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Abstract

At every interface with a superconductor, there is a probability that an incident electron is reflected
as a spin-flipped hole, which is known as Andreev reflection. In certain geometries consisting of a
topological insulator and an s-wave superconductor, Andreev reflection can lead to the formation of
a Majorana bound state (MBS). Since a MBS obeys non-Abelian statistics, it can serve as a build-
ing block for topological quantum bits in future devices. In this thesis, we investigate interfaces of
topological insulators and superconductors, both theoretically and experimentally.

The transport through topological Josephson junctions has a sub-harmonic gap structure as a result
of multiple Andreev reflections. Oscillations in the current occur when an electron can overcome
the energy gap after performing n−1 Andreev reflections. We show that in a two dimensional topo-
logical Josephson junction, this energy gap depends on the Fermi surface mismatch between the
superconductor and the topological insulator. This implies that the full spectrum shifts according
to the mismatch, although this is hardly visible after angle averaging the current. Furthermore, we
show that in the absence of an applied voltage, a bound state can exist with the same energy as
seen in chiral p-wave superconductors.

Nowadays, there are two types of experiments that show the existence of MBSs; a zero bias con-
ductance peak (ZBCP) in the differential conductance of a nanowire and a 4π periodic current-
phase relation in topological Josephson junctions. It is our goal to investigate the hypothesis that
these two experiments describe the same physics. We do this by probing the ZBCP in a normal
metal/topological insulator/superconductor junction. If the junction is small enough, this system
is able to host a surface Andreev bound state (SABS), which is characterised by Andreev reflection
at the superconductor interface and normal reflection at the other interface. We present the spec-
ulative idea that the SABS is a MBS which oscillates with magnetic field, which is known as the
Aharonov-Bohm effect.
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Introduction

Our technology is quickly developing, but our conventional transistor-based computers cannot keep
up. The operating frequency of our computers is restricted, they dissipate large amounts of heat and
the limit of downscaling the physical size is almost reached. We are in need of a new technology that
can outperform the conventional computer in terms of operating frequency. A promising candidate
is the so-called quantum computer.
a A conventional, transistor-based computer uses bits that can only represent the values 0 and 1.
It returns 0 if the transistor is “off” and 1 if it is “on”. A quantum computer utilizes the quantum
properties of superposition, which means that a quantum bit (qubit) can be in both states at the
same time. It adapts the values 0 and 1 simultaneously and therefore, it is twice as fast. Two qubits
hold four values at once: 00, 01, 10 and 11. The number of values as a function of the number of
bits in a conventional computer scales as n, while in a quantum computer, it scales as 2n, implying
that it is exponentially faster. Only 20 qubits are needed to take over a million values. [1, 2]
a The idea of the quantum computer was initially proposed by Richard Feynman in 1981. He
stated that accurate and efficient simulation of a quantum mechanical system is impossible on a
conventional computer. They cannot handle the complexity and the exponentially growing amount
of data that is inherent to quantum systems. A quantum computer, on the other hand, “is built of
quantum mechanical elements which obey quantum mechanical laws” and should therefore be able to
do the job. [3] Besides being used for fundamental quantum physics simulations, other applications
are in, e.g., information theory, engineering of molecules, cryptography and language theory. [4]
Moreover, the quantum computer will most likely have an even bigger impact than we can imagine.
The conventional computer was first built solely to simulate Newtonian mechanics. In the 1950s,
people could not imagine why anyone would want a computer in their home. A quantum computing
expert at MIT claims that replacing our conventional computers with quantum computers will have
the same huge impact as the conventional computer originally had; it is going to be a milestone in
technology. [5]
a At the moment, quantum computers have been realised at a proof of concept scale, but there
are still many challenges to overcome. [6] One of the greatest challenges is protecting the qubits from
noise from the surroundings that perturb the quantum states. [4] Current quantum computers can
hold their quantum states for only a fraction of a second before becoming too seriously perturbed.
IBM’s 50 qubit computer that was built in 2017 is able to hold a quantum state for only 90
microseconds. [7]
a A possible solution to this problem is the idea of a topological quantum computer, which is
presumably less sensitive to noise and therefore makes the quantum computer more stable. In these
topological systems, the role of the qubit is fulfilled by a so-called Majorana bound state (MBS). A
system consisting of multiple MBSs obeys non-Abelian statistics, which implies that if the system
is manipulated by interchanging the positions of the MBSs, the final quantum state depends on the
order in which the MBSs are interchanged. [8] This is illustrated in the figure below.



2 Introduction

Figure 1: The order of interchanging results in a different state,
such that the final states of A and B are different. From [9].

The quantum state is obtained by the process of interchanging MBSs, which is not very likely to
happen as a result of noise. Therefore, a quantum computer based on MBSs is more robust against
environmental noise. [8]
a This concept is very appealing, but a lot of work still has to be done. MBSs and their non-
Abelian statistics are exotic phenomena and not easy to realise. In order to obtain them, a very
specific symmetry of the materials is required. It turns out that this can, for example, be realised
by bringing a superconductor into contact with a topological insulator. The goal of this thesis is
to investigate the existence of MBSs in systems of topological insulators and superconductors, both
theoretically and experimentally.
a The organization of this thesis is as follows: Chapter 1 introduces the physical concepts,
starting from an introduction to the relevant topics of quantum mechanics and ranging to the
mathematical formalisms that will be used later on. Chapter 2 consists of a theoretical study
on the electrical current through superconductor/topological insulator/superconductor junctions in
one and two dimensions. The goal of this study is to give a prediction for future experiments.
The numerical methods that are used in the theoretical work are explained and used in Chapter 3.
Chapter 4 discusses the experimental methods and measurements for spectroscopically probing the
interface of a superconductor with a topological insulator. We consider a surface Andreev bound
state, which consists of a single superconductor (i.e. the experiments are not related to the model
of Chapter 2). Finally, in Chapter 5, conclusions are drawn and we give some recommendations for
future research.
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A note on notation

The use of symbols in mathematics and physics is not always consistent. Two symbols that have
very different meanings in both fields are ∆ and ∗. Therefore, we will introduce them here separately,
to avoid any confusion.

In physics, the Laplacian, or Laplace-operator, is usually denoted by ∇2. What is actually meant
here is∇2 = ∇·∇. In mathematical textbooks, the Laplacian is often denoted by the symbol ∆. This
is very confusing for physicists, since in physics, ∆ corresponds to a property of superconductors.
In literature, it is referred to as the energy gap, pair potential or superconducting order parameter,
just to name a few.

Another point of confusion is the notation used to describe transpose and conjugate matrices. The
symbol ∗ has a different meaning, depending on if we are reading a text on quantum mechanics
(physics) or on linear algebra (mathematics). An overview of the notation:

Physics Mathematics

Matrix A A

[
a11 a12

a21 a22

]
Transpose matrix AT AT or A′

[
a11 a21

a12 a22

]
Conjugate matrix A∗ Ā

[
a∗11 a∗12

a∗21 a∗22

]
Conjugate transpose A† A∗

[
a∗11 a∗21

a∗12 a∗22

]
We will stick to the physics notation throughout this thesis.
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Introducing physical concepts

1.1 Quantum mechanics

1.1.1 Classical mechanics vs. Quantum mechanics

Classical mechanics consists mostly of the physics prior to the 20th century. It accurately describes
most “normal” systems; systems that are a “normal” size (larger than a molecule and smaller than
a planet) and are moving at a “normal” speed (significantly less than the speed of light). [10] Only
when one of these “normal” parameters is violated, a different theory is needed.

Quantum mechanics gradually arose to explain experiments that did not match the classical de-
scriptions anymore. A famous example is the “ultraviolet catastrophe”, i.e. in classical mechanics,
black bodies can emit an infinite amount of energy. [11] This was solved by Planck’s law in 1900 and
Einstein’s 1905 paper on the photoelectric effect (explaining the correspondence between energy and
frequency) [12]. A couple of years later, in 1927, the famous double slit experiment took place, in
which a coherent light source (e.g. a laser) is emitted towards two slits. The resulting interference
pattern behind the slits revealed that the light splits into two waves and then combines again, just
like a wave would do. This gave rise to the particle-wave duality of light. [13] In the mid-1920s,
Schrödinger, Heisenberg and Born developed the mathematical formalisms, which we know today
as quantum mechanics. [14] It describes nature on the energy smallest scales of energy levels and
considers subatomic particles.

There are three major differences in which quantum mechanics differs from classical mechanics.
First of all, since quantum mechanics considers small scales and individual particles, the energy,
momentum and other quantities of a system may be restricted to discrete values. This is called
“quantization” and is what quantum mechanics is named after. Secondly, objects have characteris-
tics of both particles and waves (particle-wave duality). Thirdly, classical mechanics assumes that
an object has definite, knowable attributes, such as its position and momentum. In quantum me-
chanics on the other hand, there can be limits to the precision with which quantities can be known
(uncertainty principle). [14]

An important consequence is the existence of the wave function. In classical mechanics, we can sim-
ply define the position of a particle x. But since the exact position is not always known in quantum
mechanics, we consider the wave function instead; a mathematical description of a quantum state,
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denoted by ψ(x). The wave function can be interpreted as a complex-valued probability amplitude.
More concretely, [14]∫ b

a

|ψ(x)|2 dx = probability of finding the particle between a and b.

The wave function can be obtained via the Schrödinger equation; the most famous equation of
quantum mechanics. The time-independent Schrödinger equation is an eigenvalue equation that is
known as

Hψ = Eψ, (1.1)

where H is the Hamiltonian, which is mathematical representation of the physical phenomena in the
system. The wave function ψ is the eigenfunction of the Hamiltonian. The eigenvalue E corresponds
to the energy of the system. We will see that the Hamiltonian is a function of momentum k, which
makes the energy momentum dependent as well, i.e. E = E(k). The relation between E and k is
called the dispersion relation.
a The Schrödinger equation is just an example. In fact, all observables in quantum physics can
be written as the real eigenvalues of Hermitian operators. [14]

1.1.2 Electrons and holes

In particle physics, every particle has a corresponding antiparticle. The antiparticle has the same
mass, but has the opposite charge. We will focus on electrons (the particles). In solid state physics,
the antiparticle of an electron is called a hole (a positron in particle physics). The electron charge
is defined as −e, such that a hole has charge +e.

A hole is usually considered as a missing electron. This can be interpreted by second quantization
operators. The creation operator ĉ†k creates a particle in quantum state k, whereas the annihilation
operator ĉk removes it (or, equivalently, creates the corresponding antiparticle). Since a hole is a
missing electron, the creation of a hole the same is as the annihilation of an electron.

The final property of electrons and holes we will discuss here is their dispersion relation. The
notion of treating a hole as a missing electron turns out to be very important here. In the sim-
plest case of a normal metal (a metal which does not have any special properties), the Schrödinger
equation for electrons in one dimension is given by [14]

Hψ =

(
− ~2

2m

∂2

∂x2
− µ

)
ψ = Eψ, (1.2)

where the first term describes the kinetic energy, with ~ the reduced Planck constant and m is the
mass. The second term, µ, is the chemical potential, which can be considered as just a constant
offset to the energy. Assuming a simple propagating wave, i.e. ψ(x) = eikx, we find that the energy
(and therefore, the dispersion relation) is given by

E =
~2k2

2m
+ µ. (1.3)

We can do the same for holes in which case we find the same result with a minus sign (this will
be explained in more detail further on). Hence, we have two parabolic dispersions E ∼ ±k2. The
Fermi level EF is the energy level of interest. For convenience, we take EF = µ (which we can do
since µ is an arbitrary offest). We say that the states below the Fermi level are filled with electrons,
while the levels above it are empty (or filled with holes). In literature, it is conventional to depict an
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electron as a solid circle and a hole as a open circle. The arrows connected to these circles represent
the direction of the group velocity.

In the simple case we have considered so far, it then follows that the wave function of the particle
and antiparticle are related by complex conjugation. For example, consider a propagating electron
described by ψ(x) = eikx. The corresponding hole has the wave function ψ∗(x) = e−ikx. This
property is known as “time-reversal symmetry” and will play an important role throughout this
work. Note that in many cases time-reversal symmetry is broken, most notably, by a magnetic
field.

E

k

EF

Figure 1.1: Parabolic dispersion.

electron hole
particle anti-particle

charge −e +e

creation ĉ†k ĉk
annihilation ĉk ĉ†k
energy E −E
momentum k −k
wave function ψ ψ∗

Table 1.1: Properties of electrons and holes.

In order not to get confused, note that we have two ways of considering electrons in a system: the
“ordinary picture” and the “particle-hole picture”. Recall that the states up to the Fermi level are
filled. This is called the ground state. In the ordinary picture we are concerned with these electrons.
Exciting an electron leaves an empty state behind. In the particle-hole picture, we do not consider
the electrons up to the Fermi level. This has the consequence that exciting electrons requires us to
consider missing electrons, i.e. holes. The ordinary picture and particle-hole picture are sketched
in Fig. 1.2. Throughout the rest of this work, we will mainly focus on the particle-hole picture.

Figure 1.2: Two ways of considering non-interacting Fermi systems. Image from [15].

1.1.3 Bosons, fermions, anyons

Suppose we have two particles. In the simple case of classical mechanics, we could say that particle 1
is in state ψa(x) and particle 2 is in state ψb(x). In that case, the total wave function would be
simply given by [14]

ψ(x1, x2) = ψa(x1)ψb(x2). (1.4)
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This assumes that we can tell the particles apart, otherwise it would not make any sense to give the
particles number 1 and 2. In quantum mechanics, this is not the case. Particles are indistinguishable
and we have to take this into account in the wave function. Two possible ways to do so are

ψ±(x1, x2) =
1√
2

[ψa(x1)ψb(x2)± ψb(x1)ψa(x2)] , (1.5)

where 1/
√

2 is just a normalization factor. [14] These two ways describe two kinds of particles:
bosons (corresponding to the + sign) and fermions (the − sign). Some examples: photons are
bosons, electrons are fermions. [14]

An important concept related to this topic is spin. Particles carry two types of angular momentum:
orbital angular momentum and spin angular momentum (or, in short, spin). Spin is quantized
and can either have integer or half-integer values. It turns out that all particles with integer spin
are bosons, while all particles with half-integer spin are fermions. [14] In non-relativistic quantum
mechanics, this is taken as an axiom. It follows naturally from the unification of quantum mechanics
and special relativity, [16, 17] but this goes beyond the scope of this work. It turns out that there
is a connection between the spin and statistics of bosons and fermions. This becomes evident when
we try to put two particles in the same state, i.e. ψa = ψb. For bosons, this is not a problem at all.
In the case of fermions, however, the full wave function becomes zero, which means that this is not
possible. This is known as the Pauli exclusion principle; two identical fermions cannot occupy the
same state. [14]

More generally, the wave functions (1.5) have different symmetries. Interchanging two particles (i.e.
x1 → x2, x2 → x1), we find

bosons ψ(x1, x2) = ψ(x2, x1),

fermions ψ(x1, x2) = −ψ(x2, x1),

or in words, the wave function for bosons is symmetric, while the fermion wave function is anti-
symmetric. [14] There is, however, one other option:

ψ(x1, x2) = eiφψ(x2, x1), (1.6)

where i =
√
−1 and φ ∈ R is a phase. This type of particle is called an anyon. Note that since

the probability is related to |ψ|2, these different types of symmetry are not observable. However, it
turns out to be very relevant, as will be elaborated on in Section 1.4.1.

1.2 Superconductors

Superconductivity has been a hot topic (or perhaps “a cold topic” is more appropriate in this case)
since its discovery in 1911. In the early years, only the macroscopic phenomena were known. The
basic concept of superconductors is explained in Section 1.2.1.
a Only 46 years later, in 1957, a microscopic theory on superconductivity was postulated by
Bardeen, Cooper and Schrieffer.[18] Their theory is now known as the BCS theory (named after the
three of them). They received the Nobel Prize in 1972 for their theory. We will briefly touch upon
some of the key concepts of their theory in Section 1.2.2.
a The BCS wave function had been derived from a variational argument. [19] One year later,
in 1958, Bogoliubov showed that it could also be obtained using a transformation of the electronic
Hamiltonian. [20] This transformation is now known as the Bogoliubov transformation. It forms
the basis of the Bogoliubov-de Gennes theory, which is the mathematical formalism describing the
physics of superconductors. This topic is introduced in Section 1.2.3.



1.2. SUPERCONDUCTORS 9

1.2.1 Macroscopic view

A superconductor is a special type of material that has two phases: a superconducting state and
a normal state. In order to become superconducting, two properties have to be fulfilled. Firstly,
when a superconductor is cooled down below its critical temperature Tc, the electric resistance
suddenly drops to zero. This was discovered by H. Kammerlingh Onnes in 1911, who showed that if
mercury is cooled below 4.1 K, it loses all electrical resistance. [21] The lack of electrical resistance
allows an electric current flowing through a loop of superconducting wire to last indefinitely. [22]
Secondly, a superconductor has a characteristic way of behaving in a magnetic field. [23] There
are two types of superconductors. A type I superconductor has a single critical field Hc. If the
applied magnetic field is lower than Hc and the temperature is lower than Tc, the superconductor
excludes the magnetic field, which is called the Meissner effect. [23] A type II superconductor has
two critical fields Hc1 and Hc2. In between them, the magnetic field can partially penetrate the
superconductor in the form of vortices. Below Hc1, the type II superconductor behaves the same as
a type I superconductor. [22] If the temperature is above Tc or if the applied magnetic field is higher
than Hc (type I) or Hc2 (type II), the superconductor behaves like a normal metal. Considering
both the critical temperature Tc and the critical field(s), Hc for type I and Hc1, Hc2 for type II,
we can construct a phase diagram for the superconductor, as shown in Fig. 1.3. The property of

Superconducting
state

Normal state

H

Hc

TTc
(a) Type I

Meissner
state

Normal state
H

Hc2

TTc

VorticesHc1

(b) Type II

Figure 1.3: Phase diagrams of superconductors.

indefinite current and zero resistance makes superconductors very appealing candidates for future
electronics, which is why its an interesting type of materials to study. However, the goal of this
work is not to look into the details of possibilities for new electronics. We are much more interested
in the microscopic phenomena that are going on in superconductors.

1.2.2 Microscopic view

The first thing to note about a superconductor is that its ground state is a condensate. The easiest
way to envision this is by thinking of some more everyday examples of condensates, for example, a
paramagnet (magnetic moments in all directions) transitioning to a ferromagnet (magnetic moments
in the same direction) or a gas (atoms moving freely), which transitions into a solid (atoms at fixed
positions). This is shown in Table 1.2. In a normal metal, we have electrons with different spins
and different momenta moving around. In the superconducting state, they pair up into electron
pairs, so-called Cooper pairs. So what exactly is a Cooper pair? How and why is it formed?
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Table 1.2: Examples of phase transitions from
a normal state to a condensed state. From [15].

Figure 1.4: Schematic diagram of a Cooper
pair; a pair of electrons with opposite momen-
tum (+k and −k) and opposite spin (↑ and ↓).
The axes kx and ky denote 2D momentum space.
The Fermi surface represents the 2D equivalent
of the Fermi level EF . Inside, states are filled.
The Cooper pair is located just above the Fermi
level. Image from [24].

Cooper pairs are pairs of electrons, but not just any two electrons. In the simplest case (and the only
case that we consider here), they are pairs of electrons with opposite spin and opposite momentum.
This is illustrated in Fig. 1.4
a To explain why they have opposite momentum, a simplified picture is sometimes used. [24] A
right-going electron state (momentum +k) looks like ψR ∼ eikx, while a left-going state (momen-
tum −k) can be written as ψL ∼ e−ikx. Making a pair gives a superposition of these states, i.e.
ψC = (ψR + ψL)/

√
2, whose probability distribution has the form |ψC |2 ∼ cos2(kx). This means

that combining electron states with +k and −k results in a probability distribution that has a static
spatial pattern. This spatial pattern slightly distorts the lattice, bringing positively charged ions
closer together and therewith lowering the Coulomb energy. This is sketched in Fig. 1.5.

Figure 1.5: Lowering the Coulomb energy by pairing +k and −k states. Image from [24].

However, the pairing of these two electron states does not go on indefinitely (like a cosine). It has a
finite size, which is known as the coherence lengths, ξ. This acts as an envelope around the electron
density, as shown in Fig. 1.6. Hence, pairing up states with opposite momentum is a clever way of
lowering the energy. Recall that we are looking for the ground state, which has the lowest energy
of all possible states.
a To see why electrons in Cooper pairs have opposite spin, we consider their wave function. Elec-
trons are fermions, which means their wave function should be anti-symmetric (see Section 1.1.3).
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Figure 1.6: Picture of a Cooper pair with finite size ξ. Image from [24].

This can be fulfilled by considering opposite spin. Define the spins as s and s′ where s, s′ ∈ {↑, ↓}.
Under the assumption of opposite spin, the wave function gives ψ(s, s′) = ↑↓ − ↓↑ = −ψ(s′, s),
which is exactly what we were after. 1

a To summarize, a Cooper pair consists of two electrons with opposite momentum and opposite
spin. Hence, the momentum of the Cooper pair itself is k − k = 0 and its spin is ↑ + ↓ = 0.
Therefore, a Cooper pair has integer spin, which means it is a boson (see Section 1.1.3). Bosons all
occupy the same ground state, which is exactly what is happening in the condensate.

So then what is the exited state? When adding one extra electron to a superconductor in the
ground state, we increase the energy by at least ∆. Therefore, the spectrum of excited states is
separated from the ground state energy by ∆. For this reason, ∆ is called the energy gap. It
is sketched in Fig. 1.7. The value of ∆ lies in the range 1 to 10 meV, depending on the material.
When we want to break a Cooper pair, we have to excite both of the electrons (an unpaired electron
cannot occupy the ground state), for which we need 2∆. Therefore, ∆ is also referred to as the pair
potential. Following [25], we find that it is originally defined as

∆ = −g〈ĉk,↑ĉ−k,↓〉, (1.7)

where g is a so-called interaction constant (which is negative because of the attractive interaction).
In Section 1.1.2, we defined ĉk as the annihilation operator of an electron in state k. The brackets
denote the expectation value. Hence, 〈ck,↑c−k,↓〉 can be understood as the expectation value of
the annihilation of two electrons with opposite momentum and opposite spin, i.e. the creation of a
Cooper pair.
a To envision ∆, recall the other condensates that we considered at the beginning of this section.
In the case of ferromagnets, the relevant order parameter is magnetization, while in solids, it is the
lattice constant. In superconductors, the order parameter is ∆ as well.

Figure 1.7: The energy gap ∆ separates the excited states from the ground state
(the energy level of electron pairs in the condensate). Image from [26].

1There also exist other combinations where the electrons have the same spin. In this case, the spin part of the
wave function is symmetric and another part of the wave function is antisymmetric. This type of superconductivity
is known as triplet superconductivity. We will come back to this later.
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In the previous section, we have discussed the macroscopic picture. We saw that superconduc-
tivity breaks down if the temperature and/or the magnetic field becomes too high. Up until now,
this might seem unrelated to the Cooper pairs that we have just discussed, but in fact, these prop-
erties can be explained by the existence of Cooper pairs.
a In a normal metal, in the absence of Cooper pairs, electrons repel each other, inducing electrical
resistance. In a superconductor, however, the electrons form pairs which results in the disappear-
ance of the resistance. The pairing energy of two electrons is quite weak (∼ 10−3 eV). Thermal
energy can easily break the pairs, which is the reason why Cooper pairs can only exist at low tem-
peratures. [22]
a Secondly, a Cooper pair exists of two electrons with opposite spins. Spins tend to align with
the direction of an applied magnetic field. But since electrons with opposite spin are paired, it is
not possible to align a Cooper pair with a magnetic field. Hence, a strong magnetic field breaks
down the Cooper pair. [22]
a Finally, breaking down the Cooper pairs means that we no longer have a condensate, but just
a normal metal, as shown in Table 1.2.

1.2.3 Bogoliubov-de Gennes formalism

In this section, we will focus on the mathematical description of superconductors, which is done by
the so-called Bogoliubov-de Gennes (BdG) formalism. Recall the dispersion relation for a normal
metal, which is shown again in Fig 1.8a. In a superconductor, a gap ∆ is introduced, as shown in
Fig 1.8b. This causes the electron and hole band to mix.

E

k

EF

(a) Dispersion of a normal metal.

EF

E

k

2∆

(b) Dispersion of a superconductor.

Figure 1.8: Dispersion relations. Electron and hole bands are depicted
by solid and dashed lines, respectively.

As a result of the mixing of the electron and hole bands, the particles change as well. Electrons and
holes become electron-like and hole-like quasi particles; particles that are part electron and part
hole. This can be envisioned as follows: consider a horse galloping in a desert in a western movie.
Around him, a cloud of dust starts to form as a result of interaction with the horse’s surroundings
(the desert). What is left is a galloping cloud of dust - a quasi horse. The same happens with
particles in a superconductor. This is illustrated in Fig. 1.9. If the original particle is an electron,
we call it electron-like and if it is a hole, we refer to it as hole-like. We will now consider the
mathematical formalism to see what this implies. We first look at the case of the normal metal,
which we will then compare to the superconductor.

In Section 1.1.2 we already came across the most basic Schrödinger equation for electrons. By
partially integrating it twice and substituting some relations between the particles, it can be shown
that Hhole = −H∗electron (depending on the choice of basis), such that the two Schrödinger equations
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Figure 1.9: Concept of quasi particles. Image from [15].

for electrons and holes become

electrons

(
− ~2

2m

∂2

∂x2
− µ

)
ψ = Eψ, (1.8)

holes

(
~2

2m

∂2

∂x2
+ µ

)
ψ = Eψ. (1.9)

It is common to write this in matrix notation, i.e.
(
− ~2

2m

∂2

∂x2
− µ

)
0

0

(
~2

2m

∂2

∂x2
+ µ

)
[ψeψh

]
= E

[
ψe
ψh

]
, (1.10)

where ψe and ψh correspond to the electron and hole contributions of the eigenvector (wave func-
tion), respectively. The off-diagonal elements of the matrix correspond to the interactions between
particles and holes, which is absent in this case. Hence, the particles and holes are strictly separate,
such that the corresponding eigenvectors are orthogonal and given by

ψelectron =

[
1
0

]
, ψhole =

[
0
1

]
. (1.11)

In the case of the superconductor, we are dealing with quasi particles which are part electron and
part hole. This implies that they are no longer orthogonal. Hence, we define the eigenvectors as

ψelectron-like =

[
u
v

]
, ψhole-like =

[
−v∗
u∗

]
. (1.12)

We say that the quasi particles in superconductors have a weight u in the electron channel and a
weight v in the hole channel, with u2 + v2 = 1. Another way to think of u and v are as amplitudes
of the electron and hole wave function. The Schrödinger equations for electrons and holes are now
coupled via the superconducting energy gap ∆. Together, they are called the Bogoliubov-de Gennes
equations, which are given by

electron-like quasi particles

(
− ~2

2m

∂2

∂x2
− µ

)
u+ ∆v = Eu, (1.13)

hole-like quasi particles

(
~2

2m

∂2

∂x2
+ µ

)
v + ∆∗u = Ev, (1.14)

or, in matrix notation, 
(
− ~2

2m

∂2

∂x2
− µ

)
∆

∆∗
(

~2

2m

∂2

∂x2
+ µ

)
[uv

]
= E

[
u
v

]
. (1.15)
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Note that if we set ∆ = 0, we will obtain the normal metal case again. This is exactly what happens
when a superconductor transitions from the superconducting state to the normal state: the gap will
gradually close.

We have now introduced the BdG formalism; the basis for most of the theory on superconductivity.
The attentive reader might have noticed that there are no Cooper pairs in the BdG formalism.
Where did they go? Recall the ordinary and particle-hole picture from Fig. 1.2. In the particle-
hole picture, Cooper pairs simply form a “background” that we leave out. The Cooper pairs are,
however, hidden in the equations. In Eq. (1.7) we showed that ∆ originates from the existence of
Cooper pairs. Hence, the Cooper pairs still exist in the BdG formalism, although they are not taken
into account explicitly.

We will revisit the topic of quasi particles in Section 1.4, where we will introduce a very special type
of particle. For now, we will first discuss a few consequences of the properties of superconductors,
i.e. flux quantization and Andreev reflection.

1.2.4 Flux quantization

In the Aharanov-Bohm experiment, a beam of electrons (or a single electron) is split into two
(ψ1 ∼ eikx1 and ψ2 ∼ eikx2) and sent past two different sides of a solenoid. The two beams
travel the paths C1 and C2 and after passing the solenoid, the beam is recombined, resulting in
an interference pattern. In the absence of a magnetic field, the interference only depends on the
difference between the travelled paths of the two beams, i.e. ∆Φ = k(x2 − x1). [14]

Figure 1.10: Aharonov-Bohm effect. Picture from [14].

We now consider the case where we turn on a magnetic field. The total magnetic flux through the
solenoid Φm is determined by the applied magnetic field ~B and the area of the solenoid S. We can
express this in terms of the vector potential ~A via one of the Maxwell equations ( ~B = ∆× ~A). By
subsequently applying Stokes theorem, we obtain

Φm =

∫
S

~B · d~S =

∫
S

(∇× ~A) · d~S =

∮
~A · d~r. (1.16)

In the presence of a magnetic field, the wave functions acquire an additional phase (say g1 and g2)
and become of the form ψ′1 = eig1ψ1 and ψ′2 = eig2ψ2. These phases can be written in terms of the
vector potential as g(~r) = e/~

∫
A(~r) · d~r. The interference pattern is now given by [14]

∆Φ = g1 − g2 =
e

~

[∫
C1

~A · d~r −
∫
C2

~A · d~r
]

=
e

~

∮
C1∪C2

~A · d~r =
e

~
Φm. (1.17)
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In a normal metal, the wave functions ψ1 and ψ′1 have the same physical properties. In supercon-
ductors, this is in general not the case, since type II superconductors can be partially penetrated by
the magnetic field by means of vortices (see Section 1.2.1). All of these vortices carry a a quantized
unit of flux

Φ0 =
h

2e
, (1.18)

where 2e (instead of just e) comes from the fact that Cooper pairs consist of two electrons. The
quantity Φ0 is refered to as the flux quantum.
a If we consider one full circle, the wave function picks up the phase ψ′ = ei∆Φψ. Since we
want the wave function to be single-valued, we require ei∆Φ = 1. Making use of Eq. (1.17) with the
altered electron charge e→ 2e, we find that

Φm =
h

2e
m = Φ0m, m ∈ Z. (1.19)

Hence, the flux is quantized in a superconductor. This will be an important notion for the experi-
ments that we will discuss in Chapter 4.

1.2.5 Andreev reflection

Suppose a superconductor is brought into contact with a normal metal. Remember that the charge
carriers in a normal metal are electrons, whereas in a superconductor they are pairs of electrons.
We consider an incident electron at a normal metal/superconductor (N/S) interface. We assume
the electron has spin up and momentum k. The electron can only enter the superconductor if
it finds another single electron with spin down and momentum −k to form a Cooper pair with.
However, single electrons are not available in the superconductor. Therefore, the pairing electron
must originate from the normal metal, leaving a hole behind with spin down and momentum −k.
This process is called Andreev reflection and is illustrated in Fig 1.11. Andreev reflection relies on
the properties of Cooper pairs and is therefore a unique feature of superconductors.

Normal metal Superconductor

Figure 1.11: Andreev reflection. Black and white circles denote electrons and holes, respectively. The
horizontal arrows represent the momentum, while the vertical arrows correspond to the spin.

We consider a superconductor with kinetic energy ξ and energy gap ∆ (not to be confused with
the Laplacian operator). The physics in a superconductor can be described by the Bogoliubov de
Gennes (BdG) equation. The BdG equation is an eigenvalue equation. In its simplest form, it can
be written as [

ξ ∆
∆ −ξ

] [
u
v

]
= ε

[
u
v

]
.

The components of the eigenvector, u and v, represent the amplitudes of the electron and hole wave
function, respectively. The eigenvalue ε corresponds to the energy and is equal to

ε = ±
√
ξ2 + ∆2.
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From this, we can also derive that the kinetic energy of the superconductor can then be written as
ξ = ±

√
ε2 −∆2 (± for electrons and holes, respectively). Plugging ξ back into the BdG equation

and solving for the eigenfunctions, we obtain[
u
v

]
=

[
1
a(ε)

]
with a(ε) =

1

∆

{
ε− sgn(ε)

√
ε2 −∆2 |ε| > ∆,

ε− i
√

∆2 − ε2 |ε| < ∆.
(1.20)

where a(ε) can be interpreted as the Andreev reflection amplitude of a particle with energy ε.

Andreev reflection happens at every interface with a superconductor. Hence, if we have two super-
conductors, particles start bouncing back and forth in between them. If the two superconductors
are at the same level, the particle keeps reflecting back and forth. This is called an Andreev bound
state (figure 1.12a). However, if we apply a voltage eV , the superconductors are shifted with respect
to each other. The particle will scatter to higher (or lower) energies and can eventually escape the
bound state. This concept is known as multiple Andreev reflections (figure 1.12b) and section 2 will
revolve around this topic.

Δ

Δ

Superconductor Superconductor

E

k

(a) eV = 0, Andreev bound state.

Δ

Δ

Superconductor Superconductor

E

k

(b) eV 6= 0, multiple Andreev reflections.

Figure 1.12: Reflections in between two superconductors. Solid (open) circles represent electrons (holes).

Up until now, we have not said anything about the layer in between the two superconductors. In
the conventional cases, a normal metal or an insulator is placed in between them, depending on
the application. In Chapter 2, we will consider a special type of material instead: the topological
insulator. This type of material is also starring in the experimental results that we will discuss in
Chapter 4.

1.3 Topological insulators

Normal metals are fully conducting. Normal insulators are fully insulating. A topological insulator
is a type of material that is insulating in the bulk (in the interior), but becomes conducting at its
surface when brought into contact with another material. The existence of the topological insulator
was predicted in 2005 [27] and experimentally discovered shortly after. [28] We will first briefly
introduce the topic of topology, which is what makes this type of material special. We will then
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discuss the concept of spin-orbit coupling, a physical phenomenon that will turn out to be important
in this research.

1.3.1 Topology

Topology is a branch of mathematics that deals with properties that are preserved under contin-
uous deformations. For illustration, we consider three unhealthy foods: a pizza, a doughnut and
the popular Dutch “oliebol” (deep-fried raisin bun). We can transform the “oliebol” into a pizza
by flattening it (and adding some tomato sauce, cheese, etc.). This is a continuous deformation
and therefore, we say that the “oliebol” and pizza are topologically equivalent. Transforming an
“oliebol” into a doughnut, however, requires puncturing a hole in the dough, which is not a smooth
deformation. Therefore, we call them topologically distinct. We can label the foods by their integer
topological invariant, the so-called genus, g. Loosely speaking, the genus is the number of punctures.
The pizza and “oliebol” have g = 0, while the doughnut has g = 1. By definition, integers cannot
change continuously into one another.

We can now apply this to band structures of actual materials. Recall the parabolic band structure
in a normal metal from Fig. 1.1. The top band (a) is called the conductance band, while the bot-
tom band (b) is referred to as the valence band. A normal insulator has the same parabolic band
structure, but with a gap in between the two bands. The Fermi level lies inside the gap, such that
there is no electrical conductance. This is shown on the far left in Fig. 1.13. A normal insulator
has topological invariant g = 0.
a In a topological insulator, the bands a and b are inverted as a result of strong spin-orbit cou-
pling (more on this in the next section). Therefore, its topological invariant is g = 1, making it
topologically distinct from the normal insulator. We note that the topological insulator still has an
energy gap (with the Fermi level inside it), so it is still insulating. This is depicted on the far right
of Fig. 1.13.
a When bringing a normal metal into contact with a topological insulator, the bands of the two
materials have to connect to each other, a to a and b to b. But the band order is inverted, so what
happens at the interface?

Figure 1.13: Brining a normal insulator (left) and a topological insulator with inverted bands (right)
into contact results in a band crossing at the interface. From [29].

In Hong Kong, cars drive on the left, while in China, they drive on the right. The traffic rules
in both countries are not an issue, but problems arise when trying to connect the two. To solve
this problem, the “Flipper bridge” was proposed (but never built). This bridge illustrates how the
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distinct topological band structures are connected at the interface: a band crossing occurs. The
bands cross the Fermi level, which means there is electrical conduction at the interface. We go from
g = 0 (sphere) to g = 1 (thorus). At the interface, a hole is punctured in the sphere in order to
obtain the thorus. This is illustrated in the middle of Fig. 1.13.

Figure 1.14: The Flipper bridge, which was proposed to connect Hong Kong to the mainland of China.
If two materials with different topological ordering are connected, a band crossing occurs. From [30].

1.3.2 Spin-orbit coupling

At the interface of a normal insulator and a topological insulator, the bands are connected. It
was experimentally observed that the bands at the interface are connected. [31, 32] Therefore, the
Hamiltonian to describe them is linear in momentum as well, i.e.

H = α~k · σ̂, (1.21)

where α is the coupling strength (depending on the material), ~k is the momentum vector and
σ̂ = (σx, σy, σz), which contains the Pauli matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (1.22)

These matrices are used to calculate properties related to the spin of the particles. What is most
important about Eq. (1.21) is that the momentum (orbit contribution) and the spin are connected via

the inner product. In quantum mechanics, the inner product is defined as ~k ·σ̂ = kxσx+kyσy+kzσz.
From this equation, it follows immediately that the momentum of the eigenstates is coupled to the
spin. This is known as spin-orbit coupling (SOC).
a In materials with strong SOC (i.e. large α), the spin is coupled to the momentum, which
is referred to as spin-momentum locking. It has important implications for charge transport in
a topological insulator. Two states with opposite spin are orthogonal, i.e. they cannot interact.
Because the momentum is coupled, this implies that particles with the opposite momentum cannot
interact either. We say that backscattering is not possible in a topological insulator. This is exactly
why they are stable, as discussed in the introduction.

Solving Hψ = Eψ with H from Eq. (1.21), we obtain the dispersion relations E = ±α|~k|. In
two spatial dimensions, this looks like a cone, the so-called Dirac cone.2 The Dirac cone and an
interpretation of the spin-momentum locking are illustrated in Fig. 1.15. The absolute value in

2The name comes from Paul Dirac. He proposed the relativistic version of the Schrödinger equation, which
is known as the Dirac equation. It is linear in momentum as well. All systems that have linear dispersion (most
famously, topological insulators and graphene) are referred to as “Dirac-like”, the particles are called “Dirac fermions”
or “relativistic particles” and the dispersion relation is known as the Dirac cone.
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E = ±α|~k| is crucial here. The top cone has energy E = α|~k|, while the bottom cone has dispersion

E = −α|~k|. We note that this is fundamentally different from a dispersion without the absolute
value, which describes to intersecting lines. Hence, at a fixed energy (e.g. the Fermi energy), we
only have particles with one type of spin. 3

Figure 1.15: Schematic illustration of a Dirac cone. The black arrows denote the spin-momentum
locking. Backscattering is not allowed. This is illustrated with the big grey arrow. From [29].

As already mentioned, the band inversion is a result of strong spin-orbit coupling. How are these
two concepts related? The conduction and valence bands of a material can split for many different
reasons. From a mathematical point of view, all these contributions are off-diagonal terms in
the Hamiltonian. The largest contributions come from chemical bonds and crystal-field splitting
(not relevant here). Finally, the much smaller contribution of the spin-orbit coupling pushes the
levels closest to the Fermi level towards each other, reversing the two bands. This is illustrated
schematically in Fig. 1.16. Hence, a topological insulator is the result of several splitting effects, of
which strong spin-orbit coupling (strong enough to make them cross) is the most important one.

a

b

Splitting from other e�ects
Splitting from SOC

EF
Band
inversion

Figure 1.16: Schematic representation of effects leading to the band inversion of
the conductance band (a) and the valence band (b) in a topological insulator.

3Although this is usually referred to as “chirality” instead of spin. The chirality can be ±1, depending on whether
the spin rotates clockwise or counter clockwise.
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1.3.3 Weak antilocalisation

There are three types of electronic transport in solids, which can be classified by three characteristic
lengths: `, `φ and L. The mean free path ` is the average distance an electron can travel before
being scattered by impurities. The phase coherence length `φ is the average distance the electron
travels before losing its phase coherence. Finally, the sample size L is the distance the electron has
to travel. [33]
a If ` � L, electrons can pass through the sample without scattering, which we call it ballistic
transport. The opposite case, when ` � L, is known as diffusive transport. Usually we assume
`φ < `, such that phase does not play a role. However, if `φ � `, electrons can maintain a phase
even after many scattering events. This is called quantum diffusive transport. [33]

Figure 1.17: Three types of electronic transport. From [33].

In the quantum diffusive regime, an electron can scatter around and come back to a location
where it was before. Weak (anti)localisation is a correction as a result of electrons interfering with
themselves after scattering off impurities in the material and returning to the initial position (i.e.
after completing a closed loop). This interference can be both constructive or destructive. The
former is called weak localisation and the latter is referred to as weak antilocalisation. In the case
of topological insulators, we have weak antilocalisation which results from the strong spin-orbit
coupling that we discussed in the previous section.
a Electrons travelling clockwise and counter-clockwise have opposite momentum, and because of
spin-momentum locking, opposite spin as well. Hence, back-scattering (scattering to the direction
where the electron came from) is suppressed, which leads to weak antilocalisation. [33]

1.4 Majorana particles

A Majorana particle is a particle that is its own antiparticle. This was hypothesized by Ettore
Majorana in 1937. He suggested that some neutral (i.e. zero charge) spin- 1

2 particles might be
described by a real wave function. Since the wave functions of a particle and its antiparticle are
related by complex conjugation, the two wave functions are identical. We note that the fact that
they are neutral (i.e. zero charge) is crucial, since particles and antiparticles have opposite conserved
charges (see Section 1.1.2). Put in second quantization operators, for a Majorana particle we have

ĉk = ĉ†k. (1.23)

Expressed in words, removing a Majorana particle in state k is equal to creating a Majorana particle
in state k. Recall that the antiparticle of an electron is a hole. We can think of a Majorana as an
equal superposition of an electron and a hole. Since an electron has energy E and an hole is located
−E, we have

ĉ†k(E) = ĉk(−E) ⇒ E = 0. (1.24)
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Hence, a Majorana particle is always located at zero energy. Since Majorana particles are part
electron and part hole, a natural starting point to look for Majorana particles is in systems where
both electron and hole quasi particle excitations occur; for example, in superconductors.

In an s-wave superconductor (that is, the standard superconductor that we have discussed so far),
Cooper pairs consist of electrons with opposite spin. The annihilation operator of such an electron
pair is

b = uc†↑ + vc↓, (1.25)

where c†↑ is the creation operator for a spin up particle and c↓ is the annihilation operator for a spin
down particle. The coefficients u and v can be interpreted as the weights in the electron and hole
channel, respectively (see Section 1.2.3). Obviously, b 6= b†. We slightly change the expression to

γ = uc†σ + u∗cσ, σ ∈ {↑, ↓}. (1.26)

The quasi particle described by γ has equal electron and hole components, which have the same
spin direction. We find that γ = γ† and therefore, γ describes a Majorana particle.

1.4.1 Non-Abelian statistics

It turns out that Majorana particles always form pairs of the form

f =
γ1 + iγ2

2
, f† =

γ1 − iγ2

2
. (1.27)

These pairs are constructed by means of a Kitaev chain [34] (which we will not discuss here), which
results in two properties: they are degenerate and highly non-local. [35, 36] The first property, the
degeneracy, implies that they always come in pairs (f and f†). This makes sense, since a Majorana
particle is half electron and half hole, but “half an electron” does not exist. Having two of them
solves this problem. The second property of being highly non-local implies that the pair of Majorana
particles is spatially separated. Therefore, they are protected from local changes that only affect
one of them, which implies that they are protected from decoherence. This causes the Majorana
particles to be insensitive to environmental noise and suitable for quantum computing, as already
touched upon in the Introduction.

We now consider exchanging the two particles in a pair. Quantum mechanically, we need to include
all possible ways to do. The probability amplitude is given by the sum over all possible paths from
one space-time point to another,

A =
∑
paths

exp

(
i

∫ t2

t1

L[~r1(t), ~r2(t)] dt

)
, (1.28)

where the integral represents a particular path. Most of these paths destructively interfere with each
other. What remains is a contribution that can be written as a phase factor to the wave function,
just like we already saw in Section 1.1.3:

ψ(~r1, ~r2) = eiφψ(~r2, ~r1). (1.6)

This implies that Majorana particles are anyons. A very nice mathematical explanation of these
integrals in several spaces is given in [35], but here, it is enough to realize that Eq. (1.6) holds. We
can go one step further.
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Suppose we have N degenerate Majorana pairs. We can describe this state by the column vector
ψ = [ψ1 ψ2 . . . ψN ]T . If we exchange two particles, the vector undergoes a linear transformation
(a rotation of the form of Eq. (1.6)) and arrives in another state in the same degenerate space, i.e.
ψ → Uψ, where U is an N × N unitary matrix. If we interchange two other particles, we have
the rotation ψ → V ψ, with V another unitary matrix. Since U and V do not commute (which
usually is the case with matrix multiplication), the order of interchanging the particles determines
the final state that we arrive in. [35] Say we have three particles, 1-2-3, and we want to get the
state 2-3-1. If we first interchange 1-2 and then 2-3, this gives a different final state then if we were
to interchange 1-3 and then 1-2 (see Fig. 1). This property is called non-Abelian statistics and is
crucial for applications in quantum computers, as already explained in the Introduction.
a Note that, in order to have non-Abelian statistics, we need to have at least 2 degenerate
states (4 Majorana particles). Otherwise, the space is one-dimensional and therefore all linear
transformations commute.

1.4.2 Two- and three-dimensional space

We can consider the probability amplitude from Eq. (1.28) in two or three dimensions and these
will give quite different results. We consider three possible phases of the wave function in the cases
of no exchange (A), single exchange (B) and two exchanges (C).
a We start with the three dimensional case as shown in Fig. 1.18a. Path A is closed and does not
involve any exchange. Therefore, it can be shrunk to a point, which implies that the wave function
cannot pick up a phase. Path B, with one exchange, has two different endpoints and cannot be
shrunk to a point. This means that path B can result in a phase, which we call η. Path C contains
two exchanges that form a loop. We can compare this with a string tied around a sphere, which
we can also shrink into a point by tightening the string. Hence, two exchanges is equivalent to no
exchange it all. This implies that η2 = 1, such that η = ±1. In three dimensions, we can only get
bosons (η = 1) or fermions (η = −1), but no anyons.

A

B C

(a) Three dimensional space.

A
B

C

(b) Two dimensional space.

Figure 1.18: Three types of paths. A: no exchange. B: single exchange. C: two exchanges.

If we now switch to two dimensions (Fig. 1.18b), the topology of the space is different. Again,
path A can be shrunk into a point and path B has fixed end points so it cannot. Path C, however,
is different. This time, we imagine a string around an infinitely long cylinder, which of course
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cannot be shrunk into a point. Therefore, we have a phase η after one exchange, a phase η2 after
two exchanges, a phase η3 after three exchanges, and so on. Hence, the phase has to be η = eiφ,
which explains why we can only get the anyon wave function in two dimensions.
a The mathematical crux lies in the study of the topology of these space, as already introduced
in Section 1.3.1. The sphere in three dimensions has genus g = 0 (it is similar in shape to an
“oliebol”), or, in mathematical terms, we can say that it is simply connected. Two dimensional
space is not simply connected. This makes it possible to define paths that wind around the origin,
resulting in the anyon behaviour. A full discussion on these spaces using homotopies (i.e. continuous
deformations from pizzas to “oliebollen”) from three dimensions to Z2 and from two dimensions to
Z is given in [35].
a The reason why we went through the hassle of relating Majorana behaviour to the topology of
two and three dimensional space, is that it will turn out to be an important issue in the experiments
that we will discuss in Chapter 4.

1.4.3 Superconductor / topological insulator junctions

We have now established the construction and importance of Majorana particles. The question
that arises is, what kind of system supports their existence? From Eq. (1.26) it follows that we are
looking for a superconductor where pairing between electrons with the same spin happens. This
type of pairing is known as triplet pairing.4 Moreover, the structures of f and f† are (∼ γ1 ± iγ2)
are crucial here as well. The most obvious candidate to fit these two criteria is a chiral p-wave
superconductor. In the superconductors we have considered so far, the ∆ parameter was a constant
(see Section 1.2.3). In a chiral p-wave case, it is momentum dependent and has the structure

∆(~p) = ∆(px ± ipy) = ∆e±iφ, (1.29)

where px and py are the momentum components in the x and y direction, respectively, and φ =
tan(py/px). This structure implies that the pair potential ∆ is rotating as a function of momentum.
The direction of the rotation can be either ±, which is called the chirality.

The most well known chiral p-wave superconductor is Sr2RuO4. However, it is very difficult to
realise this material experimentally. Besides that, the actual pair potential remains a point of
discussion and it is still not proven that Sr2RuO4 has indeed the pairing symmetry described by
Eq. (1.29). [37]
a There are, however, other ways to induce triplet pairing in materials. A well known way to do
so is using nanowires, which we will discuss in Section 4.1.1. Another possibility, which is the topic
of interest here, is bringing a standard s-wave superconductor (with a constant ∆ and Cooper pairs
with opposite spin) in combination with a topological insulator.

When we first introduced the Majorana particle at the beginning of this section, we considered it
as a particle that is half electron/half hole and that is located at zero energy. As discussed in Sec-
tion 1.2.5, two superconductors with another material in between them can host an Andreev bound
state (see Fig. 1.12a). If this bound state is located at zero energy, does that turn the Andreev
bound state into a Majorana bound state? Almost.
a In the conventional case, the material in between the two superconductors is a normal metal,
which has the parabolic dispersion relation that was shown in Fig. 1.8a. If the interfaces are abso-
lutely perfect, an electron (without hole component) reflects as a hole (without electron component)
and there is no interaction between the two bands. Therefore, there are states at zero energy, so
in principle, this should work. In reality, however, the interfaces are not perfect. The two bands

4The name “triplet pairing” comes from the fact that there are three ways to pair electrons that are symmetric
under exchange: | ↑↑〉, | ↓↓〉 and | ↑↓〉+ | ↓↑〉. This is opposed to singlet pairing, where we only had | ↑↓〉 − | ↓↑〉, as
discussed in Section 1.2.2.
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interact and a gap in the dispersion opens, comparable to the dispersion shown in Fig. 1.8b. The
zero energy level lies inside this gap and therefore, it is impossible to have a Majorana bound state
in this system. [29, 38]
a If we replace the normal metal in the middle by a topological insulator, this problem is solved.
Recall that a topological insulator has spin-momentum locking (see Section 1.3.2) and therefore,
backscattering is not possible. Hence, a particle inside the topological cannot go back; it can only
go into the superconductor. Therefore, the transmission is equal to 1. We will see in Section 4.4.2
that this is a crucial property to host a Majorana particle.
a It can be shown mathematically that the spin-momentum locking of Eq. (1.21) with induced
superconductivity results in the same energy spectrum as the px + ipy superconductor. This idea
was first postulated in the famous work of Fu and Kane. [39] In Chapter 2, we will calculate the
current through a superconductor/topological insulator/superconductor junction and it will turn
out that we find indeed the p-wave bound state energy spectrum.



2a

Modelling multiple Andreev
reflections

There are several ways to detect a Majorana particle. The most common ones are the use of
nanowires and the 4π periodic current-phase relation. These two methods will be explained in
Chapter 4, when we look at the experimental aspects of detecting a Majorana particle. In this
chapter, we focus on yet another method, which considers multiple Andreev reflections (MAR).
a The concept of MAR was explained in Section 1.2.5. MAR occur in junctions with two super-
conductors with a different material in between them. A superconductor/normal metal/superconductor
(S/N/S) junction is called a conventional Josephson junction. If we replace the normal metal with
a topological insulator, we have a superconductor/topological insulator/superconductor (S/TI/S)
junction, which is referred to as a topological Josephson junction.

In Section 2.1, we will first discuss the rather simple resistively shunted junction model that has
been used to model S/N/S junction. This model does not take MAR into account. The current
through a one dimentional S/N/S junction as a result of MAR was first modelled by Averin-
Bardas in 1995. Their model is discussed in Section 2.2. As a next step, we are interested in
a junction with a topological insulator (TI) in the middle. When a TI is brought into contact
with a superconductor, its surface becomes superconducting as well via the proximity effect. This
combination of spin-momentum locking and superconductivity allows symmetry protected surface
states to host Majorana particles; which has been a hot topic for the past decades. The one
dimensional S/TI/S junction and its relation to Majorana particles were considered by Badiane,
Houzet and Meyer in 2011. A brief review of their work is given in Section 2.3.
a The S/TI/S model showed a phenomena that is fundamentally different from the S/N/S
junction. This is very interesting, however, it is not directly applicable to experiments. The reason
is that experimental junctions cannot be considered one dimensional. The current can also flow
through the junction under an angle, which makes the system two dimensional. The experimentally
obtained result then corresponds to the current averaged over all possible angles. We expanded the
existing one dimensional model to two dimensions to make an actual experimental prediction. By
going to two dimensions, we are able to take the length of the TI, as well as the chemical potentials
of both materials into account. Our expanded model is shown in Section 2.4.

We have obtained some very remarkable results. The angle that we introduced is a measure for the
Fermi surface mismatch between the topological insulator and the superconductor. This mismatch
shifts the full spectrum. After angle averaging, however, most of the MAR structure was lost. We
also showed that in the absence of an applied voltage, the S/TI/S junction hosts a bound state that
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is similar to the bound state in chiral p-wave superconductors.

2.1 The resistively shunted junction model

A frequently used tool to model S/N/S junctions is the resistively shunted junction (RSJ) model.
In the RSJ model, a resistor (R) is put parallel to the S/N/S junction (JJ), such that the current
can be modelled as the sum of the supercurrent IS (the current in the absence of an applied voltage)
and the normal state current IN (Ohmic behaviour). This is shown in Fig 2.1.

JJ R

INIS

I

Figure 2.1: Resistively shunted junction model.

The supercurrent has amplitude Ic (the critical current) and oscillates as a function of the phase
difference between the two superconductors φ. In this simple model, the voltage V is given by the
magnetic flux quantum (~/2e) times the phase φ. Summing the two contributions, we obtain

IRSJ = IS + IN = Ic sinφ+
~φ

2eR
. (2.1)

Because of its simplicity, this model is popular among experimentalists. However, it can only
explain the experimental observations to some extent. The RSJ model does not take many physical
aspects of the S/N/S junction into account. Especially the quantum properties are left out. For
example, whereas the RSJ model gives a smooth I/V curve, experiments show an oscillating sub-
harmonic gap structure (i.e. oscillations for eV < ∆, where V is the applied voltage and ∆ is the
superconducting gap).
a The main phenomenon that is responsible for the current in S/N/S junctions is the effect of
multiple Andreev reflections (MAR), which will be the main topic of this chapter.

2.2 The S/N/S junction in 1D

Averin and Bardas [40] modelled the current through a S/N/S junction. They start by defining two
additional regions I and II inside the superconductors, close to the interface (Fig 2.2). These regions
represent the parts of the contact regions that are separated by the scattering region, where the
motion of the quasi particles is possibly diffusive. The current through the junction is determined
by the interplay of two effects: Andreev reflection at the interfaces with the superconductors, and
scattering in the middle region. A short review of the work done by Averin and Bardas is discussed
in this section.
We assume an incoming electron-like quasi particle from the left superconductor, which we model
as Jδn0. There is only one source at n = 0, which is why we use the Kronecker δ-function. The
amplitude is given by J =

√
1− a2

0. When the electron-like quasi particle reaches the interface,
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Figure 2.2: Schematic diagram of S/N/S junction. Image from [40].

there are four possible processes:

1. Reflection as an electron-like particle (normal reflection) Bn
2. Reflection as a hole-like particle (Andreev reflection) An
3. Transmission as an electron-like particle Cn
4. Transmission as a hole-like particle Dn

The letters behind these processes are the probabilities assigned to the occurrence of each pro-
cess. After one of these processes has taken place, there will be a new particle approaching an
interface and the same four processes can happen again. This is why we introduced the subscript
n. From Fig 1.12b, it becomes clear that in the case of Andreev reflection, the particle goes to a
different energy level. This is taken into account by the Andreev coefficient an, which is defined as
an = a(ε + neV ), where a is given by Eq. (1.20). The full process that takes place in the S/N/S
junction is illustrated in Fig 2.3.
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Figure 2.3: Schematic diagram of the Averin Bardas coefficients.
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2.2.1 Wave functions

We are interested in the wave functions for holes and electrons in the regions I and II. We first
consider the electrons in region I.

a2nAn BnJ

In this region, we have the source term J , which is a right-going particle with momentum k. Since
we assume a propagating particle, we multiply the source term by eikx. The reflected electron-like
particle Bn goes in the opposite direction, −k, hence, it is multiplied by e−ikx. To take all reflected
electron-like particles into account, we sum over n. After an even number of Andreev reflections,
we get another right-going electron-like particle with amplitude a2nAn and momentum k.

What we discussed until now are all position dependent contributions to the wave function. However,
the differential equation that we are dealing with also has a time derivative. Since the position
dependent part and the time dependent part can be separated, we write the solution as ψ(x, t) =
ψ(x)ψ(t). For the most standard form of the Schrödinger equation, the time dependent part is
e−iEt/~, where E is the energy and t denotes the time. In this case, every Andreev reflection shifts
the energy level. The energy of an electron is increased by eV each time it passes through the
channel from left to right. The energy of holes increases in the opposite direction; from right to
left. Taking this together, we obtain the energy difference 2eV . Hence, the electron and hole wave
functions are sums of components with different energies shifted 2eV . Taking all of these aspects
into account, the electron wave function in region I can be written as

ψIe(x, t) =
∑
n

[
(a2nAn + Jδn0)eikx +Bne

−ikx] e−i(ε+2neV )t/~. (2.2)

We can do the same for hole-like quasi particles in region I.

Ana2nBn

We have the Andreev reflected hole-like particles An that are propagating in the −k direction. If
a particle that was originally reflected as an electron (Bn) is then Andreev reflected at the next
interface, we obtain the right-going hole-like particle a2nBn. Similar to the previous case, the wave
function is given by the sum over all Andreev levels n, multiplied by the same time dependent part.
The wave functions becomes

ψIh(x, t) =
∑
n

[
Ane

ikx + a2nBne
−ikx] e−i(ε+2neV )t/~. (2.3)

We move on to the electrons in region II.

Cn a2n+1Dn

If the source particle J is normally transmitted, it ends up in region II as a right-going electron-
like particle with amplitude Cn. An Andreev reflected hole at the right interface ends up as an
electron-like particle in region II as well. This particle is denoted by a2n+1Dn. Because of the
energy difference eV in the middle (as seen in Fig 2.2), we now have to take the odd Andreev
coefficients a2n+1. This is also taken into account in the time dependent part. The electron wave
function in region II is given by

ψIIe (x, t) =
∑
n

[
Cne

ikx + a2n+1Dne
−ikx] e−i(ε+(2n+1)eV )t/~. (2.4)
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Dn a2n+1Cn

Finally, we have to consider the holes in region II.
If the source particle J is transmitted as a hole-like particle, we obtain the particle denoted by Dn,
with momentum k. Andreev reflected electrons at the right interface become left-going hole-like
particles a2n+1Cn. The wave function we obtain is

ψIIh (x, t) =
∑
n

[
a2n+1Cne

ikx +Dne
−ikx] e−i(ε+(2n+1)eV )t/~. (2.5)

To summarize, the wave functions in region I and II can be written as

(I) ψe =
∑
n

[
(a2nAn + Jδn0)eikx +Bne

−ikx] e−i(ε+2neV )t/~,

ψh =
∑
n

[
Ane

ikx + a2nBne
−ikx] e−i(ε+2neV )t/~,

(II) ψe =
∑
n

[
Cne

ikx + a2n+1Dne
−ikx] e−i(ε+(2n+1)eV )t/~,

ψh =
∑
n

[
a2n+1Cne

ikx +Dne
−ikx] e−i(ε+(2n+1)eV )t/~.

2.2.2 Recurrence relations

The next step is to match the wave functions. We assume the wave functions Eqs. (2.2)-(2.5) are
known. Because we do this, we can neglect the superconductors and focus only on the N/N’/N
structure in the middle. Since we do not want to define the wave function in the middle N’ layer,
we use the technique of scattering matrices. A vector with the amplitudes of the outgoing par-
ticles (away from the middle N’ layer) is expressed as the multiplication of the scattering matrix
with a vector consisting of the incoming particles (towards the middle N’ layer). The scattering
matrix consists of the reflection and transmission coefficients r and t, respectively. The reflection
and transmission probabilities are then given by |r|2 and |t|2, respectively. Because of probability
conservation, we have |r|2 + |t|2 = 1. The factor |t|2 has an additional interpretation; it describes
the transparency of the interface, which is defined as D ≡ |t|2. We note that the r and t coefficients
are independent of the An, Bn, Cn, Dn coefficients, since the latter depend on the superconductors
(which we do not take into account here).

For electron-like particles, the relation between incoming and outgoing particles is given by[
Bn
Cn

]
= Se

[
δn0 + a2nAn
a2n+1Dn

]
, Se =

[
r t
t −r∗t/t∗

]
. (2.6)

Similarly, for hole-like particles, we obtain[
An
Dn−1

]
= Sh

[
a2nBn

a2n−1Cn−1

]
, Sh = S∗e =

[
r∗ t∗

t∗ −rt∗/t

]
, (2.7)

where Sh = S∗e can be interpreted as the fact that holes are the time-reverse of electrons.



30 CHAPTER 2. MODELLING MULTIPLE ANDREEV REFLECTIONS

The matrix vector equations (2.6) and (2.7) simply describe a system of four equations with four
unknowns (An, Bn, Cn and Dn). In appendix A, we show that by substituting these equations into
one another, we obtain the recurrence relations

D
a2n+2a2n+1

1− a2
2n+1

Bn+1 −
[
D

(
a2

2n+1

1− a2
2n+1

+
a2

2n

1− a2
2n−1

)
+ 1− a2

2n

]
Bn +D

a2na2n−1

1− a2
2n−1

Bn−1

= −
√

1−Dδn0, (2.8)

An+1 − a2n+1a2nAn =
√

1−D (a2n+2Bn+1 − a2n+1Bn) + a1δn0. (2.9)

These equations can be solved numerically to find expressions for the amplitudes Bn and An.

2.2.3 The DC current

The An and Bn coefficients determine the Fourier components of the current I(t) through the
junction,

I(t) =
∑
k

Ike
2ikeV t/~.

At zero temperature (T = 0), the Fourier components Ik are given by

Ik =
e

π~

[
eV Dδk0 −

∫
J(ε)

{
a∗2kA

∗
k + a−2kA−k +

∑
n

(
1 + a2na

∗
2(n+k)

) (
AnA

∗
n+k −BnB∗n+k

)}
dε

]
,

(2.10)

where J(ε) =
√

1− a2
0. We recall that an = a(ε + neV ), where a is given by Eq. (1.20). The DC

component can be obtained by setting k = 0, i.e.

I0 =
e

π~

[
eV D −

∫
J(ε)

{
a∗0A

∗
0 + a0A0 +

∑
n

(
1 + |a2n|2

) (
|An|2 − |Bn|2

)}
dε

]
, (2.11)

whereas the AC components are described by the higher harmonics (k > 0) as

Ik =− e

π~

∫
J(ε)

{
a∗2kA

∗
k + a−2kA−k +

∑
n

(
1 + a2na

∗
2(n+k)

) (
AnA

∗
n+k −BnB∗n+k

)}
dε.

We focus on the DC current I0 (as described by eq. (2.11)), which is plotted for varying interface
transparencies D in Fig 2.4. The current is normalised by I∆, which is simply the transparency
D. For low transparencies (D ∼ 0.001), the current starts flowing at eV = 2∆. Superconductors
have an energy gap in the density of states of 2∆. Inside this gap, there are no available states
and therefore, charge transfer is not possible (Fig 2.5a). When applying a voltage, the densities of
states start to shift with respect to one another. For convention, we assume that a positive voltage
shifts the density of states of the right superconductor upwards. When the top band of the left
superconductor is aligned with the bottom band of the right superconductor, electrons from the
right superconductor transfer to the vacant states in the left superconductor (Fig 2.5b), because
the states on the left have a lower energy. Hence, current starts to flow from right to left as soon
as the gap has been overcome, which happens at eV = 2∆.
a MAR give rise to characteristic oscillations in the current (most visible in the green curves
for D = 0.4 and D = 0.7). These oscillations are a result of singularities. It follows directly from
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Figure 2.4: The DC current I0 through an S/N/S junction as a function of eV/∆.

Δ

Δ

Continuum

Continuum

Superconductor SuperconductorNormal

Metal

(a) Overview of a S/N/S junction in its
equilibrium. eV = 0. No transfer.

2Δ

(b) For eV ≥ 2∆, transfer from continuum
to continuum is possible.

Figure 2.5

Eq. (2.8) that if one of the denominators becomes zero (i.e., 1− a2
2n±1 = 0), the recurrence relation

diverges. For abbreviation, we use q = 2n± 1. The equation 1− a2
q = 0 is equivalent to

aq = a(ε+ qeV ) =
ε+ qeV − sgn(ε+ qeV )

√
(ε+ qeV )2 −∆2

∆
= ±1.

We square the equation in order to remove the square root and the sign function. Rewriting the
result, we find

(ε+ qeV )2 −∆2 = (ε+ qeV ±∆)
2

= (ε+ qeV )2 ± 2∆(ε+ qeV ) + ∆2.
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The (ε+ qeV )2 term cancels. We divide by 2∆ to obtain

ε+ qeV = ±∆.

The energy is defined to be zero in the middle of the gap. The gap has size 2∆. Hence, we are
interested in the values ε = ±∆. When ε and ∆ have the same sign, we simply get eV = 0. In the
other case, where they have opposite signs, we find

eV = ±2∆

q
, q = 2n± 1, n ∈ N. (2.12)

This can be interpreted as the particle overcoming the energy gap 2∆ after q−1 Andreev reflections.
We note that q = 2n ± 1 implies that q is an odd integer. This can be attributed to the fact that
the voltage eV is taken with respect to the left superconductor. However, since we integrate over
the energy, we also get the singularities from the other interface, i.e.

eV = ±2∆

q
, q ∈ N. (2.13)

2.3 The S/TI/S junction in 1D

Badiane et al. [41] replaced the normal layer in the middle by a TI. With a TI in the middle layer,
one expects the transparency D to always be equal to 1. Badiane et al. introduce magnetisation
into their system to consider cases where D 6= 1. The only change they made in the model was
adding an additional minus sign for the reflection coefficient for holes (r′ = −r), such that the
scattering matrices change to[

Bn
Cn

]
= Se

[
δn0 + a2nAn
a2n+1Dn

]
, Se =

[
r t
t −r∗t/t∗

]
,[

An
Dn−1

]
= Sh

[
a2nBn

a2n−1Cn−1

]
, Sh =

[
−r∗ t∗

t∗ rt∗/t

]
.

The signs that are different from the previous case are marked in red. In a similar way as before,
the recurrence relations can be derived from here. This is shown in appendix B. The recurrence
relations are

D

[
a2n+2a2n+1

1 + a2
2n+1

Bn+1 +

(
a2

2n+1

1 + a2
2n+1

+
a2

2n

1 + a2
2n−1

)
Bn +

a2na2n−1

1 + a2
2n−1

Bn−1

]
−
(
1 + a2

2n

)
Bn

= −
√

1−Dδn0, (2.14)

An+1 − a2n+1a2nAn = −
√
R (a2n+2Bn+1 + a2n+1Bn) + a1δn0. (2.15)

Solving (2.14) and (2.15) yields expressions for Bn and An. The definition of the current through
a junction remains unchanged. Hence, we can calculate the corresponding current using eq. (2.11),
which is shown in Fig 2.6.
a Comparing Fig 2.6 to Fig 2.4, we note that current starts to flow at eV = ∆ (instead of
eV = 2∆ from before). This can be explained by considering a Majorana state in the middle of the
gap (Fig 2.7a). [41] When we shift the density of states of the right superconductor by eV = ∆, the
continuum of the right superconductor is aligned with the mid gap state of the left superconductor
(Fig 2.7b). Therefore, the current starts to flow from eV ≥ ∆. For higher transparencies (D ∼ 1),
the two systems give the same results.
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Figure 2.6: The DC current I0 through an S/TI/S junction.
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Figure 2.7

a Transport to the mid gap state also follows from the singularities. Eq. (2.14) has singularities
when 1 +a2

q = 0, with q = 2n± 1. This is the case when aq = ±i. Squaring the equation, we obtain

(ε+ qeV )2 −∆2 = (ε+ qeV ± i∆)
2

= (ε+ qeV )2 ± 2i∆(ε+ qeV )−∆2.

Both the (ε+ qeV )2 and the ∆2 term cancel. What remains is

±2i∆(ε+ qeV ) = 0.

Considering again the case where ε = ±∆, this reduces to

eV = ±∆

q
, q ∈ N, (2.16)

which differs by a factor 2 from Eq. (2.12) for the conventional S/N/S case.
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2.4 The S/TI/S junction in 2D

Up until now we only considered 1D junctions, corresponding to a single mode channel. In actual
experiments, a flake of a topological material is used, which is a couple µm in width and length.
On top of it, two superconducting leads are placed. The leads have to cover the whole width of
the flake, which implies they are several µm in width as well. This is shown in Fig. 2.8a. Because
of this non-negligible dimension, the current will not only flow perpendicular between the leads,
but also under an angle. This is illustrated by the arrows in the figure. In experiments, it is not
possible to filter out only one angle (the perpendicular direction). Instead, a superposition of the
contributions of all angles is observed. Therefore, we expect that an angle dependent model will fit
the experimental data better than the 1D model from the previous section. The aim of this section
is to model the S/TI/S junction in 2D, where the two dimensions are the in-plane dimensions as
shown in Fig. 2.8a. We refer to them as x and y and define θ as the in-plane angle.

x

y

θ

(a) Top view. (b) Side view.

Figure 2.8: S/TI/S junction. [42]

Considering the side view of the same junction (Fig. 2.8b), we see the the superconducting leads
are placed on top of the TI. At the interface of the S and the TI, some of the superconductivity
leaks into the TI, making the TI locally superconducting as well. This effect is known as the su-
perconducting proximity effect. The region in the TI that becomes superconducting is called STI.
As a side note, the S/TI/S junction is placed on top of a high resistance substrate. This implies
that the substrate does not contribute to the current and we can consider the S/TI/S junction as
an isolated system.

We are only interested in the STI/TI/STI junction and neglect the S parts from now on. This
has the additional advantage that we do not have to take the z-direction into account. There is an
applied voltage V over the junction. For the purpose of modelling, we assume the potential drop
eV to be located in the middle of the TI region. Using this, we are able to split the TI into three
regions: two regular TIs and a scattering region TI’ in between them (similar to the S/N/S case
from Section 2.2).

Our junction is now divided into five parts: STI/TI/TI’/TI/STI. An overview of the structure,
the corresponding dispersion relations and Fermi surfaces is shown in Fig 2.9. Since the STIs are
superconducting, there is an induced gap in the linear dispersion. The applied voltage in the TI’
region results in an offset in the dispersion. Therefore, its Fermi surface is smaller.

To make the system two dimensional, we give our source particle J an angle θ, which is the angle
with respect to the normal to the interface. The angle dependency enters in two ways. Firstly, in the
transport coefficients r and t in the scattering matrix. These coefficients then determine the angle
dependent transparency D. This is discussed in Section 2.4.1. Secondly, the Andreev reflection at
the interface with the superconductor becomes angle dependent as well, i.e. the Andreev coefficients
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an will depend on θ, which is derived in Section 2.4.2. Since these processes happen at different
locations in the junction, we can focus on different parts of our STI/TI/TI’/TI/STI junction (and
neglect the others). This is also illustrated in Fig 2.9.
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2.4.1 Scattering matrix

In this system, scattering is a result of the potential difference that is located in the TI’ layer.
Hence, to determine the scattering matrix, we can neglect the superconductivity and focus only on
the TI/TI’/TI junction. This is also depicted in blue at the bottom of Fig 2.9.
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The scattering matrix relates the outgoing to the incoming wave function amplitudes. We have
to be careful which basis we take here. We define ψL(R)± as the wave function amplitudes of quasi
particles carrying the charge current in the ±x-direction for x < 0 (x > L).

Figure 2.10: The scattering region (0 < x < L) is described in terms of the incoming and outgoing
particles. They are labeled by l± and r±, depending on their propagation direction. Image from [43].

In this basis, the scattering matrix is defined by[
ψL−
ψR+

]
=

[
r t
t r

] [
ψL+

ψR−

]
. (2.17)

Here, r and t correspond to an incoming particle from the left and r and t are for a particle from the
right. We are mainly interested in the reflection coefficient r. The reflection probability R is equal
to R = |r|2. Because of probability conservation, the transmission probability (the transparency) is
D = 1−R. This D appears in the recurrence relations. In this section, we will derive an expression
for r. For completeness, the full scattering matrix is derived in Appendix C.

Since all three regions are topological insulators, all of them are described by the Dirac equation

i~
∂

∂t
ψ = Ĥψ. (2.18)

The left-hand side is the time dependent part. In the stationary limit (which we use here), Eq. (2.18)
reduces to the standard eigenvalue equation Ĥψ = Eψ. The right-hand side is the position depen-
dent part, where Ĥ is the Hamiltonian given by

Ĥ = ~vσ̂ · ~k = ~v
[

0 kx − iky
kx + iky 0

]
= ~v|k|

[
0 e−iθ

eiθ 0

]
, (2.19)

where we used that kx = |k| cos θ and ky = |k| sin θ. The inner product used here is known as

“spin-momentum locking”, since it couples the spin (σ̂) to the momentum (~k). This Hamiltonian

has energies E = ±~v|k| and spinors ψ = 1
2

√
2
[
1 ±eiθ

]T
.

The potential difference in the TI’ layer is assumed to be constant and can be described as

V (x) =

{
V for 0 < x < L,

0 otherwise,
(2.20)

where L is the thickness of the TI’ layer. This is illustrated in Fig 2.11.
Due to the potential in the TI’ layer, we expect the momentum to be different there. In the middle
layer, we define our momentum in the x-direction as kx and the angle as θ. Since the TI regions
(x < 0 and x > L) are adjacent to the STI, we define the momentum as kSx and the angle as θS .
Since we assumed the potential drop to be in the x-direction, we take a simple propagating wave
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Figure 2.11: TI/TI’/TI junction modelled as a quantum well.

in the y-direction. Hence, the wave function in the three regions is given by

ψ(x, y) =



1√
2

([
1

eiθS

]
eik

S
xx + r

[
1

−e−iθS

]
e−ik

S
xx

)
eikyy for x < 0,

1√
2

(
a

[
1

eiθ

]
eikxx + b

[
1

−e−iθ

]
e−ikxx

)
eikyy for 0 < x < L,

t√
2

[
1

eiθS

]
eik

S
xxeikyy for x > L.

(2.21)

In order to match these wave functions at x = 0 and x = L, we have to impose appropriate boundary
conditions. A “physical” solution describes a state that can be prepared with finite energy in finite
time. The very minimum condition for a wave function to be physically acceptable is that it should
be square integrable, i.e. ∫

|ψ(x)|2 dx <∞, (2.22)

independent of the integration limits. This integral is interpreted as the probability of finding
the particle within these integration limits. Physicists argue that this probability cannot change
abruptly, i.e.

∫
|ψ(x)|2 dx should not have discontinuities. This implies that |ψ(x)|2 itself should

be continuous. Since |ψ|2 = ψψ∗, it follows that the wave function ψ itself has to be continuous.
This can be proven mathematically via the construction of rigged Hilbert spaces, as explained in
[44]. The continuity at x = 0 and x = L is imposed as

lim
x↑0

ψ(x, y) = lim
x↓0

ψ(x, y), lim
x↑L

ψ(x, y) = lim
x↓L

ψ(x, y). (2.23)

Note that in systems described by higher order differential equations (such as the regular Schrödinger
equation), more boundary conditions are needed. The simple case of the Dirac equation (Eq. (2.18))
is a first order equation and therefore, imposing continuity at x = 0 and x = L is sufficient.

Substituting the wave functions (Eq. (2.21)) into the boundary conditions (Eq. (2.23)) yields a
system of four equations with four unknowns (r, a, b and t). Solving this system, we find the
expressions for r to be equal to

r = 2eiθS sin (kxL)
sin θS − sin θ

e−ikxL cos(θS + θ) + eikxL cos(θS − θ)− 2i sin(kxL)
. (2.24)

The same expression has been found before for Klein tunneling in graphene [45] and in Dirac
semimetals. [38] As mentioned before, we will use that the transparency of the junction is equal to
D = 1− |r|2. The full scattering matrix for electrons is derived in Appendix C.
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It is insightful to keep in mind the situation with a normal metal in the middle. In this case,
the Hamiltonian is given by

Ĥ =

−
~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
0

0
~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
 , (2.25)

which has eigenvalues E = ±~k2/2m and eigenvectors ψ =
[
1 0

]T
and

[
0 1

]T
. These spinors

are orthogonal, i.e. there is no mixing and no angle dependency. The angle dependency of the
scattering matrix is a result of the spin-momentum locking in the topological insulator.

2.4.2 Andreev coefficients

The model used in this section is based on Ref. [46]. Since Andreev reflection happens at the
interface with the superconductor, we focus on the topological insulator/superconductor interfaces.
This is illustrated at the bottom of Fig 2.9 in pink. Since superconductivity mixes electrons and
holes, we will use the four component spinors. In the topological insulator, the spinors for electrons
(e) and holes (h) are given by

ψe(θ) =
1√
2


1
eiθ

0
0

 , ψh(θ) =
1√
2


0
0
1

−e−iθ

 . (2.26)

Neglecting the superconducting phase, the spinors in the superconductor are given by

ψSe(E, θS) =
χe(E)

2
√

2∆


1
eiθS

− ∆

χe(E)2
eiθS

∆

χe(E)2

 , ψSh(E, θS) =
χh(E)

2
√

2∆


1
eiθS

− ∆

χh(E)2
eiθS

∆

χh(E)2

 , (2.27)

with χe(E) =
√
E +

√
E2 −∆2 and χh(E) =

√
E −

√
E2 −∆2.

In Section 2.2, we discussed the four possible processes that can take place. Since we will con-
sider the same situation four times, introducing super- and subscripts comes in handy when naming
the coefficients. The notation is as follows: all reflections are called r, all transmissions are named
t. The superscript is either r or l, which represents the right or left interface, respectively. The
subscripts consist of two letters, which can be either e (electron-like) or h (hole-like). The first
letter is the incoming particle, while the second letter corresponds to the outgoing particle.

We start by considering an incoming electron-like quasi particle at the right interface. The names
of the coefficients are

rree Normal reflection (electron → electron),
rreh Andreev reflection (electron → hole),
tree Transmission as an electron-like particle (electron → electron),
treh Transmission as a hole-like particle (electron → hole).
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inree
r reh
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The corresponding boundary condition is

ψe(θ) + rreeψe (π − θ) + rrehψh (θ) = treeψSe(E, θS) + trehψSh(E, π − θS). (2.28)

An incoming hole at the right interface has the same for processes with coefficients

rrhh Normal reflection (hole → hole),
rrhe Andreev reflection (hole → electron),
trhh Transmission as a hole-like particle (hole → hole),
trhe Transmission as an electron-like particle (hole → electron).

STI E

k

inrhe
r rhh

r thh
r the

r

The incoming hole-like quasi particle at the right interface gives the boundary condition

ψh(π − θ) + rrhhψh(θ) + rrheψh(π − θ) = trheψSe(E, θS) + trhhψSh(E, π − θS). (2.29)

We can do the same for the left interface. The names of the coefficients are the same as before,
but the superscript r (right) changes to l (left). In the boundary conditions, all angles change by a
factor π because the direction of incoming, reflected and transmitted quasi particles is opposite.

eh

S TIE

k

in ree
lrlteh

ltee
l

S TIE

k

in rhe
l

rhh
lthh

lthe
l

An incoming electron at the left interface yields the boundary condition

ψe(π − θ) + rleeψe(θ) + rlehψh(π − θ) = tleeψSe(E, π − θS) + tlehψSh(E, θS). (2.30)
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Finally, from the incoming hole at the left interface, we obtain

ψh(θ) + rlhhψh(π − θ) + rlehψe(θ) = tlheψSe(E, π − θS) + tlhhψSh(E, θS). (2.31)

Solving this system of equations, we find that the reflection coefficients from electron to electron
(ree) and from hole to hole (rhh) are equal. However, they differ for the left and right interface.
They are given by

rree = rrhh =
2eiθ(eiθ − eiθS )(1 + ei(θ+θS))

√
E2 −∆2

(1 + e2iθ)(1 + e2iθS )E + (1− e2iθ − e2iθS + 4ei(θ+θS) + e2i(θ+θS))
√
E2 −∆2

, (2.32)

rlee = rlhh =
2(e−i(θ−θS) + e2iθS − ei(θ+θS) − 1)

√
E2 −∆2

(1 + e2iθ)(1 + e2iθS )E + (1− e2iθ − e2iθS + 4ei(θ+θS) + e2i(θ+θS))
√
E2 −∆2

. (2.33)

The reflection coefficients from electron to hole (reh) and from hole to electron (rhe) are

rreh = −eiθX, rleh = e−iθX,

rrhe = eiθX, rlhe = −e−iθX, (2.34)

with

X =
∆ cos θ cos θS

E cos θ cos θS +
√
E2 −∆2(1− sin θ sin θS)

. (2.35)

From the relations given by Eq. (C.2), we see a difference between scattering at the right and left
interface. However, substituting θ → π − θ at the left interface, we find the same results as for the
right interface, as a result of the different orientation. Hence, scattering at the right and the left
interface is the same, which is what we would expect, since there is no physical difference between
the two.

The minus sign difference between reh and rhe on the other hand is a real difference, which is
crucial here:

reh = −rhe. (2.36)

We chose the names of these coefficients for convenience, but what they actually represent are the
Andreev coefficients an that we have seen in the previous sections. We use that an ≡ reh. This
implies that when we consider holes, we get a minus sign in front of our Andreev coefficient an. We
obtain [

Bn
Cn

]
= Se

[
δn0 + a2nAn
a2n+1Dn

]
Se =

[
r t
t −r∗t/t∗

]
, (2.37)[

An
Dn−1

]
= Sh

[
−a2nBn

−a2n−1Cn−1

]
Sh = S∗e . (2.38)

As can be seen from Fig 2.9, we assume that regions we are considering (TI and STI) have the same
Fermi surface. This implies that we have to take the angles the same (θ = θS). The electron to hole
and hole to electron coefficients reduce to

rreh = −eiθS ∆

E +
√
E2 −∆2

, rleh = e−iθS
∆

E +
√
E2 −∆2

,

rrhe = eiθS
∆

E +
√
E2 −∆2

, rlhe = −e−iθS ∆

E +
√
E2 −∆2

, (2.39)

which is just the standard Andreev coefficient multiplied by an angle dependent factor. This is the
same as how the superconducting phase is normally taken into account (which we neglected in this
model), which means that the angle dependency acts as a phase.
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Figure 2.13: (a) Angle dependent transparency D(θ) = 1 − |r|2 for different values of the Fermi surface
mismatch µTI/µS , for kFL = 10. D = 1 corresponds to the fully transparent case, while D = 0 represents
the reflective limit. The squares denote the values of D for which the current in the other panels is plotted.
The angle-resolved (colour) and angle-averaged DC current (black) as a function of bias voltage for (b)
µTI/µS = 0.01, (c) µTI/µS = 0.5 and (d) µTI/µS = 0.8.

2.4.3 The DC current

In the 2D case, the recurrence relations (2.14) and (2.15) still hold. The DC current is a function of
the angle θ, the ratio of chemical potentials µTI/µS (which is effectively the Fermi surface mismatch)
and of the scattering length kFL. Eventually, we will consider the angle-averaged current, which is
no longer a function of θ (it is integrated out), but first we will focus on the effect of θ as well.
a We keep the length constant at kFL = 10. For this length, the reflection probability R = |r|2
oscillates as a function of θ (Fig. 2.13a). The longer the length, the more oscillations occur (Fabry-
Perot). Therefore, considering the current as a function of the angle θ is meaningless. Instead, we
display it as a function of the transparency D = 1−R.
a The Fermi surface mismatch µTI/µS is taken between 0.01 (Fig 2.13b) and 0.8 (Fig 2.13d).
Theoretically, the ratio can become larger than 1, in which case a Brewster angle will be introduced.
This implies that for some angles, there are no available states, so they do not contribute to the
current. In experiments however, µS is usually much larger than µTI , which is why we focus on
values between 0 and 1.
a In the first case, where µTI/µS = 0.01 (Fig 2.13b), the Fermi surface of the TI is much
smaller than the Fermi surface of the S. Due to the mismatch, the transport is very limited and
becomes quasi-one dimensional. Therefore, the corresponding graphs look very much like the 1D
S/TI/S junction from Fig. 2.6. Increasing the µTI/µS ratio, the full spectrum shifts to the right.
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In order to determine how much it shifts exactly, we can calculate where we expect the singularities
(corresponding to the oscillations) to be located. We are still dealing with recurrence relation (2.14),
which implies singularities occur when 1 + a2

q = 0, which is equivalent to aq = ±i. Recalling the
Andreev coefficients from Eq. (2.39), we obtain

aq =
ε+ qeV − sgn(ε+ qeV )

√
(ε+ qeV )2 −∆2

∆
eiθS = ±i. (2.40)

Doing some rewriting and squaring the equation, we obtain

(ε+ qeV )2 −∆2 =
(
ε+ qeV ± i∆e−iθS

)2
= (ε+ qeV )2 ± 2i∆(ε+ qeV )e−iθS −∆2e−2iθS .

The (ε+ qeV )2 terms cancel. We divide by ∆ and sort the terms. What remains is

±2i(ε+ qeV )e−iθS = ∆(1− e−2iθS ).

We can rewrite this as

ε+ qeV = ±∆(1− e−2iθS )

2ie−iθS
= ±∆ sin θS ,

where we used that (1− e−2iθS )/e−iθS = eiθS − e−iθS = 2i sin θS . Setting ε = ±∆, we get

eV =
±∆(1 + sin θS)

q
= ±∆

q

(
1 +

µTI
µS

sin θ

)
, q ∈ N. (2.41)

It follows directly that the oscillations in eV are shifted by the Fermi surface mismatch µTI/µS .
Finally, we note the slope of the current becomes concave for µTI/µS large. This was also observed
in the S/N/S case in Fig. 2.4, which indicates the spectrum is approaching the conventional case.

2.4.4 Angle integration

At the beginning of Section 2.4, we argued that the experimentally observed current through a
S/TI/S junction is the current integrated over all possible angles. The integrand is the angle
resolved current I0(eV, θ), given by Eq. (2.11). Averaging over the angle is done by

I0(eV ) =
1

π

∫ π/2

−π/2
I0(eV, θ) cos θ dθ. (2.42)

The angle-averaged DC current is shown in black in Fig. 2.13. These graphs all look quite smooth
and similar. Structures from the MAR are hardly visible. This is why it is difficult to observe MAR
experimentally. It is remarkable that the black curve lies at the lower side of the spectrum of I-V
curves (in the case of µTI/µS = 0.01 the black curve lies partly under the coloured curves). This
has two reasons. Firstly, the angle averaging is scaled by a factor cos θ which is always less than,
or equal to, 1. Secondly, we integrate the angle from −π/2 to π/2. The graphs in Fig. 2.13 are
taken for positive angles. The graphs for negative angles are slightly different, which is shown in
the case of µTI/µS = 0.5 in Fig. 2.14. We recall that there are two angle dependent processes;
the scattering in the middle region and Andreev reflection at the interfaces. The transparency of
the scatter region, D(θ), is completely symmetric around θ. Hence, the difference for positive and
negative θ is caused by the Andreev reflection, as a result of the Fermi surface mismatch. The
current is symmetric with respect to the applied voltage V .
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(a) µTI/µS = 0.5. (b) µTI/µS = 0.8.

Figure 2.14: Angle resolved DC current from Fig. 2.13c for positive (solid)
and negative (dotted) values of θ. For kFL = 10.

2.4.5 Bound state energy

In the one dimensional S/TI/S junction introduced by Badiane et al. [41], it was shown that there
is a bound state at zero energy, which was attributed to the existence of a Majorana bound state in
this system. In two dimensions, we can show that we can have a bound state at nonzero energy as
well, depending on the angle of the incident particle, and on the Fermi surface mismatch between
the topological insulator and the superconductor.

In the original BTK formalism [47], the electron and hole wave functions amplitudes u and v were
defined as

u2 = 1− v2 =
1

2

(
1 +

√
ε2 −∆2

ε

)
=
ε+
√
ε2 −∆2

2ε
, (2.43)

such that the ratios between u and v are

u

v
=
ε+
√
ε2 −∆2

∆
,

v

u
=
ε−
√
ε2 −∆2

∆
. (2.44)

For our bound state calculation, we are interested in the bound state inside the STI. We consider
the left STI/TI interface separately. We take the electron to hole reflection coefficient reh from
Eq. (2.39) and rewrite it in terms of u and v as

reh = e−iθS
∆

ε+
√
ε2 −∆2

= e−iθS
ε−
√
ε2 −∆2

∆
= e−iθS

v

u
=

v

ueiθS
. (2.45)

From this we can conclude that, compared to the conventional case with the normal metal, u gets
an additional factor eiθS and v remains the same. We note that changing the orientation of the two
materials (i.e. the right TI/STI interface), gives the same result.

Using this observation, we can rewrite the wave function in the STI from Eq. (2.27) as

ψSe(ε, θS) =
1√
2


u

ueiθS

−veiθS
v

 , ψSh(ε, θS) =
1√
2


v

veiθS

−ueiθS
u

 . (2.46)
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∆

∆

θ = 0 θ ≠ 0

Figure 2.15: Subgap states in the density of states for perpendicular incidence (left)
and incidence under an angle (right).

Following Nagato et al [48], we can construct an artificial system consisting of a STI for x < 0 and an
infinitely high barrier located at x = 0. This causes a completely reflective interface, which implies
that the wave function has to be set to zero at x = 0. We wave function is a superposition of an
left-going electron (with momentum −k and angle π− θS) and a right-going hole (with momentum
+k and angle θS). The two states with arbitrary coefficients c+ and c−. We are not interested in
them, since we will eliminate them later on. The completely reflective boundary condition is

c+√
2


u

−ue−iθS
ve−iθS

v

+
c−√

2


v

veiθS

−ueiθS
u

 =


0
0
0
0

 . (2.47)

We note that the system of equations generated by the first two rows is the same as the system
resulting from the third and fourth row. Eliminating the c+ and c− coefficients, we obtain the
relation between u and v

u2e2iθS + v2 = 0,

which is equivalent to

reh =
ueiθS

v
= ±i.

This is almost the same relation that we found in Eq. (2.40), when we investigated the poles of the
recurrence relation. We are interested in the bound state energy. In order to have a bound state,
we must have |ε| < ∆. Using the definition of reh from Eq. (2.45), with |ε| < ∆, and setting it
equal to ±i, we get

e−iθS
∆

ε+ i
√

∆2 − ε2
= ±i.

Solving for ε, we obtain the bound state energy

ε = ±∆ sin θS . (2.48)

We note that for perpendicular incidence (i.e. θ = 0 and therefore, θS = 0), the bound state is
located at zero energy, just as Badiane et al. found for their one dimensional case. [41] We find
that for incidence under an angle, the bound state splits into two bound states that go away from
zero energy. This is illustrated in Fig. 2.15.
a The bound state spectrum from Eq. (2.48) is almost the same as the bound states found in
chiral p-wave superconductors. [49, 50, 51, 52, 53, 54, 55] However, in these cases, there is only one
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bound state, while we find two of them. Which bound state is found depends on the chirality of
the superconductor, i.e. in which direction the conserved momentum ky is defined.
a The last thing that is left to do is to figure out whether we truly have two bound states in
our system, or whether one of them is invalid. In the previous section, we showed that the current
is asymmetric with respect to the incoming angle θ, which might be an indication for the presence
of only one bound state. The simple infinite boundary condition that we used here is probably too
simplistic to determine which one of the obtained bound states (if any) is invalid. A more thorough
approach would be to follow the edge state calculations by Tkachov. [25]
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3a

Numerical methods

The goal of the previous section was to calculate the current through S/N/S and S/TI/S junctions, in
one or two dimensions. This section describes the numerical methods that were used to obtain these
results. The current is defined as the integral over the sum of all reflection probabilities. There
are two types of reflections we consider: the regular reflections Bn and the Andreev reflections
An. The Bn coefficients depend on the previous two reflections and can therefore be described by
three-term recurrence relations. These recurrence relations have two different solutions and finding
the desired one numerically is not trivial. This is a well-known issue in calculating the famous
Bessel functions. We briefly go over the theory of the two solutions for the recurrence relation
(Section 3.1.1) and investigate the behaviour for n → ∞ to gain more insight in what we are
working with (Section 3.1.2). Different algorithms for solving recurrence relations are discussed in
Sections 3.1.3 to 3.3. The Andreev reflection coefficients An only depend on the previous Andreev
reflection and are described by two-term recurrence relations. The way to solve them is considered
in Section 3.2. After the reflection probabilities Bn and An are obtained, we have to integrate over
them to find the current. This is done using an adaptive Simpson method (Section 3.4.1). The
integrands contain many singularities. Section 3.4.2 describes a simple, yet effective method to
avoid them. In the two dimensional case, an angle dependency was introduced (Section 2.4). The
relevant physical quantity is the average over the various angles. The numerical averaging is briefly
discussed in Section 3.5.

3.1 Three-term recurrence relations

3.1.1 Minimal solutions

A three-term linear recurrence relation can be written as

yn+1 + γnyn + χnyn−1 = 0, n ∈ N, (3.1)

where γn and χn are sequences of real or complex numbers and χn 6= 0. Since this is a second
order equation, it has two linearly independent solutions fn and gn. Hence, the general solution of
Eq. (3.1) can be spanned by a pair of linearly independent solutions fn and gn, i.e.

yn = afn + bgn. (3.2)
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Only one of them, say fn, is the solution we are trying to find. The other function, gn, may or may
not diverge with increasing n. Therefore, we are interested in a pair of solutions (fn, gn) with the
property [56, 57]

lim
n→∞

fn
gn

= 0. (3.3)

We can see that fn is “minimal at infinity” and therefore, it is referred to as the minimal solution.
Non-minimal solutions such as gn are called dominant solutions. The minimal solution fn is unique,
whereas dominant solutions are not. To see why the minimal solution is unique, we assume there
exist two minimal solutions fn and f ′n. This would imply that both fn/f

′
n and f ′n/fn have the

limit zero as n → ∞, which is not possible. Since the general solution can be written as a linear
combination (Eq. (3.2)), arbitrary multiples of fn can be added to gn to generate more dominant
solutions (solutions asymptotically proportional to gn). [56]

In the case of a dominant solution (i.e. b 6= 0), Eq. (3.3) implies that

lim
n→∞

fn
yn

= 0. (3.4)

Suppose we are trying to find the desired solution fn by setting approximate initial values y0
.
= f0

and y1
.
= f1 (due to rounding errors) and recurring with infinite precision. We can still obtain a

solution which is linearly independent of fn, due to the gn component. Let εr be the relative error,
i.e. the absolute error divided by the actual quantity. Because of the relation Eq. (3.4), we find
that [56]

εr =

∣∣∣∣yn − fnfn

∣∣∣∣→∞ as n→∞, (3.5)

which implies that the relative error diverges. Therefore, computing fn in this simple, straightfor-
ward way is not very useful. Instead, to find fn we have to use backward recursion. This procedure
will be explained in Section 3.1.3. Before considering the actual algorithm, it is good to know what
we are dealing with. Hence, we will first have a look at the asymptotic behaviour of the solutions
gn and fn as n→∞.

3.1.2 Asymptotic behaviour

We consider again the recurrence relation yn+1 + γnyn + χnyn−1 = 0 and assume the coefficients
γn and χn obey the asymptotic structure

γn ∼ γnα, χn ∼ χnβ , γ 6= 0, χ 6= 0, α, β ∈ R, n→∞. (3.6)

Using this structure, we can construct a Newton-Puiseux diagram formed by the points P0(0, 0),
P1(1, α) and P2(2, β), as shown in Fig 3.1.

α
α

β

β - α

0 1 2

P1

P2

P0

Figure 3.1: Newton-Puiseux diagram.
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Perron Kreuser Theorem [56, 57]

(a) If the point P1 is above the line segment P0P2 (i.e. α > β − α or β < 2α), the
recurrence relation (3.1) has two linearly independent solutions gn and fn for which

lim
n→∞

gn+1

gn
∼ −γnα and lim

n→∞

fn+1

fn
∼ −

(
χ

γ

)
nβ−α (3.7)

and fn is the minimal solution to (3.1).

(b) If the points P0, P1, P2 are collinear (i.e. β = 2α), let t1, t2 be roots of t2 + γt + χ = 0
and |t1| ≥ |t2|. Then (3.1) has two linearly independent solutions gn and fn, such that

lim
n→∞

gn+1

gn
∼ t1nα and lim

n→∞

fn+1

fn
∼ t2nα, (3.8)

provided |t1| > |t2|. If |t1| = |t2| (in particular, if t1, t2 are complex conjugates) then

lim sup
n→∞

[
|yn|

(n!)α

]1/n

= |t1| (3.9)

for all non-trivial solutions of (3.1).

(c) If the point P1 lies below the line segment P0P2 then

lim sup
n→∞

[
|yn|

(n!)β/2

]1/n

=
√
|χ| (3.10)

for all non-trivial solutions of (3.1).

The recurrence relation of interest is

D
a2n+2a2n+1

1− a2
2n+1

Bn+1 −
[
D

(
a2

2n+1

1− a2
2n+1

+
a2

2n

1− a2
2n−1

)
+ 1− a2

2n

]
Bn +D

a2na2n−1

1− a2
2n−1

Bn−1 = 0,

(3.11)

where D is the transparency. Since this is a probability, it satisfies 0 ≤ D ≤ 1. The Andreev
coefficients are defined as an = a(ε+ neV ), with

a(ε) =
1

∆

{
ε− sgn(ε)

√
ε2 −∆2 |ε| > ∆,

ε− i
√

∆2 − ε2 |ε| < ∆,
(3.12)

where i ≡
√
−1. In order to rewrite this relation in the standard form yn+1 + γnyn + χnyn−1 = 0,

we divide the whole equation by the first term and simplify the result. The coefficients are given by

γn = −
[
a2n+1

a2n+2
+

a2
2n(1− a2

2n+1)

a2n+2a2n+1(1− a2
2n−1)

+
1

D

(1− a2
2n+1)(1− a2

2n)

a2n+2a2n+1

]
, (3.13)

χn =
a2na2n−1(1− a2

2n+1)

a2n+2a2n+1(1− a2
2n−1)

. (3.14)

Using the computer program Wolfram Mathematica, we can find the Taylor expansions for n→∞
using the command Series[func,{n,Infinity,order}], where func is the function (depending
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on n) and order is the order of the expansion. The Taylor expansions for both coefficients are given
by

γn =
16n2

D
+

8(3 + 2ε)n

D
+

2(2 +D + 6ε+ 2ε2)

D
+O

(
1

n

)
, (3.15)

χn = 1 +
2

n
+

3− 2ε

2n2
+O

(
1

n3

)
, (3.16)

hence the asymptotic behaviour of the coefficients can be described by

γn ∼
16

D
n2, χn ∼ 1. (3.17)

It is remarkable that in the first approximation, the coefficients are independent of the energy ε.
This can be interpreted as the spectrum of reflections becoming continuous for n→∞. Therefore,
it does not matter which value of the energy we consider.

The corresponding Newton-Puiseux diagram has slopes +2 and −2. Hence, by the Perron Kreuser
Theorem, part (a), there are two solutions with different asymptotic behaviour

lim
n→∞

gn+1

gn
∼ −16n2

D
, lim

n→∞

fn+1

fn
∼ − D

16n2
, n→∞. (3.18)

A well-known recurrence relation with similar stability issues is the generation of Bessel functions.
In that case, the dominant solution grows with ∼ n, while the minimal solution decreases with
∼ 1/n. [56] The dominant solution in (3.18) is even more dominant than the one in the Bessel
functions case. This implies that we have to treat it carefully.

3.1.3 Backward recurrence algorithm

Assume we want to compute the sequence

f0, f1, . . . , fN ,

where N is a large, positive integer. We start the backward recurrence for a large ν � N and
generate the sequence yn, n = ν, ν − 1, . . . , 0. Since fn is minimal, the ratios yN/yN−1 will
approach the ratios of the minimal solution fN/fN−1. Since the procedure is based on ratios, we
define

rn =
fn+1

fn
. (3.19)

The use of ratios has the additional advantage that the risk of overflow in the numerical calculation
is minimized. By plugging fn+1 and fn into (3.19), we find that we can write the ratio rn as a
continued fraction

rn−1 =
−χn

γn −
χn+1

γn+1 − χn+2

γn+2−...

, n = 1, 2, 3, . . . . (3.20)

Suppose rn is known for some value ν ≥ N . Then, the ratios rn can be generated backwards for
0 ≤ n < ν by

rn−1 =
−χn

γn + rn
, n = ν, ν − 1, . . . , 1. (3.21)
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Another consequence of working with ratios is that the solution is defined up to a normalisation
constant. The most general normalisation condition can be obtained by defining a sum of minimal
solutions

s =

∞∑
m=0

λmfm, (3.22)

where s 6= 0 and s, λ0, λ1, . . . are given quantities and the series converges. The simplest case one
can imagine is λm = 0 for m > 0, which means that the condition reduces to prescribing only f0.
The advantage of using the infinite series is that it does not require any value of fn to be known.
Since fn is unique (Section 3.1.1), we will converge to fn anyway.

In order to conveniently use s simultaneously with our recurrence, we define

sn =
1

fn

∞∑
m=n+1

λmfm. (3.23)

Substituting our definition of the ratios rn from (3.19), we can rewrite sn as

sn−1 =
1

fn−1

∞∑
m=n

λmfm =
1

fn−1

(
λnfn +

∞∑
m=n+1

λmfm

)

= λnrn−1 + rn−1

(
1

fn

∞∑
m=n+1

λmfm

)
= rn−1(λn + sn), n = ν, ν − 1, . . . , 1. (3.24)

In particular, for n = 0, we find

s0 =
1

f0

∞∑
m=1

λmfm =
1

f0
(s− λ0f0), (3.25)

and so
f0 =

s

λ0 + s0
, (3.26)

which gives the initial value of the solution. The remaining values can be obtained from

fn = rn−1fn−1, n = 1, 2, . . . , N. (3.27)

Up until now, we have been discussing an infinite continued fraction rn−1 and an infinite series sn.
In the actual algorithm, the use of infinite fractions and series is not possible, so we truncate them

at a value ν ≥ n. We define the truncated continued fraction r
(ν)
n−1 and the truncated series s

(ν)
n as

r(ν)
ν = 0, r

(ν)
n−1 =

−χn
γn −

χn+1

γn+1 − χn+2

γn+2−...χν/γν

, 1 ≤ n ≤ ν, (3.28)

s(ν)
ν = 0, s(ν)

n =

ν∑
m=n+1

λmr
(ν)
n r

(ν)
n+1 . . . r

(ν)
m−1, 0 ≤ n < ν. (3.29)

Since (3.21) and (3.24) still hold for the truncated case, we can rewrite this as

r(ν)
ν = 0, r

(ν)
n−1 =

−χn
γn − r(ν)

n

, n = ν, ν − 1, . . . , 1, (3.30)

s(ν)
ν = 0, s

(ν)
n−1 = r

(ν)
n−1(λn + s(ν)

n ), n = ν, ν − 1, . . . , 1. (3.31)
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The solution f
(ν)
n can then be obtained via

f
(ν)
0 =

s

λ0 + s
(ν)
0

, f (ν)
n = r

(ν)
n−1f

(ν)
n−1, n = 1, 2, . . . , N. (3.32)

We can now construct an algorithm for computing f
(ν)
n using (3.30)-(3.32). The original equations

(with infinite fractions and infinite series) gave the exact solutions fn. The quantities f
(ν)
n are (at

best) approximations to fn. The larger the value of ν, the better the approximation. However, we

do not know how large ν should be. Therefore, we keep computing f
(ν)
n for increasing values of ν

until the approximation is within the desired accuracy.

The desired accuracy means the number of digits that we take into account. An accuracy of x digits
corresponds to a tolerance ε = 10−x.

Backward recurrence algorithm [56]

Input: ε (tolerance), N , λn, s.

Output: sequence f
(ν)
0 , f

(ν)
1 , . . . f

(ν)
N .

1. Select an integer ν ≥ N . Set φ
(ν)
n = 0 for n = 0, 1, . . . , N .

2. Calculate f
(ν)
n as follows:

Set r
(ν)
ν = 0, s

(ν)
ν = 0.

For n = ν, ν − 1, . . . , 1

a r
(ν)
n−1 =

−χn
γn − r(ν)

n

,

a s
(ν)
n−1 = r

(ν)
n−1(λn + s

(ν)
n ).

Set f
(ν)
0 =

s

λ0 + s
(ν)
0

.

For n = 1, 2, . . . , N

a f
(ν)
n = r

(ν)
n−1f

(ν)
n−1.

3. If |f (ν)
n − φ(ν)

n | > ε

a Set φ
(ν)
n = f

(ν)
n ,

a Set ν = ν + 5,
a Repeat from step 2.

Step 3 can be executed by creating a while loop around step 2, with the condition “While |f (ν)
n −

φ
(ν)
n | > ε”.

The algorithm described here is written in the most general form. Note that if we want to switch
from the S/N/S case to the S/TI/S case, the only thing we have to change are the coefficients γn
and χn.
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Testing the algorithm

Before actually implementing the algorithm for our coefficients, it was tested using the simple
case of the Bessel functions. The Bessel functions of the first type Jn(x) (the minimal solution)
and the Bessel functions of the second type Yn(x) (the dominant solution) both obey the same
recurrence relation

yn+1 −
2n

x
yn + yn−1 = 0. (3.33)

The exact values can be found using Matlab’s Bessel function besselj(n,x). For comparison, we
start by calculating the Bessel function using a simple forward recurrence algorithm. We give the
values J1(1) and J2(1) up to ten decimals as initial conditions. The values yn+1 = (2n/x)yn− yn−1

were calculated in a forward for-loop. Values obtained by testing the algorithm are shown in
Table 3.1. We can see that already after one iteration of the forward algorithm, the solution starts
growing and converges to the dominant solution.

For the backward algorithm, we set the coefficients γn = −2n/x and χn = 1 and run the algorithm
described earlier in this section. We first tested the algorithm by setting f0 equal to the first ten
decimals of the exact value J1(1) and ignoring Eq. (3.26). We checked what happens when we varied
the number of iterations ν. Comparing ν = 200 and ν = 100, the value of y100 is the same up to
the first three decimals.

n Exact value Forward recurrence
Backward recurrence
ν = 200, f0 = J1(1)

1 4.4005058574 · 10−1 4.4005058574 · 10−1 4.4005058574 · 10−1

2 1.1490348493 · 10−1 1.1490348493 · 10−1 1.1490348493 · 10−1

3 1.9563353982 · 10−2 2.2865793501 · 101 1.9563353982 · 10−2

4 2.4766389641 · 10−3 4.5502929067 · 103 2.4766389641 · 10−3

5 2.4975773021 · 10−4 9.0550828844 · 105 2.4975773021 · 10−4

6 2.0938338002 · 10−5 1.8019614940 · 108 2.0938338002 · 10−5

. . . . . . . . . . . .
20 3.8735939985 · 10−25 2.7522544087 · 1040 3.8735030084 · 10−25

. . . . . . . . . . . .
100 8.4318287896 · 10−189 2.2281000524 · 10224 8.4318287895 · 10−189

n
Backward recurrence
ν = 100, f0 = J1(1)

Backward recurrence
λ1 = 1, s = 0.4401

Backward recurrence
λ2m = 2, s = 0.0396

1 4.4005058574 · 10−1 4.4010000000 · 10−1 4.3972591478 · 10−1

2 1.1490348493 · 10−1 1.1491638770 · 10−1 1.1481879870 · 10−1

3 1.9563353982 · 10−2 1.9565550795 · 10−2 1.9548920067 · 10−2

4 2.4766389641 · 10−3 2.4769170714 · 10−3 2.4748116907 · 10−3

5 2.4975773021 · 10−4 2.4978577606 · 10−4 2.4957345803 · 10−4

6 2.0938338002 · 10−5 2.0940689215 · 10−5 2.0922889619 · 10−5

. . . . . . . . . . . .
20 3.8735030084 · 10−25 3.8739372758 · 10−25 3.8706451236 · 10−25

. . . . . . . . . . . .
100 8.4316200706 · 10−189 8.4327756184 · 10−189 8.4256077549 · 10−189

Table 3.1: The Bessel function of the first kind Jn(1); its exact value, the value obtained by a simple
forward recurrence and values from the backward recurrence algorithm using different numbers of iterations
ν and different normalisation conditions.
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Next, we wanted to implement Eq. (3.26), for which we have to choose values for λn and s. We
kept ν constant at 200. We started by the simplest case where we put s = 1, λ0 = 1 and λm = 0,
for m > 0. We noticed that the sequence went down at the same rate as the exact Bessel function,
however, the value for n = 100 was slightly off (we found y100 = 1.916·10−188). This is a consequence
of randomly setting the value of s equal to 1. To fix this, we took the exact value, J100(1) and
divided it by the obtained value y100, from which we get s = 0.4401. By using this value, we found
a new approximation for the Bessel function which is already much closer to the exact value.
a Finally, we wanted to use the normalising sum from Eq. (3.22). We followed Section 5 from
Ref. [56], where a = 0 (a parameter we did not use) and x is real. In this case, the normalisation
condition was chosen as λ2m = 2 and 0 otherwise. Again, we started with s = 1, from which we
obtained y100 = 9.8183 · 10−188, which is again slightly off. By doing the same trick as before, we
obtained s = 0.0396, which gave results that are much closer to the exact values.
a In these examples, we only specified s up to four decimals. By increasing the number of
decimals, the values would be even closer to the exact values of the Bessel function. An important
observation is that we used the exact values of the Bessel function to obtain the value for s. This
exact value could, in general, be unknown. In Ref. [56], the so-called Sonine’s formula is used to
estimate s. The Sonine’s formula is based on the properties of the Bessel functions, which means
that it still assumes that something is known about the desired solution. We do not have a similar
formula for our case, so this method is not very useful either.

3.1.4 The non-homogeneous case

Up until now, we have considered only the homogeneous recurrence relation (3.11), where the right
hand side of the equation is equal to zero. Suppose we have a non-homogeneous recurrence relation

yn+1 + γnyn + χnyn−1 = f(n), (3.34)

where f(n) solely depends on n. Its solution is the sum of the homogeneous recurrence, yhn, and a
particular solution, ypn, i.e.

yn = yhn + ypn. (3.35)

The homogeneous solution can be found by setting f(n) to zero and solving the recurrence relation
using the backward recurrence algorithm from the previous section. In order to obtain a particular
solution, we guess an Ansatz in the same form as f(n) with unknown coefficients. By simply sub-
stituting the Ansatz into the recurrence (3.34), we obtain the coefficients. If all coefficients turn out
to be zero, we have to take a different Ansatz. Since the particular solution is based on an Ansatz,
it is not unique.

The system under consideration has a source term described by a Kronecker δ-function. The
non-homogeneous recurrence relation is given by

D
a2n+2a2n+1

1− a2
2n+1

Bn+1 −
[
D

(
a2

2n+1

1− a2
2n+1

+
a2

2n

1− a2
2n−1

)
+ 1− a2

2n

]
Bn +D

a2na2n−1

1− a2
2n−1

Bn−1

= −
√

1−Dδn0. (2.8)

Similar to Section 3.1.2, we divide the full equation by the first term and write it in a compact
manner as

yn+1 + γnyn + χnyn−1 = ζnδn0, (3.36)

where γn and χn are given by Eqs. (3.13) and (3.14), respectively. The coefficient on the right hand
side is defined as

ζn = −
√

1−D
D

1− a2
2n+1

a2n+2a2n+1
. (3.37)
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Since the non-homogeneous part is given by f(n) = ζnδn0, we take our Ansatz to be of the same
form, i.e.

ypn = cδn0,

where c is the coefficient that we have to find. Substituting the Ansatz into Eq. (3.36), we obtain

c (δn+1,0 + γnδn0 + χnδn−1,0) = ζnδn0.

If n = 0, we find that c = ζ0/γ0. The Ansatz from (3.1.4) vanishes when n 6= 0. Hence, the
particular solution becomes

ypn =
ζn
γn
δn0. (3.38)

Using the expressions for γn and ζn given by Eqs. (3.13) and (3.37), we can simplify the coefficient
to

ζ0
γ0

=

√
1−D
D

[
1

1− a2
1

+
a2

0

(1− a2
−1)

+
(1− a2

0)

D

]−1

. (3.39)

3.2 Two-term recurrence relations

After the Bn coefficients are obtained, we can use them to calculate the An coefficients. The An
coefficients are described by the two-term recurrence

An+1 − a2n+1a2nAn =
√

1−D (Bn+1a2n+2 −Bna2n+1) + Ja1δn0. (2.9)

Since a two-term recurrence is of the first order, it only has one solution. This implies that we do
not have to consider minimal and dominant solutions. However, it can still happen that the solution
is unstable. This can be tested by the following theorem:

Root Condition Theorem [58]

Consider the recurrence yn+k + a1yn+k−1 + . . . + akyn = 0. The corresponding charac-
teristic polynomial is φ(u) = uk + a1u

k−1 + . . .+ ak. Necessary and sufficient for boundedness
(stability) of all solutions of the recurrence relation for all positive n is the following root
condition:
(i) All roots of the characteristic equation are located inside or on the unit circle |z| ≤ 1.
(ii) The roots on the unit circle are simple.

The homogeneous recurrence relation corresponding to (2.9) is An+1 − a2n+1a2nAn = 0, which has
characteristic polynomial φ(u) = u − a2n+1a2n. Setting φ(u) = 0, we find that the characteristic
polynomial has the root u = a2n+1a2n. Since |an| ≤ 1, for all n, we have that also |a2n+1a2n| =
|a2n+1||a2n| ≤ 1 and therefore, by the root condition, the recurrence relation is stable. Hence, we
can simply use a forward recurrence to solve for the coefficients An.
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3.3 Comparison of algorithms for recurrence relations

3.3.1 Matlab backslash operator

Another way of solving recurrence relations is by putting it in matrix-vector notation. However, for
the top left and bottom right cell, we have to impose boundary conditions. We assume B−N−1 =
0 and BN+1 = 0. Since we are aiming to find the minimal solution, this is a very reasonable
assumption. From a physical point of view, it can be interpreted as the reflection probability going
to zero after N+1 reflections, which sounds probable as well. Note that in the backward recurrence
algorithm, it is not necessary to make any assumptions. In matrix-vector notation, the recurrence
relation can be written as

γ−N 1
χ−N+1 γ−N+1 1

. . .
. . .

χ−1 γ−1 1
χ0 γ0 1

χ1 γ1 1
. . .

. . .

χN+1 γN+1 1
χN γN





B−N
B−N+1

...
B−1

B0

B1

...
BN−1

BN


=



0
0
...
0
ζ0
0
...
0
0


, (3.40)

where ζ0 is the source term, given by

ζn =

√
1−D
D

δn0 ·
1− a2

2n+1

a2n+2a2n+1
=


√

1−D
D

· 1− a2
1

a2a1
if n = 0,

0 if n 6= 0.
(3.41)

After solving for the coefficients Bn, we can consider them as known. We can do the same for the
recurrence relation for An, which is given by An+1 − a2n+1a2nAn =

√
R (Bn+1a2n+2 −Bna2n+1) +

Ja1δn0. Writing this in matrix vector notation, we obtain



−a−2N+1a−2N 1
. . .

−a1a0 1
. . .

−a2N−1a2N−2 1
−a2N+1a2N





A−N
A−N+1

...
A0

...
AN−1

AN


=



B−N
B−N+1

...
B0

...
BN−1

BN


+



0
0
...

−
√
RJ
...
0
0


.

Suppose we want to solve Ax = B for x, where A is an n × n matrix and B is n × m (usually,
m = 1). In order to find x, we simply have to do x = A−1B. Since this is an implicit way of solving
(Ax = B is solved as a system of equations, all at the same time), we do not expect any stability
issues. Computation of x = A−1B is done using Matlab’s built-in backslash operator, i.e. A\B. This
is a highly optimized code of order n (while computing the inverse explicitly is of order n2, and this
is not necessarily numerically stable either).

To make the algorithm even more efficient, we utilize the sparsity of the matrix. The matrices we
use have only a few non-zero elements, located at the three diagonals. Therefore, it is useful to store
them as sparse matrices with the Matlab command sparse. This implies that only the non-zero
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elements and their row indices are stored (the large amount of zeros is not stored). Therefore, using
a sparse matrix instead of a regular matrix reduces the amount of required memory and makes the
computation much faster.

3.3.2 Comparison

We have introduced two algorithms to solve the three term recurrence (2.8) and obtain the coef-
ficients Bn. We did this using both the backward recurrence algorithm (Section 3.1.3) and using
the Matlab backslash operator (Section 3.3.1). In the backward recurrence algorithm, we set the
number of iterations to ν = N + 20. When testing the algorithm using the Bessel functions, we
noticed that increasing the value of ν does not change the values significantly (see Table 3.1). The
same is the case when calculating Bn. The algorithm converges quite fast, usually only one iteration
is required. As a result, the value of ν does not really influence the system. Also, the tolerance ε
did not seem to change anything, both in the results and the computation time. Tolerances 10−2

and 10−12 require almost the same computation time (the difference for N = 10000 is less than a
second). The computation time of backward recurrence algorithm is O(N2), while the backslash
operator only takes O(n). This is shown in the table and figure below.

N Backward recurrence Backslash operator

50 0.021 s 0.0045 s
100 0.027 s 0.0045 s
500 0.13 s 0.0052 s
1000 0.40 s 0.0060 s
5000 7.31 s 0.012 s
10000 30.39 s 0.018 s

Table 3.2: Computation time of Bn coefficients

(a) Backward recurrence algorithm. (b) Matlab backslash operator.

Figure 3.2: Computation time of Bn coefficients as a function of the number of Andreev reflections N .
Parameters were fixed to some intermediate values: D = 0.4, θS = 0.8, eV = 0.5 and ε = 0.1.

The downside of using the backslash operator is that we had to assume that B−N−1 = BN+1=1 = 0.
Although this is what we would expect from the physics, these boundary conditions that were not
dictated by the problem. The backward recurrence algorithm uses a normalising sum and does



58 CHAPTER 3. NUMERICAL METHODS

therefore not require any of the values to be known in advance.
a Even more remarkable was that the values of Bn obtained using the backward recurrence
did not depend on the normalisation conditions at all (contrary to what we saw with the Bessel
functions in Section 3.1.3). The reason for this is that the full homogeneous solution is practically
zero. Only the particular solution had a value significantly larger than zero, which is independent
of the normalisation. The particular solution does depend on ζ and γ (see Section 3.1.4), which are
parameters related to the physics of the problem.
a An example for a certain set of parameters is shown in Fig. 3.3. The particular solution is
the source term, which consists of a Kronecker δ-function at N + 1. Therefore, the coefficient Bn
is expected to only have a non-zero value at N + 1. For the backward recurrence algorithm, this is
indeed the case. For the backslash operator, the value of Bn can become negative and/or imaginary.
For some parameters, the imaginary part can even be much larger than the real part. Considering
the physical interpretation, a negative and/or imaginary value of Bn is not necessarily wrong, since
Bn represents a complex probability amplitude (the actual probability is found by taking the abso-
lute valued sqaured). Although a negative and/or imaginary is not expected here, since the source
is real and positive.
a On top of that, the Bn obtained by the backslash operator has three non-zero values instead of
one. This is most likely because the matrix that was used has three diagonals (see Eq. (3.40)), all of
which contributed to Bn. This is wrong, because it implies that the source is not a true Kronecker
δ-function.

Figure 3.3: The value of coefficient Bn, obtained using the backslash operator and the backward recurrence
algorithm. The peak at N + 1 corresponds to the source term. Its value is 0.5095 + 0.0766i using the
backslash operator and 0.3543 using the backward recurrence. The inset shows a zoomed-in view of the
peak. Parameters related to the physics were chosen as θ = π/4, µTI/µS = 0.5, eV = 2, ∆ = 1 and ε = 0.
Parameters related to the backward recurrence algorithm are N = 1000, ν = N + 100, ε = 10−16, s = 1,
λ0 = 1, λm = 0, for m > 0.

To conclude: Matlab is specifically designed to work with matrices and therefore, the backslash
operator algorithm turns out to be much faster than the backward recurrence algorithm. However,
the backslash operator requires some known values, while the backward recurrence algorithm does
not. Also, when using the backward recurrence algorithm, we can be absolutely sure that the solu-
tion is the solution we are looking for. The backslash operator might still give a diverging solution
for certain (unknown) parameter sets. For testing and playing around, the backslash operator is
preferred because of its computation speed. However, when we want to be certain that we are
considering the true value of Bn, the backward recurrence algorithm is recommended.
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3.4 Numerical integration

3.4.1 Adaptive Simpson’s method

To do the numerical integration, the Matlab function integral was used. This function was chosen
because of its simplicity, its easy adaptivity to a required tolerance and its effective way of taking
care of singularities (Section 3.4.2). Suppose we want to calculate∫ b

a

f(x) dx.

The syntax that Matlab uses for this is

integral(f,a,b,‘RelTol’,1e-6),

where RelTol is an abbreviation for “relative tolerance”. In this example, it is set to 1 ·10−6 (which
is its default value). The integral algorithm follows the so-called adaptive Simpson’s method. The
algorithm divides the interval [a, b] into subintervals and works on them recursively. It calculates
the value of the integral using both the regular 3-point Simpson’s rule and the 5-point composite
Simpson’s rule (illustrated in Fig 3.4). If the values agree within the given tolerance, the algorithm
extrapolates between the two values and uses this as the value of the subinterval. If it does not
agree with the tolerance, the subinterval is split in half and the procedure is repeated on these newly
defined, smaller subintervals. [59]

Figure 3.4: The regular 3-point Simpson’s rule (left)
and the 5-point composite Simpson’s rule (right). Image from [59].

The integral function is used to calculate the DC current through the junctions, which is given
by (see Section 2.2.3 for details)

I0 =
e

π~

[
eV D −

∫
J(ε)

{
a∗0A

∗
0 + a0A0 +

∑
n

(
1 + |a2n|2

) (
|An|2 − |Bn|2

)}
dε

]
, (2.11)

where An and Bn were obtained from the recurrence relations, J(ε) =
√

1− a2
0 and an = a(ε+neV )

with

a(ε) =
1

∆

{
ε− sgn(ε)

√
ε2 −∆2 |ε| > ∆,

ε− i
√

∆2 − ε2 |ε| < ∆.
(1.20)

For testing purposes, the relative tolerance was set to 10−2, which gives results very fast. The actual
graphs were calculated with a tolerance of 10−8 in order to get nice smooth graphs.
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Figure 3.5: Waypoints eV = 2∆/q, q ∈ N.

3.4.2 Avoiding singularities

As already explained in Sections 2.2.3, 2.3 and 2.4.3, the recurrence relations exhibit singularities
in the applied voltage. Considering the positive side of the eV spectrum, these singularities are
located at

S/N/S junction in 1D eV =
2∆

q
,

S/TI/S junction in 1D eV =
∆

q
,

S/TI/S junction in 2D eV =
∆(1 + sin θS)

q
, q = 2n+ 1, n ∈ N.

The Matlab function integral already splits the interval [a, b] into subintervals. The points where
the interval [a, b] is split are called “waypoints”. By defining the singularities as waypoints, we
integrate in between them and avoid integrating over them. This sounds very straightforward, but
there is a little more to it.

First of all, it is not always necessary to use waypoints. More often than not, integral manages
just fine (especially with a small tolerance). Therefore, an if-statement was used that checks if the
value of integral is NaN (abbreviation for “not a number”). This is a numeric data type value
that corresponds to an undefined or unrepresentable value (for example 0/0). Checking if something
is NaN in Matlab can be done easily using the command isnan. Only if this is the case, we define
waypoints.

Secondly, note that the singularities specified at the beginning of this section are singularities in
the applied voltage eV , while the integration is over the energy ε. Singularities only occur for odd
q. Therefore, we have to distinguish between even and odd N (by using an if-statement). In the
denominators of the coefficients in the recurrence relation, both a2n+1 and a2n−1 occur. To take
this into account, we make two vectors “waypoints1” and “waypoints2” to store both. However,
some of them may overlap. Using the Matlab command unique, we can filter them. Finally, the
endpoints of the interval [−Vm, Vm] have to be added to our waypoints vector.

After the waypoints vector is defined, we can do the integration again. The output of the integral
function is called integralOut. We set the value of integralOut back to zero and use the integral
function to integrate from one waypoint to the next. A simplified version of the code to calculate
is shown on the next page.
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if isnan(integralOut)

a if round(N/2) == N/2 (N is even)
a waypoints1 = (-N-1:2:N+1)*eV - ∆
a waypoints2 = (-N-1:2:N+1)*eV + ∆
a else (N is odd)
a waypoints1 = (-N-2:2:N+2)*eV - ∆
a waypoints2 = (-N-2:2:N+2)*eV + ∆
a end

a waypoints = unique([-Vm,waypoints1,waypoints2,Vm])

a integralOut = 0;

a for i = 1:length(waypoints)-1

a integralOut = integralOut +

a integral(func,waypoint(i),waypoints(i+1),‘RelTol’,1e-8)

a end

end

In Matlab, it is also possible to give the function integral the additional option to work with
waypoints, which is even easier. The Matlab syntax is

integral(f,a,b,‘RelTol’,1e-6,‘Waypoints’,vector),

where vector should be replaced by a vector that contains real or complex numbers, separated
by commas. However, according to the Matlab documentation, this is mainly used to integrate
efficiently across discontinuities of the integrand. The documentation warns that it is not advisable
to use the Waypoints option for avoiding singularities and recommends splitting the interval instead,
as was done here.

3.5 Angle averaging

In the two dimensional case, the current as a function of the incoming angle θ and of the applied
voltage eV , i.e. I = I(eV, θ). The goal is to calculate the current for every value of θ and take the
average over all θ. We can reduce the two dimensional case to the one dimensional case by setting
θ = 0 (which corresponds to perpendicular incidence).

The first step is to define a list of angles ranging from −π/2 to π/2. This is done using the Matlab
command linspace(-pi/2,pi/2,p), where p is the number of steps in θ. Let q be the number of
steps in the applied voltage eV . Whereas the current was stored as a vector of length q in the one
dimensional cases, we store it as a q×p matrix in the two dimensional case. For robust computation,
it is advisable to predefine a “current matrix”, which is an empty q × p matrix.

For fast computation, a parallel for loop (Matlab command parfor) is used to calculate the current
I(eV, θ) for every value of θ. Every iteration generates a current vector I(eV, θindex) for a fixed
value of θ. These current vectors are stored as the columns of the current matrix and multiplied by
cos θ. After the parallel for loop has filled the current matrix, we can obtain the average current
I(eV ) by taking the sum over all columns and divide by p. This is done using the Matlab command
sum(currentmatrix,2)/p. In pseudo-code, this process can be written as
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Parfor θindex = 1, . . . , p
a For eVindex = 1, . . . , q
a Calculate matrix element I(eVindex, θindex).
a end
a Store current vector I(eV, θindex) cos θ as column θindex of current matrix.
end

I(eV ) =
1

p

p∑
θindex=1

I(eV, θindex).
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Experimental observation of the
zero bias conductance peak

This section is dedicated to the experimental work. We start with a brief literature review on what
has already been done in Section 4.1. A couple of possible designs were discussed, as explained in
Section 4.2. The fabrication of the structures that we chose is shown step by step in Section 4.3.
At the end of this section, an overview of all samples is given, including an explanation on what
we changed compared to the previous sample. The sections that follow show the results of the
measurements. Some intuitive discussions, as well as a small calculation in order to explain the
experimental data, are also included.

4.1 Brief review of previous work

Over the past couple of years, there have been two main trends in the experimental detection of
a Majorana particle: 4π periodic current-phase relations in topological Josephson junctions (i.e.
junctions of two superconductors with a topological material in between them) and the observation
of a zero bias conductance peak (ZBCP) in nanowires. We will briefly discuss both of them.

4.1.1 Zero bias conductance peak in nanowires

In Section 1.4, we have seen that a Majorana particle can be considered as half electron and half
hole. Since an electron has energy E and a hole has energy −E, the only way this is possible is
for the Majorana particle to be located at zero energy, which would result in a ZBCP. To observe
the ZBCP, one can measure a current (I)-voltage (V ) current spectrum. From this, the differential
conductance (dI/dV ) can be extracted as a function of the applied voltage. In the tunnel limit,
the differential conductance is proportional to the density of states (see Appendix E). This implies
that the zero energy peak in the density of states translates to a ZBCP (that is, a peak at zero
applied voltage) in the conductance spectrum. This type of measurement has been done in Delft,
using indium antimonide (InAs) nanowires. [60]
a InAs is a semiconductor with strong spin-orbit coupling. A semiconductor has a standard
parabolic dispersion. The spin-orbit coupling splits the parabola into two parabolas; one for spin
up, the other for spin down. This is drawn in Fig. 4.1b. An in-plane magnetic field can open up
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a gap. We can then tune the Fermi level such that it is inside the gap and only two states are
available, as shown in Fig. 4.1c. Since these two states originate from bands with opposite spin,
there will be no scattering from one to the other.

(a) The standard
parabolic DOS.

(b) Spin-orbit coupling splits the
two parabolas.

B

(c) An applied magnetic field opens a
gap. Two states at the Fermi level.

Figure 4.1: Construction of the density of states of InAs.

a The nanowire is coupled to an s-wave superconductor, such that the combination of only two
states inside the gap and the proximity induced superconductivity result in a topological supercon-
ductor (see Section 1.4.3). Their results are depicted in Fig. 4.2. We can see the superconducting
conductance spectrum, characterised by the coherence peaks at ∼ ±250 µV. At a certain applied
magnetic field, the gap opening allows for a ZBCP. When the applied field becomes too high, it
destroys the superconductivity (see section 1.2.1) and the conductance spectrum becomes almost
flat (indicating the superconductor is in its normal state).

Figure 4.2: Differential conductance measured through a nanowire coupled to an s-wave superconductor.
The graphs from bottom to top correspond to increasing magnetic field. Green arrows point at the

coherence peaks of the superconducting gap. The peak in the middle is the ZBCP. From [60].

a It should be noted here that opening a gap before destroying the superconductivity is not triv-
ial. Besides having strong spin-orbit coupling, InAs has another property that makes this possible.
InAs is known to have a relatively large g-factor, which is the factor with which the gap in Fig. 4.1c
opens as a function of magnetic field. This implies that for a small magnetic field, a a sizeable gap
can be opened without suppressing the superconductivity. [60]

4.1.2 4π periodicity in topological Josephson junctions

In Chapter 2, we calculated the DC current through a topological Josephson junction. We did not
take any phase difference between the two superconductors into account. The phase difference is
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called φ and was already briefly discussed at the beginning of Chapter 2. This phase difference
turns out to be the crucial parameter here.
a In a conventional Josephson junction (without any topological effects), the energy spectrum
of the ABS is given by [61]

E± = ±∆

√
1−D sin2(φ/2), (4.1)

where D is the interface transparency. This relation is shown in Fig. 4.3. As explained in sec-
tion 1.4.3, usually the transparency is not perfect, such that D < 1. In this case, a gap opens in
the energy-phase relation. If we have perfect transmission, i.e. D = 1, it is possible to have a MBS.
Note that the energy-relation becomes 4π periodic in this case (instead of 2π which was the case
for the regular ABS). This was first claimed by Kitaev. [34]

Figure 4.3: Energy-phase relation. From [61].

Recall the supercurrent that we introduced in the beginning of section 2. We simply assumed the
expression that we gave in Eq. (2.1), but where it comes from is [61]

IS =
2e

~
dE(φ)

dφ
. (4.2)

Hence, it follows that the current-phase relation for Majorana particles is 4π periodic as well. This
can be interpreted as follows: in the conventional 2π periodic case, Cooper pairs (charge 2e) tunnel.
Majorana particles enable single electron (charge e) tunnelling, which doubles the periodicity. The
experimental realisation of the 4π periodic current-phase relation is discussed comprehensively in
Refs. [62, 38]. We will briefly summarize the procedure here. When a radio frequency (RF) current
is applied to a Josephson junction, the supercurrent synchronises with this frequency, which gives
rise to steps in the I-V curve. [63] In a conventional Josephson junction, these steps are located at
voltages Vn = nhf/2e, where n ∈ Z and f is the frequency. In a topological junction, only the even
steps are visible as a result of the 4π periodic current-phase relation. In practice, there are both
2π periodic and a 4π periodic signals present in a topological Josephson junction. The 2π periodic
signal results from extra Andreev modes and quasiparticle poisoning. [64] This signal dominates
in the case of high frequency and high voltage, [62] such that only the n = 1 step is missing (and
therefore, the first visible step has a doubled step height). The missing first step has been observed
in Josephson junctions with HgTe [62] and with Bi0.97Sb0.03 [38] as the middle layer.

4.1.3 Goal of this project

The ZBCP in nanowires and the 4π periodic state in topological Josephson junctions might be
the results of the same Majorana physics. Up unitl now, these two fields were disconnected and
there was no way to compare them. The purpose of our experiments is to check whether these
phenomena could indeed be a result of the same physics. We aim to measure a ZBCP with the use
of a topological insulator.
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a In a nanowire, a magnetic field was needed to make sure that there are only two states available
at the Fermi level. A topological insulator, on the other hand, has only two states available at
the Fermi level due to its spin-momentum locking. Therefore, the experiments with a topological
insulator are, in principle, even easier than those with the nanowires, since the magnetic field is not
needed.

4.2 Sample design

The goal of the experimental part of this project was to detect a ZBCP in a junction consisting
of a topological insulator and a superconductor. The materials that we were aiming to use were
the topological insulator bismuth antimony tellurium selenium (BiSbTeSe2, or “BSTS” for short)
and the superconductor niobium (Nb). To make a tunnel barrier, we used the insulator aluminium
oxide (Al2O3). For the normal metal contacts we used gold (Au). We came up with five possible
setups, as shown in Fig. 4.4.
a The first setup (Fig. 4.4a), has a double tunnel junction which is completely symmetric. With
this setup, we probe the Majorana bound states at both sides of the BSTS/Nb interface, such that
the resulting signal is the sum of both Majorana bound states. However, the BSTS flake is never
completely symmetric, and therefore, neither is the tunnel signal. Suppose we were to observe a
ZBCP. The peak height is quite important (more on this in Section 4.4.1), but it is impossible to
determine how much of the peak height originates from each tunnel junction. Therefore, this is not
an absolute way to measure the signal and we discard this setup.

Substrate

BSTS
NbNb

AlOx AlOx
Au Au

(a) Double tunnel junction.

Substrate

BSTS
NbNb

AlOx
Au

Au

(b) Single tunnel junction with two Au contacts.

Substrate

BSTS
NbNb

AlOx
Au

(c) Single tunnel junction with Au and Nb
contacts, including etching.

Substrate

BSTS
Nb

Au
Al2O3

(d) Single tunnel junction with Au and Nb
contacts, no etching.

Substrate

BSTS
NbAu

(e) Structure without tunnel barrier.

Figure 4.4: All possible structures that we considered.
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The second setup (Fig. 4.4b) has a single tunnel junction and two Au contacts. The problem with
this setup is that BSTS has a sheet resistance of ∼ kΩ/�. If the tunnel junction is “far away”
from the Au contact (such that the they are isolated from each other), the Au contact will give a
high resistance due to this high sheet resistance. This completely dominates the signal and it is not
possible to observe a ZBCP. When putting the Au closer to the tunnel junction, the current might
go into the Au directly, which does not give the desired signal either.
a The third and fourth setup (Fig. 4.4c, d) have a single tunnel junction as well. The Nb that we
used to create the BSTS/Nb interface is extended into a contact. This solves the problem of the high
sheet resistance. Additionally, this setup requires one less electron beam lithography step, which
makes the fabrication process slightly easier. The difference between them is that in Fig. 4.4c, we
etch through the BSTS before depositing the Al2O3 and the Au layers. This is supposed to create
a better side contact. In Fig. 4.4d, there is no additional etching involved.
a Finally, we also consider a setup without tunnel barrier (Fig. 4.4e). In this case, the resistance
is determined by the distance between the contacts. Note that there is no explicit tunnel barrier,
but there will most likely still be a small interface barrier due to an imperfect interface (resulting
from, e.g., lattice mismatch, dirt, oxidation).

4.3 Sample fabrication

This section gives a detailed explanation of all steps of the sample fabrication, including all relevant
parameters. We start by discussing the structure including tunnel barrier of Fig. 4.4c and d.

4.3.1 Structure including tunnel barrier

All steps explained below are accompanied by schematic images shown in Fig. 4.5.

Step 1: BSTS flakes
We start with a silicon (Si) substrate with a thin, insulating silicon oxide (SiOx). We would like to
use BSTS as our topological insulator. Since it is not possible to grow a layer of this material, we
use a BSTS crystal, stick tape to it and use that to exfoliate BSTS flakes. By subsequently sticking
the tape on top of the substrate, the flakes are transferred to the substrate. In general, this method
produces a large amount of flakes, which is inconvenient to work with. We then put the substrate
in acetone, in the sonicator for a fraction of a second. This removes the flakes that do not stick to
the substrate very well, such that. we lose them before fabrication rather than after. This leaves us
with a good amount of BSTS flakes on top of the substrate.

The substrate is 7 mm × 7 mm in size. On top of it is a grid with gridpoints, which makes it easier to
find the flakes we are looking for. We put the substrate underneath a microscope that is connected
to a camera. We search for flakes that have dimensions of a few micrometers in length and width,
that look flat (i.e. no relief on them) and thin (this can be tested by bringing the camera slightly
out of focus). We take pictures of them with the camera and make sure to note their coordinates
on the grid. On the computer, we trace the images of the flakes and, using designated software, we
draw a design on them for the Nb and the Au contacts. This design is used in steps 3 and 7. Some
examples of pictures of flakes and their corresponding designs are shown in Fig. 4.6 at the end of
this section.
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(j) Step 10 - finished structure

Figure 4.5: Schematic pictures of the steps that are necessary to construct the structure shown in (j).

Step 2: spinning PMMA
We put a layer of polymethyl methacrylate (or “PMMA” for short) on our structure. This is done by
putting a 40 µL droplet of PMMA on top of the substrate and spinning the sample in a photoresist
spincoater with 3000 rpm for 45 seconds. This gives a layer of approximately 255 nm of PMMA.
The sample is transfered to a hot plate where we bake it for 5 minutes at 160◦C.

Step 3: e-beam lithography
We use electron beam lithography (e-beam) to expose very small parts of the PMMA, according
to a predefined design. The small structures are exposed with a dose of 200 µC/cm2, while the
large structures require 300 µC/cm2. After exposure, the sample is put in methyl isobutyl ketone
(MIBK) for 40 seconds. This develops the PMMA, which means that the exposed parts are removed.
Immediately afterwards, the sample is put in isopropyl alcohol (IPA) for 30 seconds. This stops
the development and prevents the structure from overdeveloping. We now have a mask, made of
PMMA, that protects the parts of the BSTS where we do not want to deposit any material.
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Step 4: sputter deposition of Nb
We want to deposit a layer of the superconductor Nb on top of the sample. We start by RF substrate
cleaning, which is done for 30 seconds at a voltage of 60 V and Ar pressure of 1.33 · 10−2 mbar.
Using DC sputtering, we deposit 80 nm of Nb at a power of 250 W and a pressure of 7.3 ·10−3 mbar.
When it gets into contact with air, Nb will oxidise. In order to prevent this, we deposit a 2 nm
palladium (Pd) capping layer (not shown in the pictures). This is done by RF sputtering at a power
of 300 W and Ar pressure of 1.33 · 10−2 mbar.

Step 5: lift-off
The sample is rinsed with acetone. This dissolves the PMMA and removes the Nb that was on top
of it. Since the acetone stains when drying, we subsequently rinse it with ethanol and blow it off
with a nitrogen gun. This leaves us with Nb only partly covering the BSTS flake.

Step 6: spinning PMMA
Another layer of PMMA is spun on the sample. This is done exactly the same as in step 2.

Step 7: e-beam lithography
Using the e-beam, we expose the bare part of the substrate and make sure to slightly overlap the
flake and the Nb. The e-beam lithography and the development is done the same way as in step 3.

Step 7b: etching (optional)
In the structure Fig. 4.4c, etching is included in the process. The fabrication of Fig. 4.4d skips this
step. The schematic pictures in Fig. 4.5 do not show the etching. Etching is done using an argon
etcher with the following settings:

beam voltage 500 V
beam current 100 mA
accelerator voltage 100 V
accelerator current 5 mA
discharge voltage 50 V
etch angle 45◦

sample rotation 4 rpm

We chose these settings because the etch rates of BSTS and SiOx were already calibrated at these
settings. We calibrated the etch rates of PMMA and Nb ourselves. An explanation of the calibra-
tion is given in appendix D.
a The goal is to etch completely through the Nb, while still keeping enough PMMA in order
to be able to remove it. When the PMMA is damaged too much (by the etching), the chemical
structure changes, making it stick firmly to the sample and making the sample useless. After a
couple of test runs, we decided to grow 80 nm of Nb, such that we have to etch for 6 minutes. For
the other materials, we obtain

etch rate after 6 minutes
Nb 14 nm/min 84 nm
BSTS 80 nm/min 480 nm
PMMA 30 nm/min 180 nm
SiOx 22.8 nm/min 137 nm

From this, we can also see that we have to take care of the SiOx layer thickness. We have to select
a substrate with at least 137 nm SiOx (preferably thicker), in order to prevent shorting the circuit.

Step 8: insulating barrier
Using atomic layer deposition (ALD), a layer of approximately 1.2 nm of Al2O3 is deposited on the
substrate. This is done at a temperature of 100◦C, which is unusual for ALD. Normally, ALD is
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done at 300◦C, but this would destroy the BSTS. The materials that BSTS consists of are volatile,
e.g. tellurium evaporates at 180◦C.

Step 9: sputter deposition of Au
We want to deposit a layer of the normal metal Au on top of the sample by means of RF sputter
deposition. Since sputter deposition at a high power damages the delicately thin AlOx layer, we do
the deposition in two steps. We start with a slow deposition. We increase the spacing between the
sample and the target to 3 inches and regulate the Ar pressure to be ∼ 8 · 10−2 mbar. This high
pressure is caused by increasing the argon flow as much as possible. The argon ions decelerate the
Au atoms. Increasing the spacing makes the distance the Au atoms have to travel longer, which
enhances the deceleration. We sputter for 25 minutes, at a voltage of 200 V and a power of 0 W.
This results in a 22 nm Au layer. We then switch to the standard deposition. The spacing is 1.6 inch
and the pressure is ∼ 2 · 10−2 mbar. We sputter at these settings for 4 minutes, at 1000 V and
150 W, resulting in a 160 nm Au layer. Hence, the total Au thickness is 182 nm.

Step 10: lift-off
The lift-off is similar to step 5, but Au is harder to remove. Therefore, the sample is put in acetone
for a couple of hours. What we are left with is the structure in Fig. 4.5j.

Some pictures of what this looks like underneath a microscope are shown in Fig. 4.6. The flake that
was chosen is shown in panel d. The design is shown in panels a-c. During the first e-beam session,
the blue parts, which correspond to Nb are exposed (step 3). During a second e-beam session, the
orange and pink parts, which represent Au, are written (step 7). In the actual pictures in panels e
and f, Nb has a silver colour and Au is, obviously, gold. During one session, the structure is written
in two steps, which is why two colours per session are used. First we expose the small writefield,
which is 100 µm in size and marked by the crosses. The small writefield is coloured light blue for
Nb and orange for Au in the design. This is written very precisely (which takes relatively long).
Then the large structures are written using a large writefield of 1000 µm, which is less precise and
faster. Large writefield structure are coloured dark blue for Nb and pink for Au. The crosses are
used to align the second layer (Au) with respect to the first layer (Nb). The large squares in panels
c and f are the contact pads, they are 200 by 200 µm in size and we use them to glue the wires
onto. Some residue of the glue is still visible in panel f (the black spots).

4.3.2 Destruction of the tunnel barrier due to static charge

After we successfully fabricated a sample, we put it in the probe station to check its resistance.
This is done by simply sending a small current through the structure and measuring the voltage.
It is done at room temperature and takes approximately half an hour. When the resistance has
the expected order of magnitude, the sample can be bonded and prepared for low temperature
measurements.

The first sample that did not have any fabrication issues (e.g. misalignment or trouble with lift-
off) was BSTS4. At room temperature, the resistance values were reasonable (see Table 4.1). We
decided to prepare three of the structures for low temperature measurements in the Triton dilution
fridge. The names of the structures indicate their locations on the grid, i.e. 7 ◦ 4, 4 ◦ 2 and 8
◦ 7. After cooling down, we quickly checked the resistance again. The first two structures gave
no signal at all. The third structure had a very high resistance of 2.8 MΩ. We applied a voltage,
measured the current and extracted the differential conductance (dI/dV ) from structure 8 ◦ 7 (see
Fig. 4.7). The superconducting gap from Nb was visible and of the right order of magnitude, but
the resistance was too high to do any useful measurements. A small structure inside the gap that
we hope to see would be completely dominated by the high resistance of the structure.
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(a) Design, 100 µm. (b) Design, 300 µm. (c) Design, 1000 µm.

(d) Flake, 100 µm. (e) After fabrication, 300 µm. (f) After fabrication, 1000 µm.

Figure 4.6: E-beam design and optical images of BSTS4 at different scales.

Sample Before bonding After bonding
7 ◦ 4 6 kΩ overload
4 ◦ 2 700 kΩ overload
8 ◦ 7 430 kΩ 2.8 MΩ

Table 4.1: Values of the resistance of three structures
on BSTS4, before and after bonding.

Figure 4.7: Differential resistance of 8 ◦ 7.

We decided to put the sample inside a scanning electron microscope (SEM), which can take pic-
tures of a surface by using a focused beam of electrons. We found that the tunnel barriers of 7 ◦
4 and 4 ◦ 2 were completely destroyed. The flake underneath had disappeared, such that the Nb
and Au contacts were disconnected, which explains why we could not send a signal through the
structure. Although this was quite frustrating, it resulted in beautiful pictures, for instance the one
in Fig. 4.8a. The other structure, with the high resistance, still had a part of the structure that was
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touching, although it was severely damaged as well, as can be seen in Fig. 4.8b.

(a) Completely exploded tunnel barrier of 7 ◦ 4. (b) Partially exploded tunnel barrier of 8 ◦ 7.

Figure 4.8: SEM images of the structures on BSTS4 confirmed why we could not measure a proper
signal. The dark contacts are Nb (bottom right in (a), left in (b)) and the lighter contacts are Au.

The reason why these tunnel barriers exploded is most likely because they are very thin (1.2 nm)
and very sensitive to static electricity. Just after fabrication, we could still measure the resistance.
The samples were stored in a box that might have been statically charged. When preparing for the
low temperature measurements, we have to glue wires to the Nb and Au contacts (bonding). Most
likely, either the air, the wires or the gloves gave some static electricity as well. Wearing a woollen
cardigan with rubber gloves does not help either.
a To solve the problems related to static electricity, precautionary measures were taken when
bonding the next samples. The samples were stored in an AFM tip box, which has a conducting
surface. Bonding was done with bare hands, without woollen clothing and while wearing a bracelet
that was connect to the ground of a wall outlet (such that the bonder is grounded).

4.3.3 Structure without tunnel barrier

Because we had so much trouble with the tunnel barriers, we decided to make a structure without
a tunnel barrier first. There could, however, still be a barrier due to an imperfect interface. Instead
of a tunnel barrier, we placed the Nb and Au contacts 200 nm apart from each other, as shown in
Fig. 4.4e. The deposition of the Nb layer remains unchanged and therefore, the first six steps are
the same as for the previous structure. The e-beam design in step 7 is changed such that there is
some space in between the Nb and the Au. Since we do not need the tunnel barrier, we skip step 8.
Before, we had to deposit Au carefully in order not to damage the tunnel barrier. But since there
is none, the deposition of Au (step 9) is even easier for this structure. First we etch (in the sputter
machine) at 150 W for half a minute to clean the sample. We then deposit a thin 6 nm layer of
titanium (Ti) at 150 W in one minute. The reason for this is that Ti sticks better to the sample and
this results in a better contact. We then deposit 100 nm of Au at 150 W in 2.5 minutes. During all
the steps, the pressure is kept constant at 2 · 10−2 mbar.
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4.3.4 Sample overview

In total, ten samples were made during this project. An overview of them and what we changed
between them is written in Table 4.2.

Sample Barrier Etching Comments

BSTS1 Yes Yes
We etched as described in step 7b. This severely damaged the
PMMA, which made it impossible to do lift-off.

BSTS2 Yes Yes
We decided to do the etching during a separate step (i.e. an
additional e-beam step). The PMMA layer turned out to be
uneven during spinning, which resulted in lift-off issues.

BSTS3 Yes Yes
The etching was done during a separate step. This resulted in
alignment issues between the etched parts and the Au contact.

BSTS4 Yes No
We decided to leave out the etching step. No fabrication issues.
When measuring, the tunnel barriers exploded due to static
electricity (see Section 4.3.2).

BSTS5 Yes No
Bonding was done more carefully than with the previous sample.
There were no issues, but no interesting results either. We could
measure the gap, but there were no signs of Majorana particles.

BSTS6 Yes No Disappeared during a cleanroom accident.

BSTS7 No No
We decided to try structure without barrier. The distance between
the contacts was kept constant at 200 nm. Observed zero bias
conductance peak.

BSTS8 No No
Varied the distance between the contacts from 50 nm to 300 nm.
Majorana physics unclear.

BiSb1 No No
Swapped the BSTS for Bi0.97Sb0.03 (which is a Dirac semimetal
instead of a topological insulator). This structure had a high
resistance which gave a very noisy signal.

BiSb2 No No Resistance too high to measure anything.

Table 4.2: An overview of the ten samples that were made during this project.
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4.4 Zero bias conductance peak

The sample BSTS7 (see Table 4.2) was the first one where we did not include a tunnel barrier.
Instead, we placed the Au and Nb contacts 200 nm apart, as shown in Fig. 4.4e. We made eight
samples on this specific substrate. Five of them survived the full fabrication process. In only one
of them, a ZBCP was observed. The differential conductance for different magnetic fields is shown
in Fig. 4.9. Panel a shows the full range from 0 to 0.5 T. Around 0.45 T, we can see a small
ZBCP. Panel b gives detailed view of this region. The background of all the other samples that we
measured had a very similar shape to this one, except that they did not show a ZBCP.

(a) Full field range. (b) Small field range around ZBCP.

Figure 4.9: Differential conductance in units of conductance quanta.
The top graphs are the true values, the other graphs have an offset to improve the visibility.

The ZBCP reaches its maximum at 0.43 T, where the peak height is 1.4e2/h. We will discuss the
determination of the height and the meaning of this value in Section 4.4.2. Also for lower field
values, there is a very small gap visible sometimes. This will be discussed in Section 4.5.1. Before
looking into the details of the ZBCP, we will first consider several candidates that may have caused
it.

4.4.1 Origin of the ZBCP

The ZBCP can be caused by several physical phenomena. Obviously, we are hoping to detect a
MBS, but there are other contestants that might be able to explain the appearance of a ZBCP. This
section starts with an elaboration on a possible MBS in our system. After that, we will discuss a
couple of other physical phenomena that can result in a ZBCP and argue whether or not they are
probable in our system.
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Majorana bound state

In Section 1.4, we already explained why a MBS can result in a ZBCP. In a topological Josephson
junction, it is clear where the MBS is located (see Section 1.4.3). In the case with the Au contact,
it is not straightforward. The most plausible configuration is shown in Fig. 4.10.

Figure 4.10: Surface Andreev bound state localised between the superconducting BSTS region and
the Au. The structure is drawn in real space. The SABS is drawn in momentum space (implying that the

electron and hole have different energies, while being at the same location in real space).

a The Nb contact causes the BSTS to become locally superconducting by the proximity effect.
Therefore, the interface between these two regions is expected to be very transparent. To explain
the observation of the ZBCP there should be a way to localise the MBS somewhere in the junction,
(this will be elaborated on in the next section) which, then, has to be located at the interface of the
Au and the BSTS. This is not an actual tunnel barrier, but most likely a small gap in the dispersion
of the Au.
a In the design, the distance between the Au and the Nb contact in the original e-beam design
was supposed to be 200 nm. Since there are often alignment issues, this distance was checked using
an atomic force microscope (AFM). An AFM image of the sample is shown in Fig. 4.11a. From
this, we found that the actual distance is only 50 nm. This decreased distance is most likely the
result of two effects. Firstly, the aligning issue and, secondly, the AFM image shows a higher region
in between the contacts (coloured white in Fig. 4.11a). This is a result of improper lift-off and
also decreases the distance. This decreased distance between the contacts turned out to be quite
favourable for our measurement. Moreover, it might be the reason why only this sample showed
the ZBCP.
a The mean free path in BSTS is estimated to be [65]

` =
µmvF
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=

(
0.1 m2V−1s−1

)
·
(
0.2 · 9.1 · 10−31 kg

)
·
(
3 · 105 ms−1

)
1.6 · 10−19 C

≈ 35 nm. (4.3)

The proximity effect in BSTS is very anisotropic. Since BSTS is a topological insulator, it is
insulating in the bulk. Along the surface, in the horizontal direction, BSTS behaves metallic and
therefore, the induced superconductivity is expected to spread much further. The distance between
the contacts is 50 nm. The mean free path is about 35 nm. Therefore, we are in the right order of
magnitude to be in the ballistic regime (see Section 1.3.3).
a An ABS is expected to be located in between the superconducting BSTS region and the Au.
At the Au interface, there will be normal reflection (electrons reflect as electrons and holes reflect
as holes), whereas at the interface with the superconducting BSTS, we can also have Andreev
reflection. This construction is called a surface Andreev bound states (SABS).
a The SABS is a MBS if the material that hosts the bound state is in the topological phase, i.e.
there is only one spin (see Section 1.3.2) and the transmission is equal to 1 (see Section 1.4.3). If it
is in the trivial phase, it is a regular ABS. Further explanation on the topological and trivial phases
in nanowires can be found in Ref. [66]. Of course, TIs are always expected to be in the topological
phase, but there is a little more to it, which we will elaborate on in Section 4.5.1.
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a Finally, recall the discussion on topology in the 2D and 3D case from Section 1.4.2. We assume
here that the interface barrier of the Au causes a little gap in the dispersion, such that the SABS
is localised to 2D.

Regular Andreev bound state

In our system with the topological insulator, we are always in the topological regime and therefore,
when the bound state is located at zero energy, we can argue that it is in fact a MBS. In a nanowire,
however, there are many different bound states. [66] Therefore, there is a second condition that has
to be verified.
a Recent theoretical work showed that the regular ABS in a nanowire can also result in a ZBCP
which is very similar to the one originating from a MBS. [67] As a response to this, an experimental
work compared the two types of bound states. [68] In this experimental work, it was stated that
only a stable, quantized ZBCP that is robust against all variations in all gate voltages (back-gate
and tunnel barrier) and magnetic field, can be uniquely defined as a MBS. [68]
a In a nanowire, we have to be exactly inside the gap (see Fig. 4.1c). The back-gate voltage
is used to tune the chemical potential, i.e. move up or down in the Dirac cone. In the topological
phase (inside the gap), there are always only two available states, so it should not change. Only
when the back-gate voltage becomes negative and large (i.e. below the gap), the wave functions of
the two Majorana particles located at each end of the wire start to overlap, effectively making the
wire shorter and splitting the peak. The peak height quickly reduces to zero. For voltages that allow
the Fermi level to lay inside the gap, the peak height stays at 2e2/h. In the trivial phase, on the
other hand (above the gap), the peak height depends seemingly linearly on the applied back-gate
voltage and does not stay at 2e2/h. [68]

Accidental 1D channel

When making an AFM image (Fig. 4.11a), we observed a higher region in between the contacts. At
first, it was not clear what this was and we were worried the contacts were touching. If the contacts
would be (almost) touching at some point, this could create an accidental 1D channel which could
drastically change the transport through the junction. To exclude this possibility, we put the sample
in the SEM to get a closer look at the interface, as shown in Fig. 4.11b. We saw that the white part
was some Au residue that remained after lift-off, sometimes referred to as “an ear”. It is effectively
a thin piece of Au that is standing upright like a wall. This is probably caused by the fact that the
e-beam was focused on the substrate, while the BSTS flake is slightly higher. Therefore, the beam
might be slightly out of focus here, such that the edges of the PMMA mask are not perfectly sharp.
Au is a soft material and most likely stuck to these edges. Ears resulting from the Au lift-off have

(a) AFM. (b) SEM. (c) BEC.

Figure 4.11: Pictures of the sample using different imaging techniques.
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been observed on BSTS before. [69] To make absolutely sure nothing was touching, we then used
the backscatter electron detector (BEC), in which the colours correspond to the atomic number of
the material. Since Au and Nb have atomic numbers 79 and 41, respectively, Au is much heavier
and therefore appears much lighter on the BEC images. In Fig. 4.11c we can clearly see that the
two materials are not touching.

Weak antilocalisation

A well known phenomenon that often creates ZBCPs in TIs is weak antilocalisation (WAL). As we
have seen in Section 1.3.3, this occurs in TIs as a result of spin-orbit coupling. WAL can cause a
ZBCP. [70, 71] However, WAL is the strongest at zero magnetic field. In our case, the ZBCP shows
up at higher field. Moreover, the peak height seems to oscillate with magnetic field (more on this
in Section 4.5.1). This cannot be the case if the ZBCP would originate from WAL.

4.4.2 The peak height

A result of the famous Landauer equation for the current through a junction is that the conductance
is proportional to the transparency as [72]

G =
2e2

h
T (EF ), (4.4)

where e2/h is defined as a conductance quantum and T (EF ) is the junction transparency (or the
transmission) at the Fermi level. We note that the factor 2 in Eq. (4.4) is a result of the two spins.
In the TI, we only have one spin, so it should be a factor 1. However, because of the Andreev
reflection, we get an additional factor 2, such that Eq. (4.4) remains effectively unchanged.
a In the case of p-wave superconductivity, it was found that that T = 1 (see Section 1.4.3), in
which case Eq. (4.4) reduces to

G =
2e2

h
N, (4.5)

where N is the number of channels or modes through which electron transport can take place. [72]
A MBS is located at zero energy, where only one channel is available. Hence, the peak height of the
ZBCP originating from the MBS is always 2e2/h. A regular ABS is not related to p-wave pairing
and therefore, Eq. (4.5) does not hold, which implies its height is not necessarily 2e2/h.
a This can be interpreted as follows: any ABS consists of an electron and a hole (see Fig. 1.12a).
Since a MBS is located at zero energy, both the electron and hole are at zero energy and both
contribute one conductance quantum. Hence, this gives a total of two conductance quanta. Another
interpretation is based on the Majorana being half electron and half hole. Since Majorana particles
come in pairs, this gives two conductance quanta as well.

The first time the ZBCP in the nanowire experiment was reported [60], the peak height was only
0.1e2/h, which is 20 times smaller than the expected value. Some of the authors continued working
on this project and explained seven years later that the actual peak height should actually be 2e2/h.
[68]
a In our experiments, the peak height is approximately 1.4e2/h. This is already in the right
order of magnitude, but still slightly smaller than the required 2e2/h. There are, however, a couple
of possible explanations.
a Liu et al [67] modelled the conductance through a nanowire with spin-orbit coupling in proxim-
ity to an s-wave superconductor. Since we are recreating the nanowire experiment with a topological
insulator, their theory might be applicable to our experiment as well. What has to be kept in mind
is that Liu et al [67] require a certain Zeeman field for their junction to be in the topological phase.
The topological insulator is already in this phase.
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a The main phenomenon discussed in their work is the so-called soft gap. As explained in
Section 1.2.2, a superconductor has an energy gap. In the presence of a interface barrier, the con-
ductance spectrum of the superconductor takes on the shape of the density of states. [47] If the
conductance inside the gap goes to zero, we speak about a “hard gap”. If it has a substantial value
inside the gap, this is called a “soft gap”. The condition given for a hard gap is dI/dV � e2/h,
where e2/h is a conductance quantum. [67] Hence, we have to remove the soft gap in order for the
ZBCP to become visible.
a Liu et al. [67] argue that the soft gap could originate from junction transparency (i.e. the
tunnel barrier), temperature, dissipation, or a combination of them. We will discuss all three of
them.

Tunnel barrier

The tunnel barrier does not harm the topological properties and therefore, the ZBCP always stays
2e2/h in height in their model. [67] Tunnelling into a regular ABS on the other hand, can give
a conductance between 0 and 4e2/h, depending on the tunnel barrier strength. [73] In the MBS
case, the tunnel barrier can, however, broaden the peak without affecting the height. Liu et al
theoretically show that the height is independent of the background (the soft gap), which means
that the ZBCP can be tiny in height if the tunnel barrier is low and the value inside the gap is
comparable to 2e2/h. This was confirmed experimentally by [68].
a We consider the maximum observed ZBCP at 0.43 T as shown in Fig. 4.12. We can take
the peak height with respect to the background inside the gap (local minimum), which gives a
height of 1.4e2/h. However, taking the peak height with respect to the global minimum (around
V = −0.77 mV), the peak height is 1.8e2/h, which is already much closer to the expected 2e2/h.
This is in agreement with a background caused by a low tunnel barrier. If there is a tunnel barrier
in the system, it is definitely expected to be small, since we did not explicitly make a tunnel barrier.
a Moreover, the small barrier would also explain why we only observed the ZBCP at this specific
structure. We made eight structures on the BSTS7 substrate. The fabrication was identical, but we
found that the specific structure that showed the ZBCP had a slightly higher resistance than the
others (170 Ω as opposed to 50 Ω). This indicates that this specific structure has a higher barrier
and therefore, the ZBCP could stick out above the background. The values that we stated here are
taken from Fig. 4.12. By making a proper fit of the gap in the absence of the ZBCP, a more precise
estimate of the peak height could be given.
a Experimentally, in order to make a stronger claim about the peak height, it is necessary to be
able to control the tunnel barrier strength better. This will be discussed in the outlook in Section 5.3.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
61

62

63

64

65

dI
/d

V
(2

e2 /h
)

V (mV)

B = 0.43 T

Figure 4.12: Maximum ZBCP at B = 0.43 T.

V (mV) dI/dV (2e2/h)
Global min -0.77 62.03
Local min -0.077 62.22
Local max -0.027 62.93

Peak height w.r.t local min 1.4e2/h
Peak height w.r.t. global min 1.8e2/h

Table 4.3: Values extracted from
Fig. 4.12.
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Controlling the tunnel barrier has an additional advantage. The Majorana state is defined to be
located at zero energy in the density of states, not necessarily at zero voltage in the conductance
(although this turns out to be the same). Experimentally, the density of states is obtained by
spectroscopy, which is effectively probing the conductance with a high tunnel barrier. The concepts
of conductance and density of states are often linked to each other, but the validity of this comparison
is not trivial. The conductance is related to charge, while the density of states considers particles.
In Appendix E, we show mathematically how the two can be linked via the tunnel barrier. In
the absence of a tunnel barrier, we can still do spectroscopy, and still draw conclusions related to,
e.g., other types of barriers in the system and whether backscattering is possible. [29] Relating the
conductance spectrum to the density of states just makes the interpretation more straightforward.

Temperature and dissipation

The other two reasons why the ZBCP is smaller than 2e2/h are temperature and dissipation. Con-
trary to the tunnel barrier, temperature and dissipation might not preserve topological properties.
When increasing temperature and/or dissipation, the area of the ZBCP stays constant, i.e. the
height decreases, while the peak broadens. It is difficult to say something about the peak width in
our system, since Ref. [68] does not give a criterion for it and the width is likely broadened by the
low tunnel barrier (as we just discussed).
a Broadening of the spectrum is a well known effect of increasing the temperature, which is
known as thermal smearing. In Ref. [68] the peak height at zero temperature is 2e2/h, while at
0.1 K, it has decreased to 1.7e2/h. Our experiments are done at 13 mK. We do not have the tem-
perature dependence at finite field (with ZBCP), but we do have the temperature dependence at
zero field, which is shown in Fig. 4.13. Considering the speed with which the peaks shrink, it is not
likely that the decrease in peak height is solely caused by thermal smearing.
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Figure 4.13: Temperature dependence of the differential conductance, at zero applied field.

Liu et al [67] state that the dissipation is of unknown origin, but it is introduced in the model in
order to agree better with the experimental values. The dissipation could be explained by vortices
(i.e. transport of vortices in a superconductor costs more energy) or quasi particle states in the
superconductor. Since the first critical field of Nb (when vortices appear) is between the 100 and
200 mT, [74] this could very well be the case in our system as well. Since the dissipation in [67]
is just a fitting parameter, it is very difficult to make a claim about the dissipation. One could
imagine that increasing the magnetic field would increase the dissipation and therefore, decrease
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the peak height (while increasing the peak width). However, the range where the ZBCP is observed
is too small to either reject or verify this possibility.
a The main difference between thermal smearing and smearing as a result of dissipation is the
symmetry. Temperature effects are always symmetric in voltage, while the dissipation is asymmet-
ric. This can be explained by the fact that temperature conserves particle-hole symmetry (Liu et
al [67] show the reflection matrix is unitary), while this symmetry is broken by dissipation. This is
only the case at finite voltages. The ZBCP is always particle-hole symmetric. [67] Looking closely
at our experimental data in Fig. 4.9b, we could argue that the peaks for positive voltage are indeed
slightly higher. If there is dissipation in the system, it is expected to be small, so a small asymmetry
would be a logical result.

4.5 Magnetic field effects

In Fig 4.9b, we saw that the ZBCP is most clearly visible around 0.43 T. If we look very closely to
the conductance, we can already see some very small peaks at lower fields, e.g. a peak of 0.2e2/h
at 0.198 T. Whether this is an actual peak or just noise is debatable. This tiny ZBCP is only
visible for three data points and then disappears into the background again. Zooming in at the zero
voltage level (Fig. 4.14a), one could believe that the ZBCP appears and disappears periodically as
a function of magnetic field. This could be an indication of the Aharonov-Bohm effect which is also
commonly seen in nanowires, [75] which will be discussed in Section 4.5.1.
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Figure 4.14: Conductance as a function of magnetic field.

The question that remains is why we do not observe the ZBCP for low magnetic fields. In a nanowire,
a magnetic field is needed to get in the topological regime. Since a TI always has two states at the
Fermi level, this should not be an issue and the Majorana should be visible at zero, or low, magnetic
field as well. Since we do observe the ZBCP at higher fields, we expect that there is a phenomenon
that simply dominates the ZBCP and this phenomenon should attenuate with increasing magnetic
field. This can also be seen in Fig. 4.14b, where we clearly observe a large conductance background
that goes down with increasing magnetic field.

In our setup, the resistance (which is the inverse of the differential conductance that we have
discussed so far) is caused by many different effects. Transport goes through the BSTS, even though
the BSTS is partly superconducting, it is still expected to somehow contribute to the resistance.
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The contribution of BSTS is discussed in Section 4.5.3.
a The Au contacts in this case were measured while testing the sample and were found to have a
resistance of 25 Ω (which is small compared to other samples that we tested). Both the BSTS and
the Au are independent of the magnetic field and will be a constant offset to the resistance. Since
Nb is a superconductor, these contacts do not have resistance. In Fig. 4.6, it can be seen that the
samples have two Au contacts and two Nb contacts. This allows us to do four point measurements,
which implies that we can eliminate any contributions of the cables or other parts of the setup.
a Another field dependent phenomenon that we have already come across a couple of times is
WAL (introduced in Section 1.3.3 and briefly discussed in Section 4.4.1). WAL is known to decrease
with magnetic field, which is what we are looking for. We note that WAL can only exist in the
diffusive regime and it is unclear in which regime we are. For the moment, suppose we have WAL
in our system. Both the WAL and the MBS are quantum corrections to the conductance, which
means that they are in the order of magnitude of a conductance quantum. Therefore, if the WAL
correction is slightly larger than the MBS correction, it is possible that we are not able to observe
the MBS at low magnetic field. However, having a look at the order of magnitude with which the
conductance goes down (see Fig. 4.14b), we can immediately see that this is much larger than a
conductance quantum. Therefore, even if WAL is present in this system, it cannot be responsible
for a conductance decrease of this size. The possible contribution of WAL will be discussed in
Section 4.5.3.
a The only other obvious field dependent effect in this system is the superconductivity itself.
The decrease of the coherence peak as a function of magnetic field (blue line in Fig. 4.14b) is a
well-known result of superconductivity. To say a little more about how the superconductivity in
this system is affected by the magnetic field, we make a simple model of it, which is discussed in
Section 4.5.2.

4.5.1 The Aharonov-Bohm effect

A brief introduction to the Aharonov-Bohm effect and flux quantization was given in Section 1.2.4.
The Aharonov-Bohm effect can be observed in both the ballistic and the diffusive limit, [76] which
implies that we do not have to worry about the length scales mentioned at the beginning of this
section.
a In a nanowire, the dispersion relation is given by [75]

Ekl = ±~v

√
k2 +

π
(
l + 1

2 − Φ/Φ0

)2
S

, (4.6)

where l + 1
2 = ± 1

2 ,±
3
2 ,±

5
2 , . . . is the angular momentum and S is the cross-sectional area of the

nanowire. In the absence of a magnetic field (i.e. Φ = 0), the nanowire is in the trivial phase,
which implies that the dispersion has a gap. Sending a conductance quantum (or two, or three, ...)
through the wire cancels the angular momentum contribution in Eq. (4.6), such that the dispersion
simply becomes Ek = ±~vk. The gap closes and we are able to have a MBS (see also Section 1.4.3).
This is depicted schematically in Fig. 4.15. This happens for every integer amount of conductance
quantum. Hence, the appearance of the MBS oscillates with magnetic field in a nanowire. [75]
The next step is to link the nanowire case to our system. To get some insight in the order of
magnitude, we want to calculate the flux through our system, which is equal to Φ = B · S (see
Section 1.2.4), where B is the period with which the ZBCP oscillates as function of the applied
magnetic field, and S is the area.
a We will first make an estimate of the required value for B. Since we do not have many data
points, the data looks a bit noisy. The data will profit from some averaging and smoothing. We
average over eleven data points centred around V = 0 (which corresponds to the range V = −0.047
to 0.047 mV). The result looks like a periodic function multiplied with a decreasing function, which
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Figure 4.15: The dispersion of a nanowire in the absence of a magnetic field has a gap (left).
When sending exactly Φ = 0.5Φ0, the gap closes (right). From [75].

is shown in Fig. 4.16a. We are interested in the periodic component and therefore, we subtract
the decreasing background. We do this by severely smoothing the data (which eliminates the
periodic part) and subtracting the smoothed graph from the original one. The resulting graph
and a smoothed version of it (to emphasize the periodicity) are depicted in Fig. 4.16b. Taking the
Fourier transform in Fig. 4.16c, we find a maximum at 0.058 T, which can also be estimated from
the smoothed pink graph in Fig. 4.16b.
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Figure 4.16: Differential conductance averaged around V = 0.
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We now have to make an estimate of the area S of the MBS. We note that, from the dispersion of
the nanowire (Eq. (4.6)), it follows directly that the area S does not influence the closing of the gap.
It only determines the size of the gap. The area S in our system is related to the size of the SABS.
This is illustrated in Fig. 4.17. From the AFM image, we estimate that the distance between the

InAs

Nb

W
t W

tAu Nb

MBSMBS

Figure 4.17: The width (W ) and thickness (t) in a nanowire (left) and in our system (right).

two contacts (t) is approximately 50 nm. From the SEM image, we estimate the width of the Au
wall (W ) to be 3 µm, although it is not clear if the full Au wall is contributing to the conductance.
a The flux Φ through our artificial loop is found to be

Φ = B · S = B · t ·W = (0.058 T) ·
(
50 · 10−9 m

)
·
(
3 · 10−6 m

)
= 9 · 10−15 Tm2. (4.7)

The numbers that we used here are very rough estimates and just estimated by eye. Therefore, the
value of Φ is a very rough estimate as well. A flux quantum is Φ0 = h/2e = 2 · 10−15 Tm2. Hence,
the value that we found for Φ is in the right order of magnitude, although it is still to high. The
most probable reason why the obtained value is higher, is because we took W = 3 µm, which may
be too large. It is very probable that the flake has some terraces. In this case, the MBS would most
likely be confined within a terrace, rather than taking an additional step.
a Of course, this approach is very speculative and the data is not clear enough to make any
claims. The only thing that we can state so far is that the SABS which might cause an artificial
loop is a reasonable idea and it is definitely worth it to investigate this theory in more detail. As
we already explained in the previous section, by increasing the tunnel barrier, the visibility of the
ZBCP should increase, and, therefore, its period as a function of magnetic field will become clearer
as well. By intentionally designing structures with a smaller distance between the contacts (around
50 nm), there is a good change that at least some of the structures will have successful aligning and
lift-off, in which case the area of the loop S can be estimated more precisely.

4.5.2 The Doppler shift

Ideally, one would model a superconducting TI and put it in contact with a normal metal. The
former has linear dispersion and is described by a first order differential equation, while the latter
has quadratic dispersion and therefore corresponds to a second order differential equation. Since
the number of required boundary conditions is equal to the order of the differential equation, it
remains unclear how to couple the two. Hence, we have to look for an alternative way to model the
system.
a The first suggestion to model the system was by simply taking the BTK theory which describes
a normal metal s-wave superconductor junction. [47] In the absence of a barrier, the resulting con-
ductance spectrum gives a plateau inside the gap. Imposing an interface barrier gives rise to very
sharp coherence peaks (located at E = ±∆) and suppresses the conductance inside the gap (i.e. a
soft gap, as explained in Section 4.4.2). Especially the coherence peaks are very different from the
conductance spectra that we experimentally observed. It would not be possible to get an accurate
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fit using just the simple BTK model.
a In order to improve the model, while still keeping it simple, we used an available code for
a normal metal/ferromagnet/superconductor junction with different types of superconductivity,
modelled by Olde Olthof et al. [37] We took the ferromagnet to be absent, replaced the s-wave
superconductor by a chiral p-wave superconductor and introduced strong SOC to mimic the TI
behaviour. We have to take this model with a grain of salt, since it is not specifically made to
describe our system. Since we are only interested in the qualitative structure and it is not our goal
to perfectly fit the data, we simply assumed all masses to be equal and the system to be isotropic.
a We first check the influences of the SOC and the barrier strength separately. Both suppress
the conductance and induce a soft gap, as can be seen in Figs. 4.18a,b. The shape is slightly different
and the suppression as a result of the barrier is stronger. We are looking for a conductance spectrum
where the conductance inside the gap is at approximately the same level as the conductance outside
the gap. This can be modelled by several combinations of the SOC and barrier strength. In our
system, we expect the SOC to be considerably stronger than the barrier strength. Hence, we fix
the SOC to be equal to 1 and found the matching barrier strength to be 0.2, as can be seen in
Fig. 4.18c. Both the SOC and interface barrier are normalised by a factor m/~2k0, where m is the
effective mass and k0 =

√
2mµ/~, with µ the chemical potential. [37]

(a) Influence of SOC. (b) Influence of barrier. (c) Influence of barrier.

Figure 4.18: Influence of SOC and the barrier strength on the normalized conductance.

Using these parameters, we then model the conductance for increasing magnetic field. The experi-
mental data and the modelled conductance are shown in Figs. 4.19a,b.
a The theoretical conductance catches the rounded shape of the peaks much better than the
standard BTK model. This indicates possible p-wave pairing in the system. When increasing the
field, the coherence peaks become broader and get a shoulder (purple graphs). This feature is mim-
icked very well by the model. In this model, the SOC is simply a spin dependent barrier, i.e. the
barrier is low for one spin and high for the other. Since the model is simply an adjusted model
(not made specifically to fit this experiment), this approach is not very accurate. In the case of a
TI, we have only one spin, so the barrier should go to infinity. On top of that, it should not be
modelled at the interface, but it is present inside the materials in the form of linear dispersion. From
Fig. 4.18a, we can see that the SOC does not affect the coherence peaks that much, but mainly
suppresses the subgap conductance. Therefore, the formation of the shoulder probably results from
the p-wave pairing instead (and is not a direct result of the SOC). This was confirmed by repeating
the calculation without SOC, where a shoulder is still vaguely visible for increasing magnetic field
(Fig. 4.19c).
a However, the problem with the theoretically obtained conductance is that it goes up at zero
energy, while the experimental conductance goes down (most clearly visible in Fig. 4.14b).
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(a) Experimentally obtained differential conduc-
tance (no offset).

(b) Model for normal metal/p-wave superconductor
junction with strong SOC.

(c) Model for normal metal/p-wave superconductor
junction, without SOC.

Figure 4.19: Conductance as a function of magnetic field.

The two main effects that the magnetic field can have on the superconductivity are the Doppler
shift and the Zeeman effect. The Doppler shift is a magnetic field dependent offset to the kinetic
energy. The Zeeman effect splits the energy levels linearly with increasing magnetic field. Which
effects in present in a system depends on the material parameters.
a Bismuth based topological insulators have a g-factor of approximately 20 along the c-axis, [77]
which results in a Zeeman energy of EZ = gµBB = 20 · (9.2 ·10−24 JT−1) · (0.5 T) = 0.57 meV. The
Doppler effect is of the order of the superconducting gap, [37] which in this case is approximately
0.25 mV. Since the charge carriers are Cooper pairs, we have to multiply by 2e to find that the
corresponding energy is 0.5 meV. Hence, the two effects are of the same order and non-negligible.
a The model from Ref. [37] only includes the magnetic field via the Doppler shift. Furthermore,
it is only suitable for modelling small magnetic fields, since it does not take Abrikosov vortices into
account which are expected at higher magnetic fields (see Section 1.2.1). Therefore, the theoretical
formation of the shoulder in in Fig. 4.19b in our model solely results from the Doppler shift.
a This might also explain why the overall conductance is not going down as a function of the
magnetic field. The decreasing conductance could be a result of the Zeeman effect, although further
calculations have to be done to confirm this. Alternatively, it can be a caused by WAL, which we
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will discuss in the next section.

Finally, we can get some additional information from the model. The normalization factor Hc is the
thermodynamical critical field. The coherence peaks in the Fig. 4.19a correspond to the induced
superconductivity in the BSTS, of which the critical field values are unknown. Comparing the data
to the theory, we can estimate that a field of B = 0.5 T corresponds to 60% of the critical field,
such that Hc of BSTS is estimated to be around 0.8 T.

4.5.3 Weak antilocalisation

In order to say something about WAL in our system, we have to try to stay away from effects
resulting from superconductivity. Ideally, we would use data at a slightly higher temperature, when
there is no superconductivity in the system any more, for example, at 10 K (since Nb transitions to
the normal state around 9 K). Since this data is not available, we consider the conductance outside
the BSTS gap (for voltages |V | > 0.5 mV). This has the additional risk that sending a larger current
through the sample will slightly heat up the electrons (depending on the resistance of the sample),
which makes the fit less accurate. This is especially an issue because one of the fitting parameters,
the phase-coherence length `φ is temperature dependent. [29] On top of that, we are still dealing
with the superconducting Nb, so we do not expect to get a great WAL fit through our data.

Figure 4.20: Fitting the HLN equation through the conductance as a function of magnetic field.

a WAL as a function of a perpendicular magnetic field (B⊥) is modelled by the Hikami-Larkin-
Nagaoka (HLN) equation [78]

∆G(B⊥) = G(B⊥)−G(B⊥ = 0)

= α
e2

πh

[
z

(
1

2
+

~
4e`2φB⊥

)
− ln

(
~

4e`2φB⊥

)]
, (4.8)

where z is the digamma function, `φ is the phase-coherence length (see Section 1.3.3) and α is
a fitting parameter which is typically α = 1 for WL and α = −0.5 for WAL. [29] In the case of
multiple conducting channels, every channel contributes α = −0.5 for WAL.
a A HLN fit was made for data around 0.94 mV, which is shown in Fig. 4.20. The optimal
parameters were `φ = 103 nm and α = −5.12. In BSTS, we would expect at least a conducting
channel for the top and the bottom surface (two channels, α = −1). In the case of high doping,
there can be a few more channels, although we should assume there is no scattering between them,
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otherwise the value of α reduces. A fitting parameter of α = −5 points at ten conducting channels,
which is very unlikely. However, similarly large values of α for BSTS have been obtained before.
[69] A possible reason might be that the HLN fit is not very suitable for BSTS. The HLN equation
is known to give the wrong value of α in the absence of backscattering. In this case, α is doubled
compared to conventional electrons (recall the factor 2 in Eq. (4.5)). [79] Hence, it could be the case
that WAL in this system slightly suppresses the conductance, although this fit is not conclusive.

4.5.4 Structure outside the gap

In the previous sections, we focussed on the gap shape and the things happening inside the gap. At
certain applied magnetic fields, we can also observe some additional small peaks outside the BSTS
gap (but still inside the Nb gap), which is shown in Fig. 4.21. Since these structures are located
outside the BSTS gap, they are not related to the induced superconductivity in the BSTS. Hence,
they probably originate from the Nb.
a At B = 0.25 T, we can see two smaller peaks at V = −0.83 mV and V = −0.57 mV. For higher
magnetic fields, we expect the Nb gap to decrease in size and only one peak remains. However, at
most intermediate values of the magnetic field, there are no additional peaks at all.
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Figure 4.21: At certain values of the magnetic fields, small structures can be observed outside the
BSTS gap (marked by black arrows). The bottom two graphs have an offset to improve visibility.

Most likely, the additional peaks are the result of some resonance inside the Nb gap. At certain values
of the magnetic field, the Nb gap size probably corresponds to the wave length of some physical
phenomenon, which allows for standing waves, giving rise to small peaks in the conductance. Fully
modelling and explaining the additional peaks goes beyond the scope of this work. However, an
extensive discussion on similar peaks in BSTS is given in Ref [80].

4.6 Bi0.97Sb0.03

Pure bismuth (Bi) is a semimetal, which means it has a small (or zero) bandgap. When doping Bi
with antimony (Sb), the conduction band shifts to a lower energy while the valence band increases
in energy, such that the two bands approach each other. Bismuth antimony (Bi0.97Sb0.03) is a so-
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called accidental Dirac semimetal. [81] For a Sb doping of 3-4%, the bands of the semimetal happen
to touch each other, which creates a Dirac cone.1 This is the type of Bi0.97Sb0.03 that is of interest
in our experiments. Increasing the Sb doping even further results in a band inversion (similar to
the case with topological insulators in Section 1.3.1).
a Since the 4π periodicity measurements were done using Bi0.97Sb0.03, [38] it would be interest-
ing to see if we can also show the Majorana behaviour by means of a ZBCP.
a Since Bi0.97Sb0.03 is a Dirac semimetal (instead of a topological insulator), it has linear dis-
persion in three directions (instead of two). Therefore, Bi0.97Sb0.03 is more robust against pertur-
bations, such that the MBS is able to travel further and should be easier to observe. The signal
from a possible MBS should be much clearer and allows for length dependent designs (varying the
distance between the Au and Nb).
a In practice, Bi0.97Sb0.03 is a lot harder to work with than BSTS. First of all, Bi0.97Sb0.03 is a
very hard material. Sticking tape to BSTS easily gives hundreds of tiny flakes (a few µm in lateral
size). If we are lucky, Bi0.97Sb0.03 gives a couple of flakes. These are, in general, a lot thicker and a
lot larger (ranging from a few µm to a few mm) than the BSTS flakes. Especially the desired thin
flakes are rarely large enough to put a structure on them.
a Because we have very few and very large flakes, we made several structures on one flake. This
can be seen in the images in Fig 4.22. Since Au lift-off can be difficult, we decided to make only
one Au contact and several Nb contacts around it. Furthermore, in this design we made the Nb
contacts such that they have a different angle with respect to the Au contact, to test whether the
transport through the flake is directional. For all three Nb contacts, the distance to the Au contact
is 1 µm.

(a) SEM, 45◦. (b) BEC.

Figure 4.22: Images of a large Bi0.97Sb0.03 flake with Nb and Au contacts on it.

Bi0.97Sb0.03 is a hard material, which not only makes it difficult to exfoliate, but the etching is
challenging as well. This results in contacts with a low transparency. Considering the influence of
the tunnel barrier (see Section 4.4.2), this is in principle not a bad thing. It does, however, come
with some additional difficulties. Since the flake is quite thick and the etching is not very successful,
the Nb turned out to be discontinuous at the edge of the flake. This is visible in the bottom left
corner of Fig. 4.22a. In the same picture, the Nb on top of the Bi0.97Sb0.03 has a strange, dotted
structure, which made us doubt if there was any Nb left on the flake at all. By making a BEC
image (Fig. 4.22b), we could see that this was not an issue. In the top right corner of Fig. 4.22b,
it can again be seen that the contact is discontinuous. Comparing this image to the BEC image
of BSTS (Fig. 4.11c), it also becomes clear that the Bi0.97Sb0.03 is a lot heavier. Obviously, the
discontinuous contact implies that it is not possible to send a signal through. The discontinuity
could be solved by making the Nb thicker. The downside is that this will also make the lift-off more

1We note that is not a standard property of semimetals. The bands can only touch if they have the same spin
structure. If this is not the case, the semimetal exhibits band avoidance instead of band crossing.
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difficult.
a On some of the flakes, we did manage to get good contacts. When checking the resistance in
the probe station, we found reasonable values in the kΩ range. We had to wait for a couple of weeks
before we were able to measure our sample at a dilution fridge. When we had loaded the sample
in the measurement setup, it turned out that the resistance had gone up considerably. Some of
the contacts where open, other had barriers in the MΩ range. This is most likely the result of the
Bi0.97Sb0.03 degrading very fast, possibly even underneath the contacts. Because of this, we have
not yet managed to do any successful measurements on the structures with Bi0.97Sb0.03.
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5a

Conclusions and outlook

5.1 Conclusions on theoretical work

We modelled the transport through both conventional and topological Josephson junctions. The
current through this type of junction is determined by the interplay of Andreev reflections at the
interfaces with the superconductors, and a scattering region in the middle. This combination results
in multiple Andreev reflections. Since every reflection depends on the previous, the reflections are
described by recurrence relations.
a Every time an electron can overcome the energy gap by performing n− 1 Andreev reflections,
current starts to flow. In the conventional case, this gap is 2∆. A topological Josephson junction also
has a midgap state, such that the energy to overcome is only ∆. If we include an extra dimension,
the energy gap depends on the angle θS , which is a measure for the Fermi surface mismatch between
the topological insulator and the superconductor. Hence, the Fermi surface mismatch determines
the transparency of the junction.
a As a result of multiple Andreev reflections (MAR), a small oscillation in the current is visible
at applied voltages V , when

S/N/S junction in 1D eV =
2∆

q
,

S/TI/S junction in 1D eV =
∆

q
,

S/TI/S junction in 2D eV =
∆(1 + sin θS)

q
, q ∈ N.

These points coincide with singularities in the recurrence relation. We wrote the recurrence as
yn+1 + γnyn + χnyn−1 = 0, with coefficients γn and χn. The coefficient γn increases quadratically
with n, (i.e. γn ∼ n2), which implies that the recurrence is very instable.
a This can be solved by used a backward recurrence algorithm, which always gives the desired
minimal solution, although it is much slower than the highly optimized backslash operator that is
built-in in Matlab. When executing the integration, we carefully integrated from one instability to
the next, using an adaptive Simpson’s method.

The condition on eV for the S/TI/S junction in 2D provides a new characteristic that can serve as
a prediction for experiments. The MAR oscillations in the DC current shift with the Fermi surface
mismatch between the topological insulator and the superconductor. In actual experiments, it is
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not possible to measure the current for a single angle. Instead, the observed current is the average
over all possible angles in which the current can go from one contact to the other. After angle
averaging, the oscillating structure is hardly visible. This provides insight into why it is difficult
to observe MAR and why most of the time, the experimentally obtained DC current looks like a
rather smooth graph.
a In the absence of an applied voltage, the Andreev reflections result in a bound state. For the
S/TI/S junction in 1D, it was already known that there could be a MBS at zero energy. We have
demonstrated for the first time that, in 2D, this bound state can deviate from zero energy. The
corresponding bound state energy was found to be ε = ±∆ sin θS , which corresponds to the bound
state that is found in chiral p-wave superconductors. This shows that it is possible to induce triplet
pairing in a S/TI/S junction.
a The shifting MAR structure and the bound state energy are remarkable finds which have not
been seen before. At the moment of writing, these results are being prepared for publication.

5.2 Conclusions on experimental work

We measured the differential conductance through a Au/BSTS/Nb junction as a function of bias
voltage, magnetic field and temperature. The BSTS gave two large coherence peaks around±0.25 mV.
With increasing magnetic field, the coherence peaks went down and at certain magnetic fields, a
small ZBCP was visible. The maximum height of this peak was 1.4e2/h at a field of 0.43 T.
a If this peak corresponds to a MBS, it should have a constant height of 2e2/h. However, there
is no explicit barrier in the system. The only barrier in this system is a consequence of the distance
between the Au and Nb contact, and of the bad interface with the Au. This type of barrier is small
(smaller than an actual tunnel barrier) which results in a soft gap, which could partly cover the
ZBCP.
a Since the distance between the Au and Nb turned out to be only 50 nm, it is possible to have
a SABS in between them (which can be linked to the MBS). Fixing the bias voltage to V = 0,
the conductance as a function of magnetic field looked like a decaying function multiplied with a
small oscillation (Fig. 4.16a). This oscillation is too small to draw any definitive conclusions from
it. A speculative explanation is that the oscillation corresponds to an integer number of flux quanta
going through the SABS, resulting in the Aharonov Bohm effect. This has also been observed in
nanowires and therefore, this implies that we have mimicked a nanowire in our system.
a The decrease in conductance as a function of magnetic field is most likely the result of sev-
eral combined effects. Superconductivity itself is strongly suppressed by the magnetic field. In
our system, both the Zeeman effect and the Doppler shift are non-negligible. By making a model,
we showed that the Doppler shift can explain the formation of the shoulder for higher fields. The
Zeeman effect is possibly responsible for the overall suppression, as well as a small contribution
from WAL.

5.3 Outlook

To get a better idea of what is going on in the system, it is necessary to control the tunnel barrier
better. This reduces the soft gap background which partly masks the ZBCP, such that the full
height becomes visible. If the system truly shows the Aharonov Bohm effect, the oscillations will
become more distinct with a higher tunnel barrier.
a We have seen in Section 4.3.2 that the barrier is quite delicate and needs to be handled
extremely carefully. Up until now, we have sputtered the Au on top of the tunnel barrier by means
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of slow deposition. This might still be too violent for the fragile barrier. Even though the slow
deposition did not completely destroy the barrier, some Au particles have probably penetrated the
tunnel barrier, thereby weakening it and making it more sensitive to static electricity during wire
bonding.
a A more controlled way to obtain a Au layer would be evaporating it instead. Another possibility
is creating a tunnel barrier without a layer of oxide Al2O3, by means of performing controlled
oxidation. This can be done by first etching into the flake inside the sputter deposition chamber,
then putting it into the loadlock and letting it oxidise by means of a controlled oxygen flow. After
that, we can put it in the chamber again and sputter deposit the desired material on it. This full
process happens in situ.
a It would also not be a bad idea to start with a slightly thicker barrier. This would eliminate
the soft gap completely, such that the ZBCP will become more clearly visible. [67] On top of
that, a tunnel behaves like a capacitor. Since the maximum energy a capacitor can store before
breaking down is linearly dependent on its thickness, [82] a thicker barrier would be less prone to
being destructed by static charge. The tunnel barrier does not harm the topological properties, so
increasing it should not influence the ZBCP itself. The only risk is the barrier becoming too high, in
which case tunneling is impossible and we will not be able to measure a signal through the junction.
Etching before growing the Au should be avoided when we want to use the tunnel barrier.
a In any case, the tunnel barrier remains the most vulnerable part of the junction and it is still
recommended to bond the sample with great care.

When trying to explain the influence of the magnetic field on the superconductivity, a simple
modification was made to an existing model. Although this gave some insight in the Doppler shift,
it is not the most suitable model for this system. It would be better to model a real topological
insulator (instead of a normal metal with strong SOC at the interface) and include the Zeeman
effect in the calculations as well.

Finally, to be certain that we are dealing with a MBS, the ZBCP has to satisfy two criteria. Besides
having a constant peak height of 2e2/h, it has to be robust in the presence of a back-gate voltage
as well. This has not been checked yet.
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the piano. I sincerely hope that I can collaborate with the ICE/QTM group again in the future.
Or perhaps we will see each other at a conference, anywhere in the world. In that case, I will make
sure we will have a beer together.

Finally, I would like to thank my parents, Herman and Karin, and my (not so) little brother Rens.
Thank you very much for always supporting and encouraging me, both related to my studies and
to other aspects of my life. You were always proud of me and my achievements (even though you
had probably no idea what they were exactly). Without you, I would never have been able to
successfully complete two Master’s degrees. Thanks!



Appendices

97





Aa

Recurrence relations for the
S/N/S junction

We consider the superconductor/normal metal/superconductor junction. The normal metal is di-
vided into two regions (left and right of the eV jump). The wave amplitudes in these regions are
related by the scattering matrices as follows[

Bn
Cn

]
= Se

[
δn0 + a2nAn
a2n+1Dn

]
, Se =

[
r t
t −r∗t/t∗

]
,[

An
Dn−1

]
= Sh

[
a2nBn

a2n−1Cn−1

]
, Sh = S∗e =

[
r∗ t∗

t∗ −rt∗/t

]
.

From these matrices, we obtain a system of equations with four unknowns An, Bn, Cn and Dn:

Bn = r [δn0 + a2nAn] + ta2n+1Dn, (A.1)

Cn = t [δn0 + a2nAn]− r∗t

t∗
a2n+1Dn, (A.2)

An = r∗a2nBn + t∗a2n−1Cn−1, (A.3)

Dn−1 = t∗a2nBn −
rt∗

t
a2n−1Cn−1. (A.4)

We have obtained the system of Eqs. (A.1)-(A.4) with four unknowns An, Bn, Cn and Dn. We are
interested in An and Bn, since these coefficients are used for calculating the current through the
junction. In this section, we will first substitute them into one another to find an expression solely
depending on Bn. After this relation is obtained, Bn can be considered known. We then derive an
expression depending only on An and Bn (such that An is the only unknown in this expression).

A.1 Recurrence relation for Bn

Our first goal is to find the recurrence relation for Bn. Hence, we want to get rid of the An and
Dn. Instead of Dn−1, we want the equation for Dn. Hence, in Eq. (A.4), we replace n− 1 by n:

Dn = t∗a2n+2Bn+1 −
rt∗

t
a2n+1Cn. (A.5)

We substitute Eqs. (A.3) and (A.5) into Eq. (A.1):

Bn = r [δn0 + a2n (r∗a2nBn + t∗a2n−1Cn−1)] + ta2n+1

(
t∗a2n+2Bn+1 −

rt∗

t
a2n+1Cn

)
.
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Removing the brackets, we get

Bn = rδn0 + rr∗a2
2nBn + rt∗a2na2n−1Cn−1 + tt∗a2n+1a2n+2Bn+1 − rt∗a2

2n+1Cn.

Sorting the terms, we obtain[
1− rr∗a2

2n

]
Bn − tt∗a2n+1a2n+2Bn+1 = rδn0 + rt∗a2na2n−1Cn−1 − rt∗a2

2n+1Cn. (A.6)

We now have a recurrence relation for Bn in terms of Cn. We would like to remove Cn from the
equation. In order to do so, we rewrite the equation as follows, which will turn out to be convenient
later on:

t∗a2na2n−1Cn−1 + δn0 = t∗a2
2n+1Cn +

1

r

[
1− rr∗a2

2n

]
Bn −

tt∗

r
a2n+1a2n+2Bn+1. (A.7)

We substitute Eqs. (A.3) and (A.5) into Eq. (A.2):

Cn = tδn0 + ta2n (r∗a2nBn + t∗a2n−1Cn−1)− r∗t

t∗
a2n+1

(
t∗a2n+2Bn+1 −

rt∗

t
a2n+1Cn

)
.

Removing the brackets, we find

Cn = tδn0 + tr∗a2
2nBn + tt∗a2na2n−1Cn−1 − r∗ta2n+1a2n+2Bn+1 + r∗ra2

2n+1Cn.

Again, we want to obtain an expression for Cn−1, which we do as follows:

t∗a2na2n−1Cn−1 + δn0 =
1

t

[
1− r∗ra2

2n+1

]
Cn − r∗a2

2nBn + r∗a2n+1a2n+2Bn+1. (A.8)

Setting Eqs. (A.7) and (A.8) equal, we get

t∗a2
2n+1Cn +

1

r

[
1− rr∗a2

2n

]
Bn −

tt∗

r
a2n+1a2n+2Bn+1

=
1

t

[
1− r∗ra2

2n+1

]
Cn − r∗a2

2nBn + r∗a2n+1a2n+2Bn+1.

Sorting the terms, we obtain[
1

r
− r∗a2

2n + r∗a2
2n

]
Bn

=

[
1

t
−
(
r∗r

t
+ t∗

)
a2

2n+1

]
Cn +

(
r∗ +

tt∗

r

)
a2n+1a2n+2Bn+1. (A.9)

Since r∗r + t∗t = rr∗ + tt∗ = 1, we can write

r∗r

t
+ t∗ =

1

t
(r∗r + t∗t) =

1

t
,

r∗ +
tt∗

r
=

1

r
(r∗r + t∗t) =

1

r
.

Substituting this into Eq. (A.9), we get

1

r
Bn =

1

t

[
1− a2

2n+1

]
Cn +

1

r
a2n+1a2n+2Bn+1. (A.10)

We can now express Cn in terms of Bn by rewriting Eq. (A.10):

Cn =
t

r

1

1− a2
2n+1

Bn −
t

r

a2n+1a2n+2

1− a2
2n+1

Bn+1. (A.11)
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Replacing n by n− 1, we can find an expression for Cn−1:

Cn−1 =
t

r

1

1− a2
2n−1

Bn−1 −
t

r

a2n−1a2n

1− a2
2n−1

Bn. (A.12)

We now substitute Eqs. (A.11) and (A.12) into our recurrence relation for Bn, given by Eq. (A.6):

[
1− rr∗a2

2n

]
Bn − tt∗a2n+1a2n+2Bn+1 = rδn0 + rt∗a2na2n−1

(
t

r

1

1− a2
2n−1

Bn−1 −
t

r

a2n−1a2n

1− a2
2n−1

Bn

)
− rt∗a2

2n+1

(
t

r

1

1− a2
2n+1

Bn −
t

r

a2n+1a2n+2

1− a2
2n+1

Bn+1

)
.

Removing the brackets, what remains is

[
1− rr∗a2

2n

]
Bn − tt∗a2n+1a2n+2Bn+1 = rδn0 + t∗t

a2na2n−1

1− a2
2n−1

Bn−1 − t∗t
a2

2na
2
2n−1

1− a2
2n−1

Bn

− t∗t
a2

2n+1

1− a2
2n+1

Bn + t∗t
a3

2n+1a2n+2

1− a2
2n+1

Bn+1.

For the term on the far left, we use that rr∗a2
2n = a2

2n − tt∗a2
2n. Substituting this and sorting the

terms, we get

t∗t

[
a3

2n+1a2n+2

1− a2
2n+1

+ a2n+1a2n+2

]
Bn+1 −

[
1− a2

2n + t∗t

(
a2

2n +
a2

2n+1

1− a2
2n+1

+
a2

2na
2
2n−1

1− a2
2n−1

)]
Bn

+t∗t
a2na2n−1

1− a2
2n−1

Bn−1 = −rδn0.

(A.13)

We have to slightly rewrite the coefficients. The terms in between brackets in front of Bn+1 can be
written as

a3
2n+1a2n+2

1− a2
2n+1

+ a2n+1a2n+2 =
a2n+1a2n+2

1− a2
2n+1

(
1− a2

2n+1 + a2
2n+1

)
=
a2n+1a2n+2

1− a2
2n+1

. (A.14)

Similarly, for the Bn coefficient, we use

a2
2n +

a2
2na

2
2n−1

1− a2
2n−1

=
a2

2n

1− a2
2n−1

(
1− a2

2n−1 + a2
2n−1

)
=

a2
2n

1− a2
2n−1

. (A.15)

Substituting Eqs. (A.14) and (A.15) into Eq. (A.13), and defining the transparency D ≡ t∗t, we get
the final recurrence relation for Bn:

D
a2n+2a2n+1

1− a2
2n+1

Bn+1 −
[
D

(
a2

2n+1

1− a2
2n+1

+
a2

2n

1− a2
2n−1

)
+ 1− a2

2n

]
Bn +D

a2na2n−1

1− a2
2n−1

Bn−1

= −
√

1−Dδn0. (A.16)
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A.2 Recurrence relation for An

We start from Eq. (A.2) and replace n by n− 1:

Cn−1 = ta2n−2An−1 −
r∗t

t∗
a2n−1Dn−1 + tδn−1,0. (A.17)

Plugging this into Eq. (A.3) yields

An = r∗a2nBn + t∗a2n−1Cn−1

= r∗a2nBn + t∗a2n−1

(
ta2n−2An−1 −

r∗t

t∗
a2n−1Dn−1 + tδn−1,0

)
= r∗a2nBn + tt∗a2n−1a2n−2An−1 − r∗ta2

2n−1Dn−1 + tt∗a2n−1δn−1,0.

We rewrite the purple terms as tt∗ = 1− rr∗ to obtain

An = r∗a2nBn + a2n−1a2n−2An−1 − rr∗a2n−1a2n−2An−1 − r∗ta2
2n−1Dn−1

+a2n−1δn−1,0 − rr∗a2n−1δn−1,0.

Sorting the terms in a smart way, we get

An − a2n−1a2n−2An−1 = r∗a2nBn − r∗a2n−1 (ta2n−1Dn−1 + ra2n−2An−1 + rδn−1,0)

+a2n−1δn−1,0. (A.18)

We take Eq. (A.1) and replace n by n− 1:

Bn−1 = rδn−1,0 + ra2n−2An−1 + ta2n−1Dn−1. (A.19)

This is exactly the part in between brackets in Eq. (A.18). Hence, we can write Eq. (A.18) as

An − a2n−1a2n−2An−1 = r∗a2nBn − r∗a2n−1Bn−1 + a2n−1δn−1,0.

This is already a correct recurrence relation for An. However, to mimic the Averin and Bardas [40],
we replace n− 1 by n:

An+1 − a2n+1a2nAn = r∗ (a2n+2Bn+1 − a2n+1Bn) + a2n+1δn,0.

Since rr∗ = r∗r = R, we write r∗ =
√
R. The source (last term) has a Kronecker δ-function at

n = 0. Hence, we can plug n = 0 into the factor in front of it: a2n+1 = a1. Our final recurrence
relation for An becomes

An+1 − a2n+1a2nAn =
√
R (a2n+2Bn+1 − a2n+1Bn) + a1δn0. (A.20)



Ba

Recurrence relations for the
S/TI/S junction

If we replace the normal metal with a topological insulator (TI), the wave functions stay the same.
According to Badiane et al. [41], the reflection coefficient for the hole gets an additional minus sign.
This changes the scattering matrices to[

Bn
Cn

]
= Se

[
δn0 + a2nAn
a2n+1Dn

]
, Se =

[
r t
t −r∗t/t∗

]
,[

An
Dn−1

]
= Sh

[
a2nBn

a2n−1Cn−1

]
, Sh =

[
−r∗ t∗

t∗ rt∗/t

]
.

The other parts of the calculation remain unchanged. Below, the calculation from the previous
section is repeated. The changes are marked in red. The system of equations becomes

Bn = r [δn0 + a2nAn] + ta2n+1Dn, (B.1)

Cn = t [δn0 + a2nAn]− r∗t

t∗
a2n+1Dn, (B.2)

An = −r∗a2nBn + t∗a2n−1Cn−1, (B.3)

Dn−1 = t∗a2nBn +
rt∗

t
a2n−1Cn−1. (B.4)

B.1 Recurrence relation for Bn

We repeat the calculations from the previous section, but leave out some of the steps. The changes
due to the different sign are marked in red. We start again with Dn:

Dn = t∗a2n+2Bn+1 +
rt∗

t
a2n+1Cn. (B.5)

Substituting Eqs. (B.5) and (B.3) this into Eq. (B.1), we get

Bn = rδn0 − rr∗a2
2nBn + rt∗a2na2n−1Cn−1 + tt∗a2n+1a2n+2Bn+1 + rt∗a2

2n+1Cn. (B.6)

Rewriting this equation, we obtain

t∗a2na2n−1Cn−1 + δn0 = −t∗a2
2n+1Cn +

1

r

[
1 + rr∗a2

2n

]
Bn −

tt∗

r
a2n+1a2n+2Bn+1. (B.7)
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We substitute Eqs. (B.3) and (B.5) into Eq. (B.2) and work out the brackets.

Cn = tδn0−tr∗a2
2nBn + tt∗a2na2n−1Cn−1 − r∗ta2n+1a2n+2Bn+1 − r∗ra2

2n+1Cn.

Again, we want to obtain an expression for Cn−1, which we do as follows:

t∗a2na2n−1Cn−1 + δn0 =
1

t

[
1 + r∗ra2

2n+1

]
Cn + r∗a2

2nBn + r∗a2n+1a2n+2Bn+1. (B.8)

Setting Eqs. (B.7) and (B.8) equal, we get

−t∗a2
2n+1Cn +

1

r

[
1 + rr∗a2

2n

]
Bn −

tt∗

r
a2n+1a2n+2Bn+1

=
1

t

[
1 + r∗ra2

2n+1

]
Cn + r∗a2

2nBn + r∗a2n+1a2n+2Bn+1.

Sorting the terms, we obtain

1

r
Bn =

[
1

t
+

(
r∗r

t
+ t∗

)
a2

2n+1

]
Cn +

(
r∗ +

tt∗

r

)
a2n+1a2n+2Bn+1.

Using r∗r + t∗t = rr∗ + tt∗ = 1, this reduces to

1

r
Bn =

1

t

[
1 + a2

2n+1

]
Cn +

1

r
a2n+1a2n+2Bn+1. (B.9)

By rewriting Eq. (B.9) and subsequently replacing n by n − 1, we obtain expressions for Cn and
Cn−1:

Cn =
t

r

1

1 + a2
2n+1

Bn −
t

r

a2n+1a2n+2

1 + a2
2n+1

Bn+1,

Cn−1 =
t

r

1

1 + a2
2n−1

Bn−1 −
t

r

a2n−1a2n

1 + a2
2n−1

Bn.

Substituting these expressions into Eq. (B.6), we get[
1 + rr∗a2

2n

]
Bn − tt∗a2n+1a2n+2Bn+1 = rt∗a2na2n−1

(
t

r

1

1 + a2
2n−1

Bn−1 −
t

r

a2n−1a2n

1 + a2
2n−1

Bn

)
+ rt∗a2

2n+1

(
t

r

1

1 + a2
2n+1

Bn −
t

r

a2n+1a2n+2

1 + a2
2n+1

Bn+1

)
+ rδn0.

For the term on the far left, we use that rr∗a2
2n = a2

2n − tt∗a2
2n. Substituting this and sorting the

terms, we get

t∗t

[
a2n+1a2n+2 −

a3
2n+1a2n+2

1 + a2
2n+1

]
Bn+1 −

[
1 + a2

2n + t∗t

(
a2

2na
2
2n−1

1 + a2
2n−1

− a2
2n −

a2
2n+1

1 + a2
2n+1

)]
Bn

+t∗t
a2na2n−1

1 + a2
2n−1

Bn−1 = −rδn0.

(B.10)

The terms in between brackets in front of Bn+1 and Bn can be rewritten as, respectively,

a2n+1a2n+2 −
a3

2n+1a2n+2

1 + a2
2n+1

=
a2n+1a2n+2

1 + a2
2n+1

,

a2
2na

2
2n−1

1 + a2
2n−1

− a2
2n = − a2

2n

1 + a2
2n−1

.

Plugging these terms back into Eq. (B.10) and using that D = t∗t, we are left with

D

[
a2n+2a2n+1

1 + a2
2n+1

Bn+1 +

(
a2

2n+1

1 + a2
2n+1

+
a2

2n

1 + a2
2n−1

)
Bn +

a2na2n−1

1 + a2
2n−1

Bn−1

]
−
(
1 + a2

2n

)
Bn

= −
√

1−Dδn0. (B.11)
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B.2 Recurrence relation for An

Similar to before, we substitute Eq. (B.2) into Eq. (B.3)

An = −r∗a2nBn + t∗a2n−1Cn−1

= −r∗a2nBn + t∗a2n−1

(
ta2n−2An−1 −

r∗t

t∗
a2n−1Dn−1 + tδn−1,0

)
.

We work out the brackets, use tt∗ = 1− rr∗ and sort the terms. What we are left with is

An − a2n−1a2n−2An−1 = −r∗a2nBn − r∗a2n−1 (ta2n−1Dn−1 + ra2n−2An−1 + rδn−1,0)

+a2n−1δn−1,0.

Combining this with Eq. (B.1), we obtain

An − a2n−1a2n−2An−1 = −r∗a2nBn − r∗a2n−1Bn−1 + a2n−1δn−1,0.

We replace n − 1 by n and substitute rr∗ = r∗r = R and r∗ =
√
R. The final recurrence relation

for An becomes

An+1 − a2n+1a2nAn = −
√
R (a2n+2Bn+1 + a2n+1Bn) + a1δn0. (B.12)
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Ca

Scattering matrix

We define ψL(R)± as the wave function amplitudes of quasi particles carrying the charge current in
the ±x-direction for x < 0 (x > L). The scattering matrix is then given by

[
ψL−
ψR+

]
=

[
r t
t r

] [
ψL+

ψR−

]
. (C.1)

The coefficients r and t can be obtained by assuming an incoming electron-like quasi particle in-
coming from the left. Similarly, in order to determine r and t, we assume an incoming electron-like
quasi particle incoming from the right.

The wave function for the incoming electron-like quasi particle from the left is given by

ψe→(x, y) =



1√
2

([
1

eiθS

]
eik

S
xx + r

[
1

−e−iθS

]
e−ik

S
xx

)
eikyy for x < 0,

1√
2

(
a

[
1

eiθ

]
eikxx + b

[
1

−e−iθ

]
e−ikxx

)
eikyy for 0 < x < L,

t√
2

[
1

eiθS

]
eik

S
xxeikyy for x > L.

(2.21)

Imposing continuity at x = 0 and x = L, we obtain a system of four equations with four unknowns
(r, a, b and t). Solving the system, we obtain

r = 2eiθS sin (kxL)
sin θS − sin θ

e−ikxL cos(θS + θ) + eikxL cos(θS − θ)− 2i sin(kxL)
, (C.2)

t =
2e−ik

S
xL cos θ cos θS

e−ikxL cos(θS + θ) + eikxL cos(θS − θ)− 2 sin(kxL)
. (C.3)

Assuming an incoming electron-like quasi particle incoming from the right, the wave function we
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get is

ψe←(x, y) =



t√
2

[
1

−e−iθS

]
e−ik

S
xxeikyy for x < 0,

1√
2

(
b

[
1

eiθ

]
eikxx + a

[
1

−e−iθ

]
e−ikxx

)
eikyy for 0 < x < L,

1√
2

([
1

−e−iθS

]
e−ik

S
xx + r

[
1

eiθS

]
eik

S
xx

)
eikyy for x > L.

(C.4)

Imposing continuity at the x = 0 and x = L again, we obtain

r =
2e−iθS sin (kxL) (sin θ − sin θS) e−2ikSxL

e−ikxL cos(θS + θ) + eikxL cos(θS − θ)− 2i sin(kxL)
, (C.5)

t = t. (C.6)

Similarly, the scattering matrix for holes can be obtained by assuming an incoming hole-like quasi
particle from both sides. In the main text, we only use the expression for Eq. (C.2).



Da

Nb etch rate calibration

In our structures, we grow Nb contacts with a thickness of 80 nm. On top of that, we grow a
2 nm Pd capping layer. We grew this on a test substrate and covered it partially with photo-resist,
such that the parts underneath it are protected and will not be etched. We etched for one minute
and removed the photo-resist. We then applied a second layer of photo-resist again and made sure
it was partially overlapping with the first layer. We etched again for two minutes and removed
the photo-resist. We then put the substrate underneath an atomic force microscope (AFM) and
searched for a point where four different thicknesses were visible, as shown in figure D.1.

Figure D.1: Nb sample etched twice. This point shows four areas with different etch times. Left: real
AFM image. Right: schematic image with etch times and measured step height.

We measured all four steps. Since we are interested in the etch rate of Nb only, comparing two
regions that do not include the Pd is the most reliable. We found that the etch rate of Nb is
14 nm/min.
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Ea

Relation between the DOS and the
conductance

The famous BTK theory that we have often considered throughout this thesis [47] considers the
conductance of a conventional N/S junction. They show that without barrier, the conductance is
constant and equal to 2 inside the gap (i.e. for E < ∆). When they introduce a δ-potential barrier
with strength Z, two coherence peaks appear at the gap edge (E = ±∆) and the conductance is
strongly suppressed inside the gap. With increasing barrier strength, the conductance resembles
the density of states of a superconductor (see Figs. 1.12, 2.5 and 2.7) more and more.

The density of states is equal to

D(E) = − 1

π
Im [G(x, x′;E)] , (E.1)

where G(x, x′;E) is a Green function. The theory concerning Green functions goes beyond the
scope of this thesis, but we will say that this function is proportional to the probability amplitude
of the wave function. In a superconductor, the wave function consists of the four possible states at
a given energy E > ∆, denoted by t1 to t4 in Fig. E.1. Hence,

G(x, x′;E) ∼ ψ∗ψ = |ψ|2 ∼ |t1|2 + |t2|2 + |t3|2 + |t4|2. (E.2)

    

  

  

∆
k

E

t3 t4t2 t1in rh re

 

Figure E.1: Dispersion relations of a normal metal (left) and a superconductor (right) with the particles
that play a role in the BTK formalism (black) and two additional states that we do not usually consider
(blue).

We now return to N/S junction in BTK theory. They consider an incoming electron in the normal
metal, which results in a reflected electron and an Andreev reflected hole in the normal metal, and
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two transmitted quasi particles in the superconductor (t1 and t2 in Fig. E.1). Therefore, if we
consider the superconductor in the context of BTK theory, the two blue states in Fig. E.1 do not
play a role and the density of states is proportional to

D(E) ∼ |t1|2 + |t2|2. (E.3)

Let us now consider the conductance. In BTK theory, the conductance is related to the particles
in the normal metal (this is easier than considering the superconductor where a pre-factor in the
momentum plays a role). The conductance in the normal metal is the sum of the right going
particles (i.e. the incoming particle and the reflected hole), minus the left going particle (the
reflected electron), i.e.

G ∼ 1− |re|2 + |rh|2. (E.4)

Probability conservation dictates that |re|2 + |rh|2 + |t1|2 + |t2|2 = 1. Substituting this in the
conductance, we obtain

G ∼ 2|rh|2 + |t1|2 + |t2|2. (E.5)

The Andreev proportion is inversely proportional to the barrier strength, i.e. |rh|2 ∼ 1/Z2. [47]
Hence, it follows that in the limit of a high barrier (Z → ∞), the conductance is proportional to
the density of states,

G ∼ t1|2 + |t2|2 ∼ N(E). (E.6)
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