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Abstract

Nowadays, most applications are developed to be deployed to the web. These web
applications can be accessed by many users, including malicious users who try to at-
tack them. In order to defend against attacks such as SQL injections and XSS, many
web applications use sanitizers. Sanitizers will modify a given input so as to remove
the presence of dangerous characters. It is, however, very difficult to write correct
sanitizers. And reasoning about the correctness of any program tends to be very
difficult, especially if the program is quite large. Fortunately, sanitizers are generally
small pieces of code due to which it is possible to reason about their correctness.
In this research, we present a method to reason about the correctness of sanitizer
implementations by comparing them to specifications. This method learns models,
symbolic finite transducers, in a black-box manner, which describe the behaviour of
the sanitizers. These models are compared to specified models in order to find er-
roneous behaviour of sanitizer implementations. The learning algorithm and ability
to compare models have all been implemented in a tool called SFTLearning. Using
SFTLearning, we were able to derive models from real-world sanitizers and reason
about their correctness.
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Chapter 1

Vulnerabilities

1.1 Introduction

Nowadays more and more daily tasks are completed through the use of digital sys-
tems. People rely heavily on the digital systems due to which these systems become
targets for criminals. It is therefore important that these systems are secure. For ex-
ample, in online banking only you and authorized bank employees should be able
to access your records. The systems that we use are becoming increasingly complex
and therefore writing correct and secure programs becomes more difficult.

The term flaw is used to denote problems in a system. When a flaw can be ex-
ploited by a user, then we call it a vulnerability. Exploiting means that the user is able
to do something which (s)he should not be able to by abusing a system’s flaw. There
can be many types of vulnerabilities in a system. As of 2017, the most serious web
application security risk is injection flaws [1]. Such an injection flaw occurs when
untrusted data is interpreted. As a result, a user-given command may be executed
or malicious data may be injected into the system.

The following example of SQL injection illustrates the danger of such vulnera-
bilities. Consider the database table called "customers" which contains all personal
information of the customers of a web application which can be seen in Table 1.1. As-
sume that the web application uses the following SQL query to select a customer’s
data where user_email and user_password are given by the user, and added to the
query using string concatenation:

1 "SELECT name , address
FROM customers

3 WHERE email = ’ " + user_email + " ’ AND password = ’ " +
user_password+ " ’ ; "

If a non-malicious user inputs his email and password, then this query will sim-
ply return his name and address as it should. However, consider what a malicious
user might give as input for these variables. For example, if a user inputs the follow-
ing:
user_email = abc@google.com
user_password = 12345’ OR ’1’=’1

customer_id name address email password
1 Andrew Smith Main Road 123 a.smith@google.com 9e209040...
2 Olivia Jones High Street 81 o.jones@google.com d1d3ec2e...
... ... ... ... ...

TABLE 1.1: Database representing customers for a web application
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Then the query will look as follows:

1 " SELECT name , address
FROM customers

3 WHERE email = ’ abc@google . com ’ AND password = ’12345 ’ OR ’ 1 ’ = ’ 1 ’ ;
"

Since the constraint "1=1" is always true, this query will return the name and
address of all customers. As a result, the malicious user now has the personal infor-
mation of all the users of the web application.

This is only one example of an injection vulnerability, namely SQL injection, but
there are many more such as Cross-site scripting (XSS), code injection, command
injection, XPATH injection, etcetera. These attacks can potentially lead to the disclo-
sure of sensitive information, modification of data or even deletion of data. There-
fore, it is important to find ways to protect against such vulnerabilities.

On the 25th of May in 2018, the European Union introduced the General Data
Protection Regulation (GDPR). This law requires data processors to use appropriate
defences to ensure data integrity and security. It is therefore import to develop tools
that can (mostly) automatically give us insight into the correctness of programs, dis-
cover vulnerabilities and protect against vulnerabilities.

Depending on the kind of application and the associated security risks, one can
use different approaches to find the vulnerabilities. First of all, one can try to find
errors when the application is being built. Then one tries to find the problems be-
fore they can be exploited, e.g. by using static code analysis. Secondly, one can try
to detect when vulnerabilities can be exploited by users and take action when it is
being exploited. For example, if you detect an ongoing attack then start blocking
connections originating from the offender’s IP address. Finally, one can detect vul-
nerabilities by examining logs and taking action when the application has already
been exploited. This research focuses on the first kind; detecting errors in applica-
tions when they have not yet been exploited. If these errors are eliminated, then the
number of attack possibilites is reduced.

1.2 Preventing exploitation of injection vulnerabilities

Injection vulnerabilities occur when attackers are able to "relay malicious code through
an application to another system" [2]. In other words this means that to exploit injec-
tion vulnerabilities, attackers need to be able to give some input to the system. There
are several approaches that one can use to eliminate the exploitation of an injection
vulnerability.

First of all, one can use detection mechanisms to find vulnerabilities and then
fix these vulnerabilities. As a result, since the vulnerability no longer exists, it can
also no longer be exploited. The detection of this vulnerability can happen either
before or after deployment of the application. It is, however, very difficult to detect
all vulnerabilities. An example of a vulnerability detection mechanism is fuzzing.
Fuzzing is a testing technique that generates input for a computer program. The
generated input is then given to the computer after which the program is monitored
to detect any unexpected behaviour. It is important to note that fuzzing can never
prove the correctness of a program. After all, there are infinitely many inputs thus
it is always possible that the program would not work as expected when it is given
a yet untried input. You will need to try many different inputs to get the confidence
that a program works correctly. Thus, fuzzing a program takes quite some time. The
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advantage of using fuzzing as a detection mechanism is that it is a fully automatic
approach.

Secondly, one can give the application only the privileges that are necessary to
complete the required tasks. For example, one should not run commands as root.
This can, however, not prevent all exploitations of vulnerabilities. For example, if
an application can insert data, then the user may be able to insert malicious data. In
this case, the user only needs the same priviliges as the application.

Thirdly, one can filter the input that is given to the system. When filtering input,
the user can use either whitelisting or blacklisting. Whitelisting limits what input is
considered acceptable by comparing all inputs to a list of acceptable inputs. If the
given input in on the list, then the input is accepted. Blacklisting limits what input
is considered acceptable by comparing all inputs to a list of unacceptable inputs.
If the given input is on the list, then the input is rejected. Adapting a whitelisting
or blacklisting approach is quite difficult as the danger is that the user forgets to
specify a good or dangerous input respectively. If a good input was not specified,
then non-malicious users are likely hindered. For example, some websites do not
accept + in an email address even though it is allowed according to the specification
[3]. If a bad input was not specified, then a malicious user can misuse this to trigger
a vulnerability thus the system is no longer secure.

Dangerous inputs could also be accepted. However, then the developers need to
be aware that any user input can be malicious. This likely leads to the need of more
validation steps throughout the code base. Also, it is then crucial that no validation
step is missed as this may introduce a vulnerability. Moreover, in general it is easier
to prevent dangerous input from entering your system rather than allowing it inside
and making sure it cannot abuse anything.

Aside from filtering, accepting bad inputs and adapting the code, one can also
choose to modify the given input. By modifying the input, you can eliminate any
possible dangerous sequences of characters within the given input. Modification of
input to eliminate dangerous (sequences of) characters is what sanitizers do.

This research focuses on sanitizers, because they are widely used in practice.
Moreover, since sanitizers are typically small pieces of code, it allows us to reason
about the program without running into problems that occur when reasoning about
large systems. For example, specifying a complete banking application is very dif-
ficult whereas specifying one method can be done quite easily. Also, sanitizers are
often reused since writing them is very difficult. As a result, if we reason about one
instance of a sanitizer, then these results will also apply to the other instances. The
results can only be reused if the analysis is dependent solely on the sanitizer code,
and if the sanitizer’s code has not been modified.

1.2.1 Research Questions

It is important to be able to reason about the correctness of sanitizers as this may
be able to prove the absence, or presence, of vulnerabilities. Writing sanitizers is
prone to errors therefore people are often encouraged to reuse existing sanitizers.
Therefore this research will focus on verifying existing sanitizers. In this research,
we focus on the following research question:

• RQ 1: How can we reason about the correctness of existing sanitizers?

• RQ 2: Can the approach, which was found in RQ 1, be fully automatised such
that it can be used in someone’s workflow?

To answer the first research question, we will focus on the following sub-questions:
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• RQ 1.1: What would users want to specify when reasoning about the security
of sanitizers?

• RQ 1.2: What can already be proven about sanitizers using previous research?

• RQ 1.3: How can the specifications, found in RQ 1.1, be proven?

These research questions led us to develop a new algorithm to learn a model,
symbolic finite transducers, from a program and compare this to specifications. We
have implemented this in SFTLearning which can derive two types of models, Sym-
bolic Finite Automata or a Symbolic Finite Transducer, from a program.

1.2.2 Overview of Thesis

Chapter 2 introduces the methodology of this research. Next, Chapter 3 explains
sanitizers and their challenges. Chapter 4 presents related work and its relation to
this research. Then, Chapter 5 discusses models that can be used to reason about
existing sanitizers. Next, Chapter 6 discusses what one would want to specify about
sanitizers and how these specifications can be proven. Chapter 7 explains how we
can deduce models from existing sanitizers. Then, Chapter 8 presents details on how
the approach has been implemented. In Chapter 9, the results of the performance
tests and case study are presented. Next, the results are discussed in Chapter 10.
Finally, the research is concluded in Chapter 11.
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Chapter 2

Methodology

2.1 Reasoning about sanitizers

Specification
Learning 
algorithm

Check 
consistency

User

Learned model Specification

Distinguishing 
input or ‘OK’

Sanitizer

FIGURE 2.1: Overview of the approach that is used to reason about
sanitizers

Figure 2.1 gives an overview of our approach. Firstly, we develop a tool that will
derive an SFT from a sanitization function. To derive this SFT, we will use a symbolic
learning algorithm which is a black-box approach. Secondly, the user needs to write
a specification of the sanitization function (see Section 6.3). Finally, we can compute
whether the learned model conforms to the specification. If they are not consistent,
we plan to present an input upon which the two models act differently. This allows
the user to find a discrepancy in the specification or in the existing sanitizer. If there
is a discrepancy in the specification, then the user can modify this specification and
check for consistency again.

Contributions. In summary, the contributions of this research are:

• A black-box SFT learning algorithm based on equivalence and membership
oracles.
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• An implementation of the SFA learning algorithm described in [4] in Java.

• An implementation of the black-box SFT learning algorithm in Java.

• A new approach to study the correctness of sanitizers by writing specifications
as SFAs and SFTs and comparing these to a learned model.

• Evaluation of the performance and applicability of this approach.

• A case study that demonstrates how this approach can be used to reason about
the correctness of sanitizers.

2.2 Evaluation

To evaluate the approach, we want to answer the following questions:

• What programs can, and what programs cannot, be learned using the learn-
ing algorithm? This question aims to uncover the limitations of the algorithm
which was developed as an answer to the first research question.

• Is this approach feasible to use in someone’s workflow? The tool is attractive
to users if it can reason about the correctness of string manipulating programs
within a couple of minutes. Therefore we want to know whether this approach,
which includes learning a model and comparing it to the specification, takes
at most 5 minutes. Note that it does not include the time needed to write the
specification(s). This will provide the answer to the second research question.

2.2.1 Learning algorithm

To test the limitations of the SFTLearning algorithm, we will collect a sample of
sanitizer functions and specify corresponding models. SFTLearning is used to derive
a model from the existing sanitizer. This learned model is then compared to the
specification to check whether they are consistent.

During this process we will measure the following:

• Time needed to derive an SFA/SFT from an existing sanitizer

• Time needed to compare model to specification

• Number of states of learned model

• Number of states of specification

• Number of transitions of learned model

• Number of transitions of specification

Note that we measure the number of states from a model as this influences how
long the algorithm takes to find a model. Moreover, it allows us to take into account
memory usage.

We do not measure the time it takes to write a specification as this is highly
dependent on the individual who writes the specifications.
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2.2.2 Usability

Whether SFTLearning is feasible to use in someone’s workflow, will be assessed
based on the following:

• Can we derive models from systems completely automatically within 5 min-
utes?

• How does the SFTLearning algorithm scale when using larger alphabets?

The first question can be answered using the results from the previous experi-
ments. To answer the second question, we will learn one specific model multiple
times. Each time the alphabet from which counterexamples are generated becomes
larger.

2.3 Case study on correctness of sanitizers

To test the correctness of sanitizers, we will write specifications for several existing
sanitizers. This specification will then be compared to learned models of the sani-
tizers. When writing the specification, we make sure that each type of specification
is used at least once. When evaluating the correctness of sanitizers, we will take the
following into account:

• Is the function idempotent?

• If there are sanitizers that should behave the same, is their behaviour the same
upon all inputs, i.e. are the sanitizers equivalent?

• Do the tested sanitizers commute with each other?

• Are there any discrepancies compared to the user’s specification of the sani-
tizer?

The first three questions can indicate whether a sanitizer is secure or not. For exam-
ple, a sanitizer that is not idempotent may be vulnerable to double encoding attacks
[5]. If there is an input upon which two sanitizers, which should act the same, behave
differently, then this indicates that at least one of the two is not correct. Moreover,
sanitizers are preferably commutative because this means that the sanitizer will al-
ways behave the same, independently of the order in which it is used. The last
question allows us to further investigate the correctness of the sanitizer according to
its specification.
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Chapter 3

Sanitization

This chapter introduces sanitizers and background information concerning the be-
haviour of sanitizers.

3.1 Sanitizers

The term sanitizers is used to refer to code that sanitizes some piece of input. This
input may be given by the user of the system but can also originate from somewhere
else such as a database. Sanitizing is the act of adapting a string so as to remove or
change unwanted characters. This can be done through the removal of characters,
escaping characters or by encoding it, e.g. replacing "<" by its HTML entity encoding
"&lt;". The characters that we wish to change or remove are those that can be used
to exploit a vulnerability. Sanitizers are sometimes also referred to as sanitization
functions or sanitization procedures. No clear distinction in the different terms has
been found in the literature. We will define the different terms as follows:

• Sanitization function refers to a single function that performs sanitization.

• Sanitization procedure refers to a complete procedure, which may consist of mul-
tiple sanitization functions as well as other steps, such as retrieving the input,
that are used to sanitize a piece of text.

• Sanitizers is used to refer to the set of one or more sanitization functions used
to sanitize a string. Unlike a sanitization procedure, this may not include steps
other than sanitization functions.

Sanitization functions are functions that receive one or more string input param-
eters. These functions will then (possibly) adapt these input parameters and finally
return the adapted result. Most sanitization functions need only one string input
parameter which is then sanitized. Assuming that sanitization functions are correct
and safe, their behaviour should only depend on their input. It is, however, impor-
tant to note that how an input should be sanitized is strongly related to the context
in which it will be used.

For each sanitizer, you will need to specify what you want the sanitizer to do.
This behaviour is captured in a policy. The policy contains rules which describe how
the sanitizer should behave when encountering a specified string or character. You
can write rules that state what input is allowed (whitelisting), what input is not
allowed (blacklisting), and how specific input should be modified. Note that not
all policies are clearly specified. Some policies are implied through the sanitization
code or documentation.
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3.1.1 Examples

We will now discuss some examples of sanitization functions to give the reader bet-
ter insight into what sanitization functions are. The first sanitizer’s policy is to re-
move all characters from the given string that are not letters, digits, or special char-
acters (!#$%&’*+-=?^_‘{\}~@.[]) [6].

An example of this is the FILTER_SANITIZE_EMAIL sanitizer in PHP.

1 $ s a n i t i z e d _ e m a i l = f i l t e r _ v a r ( $users_email ,
FILTER_SANITIZE_EMAIL ) ;

LISTING 3.1: Example of applying an email sanitizer filter in PHP

In Listing 3.1 you can see how the FILTER_SANITIZE_EMAIL can be applied to some
variable. filter_var is a function that applies the given filter to the given variable.
In this case, the filter FILTER_SANITIZE_EMAIL is applied to the variable users_email.
This function will return the sanitized version of the string that was given.

1 void p h p _ f i l t e r _ e m a i l (PHP_INPUT_FILTER_PARAM_DECL)
{

3 /∗ Check s e c t i o n 6 o f r f c 822 h t t p : / / www. f a q s . o rg /
r f c s / r f c 8 2 2 . html ∗ /

const unsigned char a l l o w e d _ l i s t [ ] = LOWALPHA HIALPHA
DIGIT " ! # $%&’∗+−=?^_ ‘ { | } ~@ . [ ] " ;

5 f i l t e r _ m a p map ;

7 f i l t e r _ m a p _ i n i t (&map) ;
f i l ter_map_update (&map, 1 , a l l o w e d _ l i s t ) ;

9 f i l ter_map_apply ( value , &map) ;
}

LISTING 3.2: Code that is called when applying the email sanitizer
filter in PHP

In Listing 3.2 you can see how the sanitization actually works. First, a list is defined
which contains all allowed characters, which in this case consists of all letters, digits
and some special characters. Then a map is initialized which contains which char-
acters are allowed. Finally, in the call to filter_map_apply, we copy each character
in the given string value if it is in the map with all allowed characters. This sani-
tizer would transform "(foo;@bar.com)" into "foo@bar.com" since ";" and brackets are
disallowed characters.

Secondly, we consider an HTML sanitizer which allows you to specify a policy
which dictates what is allowed in the HTML.

An example of an HTML sanitizer can be seen in Listing 3.3

private s t a t i c S t r i n g s a n i t i z e ( @Nullable S t r i n g html ) {
2 S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r ( ) ;

HtmlStreamRenderer renderer = HtmlStreamRenderer . c r e a t e (
4 sb ,

new Handler<Str ing > ( ) {
6 public void handle ( S t r i n g errorMessage ) {

f a i l ( errorMessage ) ;
8 }

} ) ;
10

HtmlSani t izer . Po l i cy po l i cy = new HtmlPolicyBuilder ( )
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12 / / Allow t h e s e t a g s .
. allowElements (

14 " a " , " b " , " br " , " div " , " i " , " i frame " , " img " , "
input " , " l i " ,

" o l " , "p" , " span " , " ul " , " n o s c r i p t " , " noframes " , "
noembed" , " noxss " )

16 / / And t h e s e a t t r i b u t e s .
. a l l o w A t t r i b u t e s (

18 " d i r " , " checked " , " c l a s s " , " hre f " , " id " , " t a r g e t " ,
" t i t l e " , " type " )

. g l o b a l l y ( )
20 / / Cleanup IDs and CLASSes and p r e f i x them with p− t o

move t o a s e p a r a t e
/ / name−s p a c e .

22 . a l l o w A t t r i b u t e s ( " id " , " c l a s s " )
. matching (

24 new A t t r i b u t e P o l i c y ( ) {
public S t r i n g apply (

26 S t r i n g elementName , S t r i n g attributeName ,
S t r i n g value ) {

return value . r e p l a c e A l l ( " (?:^|\\ s ) ( [ a−zA−Z ] ) " ,
" p−$1 " )

28 . r e p l a c e A l l ( "\\s+" , " " )
. tr im ( ) ;

30 }
} )

32 . g l o b a l l y ( )
. a l lowSty l ing ( )

34 / / Don ’ t throw out u s e l e s s <img> and <input > e l e m e n t s
t o e a s e debugging .

. a l lowWithoutAttr ibutes ( " img " , " input " )
36 . bui ld ( renderer ) ;

38 HtmlSani t izer . s a n i t i z e ( html , po l i cy ) ;

40 return sb . t o S t r i n g ( ) ;
}

LISTING 3.3: Example of a HTML Sanitizer from the OWASP Java
HTML Sanitizer project[7]

This sanitizer would transform the input "<iframe><script>alert(Hi!)</script></iframe>"
into "<iframe></iframe> since script tags are not allowed in this policy.

Thirdly, we consider a sanitizer whose policy is to encode the characters "<",
">" and "&" into their corresponding HTML reference. It also encodes quotes if the
optional flag is set to true. For example, the method escape in Python module html
[8] (See Listing 3.4).

1 def escape ( s , quote=True ) :
"""

3 R e p l a c e s p e c i a l c h a r a c t e r s "&" , "<" and ">" t o HTML−s a f e
s e q u e n c e s .
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I f t h e o p t i o n a l f l a g q u o t e i s t r u e ( t h e d e f a u l t ) , t h e
q u o t a t i o n mark

5 c h a r a c t e r s , b o t h d o u b l e q u o t e ( " ) and s i n g l e q u o t e ( ’ )
c h a r a c t e r s a r e a l s o

t r a n s l a t e d .
7 """

s = s . r e p l a c e ( "&" , "&amp ; " ) # Must be done f i r s t !
9 s = s . r e p l a c e ( "<" , "&l t ; " )

s = s . r e p l a c e ( ">" , "&gt ; " )
11 i f quote :

s = s . r e p l a c e ( ’ " ’ , "&quot ; " )
13 s = s . r e p l a c e ( ’ \ ’ ’ , "&#x27 ; " )

return s
LISTING 3.4: A sanitizer that encodes several special characters to

make a string HTML-safe.

3.2 Challenges of sanitization

Sanitizers are very critical pieces of code as they can prevent exploitation of certain
vulnerabilities if used correctly. However, to use sanitizers correctly, there are a few
things that one should keep in mind which will be discussed in this section.

3.2.1 Placement of sanitizers

The first thing to keep in mind is that sanitizers will need to be placed correctly
within the code. If some piece of code is not sanitized, then the sanitization will not
be able to achieve the desired effect.

There has been some research into detecting (in)correct placement of sanitizers.
First of all, a system ScriptGard has been proposed by Saxena et al. [9] which "can
detect and repair the incorrect placement of sanitizers". Welearegai et al. [10] have
proposed an idea to optimize the placement of sanitizers to reduce the amount of
sanitization required. B. Livshits and S. Chong [11] have proposed the idea of fully
automatic sanitizer placement by statically analysing the code and using taint track-
ing. And Yu et al. [12] have shown that automatically generating sanitization state-
ments can be used to patch vulnerable web applications.

Aside from research into correct placement of sanitizers, there is also research
into finding missing sanitizers. For example, the tool CAT.NET [13] tracks the data
flow to find vulnerabilities in binary code.

3.2.2 Usage order of sanitizers

Aside from the correct placement of sanitizers, one also needs to take into account
the order in which multiple sanitizers may be applied. For example consider a func-
tion remove_backslash that removes all "\" and a function escape_and that escapes
all "&" by prefixing it with "\". We are given the piece of text "Slashes & \’s" and
we want to remove all "\" and escape all "&". If we first apply remove_backslash
and then escape_and then the result would be "Slashes \& ’s". However, if we first
apply escape_and and then remove_backslash then the result would be "Slashes &
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’s". Therefore we conclude that the usage order of sanitizers can influence the fi-
nal result. One should therefore be very careful when using multiple sanitization
functions on one string and make sure that it will give them the desired effect.

3.2.3 Context sensitivity

Finally, the last thing to keep in mind is that sanitizers are context sensitive. Depend-
ing on what kind of text you are sanitizing, for example a piece of HTML, Javascript
or XSS, you will need to sanitize the string in different ways. For example, "escape,
which does an HTML entity encode, is safe for use in HTML tag context but unsafe
for other contexts" [14]. It is therefore important to know in what kind of context
you are applying a sanitizer and whether the sanitizer is safe for that context.

3.3 Properties of sanitizers

There are three properties of sanitization functions that are important to discuss
namely equivalence, idempotency and commutativity.

3.3.1 Equivalence

First of all, two sanitization functions A and B are equivalent if applying A to any
input string always result in the same output as applying B. A(s) = B(s) for all
possible strings s.

Checking equivalence is especially useful to find deviations between sanitizers.
Moreover, we need to be able to check equivalence to decide whether sanitizers are
idempotent or commutative (see 3.3.4).

3.3.2 Idempotency

Secondly, a sanitization function A is idempotent if after applying A x times (where
x > 1), the result will always be equal to applying the function only once. A(s) =
A(A(s)) = A(A(A(s))) = ... for all possible strings s.

If sanitizers are not idempotent then this can indicate a possible vulnerability.
Imagine a sanitizers whose goal is to remove script-tags from a given input. It will
search for the text "<script>" and "</script>" within the given input and if found,
it will replace it by the empty string. However, it will traverse the string only once
from beginning to end. As a result, if we input the string "<scr<script>ipt>alert(Hi!)
</scr</script>ipt>", the result will be "<script>alert(Hi!)</script>". This result still
contains a script-tag thus we consider it to be improperly sanitized.

3.3.3 Commutativity

Finally, two sanitization functions A and B are commutative if first applying A and
then B to the input, is always equal to first applying B and then A to the input.
A(B(s)) = B(A(s)) for all possible strings s.

As could be seen in the example discussed in 3.2.2, the order in which sanitiz-
ers are applied can influence the final result. It is even possible that one sanitizer
reverses the changes made by another sanitizer.
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3.3.4 Proving idempotency and commutativity

We are able to check idempotency and commutativity of sanitization functions when
we can compose sanitization functions and check equivalence of them.

To prove that a sanitization function is idempotent, we consider the original san-
itization function f and a second sanitization function f ◦ f which consists of two
original functions composed. If we are able to decide equivalence, then we can prove
that f = f ◦ f . Assume that for some n, n >= 2, that f (s) = f n(s). We then need
to prove that f n+1(s) = f (s). We can rewrite f n+1(s) as f ( f n(s)). We know that
f n(s) = f (s) and therefore f n+1(s) = f ( f n(s)) = f ( f (s)) = f (s).

To prove that two sanitization functions A and B are commutative, we consider
two sanitizers. The first sanitizer S1 consists of first applying A and then B (B ◦ A),
the second sanitizer S2 consists of first applying B and then A (A ◦ B). The sanitiza-
tion functions are commutative when S1 = B ◦ A = A ◦ B = S2. To determine this
we need to compose the two sanitization functions and check the equivalence of the
resulting sanitizers.
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Chapter 4

Related Work

4.1 Correctness of sanitizers

Weinberger et al. [14] have studied XSS sanitization in web application frameworks.
In this study, they have found that "there is a wide gap between the abstractions
provided by frameworks and the requirements of applications." [14]. They indicate
that implementing sanitizers is very error-prone. Therefore, being able to reason
about the correctness of sanitizers is important. Some research on the correctness of
sanitizers has been done and will now be discussed.

First of all, Balzarotti et al. [15] try to identify vulnerabilities in sanitization pro-
cedures used in web applications. To achieve this, they use static analysis to find po-
tentially vulnerable sanitization procedures. Afterwards, they use dynamic analysis
to confirm that this is an actual vulnerability. This approach has been implemented
in the tool Saner.

Unlike Balazarotti et al., who studied existing web applications, Hooimeijer et
al. [16] take another approach. They introduce the language BEK for writing new
sanitizers. This language allows the user to perform analysis of the sanitizer’s be-
haviour, including checking equivalence, idempotency and commutativity. These
properties can be used to study the correctness of sanitizers. Our research focuses
on performing similar analysis on existing sanitizers such that no rewriting of the
sanitizer in the BEK language is necessary.

Multiple approaches already exist which can be used to reason about existing
sanitizers. For example, Argyros et al. [4] present an algorithm that learns sym-
bolic finite automata from sanitizers. These models can then be converted into BEK
programs which allows further analysis of the models. They briefly sketch how the
learning algorithm for symbolic finite automata can be adapted to learn symbolic fi-
nite transducers. In this research, we have invented and implemented an algorithm
for deducing symbolic finite transducers and use it to reason about the correctness
of sanitizers by comparing it to specifications.

Botinčan and Babić [17] have presented the technique Sigma* which learns sym-
bolic lookback transducers from programs. Unlike Argyros et al., this technique is a
white-box technique. Sigma* uses dynamic symbolic execution to discover the tran-
sitions in the automaton. This is followed by counterexample guided abstraction
refinement to refine the automaton. They show that their technique can be used to
reason about the correctness of web sanitizers. Unlike this research, we aim to im-
plement a black-box algorithm which enables us to reason about the correctness of
sanitizers.

Alkhalaf [18] presents another automata-based symbolic string analysis approach
which is used to over-approximate values for the input or output of a function. Vali-
dation and sanitization functions are extracted using formal specifications for differ-
ent functions, after which the automata-based symbolic string analysis is performed.
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The result is then used to detect and repair bugs in the function. The detection and
repairing of bugs is done by either comparing the automata to a given policy or by
comparing two functions. Note that in our research we reason about symbolic fi-
nite transducers instead of symbolic finite automata due to which we can do more
extensive analyses.

Finally, Yu [19] presents another automata-based symbolic string analysis ap-
proach which can be used to automatically verify string manipulating programs.
This technique relies on given attack patterns to find vulnerabilities in functions.
They specify a vulnerability signature which indicates all inputs that may exploit a
vulnerability. Then they modify a given input, if it matches the vulnerability sig-
nature, to prevent exploitation. The modification of a given input can be seen as
automatically sanitizing the input. This technique has been implemented in a tool
called Stranger. This tool has been evaluated and has been shown to detect vul-
nerabilities when presented with correctly specified attack patterns [20]. The main
focus of Yu is to find vulnerabilities in sanitization routines whereas our research
focuses on reasoning about all behaviour of sanitizers, which can be used to, but is
not limited to, finding vulnerabilities.

4.2 Placing sanitizers

Although a correct implementation of sanitizers is necessary, the placement of san-
itizers also influences the correctness of an application. Saxena et al. [9] present a
tool which detects and repairs incorrect placement of sanitizers.

Aside from detecting incorrect placement, there are also techniques to automat-
ically place all sanitizers in an application which eliminates possible wrong place-
ment of sanitizers [10, 11].

Yu et al. [12] have shown that automatically placing sanitization statements can
also be used to patch web applications. And, Long et al. [21] propose a technique
that automatically modifies input to eliminate any dangerous input that may exploit
a vulnerability. This technique not only places, but also generates, the sanitizers
automatically. It does, however, rely on a learning phase, thus it is unlikely to detect
new vulnerabilities. These different approaches all focus on the correct placement
of sanitizers and are therefore complementary research to the ideas discussed in this
thesis.

4.3 Vulnerability Detection

Using the approach in this research, we are able to reason about the correctness of
string manipulating programs. We can reason about many correctness properties of
such programs, including the presence or absence of specific vulnerabilities. Finding
vulnerabilities has extensively been researched and some researchers decided to fo-
cus on vulnerabilities in sanitization functions. For example, Mohammadi et al. [22]
automatically generate security test cases in order to detect injection vulnerabilities
in sanitization functions. And Shar et al. [23] have data mined sanitization methods
in order to predict XSS and SQL injection attacks.
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4.4 Sanitization-free defenses

Sanitization is a very well known approach to prevent vulnerabilities. There are,
however, also defenses that do not use sanitization. Scholte et al. [24] show that
automated input validation can be a good alternative to output sanitization to pre-
vent XSS and SQL injection vulnerabilities. Input validation checks whether a given
input is of an allowed form or type. For example, one may check whether a given
value is a valid email address or whether a given value is an integer. The difference
with sanitization is that validation only checks for the validity of the data. It does not
modify the input in any way. Scholte et al. use machine learning and static analysis
to determine what the type of an input parameter should be. Then, validators for
the learned type are applied to each parameter. They have developed an approach
which automatically validates input parameters at runtime.

Another sanitization-free defense was presented by Costa et al. [25]. Costa et al.
have made a tool Bouncer that prevents exploitation of software by generating input
filters for a program. If the input is considered dangerous then it will be dropped,
i.e. it will not be passed to the program. As a result, exploitation cannot take place
if all malicious messages are correctly identified as dangerous.

4.5 Automata learning

Finally, we discuss research that has been done on deriving models from existing
programs, also called "automata learning". Black-box automata learning has first
been introduced by D. Angluin with the L* algorithm [26]. This algorithm learns
deterministic finite automata using equivalence and membership queries. A similar
learning approach, using equivalence and membership queries, has been developed
for many other types of automata such as:

• Mealy machines [27]

• Moore machines [28]

• Extended mealy machines [29]

• Register automata [30, 31]

• Hybrid automata [32]

• Symbolic finite automata [4, 33]

In this research, we extend this list by developing a learning algorithm for symbolic
finite transducers.

Automata learning can be quite time consuming and the implementation of the
oracles (see Chapter 7) can greatly influence this. Henrix [34] has investigated sev-
eral ways which could be used to improve the performance of a learning algorithm.
He has found that parallelization and saving and restoring software states can be
used to improve the performance of learning Mealy machines. Similar approaches
could be used to improve the performance for the symbolic finite transducer learn-
ing algorithm (see Section 7.2) that is presented in this thesis.

Automata learning has also been evaluated through multiple case studies in
which it has been used to learn systems such as an Engine Status Manager from
Océ [35], communication protocol entities [36] and a computer-telephone integrated
(CTI) application [37]. This has shown that automata learning can be used to derive
models from large real-world systems.
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Chapter 5

Verifying Sanitizers

In this chapter, we look into several ways which could be used to reason about sani-
tizers. Firstly, we have a look at existing string verification research where we focus
on automata-based string analysis which has been proven useful in earlier saniti-
zation analysis. Secondly, we investigate whether sanitizers can be represented by
string rewriting systems. This chapter introduces theoretical concepts such as sym-
bolic automata, transducers, and string rewriting systems. The information on sym-
bolic automata and transducers is considered essential background information for
this research.

5.1 String Verification

To be able to reason about sanitizers and their results, we need to be able to reason
about strings. String verification is the research topic that focuses on techniques to
reason about the value of a string at a specific point in program execution. This is
especially difficult since a string can have infinitely many values. As a result, veri-
fying string manipulating programs, such as sanitizers, is undecidable [38]. Instead
of finding an exact solution, the string analysis techniques focus on finding either
an over- or under-approximation of possible string values. Examples of such tech-
niques are:

• Grammar-based string analysis

• String constraint solving

• Automata-based symbolic string analysis

In this research, we focus on automata-based symbolic string analysis techniques
as this has proven to be effective in sanitizer analysis [4, 15, 16]. Automata-based
symbolic string analysis uses abstract representations of a program called automata
to reason about the value of a string. In the following sections, we introduce several
types of automata which could be used to reason about strings.

5.1.1 Deterministic Finite Automata

A deterministic finite-state automata (DFA) is represented by the quintuple (Q, Σ, δ, q0, F)
[39]:

• Q is a finite set of states

• Σ is the input alphabet

• δ is a function from Q× Σ to Q. It represents all transitions in the automaton.
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q0 

b

a 

a 
b 

q1

FIGURE 5.1: DFA that accepts all words which contain at least one ’a’
character

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of accepting states

An example of a DFA can be seen in Figure 5.1. This DFA will only accept a word,
which consists of a combination of the characters a and b, if it contains at least one
a. Q, which is the set of states consists of {q0, q1}. The input alphabet Σ consists
of {a, b}. The accepting state, q1, is encircled twice in the figure. Finally, the lines,
annotated with characters from the input alphabet, represent all transitions in the
automaton. To check whether a DFA accepts a certain word, you start in the ini-
tial state (which is indicated with an arrow). Then you look at the first character
of the word and follow the transition which starts in your current state and is la-
belled with that character. Repeat this process until all characters of the word have
been processed. If you end in an accepting state, then the word is accepted by the
automaton.

DFAs accept some set of words from the given input language. Therefore, they
can represent a set of acceptable string values at a specific point in a program. How-
ever, they cannot represent how strings are changed by a program. There is no way
to represent the relation between two strings in a DFA.

5.1.2 Finite State Transducers

To reason about sanitizers, we need to be able to reason about the relation between
the input and output string, therefore DFAs are not sufficient. Instead of DFAs, we
therefore look at finite state transducers. Transducers are somewhat similar to DFAs,
however they generate output based on the given input. A finite state transducer (FST)
is represented by the septuple (Q, Σ, Γ, δ, ω, q0, F) [40]:

• Q is a finite set of states

• Σ is the input alphabet

• Γ is the output alphabet

• δ is a function from Q × Σ × Γ to Q that represents all transitions in the au-
tomaton.

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of accepting states
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q0 

b/a

a/b 

a/b 
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q1

FIGURE 5.2: FST that accepts all inputs which contain at least one ’a’
character. It outputs the original word with all b’s replaced with a’s

and vice versa.

See Figure 5.2 for an example of a finite state transducer. The transitions are
labelled with a character from the input alphabet, followed by a "/", and then a char-
acter from the output alphabet. A transition labelled x/y means that upon detecting
the character x, we will take the transition to the next state, and output y. This spe-
cific transducer outputs the inverse of the given input, replacing all a’s by b’s and
vice versa. Given the input "abba", it will compute the output "baab". If one wants
to represent deletion of a character, then this can be done by outputting the empty
string upon detecting the character.

Finite state transducers allow us to represent the relation between two strings.
Thus we can use this to represent the relation between the input and output string
in a sanitizer. One can however imagine that such an automaton will get many
transitions if we have an input alphabet that is larger than two characters since we
require one transition per input character per state. Thus if we only use the generic
alphabet (a-z), this would already lead to 52 transitions in the case of two states as in
the example. To make the automaton more concise, we turn to symbolic automata.

5.1.3 Symbolic Finite Automata

"Symbolic Finite Automata (SFAs) are finite state automata in which the alphabet is
given by a Boolean algebra that may have an infinite domain, and transitions are
labelled with first-order predicates over such algebra." [41] Thus the most important
difference between SFAs and DFAs is that transitions are not labelled with specific
characters from the input alphabet, but instead they are labelled with first-order
predicates. The second important difference is that SFAs are not necessarily deter-
ministic whereas DFAs are deterministic by definition. An SFA is deterministic if,
for each state in the SFA, the transitions starting in that state are labelled such that
when multiple predicates are true at the same time, then these transitions will lead
to the same state. If an SFA is non-deterministic, then there is at least one state where
multiple transitions can be taken which lead to different states.

An effective Boolean algebra can be described as the following tuple
(D, Ψ, J_K,⊥,>,∨,∧,¬) [42]:

• D is the set of domain elements

• Ψ is a set of predicates closed under the Boolean connectives, with ⊥,> ∈ Ψ

• The component J_K : Ψ→ 2D is a denotation function such that:
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q0 
even(x) 

even(x) 

q1 q2
odd(x)

odd(x) 

even(x)
odd(x) 

FIGURE 5.3: SFA that accepts all inputs which contain at least one
odd number.

– J⊥K = ∅

– J>K = D
– For all ϕ, ψ ∈ Ψ,

∗ Jϕ ∨ ψK = JϕK∪ JψK
∗ Jϕ ∧ ψK = JϕK∩ JψK
∗ J¬ϕK = D\JϕK

An example of a Boolean algebra could be the following. We have the domain
consisting of the numbers 0 up to including 9. The set of predicates contains odd(x)
and even(x). These predicates will return whether a given number x is odd or even,
respectively. For example, odd(1) will evaluate to true whereas even(3) will evalu-
ate to false.

Symbolic Finite Automata can be defined using the tuple (A, Q, q0, F, δ) [42]:

• A is an effective Boolean algebra

• Q is the finite set of states

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of accepting states

• δ is a function from Q×ΨA to Q that represents all transitions in the automa-
ton.

See Figure 5.3 for an example of a Symbolic Finite Automata. The transitions are
labelled with the predicates even(x) and odd(x). They return true if x is an even
number, or odd number, respectively These predicates correspond to the predicates
for the Boolean algebra described earlier. Instead of comparing your first character to
the labels on the transition, as was done in DFAs, we now need to compute even(x)
and odd(x). You will then follow the transition whose predicate evaluates to true.
For example, take the input 261. We start in q0 and compute odd(2) and even(2).
Since 2 is an even number, the predicate even(2) evaluates to true and thus we
follow this transition and end up in q1. The second number, 6, is also even, thus
the predicate even(6) will evaluate to true. We follow the transition which leads us
to the same state q1. Finally, we compute odd(1) and even(1). This time odd(1)
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evaluates to true, thus we end up in the state q2. This is an accepting state thus the
input 261 is accepted.

In order to reason about the correctness of SFAs, we also introduce several oper-
ators namely intersection, complement and equivalence.

Intersection of SFAs

The following notation will be used in the following sections:

• qM
i denotes state qi in automaton M.

• δM(qi) denotes the set of transitions in automaton M which start in state qi.

• FM denotes the set of final states of automaton M.

• Guard(t) denotes the guard of transition t.

• Target(t) denotes the target to which transition t leads.

The intersection of two SFAs can be computed using the following algorithm [43]:

1. Let S = (〈qA
0 , qB

0 〉), V = {〈qA
0 , qB

0 〉} and T = ∅.

2. If S is empty, go to step 4 else pop 〈q1, q2〉 from S.

3. Iterate for each t1 ∈ δA(q1) and t2 ∈ δB(q2), let ϕ = Guard(t1) ∧ Guard(t2), let
p1 = Target(t1) and let p2 = Target(t2). If ϕ is satisfiable then

(a) Add the transition (〈q1, q2〉, ϕ, 〈p1, p2〉) to T

(b) If 〈p1, p2〉 is not in V then add 〈p1, p2〉 to V and push 〈p1, p2〉 to S

(c) Proceed to step 2.

4. Let C = (〈qA
0 , qB

0 〉, V, {q ∈ V|q ∈ FA × FB}, T) where V represents the set of
states and T the transition relation.

5. Eliminate states in C from which no final state can be reached.

Note that we need to be able to check whether a certain guard is satisfiable. Therefore
the SFAs, of which we compute the intersection, should operate over an effective
Boolean algebra.

Complement of an SFA

When computing the complement of an SFA, the SFA first needs to be made com-
plete. An SFA is incomplete if there is a state for which there exists an input i for
which the guards of all transitions starting in s evaluate to false.

The complement A of SFA A can be computed as follows [42]:

1. First add a non-final state s to the automaton.

2. Add a transition from s to itself with the condition "True".

3. For each non-complete state p in A, add the following transition:

p
¬(Guard(t1)∨Guard(t2)∨...∨Guard(tn))−−−−−−−−−−−−−−−−−−−−−→ s where t1, t2, ..., tn denote all transitions start-

ing in p.

4. Finally, make all final states non-final and vice versa.
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Equivalence of SFAs

Note that equivalence of SFAs is only decidable "if the alphabet theory forms a de-
cidable Boolean algebra" [44]. Two SFAs A and B are equivalent if they accept the
same language (L(A) = L(B) [42]). This can be computed as follows:

1. Compute C = A ∩ B

2. Compute D = A ∩ B

3. If C and D are empty, then there is no word that is accepted by one automaton
but not by the other. Therefore L(A) = L(B), i.e. the SFAs are equivalent.

5.1.4 Symbolic Finite Transducers

Now that some basics of symbolic automata have been explained, we introduce the
Symbolic Finite Transducer (SFT). Similar to a Finite State Transducer, a Symbolic Fi-
nite Transducer also produces outputs when given an input. This output is com-
puted using the given input character. Therefore all transitions in an SFT are labelled
with an input condition as well as an output sequence [45]. Note that it is possible
to compute multiple outputs per input character. A Symbolic Finite Transducer can be
described using the tuple (Q, q0, F, ι, o, ∆) [45]:

• Q is the finite set of states

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of accepting states

• ι is the input sort

• o is the output sort

• ∆ is a function consisting of ∆ε ∪ ∆ε̄:

– ∆ε is a function from Q× F(cι)× (To(cι))∗ to Q. It denotes all transitions
in the automaton labelled with a first-order predicate and the set of output
functions.

– ∆ε̄ is a function from Q×{ε}× (To)∗ to Q. It denotes all transitions in the
automaton labelled with ε and the set of output functions. ε-transitions
are found in non-deterministic automata and represent transitions that
can be taken without consuming an input at any point in time.

Note that a Symbolic Finite Automaton is a Symbolic Finite Transducer that pro-
duces empty outputs [45].

An example of a Symbolic Finite Transducer can be seen in Figure 5.4. Each
transition is now labelled x/y as in the transducer example. x denotes the input con-
dition which is expressed using a predicate over some Boolean algebra. y denotes
the output sequence which is one or more functions, expressed using the input sym-
bol, which computes the output. To see how such an automaton works, we will have
a look at the number 216 as an input for the SFT illustrated in Figure 5.4. The first
number is even, thus we will take the transition from state q0 to q0. Upon taking
this transition, we compute the following output: [x− 1, x + 1] = [1, 3]. The second
number is odd thus we will take the transition to the state q1. Upon taking this tran-
sition we compute the output [x] = [1]. Thus our output, up to this point, is [1, 3, 1].
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q0 

even(x) / [x-1, x+1] 

odd(x) / [x] 

odd(x) / [x] 
even(x) / [x-1, x+1] 

q1

FIGURE 5.4: SFT that accepts all inputs which contain at least one odd
number. For each even number it will output the two surrounding

numbers and for each odd number it will output the odd number.

Finally, the last number is even, thus we take the transition labelled with even(x) /
[x-1, x+1] to the state q1. The output for this step will be [x− 1, x + 1] = [5, 7]. We
are now done processing the input symbols. We end up in an accepting state thus
the input is accepted. The complete output that has been computed is [1, 3, 1, 5, 7].

Aside from presenting all possible string values of a specific variable at a pro-
gram point, an SFT also shows the relation between the input and output. This is
very useful to reason about sanitizers since it allows us to reason, not only about the
input or output language, but also about the relation between the input and output
language. As explained in Section 3.3.4, if we can prove equivalence of two san-
itizers, then we can also prove commutativity and idempotency. Sanitizers can be
represented by SFTs. Therefore, we examine what is needed to prove the equivalence
of SFTs.

Equivalence of SFTs

In general, equivalence of SFTs is undecidable due to the unbound number of out-
puts that they may produce upon a given input [46]. However, sanitizers generally
always produce the same single output upon a given input. In other words, if repre-
sented as an SFT, they always take one specific path to reach a final state. We call an
SFT single-valued if there is at most one path starting in the initial state and ending in
some final state, such that the input has been completely consumed, for all possible
inputs. An SFT will be single-valued if it is deterministic. Note that there are also
single-valued SFTs that are not deterministic. An SFT is deterministic if for all states
p, if the input condition on two transitions starting in p is true, then these transitions
will lead to the same state and the produced output will be the same. Equivalence
of SFTs can be determined through two steps:

• Domain equivalence: D(A) = D(B)

• Partial equivalence: ∀a ∈ D(A) ∩ D(B), TA(a) = TB(a) where TA(a) = {b ∈
Γ∗|∃q ∈ FA(q0

A
a/b
� q)}. Γ∗ denotes the possible outputs of automaton A.

Domain equivalence states that the SFTs A and B must accept the same inputs. Par-
tial equivalence states that for each possible input, the two automata should produce
the same output(s). These two statements combined mean that the SFTs A and B
must accept the same inputs and produce the same outputs for each input.
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p0 

even(x) / [ ]

odd(x) / [x, x] 

odd(x) / [x, x]
even(x) / [ ] 

p1

FIGURE 5.5: SFT T1 which ac-
cepts all numbers with at least
one odd number. It produces ev-
ery odd number twice as output.

q0 

notDivThree(x) / [ ]
divThree(x) / [x] 

FIGURE 5.6: SFT T2
which accepts all num-
bers. The output is the
original input with all
numbers not divisible

by 3 removed.

Composition of SFTs

Function composition is the act of combining multiple functions to create a more
complex function. In terms of sanitizers this means that we have an input which is
given to some sanitization function whose output is passed to the next sanitization
function and so on. The final result is equal to the result of the last sanitization
function. Since each SFT represents one sanitization function, the composing of SFTs
is relatively simple. We need to pass the result from the first SFT to the next and so
on until the last sanitizer is reached. Take for example an SFT with the transition

p
ϕ/[ f1, f2]−−−−→ p′ and an SFT with the transitions q

ψ/[g]−−−→ q′
γ/[h]−−→ q′′. The composition of

these transitions will give you the following: (p, q)
ϕ∧ψ( f1)∧γ( f2)/[g( f1),h( f2)]−−−−−−−−−−−−−−−→ (p′, q′′)

[42]. It is important to note that the outputs of the first transition, f1 and f2, are
given as arguments to the next transitions. This means that the input language of
the second SFT must at least accept the output language of the first SFT.

An SFT composed from SFT A and SFT B is described by the tuple
(QA ×QB, (q0

A, q0
B), FA × FB, ιA, oB, ∆A◦B) [16]:

• QA × QB = {(a, b)|a ∈ QA and b ∈ QB} is the cross-product of all states. All
states that cannot be reached can be eliminated.

• (q0
A, q0

B) ∈ QA ×QB is the initial state

• FA× FB ⊆ QA×QB are the accepting states. A word is accepted if it is accepted
by SFT A, and if the output of SFT A is accepted by SFT B.

• ιA, the input language of SFT A, is the input language of the composed SFT.

• oB, the output language of SFT B, is the output language of the composed SFT.

• ∆A◦B is the set of all transitions which are composed as explained earlier. All
transitions with an unsatisfiable condition can be omitted.

Now an example of the composition of SFTs will be discussed. We consider the
SFTs T1 and T2 which can be seen in Figure 5.5 and 5.6 respectively. Both SFTs
take the input alphabet consisting of all natural numbers N. The predicates in T1
are the same as used in earlier examples of automata where even(x) is true when
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the number is even, and odd(x) is true when the number is odd. The predicate
divThree(x) in T2 checks whether you can divide the given number by 3 without
any remainder (x % 3 = 0). notDivThree(x) is the negated predicate divThree(x).
We start by computing the cross-product of all states: {(p, q)|p ∈ T1 and q ∈ T2} =
{(p0, q0), (p1, q0)}. The initial state is (p0, q0). The accepting states are {(p1, q0)}.
The input language, which is the input language of T1, is the set of all natural num-
bers. The output language, which is the output language of T2, is a subset of all
natural numbers. Namely, all natural numbers that consist of digits that are divisi-
ble by three (3,6,9). Note that T2 also accepts the empty word ε. Finally, the set of all
transitions needs to be computed:

• (p0, q0)
even(x)/[]−−−−−→ (p0, q0)

• (p0, q0)
odd(x)∧divThree(x)∧divThree(x)/[x,x]−−−−−−−−−−−−−−−−−−−−→ (p1, q0) which can be simplified to

(p0, q0)
odd(x)∧divThree(x)/[x,x]−−−−−−−−−−−−−→ (p1, q0). Note that this is only possible because

the output of automaton T1 is twice the same number and because the predi-
cate is the same.

• (p0, q0)
odd(x)∧divThree(x)∧notDivThree(x)/[x]−−−−−−−−−−−−−−−−−−−−−→ (p1, q0). This transition can be omit-

ted since the predicate is unsatisfiable due to the clauses divThree(x) and
notDivThree(x).

• (p0, q0)
odd(x)∧notDivThree(x)∧divThree(x)/[x]−−−−−−−−−−−−−−−−−−−−−→ (p1, q0). This transition can also be

omitted since the predicate is unsatisfiable.

• (p0, q0)
odd(x)∧notDivThree(x)∧notDivThree(x)/[]−−−−−−−−−−−−−−−−−−−−−−−→ (p1, q0) which can be simplified to

(p0, q0)
odd(x)∧notDivThree(x)/[]−−−−−−−−−−−−−−→ (p1, q0)

• (p1, q0)
even(x)/[]−−−−−→ (p1, q0)

• (p1, q0)
odd(x)∧divThree(x)∧divThree(x)/[x,x]−−−−−−−−−−−−−−−−−−−−→ (p1, q0) which can be simplified to

(p1, q0)
odd(x)∧divThree(x)/[x,x]−−−−−−−−−−−−−→ (p1, q0)

• (p1, q0)
odd(x)∧divThree(x)∧notDivThree(x)/[x]−−−−−−−−−−−−−−−−−−−−−→ (p1, q0) whose predicate is unsatisfi-

able thus it can be omitted.

• (p1, q0)
odd(x)∧notDivThree(x)∧divThree(x)/[x]−−−−−−−−−−−−−−−−−−−−−→ (p1, q0) whose predicate is unsatisfi-

able thus it can be omitted.

• (p1, q0)
odd(x)∧notDivThree(x)∧notDivThree(x)/[]−−−−−−−−−−−−−−−−−−−−−−−→ (p1, q0) which can be simplified to

(p1, q0)
odd(x)∧notDivThree(x)/[]−−−−−−−−−−−−−−→ (p1, q0)

The final automaton T2 ◦ T1 can be seen in Figure 5.7. It will output all numbers that
are odd and divisible by three twice. All other numbers will not occur in the output.
Take for example the input 23569. The output produced by T2 ◦ T1 will be [3, 3, 9, 9].

5.2 String Rewriting Systems

Sanitizers essentially rewrite a given input. They rewrite this input either by adding,
replacing or removing characters. Therefore we investigate whether we can use
rewrite systems to reason about the correctness of sanitizers.
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p0,q0 

even(x) / [ ]

odd(x) ^ notDivThree(x) / [ ] 
odd(x) ^ divThree(x) / [x, x] 

odd(x) ^ notDivThree(x) / [ ] 
odd(x) ^ divThree(x) / [x, x] 

even(x) / [ ] 

p1, q0 

FIGURE 5.7: SFT T2 ◦ T1 which represents the composition of SFTs T1
and T2

String Rewriting Systems (SRS), also called Semi-Thue systems, are a type of rewrit-
ing system for strings. It can be described using an alphabet Σ and a binary relation
R which describes the rewriting rules. These rewriting rules have a form similar to
"usv → utv" where s, t, u, v are in the alphabet of the system. If the current input
matches the pattern on the left-hand side, then it will be changed into the pattern on
the right-hand side.

As an example consider an alphabet containing all unicode characters. The rela-
tion R contains two rewriting rules:

1. < script >→ ε

2. < /script >→ ε

ε denotes the empty string in these rules. Note that in these rules we omit the u and v
which are used to show that it may also be a substring of the original string. We start
with the string "<scr<script>ipt>alert(hi!)</scr</script>ipt>". In the beginning, the
first rule is applied, thus removing the nested <script> tag in the string. This results
in the string "<script>alert(hi!)</scr</script>ipt>". We continue rewriting the string
until no rules are applicable anymore. The final string will be "alert(hi!)". In Figure
5.8 you can see a representation of how applicable rules can be applied in different
orders.

Although it seems like a natural way of reasoning about sanitizers, there are
some issues to take into account. First of all, some sanitizers may stop after travers-
ing the string only once. This may lead to cases where some rules would still be
applicable. In the case of a rewriting system, one typically tries to apply rules until
no more rules are applicable. Thus a sanitizer would then be represented by only a
subset of the applied rules.

Secondly, rewriting systems may not terminate whereas sanitizers should. This
behaviour can occur when adding or replacing characters which enables the applica-
bility of a rule. Such behaviour is however not possible when removing characters
from the string. Reasoning about removing characters in a string using a rewrite
system will always terminate since the length of the string will strictly decrease. As
a result, you will either end with the empty string or no rules will be applicable
anymore.

5.2.1 Properties of Rewriting Systems

This section will describe some properties of rewriting systems and how they may
be related to properties of sanitizers and the security of sanitizers.
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<scr<script>ipt>alert(hi!)</scr</script>ipt>

<script>alert(hi!)</scr</script>ipt> <scr<script>ipt>alert(hi!)</script>

<script>alert(hi!)</script>

alert(hi!)</scr</script>ipt> <scr<script>ipt>alert(hi!)

alert(hi!)</script> <script>alert(hi!)

alert(hi!)

1 2

2
1

1
2

1 2
2 1

2 1

FIGURE 5.8: Diagram illustrating all possible paths of applying the
rewriting rules. It should be read from top to bottom. The numbers

on the edges denote which rewriting rule is applied.

e

e1 e2

e′

* *

* *

FIGURE 5.9: Diagram illustrating the Church-Rosser property.

The Church-Rosser property states that two diverged paths are joinable (see Fig-
ure 5.9). Assume that we have some input e. We have a rewriting system consisting
of multiple rules of which two are applicable to e. Applying either the first or second
applicable rule results in e1 and e2 respectively. There are now two diverged paths:
e → e1 and e → e2. Joining these two diverged paths means that we apply (other)
rewriting rules until we end up with the same result e′. Thus, the Church-Rosser
property states that, if we apply two different rewriting rules to the same input, then
they can lead to the same output. This property is similar to the notion of commu-
tativity of sanitizers. The difference, however, is that commutativity reasons about
the result in two rewriting steps whereas the Church-Rosser property allows taking
multiple steps to reach the common successor.

Termination of a rewriting system states whether at some point in time, no more
rules will be applicable. Termination is guaranteed when reasoning about rules
which remove characters from the input. It is, however, not guaranteed when rea-
soning about rules that add or replace characters in the input. If a sanitizer is idem-
potent, then its corresponding rewriting system terminates. However, if a rewriting
system is non-terminating, then this can indicate that the corresponding sanitizer
might be vulnerable since it must be non-idempotent (see Section 3.3.2).
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5.2.2 Word problem

Finally, we investigate a well known problem of string rewriting systems called the
word problem, and its relation to sanitizers. The word problem for String Rewrit-
ing Systems can explained as follows: given some SRS (Σ, R) and u, v ∈ Σ∗, can u
be transformed into v using the rules in R. This problem is undecidable. It is how-
ever important to note the following. If we can describe a sanitizer as an SRS, then
the following question is undecidable: given an input u, can we transform it into
(malicious) output v using the rules in R.

5.3 Automata-based analysis or String Rewriting Systems?

In this chapter, we have investigated two possible approaches to reason about the
behaviour of sanitizers. String Rewriting Systems seem a very logical model to
reason about sanitizers, however we do not know how we could derive a String
Rewriting System from a sanitizer. Moreover, there are still some theoretical is-
sues which would need to be investigated further such as how to determine when
a string rewriting system should terminate. Automata-based analysis of sanitizers
has already been used to analyse sanitizers’ behaviour and has been proven to be
effective. Therefore we will use automata-based analysis to model sanitizers in our
research.
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Chapter 6

Specifying Sanitizers

This chapter will discuss what specifications one would want to write for sanitizers
and what is needed to prove these specifications.

6.1 Specifications

This section will give an overview of specifications that may be written to specify
the behaviour of a sanitizer. Note that the main focus of this research is to reason
about the security of sanitizers thus the specifications will also focus on properties
related to this.

To be able to reason about whether sanitizers work correctly, we need to know
what the correct behaviour is. To achieve this, one can write a specification: an
abstract view of how the sanitizer should act. The existing sanitizer is then compared
to the specification to check whether the sanitizer adheres to the specifications.

Below you can find a list of possible behaviours that might be specified for a
sanitizer. The options on this list have been discovered through a brainstorming
session with employees of the company Northwave [47] which specializes in, among
other things, security testing. The complete list of suggested specifications can be
found in Appendix A.

• Blacklisting: You may want to specify which characters are disallowed in the
output. It allows reasoning about some of the simplest sanitizers such as for
an email address sanitizer which removes disallowed characters.

• Whitelisting: You may want to specify which characters are strictly allowed in
the output.

• Structure of output: If you can specify the structure of the output, one can make
sure that the output of a sanitizer will always adhere to a certain structure.
For example, a sanitizer might always output a valid HTML document. Note
that this is related to validation where you check whether input adheres to a
specific structure. One might also want to check whether the structure of the
input is the same as the structure of the output. Note that structure, in this
context, refers to the way that documents’ contents are ordered. For example,
the structure of an HTML document is described using HTML elements which
are denoted using tags such as "<p></p>, <body></body>".

• if z then x → y: If condition z is true, then everything that matches x should
change into y. This allows you to specify changes such as delete a whitespace
if it is a trailing whitespace. Note that it can also be used to denote that some-
thing must not change by using if z then x → x.
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– There is also a special case of this specification namely x → y which
means that x always changes into y.

• Length: You may want to specify the allowed length of the output, which may
be related to the length of the input.

• Equivalence, idempotency and commutativity: You might want to know whether
a sanitizer is equal to another sanitizer, whether a sanitizer is idempotent and
whether it is commutative in regards to another sanitizer.

• Bad output specification: Given a bad output, you want to know what inputs
can lead to that bad output. If you have a set of inputs that lead to the bad
output, then one likely wants to specify that this set is empty or perhaps get
an example of a bad input.

6.2 Necessary models

This section examines what type of model each specification needs to be compared
to. A specification can generally be divided into two categories namely input-/output-
only or input-output relation. The first category includes specifications that only
reason about either the input or the output language. The second category includes
specifications that reason about the relation between the input and the output lan-
guage.

6.2.1 Input-only or output-only

The following specifications only reason about the input or output of a sanitizer:

• Blacklisting

• Whitelisting

• Structure of output

• Length

To check these specifications, one needs a model that represents either the input or
the output of the sanitizer, for example an SFA.

The structure of the output is only related to the output language. This can,
however, not be represented by an SFA. Instead, a model such as Symbolic Tree
Automata[48] can be used. In case one wants to reason about the way the structure
is changed, then a model such as a Symbolic Tree Transducer [49] can be used. Note
that tree automata and tree transducers are out of scope for this research. Therefore,
we will not be able to reason about the structure of the input or output.

6.2.2 Input-output relation

The following specifications reason about the relation from input to output of a san-
itizer:

• if z then x → y

• Equivalence, idempotency and commutativity

• Bad output specification



Chapter 6. Specifying Sanitizers 31

To prove these specifications, one needs a model that represents the relation between
the input and output of a sanitizer such as an SFT.

Idempotency and commutativity only reason about the output. However, equiv-
alence checking is needed to determine these properties. Since equivalence check-
ing depends on the input-output relation, idempotency and commutativity checking
also depend on the input-output relation.

6.3 How to write specifications

In this section, we explore what the user needs to specify for each individual type of
specification mentioned earlier. Moreover, we discuss how each of these specifica-
tions can then be checked using the specification provided by the user. We assume
that specifications are written in the form of an SFA or SFT by the user. Note that
an SFT specification needs to be single-valued. If this is not the case, then we cannot
determine equivalence, thus checking the specifications becomes impossible. Since
SFAs are closed under product [42], we can write multiple specifications and com-
pute the product of these to check all specifications at once. This is, however, not
possible with SFTs since SFTs are not closed under product [46].

Below are some notations that will be used in SFA and SFT examples in the up-
coming sections:

• true: This matches any possible input character.

• x == y: Instead of using the notation isY(x), we use x==y to denote that x is
equal to character y.

• x != y: Instead of using the notation isNotY(x), we use x!=y to denote that x is
not equal to character y.

• ^: This is an operator between predicates which denotes a conjunction.

6.3.1 Blacklisting

Blacklisting limits what input is considered acceptable by comparing all inputs to
a list of unacceptable inputs. If you want to write a blacklist specification, then
you need to construct an SFA that accepts all unacceptable inputs as specified by
the blacklist. If this has been specified, then you can compute the union with the
SFA representing the accepted input language. If the union is equal to the empty
automaton, it means that no unacceptable input is accepted.

Formally, this process can be described as follows. We need to specify an SFA A
such that: ∀s ∈ Σ∗.¬isAcceptable(s) ⇐⇒ A.accepts(s).
isAcceptable(s) denotes whether input s is acceptable according to the blacklist. A.accepts(s)
denotes whether SFA A accepts the input s. Note that we reason about the input lan-
guage Σ∗ which is the input language of the sanitizer.

Assume that you have another SFA B, which is a model of the sanitizer. SFA B
should have been made such that: ∀s ∈ Σ∗.isAccepted(s) ⇐⇒ B.accepts(s).
isAccepted(s) denotes whether the input s is accepted by the sanitizer. We then com-
pute the union of these two automaton, which means that we construct the automa-
ton C = A ∩ B, for which the following is true by construction:

∀s ∈ Σ∗.C.accepts(s) = (A ∩ B).accepts(s)
= A.accepts(s) ∧ B.accepts(s)
= ¬isAcceptable(s) ∧ isAccepted(s)

(6.1)
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q8 

q0 

x != '<'
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x == '<'

true

x == '>'

FIGURE 6.1: Example of a blacklisting specification where all words
containing "<script>" are unacceptable.

Thus C accepts all words that are not acceptable according to the blacklist and are
accepted by the sanitizer. Therefore if L(C) = ∅ then there does not exist any input
such that it is accepted by the sanitizer but not acceptable according to the blacklist.

An example could be that you want to reject all inputs that contain "<script>".
A possible specification for this example can be seen in Figure 6.1. Note that this
approach can also be used to reason about all unacceptable outputs, in which case
the specified SFA is compared to the SFA that represents the output language.

6.3.2 Whitelisting

Whitelisting limits what input is considered acceptable by comparing all inputs to
a list of acceptable inputs. The user can specify an SFA that accepts all acceptable
inputs. Let SFA A be the specified SFA such that: ∀s ∈ Σ∗.isAcceptable(s) ⇐⇒
A.accepts(s).
In this case, isAcceptable(s) denotes whether s is acceptable according to the whitelist.
Also, assume that we have an SFA B that represents the sanitizer such that: ∀s ∈
Σ∗.isAccepted(s) ⇐⇒ B.accepts(s) where isAccepted(s) denotes whether an input is
accepted by the sanitizer.

In this case, there are two ways in which you can check the specification, based
on the user’s preference. Firstly, one can check whether SFA A is equal to SFA B.
If the automaton are equivalent, then they accepts the same inputs. Secondly, one
can check whether B ⊆ A. This means that the sanitizer accepts some, perhaps all,
inputs from the whitelist. Note that there is not a third option where one can check
whether A ⊆ B since this would mean that the sanitizer may accept some word that
is not allowed according to the whitelist.
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true q3
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FIGURE 6.2: SFA which accepts all words with a length of at most 2.

q0 q1
true q2

true q3
true

true

FIGURE 6.3: SFA which accepts all words with a length of at least 3.
Note that this SFA is the complement of the SFA in Figure 6.2.

Note that this approach can also be used to reason about all acceptable outputs,
in which case the specified SFA is compared to the SFA representing the output
language.

6.3.3 Length

The user may be interested in checking the length of all possible outputs of the san-
itizer. If so, then the user can check whether all strings have the length x ∈ N by
specifying an SFA that accepts all words of length x. We need to compute the union
of the complement of this SFA with the SFA representing the input or output lan-
guage. If this union is empty, then all words have the length x. If this union is
non-empty, then there exists a word with a length that is not equal to x.

Formally, we can describe this process as follows. Construct an SFA A such that:
∀s ∈ Σ∗.s.length() == x ⇐⇒ A.accepts(s)
where x ∈ N denotes the length for which we want to construct the SFA. Assume
that you have an SFA B that represents either the input or output language of the
sanitizer such that: ∀s ∈ Σ∗.isAccepted(s) ⇐⇒ B.accepts(s)
where isAccepted(s) denotes whether the sanitizer accepts input s. We then construct
the union, C = A ∩ B, for which the following is true by construction:

∀s ∈ Σ∗.C.accepts(s) = (A ∩ B).accepts(s)

= A.accepts(s) ∧ B.accepts(s)
= (s.length() 6= x) ∧ isAccepted(s)

(6.2)

If L(C) = ∅ then all words that are accepted by the sanitizer have length x.
Note that instead of computing the complement of the specification, you can also

specify an SFA which accepts all words which do not have length x. This approach
can be used to check whether there exist input or output strings with a length x, not
equal to x, smaller than x or greater than x (See Figures 6.2 and 6.3).
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q0 

x != '>' ^ x != '&' ^ x != '<' / [x]
x == '>' / [&, g, t, ;] 

x == '&' / [&, a, m, p, ;] 
x == '<' / [&, l, t, ;] 

FIGURE 6.4: SFT which encodes <, > and & into their HTML refer-
ence. This SFT describes the behaviour of the Python encode method

with the optional flag set to False (see Listing 3.4).

6.3.4 If z then x → y

Next, we consider the "if z then x → y" specification. In this case the user needs
to specify the complete system. Remember that all arrows in an SFT are annotated
with pred(x)/[ f (x)] where pred(x) (=z) denotes a predicate over input x, and f (x)
(=y) denotes how the input x is changed, which results in y. Therefore the condition
z is limited to what can be expressed using predicates over x in the boolean algebra.
Below you can find a list of examples that are possible to express:

• Capitalize the letters a to z.

• Escape all quotes using a backslash, unless it is already escaped.

• Encode >, < and & into their HTML reference (see Figure 6.4).

And a list of examples that are impossible to express:

• Escape the last character in the input

• If the input word has an odd length then add a character.

• Remove a script tag and its corresponding closing tag.

• Encode & into its HTML reference, unless it is part of an HTML encoded &.

Note that at this point, it is not possible to express specifications over multiple input
characters. This would require an automaton with lookahead, lookback or registers.
As a result, we are unable to express something such as "Remove all HTML tags".

To check whether this specification is true, we compare the constructed SFT A
to the SFT B which represents the sanitizer. Therefore, the specification needs to
include all behaviour of the sanitizer.

An example specification for a sanitizer that encodes the character &, if it is not
yet encoded, into its HTML reference can be seen in Figure 6.5. However, this speci-
fication does not perfectly model the behaviour of the sanitizer. If a string ends with
&a, &am or &amp then it will only output & and ignore the following characters. We
need to recognize the end of the input to be able to solve this problem. This can
be modelled by adding ε-transitions to the automaton. This would, however, result
in an automaton that is not single-valued. Therefore, we would be unable to check
whether the automaton is equivalent to another automaton.
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FIGURE 6.5: SFT which encodes & into its HTML reference, unless it
is part of an encoded &. Note that this SFT does not precisely model

the sanitizer.

6.3.5 Equivalence, idempotency and commutativity

Equivalence checking has already been explained in 5.1.4, therefore only idempo-
tency and commutativity are discussed in this section.

The user does not need to specify anything to check idempotency. We will com-
pute the composition of the SFT that represents the sanitizer with itself. This com-
posed SFT is then equivalence-checked with the SFT that represents the sanitizer.
Thus formally we compute whether A ◦ A = A. If these are equivalent then we can
conclude that the sanitizer is idempotent.

To check commutativity, the user needs to indicate with for which two sanitizers,
A and B, commutativity needs to be checked. We then compute the compositions A ◦
B and B ◦ A. If these compositions are equivalent, then we conclude that sanitizers
A and B commute.

6.3.6 Bad output specification

To check what inputs can lead to a bad output, the user only needs to specify the bad
output which can be done in the form of a string. Then, using a pre-image compu-
tation over the SFT representing the sanitizer, we can compute the set of inputs that
lead to the bad output. Formally, we need to compute Pre(y) = {x| f (x) = y}where
f (x) denotes the function which describes how the sanitizer behaves and y is the
bad output that the user has specified. It is, unfortunately, impossible to compute
the complete set of inputs that lead to a certain output. This is due to the fact that an
infinite amount of inputs may lead to one specific output. You can compute a possi-
ble input by using a backwards breadth-first search (BFS) or depth-first search (DFS)
where the output of the transitions is matched to the specified bad output. Note that
the input that is found should start in an initial state and end in an accepting state.
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Type of specification What user needs to specify
Blacklisting List of unacceptable words
Whitelisting List of acceptable words
Length Integer x and =, 6=,<,>,≤ or ≥

TABLE 6.1: Table which shows per specification type what the user
needs to specify in order to be able to automatically generate the spec-

ification.

6.4 Automatic generation of specifications

Writing specifications requires significant effort and knowledge. To simplify the
user’s tasks, we can automatically generate some specifications. The specifications
mentioned in Table 6.1 can be automatically generated. The user will still need to
specify what needs to be checked. However, it does require less work and less spe-
cific knowledge from the user. Thus, it makes the approach more user-friendly,

For the specification of a blacklist, we need an SFA that accepts all unacceptable
inputs. When given a list of unacceptable words, i.e. the blacklist, such an automata
can be automatically constructed as follows. Firstly, for each unacceptable input,
construct the automaton that accepts only this input. Then, compute the union of all
constructed automata. This results in the automaton which accepts all unacceptable
inputs.

For the specification of a whitelist, we need an SFA that accepts all acceptable
inputs. When given a list of acceptable words, i.e. the whitelist, then such an au-
tomaton can be automatically constructed in a similar manner as the specification
for a blacklist. Firstly, for each acceptable input, construct the automaton that ac-
cepts only this input. Then, compute the union of all constructed automata. This
results in an automaton which accepts all acceptable inputs.

Finally, we discuss how to automatically construct an automaton for a length
specification. For each specification, we need to construct an automaton with x + 2
states where x denotes the specified length. Let the states be labelled s0, ..., sx+1. For
each state si in {s0, ..., sx}, construct a transition from si to si+1 labelled with true.
Next, construct a self-loop, labelled true, for the state sx+1. Finally, we need to define
the accepting state(s) as follows:

• In case of =, make the state sx accepting.

• In case of 6=, make all states except sx accepting.

• In case of <, make all states si for which i < x accepting.

• In case of >, make all states si for which i > x accepting.

• In case of ≤, make all states si for which i ≤ x accepting.

• In case of ≥, make all states si for which i ≥ x accepting.

Note that if the length automaton are constructed this way, the automaton for < and
≥ can be minimized by removing the (x + 1)th state and adding a self-loop to the xth

state.
One can also construct automata where these conditions are combined. For ex-

ample, the user might want to specify an automaton where all lengths between l
and m are acceptable. In this case, all states si for which i > l and i < m should
be made accepting. The user can also construct this automaton by specifying two
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automaton, one which accepts all lengths greater than l and one which accepts all
lengths smaller than m. Then we can compute the union of these two automaton.
The resulting automaton will accept all lengths which are greater than l and smaller
than m.
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Chapter 7

Learning Algorithms

This chapter introduces learning algorithms and how they can be used to deduce
models from code in a black-box manner. Black-box means that we are only able to
observe the inputs and outputs of a system, but not the inner workings. Learning
algorithms construct models from existing programs which describe how these pro-
grams works. We investigate the use of learning algorithms because it can provide
us with a model that can be compared to specifications. Firstly, the original L* algo-
rithm is explained in Section 7.1. Then, in Section 7.2, our SFT learning algorithm is
discussed.

7.1 L* algorithm

The L* algorithm has been introduced by Angluin[26]. The algorithm can be used to
deduce a DFA that represents the output of a program.

Firstly, some background information is introduced in Section 7.1.1. Then, in
Sections 7.1.2 and 7.1.3, the algorithm is explained. Finally, we show an example of
the L* algorithm in Section 7.1.4.

7.1.1 Preliminaries

In the L* algorithm we construct a hypothesis automaton. This hypothesis automa-
ton should describe the behaviour of the program which we want to learn, also
called the System Under Learning (SUL). To learn the behaviour of the SUL, the
algorithm can execute two types of queries:

• Membership queries: the algorithm submits a string s to the SUL and obtains the
output of the SUL.

• Equivalence queries: the algorithm can submit a hypothesis automaton to the
’teacher’. The teacher will then respond with a confirmation that the hypothe-
sis is the same as the SUL or it will return a counterexample that distinguishes
the hypothesis and the SUL.

To keep track of the results of all queries, and to construct a hypothesis, the algorithm
will keep track of the results in an observation table (OT).

An observation table OT with respect to an automaton M is a tuple OT = (S, W, T)
where

• S ⊆ Σ∗ is a set of access strings

• W ⊆ Σ∗ is a set of distinguishing strings

• T is a partial function T : Σ∗ × Σ∗ → {0, 1}
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In an observation table the set S forms the rows, W forms the columns and T repre-
sents all entries in the table. For example if we have a row "ab" and column "a", then
the entry in the table denotes whether "aba" is accepted by the SUL or not.

For some upcoming definitions we introduce the syntax Mq[s] which denotes the
state that is reached on input s in automaton M when starting in state q. If the q is
omitted then we start in the initial state of automaton M.

The set of access strings A is defined as follows for automaton M with the set of
states QM: "For every state q ∈ QM, there is a string sq ∈ A such that M[sq] = q"
[4]. Thus the set of accepting strings contains all strings such that each state in the
automaton is reachable by at least one string.

The set of distinguishing strings D is defined as follows for automaton M with
the states QM: "For any pair of states qi, qj ∈ QM, there exists a string di,j ∈ D
such that exactly one state of Mqi [di,j] and Mqj [di,j] is accepting" [4]. Thus the set of
distinguishing strings contains all strings such that, for each pair of states, there is at
least one string that is accepted in one state but not by the other.

Let OT be an observation table. OT is closed if, for all t ∈ S · Σ, there exists s ∈ S
such that all entries in the rows of s and t in the OT are equal.

7.1.2 The algorithm

The L* algorithm works as follows [4]:

1. Start with OT = (S = {ε}, W = {ε}, T)

2. Fill the table with entries by posing membership queries to the SUL.

3. While the table is not closed, repeat the following:

(a) Let t ∈ S ·Σ be a string such that for all s ∈ S it holds that row(s) 6= row(t)
in the OT.

(b) Let S = S ∪ {t}.
(c) Fill the missing entries in the table by posing membership queries to the

SUL.

4. Create hypothesis automaton from OT.

5. Pose equivalence query with hypothesis automaton.

6. If there was no counterexample, then the algorithm is finished. Otherwise, if
there was a counterexample z, process the counterexample as follows:

(a) Let ai be an element in {0, 1} that is produced by processing the first i
symbols of z with the hypothesis automaton and the remaining with the
SUL.

(b) Let si ∈ S be the state reached when processing the first i symbols of z
with the hypothesis automaton.

(c) Let z>i be the suffix of z that is not processed yet.

(d) Find the i0 ∈ {0, 1, ..., |z|} for which ai0 6= ai0+1.

(e) Define the new distinguishing string d as z>i0+1.

(f) Add d to the set of distinguishing strings W.

(g) Update the missing entries in the OT.

(h) Return to step 3.
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FIGURE 7.1: System Under Learn-
ing which accepts all words such that
{w ∈ {a, b}∗|w.count(a) = 3 ∗ i, i ∈ {0, 1, ...}}
where w.count(a) counts the number of times

that a occurs in word w.

q0 

b 

a 

a 
b 

q1

FIGURE 7.2: First hypothesis au-
tomaton.

7.1.3 From observation table to automaton

You can construct an automaton from an observation table as follows [4]:

1. For each string s ∈ S, create a state qs.

2. Set the initial state to qε which is the state corresponding to the empty string.

3. For a state qs and symbol b ∈ Σ, add the transition qs
b−→ qt if and only if s · b is

equal to t. More concretely, this means the following: take a string s ∈ S from
the OT. row(s) corresponds to a state qs. Then consider the one-step extensions
of s. Then add a transition with symbol b (the one-step extension) from state qs
to the state qt, the state that corresponds to row(s · b). Repeat this for all states
and their one-step-extensions.

7.1.4 Example of L* algorithm

Finally, we discuss an example to show how the L* algorithm works. For this ex-
ample, we consider the automaton in Figure 7.1 to be our SUL which has the input
language consisting of {a,b}.

ε

ε 1
a 0
b 1

(A) First OT

ε

ε 1
a 0
b 1
aa 0
ab 0

(B) Second OT

ε a
ε 1 0
a 0 0
b 1 0
aa 0 1
ab 0 0

(C) Third OT

ε a
ε 1 0
a 0 0
aa 0 1
b 1 0
aa 0 1
ab 0 0
aaa 1 0
aab 0 1

(D) Fourth OT

TABLE 7.1: Observation tables made when executing the L* algorithm
for the SUL (See Figure 7.1)
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We start with the following observation table where ε denotes the empty string
(See Table 7.1a). All rows beneath the horizontal line in the table are one-step exten-
sions of words in S. All rows above the horizontal line are words in S. The columns
denote the suffix-closed distinguishing set W.

The table is not closed since the word "a" is not accepted by the automaton but
there is no s ∈ S such that the row is equal, which would be a 0. Thus we add "a" to
S which results in the OT that can be seen in Table 7.1b.

The table is now closed thus we create an hypothesis automaton (See Figure 7.2)
from the OT and pose the equivalence query.

The equivalence query will return with a counterexample such as "aaa". "aaa"
is accepted by the SUL but not by the hypothesis automaton. ai is therefore 1. si
is equal to q1 in the hypothesis automaton, which is reached when processing "aa".
The suffix, that is not yet processed is therefore "a". This is also the distinguishing
string, thus we add "a" to W. The resulting OT can be seen in Table 7.1c.

We return to step 3. The table is not closed because there is no s ∈ S such that
row(aa) = row(s). Thus, we add "aa" to S and fill in the missing entries in the OT
(see Table 7.1d).

The table is now closed thus we create a new hypothesis automaton, which is the
same as the automaton in Figure 7.1. We pose an equivalence query, which does not
return a counterexample thus we are done.

7.2 SFT learning algorithm

In this section, we will introduce the SFT learning algorithm that we have developed.
We start by introducing some background information. Then, in Sections 7.2.1 and
7.2.2, the algorithm is explained. Finally, we show an example of the SFT learning
algorithm in Section 7.2.3.

The SFT learning algorithm, which is an extension of the algorithm described
for SFA learning in [4], is based on the L* algorithm. It also uses membership and
equivalence queries to ask the SUL questions. The symbolic observation table (SOT)
differs compared to the observation table in the original algorithm. The SOT is de-
scribed by the tuple (S, W, Λ, T, f ) where

• S ⊆ Σ∗ is a set of access strings.

• W ⊆ Σ∗ is a set of distinguishing strings.

• Λ ⊆ S · Σ is a set of one-step extensions of S.

• f : Σ∗ × Σ∗ → Γ∗ is a partial function that results in the suffix of the out-
put. The suffix is equal to the output corresponding to sd when we have
subtracted the largest common prefix of the output corresponding to s, i.e.
TM(sd) − TM(s) [4] where TM(s) represents the transduction function which
returns the output of automaton M upon input s.

• T : Σ∗ × Σ∗ → {IDENTITY, CONSTANT}∗ is a partial function that results
in a set of types of output functions. It corresponds to an encoding of the
output found in f . For each character in the output, T will contain whether it
corresponds to an identity function or a constant.

In the symbolic observation table, the set S forms the rows, W forms the columns and
T represents all entries in the table. f is used to store the results of all membership
queries and to generate the final output functions, also called term functions.
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An important design choice in this algorithm is to use the function types
{IDENTITY, CONSTANT} to identify different outputs. The minimal set of func-
tion types that is needed to identify all outputs consists of only the CONSTANT
function type. However, in that case, one would need a different transition for each
different input. This does not allow us to use predicates effectively to group transi-
tions. Therefore the IDENTITY function type has been added, since this function
is used to represent all characters that are not modified. Aside from these two func-
tions, one can also choose to recognize other types such as a type for a function with
an offset of one. This would, however, lead to a greater amount of different rows
causing the SFT to become larger since each unique row leads to a unique state.
Therefore, we have chosen the set consisting of {IDENTITY, CONSTANT}. When
using this set, it is possible that transitions are grouped together in case they output
a constant. Therefore, it is important to check whether the grouped transitions actu-
ally output a different constant. If so, then this transition will need to be split into
two transitions such that both transitions will output a different constant.

Note that "inferring the minimal automaton which is consistent with a set of
strings is NP-Hard to approximate even within any polynomial factor."[4]. In prac-
tice this means that we will not infer the minimal automaton but simply a correct
automaton based on the set of strings given as evidence. This automaton can be in-
correct if the set of strings does not contain a counterexample which invalidates this
automaton.

7.2.1 The algorithm

1. Start with SOT = (S = {ε}, W{ε}, Λ = ∅, T).

2. Fill the table and f with entries by posing membership queries to SUL.

3. While the table is not closed, repeat the following:

(a) Find the shortest t ∈ Λ such that for all s ∈ S it holds that row(s) 6=
row(t).

(b) Let S = S ∪ {t}
(c) If there does not exist a b ∈ Σ such that t · b ∈ S ∪Λ, then add t · b to Λ.

(d) Fill the missing entries in the table and f by posing membership queries
to the SUL.

4. Create hypothesis automaton from the SOT.

5. Pose equivalence query with hypothesis automaton.

6. If there was no counterexample, then the algorithm is finished. Otherwise, if
there was a counterexample z, process the counterexample as follows:

(a) Let i0 ∈ {0, 1, ..., |z| − 1} such that the response of the target machine is
different for the strings si0 z>i0 and si0+1z>i0+1.

(b) Define the distinguishing string d as z>i0+1.

(c) If row(si0 b) = row(sj) when d is added to W for some j 6= i0 + 1 then
add si0 b to Λ. b denotes an arbitrary character in the input language.
Otherwise add d to W.

(d) Update the missing entries in the SOT and f .

(e) Return to step 3.
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7.2.2 From symbolic observation table to automaton

You can construct an automaton from a symbolic observation table as follows:

1. For each string s ∈ S, create a final state qs

2. Set the initial state to qε, which is the state corresponding to the empty string.

3. For each qs find its one-step extensions in Λ in the rows of the SOT.

4. For all qs, call a guard generating algorithm with all one-step extensions of qs.
The guard generating algorithm returns a set of tuples (φ, ψ, q) for each qs.

5. Add transition qs
φ/ψ−−→ q to ∆ for all (φ, ψ, q).

Final states

In the original SFA learning algorithm, a state was final if the word representing
the state, when extended with the empty word, was accepted. In the case of SFTs,
we no longer reason about accepting words or not. Thus we cannot use the same
reasoning to find the final states. Botinčan and Babić noted the following: "It is
unclear how to learn transducers with non-final states, as such transducers allow
inherent ambiguity in where the output is produced. Indeed, existing algorithms
for learning concrete transducers require all states to be final." [17] We observe that
different sanitizer implementations may handle rejecting an input differently, e.g.
returning "null" or returning an empty string. There is no straightforward way to
discover how a sanitizer acts on an unaccepted string unless it is defined by the user.
However, since we are looking into black-box testing, the user would not know how
the program acts upon an unacceptable word. Therefore, as in other research [27, 50],
we assume that all states of the SFT are final.

Guard generator

The guard generating algorithm will generate the guards for all transitions starting
in a state qs. To generate these guards, it needs a set of evidence and the correspond-
ing output. Evidence is the input character upon which a transition is taken to move
to a next state in the automaton.

The algorithm starts with the set of evidence. Then one of the following cases
will be followed:

• If the set of evidence is empty, generate one transition with the guard True. The
set of term functions of this transition will consist of only the identity function.

• If the set contains one piece of evidence, then one transition will be generated with
the guard True. The set of term functions will be generated based on the output
associated with the evidence. It will generate either the identity function or a
constant for each character in the output. The identity function will be gener-
ated if the character is the same as the evidence, otherwise a constant with the
value of the output character is generated.

• Otherwise, the set contains multiple pieces of evidence. Pieces of evidence are
grouped together if they lead to the same state. The largest group of evidence
is chosen to act as a large (sink) transition. This means that all undefined pieces
of evidence will be grouped into this sink transition. Finally, for each generated
guard, the term generator is called.
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FIGURE 7.3: System Under Learning which escapes all
(unescaped) backslashes with a backslash.
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x / [x] 

FIGURE 7.4: First hy-
pothesis automaton.

Term generator

The term generator takes a predicate and the starting state as an argument. This
predicate is the predicate for which the set of term functions needs to be generated.
The starting state qs is the state where the transition starts. The term generator then
works as follows:

1. For all one-step extensions of qs, calculate the set of term functions as follows:

(a) Let s be the string that represents the state qs and s · b represents the state
qs · b.

(b) Compute the suffix of the output such that it is equal to os − os·b where os
denotes the output of the automaton upon input s.

(c) For each character in the output, if it is equal to the one-step extension b,
then extend the set of term functions with the identity function. Other-
wise extend the set of term functions with the constant function b.

2. If the set of term functions are the same for all one-step extensions, then return
this set. The algorithm terminates. Otherwise, proceed to the next step.

3. There exist two one-step extensions, qs · b and qs · c, of qs for which the set of
term functions differ, therefore the predicate needs to be split. Split the predi-
cate into two predicates such that qs · b satisfies only one of the two predicates
and qs · c satisfies only the other predicate.

4. Call the term generator for both generated predicates.

7.2.3 Example of SFT learning algorithm

Finally, we show an example of how the SFT learning algorithm works. For this
example, we consider the automaton in Figure 7.3 to be our SUL which has the input
language consisting of all unicode characters.

We start with the observation table where ε denotes the empty string. All rows
beneath the horizontal line in the table are one-step extensions of words in S. This
set is also referred to as Λ. All rows above the horizontal line are words in S. The
columns denote the suffix-closed distinguishing set W. The entries in the table are
those found in T. Note that IDENTITY is abbreviated to ID and CONSTANT is
abbreviated to C. The algorithm proceeds as follows:

• Iteration 1:

1. The table is closed (see Table 7.2a) therefore we move on to the next step.
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ε

ε [ID]

(A) First OT

ε

ε [ID]
\ [ID, ID]

(B) Second OT

ε

ε [ID]
\ [ID, ID]
a [ID]

(C) Third OT

ε

ε [ID]
\ [ID, ID]
\\ []
a [ID]

(D) Fourth OT

ε

ε [ID]
\ [ID, ID]
\\ []
a [ID]
\a [ID]

(E) Fifth OT

ε

ε [ID]
\ [ID, ID]
\\ []
a [ID]
\a [ID]
\\\ [ID, ID]

(F) Sixth OT

ε

ε [ID]
\ [ID, ID]
\\ []
a [ID]
\a [ID]
\\\ [ID, ID]
\\a [ID]

(G) Final OT

TABLE 7.2: Observation tables made when executing the SFT learning
algorithm for the SUL (See Figure 7.3)

2. Create the hypothesis automaton (see Figure 7.4).

3. Execute the equivalence query. The equivalence query returns with a
counterexample such as "\".

4. Process the counterexample "\" which produces "\\" as output:

(a) i0 is 0, si0 is ε and si0 b is "\".
(b) The counterexample will be added to Λ with T(”\”) = [ID, ID].

• Iteration 2:

1. The table is not closed. To close the table, "\" will be moved from Λ to S
(see Table 7.2b).

2. Create the hypothesis automaton (see Figure 7.5).

3. Execute the equivalence query. The equivalence query returns with a
counterexample such as "a". "a" returns "aa"in the hypothesis automaton
whereas the SUL returns "a".

4. Process the counterexample "a" which produces "a" as output:

(a) i0 is 0, si0 is ε and si0 b is "a".
(b) The counterexample is added to Λ with T(”a”) = [ID].

• Iteration 3:

1. The table is closed (see Table 7.2c).

2. Create the hypothesis automaton (see Figure 7.6).

3. Execute the equivalence query. The equivalence query returns with a
counterexample such as "\\". This counterexample produces "\\\" in
the hypothesis automaton whereas the SUL produces "\\".

4. Process the counterexample "\\" which produces the output "\\":

(a) i0 is 1, si0 is "\" and si0 b is "\\".
(b) The counterexample is added to Λ with T(”\\”) = [].
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q0 
x / [x, x] 

x / [x] 

q1

FIGURE 7.5: Second hypothesis au-
tomaton.

q0 

x != '\' / [x] 

x == '\' / [x, x] q1

x / [x]

FIGURE 7.6: Third hypothesis automa-
ton.

• Iteration 4:

1. The table is not closed. To close the table, "\\" is moved from Λ to S (see
Table 7.2d).

2. Create the hypothesis automaton (see Figure 7.7a).
3. Execute the equivalence query. The equivalence query returns with a

counterexample such as "\a" which should result in "\\a". The hypothe-
sis automaton, however, returns "\\".

4. Process the counterexample "\a" which produces the output "\\a":
(a) i0 is 1, si0 is "\" and si0 b is "\a".
(b) The counterexample is added to Λ.

• Iteration 5:

1. The table is closed (see Table 7.2e), thus move to the next step.
2. Create the hypothesis automaton (see Figure 7.7b).
3. Execute the equivalence query. The equivalence query will return a coun-

terexample such as "\\\". Upon this input, the hypothesis automaton
produces "\\\" whereas the SUL produces "\\\\".

4. Process the counterexample "\\\" which produces the output "\\\\":
(a) i0 = 2, si0 is "\\" and si0 b is "\\\".
(b) The counterexample is added to Λ.

• Iteration 6:

1. The table is closed (see Table 7.2f), thus move to the next step.
2. Create the hypothesis automaton (see Figure 7.7c).
3. Execute the equivalence query. The equivalence query will return with a

counterexample such as "\\a".
4. Process the counterexample "\\a" which produces the output "\\a":

(a) i0 is 2, si0 is "\\" and si0 b is "\\a".
(b) The counterexample is then added to Λ.

• Iteration 7:

1. The table is closed (see Table 7.2g). Move to the next step.
2. Create the hypothesis automaton (see Figure 7.7d).
3. Execute the equivalence query. No counterexample is returned.
4. The algorithm terminates.
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q0 

x != '\' / [x] 

x == '\' / [x, x] q1 q2
x / [ ]

x / [x]

(A) Fourth hypothesis automaton.

q0 

x != '\' / [x] 

x == '\' / [x, x] 

x != '\' / [x]

q1 q2
x == '\' / [ ]

x / [x]

(B) Fifth hypothesis automaton.

q0 

x != '\' / [x] 

x == '\' / [x, x] 

x != '\' / [x]

q1
x / [x, x] 

q2
x == '\' / [ ]

(C) Sixth hypothesis automaton.

q0 

x != '\' / [x] 

x == '\' / [x, x] 

x != '\' / [x]

q1
x == '\' / [x, x] 

x != '\' / [x]

q2
x == '\' / [ ]

(D) Final automaton.

FIGURE 7.7: Automata generated by the learning algorithm.
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7.3 Equivalence Oracle

To conclude this chapter, we discuss how the equivalence oracle can be implemented.
There are many different ways in which an equivalence oracle can be implemented.
We consider random testing, random prefix selection, history-based testing and automaton-
based testing. Random testing has been chosen as it is an approach that is easy to
understand and implement. Automaton-based testing has been chosen because it al-
lows us to choose tests cleverly based on the structure of the hypothesis automaton.
Finally, random prefix selection has been chosen because random testing sometimes
has difficulties finding transitions in some states [51].

7.3.1 Random testing

The first and easiest approach is random testing[52]. In case of random testing, we
need to generate random strings of a specified length consisting of characters in
the alphabet. This can either be done completely random or one can choose random
transitions in the learned automaton and generate a character that satisfies the guard
of the chosen transition.

7.3.2 Random prefix selection

The second approach is called random prefix selection. When generating test cases
completely at random, states with a shorter access string are visited more frequently
[51]. To make sure that each state has the same chance of being visited, we randomly
choose a state from the automaton. The access string of this state will form the prefix
of the test case. The rest of the test case is generated randomly and appended to the
prefix.

7.3.3 Automaton-based testing

Another approach is testing based on the structure of the hypothesis automaton.
You can generate test cases such that you achieve one of the following conditions
[53]:

• State coverage which means that each state must be visited at least once.

• Transition (or branch) coverage which means that each transition must be taken
at least once.

• Predicate (or condition) coverage which means that each predicate, also sub-
predicates, must be satisfied at least once.

Note that there are more possible conditions, such as multiple-condition coverage.
However, we only consider these options due to the scope of this research. Test
cases are generated such that the chosen coverage condition will be satisfied. The
user needs to specify how many test cases should be generated per state, transition
or predicate.
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Chapter 8

Results

This chapter presents the results of experiments with the learning algorithm as well
as some details of the implementation. We test whether correct automata are learned,
whether we can check specifications and the performance of the algorithm. Any
limitations or threats to validity of these tests are discussed in the next chapter.

8.1 SFTLearning

This section discusses some details on how the oracles for the learning algorithm
have been implemented. The implementation of the algorithm is based on
symbolicautomata [54] which is a Java library for symbolic automata. We refer to
the developed tool as SFTLearning. SFTLearning includes a learning algorithm for
SFAs, a learning algorithm for SFTs, implementations for equivalence oracles and
the ability to read and check specifications. SFTLearning can be found at:

https://github.com/Sophietje/SFTLearning

8.1.1 Oracles

Membership oracle

Since we are using a black-box approach, meaning that we are unable to see the
inner workings of the sanitizer, we need to be able to give an input to the sanitizer
and read the sanitizer’s output. To be able to use the program as a membership
oracle, there needs to be a connection between the algorithm and the membership
oracle. Therefore the user is required to write a program which will execute the
sanitizer with a given commandline argument. To execute these programs, we use a
ProcessBuilder in Java. This allows us to execute a process and read the output from
the standard output. Moreover, it is independent of which programming language
is used.

Equivalence oracle

The equivalence oracle is crucial for the learning algorithm. If it does not provide the
correct counterexamples, then the algorithm will be unable to learn the correct model
of the program. The user needs to specify a range from which input characters are
generated for the equivalence oracle. If this range is too small, then an equivalence
oracle may not be able to discover some counterexamples. Note that it is impossible
to test all possible strings. Therefore the amount of generated test cases is limited by
a maximum which the user can define. There are many different ways in which an
equivalence oracle can be implemented. The following approaches (see Section 7.3
for details) have been implemented in SFTLearning:

https://github.com/Sophietje/SFTLearning
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• Random testing

• Random prefix selection

• State coverage

• Transition (or branch) coverage

• Predicate (or condition) coverage

• History-based testing

8.2 Performance

8.2.1 Equivalence Oracle

To test the performance of the SFTLearning algorithm, we needed to decide which
equivalence oracle to use. To test which one derived a correct model of the sanitizer
in the least amount of time, we compare the following equivalence oracles:

• Random testing with 30,000 tests

• Random transition testing with 10,000 tests

• Random prefix selection with 10,000 tests

• State coverage with 3,000 tests per state

• Transition coverage with 2,000 tests per transition

• Predicate coverage with 2,000 tests per (sub-)predicate

All processes had a time-out set to 30 minutes. If no model was found within this
time, then the learning process was terminated. The input characters have been cho-
sen from the range 1 to 400 which refer to the decimal representations of Unicode
characters. This range includes all control characters (except null), Basic Latin, the
Latin-1 supplement, Latin Extended-A and part of Latin Extended-B [55]. The num-
ber of tests for random testing has been chosen such that it resulted in mostly correct
models for the encode function. The other variables, such as tests per state, tests per
transitions, etcetera, have been deduced from that number. The encode sanitizer is
represented by three states when learned. Therefore random transition testing and
random prefix selection use 10, 000 tests which leads to roughly the same amount
of tests since 10, 000× 3 = 30, 000. Next, assuming that an automaton is typically
represented by 10 states or less, we use 3, 000 tests for each state when using state
coverage. Finally, the encode function has 3 states with each 4 transitions when it
is correctly learned. We round this number such that there are 3 × 4 = 12 ≈ 15
transitions in the automaton. Combined with the assumption that each transition
typically has a single predicate, this leads to 2, 000× 15 ≈ 30, 000 tests in total.

We test these oracles on two different sanitizers namely:

• Encode: encodes <, > and & into their HTML entities

• Escape: escapes backslashes with another backslash unless it was already es-
caped
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Random Random transition Random prefix selection
Sanitizer # Correct Time (s) # Correct Time (s) # Correct Time (s)
Encode 7/10 60.4 10/10 109.9 10/10 571.5
Escape 0/10 25.4 0/10 11.1 1/10 1351.2

State coverage Transition coverage Predicate coverage
Sanitizer # Correct Time (s) # Correct Time (s) # Correct Time (s)
Encode 10/10 67.3 8/10 60.8 10/10 119.4
Escape 0/10 1038.6 2/10 221.2 1/10 329

TABLE 8.1: Results of comparing different implementations of the
equivalence oracle.

Each oracle is used to learn each sanitizer ten times. We then calculate the av-
erage running time which we will use to compare different approaches. The final
equivalence oracle which is used to judge the performance of the learning algorithm,
will be the one who produces the most correct models in the least amount of time.

The tests have been performed within a VM running Debian 7 on a Dell Pow-
erEdge R420 with two Intel Xeon E5-2420 CPUs and 4GB of memory available. The
results of the tests can be seen in Table 8.1. From this we conclude that predicate
coverage is the best approach since this results in the most correct models, 11 of 20
models were correct, in the least amount of time.

8.2.2 SFTLearning Algorithm

We want to discover the limitations of the SFTLearning algorithm. Therefore, we
have learned models for the following methods, in order to discover which types of
models can be learned using the SFTLearning algorithm:

1. Encode (from the he project [56])

2. Escape (from cgi python module [57])

3. Escape (from the escape-string-regexp project [58])

4. Escape (from the escape-goat project [59])

5. Unescape (from the escape-goat project [59])

6. Unescape (from the postrank-uri project [60])

7. To Lowercase (from the CyberChef project [61])

8. htmlspecialchars (built-in PHP function [62])

9. filter_sanitize_email (built-in PHP filter [63])

10. Remove tags (from the govalidator project [64])

These implementations have been found by searching on GitHub for the key-
words "escape", "encode" and "sanitize". Then the top 20 results, sorted by "Most
stars", have been chosen for each search term. Next, the repostories have been fil-
tered so that there were only string sanitizers left which had clear documentation
on how they should work, which could be used and for which we could write a
specification in at most 10 minutes.
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In Appendix B, a complete list of the repositories can be found as well as the
reason why some have not been used. Aside from the above mentioned sanitizers,
three other sanitizers have also been tested of which two have been written in PHP
and one in Python. This has been done so that we test sanitizers that have been
written in different languages. Including these, the sanitizers are either written in
JavaScript, Ruby, Go, PHP or Python.

We have performed some test runs using a fully automatic approach, however all
test runs did not finish within three hours. Note that although it was not completely
finished, the SFTLearning algorithm was able to derive an almost completely correct
model within three hours. Therefore we conclude that the fully automatic approach
is not yet viable in its current state. As a result, we have chosen to serve as an equiv-
alence oracle ourselves instead of using an automatic equivalence oracle. While this
may influence the quality of the model that is learned, it does not affect what kinds
of models we can learn. These tests have been run on a MacBook Air running Dar-
win 17.7.0 with an Intel Core i5 (2 cores) and 4GB of memory available. The results
can be found in Table 8.2.

Overall we can divide sanitizers into two main categories:

• Sanitizers who act based on the occurrence of a single character (methods 1, 2,
3, 4, 7, 8, 9)

• Sanitizers who act based on the occurrence of multiple characters (methods 5,
6, 10)

From the results, we can conclude that we can learn models of all sanitizers
which act based on occurrences of single characters. Sanitizers which act based on
sequences of characters cannot yet be learned. This is also what we expected based
on the theory since we would need lookback, lookahead or registers to be able to
learn those models. Note that if an input would always end with a specific charac-
ter, then we should be able to learn some sanitizers whose behaviour depends on a
sequence of characters. Adapting the SFTLearning algorithm such that it can derive
models with lookback, lookahead or registers is left as future work.

8.3 Scalability

The SFTLearning algorithm is able to represent models of sanitizers with very large
input alphabets. In order to find out how the SFTLearning algorithm scales, multiple
tests have been conducted where the size of the input alphabet becomes larger. This
will show whether the SFTLearning algorithm is still viable to use when reasoning
about larger input alphabets.

To test how the algorithm scales, we learn the model of a sanitizer that removes
the character "<" from any input. As an equivalence oracle, we use the predicate cov-
erage oracle which seemed to be the best performing oracle as found in Section 8.1.1.

Two variables have been changed during these tests. The first variable is the size
of the input alphabet which is used to derive counterexamples from. The second
variable is the number of tests per predicate. When increasing the size of the input
alphabet, the chance to find the one character which is modified by the sanitizer
becomes smaller. And, when increasing the number of tests per predicate, the chance
to find the one character which is modified by the sanitizer becomes larger.

These tests have been run on a MacBook Air running Darwin 17.7.0 with an Intel
Core i5 (2 cores) and 4GB of memory available. The result has been measured in
terms of total running time (in seconds) (see Figure 8.1), number of membership



Chapter 8. Results 53

Sa
ni

ti
ze

r

To
ta

l
ru

nn
in

g
ti

m
e(

s)

Ti
m

e
sp

en
t

in
m

em
.o

r-
ac

le
(m

s)

Ti
m

e
sp

en
t

in
eq

.
or

a-
cl

e
(m

s)

# m
em

.
qu

er
ie

s
#

eq
.

qu
er

ie
s

#
st

at
es

le
ar

ne
d

#
st

at
es

sp
ec

i-
fie

d

#
tr

an
-

si
ti

on
s

le
ar

ne
d

#
tr

an
-

si
ti

on
s

sp
ec

ifi
ed

C
an

be
le

ar
ne

d?
En

co
de

(h
e)

61
2

62
06

46
42

93
51

38
3

1
22

7
Ye

s
a

Es
ca

pe
(c

gi
)

19
9

19
58

16
09

07
16

16
3

1
13

4
Ye

sa

Es
ca

pe
(e

sc
ap

e-
st

ri
ng

-r
eg

ex
p)

13
79

19
35

8
12

33
77

4
11

3
87

3
1

14
2

Ye
s

Es
ca

pe
(e

sc
ap

e-
go

at
)

41
5

67
24

38
83

24
36

36
31

1
5

1
Ye

s

U
ne

sc
ap

e
(e

sc
ap

e-
go

at
)

52
1

25
47

8
48

27
46

20
2

23
14

-
22

-
N

o
U

ne
sc

ap
e

(p
os

tr
an

k-
ur

i)
38

1
52

11
4

31
19

17
17

8
47

7
-

40
-

N
o

To
Lo

w
er

ca
se

(C
yb

er
C

he
f)

11
09

18
56

45
69

17
77

13
0

10
5

2
1

54
27

Ye
sa

ht
m

ls
pe

ci
al

ch
ar

s
(p

hp
)

41
4

47
08

35
40

00
27

27
4

1
20

5
Ye

s

fil
te

r_
sa

ni
ti

ze
_e

m
ai

l(
ph

p)
77

6
10

34
0

73
17

65
69

69
3

1
13

2
Ye

sa

R
em

ov
e

ta
gs

(g
ov

al
id

at
or

)
72

3
13

11
02

58
73

48
18

4
40

8
-

18
-

N
o

TA
B

L
E

8.
2:

R
es

ul
ts

of
th

e
te

st
s

fo
r

th
e

le
ar

ni
ng

al
go

ri
th

m
.

Fr
om

th
is

w
e

ca
n

de
ri

ve
w

ha
t

ki
nd

of
m

od
el

s
ca

n
be

le
ar

ne
d

us
in

g
th

e
SF

TL
ea

rn
in

g
al

go
ri

th
m

.

a T
hi

s
m

od
el

ha
s

be
en

co
rr

ec
tl

y
de

ri
ve

d
fo

r
th

e
Ba

si
c

La
ti

n
al

ph
ab

et
.



Chapter 8. Results 54

20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

Number of tests per predicate

To
ta

lr
un

ni
ng

ti
m

e
of

SF
T

Le
ar

ni
ng

(s
)

Characters 32-72 Characters 32-92
Characters 32-112 Characters 32-132
Characters 32-172 Characters 32-272

FIGURE 8.1: This graph shows the effect of the number of tests per
predicate on the total running time of the SFTLearning algorithm.

queries posed (see Figure 8.2) and number of equivalence queries posed (see Figure
8.3). Note that many of the derived models were not correct. Also, the equivalence
oracle uses membership queries to check whether something is a counterexample.
Therefore, there will always be an equal or larger amount of membership queries
than equivalence queries. This was due to the limited number of counterexamples
which were considered. Overall, the approach seems to scale linearly.

In Figure 8.4, you can see how much of the total running time is spent in the
equivalence oracle. This shows that a large amount of time is spent in the equiva-
lence oracle. Therefore, we can conclude that implementing a more efficient equiva-
lence oracle can greatly reduce the total running time of the SFTLearning algorithm.
The equivalence oracle could be improved in two main ways:

• Improve the efficiency of the equivalence oracle. For example by presenting mini-
mal counterexamples or using another approach to find counterexamples.

• Improve the efficiency of the membership oracle. This can be done by implementing
a membership oracle which uses only one process to which all membership
queries are posed instead of using a single process for each membership query.

8.4 Case study

For the final tests, we show how our approach can be used. We have reused the
models that have been correctly learned in the tests for the learning algorithm. This
includes the following methods:

1. Encode (from the he project)

2. Escape (from the cgi package in Python)
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FIGURE 8.2: The effect of the number of tests per predicate on the
number of membership queries posed when using the SFTLearning

algorithm.
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algorithm.
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FIGURE 8.4: The effect of the number of tests per predicate on the time
spent in the equivalence queries posed when using the SFTLearning

algorithm.

3. Escape (from the escape-string-regexp project)

4. Escape (from the escape-goat project)

5. toLowercase (from the CyberChef project)

6. htmlspecialchars (a built-in function in PHP)

7. filter_sanitize_email (a built-in function in PHP)

For each of these methods we have asked the following questions:

• Is it idempotent?

• Are there any sanitizers that should behave the same, and if so, is their be-
haviour the same on all inputs?

• Does it commute with the other learned models?

• Are there any discrepancies compared to the user’s specification of the sani-
tizer?

In Table 8.3, you can find which learned models were expected to be idempotent
as well as the corresponding computed result which indicates whether the learned
model was idempotent. The results matched the expected values. In Table 8.4, the
computed results can be found which indicate whether the learned models commute
with each other. Some of the commutativity results could not be computed. This
was because the garbage collector exceeded the overhead limit when computing the
composition of two sanitizer functions. This may be prevented by using a computer
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Sanitizer Expectation Computed
encode (he) × ×
escape (cgi) × ×

escape (escape-string-regexp) × ×
escape (escape-goat) × ×

toLowercase (CyberChef) X X
htmlspecialchars (php) × ×

filter_sanitize_email (php) X X

TABLE 8.3: This table shows whether a sanitizer was expected to be
idempotent and the computed results.

1 2 3 4 5 6 7
1 X × X × × ×
2 × X X × × ×
3 X X X X X X ×
4 × × X X × ×
5 X X X
6 × × X × X ×
7 × × × × X × X

TABLE 8.4: This table shows which learned models from sanitizers
commute with each other. The numbers correspond to sanitizers as

mentioned in the beginning of Section 8.4.

with more memory available. Another possible solution would be to minimize the
learned model before computing the composition.

None of the learned models should behave exactly the same. Therefore we can-
not compare the behaviour of similar models.

Finally, we have written a specification for each learned model. Each specifica-
tion precisely describes the behaviour of the sanitizer (see Appendix C for all spec-
ifications). These specifications have been written before the model was derived
to make sure that these specifications were not influenced by the structure of the
models that were derived. At first, the escape model from the escape-string-regexp
project was not correct. After some investigation, an error in one of the guards on a
transition in the specification was found and fixed. After this, all specifications were
equivalent to the learned model.
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Chapter 9

Discussion

In this chapter, we discuss the results which have been presented in the previous
chapter, as well as the limitations of the tests discussed in the previous chapter.

9.1 Implementation of Membership Oracle

The membership oracle is implemented by executing a user given command. This
enables the user to apply fine-grained configuration. However, it also has some
drawbacks. Firstly, when reading output from the standard output, we read one
line. As a result, newlines and carriage returns are not dealt with properly. This is
a possible point of improvement for further research. Secondly, it is impossible to
give a null character as an argument. Therefore, we are unable to reason about the
behaviour of a sanitizer given a null character.

Also, currently a new process is started each time a membership query needs to
be executed. This could be optimised if we start the process once and keep executing
new queries. This can reduce the overhead of starting a new process each time. Note
that this would require a program that keeps reading new input from the standard
input and sanitizing this instead of a program that takes one argument which it will
sanitize.

9.2 Performance of Equivalence Oracle

We have chosen a best performing equivalence oracle based on the performance of
the oracle on two sanitizers. This is prone to bias since one approach for the equiv-
alence oracle may work very well on these two sanitizers whereas it may perform
very poorly on others. Moreover, the number of tests for each approach has been
derived based on several assumptions as well as the assumption of 30,000 tests for
random testing. If the assumption for random testing or any of the other assump-
tions are incorrect, then we have chosen a number of tests which is likely too large or
too little. This would influence whether the approach can derive a correct model and
how much time this may take. Therefore we stress that we have compared the dif-
ferent approaches with the specified number of tests. When using different numbers
of tests for the approaches, then one may conclude that another approach is actually
the best. We are aware of these discrepancies and therefore we encourage further
research into what approach for an equivalence oracle performs best in practice on
many sanitizers.
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9.3 SFTLearning Algorithm

The SFTLearning algorithm experiment has shown what type of models can be
learned using the SFTLearning algorithm. These results were as expected namely
we can currently only learn models which reason about single character occurrences.
This can be improved by extending the algorithm such that we can learn SFTs with
registers, lookback or lookahead. If such an extension is made, then we will also be
able to reason about sanitizer whose behaviour depends on the occurrence of multi-
ple characters.

The implementation of the equivalence oracle strongly influences the time needed
to derive a model. The SFTLearning algorithm works best when presented with a
minimal counterexample. This has been achieved by acting as an equivalence ora-
cle ourselves. Before deriving these models, we had already written specifications
which describe how the sanitizers acts. As a result, it is possible that we try to de-
rive this model that we have in mind. However, this does not influence what kind
of types of models we can derive.

Next, it should be noted that for some models we only considered the Basic Latin
alphabet as the input alphabet. Since we used a manual equivalence oracle, deriv-
ing models from very large input alphabets becomes difficult and time-consuming.
Therefore, we have chosen to derive some of the larger models only for a limited
input alphabet. As a result, the behaviour of some sanitizers is only partly de-
scribed. For example, the "toLowercase" method only modifies the characters A-Z
in the learned model. Whereas this method also modifies characters such as Á.

Finally, one should take into account that we only considered sanitizers for which
we could write the specification in at most 10 minutes. As a result, these tests may
not accurately show the ability of the algorithm to reason about more complex sani-
tizers.

9.4 Scalability

The scalability tests seem to indicate a linear approach when performing more tests
per predicate. When performing more tests per predicate, the confidence in the cor-
rectness of a model increases. This is because performing more tests per predicate,
increases the chance of finding a counterexample. Thus the cost, in this case time,
seems to steadily increase when performing more tests per predicate. This indicates
that deriving a model, of which we are reasonably confident that it is correct, is
possible in a limited amount of time. Note that, our tests may be biased since it is
possible that the algorithm starts showing exponential behaviour when reasoning
about more tests per predicate. Also, the graphs show the results of one run due to
which outliers strongly influence the results. It would have been better to run the
algorithm multiple times and take the average of these results, however this was not
possible due to the limited scope of this research.

Finally, we note tht the amount of time needed to derive a model, when reason-
ing about larger input alphabets, is similar to the time that is needed when reason-
ing about smaller alphabets. This is promising since it indicates that we can use
SFTLearning to reason about large input alphabets.
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9.5 Case study

The case study has been done to show how our approach can be applied. This case
study has been done on the sanitizers which were derived using a manual equiva-
lence oracle. As said before, this may have introduced a bias since we then tend to
derive the model that we have in mind.

Moreover, one should note that some compositions could not be computed when
reasoning about a larger model. This indicates that some specification checks may
not be feasible when reasoning about more complex sanitizers, regardless of whether
the sanitizer’s model is minimized.

This test has shown that we are able to derive correct models from real-world
sanitizers and that we can use these models to reason about the correctness of the
sanitizer’s implementation.

9.6 Overall limitations

Overall, the SFTLearning algorithm has two main limitations:

• Implementation of the equivalence oracle

• Execution of a membership query

Firstly, as stated before, the equivalence oracle strongly influences what model is
derived from the sanitizer. The algorithm works best when it is presented with min-
imal counterexamples. At this point, we are unsure of what a best implementation
for an equivalence oracle would be. However, when presented with enough time
and if the performance of the SFTLearning algorithm is improved, then we are able
to reason about real-world sanitizers using the SFTLearning algorithm.

Secondly, a new process is started each time a membership query needs to be
executed. This introduces overhead which can be avoided by constructing a pro-
gram which continuously observes input and outputs corresponding results. Since
many equivalence oracles use a significant amount of membership queries to find
counterexamples, this will very likely improve the performance of the algorithm.

It is important to note that an automatic equivalence oracle is not yet a viable
approach depending on the time limit. It took more than 3 hours to derive a model.
One should, however, know that after 3 hours, the algorithm had derived an almost
fully correct model of the sanitizer. Therefore, if time is not a limiting constraint,
then the SFTLearning algorithm is a viable approach.
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Chapter 10

Conclusion

In this research, we wanted to find a way to reason about the correctness of sanitizers
in a black-box manner. Firstly, we gathered different types of specifications that one
might want to write for a sanitizer by discussing this with security experts.

Next, we determined what would be necessary to prove these specifications. Be-
fore this research, we were only able to derive models which can reason about the
correctness of the input or output language of a sanitizer. We noticed that many
specifications require us to reason about the relation between the input and the out-
put language. Therefore, we have presented a new algorithm, SFTLearning, which
derives Symbolic Finite Transducers of existing sanitizers. These models allow us to
reason about the relation between the input and the output language. The models
are derived in a black-box manner and can be used to reason about the correctness
of sanitizers by comparing them to specifications. The user only needs to write spec-
ifications which describe how the sanitizer should (not) work. No work is needed in
terms of rewriting or annotating the sanitizer in order to reason about its correctness.
The SFTLearning algorithm has been implemented and is freely available.

Then, we evaluated the SFTLearning algorithm on real-world sanitizers. Our
tests have shown that we can learn many models within 15 minutes when using a
near-perfect (human) equivalence oracle. The models can be derived completely au-
tomatically with SFTLearning when given enough time and an efficient equivalence
oracle. The SFTLearning algorithm can derive correct models of all sanitizers whose
behaviour depends on the occurrence of single characters. Finally, our tests have
also shown that it is able to reason about large input alphabets (up to 240 characters)
without incurring high costs.

10.1 Future Work

For those who have an interest in pursuing this research, below you can find several
options to consider.

10.1.1 Additional types of sanitizers

In this section, you can find possible future work which will extend what types of
models can be learned.

• Develop an SFT learning algorithm with lookahead, lookback or registers. This would
allow the algorithm to learn more types of sanitizers. For example, a sanitizer
that removes a script tag and its corresponding closing tag, or a sanitizer that
encodes characters into their HTML entities unless they are already part of an
HTML encoded entity.
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• Add the learning of epsilon transitions. Currently no epsilon transitions can be
derived. As a result, some sanitizers cannot be learned. Epsilon transitions
are already supported by the library which is used to represent the models.
One would need to discover when an epsilon transition should be added to
the automaton.

• Implement the algorithm for automata that reason about other alphabets, such as in-
tegers. The current implementation is only able to reason about character in-
tervals.

10.1.2 Improving SFTLearning

In this section, you can find future work which aims to improve the existing ap-
proach that is presented in this paper.

• Use length encoded input/output for membership oracle. This will allow us to start a
program only once and keep asking queries instead of restarting the member-
ship oracle each time a query is sent. This should reduce the overhead of the
membership oracle thus improving the performance of the learning algorithm.

• Evaluate equivalence oracles for learning sanitizers. Finding an optimal equiv-
alence oracle can significantly improve the performance of the learning ap-
proach. One promising option is to look into the work of Aichernig and Tap-
pler [65] who developed an equivalence oracle based on model-based muta-
tion testing. They try to minimise the number of queries needed for equiva-
lence queries. Instead of considering different ways to generate test cases, it
can also be profitable to look into ways to select test cases. If we can efficiently
select test cases, then this can also reduce the number of test cases that are
needed.

• Develop equivalence oracle optimized for learning sanitizers. Instead of evaluat-
ing existing equivalence oracles, one can choose to develop an equivalence
oracle which is optimized for learning sanitizers. For example, we propose a
"history-based" approach which chooses characters based on behaviour in pre-
vious states. The intuition behind the approach is that a character is likely to
produce unique behaviour if it did so earlier on in the automaton. For the ini-
tial state, there is no previous state to use as a basis to choose input, therefore
only random inputs are tested. For all other states, we find all states which
have transitions that lead to the current state, i.e. the neighbouring states.
Then for each transition starting in a neighbouring state, randomly generate
a test case such that this transition is taken. This randomly generated test case
is appended to a prefix which is the access string to the current state. Each
transition is tested a maximum number of times which is specified by the user.
The user can also specify the maximum length of all randomly generated test
cases. This approach has already been implemented in SFTLearning, however
it has not yet been evaluated.

• Optimize the learning algorithm. Optimize how many membership and equiv-
alence queries are posed in order to improve the performance of the learning
algorithm.

• Look into generating other types of functions from the symbolic observation table,
not only the identity or constant functions. One possible approach would be
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to fill the table based on offsets and constants. Then select groups based on the
most common function in the table. This would allow the algorithm to deduce
smaller automaton from some programs.

• Write a correctness proof for the algorithm. Due to the limited scope of this re-
search, we were unable to write a correctness proof of the algorithm. Although
it seems to work, it would be better to support this claim by writing a correct-
ness proof of the SFT learning algorithm.

10.1.3 User-friendliness

Finally, in this section, we show several options for future work which aim to im-
prove the usability of the SFTLearning algorithm.

• Automatically generate specifications based on user input. This will require less
user input and thus make the approach more suitable for automatization.

• Find more types of specifications which users would want to test. The tool can then
be extended to include the possibility to check these specifications.

• Let users evaluate learned models. Instead of asking the user to write a specifica-
tion, one can choose to let the user act as a final equivalence query for learned
models. You show the user the learned model and ask whether it is correct. In
this case, it would be best to show the user a minimized SFT which is easier
for a user to check. Saarikivi and Veanes have already developed an algorithm
for minimizing deterministic symbolic finite transducers [66].
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Appendix A

List of Specifications

Below you can find a list of all types of specifications that have been suggested dur-
ing a brainstorming session with employees of Northwave [47].

"I want to be able to know...

• whether a specific input (character) can occur in the output.

• whether a specific input (character) cannot occur in the output.

• whether a sanitizer uses blacklisting or whitelisting.

• how a sanitizer does (not) change a specified character set.

• what happens to input that is not specified as part of the input language.

• whether a specified encoding is accepted by a sanitizer.

• whether a validly structured input document also results in a validly struc-
tured output document.

• whether the structure of the input document is (not) changed.

• what happens to an invalidly structured document that is given to a sanitizer
as input.

• whether (a part of) the input is not modified.

• which interesting (such as specific HTML tags) things can occur in the output.

• whether the sanitizer also removes the values of removed HTML tags.

• what happens to special characters such as invisible characters, left-to-right
mark, control characters, emoticons, etcetera.

• the possible (minimal and maximal) lengths of the ouput.

• whether a known vulnerability (specific sequence of characters) can occur in
the output.

• what happens to input that is very similar to bad input.

• which inputs lead to a specific bad output.

• whether two sanitizers are the same.

• whether it matters in which order two sanitizers are called.

• whether it matters if a sanitizer is called multiple times.
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Appendix B

List of repositories

This appendix describes all repositories on GitHub that have been considered for
learning models. These repositories have been found using the global search for
repositories on GitHub with the keywords "encode", "escape" and "sanitize". Below
you can find a table which describes the top 20 results for each keyword sorted by
"Most stars". In each table you can find the link to the repository as well as the reason
why it was not used (if this is the case).

B.1 Encode

This table reflects the order of the results as it was on the 6th of July 2018.
Repository link Reason for rejection
https://github.com/Blankj/AndroidUtilCode Could not get the An-

droid SDK to work
https://github.com/google/guetzli Not a string sanitizer
https://github.com/leandromoreira/digital_video_
introduction

Not a string sanitizer

https://github.com/google/seq2seq Not a string sanitizer
https://github.com/gchq/CyberChef -

https://github.com/topojson/topojson Not a string sanitizer
https://github.com/json-iterator/go Not a string sanitizer
https://github.com/mozilla/mozjpeg Not a string sanitizer
https://github.com/jnordberg/gif.js Not a string sanitizer
https://github.com/monochromegane/the_platinum_
searcher

Not a string sanitizer

https://github.com/esnme/ultrajson Not a string sanitizer
https://github.com/ashtuchkin/iconv-lite Not a string sanitizer
https://github.com/akheron/jansson Not a string sanitizer
https://github.com/ryankiros/skip-thoughts Not a string sanitizer
https://github.com/mathiasbynens/he -

https://github.com/mikechambers/as3corelib Not a string sanitizer
https://github.com/knrz/CSV.js Not a string sanitizer
https://github.com/sublimehq/anim_encoder Not a string sanitizer
https://github.com/real-logic/
simple-binary-encoding

Not a string sanitizer

https://github.com/mpdf/mpdf Not a string sanitizer

https://github.com/Blankj/AndroidUtilCode
https://github.com/google/guetzli
https://github.com/leandromoreira/digital_video_introduction
https://github.com/leandromoreira/digital_video_introduction
https://github.com/google/seq2seq
https://github.com/gchq/CyberChef
https://github.com/topojson/topojson
https://github.com/json-iterator/go
https://github.com/mozilla/mozjpeg
https://github.com/jnordberg/gif.js
https://github.com/monochromegane/the_platinum_searcher
https://github.com/monochromegane/the_platinum_searcher
https://github.com/esnme/ultrajson
https://github.com/ashtuchkin/iconv-lite
https://github.com/akheron/jansson
https://github.com/ryankiros/skip-thoughts
https://github.com/mathiasbynens/he
https://github.com/mikechambers/as3corelib
https://github.com/knrz/CSV.js
https://github.com/sublimehq/anim_encoder
https://github.com/real-logic/simple-binary-encoding
https://github.com/real-logic/simple-binary-encoding
https://github.com/mpdf/mpdf
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B.2 Escape

This table reflects the order of the results as it was on the 9th of July.
Repository link Reason for rejection
https://github.com/mozilla/bleach Too complicated to

write specificationa

https://github.com/fazibear/colorize Not a string sanitizer
https://github.com/klange/nyancat Not a string sanitizer
https://github.com/adoxa/ansicon Not a string sanitizer
https://github.com/unamer/vmware_escape Not a string sanitizer

https://github.com/jorgebucaran/turbocolor Not a string sanitizer
https://github.com/fusesource/jansi Not a string sanitizer
https://github.com/brianmario/escape_utils Has similar methods

to other repositories
https://github.com/atdt/escapes.js Not a string sanitizer
https://github.com/mathiasbynens/jsesc Unclear

documentation

https://github.com/postrank-labs/postrank-uri -
https://github.com/sindresorhus/escape-goat -
https://github.com/sindresorhus/
escape-string-regexp

-

https://github.com/brianmichel/ESCapey Not a string sanitizer
https://github.com/susam/uncap Not a string sanitizer

https://github.com/NZKoz/rails_xss Not a string sanitizer
https://github.com/mathiasbynens/CSS.escape Unclear documenta-

tion
https://github.com/justsml/
escape-from-callback-mountain

Not a string sanitizer

https://github.com/sindresorhus/ansi-escapes Not a string sanitizer
https://github.com/chalk/ansi-styles Not a string sanitizer

aThe sanitizer is too complex to be able to write a specification for it in the limited time frame that
was available.

https://github.com/mozilla/bleach
https://github.com/fazibear/colorize
https://github.com/klange/nyancat
https://github.com/adoxa/ansicon
https://github.com/unamer/vmware_escape
https://github.com/jorgebucaran/turbocolor
https://github.com/fusesource/jansi
https://github.com/brianmario/escape_utils
https://github.com/atdt/escapes.js
https://github.com/mathiasbynens/jsesc
https://github.com/postrank-labs/postrank-uri
https://github.com/sindresorhus/escape-goat
https://github.com/sindresorhus/escape-string-regexp
https://github.com/sindresorhus/escape-string-regexp
https://github.com/brianmichel/ESCapey
https://github.com/susam/uncap
https://github.com/NZKoz/rails_xss
https://github.com/mathiasbynens/CSS.escape
https://github.com/justsml/escape-from-callback-mountain
https://github.com/justsml/escape-from-callback-mountain
https://github.com/sindresorhus/ansi-escapes
https://github.com/chalk/ansi-styles
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B.3 Sanitize

This table reflects the order of the results as it was on the 9th of July.
Repository link Reason for rejection
https://github.com/csstools/sanitize.css Not a string sanitizer
https://github.com/asaskevich/govalidator -
https://github.com/google/sanitizers Not a string sanitizer
https://github.com/cure53/DOMPurify Unclear documenta-

tion
https://github.com/leizongmin/js-xss Too complicated to

write specificationa

https://github.com/rgrove/sanitize Too complicated to
write specificationa

https://github.com/mozilla/bleach Too complicated to
write specificationa

https://github.com/cypriss/mutations Not a string sanitizer
https://github.com/punkave/sanitize-html Too complicated to

write specificationa

https://github.com/microcosm-cc/bluemonday Too complicated to
write specificationa

https://github.com/flavorjones/loofah Unclear documenta-
tion

https://github.com/mganss/HtmlSanitizer Too complicated to
write specificationa

https://github.com/ruslo/polly Not a string sanitizer
https://github.com/theSmaw/Caja-HTML-Sanitizer Too complicated to

write specificationa

https://github.com/jaywcjlove/validator.js Unable to read Chi-
nese documentation

https://github.com/OWASP/java-html-sanitizer Too complicated to
write specificationa

https://github.com/gbirke/Sanitize.js Not a string sanitizer
https://github.com/hmans/slodown Uses another reposi-

tory (rgrove/sanitize)
for sanitization

https://github.com/bevacqua/insane Too complicated to
write specificationa

https://github.com/Microsoft/JSanity Unclear
documentation

https://github.com/csstools/sanitize.css
https://github.com/asaskevich/govalidator
https://github.com/google/sanitizers
https://github.com/cure53/DOMPurify
https://github.com/leizongmin/js-xss
https://github.com/rgrove/sanitize
https://github.com/mozilla/bleach
https://github.com/cypriss/mutations
https://github.com/punkave/sanitize-html
https://github.com/microcosm-cc/bluemonday
https://github.com/flavorjones/loofah
https://github.com/mganss/HtmlSanitizer
https://github.com/ruslo/polly
https://github.com/theSmaw/Caja-HTML-Sanitizer
https://github.com/jaywcjlove/validator.js
https://github.com/OWASP/java-html-sanitizer
https://github.com/gbirke/Sanitize.js
https://github.com/hmans/slodown
https://github.com/bevacqua/insane
https://github.com/Microsoft/JSanity
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Appendix C

Specified models for case study

This appendix includes all specifications that have been written for the case study on
sanitizers. Each specification precisely describes how the sanitizer should behave.

C.1 Encode (he)

digraph spec {
2 rankdir=LR ;

0 [ l a b e l =0 , p e r i p h e r i e s =2]
4 XX0 [ c o l o r =white , l a b e l = " " ] XX0 −> 0

XX0 −> 0
6 0 −> 0 [ l a b e l ="[\ u0000−!#−%\(−;=?−_a−\u f f f f ]/ x +0" ]

0 −> 0 [ l a b e l ="[&]/x+0 # x 2 6 ; " ]
8 0 −> 0 [ l a b e l ="[ <]/& # x 3 C ; " ]

0 −> 0 [ l a b e l ="[ >]/& # x 3 E ; " ]
10 0 −> 0 [ l a b e l ="[\"]/& # x 2 2 ; " ]

0 −> 0 [ l a b e l ="[\ ’]/& # x 2 7 ; " ]
12 0 −> 0 [ l a b e l ="[ ‘ ]/& # x 6 0 ; " ]

}

C.2 Escape (cgi)

1 digraph spec {
rankdir=LR ;

3 0[ l a b e l =0 , p e r i p h e r i e s =2]
XX0 [ c o l o r =white , l a b e l = " " ] XX0 −> 0

5 XX0 −> 0
0 −> 0 [ l a b e l ="[\ u0000−%\’−;=?−\ u f f f f ]/ x +0" ]

7 0 −> 0 [ l a b e l ="[&]/& a m p ; " ]
0 −> 0 [ l a b e l ="[ <]/& l t ; " ]

9 0 −> 0 [ l a b e l ="[ >]/& g t ; " ]
}

C.3 Escape (escape-string-regexp)

digraph spec {
2 rankdir=LR ;

0 [ l a b e l =0 , p e r i p h e r i e s =2]
4 XX0 [ c o l o r =white , l a b e l = " " ] XX0 −> 0

XX0 −> 0
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6 0 −> 0 [ l a b e l =" [ $\(−+.?\[−^{−}]/\\ x +0"]
0 −> 0 [ l a b e l ="[\ u0000−#%−\’,−\−/−>@−Z_−z~−\ u f f f f ]/ x +0" ]

8 }

C.4 Escape (escape-goat)

digraph spec {
2 rankdir=LR ;

0 [ l a b e l =0 , p e r i p h e r i e s =2]
4 XX0 [ c o l o r =white , l a b e l = " " ] XX0 −> 0

XX0 −> 0
6 0 −> 0 [ l a b e l ="[\ u0000−!#−%\(−;=?−\ u f f f f ]/ x +0" ]

0 −> 0 [ l a b e l ="[&]/& a m p ; " ]
8 0 −> 0 [ l a b e l ="[ <]/& l t ; " ]

0 −> 0 [ l a b e l ="[ >]/& g t ; " ]
10 0 −> 0 [ l a b e l ="[\"]/& q u o t ; " ]

0 −> 0 [ l a b e l ="[\ ’]/& # 3 9 ; " ]
12 }

C.5 toLowercase (CyberChef)

digraph spec {
2 rankdir=LR ;

0 [ l a b e l =0 , p e r i p h e r i e s =2]
4 XX0 [ c o l o r =white , l a b e l = " " ] XX0 −> 0

XX0 −> 0
6 0 −> 0 [ l a b e l ="[\ u0000−@\[−\ u f f f f ]/ x +0" ]

0 −> 0 [ l a b e l =" [A]/ a " ]
8 0 −> 0 [ l a b e l =" [B]/b " ]

0 −> 0 [ l a b e l =" [C]/ c " ]
10 0 −> 0 [ l a b e l =" [D]/d " ]

0 −> 0 [ l a b e l =" [E]/ e " ]
12 0 −> 0 [ l a b e l =" [ F]/ f " ]

0 −> 0 [ l a b e l =" [G]/g " ]
14 0 −> 0 [ l a b e l =" [H]/h " ]

0 −> 0 [ l a b e l =" [ I ]/ i " ]
16 0 −> 0 [ l a b e l =" [ J ]/ j " ]

0 −> 0 [ l a b e l =" [K]/k " ]
18 0 −> 0 [ l a b e l =" [L]/ l " ]

0 −> 0 [ l a b e l =" [M]/m" ]
20 0 −> 0 [ l a b e l =" [N]/n " ]

0 −> 0 [ l a b e l =" [O]/o " ]
22 0 −> 0 [ l a b e l =" [P]/p " ]

0 −> 0 [ l a b e l =" [Q]/q " ]
24 0 −> 0 [ l a b e l =" [R]/ r " ]

0 −> 0 [ l a b e l =" [ S ]/ s " ]
26 0 −> 0 [ l a b e l =" [T]/ t " ]

0 −> 0 [ l a b e l =" [U]/u " ]
28 0 −> 0 [ l a b e l =" [V]/v " ]

0 −> 0 [ l a b e l =" [W]/w" ]
30 0 −> 0 [ l a b e l =" [X]/ x " ]
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0 −> 0 [ l a b e l =" [Y]/y " ]
32 0 −> 0 [ l a b e l =" [Z]/ z " ]

}

C.6 htmlspecialchars (php)

1 digraph spec {
rankdir=LR ;

3 0[ l a b e l =0 , p e r i p h e r i e s =2]
XX0 [ c o l o r =white , l a b e l = " " ] XX0 −> 0

5 XX0 −> 0
0 −> 0 [ l a b e l ="[\ u0000−!#−%\’−;=?−\ u f f f f ]/ x +0" ]

7 0 −> 0 [ l a b e l ="[&]/x+0 a m p ; " ]
0 −> 0 [ l a b e l ="[ <]/& l t ; " ]

9 0 −> 0 [ l a b e l ="[ >]/& g t ; " ]
0 −> 0 [ l a b e l ="[\"]/& q u o t ; " ]

11 }

C.7 filter_sanitize_email (php)

1 digraph spec {
rankdir=LR ;

3 0[ l a b e l =0 , p e r i p h e r i e s =2]
XX0 [ c o l o r =white , l a b e l = " " ] XX0 −> 0

5 XX0 −> 0
0 −> 0 [ l a b e l ="[\ u0000−\u001f !#−\’∗−+\−−.0−9=?−\[\]−\ u f f f f ]/ x

+0" ]
7 0 −> 0 [ l a b e l =" [ ] / " ]

0 −> 0 [ l a b e l = " [ \ " ] / " ]
9 0 −> 0 [ l a b e l = " [ \ ( ] / " ]

0 −> 0 [ l a b e l =" [ \ ) ] / " ]
11 0 −> 0 [ l a b e l = " [ , ] / " ]

0 −> 0 [ l a b e l = " [ / ] / " ]
13 0 −> 0 [ l a b e l = " [ : ] / " ]

0 −> 0 [ l a b e l = " [ ; ] / " ]
15 0 −> 0 [ l a b e l =" [ <]/" ]

0 −> 0 [ l a b e l =" [ >]/" ]
17 0 −> 0 [ l a b e l =" [\\]/" ]

}
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