

INTEGRATING A PLATFORM FOR EARLY
PAYMENT WITH DIFFERENT ERP SYSTEMS

TIM KRAAI
CAPE GROEP

1 SEPTEMBER 2018

i

Publication date: 6 September 2018

Student

T. Kraai (Tim)

Bachelor student Industrial Engineering and Management

University of Twente

Student number: s1724150

Supervisors

1st supervisor University of Twente

Prof. Dr. M.E. Iacob (Maria)

Professor

2nd supervisor University of Twente

PhD. L.O. Meertens (Lucas)

Assistant Professor

Supervisor from CAPE Groep

T. ten Vregelaar (Tom)

Account Manager

ii

Management Summary
This research helps to eliminates the manual tasks in the data exchange between Enterprise

Resource Planning (ERP) systems and the platform for early payment, by providing a

Canonical Data Model (CDM) that reduces the complexity of the data mapping used to

create an automated data exchange.

Company A provides a platform for early payment where a discount on invoices can be

negotiated in exchange for earlier payment. In the current situation, the buyer must upload

the invoices for which he wants to receive a discount manually to the platform. When a

discount is negotiated, the results must be entered manually into the ERP system of the

buyer. This is a time intensive process and discourages the buyer to use the platform for

early payment.

To eliminate the manual tasks during data exchange and create an automated process, an

integration is needed. There are multiple buyers with different ERP systems, which each

have a unique data structure. To integrate these systems, the Enterprise Application

Integration type is used to minimize the number of integrations that must be created. The

Enterprise Service Bus uses the principles of Enterprise Application Integration and creates a

common understanding of the data structures that are integrated with a Canonical Data

Model. The advantage of this CDM is that it is a system-independent generic model that is

understandable for every system. A disadvantage is that no structured methods for the

development were identified, this results in models that are created in an intuitively ad-hoc

way in the creator’s mind.

To validate the use of a CDM for the automation of the data exchange a prototype was

created. This prototype is an Enterprise Service Bus that contains a CDM which is developed

based on the GS1 standard for invoices to create the system-independent generic model.

In the current process, the time needed to manually upload an invoice to the platform for

early payment was on average 3:19 minutes. The prototype of the automated process that

was created with the CDM performed this upload in about one second without any user

involvement.

Currently, the created prototype supports the invoice upload, the entering of the results

from the early payment process in the ERP system of the buyers still must be developed.

Because the creation of a CDM is difficult without a structured method or language for

semantic understanding, an industry independent standard is useful for support during the

development. Future research to identify a structured method would decrease the time

needed for the development of a CDM and make the development less intuitive.

iii

Preface
This is the report of my bachelor project at CAPE Groep about the integration of a platform

for early payment with different ERP systems. This project is the completion of my bachelor

Industrial Engineering and Management at the University of Twente.

During a period of six months, I worked at CAPE Groep on my project. I would like to thank

CAPE Groep for the opportunity to work on this project. During the project, I learned a lot

about the dynamic discounting, invoice process and the development of integrations in

eMagiz.

I would like to thank Tom ten Vregelaar for his time and supervision during the project.

When I had questions or wanted new input he was able to help me and gave me new

challenges.

I would also like to thank Maria Iacob and Lucas Meertens for the support during the project

and suggestions of topics that could be interesting for my research. Special thanks to my

parents for supporting me in the writing process and helping me to keep going.

I hope this project will help the integration of all the future buyers to the platform for early

payment of company A.

Tim Kraai

August 2018

iv

Table of Contents
Management Summary .. ii

Preface ... iii

1. Introduction .. 1

1.1 The problem... 2

1.2 The relevance of the problem ... 2

1.3 The goal of the project .. 3

1.4 Research question ... 3

1.5 Research methodology and research questions ... 4

1.6 The scope of the project .. 5

1.7 Thesis structure ... 6

2. Current process ... 7

2.1 Invoice process .. 7

2.2 Dynamic discounting ... 9

2.3 The early payment process .. 10

2.3.1 Phase 1 and 2 ... 10

2.3.2 Phase 3 Early payment proposal .. 10

2.3.3 Phase 4 Invoice payment ... 10

2.4 Manual actions and data exchange in the current process 10

2.4.1 Uploaded invoice data.. 12

2.4.2 Data sent from the platform for early payment .. 12

2.5 Summary and conclusion ... 13

3. Ideal process ... 14

3.1 Automation of data exchange ... 14

3.2 Data integration ... 14

3.2.1 Introduction to Enterprise Application Integration ... 17

3.2.2 N to 1 integrations .. 17

3.2.3 When to use an Enterprise Service Bus ... 18

3.3 Summary and conclusion ... 20

4. Canonical Data Model ... 21

4.1 Literature review ... 21

4.2 Standards ... 21

4.3 Data heterogeneity .. 21

4.4 Creation of a CDM ... 22

v

4.5 Advantages and disadvantages of a CDM ... 23

4.6 Summary and conclusion ... 24

5. Prototype .. 26

5.1 Goal .. 26

5.2 Prototype requirements .. 26

5.3 Development ... 26

5.3.1 Scrum .. 26

5.3.2 eMagiz .. 27

5.3.3 CDM creation.. 27

5.3.4 GS1.. 28

5.4 Functionality prototype ... 28

5.5 Prototype validation .. 30

5.6 Summary and conclusion ... 31

6. Conclusion and recommendations ... 32

6.1 Conclusions .. 32

6.2 Discussion .. 33

6.2.1 Project goal and research ... 33

6.2.2 Prototype .. 33

6.3 Recommendations ... 34

6.4 Future research.. 34

Bibliography .. 35

Appendix ... 37

A. Literature review protocol .. 37

Literature results ... 38

B. BPMN and ArchiMate .. 39

C. Explanation of Terms ... 41

D. Baseline measurement invoice upload ... 42

E. Prototype ... 45

Figures of the prototype ... 46

 1

1. Introduction
In this chapter first CAPE Groep and Company A will be introduced. The problem that was

identified as the basis for this project is described in 1.1. In 1.2 the relevance of this problem

is discussed. Based on the problem the goal of this project is described in 1.3 and the main

and sub research questions are defined in 1.4 and 1.5. In 1.6 the scope of this project is

defined and 1.7 provides an outline of the thesis.

About CAPE Groep
CAPE Groep is a consultancy company that specializes in integrating IT-solutions. By working

together with the customer, they aim to implement innovative IT-systems that reduce costs

and make the company flexible to adopt new technologies.

The IT-solutions that CAPE Groep delivers to the customers are built in Mendix and eMagiz.

Mendix is an application Platform as a Service (aPaaS). With this platform, applications can

be developed that can be quickly integrated and used by the customers. eMagiz is an

integration Platform as a Service (iPaaS) that is used to integrate the existing application of

the customer with Mendix and other applications.

Company A
Company A is a FinTech company that aims to reduce the amounts of cash that is stuck in

the supply chain due to long payment terms. To achieve this, they build a platform where

buyers can upload an invoice and offer to pay the invoice before the due date for a certain

discount percentage. When the supplier accepts the discount, the buyer can start the

payment. Company A receives a small fee for facilitating the early payment.

In an innovation project from the department of entrepreneurship from the Ministry of

Economic Affairs and Climate Policy of the Netherlands, CAPE Groep and Company A

received a subsidy to create an automated link between the ERP systems from the

customers of Company A to the platform for early payment of Company A.

2

1.1 The problem
When a customer buys a product from a supplier, the customer receives the product and an

invoice. This invoice contains the payment terms, invoice amounts, and optional discounts.

The payment terms include the period for the payment, the condition for that payment and

the discounts that may be received. The period for payment is on average 24 days in the

Netherlands (Atradius, 2017). This means that suppliers must wait 24 days on average for

the payment of their deliveries.

For the supplier it is expensive to take out a short-term loan to cover the gap between the

delivery of the goods or services and the time the invoice is paid. To reduce the period to

payment, suppliers can offer a discount period on their invoices. This means that if their

invoice is paid during this period, a small discount is applicable. This gives the buyer a way to

use his extra cash as an investment and lets the supplier receive the payment earlier. But

because the discount period is static, it is still more lucrative for the buyer to pay at the end

of this period. In some cases, a buyer has enough cash but lacks a way to invest his money.

For instance: the period that they have excess cash is too short to put it on their bank

account and retrieve a considerable amount of interest.

For the supplier to receive payment earlier, dynamic discounting is introduced. It lets

suppliers daily receive earlier payment of the invoice in exchange for a discount on the

invoice, based on the number of days the invoice is paid before the due date (Gelsomino,

Mangiaracina, Perego, & Tumino, 2016). To facilitate this dynamic early payment of invoices

Company A provides a platform for early payment, which can be used to negotiate the

discount with the supplier. To negotiate a discount for an invoice, the buyer must upload the

invoice to the platform for early payment together with a proposed payment date and a

discount rate. In the current situation, buyers must upload their invoices manually to the

platform of company A, by importing a file with the correct format and data into the

platform for early payment. This manual action takes time for the buyer this time is costly

for the supplier and the buyer. But both the buyer and the supplier must wait until the file of

the buyer is imported into the platform for early payment before the supplier can respond to

the proposal of the buyer. In this way, the platform for early payment becomes an obstacle

in the negotiation between buyer and supplier and can result in a later payment to the

supplier and a lower discount for the buyer.

For company A the uploading of an invoice must be as easy as possible because they receive

a small commission per invoice. The more invoices are paid earlier using the platform for

early payment, the higher their profit.

1.2 The relevance of the problem
For the supplier, early payment leads to a better working capital and a smaller gap between

their shipment of the product to the customer and the time they receive their money. When

their working capital is low, it is better to get paid earlier with a small discount than taking a

loan from the bank.

The buyer benefits from the earlier payment because excess cash can be used to receive a

good return by paying the invoice as early as possible. It also helps to get a better

relationship with the supplier, because they can rely on the fact that their invoices are paid

3

before the final due date and don't have to send reminders.

When the discount and the terms are negotiated, the results must be entered into the

financing system of the buyer. This is often an ERP system, (see Explanation of Terms in

Appendix C for clarification). Because most ERP systems don’t support a discount per days,

the entering of this discount is a complex process that requires expertise in the ERP

software.

For Company A the commission is a percentage of the invoice. Every invoice may be entered

in the platform for early payment. The number of invoices that are paid earlier using the

platform for early payment is the main source of profit of Company A.

To increase the number of invoices, it must be easy for buyers and suppliers to start

negotiating early payment for an invoice. Also, the number of buyers that are connected to

the platform must increase to receive more invoices. This means the obstacle of entering

invoices manually into the platform for early payment must be solved, this can be done by

using IT. The buyers will profit in saved time on entering invoices, can propose earlier

payment dates and therefore higher discounts and receive quicker responses from the

supplier. Also, Company A will receive more commission.

For society earlier payment of invoices would mean that the cash flows quicker between

companies because the companies receive the invoice amount before the end of the

payment period. Society would benefit from this as a higher liquidity leads to more

investments because there is less cash stuck in the supply chain.

1.3 The goal of the project
The first goal of this project is to eliminate the manual tasks that must be performed, on the

one hand when uploading an invoice to the platform for early payment and on the other

hand when entering the agreed terms and discounts in the ERP system of the buyer.

The second goal of this project is to create a Canonical Data Model (CDM) to decrease the

time needed to exchange data between the different ERP systems of buyers and the

platform for early payment to support the automation of this exchange. This automation

requires data integration of the ERP systems and the platform for early payment of Company

A.

Literature research will be performed on a CDM to integrate these systems. This research

can be used to create a CDM in a prototype to upload invoices from one ERP-system to the

platform for early payment of company A. This prototype will serve as a proof of concept.

Based on this project, recommendations for the other connections will be given.

1.4 Research question
During the project, different approaches to reach the project goal will be researched. This

research will then be used in the project and the prototype. The research goal can be

translated into the following research question:

What is a suitable CDM to reduce the complexity of data mapping in connecting a platform

for early payment, that facilitates dynamic discounting, with different ERP systems?

4

The focus of this research is the scalability and changeability of a connection between a

platform for early payment and multiple ERP systems. A CDM to integrate systems will be

researched in literature, and a suitable method of integration will be chosen for the multiple

systems that are involved.

1.5 Research methodology and research questions
There are several methodologies to manage a research project. For this project, the Design

Science Research Methodology (DSRM) was chosen because this methodology uses design

science which is aimed at creating and evaluating IT artifacts to solve problems in

organizations. DSRM is used in this project because a prototype, an artifact, will be created

to solve and validate the solution for this project. In DSRM, a framework is provided to

perform design science research for information systems (Peffers, Tuunanen, Rothenberger,

& Chatterjee, 2007). The DSRM consists of six phases which are described below and

displayed in Figure 1.

The first phase of the DSRM is the problem identification. In this phase, the current process

will be described and the problems that are experienced. To clearly define requirements for

the solution, it is important to describe the current process in detail and show the

importance of the problem. The following questions will be answered in this phase:

1. What does the manual early payment process look like?

1.1. What is dynamic discounting?

1.2. What are the phases in the dynamic discounting process?

1.3. How are new invoices added to the platform for early payment?

1.4. What are the problems with the manual early payment process?

1.5. How are the early payment results send to the buyer?

In the second phase of the DSRM, the objectives and solutions are defined. Information for

the first and second phase will be gathered from employees of CAPE Groep and Company A.

2. What does the ideal automated process look like?

2.1. Which process steps are to be automated?

2.2. What are the problems in integrating the different ERP systems?

From the goals and requirements, the conclusion was drawn that the automation is

extensive and requires integration. To determine the best type for this integration a research

will be performed with the research question:

3. What is a suitable integration type for integrating multiple different ERP systems with a

platform for early payment?

Figure 1 DSRM Process Model

5

For the development of an Enterprise Service Bus solution, a Canonical Data Model must be

developed, the following research question is used to determine how a CDM is created:

4. How to design and develop a CDM?

During the design & development phase, a prototype will be developed for one ERP system.

In the fourth phase of the DSRM, the prototype will be demonstrated.

5. Is it possible to create a working prototype with a CDM?

5.1. How is the prototype developed?

5.2. What does the CDM look like?

5.3. Does the developed prototype reduce the time needed for the data exchange?

During the evaluation, the prototype and solution will be evaluated based on the

requirements that were defined and the prototype. The following research question will be

used for this:

6. Does the introduction of an ESB with a CDM solve the project problems?

6.1. How are the problems solved?

6.2. Is the solution also future proof?

In the last communication phase, recommendations will be given for improvements based

on the results and possible follow-up research will be identified. The questions that will be

answered in this phase are:

7. What can be concluded from this project?

7.1. Is the project goal reached?

7.2. What are the recommendations?

7.3. What could be further researched?

1.6 The scope of the project
In this project the focus will be on the exchange of data between the ERP system of the

buyer and the platform for early payment. The project will not analyze or change the

administrative process that is performed within these systems and the platform.

The selection process of invoices in the ERP system that are to be uploaded to the early

payment will not be discussed, because it is outside the scope of this project. Also, the

payment process that is performed in the ERP system of the buyer will not be researched

and implemented in this project and prototype.

For all the invoices and discounts that are agreed on the platform, the assumption is made

that the amounts are in euros. The problem is that exchange rates change constantly and

will influence the amount to be paid. If other currencies are to be added to the system,

agreements must be made about the moment exchange rates are to be settled.

During this project, a solution will be developed for connecting multiple ERP systems to the

platform for early payment. The proof of concept in the prototype, however, will focus on

connecting just one ERP system to the platform for early payment.

6

1.7 Thesis structure
Chapter DSRM Research questions

2. Current process
Phase 1 Identify
problem &
Motivate

1. What does the manual early payment process look like?
1.1. What is dynamic discounting?
1.2. What are the phases in the dynamic discounting process?
1.3. How are new invoices added to the platform for early

payment?
1.4. What are the problems with the manual early payment

process?
1.5. How are the early payment results send to the buyer?

3. Ideal process
Phase 2 Define
objectives of a
solution

2. What does the ideal automated process look like?
2.1. Which process steps are to be automated?
2.2. What are the problems in integrating the different ERP

systems?

3. What is a suitable integration type for integrating multiple
different ERP systems with a platform for early payment?

4. Canonical Data Model
Phase 3 Design &
Development

4. How to design and develop a CDM?

5. Prototype

Phase 3 Design &
Development

Phase 4
Demonstration

5. Is it possible to create a working prototype with a CDM?
5.1. How is the prototype developed?
5.2. What does the CDM look like?
5.3. Does the developed prototype reduce the time needed for the

data exchange?

6. Conclusion and
recommendations

Phase 5
Evaluation

6. Does the introduction of an ESB with a CDM solve the project
problems?
6.1. How are the problems solved?
6.2. Is the solution also future proof?

Phase 6
Communication

7. What can be concluded from this project?
7.1. Is the project goal reached?
7.2. What are the recommendations?
7.3. What could be further researched?

7

2. Current process
In this chapter, the current data exchange process between the platform for early payment

and the ERP system is explained. It is important to have a clear overview of the current

situation to identify what can be improved. In 2.1 the normal invoice process is described,

without early payment. In 2.2 dynamic discounting is explained. In 2.3 the early payment

process of Company A is displayed and described. In 2.4 the manual steps in the data

exchange between the ERP system and platform for early payment are described, the time

these steps take, as well as the data that is exchanged.

2.1 Invoice process
The invoice process without dynamic discounting can be divided into three phases. The

invoice composition, invoice receiving and invoice payment (Perego & Salgaro, 2010). These

phases are modeled in

Figure 2 based on sources of Company A and CAPE Groep, using the Business Process Model

and Notation (BPMN see BPMN for clarification of the used symbols).

Figure 2 Invoice process without dynamic discounting

An invoice is created by a supplier after a buyer ordered a product. The invoice is sent to the

buyer via the post, email, fax or Electronic Data Interchange. When the invoice is received,

the buyer will check it for correctness. If there are any inaccuracies with the invoice, the

supplier will get notified. Otherwise, the invoice will be entered into the ERP system and

8

paid at the due date in accordance with the conditions and discounts that were specified in

the order.

When the payment is completed a remittance advice is sent to the supplier to notify that the

invoice is paid. With the remittance advice and the invoice, the payment is verified on

accurateness. When everything is correct, the invoice process is finished.

9

2.2 Dynamic discounting
The platform for early payment facilitates dynamic discounting between buyer and supplier.

The dynamic discounting process will be explained in this paragraph, the early payment

process in the next paragraph.

Dynamic discounting is the possibility to receive a

discount based on the payment date of an invoice. The

earlier the payment is done by the buyer, the greater

the discount. Dynamic discounting can be viewed as a

line with a negative slope, where the highest discount

is given when the invoice is paid at the moment of

receiving and no discount is received when the invoice

is paid in accordance with the contractual payment

terms. The discount, in percentage per day, is the

slope of the line. When the discount percentage per

day is constant, the line is displayed in Figure 3. The

discount percentage can also decrease faster in time in

order to encourage earlier payments even more

(Gelsomino, Mangiaracina, Perego, & Tumino, 2016).

This differs from traditional discounting is that the discount it is not a static term, but a

function of the time of payment. Also, with dynamic discounting, the buyer pays directly to

the supplier, as oppose to Supply Chain Finance, where a third party finances the early

payment to the supplier and the buyer pays to the third party afterward. With dynamic

discounting, the buyer pays the full invoice amount minus the discount to the supplier. A

possible fee for using the platform for early payment is paid by the buyer.

Phases of dynamic discounting
When dynamic discounting is used, the process can be divided into four phases as defined by

(Gelsomino et al., 2016).

The first phase is the invoice composition. This contains all the activities that are carried out

by the supplier to create the invoice and ends when the invoice is sent to the buyer.

The second phase is the receiving and registration of the invoice. In this phase, the buyer

receives the invoice from the supplier and it is checked against the delivery notes and

orders. When the invoice is correct, the buyer will enter the invoice into his ERP system.

The third phase is the Early Payment Proposal issuing activity. In this phase, the buyer

submits a request for early settlement of an invoice in exchange for a discount on the

invoice amount. This request contains two data items: the proposed earlier payment date of

the invoice and the proposed discount. The supplier can accept or decline this request.

When the request is refused, the buyer can update the request to a different discount or an

earlier payment date. When the request is finally accepted, or when the standard payment

terms have been reached, due date and the discount will be updated in the ERP system of

the buyer and at the platform for early payment.

In the fourth and final stage is the invoice payment. This phase ends when the supplier has

checked that he received the correct invoice amount and accepts the payment.

Figure 3: Dynamic discounting with a constant daily discount
rate

10

2.3 The early payment process
The current early payment process of company A is displayed in Figure 4. This figure is also

created with the use of BPMN and displays the whole process from the sending of the

invoice by the supplier until the time the payment is received.

2.3.1 Phase 1 and 2
The first two phases of the process are the same as the process without early payment,

these phases can be found in 2.2.1.

2.3.2 Phase 3 Early payment proposal
After the buyer accepts the invoice for payment, the invoice is uploaded manually to the

platform for early payment. This is done in a specified format, which is described in 2.4.1

After the invoice is uploaded to the platform for early payment, the buyer has the possibility

to submit an Early Payment Proposal (EPP). When the proposal is uploaded to the platform

for early payment, the supplier can accept or decline the early payment. When the proposal

is declined, the buyer has the possibility to update the proposal to a more appealing

discount percentage or an earlier payment date. This process continues until the proposal is

accepted or the payment date is reached. When the EPP is accepted, the invoice terms will

be updated in the system of the buyer and the invoice is ready for payment to be archived.

On the platform for early payment, all invoices with an accepted proposal are sent to the

buyer at 23:00.

2.3.3 Phase 4 Invoice payment
The invoice will be paid by the buyer when a proposal is accepted, or at the due date of the

original payment terms. When the payment is completed, a remittance advice will be sent to

the supplier. This remittance advice describes the paid amounts and the discounts that were

applicable to the invoice. When the payment is received by the supplier, it will be checked

for correctness with the invoice and the remittance advice. If the payment is performed

correctly, the process is completed.

2.4 Manual actions and data exchange in the current process
New invoices are uploaded by the buyer to the platform for early payment through a manual

upload of a file. The steps that must be performed to upload the invoice are:

1. Select the data in the ERP system.

2. Enter the data into a file

3. Make sure the format of the file is correct

4. Log in on the platform for early payment and upload the invoice file

The time to perform these phases has been measured by timing the execution of these

phases by three different people. The steps that must be performed are explained in

Appendix D. The results are displayed in 2.4.1 and show that it takes a buyer approximately 5

minutes to upload an invoice to the platform for early payment.

11

 Figure 4 Current early payment process

12

Phases in manual upload process Person 1 Person 2 Person 3 Average

Select the data in the ERP system. 0:10 0:09 0:15 0:11

Enter the data into a file 2:41 2:05 2:17 2:21

Make sure the format is correct 1:09 0:22 0:49 0:46

Log in on the platform for early payment and
upload the invoice file

1:51 1:43 1:27 1:40

Total time 5:51 4:19 4:48 4:59
Table 1 Baseline manual invoice upload

2.4.1 Uploaded invoice data
The data that is currently uploaded to the platform for early payment is displayed in Table 2.

Fields of the invoice upload file Format

Invoice reference number for own system String

Supplier code for own system String

Currency String

Total invoice amount, excluding VAT Decimal

Total invoice amount, including VAT Decimal

Invoice date DD-MM-JJ or DD/MM/JJ

Invoice reference number indicated by the supplier String

The partial amount destined for a block account number Decimal
Table 2 Data uploaded in the manual invoice upload

The data can be uploaded to the platform for early payment by uploading a comma

separated file (CSV) or a text file with the correct formats. This is an error-prone process.

Errors in typing data into a file are easily made, as well as errors in separating data fields, in

file formats and in the upload process. These errors are not documented by the buyers of

the platform for early payment, so there is no information available about the quality of the

current upload process.

2.4.2 Data sent from the platform for early payment
When the early payment is accepted, the data (invoice number of the buyer, the agreed

early payment date, and discount percentage) is sent from the platform for early payment to

the buyer at 23:00, using the SSH File Transport Protocol. This is a secured protocol that

ensures safe file transfer between systems.

Entering the result data into the ERP system is a difficult process and requires expertise

about the ERP system because most ERP systems do not have standard fields for dynamic

discounting. The payment due date can be changed, but it is not possible to just change the

discount because the reconciliation of the payment depends on the correct VAT amount of

the original invoice. The discount must be added via a specific after invoice discount

possibility which in most ERP systems only supports discount periods. Because there are

many different ERP systems, it is not possible to standardize this process. Therefore, the

buyer must have the expertise on how the discount data must be added to their ERP system.

13

2.5 Summary and conclusion
In this chapter, the current early payment process of company A is explained. Dynamic

discounting is explained, and the early payment process is divided into phases. The duration

of these phases is measured as a baseline of the current process. The following questions are

answered in this chapter:

1. What does the manual early payment process look like?

1.1. What is dynamic discounting?

1.2. What are the phases in the dynamic discounting process?

1.3. How are new invoices added to the platform for early payment?

1.4. What are the problems with the manual early payment process?

1.5. How are the early payment results send to the buyer?

Dynamic discounting is the ability to receive a discount for every day an invoice is paid

before the original invoice due date. This makes it possible for the buyer to use excess cash

and for the supplier to improve his working capital. Dynamic discounting is used in the early

payment process of company A, which consists of four phases: Invoice composition, invoice

receiving, early payment proposal and invoice payment. Within these phases some tasks are

currently performed manually by the buyer: the uploading of invoices to the platform for

early payment and the processing of the results from the early payment process into the ERP

system. In the current process, it takes on average 5 minutes to upload an invoice to the

platform for early payment and the process is vulnerable to errors. The results from the

early payment process must be entered into specific fields in the ERP which is difficult and

different for every ERP system.

14

3. Ideal process
As described in chapter 2, the invoice data is currently added manually to the platform for

early payment. Also, the results from the platform for early payment are sent from the

platform to the system of the buyer manually.

In 3.1 the automation of this data exchange is described. It will be explained that automation

of this data exchanges requires data integration. In 3.2 various types of data integration and

their characteristics are described, and the middleware integration is explained for the

connection of the ERP systems with the platform for early payment.

3.1 Automation of data exchange
To eliminate the manual steps in the exchange of the data between the platform for early

payment and the different ERP systems, this exchange must be automated. The automation

of the upload of the invoices will reduce the time that is needed to start the early payment

process. After this process is completed, automating the entering of early payment results

into the ERP system of the buyer will simplify the updating of the payment terms and save

the buyer time.

The steps that must be automated are displayed in orange in Figure 5. To automate these

business processes, the systems need to be integrated to support interactive automatic

communication between these systems. A problem with this integration is that all ERP

systems of the buyers have a unique structure of the data and the naming and types of the

data fields are different in every system. Moreover, the names of the fields and tables are

multi-interpretable abbreviations and vary per system. Therefore, integrating ERP systems

with the early payment system is a delicate task that needs expertise from both systems,

comes with high costs and has low flexibility. Also, the integration with one ERP system can

only partly be reused for the integration of another ERP system (Lemcke, Stuhec, & Dietrich,

2012).

3.2 Data integration
In this paragraph, the different types of integration will be explained. Based on these types,

the integration type for integrating the platform for early payment with the ERP system will

be chosen.

Before the different types of integrations are described, we will first define what an

integration is. An integration is an interactive process of combining subsystems to form one

system that is consists of several systems that function as one. System-To-System

integration is the flow of data from one system to another system (Gulledge, 2006).

There are different ways to integrate the ERP system and the platform for early payment. To

integrate systems Land & Crnkovic (2003) propose four different types of integration:

- Interoperability by data import and export facilities. This approach can be done

manually or automatically and allows data to flow between the systems. The

problem with this approach is possible data inconsistency as files could get uploaded

twice or forgotten and the format could be different in de import and export system.

15

 Figure 5 Early payment process tasks for automation

16

- With data-level integration, data will be shared through a common database. This

makes data accessible for all related systems. The data is consistent, coherent and

correct. To implement this, a common database model must be modeled, and the

existing systems must be modified to use this common database. The maintenance of

related systems will become complex because each data-level change has an impact

on all other coupled systems.

- The third option is Enterprise Application Integration (EAI). In many company’s

systems are bought and the source code or databases cannot be changed. To connect

these software systems a middleware is introduced. Systems can connect to this

middleware via custom wrappers, adapters or other connectors that must be built for

every system. This enables a so-called “loose” integration, where systems don’t need

to know the details of how to send data to another coupled system. Systems can

then store their data independently and in their own repository (Lee, Siau, & Hong,

2003).

- Systems can also be integrated at source code level. Different systems will behave at

the user level as if it were just one system. With bought ERP systems, this is often not

possible, because the source code cannot be changed.

Currently, the systems are integrated with the first integration type, import & export of data,

because the invoices are imported via a .txt or .csv file and the results from the early

payment are exported into a file, which is sent to the buyer.

To automate the upload of invoices and to process the results of the early payment process

a common database could be used. This second integration type requires ERP systems and

the platform for early payment to be connected to this database. But this requires

reprogramming of the ERP systems and the platform for early payment to use this database

for the storage and retrieval of the data. Also, all coupled systems become dependent: a

change on data-level in one system affects all related systems. This option is not applicable

in this situation.

Because the platform for early payment is designed to be used with multiple ERP systems, it

is inconvenient to implement the fourth integration type as well. This type of integration will

require the functionality of the platform for early payment to be programmed into every ERP

systems. This is very difficult due to the different source codes of the systems and must be

done in every ERP system.

The third integration type, Enterprise Application Integration, lets the ERP systems and

platform for early payment store their data independently. The integration of these systems

is accomplished by creating adapters for the ERP system and the platform to connect with an

interapplication middleware (Lee et al., 2003). This type makes it possible to connect

multiple different systems and with future systems that are not yet known. This is not

possible in integration types two and four. This makes it the best type to integrate the ERP

systems with the platform for early payment.

17

3.2.1 Introduction to Enterprise Application Integration
When two systems are integrated using a direct link,

this is called a point-to-point integration. When a

point-to-point integration is used, and all the systems

are integrated, the number of integrations is N x (N -

1) for N systems, see Figure 6. Point-to-point

integrations are vulnerable to change. This is because

these integrations are programmed into the systems

and every change requires reprogramming of these

interfaces and their underlying logic (Weske, 2012).

With the creation of a centralized middleware as in

Enterprise Application Integration (EAI), the point-to-

point integrations are replaced by connections. A connection is a link from a system to a

central middleware. This way the number of connections can be reduced to N connections

for N systems.

An Enterprise Service Bus (ESB) is a type of middleware that combines principals of

messaging, transformation, translation and web services. CAPE Groep uses an ESB eMagiz

(see 5.3.2). The ESB is an integrations platform using common standards, that connects and

manages the integration of systems with different data structure and representation.

Systems are connected with adapters, these adapters must be developed specifically for

every system. Within the bus, the messages are routed to the correct receivers based on the

content of the message (Chappell, 2004).

The ESB can solve the difference between data structure and representation of the systems

with the use of a data model in the bus that all applications agree with. Using this common

model data can be mapped to the data structure of the application. This common data

model is called a Canonical Data Model (Teusch, 2014).

With the ESB, the number of connections between the input and output systems can be

reduced from X * Y (where X stands for the number of input systems and Y for the number of

output systems) to X + Y. With the ESB, when one Y system changes only its connection to

the EBS must be updated instead of X connections from Y to X in case of point-to-point

integration (Hohpe & Woolf, 2004).

The ERP systems are used by different buyers, which means that they all store their data

independently. To connect with the bus, they require custom adapters to communicate with

the bus. Translators must be added to these adapters to convert the data into the canonical

representation that is used in the bus (Chen, 2012).

3.2.2 N to 1 integrations
When there are N systems that must be integrated into one system, the number of the

system integrations does not change when an EAI integration type is used. This number will

still be N*1. The number of connections, however, changes from N to N+1 for the EAI

solution, as all N systems must connect to the middleware and from the middleware, one

connection must be made to the one system, see Figure 7. This extra connection, however,

Figure 6 N x (N -1) integrations

18

is simple to create because the connection must be made from the bus to the system. To

create this connection, the creator only must have knowledge about the system that must

be connected to the bus, because the bus uses the CDM which is a representation of all

systems and should be easy to understand for all systems. The EAI type is also useful for

when Company A would extend their services and an extra system is added on the right.

Then the number of extra connections with EAI is only one and with point-to-point this

would be equal to the number of ERP systems on the left.

Figure 7 Number of integrations and connections

When a system sends a message to the bus, the message is translated to the CDM and then

translated from the CDM to the correct format of the designated system. The method that is

used to transport the message to the bus has no influence on the message that the

destination receives because the message is translated to the CDM which only requires the

message to have the correct data and does not care about the names of the data.

In the next chapter, the CDM will be explained and how a CDM can be designed and

developed will be discussed.

3.2.3 When to use an Enterprise Service Bus
1. Two systems

When one system must be integrated with another system, the use of an ESB is not

practical. A CDM would then have to be developed and the connectors to this CDM.

These systems could better be integrated with a point-to-point integration as the

transformation is then made only once and must be understandable for only one

system.

2. Two systems with one system

When two systems are integrated into one system, the use of an ESB is often not

useful because the number of integrations is lower with point-to-point is (2) than

with an ESB (3). When the one system that the two systems are integrated with is

changed frequently, with every change the two integrations must be changed. With

an ESB only the integration to the bus would have to be changed.

3. Three systems to each other

When three systems must be integrated with each other, the number of integrations

is the same for point-to-point and ESB. An ESB is in this situation better than point-

Platform for early payment

19

to-point because when one system changes only one integration must be updated

where two integrations must be updated with point-to-point. An ESB is also better

when in the future an extra system might be added.

4. Three systems with one system

When three systems must be integrated with one system, the use of an ESB requires

one more integration compared to point-to-point but the ESB is better for when a

system changes and when a new extra system must be integrated with the one

system.

5. More than three systems with each other

An ESB is a good method for integration when more than three systems must be

integrated. The creation of a CDM is better than creating individual integrations. The

CDM also supports flexibility and the ESB makes the integrations easier to change in

the future. Figure 8 shows the number of integrations of point-to-point or ESB per

number of systems.

When there is one system that must be integrated with N systems the use of an EBS

functional especially when the system that must be integrated with all the other systems is

still changing, due to development for example. When the system changes only the adapter

and the mapping to the CDM would have to be changed for one system and not for every

connection as when the systems would be point-to-point integrated.

A problem with data integration is that, when the fields in a system are not unambiguously

filled, errors will occur. With an ESB these errors are collected, analysed and solved at the

bus.

0

2

4

6

8

10

12

14

16

0 2 3 4 5 6

N
u

m
b

er
 o

f
in

te
gr

at
io

n
s

Number of systems

Number of integration with point-to-point or
ESB

ESB

Point-to-point

Figure 8 Number of integration with point-to-point or ESB

20

3.3 Summary and conclusion
In this chapter, the ideal process of the data exchange between the ERP systems of the

buyer and the platform for early payment is described. The need to automate the manual

steps that are currently performed is explained. To achieve this, different integration types

are discussed to select an integrated type for integrating the different ERP systems of the

buyers to the early payment process. The questions that are answered in this chapter are:

2. What does the ideal automated process look like?

2.1. Which process steps are to be automated?

2.2. What are the problems in integrating the different ERP systems?

3. What is a suitable integration type for integrating multiple different ERP systems with a

platform for early payment?

The ideal automated process is that the manual steps are automated. The steps that are

automated in the ideal situation are displayed in orange in Figure 5. The problems with

integrating the systems are that every system uses a different data structure and have

different naming of the fields and tables. The current integration type is the import and

export of files. The EAI integration type is identified as a better alternative that can be used

with multiple current and future systems. The use of the Enterprise Service Bus is found to

be an Enterprise Application Integration method that facilitates the integration of systems

with different structures and different data representations. When three or more systems

are to be integrated, the number of integrations that must be created is less with an ESB

than with point-to-point. Next chapter will discuss the Canonical Data Model (CDM) of such

an Enterprise Service Bus.

21

4. Canonical Data Model
In the previous chapter, the Enterprise Application Integration type with an Enterprise

Service Bus is introduced as a method to integrate multiple systems. In this chapter the

central data model of an ESB, also referred to as the Canonical Data Model (CDM), will be

described, as well as how this model can be created and the advantages and disadvantages

of this model. In paragraph 4.1 the topic of standards will be introduced. In 4.2 data

heterogeneity will be explained. In 4.3 the design and development of a CDM is described

and in 4.4 the advantages and disadvantages of a CDM are defined.

4.1 Literature review
To answer the fourth research question:

4. How to design and develop a CDM?

A systematic literature review is performed to find literature relevant to this topic. The

literature is searched in the Scopus and Google Scholar databases. The search terms that are

used are: “Canonical Data Model” AND “design”, “Common Data Model” AND “design”,

“Canonical Data Model” AND “development” and “Common Data Model” AND

“development”. Both the Canonical Data Model and Common Data Model are used because

they are synonyms (Raap, Iacob, van Sinderen, & Piest, 2016). The review protocol, inclusion

and exclusion criteria and results can be found in Appendix A.

4.2 Standards
To simplify system integrations there are a lot of different standards and protocols for every

domain. These standards and protocols are designed to create flow and allow businesses in a

certain domain to communicate without the need of translation (Roman, 2006). Because

every organization uses a different selection of these standards and protocols, templates are

created for companies to ease the use of standards. This results in large templates that

contain thousands of fields to communicate within a certain domain. These templates are

very big because they focus on completeness to cover all requirements. From these

templates, only a small part of the fields are used frequently (Dietrich, Weissmann, Rech, &

Stuhec, 2010). Because there is little knowledge about the data similarity in different

domains, making use of standards only helps partially with connecting businesses and

doesn’t solve the problem of connecting and integrating with different industries that use

different standards (Dietrich & Lemcke, 2011).

4.3 Data heterogeneity
Because most standards use their own data structure, with names and types, there are many

different representations of the data. These differences of representation in names and

types are called data heterogeneity. The semantic differences, that occur due to data

heterogeneity, need to be sorted out when systems are integrated. This can be done by

creating a common understanding (Weske, 2012).

To create this common understanding, a CDM can be developed. A CDM is created to

capture the semantic equivalence between all schemas. This equivalence is captured in the

canonical model just as the deviation from the equivalence. The CDM can be understood as

22

the bridge between all schemas, which makes it easier for the integrators of different

systems to understand the CDM (Dietrich & Lemcke, 2011).

By creating a single view of all the independent systems, this view can be used with little

adaption to connect to any other system. It takes an iterative process to build this model

independent from the order in which the schemas are imported because the first schemas

that are added have a bigger impact on the model, which may result in less correspondence

with the schemas that are added later (Lemcke et al., 2012). To create this independent

abstract overview model is the hardest part of creating a CDM.

4.4 Creation of a CDM
In the industry and academia, some attempts have been performed to solve the integration

of different standards. These attempts of the industry propose solutions that are based on

XML and XML schemas. But these attempts only focus on the extension of a standard and

not on the transformation between standards. Besides manual mapping, no mechanism for

the support of the mapping between the schemas is presented. Therefore, the problem of

integrating the schemas remains with this approach (Roman, 2006).

In academia, (semi) automatic approaches for the integration are proposed. These

approaches are schema-based and ontology-based. The schema-based approach uses

schema matching which is defined by Michael Dietrich & Lemcke (2011) as "the semi-

automatic finding of semantic correspondences between elements of two schemas”.

Schema matching is performed automatically by starting at the root attribute of the schema

and compare each attribute between the target and the source schema. This procedure

results in a table which can provide information about which attributes in the source schema

must be mapped to which attribute in the target schema (Dietrich & Lemcke, 2011).

With this schema-based automated approach, the common model can be iteratively

improved and adapted when new schemas are imported. The knowledge from the mapping

between incorporated schemas can be reused since previous connections can predict the

mapping with a new schema. This mapping can, therefore, be derived from the table of

correspondences (Dietrich, Lemcke, & Stuhec, 2013).

The ontology-based approach develops a high-level semantic understanding of the schemas

to create a model that covers all the semantics of the underlying schemas.

Ontology-based is identified as superior to schema-based, but there is no clear approach on

how to use the ontology in different schemas to find a mapping between the different

standards. The advantage of the ontology-based approach is that it provides a flexible way

to create a connection between the informal world of business standards and the formal

data model. Ontology-based integration eliminates the need for schema matching because it

can be used on a higher level and is schema independent. To create an ontology-based

matching, therefore, requires a discovery of the semantic correspondence which can be

created with language interpretation research (Roman, 2006).

Roman (2006) states that during the creation of a CDM humans play a key role in integrating

because they need to understand the sometimes-ambiguous specifications and meaning of

the different standards and make them work together. The human builds the common

understanding of the standards in the model. This enables the interoperability between

23

these different systems through the model. The problem is that the common model is

created in the human mind and is only represented implicitly. Because of this, the model is

created in an ad-hoc way, with no structured method. This makes it difficult to create the

model faster and achieve a less expensive creation of the model as also no structured

method is proposed by the industry or academia (Roman, 2006).

When the models could be created explicitly, the common model could be designed with

more structured and clear methods. To achieve this further research on structured methods

for humans on the creating of a Canonical Data Model would have to be done. A structured

method for support of the construction of a Canonical Data Model is useful because then the

model would be based less on the intuition of the creator of the model.

When creating a CDM, a language is needed in the model to flexibly manage the different

standards that are represented in the model. This language should be generic to make the

integration between the different standards possible and should support the transformation

between the different standards (Roman, 2006).

In the CDM the names of the fields of the CDM should be readable and consistent. The

names of the attribute labels can be identified from the original name of the attributes or

the naming could follow a common standard. Consistency and expressiveness of the names

is useful for when schemas use cryptic labels (Dietrich & Lemcke, 2011).

When integrating schemas from different domains and languages, there are different type

definitions. With the creation of the CDM, one has to be aware of the differences when

transforming from the source schemas to the CDM, because the source schemas may use

different type definitions (Smith & McBrien, 2006).

4.5 Advantages and disadvantages of a CDM
The platform for early payment is developing over time. This means that changes will occur,

and these changes can affect the common data model. Because the common data model

should preserve the semantic correspondence between all the data the ERP systems and the

platform for early payment send to the bus, these changes to the CDM will likely be small or

the data is already included in the CDM.

The CDM creates a higher level of abstraction, because of the common model, the

integrations are not entirely based on the field names in the individual systems. The

mapping is now based on which data needs to be integrated. This requires a semantic

understanding in the model of the data that is sent to each system. When this semantic

understanding is created in the model, it eliminates the need to talk about abbreviated field

names of the data that do not describe the full contents of the fields. The CDM resolves the

semantic dissonance as it is only interested in the context of the fields and does not focus on

the field names in the individual systems (Hohpe & Woolf, 2004).

With the CDM only one connection must be made from each system to the model. This

means that the integrator only must understand field names in the system that has to be

connected and the field names in the common data model. The common data model is

generic and should, therefore, be easily understandable.

The integrator then does not need to have any technical understanding of the data model of

24

the system that it has to be integrated with. This resolves a lot of problems and makes

maintenance easier, as an update will only involve his own system and in some cases the

common data model.

When the data connections to the bus are described in a CDM, this creates a better overview

of which data is available for use in the other system. This makes it possible for company A

to see which data is available from the ERP systems and what impact an update of the

platform for early payment will have on the communication with these ERP systems.

The CDM must work equally well for all the systems that it communicates with. But to

achieve this, the CDM doesn’t have to be the model of the complete database of each

coupled system, but only of the portion that is involved within the messaging.

A disadvantage of the CDM is that the data must be translated to the CDM and from the

CDM. This creates an extra translation compared with a point-to-point integration which

adds extra latency. This makes the use of an Enterprise Service Bus often slower than a

point-to-point integration (Hohpe & Woolf, 2004).

The creation of a CDM is often difficult because the semantics of the data in the schemas

that are to be integrated is often only completely understood by the designers of the

schema. These semantics are not clear from the schema itself (Madhavan, Bernstein, Doan,

& Halevy, 2005).

Because there is no structured method for the creation of a CDM, the process of creation is

often long and requires research about the understanding of the schema and intuition for

the selection of the fields that must be included in the CDM. This results in a CDM that is

often the interpretation of the different schemas of the CDM creator, this interpretation can

differ per creator.

4.6 Summary and conclusion
In this chapter, the creation of a CDM for integration between different standards is

described. How a CDM should be created is described in this chapter with the following

research question:

4. How to design and develop a CDM?

For the creation of a CDM there is no structured method identified in the literature.

However, to simplify system integrations, many different standards have been created.

There is little knowledge about the similarity between these standards which makes it

difficult to integrate between different standards. Standards use their own data structure

and semantic understanding which needs to be unified when integrating. This can be done

by creating a common understanding in a CDM. In the industry, standards are proposed to

be integrated with XML, but only extensions of a standard are proposed and no

transformations between these standards. In academia two (semi) automatic approaches for

integrations between the different standards are proposed. The first schema-based focusses

on the finding of correspondences between the elements of two standards by comparing

their schema. The second ontology-based approach develops a semantic understanding, it

25

provides flexibility but no clear method for development is defined. Humans are essential in

CDM creation as the common understanding is created in the human mind implicitly. There

is no structured method which makes this a difficult and expensive process. For the creation

of a CDM the language used in the model should be generic to create flexibility, the names

of the fields in the CDM should be consistent and the data types must be checked for

differences between schemas. The advantage of the CDM is that it is easy to understand for

all the systems that must be connected to the model because it is generic. The disadvantage

is that because there is no structured method for the creation of a CDM, the common

understanding is difficult to create.

26

5. Prototype
In this chapter, the creation of a prototype for the integration of the platform for early

payment of Company A with one ERP system is described.

In 5.1 the goal of this prototype is described. The requirements that must be met to achieve

the goal are defined in 5.2. In 5.3 the methods that are used for the development of the

prototype are described and the prototype itself is described in 5.4. The tests of the

prototype are described in 5.5.

5.1 Goal
The goal is to create a prototype to prove that the integration of data between the ERP

system and the early payment can be automated using an Enterprise Service Bus. The

prototype will include a CDM that will be the common data model for the integration of all

the systems. Because the ERP systems do not have specified fields for the results of the early

payment process, a specific adapter must be programmed to integrate this data. This must

be done by an expert of the ERP system. Therefore, the prototype will only focus on the full

automation of the invoice upload.

5.2 Prototype requirements
Because the time for development is limited, a Minimal Viable Product (MVP) will be

created, this is a product that aims to receive the maximum amount of feedback with the

least effort (Taibi & Lenarduzzi, 2016). The requirements for this MVP are:

- Invoice data is retrieved from the Exact ERP system and entered in the platform for

early payment without any user involvement.

- The CDM is based on the GS1 standards for invoices.

- The prototype will use version 1 of the API of the platform for early payment that

was published on the 7th of June 2018.

- Besides the GS1 standard, the data structure of the ERP systems Exact and Navision

must be used for the creation of the CDM.

- The improvement of the prototype is measured by comparing the user tests of the

manual upload of invoices in 2.4.1 with tests of the prototype.

5.3 Development
For the prototype, several development tools and methods are used. These will be explained

in this paragraph.

5.3.1 Scrum
The Scrum framework is a method for a team to work autonomously by specifying several

roles. The framework enables the team to have an overview of the progress. This makes it

possible for the team to redirect the focus during the project to keep working towards the

goals of the solution.

In Scrum, people work in teams. Teams consist of 5 to 9 people with different roles. Teams

work in sprints, which are periods of 2 to 4 weeks where at the end of the sprint a working

product must be delivered. The advantage of this approach is that there is always a working

prototype that can be extended with new functionality.

27

An important role in Scrum is the product owner. He is the owner of the problem that must

be solved, for him or other stakeholders. The product owner and stakeholders often do not

exactly know what the solution to the problem should be, but they are able to define their

objectives of the solution. The objectives of the solution are described as user stories. These

user stories together form the backlog where all the functionality that the solution should

provide is documented (Sutherland, Solingen, & Rustenburg, 2011).

A user story describes a piece of functionality that must be included in the prototype. User

stories are written from the perspective of the end user of the product. These stories follow

a standard format: As a <type user>, I can <function> because <added value>

The product owner creates from the backlog a sprint backlog, this defines which user stories

are to be completed in the sprint. It is important that the sprint backlog is not too big, to

enable all user stories to be finished at the end of the sprint.

After the sprint, a demonstration of the working product is given. Based on this

demonstration new user stories can be created for the next sprint.

For the creation of the prototype in this project, the framework of Scrum is partially

followed. The product owner was represented by the supervisor of CAPE Groep, the user

stories were created to reflect the tasks in the different stages in eMagiz (explained in 5.3.2).

The backlog of the user stories can be found in the Appendix E.

5.3.2 eMagiz
The prototype is created in eMagiz. This an iPaaS (Integration Platform as a Service) with a

graphical user interface is created by the CAPE Groep to integrate systems. eMagiz follows

the principles of an Enterprise Service Bus. In eMagiz integrations can be developed in the

cloud, which eliminates the need to buy hardware and software. Integrations are created

with the Integration Lifecycle Management. This approach consists of five phases:

- Capture: In this phase, the requirements are entered: what the integration must be

able to achieve. The number of messages, the spread, how they are transported,

their content and security are specified to be used later in the project.

- Design: Here the CDM is created and the messages of the systems are mapped to the

CDM. These mappings form the base for the data transformation that must be done

in the messages.

- Create: The mappings are optimized, and the routing of the messages is added. The

messages are validated against the structure of the incoming and outgoing messages.

- Deploy: When the mapping and routing are created, the flows can be deployed to

start the flow of the messages.

- Manage: When the transformations are deployed, they can be managed and

monitored in the last phase. This helps to identify problems and to observe the usage

of system resources.

5.3.3 CDM creation
For the creation of the prototype, the EAI integration type is used with an ESB and a CDM

that has a correspondence with most ERP systems. This is because the ESB supports multiple

methods of transport to the bus and the CDM creates a common understanding of the data

that is sent to and from the bus. The database structure of most ERP systems is similar, but

28

there are great differences at field level. No structured method for the creation of a CDM

was identified in 4.4 Creation of a CDM. Therefore, the CDM was created intuitively by

comparing a specified generic language with the schemas of the ERP systems and the API.

The generic language that is used for the integration between the different standard and

schemas in the prototype is the GS1 standard for invoices. This standard is chosen because it

is industry independent and it provides an independent common understanding of the fields

that should be included in an invoice and it helps with the creation of the names for the

fields in the CDM. To create the CDM, the schemas of GS1 XML where compared with the

data schemas of Exact and Navision, which are 2 of the most popular ERP systems in the

world. By comparing the schemas for correspondences and selecting the fields that existed

in all the schemas the CDM was intuitively created. After this comparison, the CDM was

updated by adding the fields that are used in the API of the platform for early payment and

the fields that were not required were made obsolete.

For the CDM to be a complete representation of the ERP systems and the platform for early

payment, the data about the payment methods, payment terms, vendors, remittance

advice, invoices and the early payment process results are represented in the model.

5.3.4 GS1
As specified in the requirements, the CDM will be based on the GS1 standard. This standard

is provided by GS1.org. This organization provides a list of well-defined concepts for

customers, suppliers, and partners to communicate with each other. When each party

communicates using its own processes and systems, it can be hard to get a common

understanding. The communication will be time-consuming and error-prone. By providing

standards for communication within a supply chain, businesses can save time and money

when the standards are implemented. The use of a standard improves efficiency, safety, and

visibility for supply chains on their physical and digital channels. A well-known standard in

GS1 is the barcode. But GS1 also focusses on standardization of electronic messages. The

GS1 standards are developed an maintained by a community of representatives from

different industries (GS1a, 2012).

In the creation of the CDM, the XML standards of GS1 for an invoice will be used as a basis

for the data that must be included in an invoice.

5.4 Functionality prototype
In this paragraph, the prototype that is created will be presented and explained.

The CDM that is based on the GS1 standard and the Exact and Navision ERP systems is

displayed in Figure 9 Canonical Data Model prototype.

The entities and attributes that describe the invoice are displayed in Appendix E Figure 19

and Figure 19. The attributes that are not italic are required in the platform for early

payment. The attributes that are italic are added for the systems to have the possibility to

map to them. This makes it possible for the early payment to use them in the future and to

have an overview of all the data that is available for future updates of the platform for early

payment.

29

To the retrieve, the invoice from Exact a web service is used. This web service pulls the

specified data from the database of Exact. The fields that are extracted with this specified

request are defined in the Web Service Description Language. The message that is received

is displayed in Appendix E Figure 21 and Figure 22. With the web service, all the invoices

with a modification date of within 1 day from the retrieval are fetched.

After the message is received from Exact with the use of the web service, the message must

be mapped and transformed to the CDM. The mapping is displayed in Figure 23 and Figure

23 in Appendix E.

When the message is sent to the CDM, the message must be mapped and transformed to a

message to the platform for early payment. See Figure 24 in Appendix E.

Figure 9 Canonical Data Model prototype

30

After the message is transformed to the correct format, the message is stored in an XML file

in a specified folder on the computer. The final message created is displayed in Figure 25 in

Appendix E. The format is the same as the API. The API uses a 512-bit encryption for

authentication, which is under development by eMagiz at the time the prototype was

finished. Therefore, the prototype will not be able to upload the message to the platform for

early payment.

The architecture of the prototype
The architecture of the prototype is displayed in Figure 10. Explanation of the ArchiMate

language can be found in Appendix B BPMN and ArchiMate.

Figure 10 ArchiMate architecture

5.5 Prototype validation
The prototype performs the whole process of retrieving the invoice data from Exact until the

storage of the XML file on the computer without any user involvement within 1 second.

If multiple invoices are retrieved, they are all stored in the correct format in an XML file. The

number of invoices that is retrieved doesn’t influence the total time that is needed to

perform the automated invoice process.

The duration of the manual invoice upload process was on average 3 minutes and 19

seconds without phase 4 the uploading of the invoice to the platform for early payment. The

manual steps that had to be performed in the upload process are automated with the

prototype. This means that the goal of upload the invoices from the ERP to the platform for

early payment without user involvement is reached. Besides no user involvement, the

prototype performs this the upload process in about 1 second. This is a big difference

31

compared to the manual upload process and proves that the prototype has a significant

effect on the total time of the process.

Also, the quality of the process is improved as the possibility of typing mistakes is eliminated

because the data retrieved is the same as the data in the database of the ERP. Transfer

mistakes are eliminated because when the connection is set up correctly once, the transfer

of data is done by the bus. Format differences are covered by the transformations described

in the CDM and are therefore solved. With the automated process also procedure mistakes

are eliminated, as the steps are always executed automatically in the right order.

With the manual process, invoices could be missed. In the prototype all the invoices that are

changed in the last 24 hours are retrieved every hour, this makes it impossible that an

invoice is missed. Duplicates are checked for changes on the platform for early payment

when the invoices are uploaded and possibly updated.

5.6 Summary and conclusion
In this chapter, the prototype that is created for this project is described. The questions that

are answered in this chapter are:

5. Is it possible to create a working prototype with a CDM?

5.1 How is the prototype developed?

5.2 What does the CDM look like?

5.3 Does the developed prototype reduce the time needed for the data exchange?

The goal of the prototype is to prove that the data exchange between the ERP systems and

the platform for early payment can be automated with the use of an Enterprise Service Bus.

The requirements of the prototype are that it must perform the invoice upload process

automatically without any user involvement, the CDM must be based on the GS1 standard

and the data that must be sent to the platform for early payment must be based on the API

version 1 of company A. The prototype is developed with Scrum and eMagiz. Scrum is a

framework that helps with agile development and eMagiz is the ESB that is used by CAPE

Groep to integrate systems. Because no structured method for development of the CDM

was identified, the CDM is created intuitively by comparing the GS1 standard, that was used

as a generic language, and the schemas of the ERP systems. The elements that existed in all

schemas were added to the CDM.

The prototype performs the invoice process in about 1 second which is a big improvement

over the manual upload process. Also, the quality of the upload process is improved as

mistakes in formats, forgotten invoices and procedural differences are no longer possible.

32

6. Conclusion and recommendations
This final chapter evaluates the project goal and research question from paragraph 1.3 and

1.5. The conclusions of the project and research are described in 6.1. Based on these

conclusions a discussion is included in 6.2. From this discussion, recommendations for future

research are given in 6.3.

6.1 Conclusions
The project goal was to eliminate the manual tasks in the data exchange between the

platform for early payment and different ERP systems to decrease the time that is needed

for the data exchange. For this, a suitable CDM to reduce the complexity of the data

mapping is created by comparing a cross-industry standard with the schemas of the systems

that had to be integrated. This CDM is used in an ESB to perform the process without any

user involvement and reduced the time needed to perform the process to about one second.

In the current situation, the early payment process consists of four phases. In this process,

the invoice must be uploaded manually, and the early payment results are added manually

to the ERP system of the buyer. To eliminate these manual tasks and automate the data

exchange between the different systems, the systems must be integrated at the data level.

By comparing four integration types, the Enterprise Application Integration type is identified

as the best type to integrate multiple different systems. The Enterprise Service Bus can

integrate systems with a very different data structure, by using a Canonical Data Model,

which is understandable for each connected system.

In the process of creation, the human plays a key-role because common understanding is

created in the human mind in an ad-hoc way. No structured method for the development of

a suitable CDM to reduce the complexity of the data mapping in connecting the platform for

early payment with different ERP systems was identified.

To validate whether an ESB with a suitable CDM influences the time needed for the data

exchange, a prototype was created where one ERP system and the platform for early

payment were connected to a CDM. This CDM was created based on an industry

independent standard. With this prototype, the time needed for the data exchange was

reduced to about 1 second whereas the data exchange of the current invoice upload is

approximately 3 minutes and 19 seconds. From this test can be concluded that the time

needed to exchange the data between ERP systems and the platform for early payment can

be reduced significantly with the use of an Enterprise Service Bus and a Canonical Data

Model that is based on an industry independent standard.

33

6.2 Discussion
In this paragraph, the implications of the conclusions and the limitations of the project and

prototype will be discussed.

6.2.1 Project goal and research
The project goal was to decrease the time needed for the data exchange. For the

measurement of the upload of invoices, only three people performed a baseline test. When

more people would perform the baseline test, the results would become more conclusive.

However, because the test was only used as an indication of the time that was needed to

perform the current process, it is no problem that the measured time is not very precise.

Measuring the time needed for the prototype of the invoice upload showed that this time is

decreased tremendously. To enable more buyers to pay their invoices earlier using the

platform for early payment, automating this data exchange seems to be a good investment.

Comparing the time needed for uploading of the run results from the early payment process

into an ERP system was not possible since no information was available about the way these

results are processed by the buyer into their ERP system. Further research is needed to find

out if and how this connection can be automated and if the revenues outweigh the costs.

The situations for when an ESB or point-to-point integrations should be used are described

in theory but in practice it also depends on the other factors like whether the connectors for

the systems to the ESB already exist, if there is already a common understanding of the

systems data structure and if the point-to-point integration has already been created for a

similar system.

6.2.2 Prototype
The GS1 standard is a very substantial language with a lot of fields. These fields are not all

included in the CDM of the prototype because most of them are rarely used and would make

the CDM too big, what would have a negative effect on the overview of the data schema.

However, the current selection contains a field that is not used yet. These fields are typed

italic. A review is needed to sort out whether the right choices are made and whether these

fields should stay in the CDM.

The API of the platform for early payment is still under development. For this project

version, 1 of the API was used, but the API can change significantly because it is mostly

based on the SAP ERP system. The encryption that is used in the API is currently under

development by eMagiz, this makes it not possible at this moment to use this API.

The prototype is a Minimal Viable Product (MVP) where only the invoice upload is

automated. The other types of data that must be exchanged can be created based on this

invoice exchange because all data needed is already included in the CDM. Only the adapters

and the mappings must be created.

The early payment results are not entered in the ERP because there are no standard

adapters to write this data to the ERP. This adapter will have to be created by an expert of

every ERP system. An adapter can then be reused for buyers who have the same ERP system.

34

In the MVP all invoices that are changed in the last 24 hours are sent every hour to the

platform for early payment. No selection of invoices is made. When they are uploaded the

duplicates are removed at the platform for early payment. This is a very inefficient approach

since an invoice is uploaded multiple times, even when there is no change. To prevent this, a

selection of the invoices that should be uploaded could be included in the prototype.

For the validation, every integration is different. Therefore, it is difficult to get a standard

score on the time it takes to integrate every ERP system. This also depends on the user’s

knowledge about the ERP system, which can vary.

6.3 Recommendations
In a CDM a generic language is needed to flexibly manage the differences between the

different standards and support the transformation between these standards. The language

should be created during the development of the CDM. But because there is no structured

method for the creation of a CDM, this language is developed in the human mind. This is a

difficult process and it takes a lot of time to understand the semantics of all the standards

that must be integrated. To overcome this a cross-industry standard like GS1 could be used

in the development of a CDM, this standard also covers the semantics of the different

standards and supports the developer in the creation of a CDM.

To create the mapping between the message of the ERP and the CDM, knowledge about the

data fields in the database of the ERP system is required. This mapping can be created by an

expert of the ERP, as the CDM itself is easy to understand since it is build using the GS1

standard. This mapping could then be reused for every buyer that uses the same ERP

system.

Every time a new ERP system is added, it is important to check if the CDM covers all the data

needed from and uploaded to that system. Also, when adding a field to the CDM, its name

must be checked using the GS1 standard on readability to prevent that incomprehensible

fields are added to the CDM.

6.4 Future research
In the research for a structured method to develop a CDM, no structured method that

covered the integration of different standards was identified. To support the creation of a

CDM, a structured method would decrease the time needed to develop a CDM and make the

development process less intuition-based. Future research is needed to create a more

structured approach for the development of a semantic and standard independent CDM.

Most ERP systems do not support dynamic discounting. This means buyers must find

solutions on how to process the early payment results of the early payment process into

their ERP system. More research is needed to find out what methods are used in practice

and if this connection can be automated.

35

Bibliography
Chappell, D. A. (2004). Enterprise service bus (1st ed.). O’Reilly Media, Inc, Usa.

Chen, L. (2012). Integrating Cloud Computing Services Using Enterprise Service Bus (ESB).
Business and Management Research, 1(1), 26–31.
https://doi.org/10.5430/bmr.v1n1p26

Dietrich, M., & Lemcke, J. (2011). A refined canonical data model for multi-schema
integration and mapping. Proceedings - 2011 8th IEEE International Conference on e-
Business Engineering, ICEBE 2011, 105–110. https://doi.org/10.1109/ICEBE.2011.26

Dietrich, M., Lemcke, J., & Stuhec, G. (2013). Semantic integration of e-business schemas via
a canonical data model assessing the effort reduction for B2B message exchange. In
Proceedings - 2013 IEEE 10th International Conference on e-Business Engineering, ICEBE
2013 (pp. 106–111). Coventry: IEEE Computer Society.
https://doi.org/10.1109/ICEBE.2013.16

Dietrich, M., Weissmann, D., Rech, J., & Stuhec, G. (2010). Multilingual extraction and
mapping of dictionary entry names in business schema integration. In iiWAS2010 - 12th
International Conference on Information Integration and Web-Based Applications and
Services (pp. 863–866). Paris. https://doi.org/10.1145/1967486.1967635

Geevers, J. A. P. M. (2017, August). Het optimaliseren van het orderproces van CAPE Groep.
Retrieved from http://essay.utwente.nl/73372/

Gelsomino, L., Mangiaracina, R., Perego, A., & Tumino, A. (2016). Supply Chain Finance:
Modelling a Dynamic Discounting Programme. Journal of Advanced Management
Science, 4(4), 283–291. https://doi.org/10.12720/joams.4.4.283-291

GS1a. (2012). GS1 - The global language of Business. Retrieved July 5, 2018, from
https://www.gs1.org/

Gulledge, T. (2006). What is integration? Industrial Management & Data Systems, 106(1), 5–
20. https://doi.org/10.1108/02635570610640979

Hohpe, G., & Woolf, B. (2004). Enterprise integration patterns (14th ed.). Boston: Addison-
Wesley.

Land, R., & Crnkovic, I. (2003). Software systems integration and architectural analysis - A
case study. In INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE,
PROCEEDINGS (pp. 338–347). https://doi.org/10.1109/ICSM.2003.1235441

Lee, J., Siau, K., & Hong, S. (2003). Enterprise integration with ERP and EAI. Communications
of the ACM, 46(2), 54–60. https://doi.org/10.1145/606272.606273

Lemcke, J., Stuhec, G., & Dietrich, M. (2012). Computing a canonical hierarchical schema. In
Proceedings of the I-ESA Conferences (Vol. 5, pp. 305–315).
https://doi.org/10.1007/978-1-4471-2819-9_27

Madhavan, J., Bernstein, P., Doan, A., & Halevy, A. (2005). Corpus-based Schema Matching,
(Icde). Retrieved from
https://pdfs.semanticscholar.org/ebbc/11cf9bcf5ed92111318504f5668c46060244.pdf

36

Netsuite | What is ERP (Enterprise Resource Planning)? (n.d.). Retrieved July 5, 2018, from
http://www.netsuite.com/portal/resource/articles/erp/what-is-erp.shtml

Oracle | What is ERP? (n.d.). Retrieved July 5, 2018, from
https://www.oracle.com/applications/erp/what-is-erp.html

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science
Research Methodology for Information Systems Research. Journal of Management
Information Systems, 24(3), 45–77. https://doi.org/10.2753/MIS0742-1222240302

Perego, A., & Salgaro, A. (2010). Assessing the benefits of B2B trade cycle integration: A
model in the home appliances industry. Benchmarking, 17(4), 616–631.
https://doi.org/10.1108/14635771011060611

Raap, W. B., Iacob, M.-E., van Sinderen, M., & Piest, S. (2016). An Architecture and Common
Data Model for Open Data-Based Cargo-Tracking in Synchromodal Logistics. In
Debruyne, C and Panetto, H and Meersman, R and Dillon, T and Kuhn, E and OSullivan,
D and Ardagna, CA (Ed.), ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM
2016 CONFERENCES (Vol. 10033, pp. 327–343). GEWERBESTRASSE 11, CHAM, CH-6330,
SWITZERLAND: SPRINGER INT PUBLISHING AG. https://doi.org/10.1007/978-3-319-
48472-3_19

Roman, D. (2006). Canonical data & process models for B2B integration. In CEUR Workshop
Proceedings (Vol. 170). Seoul. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84884301188&partnerID=40&md5=4da82506cd23877266f1ad30eed3ac64

Smith, A., & McBrien, P. (2006). Inter model data exchange of type information via a
common type hierarchy. In CEUR Workshop Proceedings (Vol. 238, pp. 307–321).
Luxemburg. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84875944694&partnerID=40&md5=441d2bdb5b35d14f3f9346aa819475a8

Sutherland, J. V., Solingen, R. van., & Rustenburg, E. (2011). The power of Scrum.
CreateSpace.

Taibi, D., & Lenarduzzi, V. (2016). MVP explained: A systematic mapping on the definition of
minimum viable product. 42Th Euromicro Conference on Software Engineering and
Advanced Applications 2016, Cyprus.

Teusch, A. (2014). Design of hierarchically structured canonical data models for Very Large
Business Applications (VLBA) [Entwurf von hierarchisch-strukturierten kanonischen
Datenmodellen für VLBA]. In S. L. Kundisch D. Beckmann L. (Ed.), Tagungsband
Multikonferenz Wirtschaftsinformatik 2014, MKWI 2014 (pp. 2257–2270). University of
Paderborn. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84984706274&partnerID=40&md5=5fa3db85294e8fb94b9c21bf7ee75afa

Weske, M. (2012). Business Process Management. Springer. https://doi.org/10.1007/978-3-
642-28616-2

37

Appendix

A. Literature review protocol

Search string Scope
Date of

search

Date

range

Nr. Of

entries
 Delta

Search protocol for Scopus

"Common data model" and "design"

Title, keywords and

abstract

12-4-

2018 all 103

"Canonical data model" and "design"

Title, keywords and

abstract

12-4-

2018 all 5

"Common data model" and "development"

Title, keywords and

abstract

12-4-

2018 all 110

 "Canonical data model" and

"development"

Title, keywords and

abstract

12-4-

2018 all 8

 Total in Mendeley

226

 Removing duplicates

180 -46

Selecting based on inclusion/exclusion

criteria

49 -131

Removed after abstract

33 -16

Based on availability

25 -8

After reading

10 -15

Included

3 +2

Total selected for review

12

38

Literature results

Include if… Because…
The paper describes the requirements of a data model These requirements can be tested in the final model

The paper describes the process of development of
the data model

This helps with defining a development method.

The paper describes a modeling notation Modeling notations must be compared.

The paper is freely accessible via the university There is no research budget.
Exclude if… Because…

The paper is about healthcare The study is not about a new solution for patient data
The paper is about geospatial data This study is about a different sector

The paper is about the data of a production or
manufacturing process (CAD/CAM), location data,
vocabulary or a simulation.

This is about a different sector

An existing model is improved, or the application of
the model is described

This study is about the development methods, not about
the model itself

The paper is about database design This study is about a method to integrate existing systems,
not about the creation of a new multi database

Title Authors Topic

A formalization of semantic schema integration McBrien, P
Poulovassilis, A

Transformation

A refined canonical data model for multi-schema
integration and mapping

Dietrich, Michael
Lemcke, Jens

Schema correspondence

A Self-Organizing Knowledge Representation Scheme for
Extensible Heterogeneous Information Environment

Sull, W
Kashyap, R L

Translation

Canonical data & process models for B2B integration Roman, D Matching approach

Computing a Canonical Hierarchical Schema Lemcke, Jens, Stuhec, Gunther
Dietrich, Michael

Algorithmic approach

Integration and evolution of XML data via common data
model

Klímek, J
Nečaský, M

Different views of schemas

Intermodel data exchange of type information via a
common type hierarchy

Smith, A
McBrien, P

Type information

Multilingual extraction and mapping of dictionary entry
names in business schema integration

Dietrich, M, Weissmann, D
Rech, J, Stuhec, G

DEN for schema mapping

Semantic integration of e-business schemas via a
canonical data model assessing the effort reduction for
B2B message exchange

Dietrich, Michael
Lemcke, Jens, Stuhec, Gunther

Standards fields

Software Systems Integration and Architectural Analysis
- A Case Study

Land, R
Crnkovic, I

Levels of integrations

Utility applications should be integrated with an
interface based on a canonical data model, not directly
with each other

Robinson, G
Zhou, M J

Mappings with a CDM

Enterprise integration patterns Hohpe, Gregor
Woolf, Bobby

Integration of systems

39

B. BPMN and ArchiMate

BPMN

The Business Process Modelling Notation is a standard notation that can be used to display

business processes in a graphically. The modeling notation uses the Business Process

Diagram and is based on the techniques that are also used in flowcharts. Below the different

elements that are used within the notation are explained (Weske, 2012).

Swimlanes are used to divide the different roles and organizations that are involved in the

process. A pool is a participant in the process and the lane can be used to specify a role with

the company or a person.

Flow objects (figure 12)

An event is something that happens during the

business process, for example, the receiving of

an invoice.

An activity is a task that is performed within an

organization.

The gateway is used to model a decision that is

made during the process.

Event and activity tasks (figure 11)

Events and activities can have different tasks. A send and receive are

tasks that involve sending or receive something. The user task involves user interaction. The

manual tasks are performed without the support of software systems. The business rule task

triggers a business rule. The service task is implemented by a piece of software. The script

task uses a scripting language to be performed.

Figure 12

Figure 11

40

Gateways (figure 13)

There are also different types of gateways. The

gateways can be used as a join of split node. The

gateways can have multiple incoming or outgoing

edges. With an exclusive gateway, one flow is

selected. The parallel gateway makes multiple flows

at the same time possible. The inclusive gateway is

used when one must be chosen. The event gateway

is triggered upon an event and a complex gateway combines a split and a join.

Connecting objects (figure 14)

The sequence flow specifies the order in which the activities are

performed.

The message flow shows the messages that are sent between the

different participants of the process.

An association is used to show the link with an artifact.

Artifacts (figure 15)

A data object is used to show the data that is used or produced by an

activity.

A group can be used to show a part of the process that is a collection

of a set of objects.

An annotation can be used to explained parts of the process.

ArchiMate

Archimate is a standard that offers a language for representing and describing different

architectural layers. Archimate is a modeling language that provides a uniform

representation of the different domains within a company and their underlying relations and

dependencies.

The Archimate modeling language distinguishes between three layers: The business layer,

where a description of the structure and interaction between the business strategy,

organization, functions, and business processes. The application layer supports the business

layer with the services that must be realized by providing applications. This is used to model

the information systems and their architecture that describes the structure and interaction

between the applications. And the technology layer provides storage and communication

that is needed for the applications, this shows how the technology support the applications

(Geevers, 2017).

The archimate language doesn’t provide the level of detail that other languages like BPMN

Figure 13

Figure 14

Figure 15

41

and UML provide but it creates an abstraction.

What is similar with these higher detailed design languages is that Archimate does provide a

standard graphical notation.

C. Explanation of Terms
Here the terms that are used throughout the thesis are explained.

ERP system

ERP stands for Enterprise Resource Planning. These are systems that are used to manage the

business processes of accounting, procurement, project management and manufacturing in

one system. The ERP started as an extension of the Material Requirements Planning and

computer integrated manufacturing. The systems later extended with finance and

accounting, maintenance, and HRM and extended to all (core) enterprise functions. The

system facilitates flow between the business functions as it integrates all functions into a

complete system to streamline the processes and information (“Oracle | What is ERP?” n.d.).

Different functions used to have different systems which host related data, one object could

be stored in different databases. The link between this data was made with dedicated links.

Because of the multiple data dependencies, it is difficult to change a relational system. A

change had to be reflected in multiple systems, the lack of integration between these

systems often lead to data inconsistency.

ERP systems were developed to tackle this problem, they have an integrated database for all

the systems that are used within an organization. This ensures that the database is

consisted, in an ERP a set of application modules provides desired functionality for different

business processes.

Because the ERP system shares data, it eliminates the duplication and provides a single

source of truth. A key principle of ERP is that centralizes the collection of data, then the data

is correct, up to date and complete (“Netsuite | What is ERP (Enterprise Resource

Planning)?” n.d.).

42

D. Baseline measurement invoice upload
The goal of this test is to measure the duration of the whole process of selecting an invoice,

creating a file for upload and uploading the file to the platform for early payment This

measurement will be used as a baseline measurement of the current manual process of the

invoice upload.

The invoice upload process consists of 4 phases:

1. Select the data in Exact

2. Enter the data into a CSV file

3. Make sure the format is correct

4. Login on the platform for early payment and upload the file to the platform for early

payment

Phase 1

Starting the ERP system and selecting the invoice in the Exact.

Start a stopwatch

Step 1: Open Exact

Step 2: Go to factuur

(invoice) see

Step 3: Go to

factuurhistorie (invoice

history)

Step 4: Select a

random invoice

Stop the stopwatch.

Time of phase 1 was:

Reset the stopwatch

Phase 2

Entering the invoice data into a CSV file.

Start a stopwatch

Step 1: Open the invoice

Step 2: Enter the following data into a CSV file, see figure 16 for the location of the data in

Exact:

1. Invoice reference or number that you use to track this invoice in your own system

(e.g.: "VOORB2123332")

2. Supplier code which you use to refer to a specific supplier in your system (e.g.:

"EXCOMP23" for "Example Company 23 Ltd.")

3. currency ("EUR")

Figure 16

43

4. total invoice amount, excluding VAT (e.g.: "112,04" > our system recognizes the

number of decimals and format automatically)

5. total invoice amount, including VAT factuurbedrag, inclusief BTW (e.g.: "112,04" >

our system recognizes the number of decimals and format automatically)

6. Invoice date using the format DD-MM-JJ or DD/MM/JJ (including the separator). Our

system automatically detects the if you use a 2 or 4-digit year (e.g. "31-10-2011" of

31/10/11")

7. due date of the or regular payment term (our system recognizes both, so.:"31-12-

2018" or "45")

8. invoice reference or number as indicated by your suppliers on the invoice (e.g.:

"123332") (Preferably without supplier code)

9. If you use a so-called ‘blocked account number’: the partial amount destined for this

account (e.g.: "34,24"). If there’s no ‘blocked account number’ space or a 0 (zero)

followed by the separator ‘;’ (semicolon)

Stop the stopwatch.

Time of phase 2 was:

Reset the stopwatch

Phase 3

Start a stopwatch

Step 1: Verify the correctness of the format of the data entered.

Example:

Figure 17

44

1. "2123332"

2. "218492"

3. ISO currency code ("EUR")

4. Number separated by comma (e.g.: "134,45")

5. Number separated by comma (e.g.: "134,45")

6. DD-MM-JJ or DD/MM/JJ e.g. ("31-10-2011" or “31/10/11")

7. DD-MM-JJ or DD/MM/JJ or number of days (e.g.:"31-12-2011" or "45")

8. E.g.: "2123332"

9. 0

Step 2: Save the file as a Comma Separated File (.csv)

Stop the stopwatch.

Time of phase 3 was:

Reset the stopwatch

Phase 4

Upload the created file to the platform for early payment

Start a stopwatch

Step 1: Log in on the platform for early payment

Step 2: Go to data upload

Step 3: Upload the created CSV file from the stored location

Step 4: Wait until the file is uploaded. If there are no errors, the invoice is completed.

Stop the stopwatch.

Time of phase 4 was:

Total time:

45

E. Prototype
Depth Name Story Type Story Points Status

Sprint Capture and Design phase
 + Add the platform for early payment system Feature

To-do

+ Add Exact system Feature 8 To-do

+ Define message type invoice Feature

To-do

+ Define message type Run Results Feature

To-do

+ Define message type Remittance advice Feature

To-do

+
 Create system message Run Results for the platform for early
payment Feature 2 To-do

+ Create system message invoice Exact Feature 3 To-do

+ Define CDM entity Vendor Feature 13 To-do

++ Improve by comparing to GS1 Feature

To-do

++ Improve by comparing to Navision Feature

To-do

++ Improve by comparing to Exact Feature

To-do

+ Define CDM entity Invoice Feature 5 To-do

++ Improve by comparing to GS1 Feature

To-do

++ Improve by comparing to Navision Feature

To-do

++ Improve by comparing to Exact Feature

To-do

++ Add multiple invoices Feature

To-do

++ Add invoice lines Feature

To-do

+ Define CDM entity Payment term Feature 1 To-do

++ Improve by comparing to GS1 Feature

To-do

++ Improve by comparing to Navision Feature

To-do

++ Improve by comparing to Exact Feature

To-do

+ Define CDM entity Payment method Feature 1 To-do

++ Improve by comparing to GS1 Feature

To-do

++ Improve by comparing to Navision Feature

To-do

++ Improve by comparing to Exact Feature

To-do

+ Define CDM entity Payment confirmation Feature 1 To-do

++ Improve by comparing to GS1 Feature

To-do

++ Improve by comparing to Navision Feature

To-do

++ Improve by comparing to Exact Feature

To-do

+ Define CDM entity Run results Feature 3 To-do

++ Improve by comparing to GS1 Feature

To-do

++ Improve by comparing to Navision Feature

To-do

++ Improve by comparing to Exact Feature

To-do

+ Message mapping invoice Exact --> CDM Feature

To-do

+
 Message mapping invoice CDM --> platform for early
payment Feature

To-do

++ Multiple invoices Feature

To-do

+
 Message mapping run results Platform for early payment -->
CDM Feature 3 To-do

Sprint Create phase
 + Build connector invoices Exact Feature

To-do

+ Build onramp invoices Exact to CDM Feature 5 To-do

+ Build routing of Invoice Feature 5 To-do

+ Build offramp CDM to the Platform for early payment Feature

To-do

+
 Build onramp run results from platform for early payment to
CDM Feature

To-do

+ Build connector run results platform for early payment Feature

To-do

+ Build routing run results Feature

To-do

46

Figures of the prototype

Figure 19 Invoice message CDM

Figure 18 Invoice message CDM

47

Figure 21 Exact system message

Figure 20 Exact system message

48

Figure 22 Mapping Exact to CDM

49

Figure 23 Mapping Exact to CDM

50

Figure 24 Mapping CDM to Platform for early payment

51

Figure 25 Invoices for the Platform for early payment

