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Abstract—Rental background checks ensure landlords only
house good rentees, as rentees become hard to evict once renting
a house. Rentees have to hand over sensitive information such
as bank statements and marriage status to a landlord to rent an
apartment. The landlord does not need that personal information,
but only needs to know if the rentee meets certain requirements.
If rentee information is stored forever and can be processed
digitally, more stringent privacy requirements are needed. These
background checks must be auditable so the landlord can reduce
his liability, and automated so the checks can be done faster and
tie into other systems. We merge the conflicting properties of
preserving the rentees sensitive information while making the
rental checks auditable.

We define functional and privacy requirements for background
checks on rentees. Using these requirements we create a scheme
based around encrypted equality checks on a blockchain that is
automated, auditable and privacy preserving.

A proof of concept implementation can check 19 different
rentee properties on Ethereum for under 4 million gas or 4.93
euros. We now have a scheme that checks properties and makes
these checks auditable, with a timestamp, and does not reveal
the information that was checked.

I. INTRODUCTION

Depending on the competition for the apartment, the law
and other factors, renting a new apartment means handing
over a lot of personal information to a landlord. The landlord
wants to know a history of previously rented apartments,
marriage status, and bank transactions, according to the Dutch
rental checking company Overbruggingsverhuur [1]. If rentees
are rejected, they can hand over the information to the next
landlord. These invasive checks are justified for the landlord
because it is very hard to evict a rentee once the rentee
moves in. Having a problematic rentee can mean damage
to the apartment, not getting rent payments and can lead to
complaints from neighbouring rentees.

On top of this, the landlord must by law check the income
of a rentee for rent controlled apartments, and if the landlord
performs their due diligence their liability is lower if anything
goes wrong [2] [3]. For both the law and his liability, the
landlord wants to be able to prove to an auditor later that he
performed the necessary checks. Furthermore, current rental
checks can take up to 5 days and cost 90 euros [4] [5] [6].

However, the landlord does not need all the bank transac-
tions of a rentee. In general, the landlord only needs to know
if the rentee passes the specific requirements for the apartment
in question.

The problem is interesting because the requirements of
privacy-preserving and auditability conflict. To make any
solution auditable, information has to be recorded, stored and

disclosed to third parties. Furthermore, not only does the
landlord have to be convinced, the landlord must prove to
third parties he is convinced.

We design a solution where the above mentioned sensitive
information of the rentee is not revealed to the landlord,
but only if the rentee meets the requirements. Because the
information is not revealed, our solution preserves the privacy
of the rentee. Moreover, our solution is automated, and not
slower or more expensive than current rental background
checks. The solution is also auditable, giving the landlord
proof of due diligence.

To make our solution auditable, we use a blockchain.
Because of a proof of work system, any alterations to a
blockchain can be detected, assuming an honest majority [7].
By performing the background check using a blockchain, both
the time of the check and the check itself are recorded and
cannot be modified afterwards.

Because proofs have to be verifiable by a later auditor, we
require a non-interactive solution. This is because interactive
proofs cannot be verified by a third party without additional
communication. Furthermore, using multiple rounds of com-
munication on a blockchain takes a very long time due to
messages having to be approved by the blockchain. We discuss
this in more detail in section VIII.

For a rigorous treatment of the problem of making
rental background checks automated, auditable and privacy-
preserving, we create functional and privacy requirements for
the problem. We designed and implemented a solution built
on Ethereum using the Conjunctive Encrypted Equality Test
scheme [8]. We test the performance of our proof of concept
solution. We show that we can check 19 different properties
of a rentee on Ethereum for under 4 million gas or 4.93 euros.

Our solution reduces the amount of information stored
by the landlord. This means landlords cannot abuse their
information about rentees, but also means they do not have
to record the information and secure it, which reduces their
risk. Our scheme is automated, providing a first step towards
a much faster and cheaper rental checking process, which can
then be used in more circumstances such as reducing risk in
short-term lodging. By being auditable, we make the job of
an auditor much easier, which can increase trust and reduce
costs.

II. BACKGROUND KNOWLEDGE

A. Pairings / Bilinear Map

The Conjunctive Encrypted Equality Test scheme uses pair-
ings, also called bilinear maps. Take two additive cyclic groups
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Fig. 1. Parties involved in CEET scheme as well as what messages are
transferred between them.

G1,G2 of prime order q, with GT another cyclic group written
multiplicatively. A pairing is a map e : G1×G2 → GT , which
has the properties of bilinearity and non-degeneracy.

• Bilinearity means for all a, b ∈ Zp, for all X ∈ G1, for
all Y ∈ G2 : e(aX, bY ) = e(X,Y )ab.

• Non-degeneracy means there exist generators g1 ∈
G1, g2 ∈ G2 such that the order of e(g1, g2) ∈ GT equals
q, the order of GT .

We require a Type 3 pairing [9], where there is no efficiently
computable homomorphism between G1 and G2. We use the
function G(1κ) to generate parameters for a Type 3 bilinear
group for a security parameter κ.

B. Conjunctive Encrypted Equality Test Scheme

We use a Conjunctive Encrypted Equality Test (CEET) [8]
scheme to evaluate the equality of two vectors. Several parties
are involved in the CEET scheme. Involved are a trusted third
party, a token generator, a monitor and several different clients.

The trusted third party generates and distributes secret keys,
and does not learn the tokens. The token generator provides the
token vector, but does not learn the aggregate vector. Several
clients each contribute a small part of the aggregate vector.
The monitor receives both vectors and checks if they are the
same, but does not learn the values in the vectors. Figure 1
shows the parties and which messages they transfer.

A requirement of the CEET scheme is that the monitor
should be able to check various combinations of token and
aggregate vector for equality. But only given that they are
encrypted under the same set of master secret keys and client
secret keys. This means a token can be checked against
multiple aggregate vectors. It should not be possible to take
encrypted values from one aggregate vector and mix them with
values from a different aggregate vector.

We give a formal description of the CEET scheme. We use
Z

R←− S to denote that Z is chosen as a uniform random
element from the set S.

Setup(1κ, n). Let (p,G1,G2,GT , e,X, Y )← G(1κ) be the
parameters for a bilinear group. Where X,Y are the generators
for the groups G1,G2 respectively. We have a pseudorandom
permutation π : K ×M → M for the message space M ⊆
Z∗p. A cryptographic hash function H1 : {0, 1}∗ → G1. The
parameters of the bilinear group and the two functions, π and
H1, make up the public parameters.

To generate keys, select γi, αi
R←− Z∗p and βi

R←− K for
1 ≤ i ≤ n. The master secret key is

msk = {(αiY, βi, γiY )}ni=1 .

The secret encryption key for client i is

cski = (αiX,βi, γi) .

Encrypt(cski, id, mi). A client i can encrypt its message
mi ∈M using cski and an ri

R←− Z∗p,

cti = (−H1(id),−riX,αiπ(βi,mi)riX + γiH1(id)) .

GenToken(msk, ~y). The token generator can encrypt a
vector ~y ∈Mn using msk. Choose ui

R←− Z∗p for 1 ≤ i ≤ n,

tk~y =

(
{uiY, αiY π(βi, yi)ui}1≤i≤n,

∑
1≤i≤n

(uiγiY )

)
.

Test(tk~y, {cti}1≤i≤n). Output 1 if the following test is true,
else output 0.

∏
1≤i≤n

e(αiπ(βi,mi)riX + γiH1(id), uiY )·∏
1≤i≤n

e(−riX,αiπ(βi, yi)uiY )e(−H1(id),
∑

1≤i≤n

(uiγiY ))

= 1 .

The CEET scheme is chosen-plaintext secure under the
DDH assumption in group G1.

C. Ethereum

Ethereum is a blockchain-based distributed computing plat-
form on which small programs, called smart contracts, can be
run.

Smart contracts can be deployed by sending them to the
network in a transaction, where the transactions are grouped
into blocks. When a block is created by someone, then other
nodes in the network verify its correctness. Once they verify
it is correct, a smart contract is given an address and nodes
include the effects of the transactions in the state of the
blockchain.

The benefit of this distributed verification is that the proper
execution of smart contracts is enforced by all nodes in the
network. This means the contracts cannot be changed and
are always executed as specified, and attacks such as double
spending are prevented.

Unfortunately, distributed verification of computations also
comes at a cost. Because transactions have to be repeated
many times, any computation in a smart contract is much



more expensive than a computation done locally. Comparing
Ethereum to Amazon EC2 cloud computing, it is 68 million
times more expensive to add up numbers. Data storage is
similarly very expensive.

The costs are based on the resources that the smart contract
takes to run. This is implemented by assigning a cost to every
low-level computational operation. These costs are determin-
istic, the same program always costs the same amount. The
costs are paid for in what is called gas. There is an upper
limit to the amount of computation that can be performed in
a block. This limit is called the gas limit.

The currency of Ethereum is Ether, and not gas. However,
Ether can be converted into gas through a bidding process.
When a transaction is created it includes an exchange rate
between ether and gas. Those who verify the blocks can accept
this exchange rate and include the transaction, or reject it in
favour of other transactions with more favourable rates. The
price is based on the amount of transactions being submitted
and is market-driven. If you set the exchange rate more
favourably for those confirming, then your transaction will be
processed faster. This separation of gas and Ether decouples
computational cost and the price of Ether.

III. FUNCTIONAL REQUIREMENTS

We want to construct an automated, auditable and privacy
preserving solution for rental checking.

The landlord wants to verify a number of properties of the
rentee automatically. The properties to be verified are a preset
list, however, this list may change over longer periods of time.

We assume that the information needed to verify these
properties rests with external parties such as credit reporting
agencies or the government. One requirement is that there must
be an automated method to request checks on these properties.
Next, once the results of those checks are in, a decision should
be made in an automated fashion. This decision happens
according to preset specifications of what a rentee needs to
adhere to.

Additionally, the landlord wishes to fulfil legal obligations.
For example, obligations include not discriminating among
rentees, not renting to rentees above a certain income for
socialised housing. If the landlord is in violation of these
obligations, he may be punished by the law. In contrast, under
Dutch law the landlord can limit his liability in case the
rentee uses the property for criminal purposes by proving
that he performed background checks on rentees [2] [3].
Therefore, we require that records need to be kept of who
rented what houses, starting when. This record needs to retain
the information such as the income of rentees.

Another requirement is that the information should not be
publicly accessible but upon request it must be disclosable
by the landlord. For example, in the case of a government
audit. The auditor should be able to view any information
on the rentee, given the cooperation of the landlord. The last
requirement of these records is that they must not be alterable.

Not all checks can be performed automatically. Employment
is traditionally verified by a phone call, as other records may

be faked. In such cases any partial verification possible is to
be automated. Anything that can not be verified automatically
should be fed into the decision process manually.

The results of these checks come in three formats. One
example is Boolean results, coming from say an ID document
which is either valid or invalid. Another example is categories,
such as marriage status which falls into a few discrete cate-
gories. A last example is numerical values, for instance credit
ratings come in ranges around 1-1000. These three examples
encompass all types of results from checks. The system must
be able to match based on Boolean values, the exact value of
a category and provide smaller or greater than comparison for
numerical values.

To accept a rentee, some properties may depend on other
properties. For example, the total amount of debt is allowed
to be higher if a person is married. Lastly a rentee should be
able to check whether they have been accepted or find out the
reason for why they were rejected.

To summarise, we have the following requirements for our
solution:

1) The checks on rentee properties need to be automated.
2) Acceptation requirements change over time and must be

changeable.
3) Acceptation requirements must be based on pre-existing

guidelines on the rentee properties.
4) Records should be kept of who rented what, starting

when.
5) Records should not be publicly accessible but be dis-

closable by landlord after the checking is finished.
6) Records should not be alterable by anyone.
7) All properties that can be verified by querying other

organisations should be automatically decidable.
8) If a property must be manually verified, the property

should still be usable as acceptation requirement.
9) Rentees should be acceptable based on comparison,

category matching and specific true/false values.
10) The landlord must be able to decide what properties are

checked.
11) Acceptation requirements for one property may be de-

pendent on values of other properties.
12) Rentees should know on which aspects they were not

accepted.

IV. PRIVACY MODEL

If data is stored digitally, then it is much easier to extract
information from the data. Because we want to protect the
rentees privacy, we need stringent privacy requirements for
our automated rental checking scheme. To define the privacy
requirements, we must first define how we expect the parties
to act in our scheme.

A. Attacker model

First, there is the landlord who wants to rent out his house.
We model the landlord as an honest but curious party, he
does not take any malicious activities that can be detected by
anyone. The landlord has a business reputation at stake and



does not want to cheat any prospective clients, but he stores
any information he can use to improve his checking process.

The second party is the rentee, he is looking for a house to
stay in and he would like to start living in the house owned
by the landlord. We model the rentee party as malicious, he
does not have any reputation at stake and may try to cheat the
landlord to reach their goal of being accepted for the house.

The next party is the multiple different attestors who pro-
vide accurate information on the rentee. Examples of this
may include government agencies who keep administrative
information or commercial parties that share information as
part of their revenue stream. Attestors are honest but curious
parties whose business is selling correct information. Attestors
may gather any additional information to build profiles of the
landlord or rentee but cooperate honestly in any protocols.

Our fourth party is the trusted third party (TTP), who
generates the requirements a rentee must adhere to. We model
the TTP as an honest party, this is ensured by their public
reputation which would be harmed if they take malicious
actions and are detected. The TTP does not try to gather more
information than they should according to the protocol. The
TTP is only involved in setting up the requirements for the
houses, and does not interact with the rentee or landlord.

The fifth party we name the public. We use a blockchain
in our solution, the information on the blockchain is publicly
available. The public is anyone who can read the blockchain,
which includes everyone from nosy neighbours, competing
landlords, intelligence services and anyone who looks up the
publicly available information. What is important for this
party is that a blockchain provides permanent storage, this
makes any information disclosed to it permanently available
to everyone. Due to the permanent and public properties
of this party, the privacy requirements are very stringent,
as any information can be dug up years afterwards when
societal acceptances have changed. The blockchain is public,
and the other parties can be a part of the public. As the
rentee is modelled as malicious, the parties participating in
the blockchain must also be modelled as malicious.

The sixth and last party is the auditor, for example a
government organisation or the police. A party that ensures
the landlord correctly followed the law or must retrieve
information about the rentee under a court order. This party
must be able to access all the information that the landlord has
access to, as such we give them the same privacy requirement
as the landlord and do not mention them in the rest of this
section. This party is not involved in the main parts of the
scheme but only afterwards. In principle an auditor is an honest
party, but we construct a scheme that should still work if the
auditor is willing to break protocol to learn more information,
so we model the auditor as malicious. We sum all the parties
and their modelling in table I.

B. Privacy Requirements

Before we introduce information in the checking process,
we introduce the notion of an attacker. This attacker is not
given a single explicit role, but should instead be modelled

TABLE I
ATTACKER MODELS: FOR EVERY PARTY, WHAT SECURITY MODEL DO WE

EXPECT THEM TO ADHERE TO.

Model
Landlord Semi-Honest
Rentee Malicious
TTP Honest
Attestor Semi-Honest
Public Malicious
Auditor Malicious

as one of the actors of our scheme at a time. We now list
descriptions of situations that could happen in the scheme,
we do not yet judge whether the situations are allowed or
should be prevented. No regard is given to the feasibility of
learning the information, or any specific properties that could
be checked.

1) The attacker learns information which significantly re-
duces the anonymity set of the [rentee/landlord/attestor/
TTP]. For example their name.

2) The attackers finds out which properties the checking
procedure verify. For example, what ranges of results are
acceptable and mean success and which combinations of
results result in rejection?

3) The attacker determines which house, uniquely identifi-
able by street address, is being rented out.

4) The attacker can determine the result of any individual
check in a specific checking procedure. (e.g. ‘is rentee A
on a specific blacklist’ ‘yes/no’).

5) Given two checking procedures the attacker can
determine if the rentee is the same person or are
different people. We call this linkability rentee.

To formalise these requirements and check their consistency,
we translate the requirements into game-based privacy models.
These are included in the appendix.

C. Who may learn what

We make a judgement for every piece of information, for
every possible party, whether the party is allowed to learn that
information. The results of these judgements are listed in table
II.

Not all these privacy judgements are obvious, here we
explain why the parties are not allowed to learn certain
information. We explain them per party.

The attestors want to track the rentee across purchases to
profile their behaviour, this can be monetised or abused. To
prevent this attestors may not know the outcome of other
checks. They may also not know which house is being rented
out, or that the rentee is looking at other houses.

The TTP is picked by the landlord, and not the rentee. So
the TTP does not need to know who the rentee is, which house
is being rented out or what the properties of the rentee are.

Every party is part of the public, so if anyone is not allowed
to know information, then the public may also not learn it.



TABLE II
PRIVACY REQUIREMENTS: FOR EVERY PARTY AND EVERY REQUIREMENT,

EITHER THE PARTY MAY LEARN THE INFORMATION (Y) OR MAY NOT
LEARN THE INFORMATION (N). BOLD ADDED FOR EMPHASIS.

Rentee Landlord Attestors TTP Public
1.Id. Rentee Y Y Y N N
1.Id. Landlord Y Y Y Y N
1.Id. Attestor Y Y Y Y Y
1.Id. TTP Y Y Y Y Y
2.Which checks Y Y N Y N
3.Which house Y Y N N N
4.Outcome check Y N Y N N
5.Linkability rentee Y N N Y N

Additionally due to the permanent nature of the blockchain,
and our scheme being tied to a specific rentee, the public may
not know the identity of the landlord.

V. RENTEE REQUIREMENT EQUALITY SCHEME

This section introduces our proposed solution to the rental
checking problem. First we introduce the algorithms used
and then show how the algorithms together make up the
scheme. Our scheme uses five algorithms, Setup, Encrypt, Test,
CreateIdentifier, VerifyIdentifier.

We combine Setup and Gentoken from the CEET scheme
into our Setup, though their functioning has not been changed.
Encrypt and Test are identical to the CEET scheme.

Setup(~y, 1κ). Let n be the length of the vector ~y. A trusted
third party can take a vector ~y and output a token tk~y , n
secret encryption keys, csk and the hashing function H2.
Perform the Setup(1κ, n) function of the CEET scheme as
described in II-B. This gives the master secret key (msk)
and secret encryption keys (cski) for 1 ≤ i ≤ n. Next
to the cryptographic hash function H1 from the Setup of
the CEET, we have a second cryptographic hash function
H2 : ({0, 1}∗ × Zp) → Zp. Perform the GenToken(msk, ~y)
function of the CEET scheme, giving tk~y .

CreateIdentifier(PII, tid). A rentee can create an identi-
fier id from some Personally Identifying Information (PII)
∈ {0, 1}∗ and a transaction identifier tid ∈ Zp. The output
is then,

id = H2(PII, tid).

Encrypt(cski, id, mi). A checking party can encrypt a
message mi using a secret encryption key for the checking
party cski and an identifier id to create a ciphertext cti.
Perform the Encrypt(cski, id, mi) from the CEET scheme.

Test(tk~y, {cti}1≤i≤n). Test lets the public compare whether
a token tk~y and an aggregate vector {cti}1≤i≤n are equal. The
result is the output of the Test(tk~y, {cti}1≤i≤n) function of the
CEET scheme.

VerifyIdentifier(PII, tid, cti). A landlord can check that
the identifier used in the ciphertext ctid is constructed
correctly from the PII and the tid. The landlord checks that
−H1(H2(PII, tid)) equals the value id in cti.

The scheme comes in two parts which are run after each
other, first the setup is run and then after some time the rest

of the scheme. There are two slight variations of the scheme,
the flexible version and the store version of the scheme. We
explain the flexible version in detail, and at the end show how
the store version is different. All of the following steps are
also depicted in figure 2 and figure 3.

We assume that before the scheme is run, there is agreement
on a list of requirements that a rentee must fulfil. We run the
scheme for a given apartment type, meaning a given list of
requirements ~y. The TTP takes the ~y, selects a suitable 1κ

and performs Setup(~y, 1κ). The TTP distributes the csk’s to
the authorised attestors. The list of attestors and tk~y is then
published by the TTP.

Some time later a rentee expresses interest in renting a
specific house from the landlord. The landlord selects a tk~y
that meets the requirements for the house he wants to rent out.
Next, if the landlord already has a smart contract deployed
containing the check, then he retrieves the location, and
otherwise deploys the smart contract. The landlord sends a
randomly generated tid, the location of the smart contract, the
tk~y and the list of attestors to the rentee.

The rentee takes some PII, for example their name, and
performs CreateIdentifier(PII, tid) to get an id. Two actions are
then taken by the rentee. The rentee sends the id and the PII
to the landlord. Additionally, the rentee also sends the id, the
tk~y to each of the attestors in the list. The rentee authenticates
himself and request that the attestor checks a property of the
rentee.

Each attestor looks up which cski to use with this token.
They look up the property they have on the rentee mi and
perform Encrypt(cski, id, mi). The attestors then send the cti
back to the rentee.

The rentee waits until he has all the ciphertexts from the
attestors, and then calls the smart contract to perform the
check, sending all cti’s and tk~y .

The blockchain then performs the test function
Test(tk~y, {cti}1≤i≤n) and the landlord can learn the result.

The landlord first verifies that the identifier is correct
by performing VerifyIdentifier(PII, tid, cti). He obtains the
−H1(id) as part of the input to the Test function on the
blockchain. If this fails the landlord rejects the rentee, if this

TTP
    (per apartment 

type)

Attestor 
(multiple)

Setup

Publish
Tokens-Requirements

-Attestors
 

Receive encryption 
key

Csk’s

Fig. 2. Swimlane diagram of the first phase of our scheme, showing who
performs what functions in what order.
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Fig. 3. Swimlane diagram of the main part of our scheme. Which parties perform which functions and what information is sent. The labels associated with
the lines indicate information being sent, not all the input or output of the algorithms.

succeeds he checks the result of the test function. If the test
function fails he rejects the rentee, if it succeeded then he
accepts the rentee.

We call the scheme just described the flexible version of
the scheme because the smart contract can be deployed once
for every landlord, and then every token and list of properties
can be tested on it. We also propose a second variation of this
scheme, the store version. In the store version, the landlord
creates a smart contract for each different token that is to be
tested against, instead of a single contract that can handle all
checks. In the store version, the contract can only test against
a single token, and that token must be provided upon contract
creation. Later the rentee still sends the encrypted check results
to the smart contract, but no longer sends the token. By only
sending the token once, the store version has to send less
data per transaction which will lower the cost per test. We
investigate the break even point at which the store version
becomes cheaper than the flexible version.

A. Which Requirements Are Met

We explain how our scheme meets the requirements, and
which requirement is not met. First we discuss the functional

requirements.
Starting with the first requirement, our scheme is automated

because the rentee properties can be automatically retrieved
and decided on. To meet requirement two, the tokens can
be changed to change acceptation requirements. On three,
the tokens function as pre-existing guidelines. For the fourth
functional requirement, we have the blockchain that records
who starts renting when, including unfalsifiable timestamps.

Functional requirement five is met because the records are
only identifying after the identifier is revealed. On requirement
six, the blockchain is unalterable, given an honest majority,
which makes the records unchangeable. On requirement seven,
the properties can be automatically retrieved from attestors.
Requirement eight is fulfilled because parts of the aggregate
vector can be manually constructed.

The ninth requirement of matching based on comparison can
be performed by matching against multiple tokens, in multiple
tests, or by contracting all valid ranges into a single discrete
category. The landlord can decide what token to check against,
so requirement ten is met. Requirement eleven is met because
properties may depend on the values of other properties inside
a token. The twelfth requires additional effort, as the test



function does not show which parts of the token and aggregate
vector are unequal. To meet requirement twelve the rentee
must gather their information in plaintext from the attestors
and compare it to the published list of tokens from the TTP.

Now, we discuss the privacy requirements, we reason out
the first privacy requirement and use the game-based privacy
models included in the appendix for the rest.

The first privacy requirement is met because we only publish
the hashed PII of the rentee, meaning the public does not
learn anything about the rentee. There is also no interaction
between the rentee and the TTP, and so the TTP does not learn
anything about the rentee. No information about the landlord
is published on the blockchain, meaning the public does not
learn anything about the landlord.

For the game-based privacy model of requirement two, the
public has no additional information and cannot distinguish
which rules or plaintexts are encrypted. The attestors, however,
receive the encryption keys and can perform their own Encrypt
function for two plaintexts that they sent in and thus learn the
bit b. This means our scheme does not meet requirement two
for the attestors, they can learn which ranges are acceptable.
Attestors can then for example be bribed to change their
reported values to acceptable ones. As the value of attestors is
based on their reputation for honesty, this is not a major risk,
however our scheme would be better if it did not violate this
requirement.

Our scheme meets the third privacy requirement, because for
neither the TTP, attestors or the public does a rental procedure
reveal any information about the address of the house. The
fourth privacy requirement is met because the landlord and
the public have no information which lets them know which
check results belong to which encrypted check results. The
TTP could do this, because they have the encryption keys,
however we model them as an honest party and assume they
do not decrypt the check results.

The fifth requirement is also met. As we assume the landlord
is not involved in both rental procedures, he does not know
the identity of the rentee when he is not involved, and so
cannot distinguish rentees. The attestors can similarly be
prevented from following rentees, by using different attestors
for different rental procedures, though if the same attestors are
used repeatedly the rentee can be profiled. The public does not
learn the identity of the rentee, and so cannot track him.

VI. IMPLEMENTATION

To show that the proposed scheme is feasible we built
a proof-of-concept implementation1. Our system consists
broadly of two parts, the smart contract and the off-chain parts.
The off-chain part implements the Setup, Encrypt and a stub
for CreateIdentifier, whereas the smart contract implements the
Test algorithm. We have not implemented the VerifyIdentifier,
as it does not effect the gas costs.

1See https://github.com/fedorbeets/RentalChecking

A. Smart Contract

We run our smart contract on the Ethereum blockchain, it
implements our Test algorithm. The Test algorithm uses pair-
ings, which are computationally complex. As the number of
rentee properties (n) that are checked increase, the necessary
amount of pairings grows as 2n + 1. Because elliptic curve
pairings are complex, we establish that sufficient pairings can
be performed to support a realistic rental checking scheme.
As the pairings happen on the Ethereum network, and must
be done in single transaction, we must spend less gas than the
gas limit. To demonstrate acceptable performance, our proof-
of-concept implementation focuses on the test function of the
scheme.

We chose Ethereum as our blockchain because it has
precompiled contracts for the elliptic curve pairings we want
to perform. Precompiled contracts are code that is executed
outside the restricted Ethereum Virtual Machine, code exe-
cuted in lower level languages which are faster. There are
only 8 precompiles, the one for pairings performs pairings
on a Barreto-Naehrig [10] curve with a curve order of 254
bits [11] and an embedding degree of 12. The pairings are
the most computationally complex part of the scheme, and
precompiles decrease the cost of the pairings as they are not
restricted to the Ethereum Virtual Machines limited instruction
set.

The smart contract is implemented in Solidity. At the
lowest level of Ethereum computation is done in a stack-based
bytecode language that is similar to assembly. Higher level
languages have been created on top of the bytecode, the most
widely used one being Solidity. Solidity can be compiled to
bytecode by the Solidity compiler, and then the code can be
run on Ethereum.

The Solidity smart contract we created implements the Test
algorithm by calling the pairing precompile and reporting the
results. As stated in section V, we create two versions of
the test scheme, and so create two smart contracts, one for
the flexible and one for the store version of our scheme. To
reiterate, the Test algorithm is the only part of our scheme
that runs on the Ethereum network, and so the only part that
effects gas costs.

B. Off-Chain Implementation

The Setup, Encrypt and CreateIdentifier algorithms are run
off-chain locally. Several details of these algorithms are left up
to the implementation in our scheme description. These details
are what algorithms to use for the pseudorandom permutation
π, cryptographic elliptic hash function H1, cryptographic hash
function H2, and what personally identifying information PII
to use. The selection of the identifier does not effect the perfor-
mance of the test function, so we used stub implementations
for the PII, H1 and H2. The stubs for PII and H2 means
id R←− Zp. Our stub for H1 is not a secure hash function
and should not be used in practice. Like the original CEET
implementation, we use the pseudorandom function proposed
by Naor and Reingold [12] as π, this function immediately
maps the output onto the G1 elliptic curve.

https://github.com/fedorbeets/RentalChecking


We implemented the Setup, Encrypt and the stub for the
CreateIdentifier in Python. These implemented algorithms use
the same curve and underlying pairing library that are used by
the Ethereum network to ensure compatibility.

Instead of performing tests on the Ethereum test network,
we simulate a replica of the Ethereum network for develop-
ment using Ganache [13]. Ganache simulates an exact replica
of the Ethereum blockchain costs, and so we use Ganache for
all our measurements.

VII. EVALUATION

This section explains what was measured, what adjustments
we made to the results of our measurements, then the setup
and the results and lastly how the off-chain part of the scheme
performs.

As explained in the previous section we focus on the gas
costs of the equality tests. We measured gas costs for both the
store and the flexible versions of the scheme from section V.
The gas costs cover only the test algorithm of the scheme, as
the Setup, EncryptCheck and CreateIdentifier are run off the
blockchain. The computational cost of our scheme increases as
more rentee properties are checked, so we measure gas costs
by the number of properties checked, which we call token
length.

A. Theoretical Evaluation

Ethereum has a different gas cost for non-zero input bytes
and for input bytes that are zero. This makes our measured gas
costs fluctuate. To make our results repeatable and to give an
exact formula for the gas costs, we use the Ethereum Virtual
Machine (EVM) specification to derive a worst case for our gas
costs. This worst case comes in the form of two adjustments to
our gas costs before we report them. Both adjustments involve
the gas cost of input data to a transaction that calls the test
algorithm.

Giving input data to a transaction costs gas according to
the length of the input data. It is much cheaper to input a
zero byte than to input any other value. This is because the
Ethereum Virtual Machine is only addressable in chunks of
256 bits, meaning a Boolean true is 31 zero bytes followed
by a 1. To prevent people from coming up with complicated
schemes to avoid zero bytes, Ethereum efficiently compresses
zero bytes and reduces their cost [14]. A zero byte costs 4
gas, whereas a non-zero byte costs 68 gas.

To explain the encoding of the input data [15], if an
argument has a fixed length such as a boolean, then it is
included in order. If an argument has a variable length, such
as a dynamic array, then the location of the data is included
instead, measured in bytes from the start of the arguments. At
the location of the data, the length in 32-byte segments of the
data is given, and then the actual data is included. We group
the byte offsets and the data length under the term header.

The first adjustment is maximising gas cost of the actual
data. Our data is points on elliptic curves, which has zero-
bytes at a probability of roughly 1 in 225 2. We pretend there

2Tested by sampling a million random points

are no zero-bytes in the data, and increase the gas cost for
every zero-byte in a transaction.

The second adjustment is making the cost of the header
constant. The byte offsets deterministically cross a threshold
such as 255 where it makes an additional byte non-zero. These
thresholds are not linear, but happen at several token lengths,
adding an extra gas cost. We calculate the gas costs for the
header for each of our measured token lengths, and then take
an average. The actual cost of the transaction is then adjusted
as if the header had cost this average gas cost.

Both of these adjustments are minor in terms of gas cost,
but as mentioned make the results repeatable and allow us
to give an exact formula of the costs. The adjustments cause
an average increase of 0.03% gas usage3. A vector with an
average increase in cost is one of token length 9 in the flexible
version, requiring 1,914,861 gas in one example, where we
would report a maximised gas use of 1,915,437.

B. Results

The gas costs for the deployment and test functions of
both the store and flexible versions are shown in figure 4.
These numbers are after applying the two above mentioned
adjustments.

To give a sense of scale, the maximum gas that a transaction
can have (gas limit) has been just short of 8 million for the
first 6 months of 2018. If you are willing to wait 30 minutes
for confirmation, such a transaction would cost 0.016 ether, or
9.86 euros at the average exchange rate for the first 6 months
of 2018 of 616 euros per Ether.

To interpret these results, our scheme can check 20 rentee
properties for around 4 million gas, which makes our scheme
usable for rental background checks.

C. Analysis Of Gas Costs

Now we can analyse why the results are not precisely linear
after our two adjustments. As figure 4 shows, the gas costs are
approximately linear in the token length. The exact formulas
for the gas costs are given in table III. These formulas are after
the two above mentioned adjustments are made. For small n,
the gas costs are almost linear in the token length, but there is
a small quadratic term. The small quadratic term comes from
the cost of expanding the size of the memory.

Expanding the amount of memory used by a smart con-
tract to store variables has a quadratic gas cost. Ethereum
has a theoretically infinite memory, only limited by the gas
cost. However, it costs increasing amounts of gas to address
more memory. The memory cost function of Ethereum is
3a+ba2/512c, where a is the size of the memory. The memory
cost of an operation is the cost of memory before minus
the cost of memory after. The quadratic component means it
takes increasing amounts of gas to allocate new memory. This
makes our gas costs quadratic, but for all realistic lengths the
dominant terms are the base and the linear costs.

3Tested by taking a single token and set of ciphertexts of each length
between 1 and 10 for both the flexible and store versions.
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Fig. 4. Gas costs for both versions of our scheme, plotted against the amount of attributes being checked for (token length).

We locate the part of the code or Ethereum Virtual Machine
assembly code that causes the memory to be expanded for
further investigation. For the store and flexible equality tests,
the expansion of the memory is caused by the re-ordering of
the points on the curve from the input arguments to a form
where they can be passed on to the precompile. The inputs
are already present in the memory, however we know of no
construct in the Solidity language to load them directly onto
the stack in the correct ordering. They could be loaded in the
correct order without memory expansion by the right Ethereum
Virtual Machine assembly code, however that falls outside the
scope of this paper.

There is an abnormality in the store version contract de-
ployment, which has a separate base cost for the case where
the token length is 1. This is due to instructions added by
the Solidity compiler (for version 0.4.19), which as the last
instructions before a return, loads some data from the contract
and writes those into memory, then pushes bytes onto the stack
and returns before using this memory. This happens equally in
all versions of the store version contract deployment, but for
the length 1 case it expands the size of the memory, incurring
the extra 24 gas cost.

Examining the overall results, the store version is much
more expensive to deploy but is cheaper per usage than the
flexible version, as is expected. The difference in costs means
that the store version of the scheme becomes cheaper in gas
cost once it is used 13 or more times.

TABLE III
GAS COSTS PER VERSION.

Costs/Part Base per requirement length (n)
Deploy flexible 381,914 0
Flexible 241,618 188,156n+ b(n · 24 + 25)2/512c
Deploy store(n > 1) 510,027 178,016n+ b(n · 8 + 15)2/512c
Deploy store(n = 1) 510,051 178,016n+ b(n · 8 + 23)2/512c
Store 212,235 174,124n+ b(n · 16 + 17)2/512c

D. Off-chain Scheme Performance

We examine the run time of the set up, generation of
the token and encryption of checks, to give a sense of how
computationally intensive the scheme is. These are all the parts
of the scheme that are run locally, and not on the Ethereum
network. The run time is examined using cProfile Python
profiler. The profiling is done on an laptop running a Intel
Core i5-3340M CPU @ 2.70GHz.

We split our Setup into a SetupKeys part that generates the
required keys and a GenToken part which generates a single
token, along the lines of the original CEET scheme. We run
the algorithms several times and take the fastest time for each
token length up to 10 and fit a line through the data. Generating
a token takes roughly 0.12 seconds plus 0.08 seconds per token
length. The SetupKeys takes 0.08 seconds plus 0.07 seconds
per token length. EncryptCheck takes 0.068 seconds for each
individual check. This means that to keep each individual step
under a second, we can use a token of length 10 and have
GenToken take 0.92 seconds, SetupKeys take 0.78 seconds
and each EncryptCheck taking 0.068 seconds. The SetupKeys



and GenToken are only run a few times by the TTP, whilst
the SetupKeys, which is extremely fast, is run many times by
the Attestors.

VIII. RELATED WORK

Anonymous credentials were first proposed by Chaum [16],
well known constructions include Idemix [17] and U-
Prove [18]. Anonymous credentials allow a prover to selec-
tively disclose information about their attributes to a verifier,
without revealing the identity of the prover. The proofs in
anonymous credentials are based on zero-knowledge proofs.
In the rental checking problem, the attestors need to prove
attributes to the landlord. Since acceptation requirements for
one of these attributes may depend on the value of different
attributes held by different attestors, our problem requires a
proof over dependant values held by multiple provers. This
can be solved by having a validator who takes in all the zero-
knowledge proofs and then accepts or rejects the rentee. If the
validator acts according to pre-defined rules and does not know
the values of the zero-knowledge proofs, we have a description
very close to the CEET scheme, except without a requirement
for public verifiability. We know of no other non-interactive
multi-prover zero-knowledge proofs where the values being
proved may be dependant on one another.

Similar to anonymous credentials, secure multi-party com-
putation can disclose information about attributes, without
revealing the attributes [19] [20], this can also be made
auditable [21]. We can use secure multi-party computation
to compare a list of demands of a landlord to a list of
attributes of the rentee. Because we can make the secure multi-
party computation auditable, we do not need a blockchain for
auditability, which also removes the need for non-interactivity.
A second reason we use the blockchain is to provide a time
when the checks were executed. If one can create a secure
multi-party computation protocol that provides unfalsifiable
proof of the timing of the checks, works with a malicious
rentees, is auditable and performs fast enough then this would
also be a solution to our problem. We did not look at this
approach due to time constraints.

We can also classify a rentee as being a good rentee by using
machine learning. Several companies [22] [23] are solving
automated background checks in other fields. However, their
techniques are trade secrets and not published, and they do
not preserve the privacy of the party being checked. While
most work is done on privacy-preserving training, few works
look at privacy preserving classification [24]. The work on
classification of encrypted data uses homomorphic encryption
to support general machine learning models [24] [25] [26] or
facial recognition specifically [27] [28]. However, this is in a
setting where the server works on encrypted data, where the
client decrypts the data to obtain the classification. The goal is
to hide the model from the client, and the classification from
the server. If the server has to learn the classification, then it
must learn the inputs in plain text. As we want to hide the
inputs from the server, we cannot make use of this work.

A different problem is that blockchains are public, and we
want to log tests on the blockchain, but not reveal anything
about the rentee’s personal data. One system that deals with
this problem is Enigma [29], which only stores hashes of data
on the blockchain. We could store only a hash of the inputs
and results on the blockchain, but this prevents automatically
acting on the results on the blockchain, as the results need
to be verified again. A different work on electric vehicle
charging [30] uses a commitment based on a hash function
which is logged to the blockchain, and the commitment is
only ever revealed off-chain. This is the same approach that
we use to hide the identifier of the CEET scheme. Hawk [31]
looks related, but uses an off-chain manager who handles all
user data and does computation on the data. This managing
party must act correctly or it is financially penalised, but it is
not prevented from disclosing or remembering user data. We
are looking to prevent disclosure of the rentee data, and so
cannot use the Hawk system.

IX. DISCUSSION

A. How Much Does The Blockchain Add?

Running our scheme on the Ethereum blockchain increases
the costs, what value does it add? Ethereum makes our scheme
auditable, as a landlord is unable to alter the record of checks
once made, and importantly it creates an unalterable timestamp
of when the check occurred. Furthermore, by placing the check
on the blockchain, the property can be set as rented out on a
ledger of the landlords properties. Additionally, rent payments
can be started automatically from the rentee. However, to not
tie the rentee publicly to the performed checks privacy-friendly
money would need to be used.

Ultimately, the rental housing industry currently does not
use blockchains, and it still operates. As is done without
blockchains, the landlord can keep an administrative record
which a later auditor can examine, with trust in the ability of
the auditor to detect forgeries. But by restricting himself to an
unalterable administration, the honest landlord can create trust
with the auditor.

B. Removing TTP And Committing Hashes

We looked at removing the TTP by using secure multi-
party computation, however this option is too computationally
expensive. The TTP performs the generation of checking keys
and the generation of tokens. The original CEET scheme
runs the token generation separately from the checking key
generation so that the rules can be encrypted by a third party.
We do not require the rules to be secret, so the tokens can
be created between the landlord and the rentee. However
if we reconstruct the tokens between the landlord and the
rentee, then they have to be reconstructed for every rentee.
The performance of the current scheme relies on only having
to run the generation of tokens once. Removing the TTP would
mean re-running the token generation for every new rentee
using secure multi-party computation in a malicious setting,
which would remove much of the performance of the scheme.



On a different note, a way to improve the performance of
the scheme is to run the equality test portion of the scheme
off the blockchain, and then only commit the inputs and
the output to the blockchain. The equality test on Ethereum
takes the most time and cost in the scheme, and running it
off the blockchain increases the performance. If the costs of
using a blockchain grow prohibitively expensive, then this is
a valid option. However each party would have to take the
inputs and verify the results for themselves. Not trusting the
results on the blockchain immediately, prevents the results
from automatically taking further action on the blockchain,
such as being integrated into other systems for managing
apartment rental on the blockchain.

C. What To Use As Identifier

Another point is that we have not yet fully specified what
the requirements are for the PII the rentee uses to create the
identifier, only that a name suffices. The only requirement is
that the information distinguishes the rentee beyond reasonable
doubt. The PII in the identifier commits the check to a person,
so that no other person can later start renting the apartment
and claim to have been checked before. The landlord cannot
select a second rentee because they have the same name as the
first, so a name is sufficient. To make this more identifying, a
unique identifier such as the Burgerservicenummer or a uPort
identifier [32] can be used. A uPort identifier uses Ethereum
to record information about a person. A central registry proves
the identifier is registered, and a user can add information to
their identifier. This makes a uPort identifier a globally unique
number that can establish someones identity.

D. Code Is Law Assumption

A different point is that a central assumption of this paper
says that smart contract code is law, that we cannot modify the
Ethereum blockchain. If this would not be the case the landlord
could rewrite history and prove that a rentee had always
been checked, rendering the blockchain useless. Whilst the
Ethereum blockchain is largely free of modification there have
been cases where the data has been altered that do not follow
Ethereum protocol. The DAO incident [33] involved a bug in
a contract that allowed a person to siphon 50 million dollars
worth from the DAO to themselves. Whilst this was allowed
by the code of the contract, it was obviously unintended. The
result is that a large part of the community joined a fork of
Ethereum where this money was restored [34]. This happened
not by code in a contract, but by consensus of the community.

Recently there have been proposals to standardise recovery
of lost Ethereum funds, for funds that have become unusable
due to bugs in contracts [35]. This would put a committee in
charge of how to reallocate funds, once a request for such lost
funds is made. It would put a committee in charge of how to
modify Ethereum without using the Ethereum protocol. The
Ethereum blockchain, and any blockchain, can be modified,
if the stakes are high enough. These are however highly
documented changes, and for logging which rentee a landlord
has checked the Ethereum blockchain is more than sufficient.

E. Further Work

Finally, what needs to be done before this system can be
used in practice? Our system is a proof of concept, we did not
focus on how landlords use background checks in practice.
An inventory has be made of what criteria landlords currently
use to approve rentees. How many different properties they
use, and how inter-dependant these are. If there are too
many combinations of valid attributes, then this could cause a
combinatorial explosion in the options that need to be checked,
making our scheme too expensive.

X. CONCLUSION

We have created a solution to the rental checking problem
that is automated, auditable and privacy preserving. We made
it auditable by performing the equality test on the Ethereum
blockchain and making the identifier disclosable. The privacy
of the rentee is preserved by only checking for equality on
encrypted data through the CEET scheme. We formulated
functional and privacy requirements, which solutions to the
rental checking problem should fulfil. The scheme delivers
acceptable performance, our proof of concept can run checks
involving 19 variables for under 4 million gas or 4.93 euros.
The off-chain part of the scheme also performs well, each step
taking less than a second up to a token length of 10.

Using our solution, landlords store less information on
rentees. Storing less information means landlords do not have
to secure the information or pay for additional storage, but
it also means landlords cannot abuse the information. Our
scheme works towards a faster and cheaper rental checking
process by being automated. Being faster and cheaper means
background checks can also be used in more circumstances
such as short-term lodging. The scheme being auditable means
auditors can trust more of a landlords administration, which
can reduce the costs of audits and improve the relationship
between auditors and landlords.
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APPENDIX

Security Games For Privacy Requirements

This section of the appendix presents a formalisation of the
privacy requirements. We rephrased the privacy requirements
set out in section IV in terms of advantage an adversary has
over random guessing in security games.

Let the adversary be a probabilistic polynomial time al-
gorithm. A renting procedure is a set of algorithms: Setup,
Createidentifier, VerifyIdentifier, Encrypt, Test.

Which outputs and inputs are visible depend on the role of
the adversary. This is analogous to the role of the attacker
in the privacy requirements, corrupting a single actor at a
time. Different roles receive different information from the
challenger (C ) and may issue more inputs to algorithms.
The following security games establish the definitions for the
public role in the rental procedures. We do not create a security
game for the first requirement, as it is sufficiently clear.

Requirement 2: We want to ensure that the public learns
nothing about the predicates it is evaluating when it performs
the test function.
Let Σ denote a finite set of plaintexts. Let F denote the set
of all possible rules f : Σ→ {0, 1}.
We define full security as follows: given a set of plaintexts
x1, x2, . . . , xl and a set of rules r1, r2, . . . , rm the adversary
gains no information about the plaintexts or the rules
other than the result of all the rules evaluating each plaintext.
We establish full security through the following security game:

Setup: The challenger selects a random bit b.
Queries: A adaptively issues queries of one of the following
types.
• Rule query: On the jth rule query A outputs two

rules ~R0j
~R1j . C performs Setup(~Rb, 1k) and remembers

check keys csk0j , . . . , csknj and responds tk~yb.
• Check query: A outputs two plaintexts P0, P1 consisting

of results P00, . . . , P0n and P10, . . . , P1n, A also outputs
a number l ≤ j. C generates a new identifier I and
outputs Encrypt(cskil, I, Pbi) for every i, and outputs I .

Assume an equality test function that tests if a plaintext
matches a rule, like f(Pm, Rm) → 1 ⇐⇒ Pmn = Rmn
for every n and 0 otherwise. The adversaries queries have the
restriction that for all checks P0, P1 and rules R0, R1 they
must meet f(P0, R0) = f(P1, R1).

Guess: A outputs a guess b′ of b.
The advantage of the adversary is |Pr[b

?
= b′] − 1

2 |. The
scheme meets the requirement if the advantage is less than ε
for every adversary.

Requirement 3: An adversary is not allowed to learn what
house a rental procedure is about, we define this to mean that
an adversary may not learn what the physical address is of the
house being rented out. We establish this through the following
security game.

Setup: The challenger selects a random bit b.
Query phase 1: A outputs an address Ax. C simulates a
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https://github.com/ethereum/EIPs/pull/867


rental procedure the house at address Ax and responds
I, ct1, . . . , ctn, tk~y of that simulation. A may do this an ar-
bitrary number of times.

Challenge phase: A outputs two addresses A0, A1 where
the addresses are not equal. C simulates a rental procedure the
house at address Ab and responds I, ct1, . . . , ctn, tk~y of that
simulation.

Query phase 2: The adversary may do the same as in query
phase 1.

Guess: A outputs a guess b′ of b.
The advantage of the adversary is |Pr[b

?
= b′] − 1

2 |. The
scheme meets the requirement if the advantage is less than ε
for every adversary.

Requirement 4:
We do not want the results of individual checks to become

known to an adversary, this means that an adversary should be
unable to distinguish even between two identical check results
in separate procedures. We establish this through the following
security game.

Setup: The challenger selects a random bit b.
Query phase 1: A outputs a check result mx. C performs
Setup(~y, n) for a random ~y, remembering csk of po-
sition x and generates a new identifier I . C responds
Encrypt(cskx, I,mx). A may do this an arbitrary number of
times.

Challenge phase: A outputs two check results, mx0,mx1.
C performs Setup(~y, n) for a random ~y, remembering csk
of position x and generates a new identifier I . C responds
Encrypt(cskx, I,mxb).

Query phase 2: The adversary may do the same as in query
phase 1.

Guess: A outputs a guess b′ of b.
The advantage of the adversary is |Pr[b

?
= b′] − 1

2 |. The
scheme meets the requirement if the advantage is less than ε
for every adversary.

Requirement 5: Linkability rentee, the adversary may not
determine if the rentee in two different checking procedures
is the same person. See the following security game.

Setup: The challenger selects a random bit b.
Query phase 1: A selects a rentee Rx. C simulates
a rental procedure involving rentee Rx and responds
I, ct1, . . . , ctn, tk~y of that simulation. A may do this an ar-
bitrary number of times.

Challenge phase: A selects two rentees R0, R1 where
the addresses are not equal. C simulates a rental procedure
involving rentee Rb and responds I, ct1, . . . , ctn, tk~y of that
simulation.

Query phase 2: The adversary may do the same as in query
phase 1.

Guess: A outputs a guess b′ of b.
The advantage of the adversary is |Pr[b

?
= b′] − 1

2 |. The
scheme meets the requirement if the advantage is less than ε
for every adversary.
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