

Using the Object Management Group Data Distribution
Service to reliably teleoperate robotic systems

R.H. (Roland) Roelofs

 MSc Report

Committee:
Prof.dr.ir. G.J.M. Krijnen

 K.J. Russcher, MSc
Dr.ing. D.M. Ziener

August 2018

014RAM2018
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Page ii

Summary

The purpose of this thesis is to investigate whether or not Data Distribution Service (DDS) from the Object
Management Group (OMG) can be used to reliably teleoperate (operate over a wireless network) robotic
systems used by the National Police of the Netherlands (NPN). For the purpose of this research, ’reliably’
refers to having a high (' 100%) probability to meet the latency requirements under specified operating
conditions. These operating conditions include different percentages of packet loss, network overhead
and different kinds of Operating Systems (OSs) and hardware. In this research, each operating condition
is subjected to different amounts of data (ranging from 4 bytes to 16,384 bytes) and different DDS Quality
of Service (QoS) settings (with DDS QoS Reliability set to ’reliable’ and ’best effort’). To date, a limited
number of tests have been conducted to validate latency when transferring data using DDS. This thesis
extends current research in order to draw a conclusion regarding whether DDS can be used to reliably
teleoperate robotic systems used by the NPN. These results are also applicable to other systems with
similar latency requirements.

The police tasks investigated in this study are categorized as impressive or less impressive and then
rated according to latency requirements: less impressive acceptable (200 ms), impressive acceptable
(75 ms), less impressive preferred (50 ms), and impressive preferred (25 ms).

The robotic systems are usually teleoperated over a wireless network. However, for testing a wired
network is used, since they are less influenced by the environment. The latency of a wired network
is 5 ms to 75 ms lower than that of a wireless network, so latency requirements have to be scaled
accordingly for the wired network used in this study. The wired network latency requirements for each
police task are as follows: less impressive acceptable (5.0 ms), impressive acceptable (2.5 ms), less
impressive preferred (2.0 ms), and impressive preferred (1.5 ms).

In order to validate whether or not DDS can be used to reliably teleoperate robotic systems a test setup is
created. The test setup measures latency by sending data between two devices while separately inducing
different operating conditions. The operating conditions used in this study are 0%, 8%, and 16% packet
loss; 0%, 50%, and 90-99% network overhead; OSs Windows 10, Ubuntu 16.04, and Raspbian (using
laptops and a Raspberry Pi 3).

Validating DDS while adjusting the operating condition packet loss (Table 1 first row) indicates that DDS
cannot be used to reliably teleoperate robotic systems used by the NPN when there is an 8% or higher
packet loss with DDS QoS Reliability set to either ’reliable’ or ’best effort’ for impressive and less impres-
sive tasks. However, for lower packet loss percentages DDS can be used, since both sample received
percentage and meeting the impressive and less impressive latency requirements increases up to 100%.

Validating DDS while adjusting the operating condition network overhead (Table 1 second row) indicates
that DDS can be used to reliably teleoperate robotic systems used by the NPN for less impressive tasks
when the used bandwidth is less than the maximum bandwidth. This also applies for impressive tasks
with a data size of up to 4,096 bytes. DDS cannot be used to reliably teleoperate robotic systems used
by the NPN when the used bandwidth exceeds the maximum bandwidth.

Validating DDS while adjusting the operating conditions OS and hardware (Table 1 third row) indicates
that DDS can be used to reliably teleoperate robotic systems used by the NPN with OS Ubuntu 16.04
and Raspbian in most situations. The only situation in which DDS cannot be used to reliably teleoperate
robotic systems is for impressive tasks when distributing data with a size of 16,384 bytes between OS
Ubuntu 16.04 and OS Raspbian. In addition, DDS cannot be used to reliably teleoperate robotic systems
used by the NPN when one of the OSs is Windows 10, except for less impressive tasks. Resource-rich
hardware and resource-restricted hardware can both be used to reliably teleoperate robotic systems. It
is recommended to use resource-rich hardware over resource-restricted hardware, since it has a lower
latency median and higher probability of meeting the latency requirements.

Page iii

Operating Conditions Imp. Less Imp. Imp. Less Imp.
Pref. Pref. Accept. Accept.

0% yes (if data size ≤ 4,096 B) yes
8% no no no noPacket Loss

16% no no no no
Used Bandwidth < Max. Bandwidth yes (if data size ≤ 4,096 B) yes

Network Overhead
Used Bandwidth ≥ Max. Bandwidth no no no no

Ubuntu 16.04 ←→ Ubuntu 16.04 yes yes yes yes
Ubuntu 16.04 ←→ Raspbian yes (if data size ≤ 4,096 B) yes

Windows 10 ←→ Ubuntu 16.04 no no yes (≤ 1,024 B) yes
OS and Hardware

Windows 10 ←→ Raspbian no no no yes (≤ 4,096 B)

Table 1: Whether DDS can be used to reliably teleoperate robotic systems used by the NPN for impressive (Imp.)
and less impressive (Less Imp.) preferred (Pref.) and acceptable (Accept.) tasks when subjected to different
operating conditions (packet loss, bandwidths, OSs and hardware) are shown in the white area.

The findings of this study suggest that DDS can be used to reliably teleoperate robotic systems used by
the NPN when there is; few (≈ 2%) to no packet loss, used bandwidth is below the maximum bandwidth,
and one of the validated OSs except Windows 10 (in most cases) is used.

Page iv

Contents

1 Introduction 1

1.1 Context . 1

1.2 Research Questions . 2

1.3 Approach . 2

1.4 Outline . 3

2 Background Information 4

2.1 Reliability . 4

2.2 Latency Requirements . 5

2.3 Data Distribution Service . 9

2.4 Operating Conditions . 10

2.5 Conclusion . 12

3 Method 13

3.1 Test Setup . 13

3.2 Conversion . 17

4 Results 21

4.1 Research Sub-Question I: Packet Loss . 21

4.2 Research Sub-Question II: Network Overhead . 23

4.3 Research Sub-Question III: Operating Systems and Hardware 25

5 Discussion 28

5.1 Review of the Findings . 28

5.2 Other Findings . 31

5.3 Conclusion . 32

5.4 Limitations . 33

5.5 Recommendations . 33

A Results 35

A.1 Baseline Results . 35

A.2 Packet Loss Results . 36

A.3 Network Overhead Results . 37

A.4 Operating Systems and Hardware Results . 38

A.5 Latency Spikes Results . 39

B User Manual 42

B.1 Automatic Testing . 42

Page v

B.2 Manually Testing . 43

C Compiling Testbench 45

Page vi

Chapter 1

Introduction

1.1 Context

These days Data Distribution Service (DDS) [13] is used in many modern-day applications. DDS is a
data-centric middleware protocol created by the Object Management Group (OMG) to distribute data.
According to their site [8], DDS provides "low-latency, extreme reliability, and a scalable architecture" by
integrating the components of a system together. Other advantages of DDS include ease of integration,
advanced security, Open Standards, rich set of Quality of Service (QoS), and compatibility with many
systems [8].

This research is part of the project Robots voor Veiligheid (Robots for Security, RoVe) [16], which also
uses DDS for data distribution. Project RoVe is a collaboration between the National Police of the Nether-
lands (NPN) and the Robotics and Mechatronics (RaM) group. The NPN uses robotic systems for tasks
such as observation and surveillance. For example, police officers might use a drone to create 3D-images
from a crime scene or accident [1]. For these tasks, the robotic system needs to be controlled reliably.
One of the factors that influences the reliability of this control is latency. Latency, which is the main focus
of this research thesis, refers to the amount of time between when data is sent and when it is received,
as shown in Figure 1.1. Other factors such as data loss and data corruption also influence reliability, but
are not the focus of this research thesis. However data loss is used to validate the effects on latency.

Figure 1.1: Latency is defined as the amount of time between when data is sent and when it is received.

To date, a limited number of tests have been conducted to validate latency when transferring data using
DDS. Previous studies have mainly compared DDS with other types of data distribution. For instance,
one study [18] compared the latency of DDS with the traditional socket-based solution for communication.
Another study [3] analyzed the latency difference between PrimsTech and Real-Time Innovations (RTI),
which are the two main stakeholders that have implemented DDS in the DDS market. A literature search
found no studies that validated latency while inducing packet loss or network overhead [12] and using
different Operating Systems (OSs) and hardware. These parameters also influence latency, as described
in Section 2.4.

Page 1

1.2 Research Questions

This research was conducted in order to draw a conclusion as to whether or not DDS can be used to
reliably teleoperate robotic systems used by the NPN. This research will build upon current research by
validating the latency requirements needed to reliably teleoperate robotic systems under different condi-
tions, including different percentages of packet loss, network overhead, and different OSs and hardware
(Windows 10 and Ubuntu 16.04). DDS was then subjected to different data sizes (ranging from 4 bytes
to 16,384 bytes) and different types of DDS QoS settings (DDS QoS Reliability settings of ’reliable’ and
’best effort’).

The main research question is as follows:

• Can DDS be used to reliably teleoperate robotic systems used by the NPN under specified operat-
ing conditions?

Following from this, the main research question is divided into three sub-questions:

• Does DDS meet the latency requirements when subjected to different data sizes (ranging from 4
to 16,384 bytes) and different types of DDS QoS settings (DDS QoS Reliability settings of ’reliable’
and ’best effort’) used under the following operating conditions:

1. packet loss,
2. network overhead,
3. different OSs and hardware.

1.3 Approach

In order to validate whether DDS can be used to reliably teleoperate robotic systems, a test setup was
created. The test setup measured the latency by sending data from the master computer to slave com-
puter and back, as shown in Figure 1.2. The latency was computed by subtracting the ’send data’ time
from the ’receive data copy’ time and then dividing it by two. However, this is a simplified version of what
was done and it will be explained later in Section 3.1.1.

Figure 1.2: Abstract overview of the setup used to measure the latency during tests.

The tests were performed over a wired network in order to obtain reliable and repeatable results. A
wired network was used because a wireless network is more sensitive to noise than a wired network.
The results were then converted to corresponding values for a wireless network in order to validate the
main research question of whether DDS can be used to reliably teleoperate robotic systems used by
the NPN under specified operating conditions. This conversion rate was calculated by comparing two
baseline tests—one baseline test using a wireless network and one baseline test using a wired network.
The difference was then applied to the wired network test results in this study, which lowered the latency
requirement.

Page 2

For the first research sub-question, a specified percentage of the total transmitted data was dropped using
the program qdisc to simulate packet loss. For the second sub-question, additional data was transmitted
to simulate network overhead. For the third sub-question, different OSs, including Windows 10, Ubuntu
16.04, and Raspbian, as well as different hardware including a laptop and a Raspberry Pi 3, were used.

The validation of each research question was also subjected to varying data sizes ranging from 4 to
16,384 bytes, which was the range used in the previous studies mentioned earlier. For the DDS QoS
Reliability, the settings ’reliable’ and ’best effort’ were used. The tests were performed on a resource-
rich device (laptop) and resource-restricted hardware (single board computer). These hardware choices
correspond to the hardware used by the NPN. Each operating condition was efficiently and thoroughly
tested by using 10,000 samples sent at a frequency of 50 Hz.

1.4 Outline

The second chapter of this thesis will begin by explaining what reliability is and what the latency require-
ments are to reliably teleoperate robotic systems used by the NPN. Background information on DDS will
be discussed, along with the operating conditions of packet loss, network overhead, and OS and hard-
ware. Chapter 3 will address the method used to validate whether DDS can be used to reliably teleoperate
robotic systems used by the NPN, and the results of this study will be stated in Chapter 4. A discussion
of these results in regards to latency requirements, other findings, conclusions, and recommendations is
found in Chapter 5.

Additional tables and figures are presented in Appendix A. The user manual for running the tests is
presented in Appendix B, and the manual to compile the code is presented in Appendix C. At the time of
writing, the code is property of the project Robots voor Veiligheid (Robots for Security, RoVe) and located
in the Robotics and Mechatronics (RaM) git. For more information, contact Klaas Jan Russcher at the
University of Twente.

Page 3

Chapter 2

Background Information

In order to provide a background for this research, the term ’reliability’ is explained in Section 2.1. The
latency requirements to reliably teleoperate robotic systems used by the National Police of the Nether-
lands (NPN) are addressed in Section 2.2. Data Distribution Service (DDS) is described in Section 2.3,
which also addresses the parts used during the performance validation. Finally, Section 2.4 explains
the parameters of packet loss and network overhead [12], which influence the performance of a wireless
network and were chosen to validate the performance of DDS.

2.1 Reliability

The term ’reliability’ can have different meanings. Therefore, the definition with respect to this project
will be addressed first. Reliability is, according to Blanchard and Fabrycky (2014) [5], defined as "the
probability that a system will accomplish a designated mission in a satisfactory manner under specified
operating conditions". This definition consists of a mission and three important elements: probability,
satisfactory performance, and operating conditions.

The designated mission is split into a high-level and a low-level mission. The focus of this project lies
with the latter. The high-level mission is to successfully carry out an operation, such as surveillance or
observation, using a robotic system. The low-level mission is to receive data from a robotic system and
controller within a specified time period. The low-level mission is a part of the high-level mission, but
failures of the two missions are not linked. In other words, a high-level mission failure can still occur
despite low-level mission success, and vice versa.

Probability is expressed as a fraction or percentage indicating the number of times the designated mission
will succeed over a total number of attempts [5]. The reason that reliability is described in probabilistic
terms is because failures inevitably occur at some point in time. For example, the probability of control
signals being received by a robotic system is 75%, meaning that 75% of the control signals are being
received within a given period of time. The probability for this research refers to the number of data
samples received within a given period of time, and ’within a given period of time’ refers to meeting the
latency requirements described in Section 2.2.2.

The term satisfactory manner requires a definition of what is considered to be satisfactory [5]. Satisfac-
tory performance for the low-level mission is that the latency of data samples complies with the latency
requirement. The high-level mission can consist of multiple tasks with different complexities or difficul-
ties. For this study, the difficulty of a task is categorized as ’impressive’ or ’less impressive’, each with a
different latency requirement. This categorization is addressed in Section 2.2.1.

Operating conditions specify the conditions under which a mission is expected to operate [5]. These
conditions refer to the network factors under which a system is operating. For this research, the operating
conditions encompass different percentages of packet loss and different amounts of network overhead,
as well as different Operating Systems (OSs) and hardware, all of which are validated against different
data sizes and DDS Quality of Service (QoS) Reliability. DDS QoS Reliability is addressed in Section
2.3.1, and the operating conditions of packet loss and network overhead are further explained in Section
2.4.

Page 4

2.2 Latency Requirements

Satisfactory performance, or performance that meets latency requirements, of high-level and low-level
missions is discussed in this section. As stated in the previous section, a high-level mission is to suc-
cessfully carry out an operation using a robotic system. These operations consist of multiple tasks. For
this research, the complexity of these tasks is divided into ’impressive’ and ’less impressive’, as dis-
cussed in Section 2.2.1. Each category of complexity has different preferred and acceptable latency
requirements, as visualized in Figure 2.1. The acceptable and preferred latency requirements summa-
rized in Section 2.2.2 are generalized and subject to the effects of several moderating factors including
display characteristics, viewing conditions, additional cues, and user experience, and should therefore be
used as a guideline rather than a rule.

Figure 2.1: The complexity of a task is divided into the categories ’impressive’ and ’less impressive’. Both have an
acceptable latency requirement and a preferred latency requirement.

2.2.1 Tasks

As stated before, the complexity of tasks for this study have been divided into ’impressive’ and ’less
impressive’. The idea to divide tasks into ’impressive’ and ’less impressive’ comes from the paper pub-
lished by Chen and Thropp (2007) [6]. Both complexities have a preferred and an acceptable latency
requirement, as visualized in Figure 2.1.

The complexity of a task is dependent on two factors:

• the relative speed at which a robotic system and surrounding object(s) are traveling towards each
other, and

• the relative distance between a robotic system and an object(s).

The distance over which teleoperation takes place is not included, since it indirectly affects the complexity
via latency (assuming each robotic system has onboard cameras, thus have visual of the surroundings
nearby the robotic system). Latency is for this study not a factor that influences the complexity, but a
requirement in order to perform the impressive and less impressive tasks in a satisfactory manner.

The combined relative speed and distance determines the complexity of a task. The complexity des-
ignations of ’impressive’ or ’less impressive’ are qualitative and based on a sliding scale. This scale is
indicated by the dark-to-light gradient illustrated in Figure 2.2. Tasks characterized by a relatively high
speed and a short distance between the robotic system and object are considered to be impressive,
whereas tasks with a relatively low speed and a large distance between the robotic system and object
are considered to be less impressive.

During missions, tasks can shift from ’impressive’ to ’less impressive’, and vice versa. In one example,
a police officer is teleoperating a robotic system at a relatively high speed inside a mall where many
people are walking around. At first, the distance between the robotic system and the people walking

Page 5

Figure 2.2: The complexity of a task is dependent on the relative distance and speed between a robotic system
and an object(s). The gradient from dark to light and the absence of numeric values is to indicate that the line
between ’impressive’ and ’less impressive’ tasks is qualitative rather than quantitative.

around is relative small. This would make the task impressive due to the relatively high speed of the
robotic system. Upon entering a different section of the mall with no people around and a relatively large
distance between the robotic system and other objects, the impressive task changes to a less impressive
task. Returning to the crowded part of the mall at a relatively high speed where many people are walking
around at close range makes the task impressive again.

Impressive Tasks

Teleoperating robotic systems during impressive tasks can be compared to video gaming. An impressive
task can be compared to for instance a racing game. In these games, cars manoeuvre around other cars
and objects in high velocity, requiring a short reaction time. The needed short reaction time combined
with the small distance to other object and the fast pace are characteristics of an impressive task.

The ability to react quickly is not only dependent on the user’s reaction time, but also on the system’s
performance. If the system’s performance does not comply with the latency requirements, gameplay will
be negatively affected. For example, inside a race game, a car is being controlled driving through a town
at a relatively high speed and with a relatively small distance between it and other objects. In this case,
a late stop signal could result in the car crashing into another object. Multiple crashes decrease the
user’s chances of winning the game, or completing the high-level mission. The same concept applies to
teleoperating robotic systems during impressive tasks. If the system performance, or low-level mission,
does not comply with latency requirements, the high-level mission could fail.

In conclusion, the complexity of both playing fast-paced video games and teleoperating robotic systems
are impressive. Therefore, the latency requirements of fast-paced video games also apply to teleoperat-
ing robotic systems used by the NPN.

The acceptable latency requirements are between 50 ms and 150 ms [10]. The preferred latency require-
ment is a maximum of 50 ms. At this latency, users achieve optimum performance.

Less Impressive Tasks

Teleoperating robotic systems during less impressive tasks can be compared to playing a slow-paced
video game such as The Sims. Scenarios are slow paced, and high-level missions are achievable with
a longer response time compared to impressive tasks or fast-paced video games. This is because the
game is more affected by strategy than technical performance. Less impressive tasks have a relatively

Page 6

large distance between objects and/or a lower speed, which allows for a higher response time compared
to impressive tasks.

The acceptable latency requirement for slow-paced video games is between 100 ms and 400 ms [7].
The preferred latency requirement is a maximum of 100 ms [17]. This latency provides the best user
experience. Because of the similarities in gaming and teleoperating, it is assumed that these values hold
for the purposes in this research. Therefore, the values mentioned above are chosen to be the acceptable
and preferred values for this research.

Latency Measurement

The acceptable and preferred latency requirements for impressive and less impressive tasks, addressed
in the previous Subsections, are measured using a ping test or a similar technique. Ping is a build-
in program available on most OSs used to measure latencies between the client and the server. The
latency measurement shown in Figure 2.3 begin when the client transmits data to the server. Once the
server receives this data, it immediately sends it back to the client. The measurement stops once the
client receives the data. The time between when the client transmits the data and when the client receives
the data is referred to as the latency, or round-trip time (RTT). It is important that the execution time, or the
time between when the server receives the data and when the server transmits the data, is not neglected
by assuming that complex computations are not required to send a signal back. This means that the
execution time is also not part of the latency requirements from the studies.

Figure 2.3: Time flow of ping or round-trip time (RTT).

For this research, the controller is the client and the robotic system is the server. As shown in Figure
2.4, and corresponding timing diagram in Figure 2.5, the latency requirements (divided by two) can be
directly applied to the latency between the send and receive times, as the execution time is not part of
the latency.

Figure 2.4: Data flow between the robotic system and the controller.

Page 7

Figure 2.5: Timing diagram between the robotic system and controller.

2.2.2 Conclusion

The acceptable and preferred latency requirements for impressive and less impressive tasks (divided by
two) are summarized in Table 2.1. These requirements are based on fast-paced and slow-paced video
gaming, which are comparable to impressive and less impressive teleoperating tasks respectively. When
these requirements are met, the probability of success of the high-level mission increases. The high-
level mission is to successfully carry out an operation such as surveillance or observation using a robotic
system. Based on the latency requirements and results stated in Chapter 4, the research sub-questions
are discussed and answered in Chapter 5. The purpose of this research is to determine whether DDS
can be used to reliably teleoperate robotic systems under specified operating conditions, with ’reliably’
referring to a high (' 100%) probability of meeting latency requirements.

Latency (ms)
Task Acceptable Preferred
Less impressive 200 50
Impressive 75 25

Table 2.1: The acceptable and preferred latency requirements (in milliseconds) to reliably teleoperate robotic
systems used by the NPN for impressive and less impressive tasks.

Page 8

2.3 Data Distribution Service

As mentioned in the introduction, DDS [13] is validated whether or not it can be used to reliably teleoperate
robotic systems used by the NPN. DDS is a publish—subscribe service that transfers data samples
through the system as conceptual ’data objects’, as shown in Figure 2.6 [14]. The publisher sends (or
publishes) data samples to one or more subscribers. A subscriber can only subscribe to a publisher when
both topics (the data object) have the same name, data type, and DDS QoS policies.

Figure 2.6: Simple conceptual overview of DDS showing how the basic components are interconnected with one
another [14].

DDS consists of five basic components—topic, publisher, subscriber, dataWriter, and dataReader—as
shown in Figure 2.6, and can be described as follows:

• Topics are the data objects that contain information about the name, data type, and QoS policies,
and are used to make an association between publication and subscription.

• Publishers restrict and control the data that is send by the dataWriter(s).
• Subscribers restrict and control the data that is received by the dataReader(s).
• DataWriters send data of a data type corresponding to the topic’s data type.
• DataReaders receive data of a data type corresponding to the topic’s data type.

The data flow starts at the publication, where data is written to the dataWriter and published by the
publisher. The published data is send to the subscriber with which it has a subscription. Finally, the
subscriber passes the received data to the dataReader enabling the application to use its data.

2.3.1 DDS Quality of Service

DDS defines a set of QoS policies [13] that control the flow of data through the system. Topics, dataRead-
ers, dataWriters, publishers, and subscribers all have QoS policies. The two QoS policies that can influ-
ence the system’s latency and reliability are QoS Reliability and QoS Transport Priority.

DDS QoS Reliability is set either to ’reliable’ or ’best effort’. DDS QoS Reliability ’best effort’ is compa-
rable to User Datagram Protocol (UDP) and DDS QoS Reliability ’reliable’ is comparable to Transmission
Control Protocol (TCP). When data or packets are lost, DDS QoS Reliability ’reliable’ resends the lost
data, resulting in an increased latency. DDS QoS Reliability ’best effort’ does not resend lost data.

DDS QoS Transport Priority prioritizes sending more important data over sending less important data.
The importance of data is indicated by an integer value, where a higher value indicates a higher priority.
This DDS QoS policy has been implemented in the test setup, but the effect on latency has not been

Page 9

validated due to time constraints and that it was discovered after making the plan of attack, therefore had
a lower priority.

2.3.2 OpenDDS

This study used OpenDDS to validate whether DDS can be used to reliably teleoperate robotic systems
used by the NPN. OpenDDS [14] is a free, open source C++ implementation of DDS used by the project
Robots voor Veiligheid (Robots for Security, RoVe) at the time of writing. OpenDDS uses all the com-
ponents of DDS as well as one additional component, namely DCPSInfoRepo, as illustrated in Figure
2.7. The DCPSInfoRepo is a specific object that maintains the state of the domain(s). It detects when
subscriptions and publications in a domain should be associated and notifies them to make the associa-
tions. OpenDDS is not fully equivalent to DDS, but the tests for this research were minimally affected by
the difference because the DCPSInfoRepo affects the start-up and not the latency of data transfer. This
means that the results produced by tests using OpenDDS were applicable to the research sub-questions.

Figure 2.7: DDS components and the OpenDDS specific component [14].

2.4 Operating Conditions

The robotic systems are teleoperated over a wireless network. The latency of a wireless network is
affected by the signal-to-noise ratio (SNR) and data size. The SNR does not directly influence the latency.
However, it does indirectly influence the latency via network overhead (simulates the number of clients on
a network) and packet loss. The data size determines how many data packets are required to transmit the
data. The more data packets it requires the higher the latency will be, since the packets are consecutively
transmitted and each packet has a certain latency. During the tests in this study, latency was also found to
be affected by DDS QoS settings (discussed in Section 2.3.1), OSs, resource-rich and resource-restricted
hardware.

The below mentioned operating conditions influence the latency and are therefore manipulated in this
research to measure whether acceptable or preferred latency levels can be acquired. These conditions
are described consequently in the remainder of this chapter:

• data size,
• signal power,

– packet loss, and
– network overhead.

Page 10

2.4.1 Data Size

Data size indicates the number of bytes a certain data sample consists of. Before data is sent over a
network, they are divided into packets. Each packet can have a maximum number of bytes. This is
dependent on the Maximum Transmission Unit (MTU). If the data size is larger than the MTU, it will be
divided into multiple packets. For example, if the data size is 2,000 bytes and the MTU is 1,500 bytes, the
data will be divided into two packets as shown in Figure 2.8.

Figure 2.8: Data being divided into multiple packets when it exceeds the MTU.

Data, such as movement commands and video images sent to the robotic system and controller respec-
tively, have data sizes ranging from a few bytes to multiple kilobytes. Therefore, the data sizes used in this
study ranged from 4 bytes to 16 kilobytes and increased by 2i bytes, with i starting at 2, and increasing
by 2 up to 14. This data size range was also used by a previous study of J. Yang [18] mentioned in the
introduction.

2.4.2 Signal Power

Signal power [9] divided by the amount of noise power (often measured in decibels (dBm)) produces the
SNR. The SNR is a ratio that indicates the efficiency of a signal with respect to noise. The higher this
ratio is, the higher the probability that all transmitted data will be received correctly, and vice versa. This
ratio is influenced by interference from other senders or objects, such as walls or trees absorbing and
decreasing the signal’s power. A good SNR (>1) means that the signal power is stronger than the noise.
This results in a lower bit error ratio (BER). A bad SNR (<1) means that the BER will be higher. The
BER [4] is defined as "the number of incorrect bits divided by the total number of transfered bits", often
expressed as a percentage. At a certain BER the receiving side cannot reconstruct the original packet,
which means that the packet is lost. The terminology for this is packet loss, expressed as packets lost
per total packets sent.

The BER also influences the modulation technique [11] used inside a wireless network. Modulation is a
technique that varies the carrier signal’s amplitude, frequency, or phase with a signal that contains the
information to be transmitted (stream of bits). A more complex modulation technique results in a higher
bandwidth [2], but requires a high SNR, and vice versa.

The SNR or BER indirectly influences latency via network overhead [12]. As stated earlier, the SNR
or BER influences the complexity of the modulation technique used to encrypt and decrypt data, which
affects the maximum bandwidth. A decrease in SNR can lead to the system using a less complex modu-
lation technique, which decreases the maximum bandwidth. During the tests it was found that the latency
increased when the required bandwidth exceeded the maximum bandwidth. For example, the required
bandwidth might be 90 Mbit/s, 80 Mbit/s of which is network overhead. The maximum bandwidth is
100 Mbit/s. At some point the SNR decreases, leading to a less complex modulation technique, which
results in a new maximum available bandwidth of 80 Mbit/s. This leads to an increased latency, because
the required bandwidth of 90 Mbit/s exceeds the maximum bandwidth of 80 Mbit/s. If there was no net-
work overhead, or if the SNR did not cause the maximum bandwidth to lower, the latency would not have
been affected. Therefore, the SNR indirectly influences latency via network overhead.

Page 11

2.5 Conclusion

In order to reliably teleoperate robotic systems the low-level mission has to be accomplished in a satisfac-
tory manner under specified operating conditions. The low-level mission is to receive data from a robotic
system and controller within a specified time period. This time period has to be equal or lower than the
latency requirements stated in table 2.2 in order to be satisfactory. The latency requirements are different
for each task. A task can either be impressive or less impressive. Impressive tasks are compared to fast-
paced video games and less impressive tasks are compared to slow-paced video games. The specified
operating conditions are packet loss, network overhead, OS and hardware, using DDS QoS Reliability
’best effort’ and ’reliable’, and data sizes ranging from 4 to 16,384 bytes.

Latency (ms)
Task Acceptable Preferred
Less impressive 200 50
Impressive 75 25

Table 2.2: The acceptable and preferred latency requirements (in milliseconds) to reliably teleoperate robotic
systems used by the NPN for impressive and less impressive tasks.

This project uses OpenDDS to validate whether DDS can be used to reliably teleoperate robotic systems
used by the NPN. OpenDDS is an open source C++ implementation of DDS and used by Project Robots
voor Veiligheid (Robots for Security, RoVe), since it is free and has all the components of DDS.

Page 12

Chapter 3

Method

The method that was used to investigate if Data Distribution Service (DDS) can be used to reliably teleop-
erate robotic systems used by the National Police of the Netherlands (NPN) is addressed in this chapter.
First the test setup used to validate this is discussed in Chapter 3.1. This section also addresses how
latency is measured and how the operating conditions of packet loss, network overhead, Operating Sys-
tem (OS) and hardware are introduced to the tests. The test setup uses a wired network in order to
obtain reliable and repeatable results, since a wireless network is more sensitive to noise. However, the
results must be applicable to a wireless network, and therefore require a conversion. This conversion is
addressed in section 3.2.

3.1 Test Setup

The test setup shown in Figure 3.1, which was used to validate whether DDS complies with the latency
requirements, consists of four components: a master, a slave, a network overhead, and a router. For the
master and network overhead a resource-rich laptop was used, and for the slave either a resource-rich
laptop or a resource-restricted Raspberry Pi 3 was used. They were all connected to the same router
via an Ethernet cable (CAT 5). During the tests, the master and the slave were always connected to the
router. The network overhead laptop was only connected when the tests required network overhead.

Figure 3.1: Global overview of the test setup.

Two separate scripts were running on the master: a Publisher and a Subscriber. The Publisher sends
data of a specific size to the slave and the Subscriber receives data from the slave. The data is sent at
a fixed interval to simulate a stable frequency of sending data. The reason that the Publisher and the
Subscriber were separate was to prevent incoming data from getting timed later due to overhead. Both
receive times and send times were stored inside a text file.

Page 13

The slave had one script running that combined the Publisher and the Subscriber. The primary task of the
slave was to resend the data received by the master. The reason that they were combined was to avoid
thread switches and synchronization issues of shared variables, making the study less error prone and
complex. However, a disadvantage is that in certain situations data could accumulate over time, resulting
in an increased latency. This only occurs when the execution time is greater than the send interval of the
master’s Publisher. The execution time is defined as the time between receiving data from the master
and sending this data back to the master. To avoid that data accumulates over time, the frequency was
set to 50 Hertz (Hz), which is an interval of 200 ms and larger than the execution time of ' 0.3 ms.

3.1.1 Latency Measurement

The robotic system sends video images to the controller, and the controller sends control signals to
the robotic system. These two processes run parallel and can be interpreted as two separate one-way
communication channels. This means that the measured latency should also be measured as one-way.
Since it is difficult to measure one-way latency, it is often measured as two-way, or round-trip time (RTT).

Measuring one-way latency requires a test setup with one of the following options:

1. a synchronized timer of sender and receiver;
2. a third party timer, such as the Internet, a router or another device to retrieve the time; or
3. measuring the RTT and then dividing it by two to get the one-way latency.

The first option is accurate, but requires adjusting both internal timers and initiating them at the exact
same time. This method is difficult to accomplish, and therefore was not chosen for this study. The
second option is not reliable because the inaccuracy of Internet time is in the order of milliseconds, and
retrieving the time over a network is not consistent due to jitter. The third option measures the average
latency of two samples, since the data is sent and received twice. This does not affect the average latency,
but it does affect the accuracy of the one-way latency measurement when the two one-way latencies are
not equal. Assuming that the error inherent in the inaccuracy of option three is less than the error inherent
in option two, the third option was chosen for this study: measuring the RTT and then dividing it by two.

Figure 3.2: A sequence diagram of the test setup.

Page 14

For this test setup, the latency was measured by clocking the data’s travel time from master to slave and
back to master, shown in Figure 3.2. The process starts with the master Publisher clocking (Clock RTT
Begin) the time right before the data is transmitted to the slave, starting the measurement to compute
the RTT latency. After the slave receives the data, the time is clocked (Clock Ex. Begin) to measure the
execution time. The time is clocked again before the slave sends data to the master Subscriber (Clock
Ex. End), stopping the execution time measurement. When the master Subscriber receives the data, the
time is clocked one last time (Clock RTT End), stopping the RTT latency measurement.

RTT latency and execution time measurements were done for each data sample sent. There was a total
of 10,000 data samples sent, each with their own latency. The RTT and execution time were used to
compute the required one-way latency as shown in Equation 3.1.

Latenc y = Round_Tr i p_T i me −E xecuti on_T i me

2
(3.1)

3.1.2 Packet Loss

This section discusses the method used for the first research sub-question of whether the DDS meets
the latency requirement when subjected to different data sizes and different types of DDS Quality of
Service (QoS) settings for the operating condition packet loss.

The operating condition of packet loss was validated by sending data between the master and the slave
(Figure 3.1) while the program qdisc induced packet loss. The amounts of packet loss induced were 0%,
8%, and 16%, because quality is affected at around 10% [8]. Each of these three percentages of packet
loss were individually tested against seven different sizes of data (addressed in Section 2.4), and DDS
QoS Reliability ’reliable’ and ’best effort’.

The percent of samples received that was expected under the DDS QoS Reliability setting ’best effort’
can be computed using Equation 3.2.

Dat a_Recei ved =
(

100−packet_loss

100

)⌈
d at a_si ze

MTU

⌉
(3.2)

For example, with 8% packet loss, a data size of 4,096 bytes, DDS QoS Reliability ’best effort’, a Maximum
Transmission Unit (MTU) of 1,500 bytes results in 78% of samples received (see Equation 3.4).

Dat a_Recei ved =
(

100−8

100

)⌈
4096
1500

⌉
(3.3)

= 0.923 = 0.78 = 78% (3.4)

The DDS QoS Reliability ’reliable’ should receive all transmitted samples.

As mentioned earlier, packet loss was created with the program qdisc. This program has three important
commands that were used during the tests:

• adding packet loss: ’sudo tc qdisc add dev NN root netem loss PP%’,
• changing packet loss: ’sudo tc qdisc change dev NN root netem loss PP%’, and
• removing packet loss: ’sudo tc qdisc del dev NN root’.

The ’NN’ stands for the network name to induce the packet loss onto, and ’PP’ for the amount of packet
loss as a percent.

Page 15

3.1.3 Network Overhead

The method used for the second research sub-question of whether DDS meet latency requirements when
subjected to different data sizes and different types of DDS QoS settings for the operating condition of
network overhead is discussed in this section.

Sending additional "useless" data (besides the original data) between the master and the network over-
head laptop creates network overhead, as shown in Figure 3.1. It was not possible to generate network
overhead using two network overhead laptops because the maximum bandwidth of the laptops that were
used was less than the maximum bandwidth of the router. The router that was used was a Linksys
WRT 1200 AC with a 1,000 megabit bandwidth, whereas the laptops had a 100 megabit bandwidth each.
This means that a maximum of 10% bandwidth could be occupied. However, when sending data from the
master to the network overhead, 100% of the bandwidth could be occupied. The downside of this method
is that it generates overhead at the master. The latter method was chosen for this research because the
study needed to use 100% of the bandwidth in order to see results such as increased latency and packet
loss.

The operating condition of network overhead was validated by transferring data between the master and
the slave while the program iPerf induced network overhead in the background. The amounts of network
overhead that were induced to the tests were 0%, 50%, and 95% when the DDS QoS Reliability ’reliable’
was used, and 0%, 50%, 90%-99% with a step size of 1% when the DDS QoS Reliability ’best effort’ was
used. During the first tests (0%, 50%, and 95%), network overhead had the same effect on latency for
both DDS QoS Reliability settings. ’Best effort’ performed better (see Appendix A.3), so this study chose
to test the DDS QoS Reliability ’best effort’ more thoroughly. The reason for a 1% step size between 90%
and 99% network overhead was because the effects of network overhead were observable at around this
percentage during the tests. Each percentage of network overhead was tested against seven different
data sizes (addressed in Section 2.4).

The program iPerf was used to create network overhead. This program is used to send data with a
specific data size to another device. It can also be used to measure active bandwidth, packet loss, and
jitter. For this study, it was only used to induce network overhead and measure maximum bandwidth. The
following command was run on the master:

iperf -c IP_NO -u -t DURATION -b BANDWIDTH

’IP_NO’ was the IP address of the network overhead laptop. ’DURATION’ was set to a value larger
then the expected test duration, and ’BANDWITH’ was the bandwidth to be occupied in megabits per
second (Mbit/s). The ’-c’ stands for client and ’-u’ stands for User Datagram Protocol (UDP). The value of
’BANDWIDTH’ was computed by first computing the maximum bandwidth (also using this program), and
then dividing it by 100 and multiplying it with the network overhead percentage. The following command
was ran on the network overhead laptop:

iperf -s -u

Here, ’-s’ stands for server and ’-u’ for UDP.

Page 16

3.1.4 Operating System and Hardware

This section discusses the method used to investigate the third research sub-question of whether DDS
meets the latency requirements when subjected to different data sizes and different types of DDS QoS
settings for the operating condition of OS and hardware.

Validation of the latency requirement did not require the utilities of robotic systems and controllers—
merely the hardware and software. Laptops and single board computers were used. This hardware and
software is similar to the robotic systems and controllers, but the advantage is that this hardware and
software is more flexible, accessible, and convenient to use during tests. Therefore, this study chose to
use laptops and single board computers instead of robotic systems and controllers.

There are multiple types of robotic systems and controllers. This controller has hardware similar to a
tablet or laptop, whereas the robotic system has hardware similar to a Raspberry Pi 3.

The operating condition of OS and hardware was validated by transferring data between the master and
the slave (Figure 3.1) using different OSs and hardware. The OSs included Windows 10, Ubuntu 16.04
and Raspbian, and the hardware consisted of a laptop (resource-rich) and a Raspberry Pi 3 (resource-
restricted). The OS Raspbian was only used on the Raspberry Pi 3, and the OSs Windows 10 and
Ubuntu 16.04 were only used on a laptop. The reason that these OSs and hardware were chosen was
because the controller can use Windows 10 or Ubuntu as an OS and the robotic system can use Ubuntu
or Raspbian as an OS. The OSs and hardware were tested as follows, with the OS on the left being used
on the master and the OS on the right being used on the slave:

• Ubuntu 16.04 (Laptop) ←→ Ubuntu 16.04 (Laptop)
• Ubuntu 16.04 (Laptop) ←→ Raspbian (Raspberry Pi 3)
• Windows 10 (Laptop) ←→ Ubuntu 16.04 (Laptop)
• Windows 10 (Laptop) ←→ Raspbian (Raspberry Pi 3)

The following hardware specs were used during the tests:

• Windows 10 on Master1:
– processor: Intel(R) Core(TM) i5-2410M CPU @ 2.30 GHz
– RAM: 4GB
– system type: 64-bit

• Ubuntu 16.04 LTS on Master1:
– processor: Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz
– RAM: 4GB
– system type: 64-bit OS

• Ubuntu 16.04 LTS on Slave:
– processor: Intel(R) Core(TM) 2 DUO CPU U9300 @ 1.20GHz * 2
– RAM: 1.8 GB
– OS type: 64-bit

• Raspbian GNU/Linux 8 (jessie) on Slave:
– SoC: Broadcom BCM2837
– CPU: 4* ARM Cortex-A53 @ 1.2GHz
– RAM: 1GB LPDDR2 (900 MHz)

Each of these four setups was tested using seven different sizes of data (addressed in Section 2.4), and
the DDS QoS Reliability setting ’best effort’.

3.2 Conversion

The robotic systems are usually teleoperated over a wireless network. However, a wired network was
chosen for testing because a wired network is more consistent and less sensitive to noise than a wireless
network. The signal-to-noise ratio (SNR) for a wired network is constant and low, meaning that the results
produced during the tests were affected only by the user’s input. An anechoic chamber, which is used to
reduce noise, was not available for this research.

1duoboot

Page 17

The consistency provided by the wired network is noticeable in the latency spread, or standard deviation,
between the results of tests using a wireless network (Figure 3.3) and the results of tests using a wired
network (Figure 3.4). The standard deviation relative to the median for a wired network is between 2%
and 10%, whereas the standard deviation for a wireless network is between 80% and 210%, as seen in
Table 3.1. Both tests, called baseline tests, were performed under the same operating conditions with a
distance of 20 cm between the master and the slave. The following operating conditions were used: 0%
packet loss, DDS QoS Reliability ’best effort’, and OS Ubuntu 16.04 ←→ Raspbian.

4 16 64 256 1024 4096 16384
Data size (bytes)

0

50

100

150

200

L
at

en
cy

 (
m

s)

0

50

100

150

200

Boxplot of the data from the baseline test using a wireless network

Less Impressive Acceptable (200ms)
Impressive Acceptable (75ms)
Less Impressive Preferred (50ms)
Impressive Preferred (25ms)

Figure 3.3: The latency boxplot of the baseline test over a wireless network with the latency requirements shown
as different colours and symbols. The following operating conditions were used: 0% packet loss, DDS QoS
Reliability ’best effort’, and OSs Ubuntu 16.04 ←→ Raspbian.

4 16 64 256 1024 4096 16384
Data size (bytes)

0

1

2

3

4

5

6

L
at

en
cy

 (
m

s)

0

1

2

3

4

5

6
Boxplot of the data from the baseline test using a wired network

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)

Figure 3.4: The latency boxplot of the baseline test over a wired network together, with the latency requirements
shown as different colours and symbols. The following operating conditions were used: 0% packet loss, DDS QoS
Reliability ’best effort’, and OSs Ubuntu 16.04 ←→ Raspbian.

The validation of the test results regarding the latency requirements using a wired network could not be
performed directly. (Figure 3.3) had a greater average latency compared to the baseline test using a wired
network (Figure 3.4). The baseline test using a wireless network also had a higher standard deviation,
shown in Table 3.1. Because the latencies and standard deviations between the two network types were
unequal, the test results of introducing packet loss, network overhead, and different OSs performed over

Page 18

Standard deviation Data size (bytes)
4 16 64 256 1024 4096 16384

Wired network 6.5 12.6 11.6 7.0 9.5 6.0 1.9
Wireless network 85.6 82.6 85.1 94.3 125.0 210.8 39.0

Table 3.1: This table shows the standard deviation relative to the median expressed in percentages for different
data sizes and networks.

a wired network need to be scaled accordingly to reflect the conditions of the wireless network used by
the NPN.

One option was to scale the latency of each measured data sample by a certain amount. This would
require adding a certain offset and standard deviation to the measured data samples. Another option
was to scale the latency requirements. Both options introduce errors in the probability of meeting the
latency requirements. The error rate of scaling each measured data sample is influenced by the offset
and standard deviation. The error rate of scaling the latency requirements is influenced by the scale
value. Scaling the latency requirement has fewer variables that influence the error rate than scaling each
measured data sample. Therefore, this study chose to scale the latency requirements.

The probabilities of meeting the less impressive acceptable (200 ms), impressive acceptable (75 ms),
less impressive preferred (50 ms), and impressive preferred (25 ms) latency requirements for the
baseline test using a wireless network (shown in Table 3.2) were used as a guideline to scale the latency
requirements for the baseline test using a wired network. As seen in Figure 3.3, for the baseline test
using a wireless network, the impressive acceptable (75 ms) latency requirement is nearly equal to
the latency’s median of 16,384 bytes data size. The corresponding probability of meeting this latency
requirement is 60.8%. The other data sizes have a probability of about 100% of meeting this latency
requirement.

Network Latency requirement Number of packets (data size in bytes)
1 (4, 16, 64, 256 and 1024) 3 (4096) 11 (16384)

Less impressive acceptable 100.0 100.0 99.5
Impressive acceptable 100.0 99.6 60.8
Less impressive preferred 99.8 99.1 6.1

Wireless

Impressive preferred 98.5 97.0 0.0
Less impressive acceptable 100.0 100.0 100.0
Impressive acceptable 100.0 100.0 61.2
Less impressive preferred 99.9 99.9 0.0

Wired

Impressive preferred 99.4 97.0 0.0

Table 3.2: Probability of a wired and wireless network meeting the latency requirements.

The latency’s median at a data size of 16,384 bytes for the wired network baseline test, shown in Figure
3.4, is around 2.4 ms. Scaling the impressive acceptable latency requirement slightly higher to 2.5 ms
for the baseline test using a wired network resulted in a probability of 61%. This is relatively close to
the 60.8% mentioned earlier for the baseline test using a wireless network. The other data sizes have a
probability of 100% of meeting the impressive acceptable (2.5 ms) latency requirement.

The latency difference between the impressive acceptable latency requirement of a wireless network
(75 ms) and a wired network (2.5 ms) was used to scale the other latency requirements. The scale value
was determined as follows:

75.0 ms

2.5 ms
' 30.0 (3.5)

As determined by the equation, the new less impressive acceptable (200 ms) latency requirement was
downscaled to 6.7 ms.

200.0 ms

30.0
' 6.7 ms (3.6)

The less impressive preferred (50 ms) latency requirement was downscaled to 1.7 ms.

50.0 ms

30.0
' 1.7 ms (3.7)

Page 19

The impressive preferred (25 ms) latency requirement was downscaled to 0.8 ms:

25.0 ms

30.0
' 0.8 ms (3.8)

The new latency requirements, along with the baseline test results using a wired network, are shown in
Figure 3.5. The impressive preferred (0.8 ms) latency requirement is less than the measured latencies,
with a corresponding probability of 0% for all data sizes. For the baseline test using a wireless network,
this was about 100%, except for the 16,384 data size, which was also 0%. Therefore, for this study
it was decided to increase the impressive preferred (0.8 ms) latency requirement to 1.5 ms and the
less impressive preferred (1.7 ms) latency requirement to 2.0 ms, keeping the impressive acceptable
(2.5 ms) latency requirement at 2.5 ms and decreasing the less impressive acceptable (6.7 ms) latency
requirement to 5.0 ms, as shown in Figure 3.4. These values are chosen so that the original latency
requirement ratio from the wireless baseline test stayed intact. The original latency requirement ratio was
0.5 ms for every 25 ms, starting at 1.5 ms.

4 16 64 256 1024 4096 16384
Data size (bytes)

0

1

2

3

4

5

6

7

8

L
at

en
cy

 (
m

s)

0

1

2

3

4

5

6

7

8
Boxplot of the data from the baseline test using a wired network

Less Impressive Acceptable (6.7ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (1.7ms)
Impressive Preferred (0.8ms)

Figure 3.5: The latency boxplot of the baseline test over a wired network with the latency requirements shown as
different colours and symbols. The following operating conditions were used: 0% packet loss, DDS QoS Reliability
’best effort’, and OSs Ubuntu 16.04 ←→ Raspbian.

The resulting probabilities of meeting the less impressive acceptable (5.0 ms), impressive acceptable
(2.5 ms), less impressive preferred (2.0 ms), and impressive preferred (1.5 ms) latency requirements
for the baseline test using a wired network was almost equal to the probabilities of meeting the corre-
sponding latency requirements for the baseline test using a wireless network, as shown in Table 3.2. The
error here is relatively small (≈ 1%).

In conclusion, the results were validated using the latency requirements shown in Table 3.3.

Latency (ms)
Task acceptable preferred
Less impressive 5.0 2.0
Impressive 2.5 1.5

Table 3.3: The acceptable and preferred latency requirements (in milliseconds) for impressive and less impressive
tasks used in this study.

For more detailed results, such as median and maximum latency for both baseline tests, see Table A.1 in
Appendix A.

Page 20

Chapter 4

Results

This chapter addresses the results of the method used to validate whether Data Distribution Service
(DDS) can be used to reliably teleoperate robotic systems used by the National Police of the Nether-
lands (NPN) under specified operating conditions. These operating conditions include packet loss, net-
work overhead, and Operating System (OS) and hardware, as addressed in Sections 4.1, 4.2, and 4.3
respectively.

The information presented in these sections will cover a global interpretation of the results and the prob-
ability of meeting the less impressive acceptable (5.0 ms), impressive acceptable (2.5 ms), less
impressive preferred (2.0 ms), and impressive preferred (1.5 ms) latency requirements. The discus-
sion and conclusions regarding the implications of these results in determining whether DDS can be used
to reliably teleoperate robotic systems will be covered in Chapter 5.

4.1 Research Sub-Question I: Packet Loss

This section presents results regarding the research sub-question of whether DDS meets latency re-
quirements when subjected to different data sizes (ranging from 4 to 16,384 bytes) and DDS Quality
of Service (QoS) Reliability ’reliable’ and ’best effort’ under the operating condition of packet loss. The
operating condition of packet loss has been validated by sending data between the master and the slave
while the program qdisc simulated a certain percentage of packet loss.

1 3 11 1 3 11 1 3 11
100

101

102

103

104

105

L
at

en
cy

 (
m

s)

100

101

102

103

104

105
0%, 8%, and 16% packet loss respectively

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)
QoS Reliability reliable
QoS Reliability best effort

1 3 11 1 3 11 1 3 11
Number of packets

0

50

100

S
am

p
le

 r
ec

ei
ve

d
 (

%
)

0

50

100

Figure 4.1: The latency boxplot of 0%, 8%, and 16% packet loss for DDS QoS Reliability ’reliable’ (striped) and
DDS QoS Reliability ’best effort’ (line) from left to right is shown in the upper graph along with the four latency
requirements. The lower graph shows the corresponding percentage of samples received. Besides these packet
loss percentages, the following operating conditions were used: 0% network overhead, DDS QoS Reliability
’reliable’ and ’best effort’, and OSs Ubuntu 16.04 ←→ Raspbian.

Page 21

The results of introducing different percentages of packet loss and varying data sizes show that when
using DDS QoS Reliability ’reliable’ the overall latency is higher than when using DDS QoS Reliability
’best effort’ (Figure 4.1). The results also show that DDS QoS Reliability ’best effort’ has a higher data
reception rate than DDS QoS Reliability ’reliable’.

4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384

2

4

6

8
L

at
en

cy
 (

m
s)

0

2

4

6

8
0%, 8%, and 16% packet loss respectively

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)

4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384
Data size (bytes)

0

50

100

S
am

p
le

s
re

ce
iv

ed
 (

%
)

0

50

100

Figure 4.2: A latency boxplot of 0%, 8%, and 16% packet loss from left to right is shown in the upper graph along
with the four latency requirements. The lower graph shows the corresponding percentage of samples received for
the test results (black) and the percentage that was expected to be received (grey). Besides these packet loss
percentages, the following operating conditions were used: 0% network overhead, DDS QoS Reliability ’best
effort’, and OSs Ubuntu 16.04 ←→ Raspbian.

For DDS QoS Reliability ’best effort’, the average latency remained the same for different percentages of
packet loss, as shown in Figure 4.2. It should be noted that lost data, which has an infinite latency, was
not included in the results to measure the average latency. This would make the average latency infinite,
and therefore unusable. The lost data was used to determine the data received percentage shown in
Figure 4.2, in the lower bar graph. The expected amounts of data received for DDS QoS Reliability ’best
effort’ are shown in Table 4.1, and are almost equal to the test results presented in Figure 4.2.

Packet loss Number of packets (data size)
(%) 1 (4, 16, 64, 256 and 1,024 bytes) 3 (4,096 bytes) 11 (16,384 bytes)

0 100.0 100.0 100.0
8 92.0 77.9 40.0

16 84.0 59.3 14.7

Table 4.1: The expected percentage of data received is shown in the white area. The amount of packet loss
applied to the tests is on the vertical axes (light grey), and the number of packets or data size is on the horizontal
axes (dark grey). Packet value one is an average of five data sizes, because the maximum amount of bytes one
packet can contain is 1,500 bytes and the given five data sizes are all below this maximum.

Using the DDS QoS Reliability ’reliable’ and introducing packet loss of 8% and higher has a 4.9% or
lower probability (sample receive rate (%) * latency requirement (%)) for all data sizes of meeting the four
latency requirements (5.0 ms, 2.5 ms, 2.0 ms, and 1.5 ms).

When using DDS QoS Reliability ’best effort’ and inducing 8% packet loss for data sizes up to 1,024
bytes, the probability to meet the less impressive acceptable (5.0 ms) requirement has the highest
probability (92.1%). At greater data sizes, packet loss percentages or the other latency requirements the
probability is lower ranging from 92.1% to 0%.

For detailed results, see Appendix A, Table A.2. This table presents the median, standard deviation, worst
case, samples received, and probability of meeting the latency requirements for DDS QoS Reliability
settings ’reliable’ and ’best effort’; 0%, 8%, and 16% packet loss; and for one (equivalent to 4, 16, 64,
256, 1,024 bytes data size), three (equivalent to 4,096 bytes data size), and 11 (equivalent to 16,384
bytes data size) packets.

Page 22

4.2 Research Sub-Question II: Network Overhead

This section presents the results regarding the research sub-question of whether DDS meets latency
requirements when subjected to different data sizes (ranging from 4 to 16,384 bytes) and DDS QoS
Reliability settings ’reliable’ and ’best effort’ used under the operating condition of network overhead. The
operating condition network overhead were validated by sending data between the master and the slave
laptops while the program iPerf induced a certain amount of network overhead.

The results of inducing different percentages of network overhead and sending varying data sizes show
that the latency and percentage data received remained the same when the used bandwidth was less
than the available bandwidth. However, when the used bandwidth exceeded the available or maximum
bandwidth, the latency and packet loss increased. The required bandwidth to exceed the available or
maximum bandwidth can be computed using Equation 4.1. The required bandwidth in order to exceed the
maximum bandwidth used for this test setup is presented in Table 4.2. For this test setup, the bandwidths
required in order to exceed the maximum bandwidth for package sizes one, three, and 11 were 99.6%,
98.3%, and 93.2% respectively. Comparing the test results shown in Figures 4.3 and 4.4 reveals that
at the computed required bandwidth percentages (93.2%, 98.3%, and 99.6%, with a ≈ 1% margin) the
latency increases and packets received decreases. When the used bandwidth was equal to or higher
than the maximum bandwidth, the latency increased and the sample receive rate decreased.

Requi r ed_B and wi d th = M axi mum_B and wi d th −DDS_B and wi d th (4.1)

Number of packets (data size)
1 (4, 16, 64, 256 and 1,024 bytes) 3 (4,096 bytes) 11 (16,384 bytes)

Required Network Overhead
(%)

99.6 98.3 93.2

Table 4.2: The required bandwidth in order to exceed the maximum bandwidth is shown in the white area. These
values were computed by subtracting the used bandwidth from the maximum bandwidth. The maximum
bandwidth was 96 Megabits/s during the tests.

4 16 64 256 1024 4096 16384
0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

94% network overhead

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)

4 16 64 256 1024 4096 16384
Data size (bytes)

0

50

100

S
am

p
le

s
re

ce
iv

ed
 (

%
)

0

50

100

Figure 4.3: The latency boxplot of 94% network overhead is shown in the upper graph along with the four latency
requirements. The lower graph shows the corresponding percentage of samples received. Besides the 94%
network overhead, the following operating conditions were used: 0% packet loss, DDS QoS Reliability ’best effort’,
and OSs Ubuntu 16.04 ←→ Raspbian.

The overall probability of meeting the latency requirements remained equal to the baseline tests except
when the total bandwidth exceeded the maximum bandwidth. The probability of meeting the less impres-
sive acceptable (5.0 ms), impressive acceptable (2.5 ms), less impressive preferred (2.0 ms), and

Page 23

4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384
0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

97, 98, and 99% network overhead respectively
Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)

4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384 4 16 64 256 1024 4096 16384
Data size (bytes)

0

50

100

S
am

p
le

s
re

ce
iv

ed
 (

%
)

0

50

100

Figure 4.4: The latency boxplot of 97%, 98%, and 99% network overhead from left to right is shown in the upper
graph along with the four latency requirements. The lower graph shows the corresponding percentage of samples
received. Besides these network overhead percentages, the following operating conditions were used: 0% packet
loss, DDS QoS Reliability ’best effort’, and OSs Ubuntu 16.04 ←→ Raspbian.

impressive preferred (1.5 ms) latency requirements at the computed required bandwidth percentages
(93.2%, 98.3%, and 99.6%) or higher were 0.0%.

For detailed results, see Appendix A, Table A.3. This table presents the median, standard deviation, worst
case, samples received, and probability of meeting the latency requirements under DDS QoS Reliability
’reliable’ and ’best effort’; between 0% and 99% network overhead; and for one (equivalent to 4, 16, 64,
256, or 1,024 bytes data size), three (equivalent to 4,096 bytes data size), and 11 (equivalent to 16,384
bytes data size) packets.

Page 24

4.3 Research Sub-Question III: Operating Systems and Hardware

This section presents the results regarding the research sub-question of whether DDS meets the latency
requirement when subjected to different data sizes (ranging from 4 to 16,384 bytes) and DDS QoS Reli-
ability ’best effort’ used with different OS and hardware. The OS and hardware conditions were validated
by sending data between the master and the slave while using the following OSs and hardware. The OS
on the left is used on the master, and the OS on the right is used on the slave:

• Ubuntu 16.04 (Laptop) ←→ Ubuntu 16.04 (Laptop)
• Ubuntu 16.04 (Laptop) ←→ Raspbian (Raspberry Pi 3)
• Windows 10 (Laptop) ←→ Ubuntu 16.04 (Laptop)
• Windows 10 (Laptop) ←→ Raspbian (Raspberry Pi 3)

The results shown in Figure 4.5 show that the OS influences the latency. The OS Ubuntu 16.04 had the
lowest average latency, followed by Raspbian and then Windows 10.

1 3 11
Number of packets

0

1

2

3

4

5

6

7

8

L
at

en
cy

 m
ed

ia
n

 (
m

s)

Ubuntu

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)
Data

1 3 11
Number of packets

0

1

2

3

4

5

6

7

8
Raspbian

1 3 11
Number of packets

0

1

2

3

4

5

6

7

8
Windows

Figure 4.5: The median latency of OSs Ubuntu 16.04 ←→ Ubuntu 16.04 is shown on the left, OSs Ubuntu 16.04
←→ Raspbian in the middle, and OSs Windows 10 ←→ Ubuntu 16.04 on the right, along with the four latency
requirements. Besides these OSs, the following operating conditions were used: 0% network overhead, 0%
packet loss, and DDS QoS Reliability ’best effort’.

The results of using resource-rich hardware versus resource-restricted hardware, shown in Figures 4.6
and 4.7, indicate that when using resource-rich hardware the latency median was lower than when us-
ing resource-restricted hardware. The latency median of transferring data between two resource-rich
hardware (shown on the left) was lower than the transfer of data between a resource-rich and resource-
restricted hardware (shown on the right). For this test setup, resource-rich hardware refers to the laptops
running Windows 10 and Ubuntu 16.04, and resource-restricted hardware to the Raspberry Pi 3 running
Raspbian.

The overall probability for all OSs and hardware of meeting the less impressive acceptable (5.0 ms)
latency requirement was above 99.3%, except when sending data between a resource-rich hardware
with Windows 10 and a resource-restricted hardware with OS Raspbian. For sending data with a size of
16,384 bytes, the probability was 0%.

The overall probability of meeting the less impressive acceptable, impressive acceptable (2.5 ms),
less impressive preferred (2.0 ms), and impressive preferred (1.5 ms) latency requirements was
above 97.0% when sending data between a resource-rich hardware with OS Ubuntu 16.04 and a
resource-restricted hardware with OS Raspbian or another resource-rich hardware with OS Ubuntu
16.04. The only exception was when sending data of 16,384 bytes between a resource-rich hardware with
OS Ubuntu 16.04 and a resource-restricted hardware with OS Raspbian. The probability of meeting the

Page 25

1 3 11
Number of packets

0

1

2

3

4

5

6

7

8

L
at

en
cy

 m
ed

ia
n

 (
m

s)

Resource Rich Hardware

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)
Data

1 3 11
Number of packets

0

1

2

3

4

5

6

7

8
Resource Restricted Hardware

Figure 4.6: The median latency of OSs Ubuntu 16.04 ←→ Ubuntu is shown on the left and the median latency of
OSs Ubuntu 16.04 ←→ Raspbian on the right, along with the four latency requirements. Besides these OSs, the
following operating conditions were used: 0% network overhead, 0% packet loss, and DDS QoS Reliability ’best
effort’.

1 3 11
Number of packets

0

1

2

3

4

5

6

7

8

L
at

en
cy

 m
ed

ia
n

 (
m

s)

Resource Rich Hardware

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)
Data

1 3 11
Number of packets

0

1

2

3

4

5

6

7

8
Resource Restricted Hardware

Figure 4.7: The median latency of OSs Windows 10 ←→ Ubuntu 16.04 is shown on the left and the median
latency of OSs Windows 10 ←→ Raspbian is shown on the right, along with the four latency requirements.
Besides these OSs, the following operating conditions were used: 0% network overhead, 0% packet loss, and
DDS QoS Reliability ’best effort’.

impressive acceptable, less impressive preferred, and impressive preferred latency requirements
was 61.2%, 0%, and 0% respectively.

The overall probability of meeting the impressive acceptable, less impressive preferred, and impres-
sive preferred latency requirements was 0.0% when sending data between a resource-rich hardware
with OS Windows 10 and a resource-restricted hardware with OS Raspbian. This also applied to send-
ing data between a resource-rich hardware with OS Windows 10 and a resource-rich hardware with OS
Ubuntu 16.04, except for the probability of meeting the impressive acceptable latency requirement. With
a data size below 4,096 bytes the probability was 42.2% and higher, and the probability of meeting the
less impressive preferred latency requirement with a data size below 1,024 bytes was 13.2%.

Page 26

For detailed results, see Appendix A, Table A.4. This table presents the median, standard deviation, worst
case, samples received, and probability of meeting the latency requirements under DDS QoS Reliability
’best effort’; the combinations of OS and hardware stated earlier; and one (equivalent to 4, 16, 64, 256,
or 1,024 bytes data size), three (equivalent to 4,096 bytes data size), and 11 (equivalent to 16,384 bytes
data size) packets.

Page 27

Chapter 5

Discussion

5.1 Review of the Findings

The results presented in Chapter 4 are discussed in this section. First, a global discussion of the results
will be presented. Second, the main research question of whether Data Distribution Service (DDS) can
be used to reliably teleoperate robotic systems will be discussed. ’Reliably’ refers to the research sub-
question of whether DDS meets the latency requirements when subjected to different data sizes (ranging
from 4 to 16,384 bytes) and DDS Quality of Service (QoS) Reliability settings ’reliable’ and ’best effort’
used under different operating conditions. These operating conditions are packet loss, network overhead,
and Operating System (OS) and hardware, and are discussed with respect to the main question and sub-
questions in Sections 5.1.1, 5.1.2, and 5.1.3.

5.1.1 Results of Introducing Packet Loss

The results of introducing different percentages of packet loss and varying data sizes indicate that when
using DDS QoS Reliability ’reliable’, the overall latency is higher than when using DDS QoS Reliability
’best effort’ (see Section 4.1, Figure 4.1). This was expected, as DDS QoS Reliability ’best effort’ does
not resend lost data and DDS QoS Reliability ’reliable’ does. For DDS QoS Reliability ’best effort’, the
average latency remains the same for different percentages of packet loss (Section 4.1, Figure 4.2).
These average latencies take into account that lost data, which have an infinite latency, are not included
in the results to measure the average latency. Including them would make the average latency infinite,
and therefore unusable.

It was also expected that when using DDS QoS Reliability ’reliable’, there would be a higher percentage
of data received than when using DDS QoS Reliability ’best effort’, since the ’reliable’ setting resends lost
data. The results given in Section 4.1, Figure 4.1 concluded otherwise. This could have been caused
by an early shutdown of the receiver, before all samples were received. The shutdown of the receivers
are linked to the shutdown of the transmitter. The transmitter shuts down when it is finished sending all
10,000 samples. The increased latency due to resending data shifts the arrival times of data. In this
case, a part of the data arrives after the shutdown. Another possibility is that the introduced packet loss
also affected the data being resend. This could have led to multiple resends of the same data, increasing
latency and arrival times even further.

As mentioned in Section 2.4, data is divided into packets and then transferred over the network. The
required number of packets can be computed by dividing the size of the data to be transferred by the
Maximum Transmission Unit (MTU), which was 1,500 bytes during the tests, and than rounding it up to
the nearest integer. For example, a data size of 4,096 bytes will be divided over three packets. If one or
more of these packets are lost, the whole data set is regarded as lost. In other words, all three packets
need to arrive in order to count as data received.

Page 28

Each packet has the same probability of being lost during the tests. This means that at any packet loss
percentage greater than 0%, data that is divided over multiple packets has a lower data receive rate
compared to data that require only one packet. The expected percentage of data received at a given
packet loss, data size, and MTU can be computed using Equation 5.1. This equation only applies to tests
using DDS QoS Reliability ’best effort’, as DDS QoS Reliability ’reliable’ resends missing packets and
should therefore have no data loss.

Dat a_Recei ved =
(

100−packet_loss

100

)⌈
d at a_si ze

MTU

⌉
(5.1)

In conclusion, data with a smaller size than the MTU has the highest chance of being received when
there is a chance of packet loss. Therefore, it is recommended to divide data that has a size greater than
the MTU into smaller pieces of data with a size smaller than the MTU.

Conclusion

DDS QoS Reliability ’reliable’ cannot be used to reliably teleoperate robotic systems used by the National
Police of the Netherlands (NPN). As stated in Section 4.1, using DDS QoS Reliability ’reliable’ and in-
troducing a packet loss of 8% or higher results in a 4.9% or lower probability (sample receive rate (%) *
latency requirement (%)) of all data sizes meeting the less impressive acceptable (5.0 ms), impres-
sive acceptable (2.5 ms), less impressive preferred (2.0 ms), and impressive preferred (1.5 ms)
latency requirements. This means that even though data is resend, it is still not usable due to the latency
exceeding the latency requirement.

DDS QoS Reliability ’best effort’ also cannot be used to reliably teleoperate robotic systems used by
the NPN. The probability to meet the requirement within time is 89.9% at the most optimum situation
besides no packet loss (8% packet loss sending 1 data packet). At greater data sizes or packet loss
percentages this probability is even lower. It is not possible to increase the probability by increasing the
number of samples send. This is because the latency spikes are grouped and randomly distributed (see
Section 5.2.1). For instance, a system requires 100 samples per minute to function and has a packet
loss of 20%. Increasing the transmitted samples to 200 does not work even though 160 is more than the
system requires to function properly. Because increasing the number of samples send from 100 to 200
per minute due to a packet loss of 20% still results in 20% of the samples randomly after one another
missing the deadline, in other words a prolonged time of unusable information, resulting in an unreliable
system.

To sum up, when there is an 8% or higher packet loss and DDS QoS Reliability ’reliable’ or ’best effort’
is set, DDS cannot be used to reliably teleoperate robotic systems used by the NPN. However, for lower
packet loss percentages the reliability increases, since both sample received percentage and meeting
the impressive and less impressive latency requirements increases up to 100%.

5.1.2 Results of Introducing Network Overhead

The results of introducing different percentages of network overhead and varying data sizes show that
the latency and percentage data received remained the same when the used bandwidth was less than
the maximum bandwidth. However, when the used bandwidth exceeded the maximum bandwidth the
latency and packet loss increased. For this test setup, the required bandwidths were 99.6%, 98.3%, and
93.2% in order to exceed the maximum bandwidth for package sizes one, three, and 11 respectively.
Compared with the test results shown in Section 4.2 (Figures 4.3 and 4.4), the latency increases and
packets received decreases at the computed required bandwidth percentages (93.2%, 98.3%, and 99.6%
with a ≈ 1% margin). When the used bandwidth is equal to or higher than the maximum bandwidth, the
latency increases and the sample receive rate decreases. Therefore, it is recommended to have the used
bandwidth take up at most 99% of the maximum bandwidth.

Page 29

Conclusion

DDS can be used to reliably teleoperate robotic systems used by the NPN for less impressive tasks when
the used bandwidth is less than the maximum bandwidth, as the probability of meeting this requirement
is 97.6% or higher. This also applies to impressive tasks with a data size up to 4,096 bytes, as the
probability of meeting the impressive acceptable (2.5 ms) latency requirement is over 96.0%. However,
when sending data with a data size of 16,384 bytes or greater DDS cannot be used to reliably teleoperate
robotic systems during impressive tasks, because the probability of meeting the impressive acceptable
latency requirement is 61.2% and lower.

DDS also cannot be used to reliably teleoperate robotic systems used by the NPN when the used band-
width exceeds the maximum bandwidth. The probability of meeting the less impressive acceptable
(5.0 ms), impressive acceptable (2.5 ms), less impressive preferred (2.0 ms), and impressive pre-
ferred (1.5 ms) latency requirements are ≈ 0%.

5.1.3 Results of Using Different Operating Systems and Hardware

The results of using different OSs, as presented in Section 4.3, Figure 4.5, show that the latency median
of OS Ubuntu 16.04 has the lowest average latency, followed by Raspbian and Windows 10. This was
expected, because Windows 10 had 54 background programs running during the tests, whereas Ubuntu
16.04 had only 17. These latencies were measured using the same hardware with minimum active
programs for both OSs. Also, the results of ping [15], which measures the latency using a different
protocol, measured a higher average latency on Windows 10 compared to Ubuntu 16.04. The average
measured latency for OS Ubuntu was 0.466 ms, whereas the average measured latency for OS Windows
10 was almost twice as high (0.84 ms).

The results of using resource-rich hardware versus resource-restricted hardware, as presented in Section
4.3 (Figures 4.6 and 4.7), indicate that the latency median is lower when using resource-rich hardware
than when using resource-restricted hardware. This was expected, since resource rich-hardware has
more resources available than resource-restricted hardware and therefore can handle data (packets)
faster.

Conclusion

DDS can be used to reliably teleoperate robotic systems used by the NPN with OSs Ubuntu 16.04 and
Raspbian in most situations. The only situation in which DDS cannot be used to reliably teleoperate
robotic systems is for impressive tasks when distributing data between OS Ubuntu 16.04 and OS Rasp-
bian and using a data size of 16,384 bytes. The probability of meeting the impressive acceptable
(2.5 ms) and impressive preferred (1.5 ms) latency requirements are 61.2% and 0% respectively.

In most situations, DDS cannot be used to reliably teleoperate robotic systems used by the NPN when
one of the OSs is Windows 10, except for less impressive tasks, for which the probability of meeting the
less impressive acceptable (5.0 ms) latency requirement is above 99.3%.

Resource-rich hardware and resource-restricted hardware can both be used to reliably teleoperate robotic
systems. However, it is recommended to use resource-rich hardware over resource-restricted hardware,
since resource-rich hardware has the lowest median latencies (' 0.5 ms, ' 0.6 ms, ' 0.7 ms) and
highest probability (' 100%) of meeting the latency requirements for one (equivalent to 4, 16, 64, 256,
or 1,024 bytes data size), three (equivalent to 4,096 bytes data size), and 11 (equivalent to 16,384 bytes
data size) packets.

Page 30

5.2 Other Findings

5.2.1 Grouped Latency Spikes

The test results shown in Figure 5.1 (and a zoomed in version in Figure 5.2), showed that when the
latency spiked it was followed by more consecutive but decreasing latency spikes over time. In this figure,
the circled latency spike has two out of 10 data samples exceeding the impressive acceptable (75 ms)
latency requirement.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Data sample number

0

50

100

150

200

L
at

en
cy

 (
m

s)

0

50

100

150

200

Data samples from baseline test using a wireless network for 4 bytes data size

Less Impressive Acceptable (200ms)
Impressive Acceptable (75ms)
Less Impressive Preferred (50ms)
Impressive Preferred (25ms)

Figure 5.1: The latency for every data sample of the baseline test using a wireless network, along with the four
latency requirements. The following operating conditions were used: 4 bytes data size, 0% packet loss, DDS QoS
Reliability ’best effort’, and OSs Ubuntu 16.04 ←→ Raspbian.

4940 4960 4980 5000 5020 5040 5060 5080 5100 5120
Data sample number

0

50

100

150

200

L
at

en
cy

 (
m

s)

0

50

100

150

200

Data samples from baseline test using a wireless network for 4 bytes data size

Less Impressive Acceptable (200ms)
Impressive Acceptable (75ms)
Less Impressive Preferred (50ms)
Impressive Preferred (25ms)

Figure 5.2: The latency for less data sample of the baseline test over a wireless network so that the grouped
latency spikes are visible (circled), along with the four latency requirements. The following operating conditions
were used: 0% packet loss, DDS QoS Reliability ’best effort’, and OSs Ubuntu 16.04 ←→ Raspbian.

The latency spikes show no direct correlation between the distance of each consecutive data sample.
These grouped latency spikes could harm the system when more than accounted for are exceeding
the latency requirement. More precisely, when the latency of multiple frames or samples exceed the

Page 31

latency requirement, the required frames per second (FPS), or frequency, cannot be met. For example,
the required FPS, or receive frequency, in order to control the system in a reliable way is 10 frames or
samples per second. If the system sends 10 samples or frames per second and two out of 10 have a
latency exceeding the latency requirement and can therefore not be used, the required FPS, or frequency,
cannot be met. Not meeting the FPS, or frequency, requirement means that there is a lack of information
or actions, which could lead to high-level mission failure.

5.3 Conclusion

The main research question of whether DDS can be used to reliably teleoperate robotic systems used
by the NPN under specified operating conditions is answered in this section. For this research, ’reliably’
referred to having a high (' 100%) probability of meeting the latency requirements. In order to answer
the research question, it was divided into three sub-questions: Does DDS meet the latency requirements
when subjected to different data sizes (ranging from 4 to 16,384 bytes) and different types of DDS QoS
settings (DDS QoS Reliability settings ’reliable’ and ’best effort’) under the following operating conditions:

• packet loss,
• network overhead,
• different OS and hardware configurations.

The NPN tasks were categorized as impressive and less impressive, each with their own latency re-
quirements: less impressive acceptable (200 ms), impressive acceptable (75 ms), less impressive
preferred (50 ms), and impressive preferred (25 ms).

The robotic systems are usually teleoperated over a wireless network. However, it was better to use
a wired network for testing purposes because a wired network is more consistent and less sensitive to
noise than a wireless network. The signal-to-noise ratio (SNR) for a wired network is constant and low,
meaning that the results produced during the tests are only affected by the user’s input. Therefore, for
this study it was decided that a wired network would be used.

The latency of a wired network was 5 ms to 75 ms lower than the latency of a wireless network. There-
fore, the latency requirements were scaled accordingly. The latency requirements for a wired network
were scaled down to: less impressive acceptable (5.0 ms), impressive acceptable (2.5 ms), less
impressive preferred (2.0 ms), and impressive preferred (1.5 ms).

The results of validating DDS with the operating condition of packet loss (Section 5.1.1) indicate that
DDS cannot be used to reliably teleoperate robotic systems used by the NPN with a packet loss of 8%
or higher for both DDS QoS Reliability ’reliable’ and ’best effort’. However, DDS can be used to reliably
teleoperate robotic systems used by the NPN when packet loss is ≈ 2%, and 1,026 bytes data size and
DDS QoS Reliability ’best effort’ are used. This will result in ≈ 98% reliability.

The results of validating DDS with the operating condition of network overhead indicate (see Section
5.1.2) that DDS can be used to reliably teleoperate robotic systems used by the police for less impressive
tasks when the used bandwidth is less than the maximum bandwidth. This also applies to impressive
tasks with a data size of up to 4,096 bytes. It does not apply to impressive tasks with a data size of
16,384 bytes. DDS cannot be used to reliably teleoperate robotic systems used by the NPN when the
used bandwidth exceeds the maximum bandwidth.

The results of validating DDS with the operating condition of different OS and hardware configurations
(Section 5.1.3) indicate that DDS can be used to reliably teleoperate robotic systems used by the NPN
with OS Ubuntu 16.04 and Raspbian in most situations. The only situation in which DDS cannot be
used to reliably teleoperate robotic systems is for impressive tasks when distributing data between OS
Ubuntu 16.04 and OS Raspbian using a data size of 16,384 bytes. Also, DDS cannot be used to reliably
teleoperate robotic systems used by the NPN when one of the OSs used is Windows 10, except for less
impressive tasks. Resource-rich hardware and resource-restricted hardware can both be used to reliably
teleoperate robotic systems.

Page 32

5.4 Limitations

The limitations of this research in regards to the implementation of DDS, latency requirements, and
conversion are discussed in this section.

For this research, DDS was not directly validated. Rather, it was validated through an implementation of
DDS, namely OpenDDS. OpenDDS uses all the components of DDS but also adds its own component:
DCPSInfoRepo, as illustrated in Section 2.3.2, Figure 2.7. This component detects when subscriptions
and publications in a domain should be associated and notifies the Publisher and Subscriber to make
the associations. This means that the latency at the start of the tests could be affected by the master’s
Publisher making an association with the slave’s Subscriber, and vice versa. The latency during the tests
should not be affected by this.

For the robotic systems controlled by the NPN, each police officer has a different latency requirement to
perform their task with a high success rate. Some can still successfully perform their task with a high
latency, whereas others require a very low latency. The latency requirements from other studies and
those used for this research are therefore not applicable to every police officer. For example, some police
officers can still successfully perform their impressive task with 200 ms latency, whereas for this research
the impressive preferred and impressive acceptable latency requirements were determined to be
25 ms and 75 ms respectively. The latency requirements used for this research should be interpreted as
guidelines rather than rules.

The robotic systems are usually teleoperated over a wireless network. However, for testing purposes it
was better to use a wired network because a wired network is more consistent and less sensitive to noise.
The method that was used to convert the results of a wired network to a wireless network equivalency
involved scaling the latency requirements (Section 3.2). The latency requirements were scaled twice, and
thus induced possible errors twice. However, the latency requirements for the wireless network should
be used as a guideline and are therefore flexible with room for errors.

5.5 Recommendations

For this project, most of the possible operating conditions were tested. However, there are still some oper-
ating conditions that future research could examine. Some of these operating conditions could potentially
increase the probability of meeting latency requirements.

• In the case that multiple data is transferred, DDS QoS transport priority can be used to prioritize
important data over less important data. This will likely affect the latency and should therefore be
tested in future studies.

• The wireless baseline test was performed using WiFi. Future research could test a wireless network
alternative, for example, 4G.

In addition to these recommendations regarding future work, several recommendations could be made
regarding the results discussed in Section 5.1. These recommendations are presented below.

• Data with a size smaller than the MTU has the highest chance of being received when there is a
chance of packet loss. Therefore, it is recommended to divide data, that has a size greater than
the MTU over pieces of data with a size smaller than the MTU.

• When the used bandwidth is equal to or higher than the maximum bandwidth, the latency increases
and the sample receive rate decreases. Therefore, it is recommended to have the used bandwidth
take up at most 99% of the maximum bandwidth.

• The OS Ubuntu 16.04 had the lowest median latency of the three tested OSs (Ubuntu 16.04, Win-
dows 10, Raspbian) and the highest probability of meeting the latency requirements. OS Windows
10 had the highest median latency and the lowest probability of meeting the latency requirements,
especially for the impressive latency requirements. Therefore, it is recommended that OS Ubuntu
16.04 or Raspbian is used, and OS Windows 10 is avoided.

• Resource-rich hardware and resource-restricted hardware can both be used to reliably teleoperate
robotic systems. However, it is recommended that resource-rich hardware is used over resource-
restricted hardware, as resource-rich hardware had the lowest median latency (' 0.5 ms, ' 0.6 ms,
' 0.7 ms) and the highest probability (' 100%) of meeting the latency requirements.

Page 33

List of Acronyms

DDS Data Distribution Service
RTI Real-Time Innovations
RaM Robotics and Mechatronics
UDP User Datagram Protocol
Hz Hertz
QoS Quality of Service
MTU Maximum Transmission Unit
OS Operating System
SNR signal-to-noise ratio
BER bit error ratio
OMG Object Management Group
RoVe Robots for Security
NPN National Police of the Netherlands
FPS frames per second
RTT round-trip time

Page 34

Appendix A

Results

More detailed test results from the baseline tests, latency spikes, packet loss, network overhead, and
Operating System (OS) and hardware are presented in this appendix. The relation between the number
of packets and latency was greater than the relation between data size and latency. Therefore, the results
are displayed inside the tables over number of packets instead of data size. This also helps to provide a
clearer overview of the test results, as some tables contain a lot of information.

A.1 Baseline Results

Data size (bytes)
4 16 64 256 1024 4096 16384

Wireless (ms) 5.1 5.4 5.6 6.0 5.6 5.5 70.1
Median

Wired (ms) 0.9 1.0 1.0 1.0 1.1 1.4 2.4
Difference - 4.2 4.4 4.5 4.9 4.5 4.1 67.6

Wireless (ms) 99.6 65.8 73.5 85.8 134.2 261.2 363.1
Worst case

Wired (ms) 5.1 5.4 5.7 2.6 4.0 5.4 3.8
Difference - 94.5 60.4 67.8 83.2 130.2 255.8 359.3

Table A.1: Wired and wireless baseline test results showing the median, the worst case or maximum latency, and
the difference between the wired and wireless networks’ medians and maximums.

Page 35

A.2 Packet Loss Results

QoS P.L. P Med. Std. WC Samp. Rec. Imp. Less Imp. Imp. Less Imp.
(%) (ms) (ms) (ms) (%) Pref. Pref. Accept. Accept.

1 1.1 0.2 9.1 100.0 96.4 98.2 99.2 100.0
0 3 1.5 0.3 6.0 100.0 5.8 94.0 94.8 100.0

11 2.6 0.2 8.8 100.0 0.0 0.0 0.2 99.9
1 381.7 364.2 2402.9 49.4 9.1 9.5 9.5 9.8

8 3 6699.1 4684.9 16503.3 38.6 0.0 0.0 0.0 0.0
11 50159.3 28013.0 94639.1 5.5 0.0 0.0 0.0 0.0
1 722.0 501.0 3652.1 43.3 0.5 0.5 0.5 0.5

16 3 26069.4 12327.7 45565.8 24.2 0.0 0.1 0.1 0.2

R
el

ia
bl

e

11 71500.8 26492.1 99222.1 1.4 0.0 0.0 0.0 0.0
1 1.0 0.1 5.7 100.0 99.4 99.9 100.0 100.0

0 3 1.4 0.1 5.4 100.0 97.0 99.9 100.0 100.0
11 2.4 0.1 3.8 100.0 0.0 0.0 61.2 100.0
1 1.0 0.2 6.7 92.1 97.6 98.8 99.8 100.0

8 3 1.6 0.2 8.1 78.7 73.2 97.9 99.5 100.0
11 2.5 0.2 7.1 36.1 0.0 0.0 6.8 100.0
1 1.0 0.2 7.1 84.3 94.6 99.4 99.8 100.0

16 3 1.5 0.2 3.6 58.0 59.6 95.8 99.6 100.0

B
es

tE
ffo

rt

11 2.5 0.3 6.9 11.9 0.0 0.0 6.8 99.7

Table A.2: The measured and computed median (Med.), standard deviation (Std.), worst case or maximum
latency (WC), information or samples received (Samp. Rec.), and the probability of meeting the impressive (Imp.)
and less impressive (Less Imp.) preferred (Pref.) and acceptable (Accept.) latency requirements at different
numbers of packets (P), different percentages of packet loss (P.L.), and different Data Distribution Service (DDS)
Quality of Services (QoSs).

Page 36

A.3 Network Overhead Results

QoS N P Med. Std. WC Samp. Rec. Imp. Less Imp. Imp. less Imp.
(%) (ms) (ms) (ms) (%) Pref. Pref. Accept. Accept.

1 1.1 0.2 9.1 100.0 96.4 98.2 99.3 100.0
0 3 1.5 0.3 5.6 100.0 5.8 94.0 94.8 100.0

11 2.6 0.2 8.8 100.0 0.0 0.0 0.2 99.9
1 1.2 0.2 6.4 100.0 94.8 98.1 98.8 100.0

50 3 1.7 0.3 5.3 100.0 0.1 88.5 97.5 99.9
11 2.9 0.2 9.3 100.0 0.0 0.0 0.0 99.8
1 1.4 0.4 8.3 100.0 70.7 96.5 97.7 99.7

95 3 1.9 0.4 7.9 100.0 0.1 88.5 96.2 99.3

R
el

ia
bl

e

11 4.4 8914.0 35660.3 0.2 0.0 0.0 0.0 67.8
1 1.0 0.1 5.7 100.0 99.4 99.9 100.0 100.0

0 3 1.4 0.1 5.4 100.0 97.0 99.9 100.0 100.0
11 2.4 0.1 3.8 100.0 0.0 0.0 61.2 100.0
1 1.1 0.2 14.6 100.0 97.2 98.9 99.8 100.0

50 3 1.5 0.1 6.4 100.0 50.7 98.8 99.7 100.0
11 2.8 0.2 4.4 100.0 0.0 0.0 0.0 100.0
1 1.3 0.3 9.0 100.0 87.3 97.3 98.5 100.0

90 3 1.8 0.2 7.5 100.0 8.2 95.6 98.1 100.0
11 2.6 0.3 8.7 100.0 0.0 0.0 0.0 99.7
1 1.3 0.3 9.3 100.0 88.8 97.8 98.8 100.0

92 3 1.8 0.2 5.5 100.0 18.0 94.3 99.5 100.0
11 2.9 0.6 9.5 100.0 0.0 0.0 0.0 97.6
1 1.3 0.2 10.8 100.0 91.1 98.2 99.1 100.0

94 3 1.8 0.3 7.2 100.0 8.9 92.8 96.0 99.9
11 5.8 0.3 7.7 12.0 0.0 0.0 0.0 1.8
1 1.3 0.3 9.9 100.0 86.0 96.8 98.5 100.0

95 3 1.5 0.2 5.9 100.0 41.1 97.0 99.3 100.0
11 6.1 0.5 10.5 3.7 0.0 0.0 0.0 2.5
1 1.4 0.2 9.4 100.0 80.8 99.0 99.7 100.0

96 3 1.5 0.2 5.0 100.0 19.8 97.0 99.3 100.0
11 6.0 1.0 7.1 0.3 0.0 0.0 0.0 24.1
1 1.3 0.3 7.8 100.0 88.6 97.9 98.9 100.0

97 3 1.5 0.2 4.8 100.0 42.4 97.7 99.4 100.0
11 6.2 1.3 7.4 0.2 0.0 0.0 0.0 40.0
1 1.4 0.3 5.2 100.0 68.5 97.0 98.9 100.0

98 3 5.2 0.3 8.8 100.0 0.0 0.0 0.0 43.8
11 4.9 1.2 6.6 0.1 0.0 0.0 0.0 55.6
1 3.2 0.6 10.4 98.1 5.8 25.4 39.9 82.3

99 3 5.4 0.8 6.1 1.0 0.0 0.0 0.0 28.7

B
es

tE
ffo

rt

11 5.4 1.0 6.7 0.1 0.0 0.0 0.0 33.3

Table A.3: The measured and computed medians (Med.), standard deviations (Std.), worst cases or maximum
values (WC), information or samples received (Samp. Rec.), and probability of meeting the impressive (Imp.)
preferred (Pref.) and acceptable (Accept.) and less impressive (Less Imp.) preferred and acceptable latency
requirements at different numbers of packets (P), different network overhead percentages (N), and different DDS
QoSs.

Page 37

A.4 Operating Systems and Hardware Results

OS P. Med. Std. WC Samp. Rec. Imp. Less Imp. Imp. Less Imp.
master ←→ slave (ms) (ms) (ms) (%) Pref. Pref. Accept. Accept.

1 0.5 0.2 48.3 100.0 99.5 99.9 99.9 100.0
Ubuntu ←→ Ubuntu 3 0.6 0.0 2.5 100.0 100.0 100.0 100.0 100.0

11 0.7 0.1 4.4 100.0 99.9 100.0 100.0 100.0
1 1.0 0.1 5.7 100.0 99.4 99.9 100.0 100.0

Ubuntu ←→ Raspbian 3 1.4 0.1 5.4 100.0 97.0 99.9 100.0 100.0
11 2.4 0.1 3.8 100.0 0.0 0.0 61.2 100.0
1 2.1 0.3 31.7 100.0 0.0 13.2 97.2 99.8

Windows 10 ←→ Ubuntu 3 2.5 0.3 11.9 100.0 0.0 0.0 42.2 99.7
11 2.9 0.6 32.7 100.0 0.0 0.0 0.0 99.6
1 3.2 0.5 30.7 100.0 0.0 0.0 0.0 99.3

Windows 10 ←→ Raspbian 3 4.4 0.2 9.3 100.0 0.0 0.0 0.0 99.6
11 6.6 0.2 14.9 100.0 0.0 0.0 0.0 0.0

Table A.4: The OSs used for the master and the slave and the number of packets (P.) are on the vertical axes
coloured in light grey. The median (Med.), standard deviation (Std.), worst case or maximum value (WC),
percentage of samples received (Samp. Rec.), and the probability of meeting the impressive (Imp.) and less
impressive (Less Imp.) preferred (Pref.) and acceptable (Accept.) latency requirements are on the horizontal axes
coloured in dark grey.

4 16 64 256 1024 4096 16384
Data size (bytes)

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

OS: Ubuntu -> Ubuntu

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)

4 16 64 256 1024 4096 16384
Data size (bytes)

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

OS: Windows 10 -> Ubuntu

Figure A.1: The latency boxplot of OSs Ubuntu 16.04 ←→ Ubuntu 16.04 is shown on the left and the latency
boxplot of OS Windows 10 ←→ Ubuntu 16.04 is shown on the right, along with the four latency requirements. In
addition to these OSs, the following operating conditions were used: 0% network overhead, 0% packet loss, and
DDS QoS Reliability ’best effort’.

Page 38

4 16 64 256 1024 4096 16384
Data size (bytes)

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

OS: Ubuntu -> Raspbian

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)

4 16 64 256 1024 4096 16384
Data size (bytes)

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

OS: Windows 10 -> Raspbian

Figure A.2: The latency boxplot of the OSs Ubuntu 16.04 ←→ Raspbian is shown on the left and the latency
boxplot of the OSs Windows 10 ←→ Raspbian is shown on the right, along with the four latency requirements.
Besides these OSs, the following operating conditions were used: 0% network overhead, 0% packet loss, and
DDS QoS Reliability ’best effort’.

4 16 64 256 1024 4096 16384
Data size (bytes)

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

OS: Ubuntu -> Ubuntu

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)

4 16 64 256 1024 4096 16384
Data size (bytes)

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

OS: Ubuntu -> Raspbian

Figure A.3: The latency boxplot of the OSs Ubuntu 16.04 ←→ Ubuntu 16.04 is shown on the left and the latency
boxplot of the OSs Ubuntu 16.04 ←→ Raspbian is shown on the right, along with the four latency requirements.
Besides these OSs, the following operating conditions were used: 0% network overhead, 0% packet loss, and
DDS QoS Reliability ’best effort’.

A.5 Latency Spikes Results

Page 39

4 16 64 256 1024 4096 16384
Data size (bytes)

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

OS: Windows 10 -> Ubuntu

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)

4 16 64 256 1024 4096 16384
Data size (bytes)

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

OS: Windows 10 -> Raspbian

Figure A.4: The latency boxplot of the OSs Windows 10 ←→ Ubuntu 16.04 is shown on the left and the latency
boxplot of the OSs Windows 10 ←→ Raspbian is shown on the right, along with the four latency requirements.
Besides these OSs, the following operating conditions were used: 0% network overhead, 0% packet loss, and
DDS QoS Reliability ’best effort’.

4 16 64 256 1024 4096 16384
Data size (bytes)

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

OS: Windows 10 -> Ubuntu

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)

4 16 64 256 1024 4096 16384
Data size (bytes)

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

0

2

4

6

8

10

OS: Ubuntu -> Raspbian

Figure A.5: The latency boxplot of OS Windows 10 ←→ Ubuntu 16.04 is shown on the left and the latency boxplot
of the OS Ubuntu 16.04 ←→ Raspbian is shown on the right, along with the four latency requirements. Besides
these OSs, the following operating conditions were used: 0% network overhead, 0% packet loss, and QoS
Reliability ’best effort’.

Page 40

4 16 64 256 1024 4096 16384
Data size (bytes)

0

50

100

150

200

L
at

en
cy

 (
m

s)

0

50

100

150

200

Latency for every data sample and size from the baseline test using a wireless network

Less Impressive Acceptable (200ms)
Impressive Acceptable (75ms)
Less Impressive Preferred (50ms)
Impressive Preferred (25ms)

Figure A.6: The latency for every data sample and size of the baseline test over a wireless network along with the
four latency requirements. The following operating conditions were used: 0% packet loss, DDS QoS Reliability
’best effort’, and OSs Ubuntu 16.04 ←→ Raspbian.

4 16 64 256 1024 4096 16384
Data size (bytes)

0

1

2

3

4

5

6

L
at

en
cy

 (
m

s)

0

1

2

3

4

5

6
Latency for every data sample and size from the baseline test using a wired network

Less Impressive Acceptable (5.0ms)
Impressive Acceptable (2.5ms)
Less Impressive Preferred (2.0ms)
Impressive Preferred (1.5ms)

Figure A.7: The latency for every data sample and size of the baseline test over a wired network along with the
four latency requirements. The following operating conditions were used: 0% packet loss, DDS QoS Reliability
’best effort’, and OSs Ubuntu 16.04 ←→ Raspbian.

Page 41

Appendix B

User Manual

Checklist before starting the tests:

• Check that WiFi is disabled.
• Close unused programs (especially ones that use the Internet), such as Dropbox, Firefox, and virus

scanners.
• Delete existing test results in order to watch progress.
• Check if the bash script is correct (it might have been changed for some minor tests).
• Check if the master/slave code has the desired functionality. Sometimes the functionally is added

or disabled for more specific tests.

The following start sequence is used for every test:

1. Open the folder in which the test results will be placed in order to watch the test’s progress. It
is preferable to open the sub folder, since it generates the file corresponding with the current test
whereas the pub folder generates the file after the current test is completed.

2. On the slave: open one terminal and set its path to the folder that contains all of the slave code.
3. Execute the bash script or command of slave subscriber.
4. On the master: open two terminals and set their path to the folder that contains all of the master

code.
5. On one terminal: execute the bash script or command of master subscriber.
6. On the other terminal: execute the bash script or command of master publisher.

B.1 Automatic Testing

In order to run multiple tests automatically after one another, Master Subscriber, Master Publisher and
Slave Subscriber have adjustable input parameters. The adjustable input parameters are: reliability,
deadline (ns), latency (ns), priority, frequency (µs), data size (32 bi t s), packet loss (%) and file name.

Fifteen bash scripts are created to automatically run the basic tests, saving time in the long run. The
Master Publisher, Master Subscriber and Slave Subscriber, each have one bash script for packet loss
and network overhead and three for different test setups.

Specific bash script command sequence for testing the operating condition packet loss, with Operating
System (OS) Ubuntu 16.04 on the master and OS Raspbian on the slave:

• Slave:
1. Subscriber: ./rtb_slave_1_PL

• Master:
1. Subscriber: ./rtb_sub_1_PL
2. Publisher: ./rtb_pub_1_PL

Specific bash script command sequence for testing the operating condition network overhead, with OS
Ubuntu 16.04 on the master and OS Raspbian on the slave:

• Slave:
1. separate terminal: iperf -s -u -i 1

(a) first argument: indicates server

Page 42

(b) second argument: indicates that it uses the data transfer protocol User Datagram Proto-
col (UDP).

(c) third and fourth argument: show every second the occupied bandwidth by iperf.
2. Subscriber: ./rtb_slave_2_NO 90 1

– first argument: network overhead % for folder name
– second argument: Quality of Service (QoS) Reliability, 1 = reliable and 2 = best effort

• Master:
1. separate terminal: iperf -c 10.42.0.210 -u -t 10000000000 -b 86m -i 1

(a) first argument: indicates its a client
(b) second argument: IP address of slave
(c) third argument: indicates that it uses the data transport protocol UDP
(d) fourth and fifth argument: indicates the total amount of time in seconds to transfer data

with a certain bandwidth.
(e) sixth and seventh argument: the bandwidth to be occupied in megabits per second, in

this case 86 megabits per second.
(f) eighth and ninth argument: one second interval to show the current bandwidth

2. Subscriber: ./rtb_sub_2_NO 90 1
– first argument: current network overhead %, this is used for the folder name.
– second argument: QoS Reliability, 1 = reliable and 2 = best effort

3. Publisher: ./rtb_pub_2_NO 90 1
– first argument: network overhead % for folder name
– second argument: QoS Reliability. 1 = reliable and 2 = best effort

Specific bash script command sequence for testing the OS, with OS Ubuntu on the master and OS
Ubuntu on the slave:

• Slave:
1. Subscriber: ./rtb_slave_3_linux

• Master:
1. Subscriber: ./rtb_sub_3_linux
2. Publisher: ./rtb_pub_3_linux

Specific bash script command sequence for testing the OS, with OS Windows 10 on the master and OS
Raspbian on the slave:

• Slave:
1. Subscriber: ./rtb_slave_3_raspbian

• Master:
1. Subscriber: rtb_sub_3_raspbian
2. Publisher: rtb_pub_3_raspbian

Specific bash script command sequence for testing the OS, with OS Windows 10 on the master and OS
Ubuntu on the slave:

• Slave:
1. Subscriber: ./rtb_slave_3_windows

• Master:
1. Subscriber: rtb_sub_3_linux
2. Publisher: rtb_pub_3_linux

B.2 Manually Testing

There are a maximum of eight input parameters: reliability, deadline (ns), latency (ns), priority, frequency
(µs), data size (32bi t s), packet loss (%) and file name. All are unsigned numbers except for file loca-
tion/name. Reliability, deadline, latency and priority are Data Distribution Service (DDS) QoS, of which
only reliability is used.

Master Publisher uses all input parameters. Master Subscriber uses only reliability, deadline, latency and
file location/name. Laptop Slave uses only reliability, deadline, latency, data size and file location/name.

The following command example is used on Master Subscriber :

Page 43

• ./subscriber -DCPSConfigFile rtps.ini 2 57142857 0 FILE_LOCATION/File_name.txt
1. third argument: DDS QoS Reliability, 1 = reliable, 2 = best effort.
2. fourth argument: Deadline (ns) is the time within a sample should arrive.
3. fifth argument: DDS QoS Latency budget (ns).
4. sixth argument: File location plus name to print the test results to.

The following command example is used on Master Publisher :

• ./publisher -DCPSConfigFile rtps.ini 2 57142857 0 0 20000 4 0 FILE_LOCATION/File_name.txt
1. third argument: DDS QoS Reliability, 1 = reliable, 2 = best effort.
2. fourth argument: Deadline (ns) is the time within a sample should arrive.
3. fifth argument: DDS QoS Latency budget (ns).
4. sixth argument: DDS QoS Priority.
5. seventh argument: Frequency, or time between each consecutive data sample in µs.
6. eighth argument: Data size, where the filled number is multiplied with 32 bits. In this example

the number 4 stands for 4*32 = 128 bits or 16 bytes.
7. ninth argument: the required Packet loss in percentages (%)
8. tenth argument: File location plus name to print the test results to.

The following command example is used on Slave Subscriber :

• ./subscriber -DCPSConfigFile rtps.ini 1 57142857 0 4 FILE_LOCATION/File_name.txt
1. third argument: DDS QoS Reliability, 1 = reliable, 2 = best effort.
2. fourth argument: Deadline (ns) is the time within a sample should arrive.
3. fifth argument: DDS QoS Latency budget (ns).
4. sixth argument: Data size, where the filled number is multiplied with 32 bits. In this example

the number 4 stands for 4*32 = 128 bits or 16 bytes.
5. seventh argument: File location plus name to print the test results to.

Page 44

Appendix C

Compiling Testbench

Instructions for building the code for Master Subscriber, Master Publisher and Slave Subscriber (assum-
ing OpenDDS-3.11 or higher is installed with ACE, TAO, DDS, and MPC correctly installed and config-
ured):

Step 1: Open up a new terminal and locate to the folder containing the main code of the master or the
slave. The following steps include command lines that should be entered after one another.

Step 2: Generate the export file.

• On a Linux-based Operating System (OS):
– $ACE_ROOT/bin/generate_export_file.pl TestBenchCommon > TestBench-

Common_Export.h
• On a Windows-based OS:

– %ACE_ROOT%/bin/generate_export_file.pl TestBenchCommon > TestBench-
Common_Export.h

Step 3: Run Make Project Creator to generate build files.

• On a Linux-based OS:
– $ACE_ROOT/bin/mwc.pl -type gnuace TestBench.mwc

• On a Windows-based OS:
– perl %ACE_ROOT%\bin\mwc.pl -type vc14 TestBench.mwc

Step 4: Build the application.

• On a Linux-based OS:
– make

• On a Windows-based OS:
– TestBench.sln
– Inside this environment right mouse click on "solution TestBench" and click "build solution"
– PS: Add #include <sstream> when using sstreams (in publisher) and #include

<ace/OS_NS_time.h> when using ACE_OS times (in DataReader)

Page 45

Bibliography

[1] R. Andringa. Politie zet drone in boven verkeersongelukken. Binnenland, 2017.

[2] Bandwidth (computing). [online]. Available: https://en.wikipedia.org/wiki/
Bandwidth_(computing). [Accessed: 2018-03-21].

[3] P. Bellavista, A. Corradi, L. Foschini, and A. Pernafini. Data distribution service (dds): A performance
comparison of opensplice and rti implementations. pages 377–383, 2013. cited By 4.

[4] Bit error rate . [online]. Available: https://en.wikipedia.org/wiki/Bit_error_
rate. [Accessed: 2018-03-22].

[5] B. S. Blanchard and W. J. Fabrycky. Systems Engineering and Analysis. Pearson, fifth edition, 2013.

[6] J. Y. C. Chen and J. E. Thropp. Review of low frame rate effects on human performance. IEEE
Trans. Systems, Man, and Cybernetics, Part A, 37(6):1063–1076, 2007.

[7] M. Claypool and D. Finkel. The effects of latency on player performance in cloud-based games. In
Proceedings of the 13th Annual Workshop on Network and Systems Support for Games, NetGames
’14, pages 2:1–2:6, Piscataway, NJ, USA, 2014. IEEE Press.

[8] Data Distribution Service. [online]. Available: http://portals.omg.org/dds/. [Accessed:
2018-03-06].

[9] S. Haykin and M. Moher. Introduction to Analog & Digital Communications. Wiley, second edition,
2006.

[10] S. Jörg, A. Normoyle, and A. Safonova. How responsiveness affects players’ perception in digital
games. In ACM Symposium on Applied Perception 2012, SAP ’12, Los Angeles, CA, USA - August
03 - 04, 2012, pages 33–38, 2012.

[11] Modulation technique. [online]. Available: https://en.wikipedia.org/wiki/
Modulation. [Accessed: 2018-03-21].

[12] Network overhead. [online]. Available: https://en.wikipedia.org/wiki/Overhead_
(computing). [Accessed: 2018-03-17].

[13] Object Management Group (OMG). Data Distribution Service for Real-time Systems, Version
1.2. OMG Document Number formal/07-01-01, Available: http://www.omg.org/cgi-bin/
doc?formal/07-01-01. [Accessed: 2018-03-17].

[14] OpenDDS. [online]. Available: http://opendds.org/about/dds_overview.html. [Ac-
cessed: 2018-03-17].

[15] Ping (networking utility) . [online]. Available: https://en.wikipedia.org/wiki/Ping_
(networking_utility). [Accessed: 2018-03-22].

[16] S. Stramigioli and K. J. Russcher. RoVe robots for security. Available: https://www.ram.ewi.
utwente.nl/research/project/rove.html. [Accessed: 2018-03-06].

[17] Videoconferencing Traffic: Network Requirements . [online]. Available: https:
//community.jisc.ac.uk/library/videoconferencing-booking-service/
videoconferencing-traffic-network-requirements. [Accessed: 2018-03-22].

[18] J. Yang, K. Sandström, T. Nolte, and M. Behnam. Data distribution service for industrial automation.
In Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory
Automation, ETFA 2012, Krakow, Poland, September 17-21, 2012, pages 1–8, 2012.

Page 46

https://en.wikipedia.org/wiki/Bandwidth_(computing)
https://en.wikipedia.org/wiki/Bandwidth_(computing)
https://en.wikipedia.org/wiki/Bit_error_rate
https://en.wikipedia.org/wiki/Bit_error_rate
http://portals.omg.org/dds/
https://en.wikipedia.org/wiki/Modulation
https://en.wikipedia.org/wiki/Modulation
https://en.wikipedia.org/wiki/Overhead_(computing)
https://en.wikipedia.org/wiki/Overhead_(computing)
http://www.omg.org/cgi-bin/doc?formal/07-01-01
http://www.omg.org/cgi-bin/doc?formal/07-01-01
http://opendds.org/about/dds_overview.html
https://en.wikipedia.org/wiki/Ping_(networking_utility)
https://en.wikipedia.org/wiki/Ping_(networking_utility)
https://www.ram.ewi.utwente.nl/research/project/rove.html
https://www.ram.ewi.utwente.nl/research/project/rove.html
https://community.jisc.ac.uk/library/videoconferencing-booking-service/videoconferencing-traffic-network-requirements
https://community.jisc.ac.uk/library/videoconferencing-booking-service/videoconferencing-traffic-network-requirements
https://community.jisc.ac.uk/library/videoconferencing-booking-service/videoconferencing-traffic-network-requirements

	1 Introduction
	1.1 Context
	1.2 Research Questions
	1.3 Approach
	1.4 Outline

	2 Background Information
	2.1 Reliability
	2.2 Latency Requirements
	2.3 Data Distribution Service
	2.4 Operating Conditions
	2.5 Conclusion

	3 Method
	3.1 Test Setup
	3.2 Conversion

	4 Results
	4.1 Research Sub-Question I: Packet Loss
	4.2 Research Sub-Question II: Network Overhead
	4.3 Research Sub-Question III: Operating Systems and Hardware

	5 Discussion
	5.1 Review of the Findings
	5.2 Other Findings
	5.3 Conclusion
	5.4 Limitations
	5.5 Recommendations

	A Results
	A.1 Baseline Results
	A.2 Packet Loss Results
	A.3 Network Overhead Results
	A.4 Operating Systems and Hardware Results
	A.5 Latency Spikes Results

	B User Manual
	B.1 Automatic Testing
	B.2 Manually Testing

	C Compiling Testbench

