ampl Task1 Task3 0.2485072 -0.8191381 0.9445333 

ampl Task2 Task3 0.2417580 -0.8086615 0.9227551 

asym Task1 Task2 0.3178753 -0.4804567 0.9013017 

asym Task1 Task3 -0.0408820 -0.8978128 0.8547597 

asym Task2 Task3 0.3051214 -0.7888903 0.9477258 

rate Task1 Task2 -0.4068122 -0.9150813 0.4688237 

rate Task1 Task3 0.1090322 -0.8797787 0.9093623 

rate Task2 Task3 0.0158613 -0.8832989 0.8977062 

Estimated curves 

T_pred_2 <- 
  MW18 %>%  
  filter(!is.na(ToT)) %>%  
  bind_cols(predict(PP_2)) %>%  
  mutate(resid = ToT - center) 
 
T_pred_2 %>%  
  ggplot(aes(x = trial, y = ToT, color = Task)) + 
  facet_wrap(~Part, ncol = 4) + 
  geom_point(size = .5) + 
  geom_line(aes(y = center)) 
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T_pred_2 %>%  
  ggplot(aes(x = trial, y = ToT, color = Task)) + 
  facet_grid(~Task) + 
  geom_line(aes(y = center, group = Part)) 
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Wall contacts 

Only MW task 1. 

MW18_1 <-  
  MW18 %>%  
  filter(!is.na(wall_contacts)) 
 
lazyeval::f_lhs(LARY) <- quote(wall_contacts) 
LARY 

## wall_contacts ~ exp(ampl) * exp(-exp(rate) * trial) + exp(asym) 
## <environment: namespace:asymptote> 

# INcluding difficulty of Route (asym and ampl only) 
F_ef_lary_3 <- list( 
  formula(ampl ~ (1|Route) + (1|Part)), 
  formula(rate ~ (1|Part)), 
  formula(asym ~ (1|Route) + (1|Part))) 

M_9 <-  
  brm(bf(LARY,  
         flist = F_ef_lary_3, nl = TRUE), 
      prior = F_pr_lary_1, 
      family = negbinomial(link = "identity"), 
      data = MW18_1, 
      iter = 0) 
 
M_9 <-  
  brm(fit = M_9, 
      data = MW18_1, 
      iter = 7000, warmup = 6000, chains = 5, 
      init = "0", 
      control = list(adapt_delta = 0.999, 
                     max_treedepth = 14)) 
 
save(M_9, file = "M_9.Rda") 
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Results 

load("MW18.Rda") 
load("M_9.Rda") 
M_9 

## Warning: There were 40 divergent transitions after warmup. Increasing ad
apt_delta above 0.999 may help. 
## See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-wa
rmup 

##  Family: negbinomial  
##   Links: mu = identity; shape = identity  
## Formula: wall_contacts ~ exp(ampl) * exp(-exp(rate) * trial) + exp(asym)
  
##          ampl ~ (1 | Route) + (1 | Part) 
##          rate ~ (1 | Part) 
##          asym ~ (1 | Route) + (1 | Part) 
##    Data: MW18_1 (Number of observations: 187)  
## Samples: 5 chains, each with iter = 7000; warmup = 6000; thin = 1; 
##          total post-warmup samples = 5000 
##  
## Group-Level Effects:  
## ~Part (Number of levels: 13)  
##                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat 
## sd(ampl_Intercept)     4.49      7.12     0.08    23.20        459 1.02 
## sd(rate_Intercept)     4.14      6.91     0.08    21.44       1460 1.00 
## sd(asym_Intercept)     0.54      1.01     0.08     3.43        289 1.03 
##  
## ~Route (Number of levels: 8)  
##                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat 
## sd(ampl_Intercept)     3.98      5.91     0.13    20.08        646 1.01 
## sd(asym_Intercept)     0.80      1.50     0.18     4.04        351 1.02 
##  
## Population-Level Effects:  
##                Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat 
## ampl_Intercept    -1.04      4.14   -10.24     7.28       1043 1.00 
## rate_Intercept     1.10      4.96    -8.39    10.83        118 1.04 
## asym_Intercept     0.04      2.70    -9.37     1.39         33 1.08 
##  
## Family Specific Parameters:  
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat 
## shape    93.68     75.16    18.90   300.92       5000 1.00 
##  
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample  
## is a crude measure of effective sample size, and Rhat is the potential  
## scale reduction factor on split chains (at convergence, Rhat = 1). 

PP_9 <- post_pred(M_9) 
P_9 <- bayr::posterior(M_9) 

Effects 

fixef(P_9) 



PREDICITING BRONCHOSCOPIC SKILL ACQUISITION  90 

Estimates with 95% credibility limits 

nonlin center lower upper 

ampl -0.1824841 -10.237932 7.282350 

rate 0.8006849 -8.387019 10.831161 

asym 0.8926386 -9.373423 1.394162 

ranef(P_9) 

Estimates with 95% credibility limits 

nonlin re_factor re_entity center lower upper 

ampl Part 01 -0.0566498 -14.036144 15.1313308 

ampl Part 02 -0.0846545 -16.935435 12.5575751 

ampl Part 03 0.1167191 -15.947684 13.8439650 

ampl Part 04 -0.2401105 -16.688141 14.0824638 

ampl Part 05 -0.0364995 -17.307063 13.2686907 

ampl Part 06 0.4250249 -14.244032 15.7143520 

ampl Part 07 0.0151634 -18.020819 14.9717433 

ampl Part 08 -0.0597071 -15.843575 13.5402749 

ampl Part 09 0.1514147 -15.917277 13.8141085 

ampl Part 10 -0.0170094 -18.685505 13.8250378 

ampl Part 11 -0.1033819 -16.892387 12.8325827 

ampl Part 12 -0.0093607 -15.871976 14.5011475 

ampl Part 13 -0.1539399 -15.582159 14.8929855 

ampl Route 1 0.6730245 -14.417557 10.5551243 

ampl Route 2 -0.0284467 -15.269412 9.9487764 

ampl Route 3 -0.3447310 -14.021446 9.8437629 

ampl Route 4 -0.1571457 -14.771124 11.1173688 

ampl Route 5 0.0275770 -13.874029 10.4371165 

ampl Route 6 -0.0576554 -11.861099 12.4032597 

ampl Route 7 0.0717612 -14.563880 10.1191907 

ampl Route 8 -0.1607724 -15.550736 10.2770832 

rate Part 01 0.1065363 -11.394661 13.4468901 

rate Part 02 0.1138518 -11.123216 15.0732223 

rate Part 03 -0.0525814 -12.081566 13.9099210 

rate Part 04 0.3108274 -9.108650 15.3207403 

rate Part 05 0.0603058 -11.938251 14.7582919 

rate Part 06 -0.2580708 -14.048107 10.4328893 

rate Part 07 -0.0496702 -12.503352 15.3179828 

rate Part 08 0.0137353 -11.005440 13.2733856 

rate Part 09 -0.0670921 -12.139208 13.4847741 

rate Part 10 -0.0297927 -12.571042 13.8352183 
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rate Part 11 0.1240276 -10.914212 13.0128373 

rate Part 12 -0.0260685 -11.778488 13.6417917 

rate Part 13 0.1397181 -11.361845 15.4831365 

asym Part 01 -0.1307191 -1.323643 0.5949877 

asym Part 02 -0.1111998 -1.028139 0.8273757 

asym Part 03 0.3150331 -1.011366 1.2856180 

asym Part 04 -0.4622728 -1.490668 0.6044488 

asym Part 05 -0.0634973 -1.175250 0.9078342 

asym Part 06 0.3183323 -1.024252 1.2405218 

asym Part 07 0.1420462 -1.141776 0.9493688 

asym Part 08 0.0212297 -1.300549 0.9405796 

asym Part 09 0.2161349 -1.087014 0.9994735 

asym Part 10 0.0968759 -1.186679 0.7868770 

asym Part 11 -0.1465149 -1.066409 0.7933707 

asym Part 12 0.0741776 -1.167493 0.7419694 

asym Part 13 -0.2578311 -1.478133 0.5536772 

asym Route 1 0.7398130 -1.748289 1.7894998 

asym Route 2 -0.1387354 -1.668497 0.9207195 

asym Route 3 -0.3120050 -2.024660 0.9115068 

asym Route 4 -0.1983074 -2.048098 0.9382771 

asym Route 5 0.1238265 -1.442983 1.1220045 

asym Route 6 -0.3579690 -1.730914 1.0438951 

asym Route 7 0.2872138 -1.447545 1.3155564 

asym Route 8 -0.0952104 -1.740833 1.2592476 

ranef(P_9) %>%  
  rename(Task = fixef) %>%  
  ggplot(aes(x = center)) + 
  facet_grid(Task~nonlin) + 
  geom_histogram() 

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. 
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Correlations 

T_ranef_wide <- 
  ranef(P_9) %>%  
  filter(nonlin != "offset") %>%  
  mutate(parameter = str_c(nonlin, fixef, sep = "_")) %>%  
  select(parameter, Part = re_entity, center) %>% 
  spread(key = parameter, value = center)  
 
T_ranef_wide %>%  
  select(-Part) %>%  
  GGally::ggpairs() 

## Warning in (function (data, mapping, alignPercent = 0.6, method = 
## "pearson", : Removed 8 rows containing missing values 

## Warning in (function (data, mapping, alignPercent = 0.6, method = 
## "pearson", : Removed 8 rows containing missing values 

## Warning: Removed 8 rows containing missing values (geom_point). 
 
## Warning: Removed 8 rows containing missing values (geom_point). 

## Warning: Removed 8 rows containing non-finite values (stat_density). 
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