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Summary

Precipitation is the main driving force of the generation of run off. It is therefore an important
model input for hydrological models. However, precipitation is highly variable in space and time
and is hard to measure at an appropriate resolution. A number of studies have been done to
find how precipitation affects the discharge generation. The effect on peak discharges is however
less known, even though the correct modelling of flood peaks in general is desired for disaster
prediction and prevention and sustainable river management. Therefore this study focuses on
using precipitation data in the simulation of peak discharges. To perform this study a case
study is set up using the Distributed Hydrology-Soil-Vegetation Model (DHSVM) in the Jinhua
river basin, East China. For this study the precipitation data is obtained from two overlapping
networks of 5 and 21 stations respectively throughout the entire river basin. It is assumed that
the dense network provides improved rainfall representation and improves the peak discharge
simulation. An important element in this study has been the estimation of parameters to
calibrate the model against measured discharge data.

This study was divided into two parts. First the effects of the precipitation and parameter
estimation were investigated. For this the entire discharge series is used as well as a shortened
time series that only included the individual peak flows. In the second part of the research an
attempt has been made to improve the model performance, based on the results from the first
part of the research. The first focus was on how the precipitation affects the peak discharge and
what still can be done to improve the model by correcting the precipitation data for various
measurement errors. It has become clear that the precipitation data that is currently used has
been cleared of measurement errors due to failure of equipment. Also, the model already corrects
for height when interpolating the precipitation. However, structural errors in the measurements
such as wind induced errors and, wetting and evaporation loss are not corrected for. After this
the relation between precipitation and (peak) discharges was examined through a sensitivity
analysis. It was found that precipitation correlates with discharge in a non linear way and
the precipitation and the peak discharges are correlated as well. It was concluded that the
precipitation has a significant influence on peak discharge simulation and it is worthwhile to use
this as a way to improve the model performance in the second part of the research.

Secondly a small sensitivity analysis was performed to investigate the effect of the parameter
estimation on the discharge simulation and model performance for the entire discharge time series
and peak discharges. For this sensitivity analysis a univariate approach was chosen using the
range based on a previous study. The parameters that were looked into were chosen based on the
parameters that the discharge simulation in DHSVM was found to be sensitive to according to a
previous study in the Jinhua river basin. As expected it was found that the parameter estimation
indeed has an influence on the peak discharge simulation. The parameters, however, influence
the peak discharge simulation in a lesser extent than the precipitation did. The parameters that
influenced the (peak) discharge simulation most are the porosity (φ), the field capacity (θfc),
the wilting point (θwp) and the lateral conductivity (K) of clay loam soil, and the rain LAI
multiplier (Rj).

Next, an attempt has been made to improve the model performance, with a focus on the peak
discharges. This was done in three steps, namely the correction of structural measurement errors
in the precipitation data, the implementation of additional gauge stations and the optimisation
of the model parameters. The removal of the structural measurement errors had an effect
on the simulated discharges, and with respect to the peak discharges the model performance
improved. However, for the entire discharge series the model performance decreased. The
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increased density of the precipitation data was more difficult to examine, due to the decreased
time period. This because of the limited amount of available data from the additional stations
and missing observed discharges after 2008. After the implementation of the 16 additional
stations the model performance was assessed again. The hydrographs also have been analysed
visually. The model performance for the 21 stations did not improve greatly over the entire
discharge and even decreased drastically when focussing on the peak discharges compared to
the situation with five meteorological stations. Therefore the choice was made to perform a
calibration procedure using the automatic genetic calibration algorithm ε-NSGA-II with three
objectives: the Nash Sutcliffe coefficient, PBIAS and Mean fourth power error. These are all
statistical functions that indicate the similarity between the observed and simulated discharges.
The five parameters that were found to affect the peak discharges most were used as calibration
parameter. This was done for the situation with corrected precipitation with 21 stations as
well as 5 stations to make the results more comparable, since a new objective has been added.
The available data was split into two periods in such a way that for calibration 1.25 year was
available and 1 year of data was used for validation. After the calibration it turned out that for
both situations the model’s performance increased drastically compared to the initial state of
the model in the calibration period. However, the model with 21 meteorological stations only
showed slightly better results to the one with 5 meteorological stations. The improvement here
was only visible in the PBIAS value during this period, the NS coefficient was constant for the
entire discharge series as well as for the peak discharges. This indicated an improvement in the
base flows, instead of the peak flows. For the validation period the model performance increased
slightly for the two calibrated models compared to the initial state of the model. The model
performance did not improve when comparing the model with 21 stations to the model with 5
stations, it even declined.

It was believed that 16 additional stations would increase correctness of rainfall representation
enough to be able to capture the spatial variability better. However, in the model with 21
stations the total annual precipitation in the area decreased, causing lower peak flows. The
precipitation station that are used in this study are all located at the lower elevations of the
study area near river branches. To get a better rainfall representation the response of the
precipitation to an increase in elevation should be further examined, since this is not known in
this study area. For the improvement of the model there can still much be won by for example
investing in gauge stations at higher elevations. In general it can be concluded that the increase
in gauge density does not necessarily improve the peak discharge simulation.

For further research on this subject the sensitivity analysis performed in this study can be
extended, since it was based on an earlier study that focussed on the entire discharge series
using a two-step sensitivity analysis. However, it is possible that the peak discharges respond
more strongly to other parameters that were not included in the sensitivity analysis performed
in this study. Also, the model was calibrated and validated with a limited time period. There is
more observed data available at the meteorological bureau, however it was not accessible during
this study. If the additional observed discharges would be accessible for future research the
calibration and validation of the model could be done more extensively which would help with
improving the peak discharge simulation and also the analysis of the model performance with
regard to the peak flows. Finally, other discharge stations in the study area can be used to see
whether the underestimation of peak discharges is a problem in the entire catchment or only at
the Jinhua outlet.
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1 Introduction

Precipitation is the main driving force of the generation of run off (Sorooshian et al., 2011). It
is therefore an important model input for hydrological models. However, precipitation is highly
variable in space and time and is hard to measure at an appropriate resolution. A number of
studies have been done to find how precipitation affects the discharge generation. The effect
of precipitation on peak discharges is however less known. Peak discharges are an important
phenomenon, since they can cause large flood events. Therefore, the improvement of modelling
flood peaks is desired for disaster prediction and prevention, and sustainable river management
(Pan et al., 2017). Especially in precipitation driven rivers that are located in areas where
there is an uneven distribution of precipitation, the discharges can vary greatly throughout the
year. The Jinhua river basin, East China, is such an area where the precipitation distribution
is unevenly in time and will therefore be used in this study as a case study how peak discharges
can be simulated more accurately. Also in previous studies in the Jinhua river basin it was
found that peak discharges are underestimated (Xu et al., 2014; Pan et al., 2017), so there is a
potential to improve this during this study.

Many hydrological models have been developed, all with different characteristics that are more
or less suitable, depending on the goals one has using the model. In this research a physics based,
distributed model will be used to model the run off in the Jinhua river basin. The Distributed
Hydrology-Soil-Vegetation Model (DHSVM), developed by Wigmosta, Vail, and Lettenmaier
(1994) and further extended by Wigmosta, Nijssen, and Storck (2002), will be used in this
study. The choice for DHSVM was mainly made because this model has been used in this study
area in previous researches (Xu et al., 2014; Pan et al., 2017). Currently, the model runs with a
spatial resolution of 200x200 meter and a temporal resolution of one day and uses precipitation
data gathered from five meteorological stations spread across the Jinhua river basin. This model
has been used in earlier studies (Pan et al., 2017; Xu et al., 2014), in which it was concluded that
the model underestimates the peak flows, which is known behaviour for DHSVM (Safeeq and
Fares, 2012). The main reason for using the model is that in earlier studies the model has already
been successfully used and calibrated for the catchment area that is focussed on in this study for
a spatial and temporal resolution of 200 meter and daily respectively (Xu et al., 2014; Pan et al.,
2017). Y. Xu (personal communication, January 24, 2018) stated that the initial reasons for
choosing DHSVM were that (1) the model is a sub-daily, fully distributed hydrological model,
(2) the model had already been successfully used by meteorological colleagues in the study area,
(3) the model performs well on modelling floods and it can be used for investigating the role
of roads on the discharge, and finally (4) the model has an urban module which can model the
urbanised catchment in a simple way. However, Y. Xu (personal communication, January 24,
2018) also found that the model is not an easy model to use, which is a known disadvantage for
distributed models (Liddament et al., 1981).

This chapter will first provide the state-of-the-art literature review in Section 1.1. From this the
research gap, objective and relevance of this research are stated in Sections 1.2 and 1.3. This
will also contain the research questions that are phrased for this research. This chapter will end
with the further outline of this thesis in Section 1.4.

1.1 State-of-the-art literature review

In the course of time numerous hydrological models have been developed to model run off flows.
The development resulted in a higher demand on data, and the choice of the appropriate model
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in a research has become more difficult (Todini, 2007). Classifications of models have been made
by several researchers, including Pechlivanidis et al. (2011), who classified the models based on
model input and the extent of physical principles applied. Pechlivanidis et al. (2011) describes
three types of models: empirical, conceptual and physics based models. Each of these models
have their advantages and disadvantages. Empirical models are the most simplistic of the three,
which makes the implementation relatively easy (Pechlivanidis et al., 2011). Conceptual models
contain in general all the components of hydrological modelling that are found of importance at
the catchment scale, although the complexity of conceptual models varies considerably (Pechli-
vanidis et al., 2011). According to Wheater (2002), it is of importance to find a good balance
between model complexity and good run off prediction, since data is not always available to sup-
port more complex models. Pechlivanidis et al. (2011) finally describes physically-based models,
which are defined by measurable parameters and can provide continuous simulation of the run
off. These models are, however, based on small scale in-situ measurements or laboratory data,
which makes their applicability to larger areas questionable. Also the computational burden
makes these models less useful than more simplistic models.

The model that will be used in this research is DHSVM, which is a distributed, physically
based model, developed by Wigmosta, Vail, and Lettenmaier (1994) and has been extended and
improved by Wigmosta, Nijssen, and Storck (2002). Xu et al. (2014) and Pan et al. (2017) found
that DHSVM underestimated the peak flows in the Jinhua river basin, which has also been the
case in other studies using DHSVM (Safeeq and Fares, 2012). A more detailed description of
the model and the study area can be found in Chapter 2.

In a study by Tian et al. (2014) three conceptual models (GR4J, HBV and Xinanjiang) were
used to model the run off in the Jinhua river basin. The performance of these models has been
evaluated using the Nash Sutcliffe coefficient. This is a normalised statistic that determines the
relative magnitude of the residual variance compared to the measured data variance (Nash and
Sutcliffe, 1970). The value of the NS can be between -∞ and 1, where 1 corresponds to a perfect
accuracy of the model. The models in the study by Tian et al. (2014) too underestimated the
run off, however their performance was better than that for DHSVM as can be seen in Table 1.
Nonetheless, the Nash Sutcliffe coefficient value for DHSVM does exceed the value for what is
considered a good model performance.

Table 1: Model performance expressed in Nash Sutcliffe coefficient for four different types of
models (Tian et al., 2014; Xu et al., 2014)

GR4J HBV Xinanjiang DHSVM

Calibration 0.91 0.91 0.88 0.73
Validation 0.93 0.91 0.89 0.70

One of the most important input data when performing a hydrological study is precipitation
(Barros et al., 2008; Sorooshian et al., 2011; Syafrina et al., 2014). Good data quality, that is
representative for the entire study area, is therefore of importance. Zhu et al. (2016) describe the
difficulty of correctly measuring precipitation, due to its high spatial and temporal variability.
There are different ways of obtaining data: (1) ground-based measurement networks, (2) satellite
products and, (3) stochastic precipitation models. Rain gauges are the oldest way of obtaining
precipitation data, however they are often widely spread in space, which makes the capturing
of spatial variability not adequate (Miao et al., 2015). According to Müller (2011) rain gauges’
advantages are that they can measure precipitation at a fine temporal scale, and they measure the
precipitation directly (Germann et al., 2006). Another ground-based way of measuring is through
radar, which can monitor a larger area on a high resolution, but the data it produces is not
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directly usable (Germann et al., 2006; Müller, 2011). The use of satellite-derived precipitation
estimates started in the 1970’s and have provided useful weather information, which gave the
possibility to assess precipitation properties at a large scale on a sub-daily basis (Haile et al.,
2012; Sorooshian et al., 2011). Multiple studies have been done on the accuracy of rainfall
products produced by satellite, for example by Zhu et al. (2016) and Haile et al. (2012). From
these two studies can be concluded that CMORPH performed the best, although the differences
between all the satellite products were small. Finally, stochastic precipitation models, also
known as weather generators, are discussed. These models generally consist of two components,
one generates the precipitation occurrence and one simulates the precipitation amounts (Ng
et al., 2017). Weather generators have the ability to overcome the limitations of measuring
precipitation data, however it is necessary to calibrate and validate them for a new region to
ensure their applicability (Ng et al., 2017). This research focusses on the increase of rain gauge
stations to improve the model, since these are available in the area.

The current model that is used in the Jinhua river basin is calibrated and validated for a spatial
resolution of 200x200 meter and a temporal resolution of one day. In an ideal situation the
precipitation input data would be of the same resolution, or smaller (Blöschl and Sivapalan,
1995). However, this is not the case for the spatial resolution. Therefore the precipitation data
needs to be interpolated and extrapolated to match the spatial resolution of the model.

1.2 Research gap

In previous research a model in DHSVM was set up for the Jinhua river basin, but even though
the Nash Sutcliffe coefficient indicated a good model performance, it was still visible that the
peak flows were underestimated. The current precipitation data is gathered from five meteo-
rological stations throughout the Jinhua catchment. This data has a coarse resolution, which
may be the cause of the underestimation of the peak flows. In this catchment area, there has
not been a study with other data than that obtained from the five meteorological stations. It
is thus not known what the influence is of rainfall representation by use of a more dense rain
gauge network in the Jinhua river basin.

Besides the data that is used in the model, the parameter estimation has an important role in
the discharge simulation. DHSVM consists of many parameters that can be used for calibration.
This makes it hard to fully calibrate the model, especially combined with the calculation time
the model requires. Xu et al. (2014) calibrated the model using a trial-and-error method. After
this Pan et al. (2017) did a sensitivity analysis to parameters in the Jinhua river basin that
the model is sensitive to and recommended in future research to focus on calibrating with these
parameters. The sensitivity analysis done by Pan et al. (2017) was performed for the entire
discharge series, however the effect of parameters on peak discharges using DHSVM has not
been researched yet in the Jinhua river basin.

1.3 Objective and research questions

Precipitation is the main driving force in the generation of run off (Sorooshian et al., 2011) and
also the parameter set of models can have an effect on this. In previous research it was noted
that for the Jinhua river basin the peak discharges are underestimated. There has not been a
study to the peak discharges in this basin. The objective of this research is therefore:

Finding the effect of precipitation data and parameter estimation on simulated peak discharges
and trying to improve the peak flow simulation in the Jinhua river basin using DHSVM.
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1.3.1 Research questions

Three research questions have been formulated to achieve the research goal:

1. How is the currently used precipitation data treated and what is the effect of precipitation
data on peak flow simulation?

2. What is the effect of parameter estimation on peak flow simulation?

3. How can the current model predictions be improved with regard to peak flows using pre-
cipitation data and parameter estimation?

1.4 Outline

This report will go into detail about the research that has been performed. First the used model
and data will be further elaborated on in Chapter 2. Also the study area that has been focussed
on will be further introduced in this chapter. In Chapter 3 the method how the research questions
were answered is given. After this Chapter 4 will give the results of the research questions. This
document will end with a discussion, conclusion and recommendations in Chapters 5 and 6.
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2 Study area, model and data

This chapter elaborates on the study area where the study has been performed, the model and
the optimisation code that have been used during this study in Sections 2.1 to 2.3. Also the
used data and how it was obtained is discussed here in Section 2.4.

2.1 Study area

This study focusses on the modelling of the peak discharge in the Jinhua river basin, located in
the Midwest of the Zhejiang Province (East China). The river is a tributary of the Qiantang
river and has a length of 195 km and the catchment area of the river is 6785 km2 (Pan et al.,
2017). For this study the area upstream of the Jinhua discharge station will be used, which
has a total area of 5996 km2 (see Figure 1). The elevation of the river basin varies from 29 to
1296 m above mean sea level. The Jinhua River is rainfall dominated and is located in an area
where the predominant climate is Asian subtropical monsoon. This is characterised by hot, wet
summers and cold, dry winters. The annual average precipitation and temperature in the area
are 1424 mm/year and 17 ◦C, respectively. Due to the climate more than 50% of the annual
precipitation falls in the period May to July. This uneven temporal distribution of precipitation
is the cause that the Jinhua River Basin experiences droughts and floods (Pan et al., 2017).

Figure 1: Study area (Xu et al., 2014)

2.2 DHSVM

In this study version 3.1.1 of the distributed hydrology-soil-vegetation model (DHSVM) will
be used. This model is a physically-based, distributed model, created by Wigmosta, Vail, and
Lettenmaier (1994) and consists of seven modules: evapotranspiration, snow pack accumulation
and snow melt, canopy snow interception and release, unsaturated moisture movement, subsur-
face flow, surface overland flow and channel flow. A short elaboration of each of these modules
is given in Appendix A.
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This model uses digital elevation model (DEM) data to identify the spatial scale at which a
representation of hydrology-vegetation dynamics is provided. The resolution of this model is
typically between 10 and 200 meters. The study area is divided into computational grid cells
that are based upon the chosen DEM resolution. Each of these grid cells is centred on each
DEM point and is allocated soil and vegetation characteristics. DHSVM offers simultaneous
solutions to water and energy balance equations for every grid cell in the river basin. The
hydrological connection of individual grid cells is realised by surface and subsurface flow routing,
schematised in Figure 2. DHSVM adopts a cell-by-cell method to route saturated subsurface
flow using a kinematic or diffusion approximation (Wigmosta, Vail, and Lettenmaier, 1994;
Wigmosta, Nijssen, and Storck, 2002). For the surface flow routing can be chosen between a
unit hydrograph method and an explicit cell-by-cell method. In this study the explicit cell-by-
cell method is implemented, since the model provided that has been used by Pan et al., 2017 was
set to this method. This explicit cell-by-cell method uses stream network files that are based on
the DEM to determine the flow direction of the water.

Figure 2: Schematisation of DHSVM (Washington University, 2006)

The parameters within DHSVM can be subdivided into elevation, stream, road, soil and vegeta-
tion categories. The parameters that are related to the characteristics of the stream network are
determined based on the DEM data. These parameters therefore do not have to be calibrated.
The soil and vegetation parameters that have a physical meaning on the other hand do need to
be calibrated when their value is not known through observations, which is generally the case.
Since there are more than 20 parameters with a physical meaning present in the model (Wig-
mosta, Nijssen, et al., 2002; Cuo et al., 2011) and the computational time is long, calibration is
not an easy task (Xu et al., 2014). The model parameters that are used for calibration in the
Jinhua river basin are summarised in Table 2. Xu et al. (2014) used a trial-and-error approach
to calibrate the model for the Jinhua river basin. In the mean time an optimisation algorithm
has been written based on ε-NSGA-II multi-objective algorithm, which is further elaborated on
in Section 2.3.
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Table 2: Model parameters used for calibration ((Xu et al., 2014)

Parameter Abbrev. Description Unit

Soil parameters

Lateral saturated hydraulic conduc-
tivity

Kls Used in calculation of lateral flow
movement

m/s

Exponential decrease rate of Kls

with soil depth
EDR Exponent describing the decrease of

Kls with soil depth
-

Maximum infiltration capacity MIC Maximum rate of soil infiltration m/s
Field capacity fc Used to estimated available water

for subsurface layers
m3/m3

Wilting point wp Used in the evaporation calculation m3/m3

Vegetation parameters

Maximum stomatal resistance Rsmax Used in calculation of canopy resis-
tance

s/m

Minimum stomatal resistance Rsmin Used in calculation of canopy resis-
tance

s/m

Overstory leaf area index OLAI Used in calculation of canopy resis-
tance, snow interception, radiation
balance

-

Aerodynamic extinction factor AEF Used in calculation of aerodynamic
resistance

-

2.3 ε-NSGA-II

To be able to calibrate the model for a situation with a higher representation of precipita-
tion data an algorithm is necessary. The algorithm that was available for this model is based
on the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ε-NSGA-II). Kollat
and Reed (2006) did a study to compare the performances of four evolutionary multi-objective
optimisation (EMO) algorithms: the Non-Dominated Sorted Genetic Algorithm II (NSGAII),
the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ε-NSGAII), the Epsilon-
Dominance Multi-Objective Evolutionary Algorithm (εMOEA), and the Strength Pareto Evo-
lutionary Algorithm 2 (SPEA2). The algorithms were compared using runtime performance
metrics (convergence, diversity and ε-indicator), unary metrics (hypervolume indicator and ε-
indicator) and the first-order empirical attainment function. Kollat and Reed (2006) concluded
that the performance of the ε-NSGAII greatly exceeds the performance of the NSGAII and the
εMOEA. The ε-NSGAII also achieves superior performance relative to the SPEA2 in terms of
search effectiveness and efficiency.

The Non-Dominated Sorted Genetic Algorithm II (NSGA-II) is a generational evolutionary
multi-objective optimization (EMO) that aims at approximating the Pareto-optimal fronts for
a given problem while keeping high diversity in its solutions set (Deb et al., 2002). The Pareto-
optimal fronts define Pareto-optimal solutions where none of the objective functions values can
be improved without degrading some of the other objective function value. Deb et al. (2002)
describes three modules that are used within this algorithm:

1. Non-dominated sorting

2. Crowding distance assignment

3. Crowded comparison operator
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Figure 3: Flow chart of NSGA-II (Kumar and Yadav, 2017)

According to Kumar and Yadav (2017) the procedure followed by NSGA-II can be explained in
four steps. These steps are described below and can be summarised in a flow chart, which is
visualised in Figure 3.

Step 1 Combine parent (Pt) and offspring (Qt) populations to create Rt = Pt ∪Qt. Perform a
non-dominated sorting to Rt and identify different fronts: Fi, i = 1, 2, ..., etc.

Step 2 Set new population Pt+1 = ∅. Set a counter i = 1. Until |Pt+1| + |Fi| < N (N is
population size), perform Pt+1 = Pt+1 ∪ Fi and i = i+ 1.

Step 3 Perform the crowding sort procedure (i.e., assign crowding distance and apply crowded
comparison operator) and include the widely spread N − |Pt+1| solutions by using the
crowding distance values in the sorted Fi to Pt+1.

Step 4 Create offspring population Qt+1 from Pt+1 by using the crowded tournament selection,
crossover and mutation operators.

The Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ε-NSGA-II) is a modified
version of NSGA-II (Deb et al., 2002; Reed and Devireddy, 2004; Ren and Li, 2007). Through
epsilon-dominance archiving, dynamic population sizing and automatic termination this algo-
rithm eliminated much of the traditional trial-and-error parameter estimation associated with
EMO algorithms. (Kollat and Reed, 2006). Compared to other EMO algorithms ε-NSGA-II
exceeds their performance greatly. Also due to the its simplified parameter estimation, its ability
to adaptively size its population and the automatic termination, this algorithm is efficient and
reliable (Kollat and Reed, 2006).
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2.4 Data

2.4.1 Initial data

The data needed for this model include climate data (average air temperature, wind speed,
relative humidity, sunshine hours and precipitation), watershed boundary (mask), DEM data,
vegetation and soil type, soil depth and stream network. In previous studies this data is obtained
for the Jinhua river basin through various sources. Daily climate data are obtained from five
meteorological stations (Dongyang, Jinhua, Wuyi, Yiwu and Yongkang) throughout the area
that are indicated in Figure 1. This data is available from 1962 until 2011 for the Wuyi station
and from 1962 until 2014 for the other four stations, see Table 3. The observed run off used for
calculating the model performance is obtained from the Jinhua discharge station and is for this
research available from November 2003 until December 2008. The data used in the first part of
this study runs from November 2003 until December 2008, where the first two months of this
data are used for the spin up time of the model.

DEM data is downloaded from the Shuttle Radar Topography Mission (SRTM) at a resolution of
90 meters. This data is redefined to a resolution of 200 meters by Xu et al. (2014). The soil and
vegetation data are obtained from the US Department of Agriculture (USDA) and WESTDC
Land Cover Products 2.0, respectively (Pan et al., 2017; Xu et al., 2014). A map of the soil
and vegetation data is shown in Figure 4. Arc Workstation software was used to generate the
soil depths and stream network using the DEM and mask file. The prepared soil depths, stream
files, DEM and mask data were provided by Suli Pan for this research.

(a) Soil type in the Jinhua river basin (b) Vegetation in the Jinhua river basin

Figure 4: Distribution of soil and vegetation types in the Jinhua river basin (Pan et al., 2017)

2.4.2 Data for model improvement

For the second part, where the model performance is tried to be improved, additional mete-
orological data is used. The data is obtained from the same hydrological bureau as the first
five stations came from. However, it contains hourly data, which was aggregated to daily data,
because that is what the model requires. The data provided is from 23 meteorological stations
throughout the Jinhua river basin, Figure 5. Included in these 23 stations are four of the five
stations that were used initially. The fifth station was added, so 24 stations were available for
the second part of the study. Additional information on these stations can be found in Table 3.
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Figure 5: Locations of additional stations. Numbers correspond with Table 3

DHSVM needs at each location of a meteorological station the air temperature, precipitation,
relative humidity, wind speed, incoming shortwave and longwave radiation. These last two are
calculated from the sunshine hours that are measured at the meteorological stations. The time
period in which the data is available differs per station and due to that the sunshine hours are
not measured at all stations. The period at which data from all stations is available is from July
2007 until December 2011. The short and long wave radiation at the stations where the sunshine
hours are missing are found through interpolation using the nearest neighbour technique and
the stations where this data was available.

The observed discharges, however, are only available until December 2008, which makes the
usable period of the stations even shorter. It has therefore been decided that the stations of
which the time period does not start before August 11th 2006 will be removed, which leaves 21
stations for further improvement of the model. This date was chosen because previous research
has showed that it is possible to calibrate a model with one year of data (Brown et al., 2013;
Sun et al., 2016) and using this date leaves a large amount of stations that can be used.
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Table 3: Overview of additional and original stations in the Jinhua river basin. Italic text
indicates station in initial dataset
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1 Bada 29.2 120.5 164 2006.01.01-2014.08.31 901
2 Dongyang 29.3 120.2 92 1962.01.01-2014.08.31 1264
3 Futang 29.0 119.8 73 2006.01.01-2014.08.31 1273
4 Guodong 28.8 119.8 197 2006.01.01-2014.08.31 1268
5 Guozhai 29.2 120.4 466 2006.01.01-2013.05.06 787
6 Hengdian 29.2 120.3 110 2006.01.01-2014.08.31 901
7 Hengjin 29.3 120.5 136 2006.01.01-2014.08.31 1130
8 Hulu 29.4 120.5 139 2006.08.11-2014.08.31 826
9 Jinhua 29.1 119.7 63 1962.01.01-2014.08.31 1374
10 Lipu 29.1 119.8 110 2006.08.11-2014.08.31 1037
11 Liushi 29.3 120.3 88 2006.01.01-2014.08.31 745
12 Nanjiang 29.2 120.4 180 2006.08.11-2014.08.31 1367
13 Qianxiang 29.0 120.3 158 2006.09.04-2014.08.31 874
14 Shanghuang 29.0 120.0 130 2006.08.11-2014.08.31 1273
15 Shanyang 29.1 120.0 145 2006.01.01-2014.08.31 974
16 Shuangxi 29.1 120.5 251 2006.12.27-2014.08.31 1367
17 Xian 29.0 120.1 130 2006.08.11-2014.08.31 1107
18 Xuchu 29.3 120.1 73 2006.08.11-2014.08.31 1158
19 Yangxi 28.9 120.2 179 2006.01.01-2014.08.31 874
20 Yiwu 29.3 120.1 75 1962.01.01-2014.08.31 1283
21 Yongkang 28.9 120.0 90 1962.01.01-2014.08.31 1234
22 Yuyuan 28.8 119.7 207 2006.08.11-2014.08.31 1204
23 Zhenjia 29.2 120.2 329 2007.06.23-2014.08.31 1139
24 Wuyi 28.8 119.8 90 1962.01.01-2011.12.31 1251
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3 Methodology

This chapter gives a description of the method used to answer the research questions phrased
above. Section 3.1 will go into detail about the method of answering the first research question
regarding the influence of precipitation data on the model results. After this the method of
finding the influence of the parameter estimation on the simulated discharge will be given in
Section 3.2. And finally, the method used to improve the model is discussed in Section 3.3.

3.1 Influence of precipitation data on (peak) discharge simulation

The first research question consists of two parts. The first part examines the current treatment
of the precipitation data and second part deals with the influence of the precipitation data on
the (peak) discharge simulation. In this section the methods to answer both of these parts are
described in this order. The results of this research question will show whether the influence
of precipitation on the (peak) discharge simulation is large enough to consider in the final step
of the research, where an attempt was made to improve the model performance, and possible
measures to improve the precipitation data.

3.1.1 Current precipitation data

Precipitation data is an important input parameter for the generation of run off, as described
above. It is important that the data used in the model is treated and corrected well. If this is
not the case, this might be a source of incorrect run off generation within the model. In the
first step of this research there is therefore looked into the precipitation data. The correction
for structural errors, such as wind, evaporation and wetting loss, of the measured precipitation
is important, since this can introduce significant errors, resulting in an underestimation of the
precipitation (Wagner, 2009). Also during interpolation it is important to take into account that
due to an increased elevation the precipitation might increase as well (Subarna et al., 2014). So,
if this is not corrected for it is a possible cause of underestimating the peak flow. To ensure that
the peak flows are not underestimated due to incorrect data treatment, the corrections done
on the data need to be identified. This is done on the basis of information obtained from the
researchers that previously used the data and model for the same river basin, and confirming
this with the precipitation output. Also to see the extent of the underestimation the amount
of simulated discharge will be calculated using the unchanged values of the precipitation and
parameters (from now on indicated as the initial state) and subsequently compared to that of
the observed discharges.

3.1.2 Model sensitivity to precipitation

Secondly the sensitivity of the model to precipitation is analysed. This is done by synthetically
increasing and decreasing the precipitation input of the model. The precipitation is set to be 10%
and 20% less and more than the initial state for all the meteorological stations. In this analysis
the mass balance will also be taken into account. The sensitivity of the model is evaluated
using the mean values of the discharge, to see in what way this increases. After determining
the influence of precipitation data on the model output the data will be set to its original (the
initial state) values for further analysis.
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The influence of the precipitation on peak discharges is found through a correlation analysis. For
this analysis the peak discharges are determined first using the Peaks Over Threshold (POT)
method that has been used in previous studies for this area. The POT method selects all peaks
over a certain threshold, which can therefore result in more than one peak per year (Lang et al.,
1999). Liu et al. (2017) determined that the peak threshold for independent peaks in the Jinhua
river basin is 340 m3/s. Each of these peaks is tested for independence according to criteria
set by USWRC (1976). These criteria state that the interval between two consecutive peak
flows has to be larger than five days plus the natural logarithm of the basin in square miles,
and the intermediate flows between these two consecutive peaks must drop below 75% of the
lowest of these two flood events. After this the highest correlation between the peak discharges
and precipitation is determined. This is done through selecting an appropriate time lag and
temporal scale for the precipitation. Different combinations are made of time lags varying from
0 to 19 days and temporal scale varying from 1 to 19 days. These ranges are chosen, because
larger time lags and temporal scales are not realistic for areas similar to the Jinhua river basin
(M. Booij, personal communication, March 27, 2018). A moving average with a window the size
of the desired temporal scale is used to obtain the different temporal scales. The different time
lags are obtained by selecting the precipitation event the desired amount of days before the peak
flow occurs. For each of the combinations the correlation coefficient with the peak discharges
will be calculated resulting in the highest correlation for the most appropriate combination of
time lag and temporal scale.

3.2 Influence of the parameter estimation on (peak) discharge simulation

Besides the precipitation data that can cause the underestimation of the peak flows, the parame-
ter estimation will also introduce an error in discharge simulation. To get a better understanding
of the error from the parameter set, the consequences of this error on (peak) discharge simula-
tion are analysed. Pan et al. (2017) did a two-step sensitivity analysis to find the parameters
in the model that the simulated discharge in the Jinhua river basin is sensitive to. The seven
parameters that were found in this study will be used to see in what way the model responses
when they are changed, also with regard to peak flows. For the sensitivity analysis a univariate
method is used. The value of the parameters will be changed by setting them individually to
the maximum and minimum value of the range that was provided in Pan et al. (2017) and three
equally distanced values in between this range. When the run of one parameter is finished it will
be set back to its initial value. The simulated discharges that result from this will be visualised.
These visualisations will be analysed, also using again the mean discharge it can be seen in what
extent the parameter estimation affects the discharge simulation.

The effect of parameter changes has been investigated both for the mean discharge result, and
for the resulting discharge series. For this the Nash-Sutcliffe coefficient (see Equation (1)) and
PBIAS (see Equation (2)) are used, since Pan et al. (2017) and Xu et al. (2014) used these in
previous studies as well. After this the effect on the peak discharges is analysed also by looking
at the model performance. The independent peaks are localised in the same manner as has been
done in the previous research question. For the analysis of the model performance only the peaks
are used that occur in the observations as well as in the simulation. For this a window of three
days has been used, in case a simulated peak occurs a day earlier or later than the observed
peak. When the moments of the occurring peaks are selected, these are used to calculate the
NS- and PBIAS-value.
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NS = 1.0−
∑N

i=1(Oi − Si)2∑N
i=1(Oi − Ō)2

(1)

PBIAS(%) = 100%×
∑N

i=1(Si −Oi)∑N
i=1(Oi)

(2)

In these equations Si is the simulated discharge at time step i and Oi is the observed discharge
at time step i.

3.3 Improving current model results

To improve the model performance several steps can be undertaken. Each of these steps will be
discussed in this paragraph. First, the systematic measurement errors that are still present in
the currently used data shall be removed. The method used to remove the measurement errors
is described in Section 3.3.1. After this more meteorological stations shall be added to the model
with what the rainfall representation of the, amongst other things, precipitation data will be
higher. The method regarding this is described in Section 3.3.2. Finally, an attempt has been
made to improve the model through parameter optimisation. This can be found in Section 3.3.3.

3.3.1 Removing measurement errors

While measuring precipitation a number of errors can occur. Several studies have been done to
correcting those errors and all conclude that wind induced errors are the most severe errors (Balin
et al., 2010; Ren and Li, 2007; Wagner, 2009). Balin et al. (2010) examined if uncertain point
precipitation data is likely to affect the output of distributed hydrological models. They conclude
that precipitation input uncertainty in a distributed model did not lead to substantially different
results in terms of simulated discharge and model efficiency, contrary to previous studies. A
comparison of the effects on simulated discharge was made between three variants of input data,
namely, using data that was corrected for systematic errors, data that was corrected for random
errors, and uncorrected data. It turned out that the data with correction for systematic errors
had a larger effect on discharge simulation than when data with correction for random errors was
used. Ren and Li (2007) named different errors that occur during precipitation measurements
and introduced a correction method for this using a pit gauge, two operational gauges and a
horizontal gauge in China. They focus mainly on the wind induced errors, since this is the main
source of errors in precipitation measurements. Ren and Li (2007) state that rain gauges in China
are designed to prevent evaporation loss and losses due to splashing in and out of precipitation.
Therefore the data does not need to be corrected for this. Wetting losses, however, can occur
in China. According to Ren and Li (2007) wetting losses are around 0.2 mm in China when
the inner walls are sufficiently wetted. Other systematic errors are also not corrected for, since
these were said not to be of significant influence (Ren and Li, 2007).

At the meteorological stations in this study the precipitation was measured using a 8 inch
(324 cm2) standard rain gauge (SRG) placed two meters above the ground (S. Pan, personal
communication, April 11, 2018). These type of rain gauges are non-recording gauges and are
a standard in the US (Legates and DeLiberty, 1993). Legates and DeLiberty (1993) named a
correction factor kr to correct the precipitation for the wind induced error, see Equation (3).
In this equation Uw is the wind speed at the height of the gauge orifice in m/s. It is assumed
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that the wind speed is measured at the same height as where the gage orifice is located. The
measured liquid precipitation is multiplied by this correction factor.

kr =
100

100− 2.12 · Uw
(3)

Combining the important corrections as found in the literature the equation for the corrected
precipitation looks like Equation (4). In this equation Pc is the corrected precipitation, P0 is
the measured precipitation, both in mm, kr is the correction factor given in Equation (3) and
WL is the wetting loss as is given in Ren and Li (2007) also in mm.

Pc = kr · P0 +WL (4)

After the correction of the measured precipitation an analysis was done of how the model
performance has changed with regard to the entire discharge simulation as well as the peak
discharge simulation, using the Nash-Sutcliffe coefficient and the PBIAS. The model performance
of the peaks will be done in the same manner as has been explained in Section 3.1, even though
no additional calibration has taken place yet.

3.3.2 Introducing more meteorological stations

To increase the rainfall representation of the used precipitation data 16 other meteorological
stations were introduced into the model. Although the data comes from the same hydrological
bureau it is not presented in the same manner and not even all necessary variables were measured.
It is therefore necessary to prepare the data in such a way that it is usable in the model that is
currently used.

Preparation of the precipitation, mean air temperature, relative humidity and wind speed data
that were measured here included aggregating the hourly data to daily data. The variable
that was missing from these stations is the sunshine hours, needed to calculate the short and
long wave radiation. These two missing variables are obtained for the stations by interpolating
the values provided by the five stations that were used in the first part of the research. The
precipitation data that was measured at these stations is prepared in the same manner used
for the first five stations, described in Section 4.1.1. Before the data is used in the model it is
treated for structural measurement errors in the same way as has been done for the initial five
stations, see Section 3.3.1.

After the model has been run, the results will be visualised again in the same ways that has
been done previously and it will be analysed. For this analysis the Nash-Sutcliffe coefficient and
the PBIAS-value will be used again.

3.3.3 Model parameter optimisation

After the implementation of additional data points and the correction for the systematic mea-
surement errors in precipitation data the model will have to be recalibrated. The calibration has
been done by using an automatic multi-objective calibration algorithm that was already avail-
able for DHSVM and this catchment area. The algorithm is based on the Epsilon-Dominance
Non-Dominated Sorted Genetic Algorithm II (ε-NSGA-II), a modified version of NSGA-II (Deb
et al., 2002; Reed and Devireddy, 2004; Ren and Li, 2007). The algorithm will run on the server
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available at the Zhejiang University that is able to use parallel computation. The algorithm is
set to have a maximum of 50 generations in each run and for each generation the population size
has a minimum of 12 and a maximum of 96. The algorithm will be terminated once the epsilon
dominance is smaller than a certain value, which is set to 0.025 for all objectives, or when 3000
function evaluations have taken place.

There are three objectives used in the calibration. The Nash-Sutcliffe coefficient and PBIAS are
chosen since previous calibration has also been done with these objectives. To have a larger focus
on the peak flows during the calibration the Mean Fourth-power Error (see Equation (5)) has
been chosen as the third objective (T. Rientjes, personal communication, April 19, 2018). During
the calibration all objectives will be taken into account simultaneously to find the optimum
parameter set. For calibration five parameters have been selected that were found to affect the
peak flows the most, according to the small sensitivity analysis that has been performed during
the second research question. These parameters are the rain LAI multiplier (Rj), porosity (φ),
lateral conductivity (K), field capacity (θfc) and the wilting point (θwp) of the clay loam soil.

M4E =
1

N

N∑
i=1

(Oi − Si)4 (5)

As stated in Section 2.4.2 the common period of the data from all the meteorological stations
combined with the available observed discharges is limited. The choice to not synthetically
increase the data series for the different stations through interpolation was made, because this
does not truly increase the rainfall representation and because otherwise possible additional
errors are introduced. This leaves approximately 2.5 years for calibration and validation. The
calibration period will be from August 2006 until December 2007 and the validation period will
be from January 2008 until December 2008. This is a short period for calibration and validation
which can affect the overall findings of this study. However, this may lead to good results as
has been seen in previous studies where also limited data was available (Brown et al., 2013; Sun
et al., 2016). The number of peaks that are available for analysis in these periods is limited.
The NS and PBIAS value will be calculated, however the comparison between the initial state
and the improved model versions will mainly be done visually. This is because the calculation of
these objectives with the limited data points is probably not robust enough to draw conclusions
from.

Since the optimisation is performed with an extra objective that introduces an extra focus on
the peak discharges, the choice was made to also apply this optimisation to the model with 5
stations where the precipitation was corrected for structural measurement errors as well. This
was done so the comparison between the two situations would be more fair.

During the preparation of the files for the calibration of the model it became clear that the
ε-NSGA-II algorithm as it is now, is a difficult to understand piece of coding. Also, it is not
well documented what should be changed in what manner to make the algorithm usable for
another situation. Due to this, the preparation progress took a few weeks, before everything
was working as it should. To safe the trouble of figuring out what to change in the algorithm
for new scenarios in the future, a small documentation of the steps needed in this research has
been written and included in Appendix B.
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4 Results

In this chapter the results of the research questions are given. Section 4.1 describes the results
of the first research question regarding the current precipitation data that have been used in the
model. After this the influence of the model parameters is discussed in Section 4.2. Finally, the
model improvement will be described in Section 4.3.

4.1 Influence of precipitation data on (peak) discharge simulation

The first research question consists of two parts. First the current treatment of the precipitation
data and second the influence of the precipitation data on the (peak) discharge simulation. In
this section the results of both these parts are described in this order. This research question will
show whether the influence of precipitation on the (peak) discharge simulation is large enough to
consider in the final step of the research, where the model performance is tried to be improved,
and what can possibly be done to improve the precipitation data.

4.1.1 Current precipitation data

The currently used precipitation data comes from five meteorological stations that are located
throughout the study area. The data that is used starts at 01/11/2003 and ends at 31/12/2008.
The first two months of the data are used for the spin up period for the model, so from 01/01/2004
the output of the model can be used for evaluation. According to S. Pan (personal communica-
tion, March 15, 2018) the data has not been corrected for systematic measurement errors before
it was used as model input. These systematic measurement errors include, among other, wind
induced errors and, wetting and evaporation loss (Wagner, 2009). The measurement errors that
occurred due to failing equipment have been removed and corrected for. Since the model un-
derestimates the peak flows, the extent of the water shortage in the model is analysed through
calculating the total amount of water that has left the area as discharge according to observa-
tions and simulation. Over 4 years the model simulated the total discharge as 1.66E+10 m3.
According to the observations the total discharge over 4 years is 1.69E+10 m3. The difference
between these two is 2.07E+08 m3, which corresponds to a shortage of approximately 1.2% in
the model.

According to Wigmosta, Vail, and Lettenmaier (1994) the model uses digital elevation data to
model the topographic controls on precipitation. S. Pan (personal communication, March 15,
2018) stated that this includes the height correction needed for the precipitation. When looking
into the code the equation for the precipitation lapse rate can be found. The lapse rate equation
is a linear equation, see Equation (6), as was noted by Gwozdz (2009). However, Liston and
Elder (2006) proposed a non-linear equation, as is given in Equation (7). A a linear formula as
is used in the model cannot be found in literature.

P = P0 [1.0 + χ(z − z0)] (6)

P = P0

[
1.0 + χ(z − z0)
1.0− χ(z − z0)

]
(7)

There is no universal equation for the precipitation lapse rate, since this greatly depends on
geographic factors. Moreover, determining the precipitation lapse rate is a difficult task, which
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for a specific area is ideally based on annually measured precipitation sums at different elevations.
If there are no observations available to determine the lapse rate, the most standard and relatively
simple equation should be used (M. Booij, personal communication, April 5, 2018). When
making a scatter plot using the precipitation data from the five stations in the year 2004 and
their elevation, the best fitted equation is a linear equation. Therefore the equation will not be
changed and remain linear in the model.

4.1.2 Correlation of precipitation and (peak) discharge

Next, the influence of the precipitation on the discharge generation by the model is investigated.
By manually increasing and decreasing the data the effect on the discharges in the river can be
determined, see Figure 6. When looking at the average value of the discharge it can be seen
that the discharge does not respond linearly with the precipitation. When the precipitation
is changed with 10% the discharge changes with approximately 20%, while the mass balance
error according to the model remains low, see Table 4. An explanation for this can be that
because of the change in precipitation a lower percentage goes into storage due to the filling of
storage by preceding precipitation events. Consequently a higher percentage of the precipitation
goes into run off. The final storage for the different scenarios can be seen in Table 4, where
it is visible that with a higher precipitation intensity the storage is less emptied than with a
lower precipitation intensity. Also the change in storage over time is visualised in Figure 7. In
Figure 8 the percentage saturated cells in the river basin is plotted and the precipitation that
has fallen over the entire area at each time step. From this figure it is visible that the increase
in precipitation also results in a increase in the saturation extent of the river basin. On the
other hand it is also visible that after the heaviest rainfall event of the four years the saturation
percentage only goes up to about 45%. Besides that the time when this event takes place is
odd, the response of the catchment is also different than one would expect. The reason why the
percentage of saturated cells does not increase more is not known.

From the mass balance the total amount of precipitation in the river basin for the different
scenarios at each time step was extracted. In Figure 9 the precipitation and discharge are
plotted in one figure. From this it is clearly visible that peaks in precipitation and discharge
occur around the same time, which is expected. Less clearly visible is, that the peaks do not
occur at the exact same time, but that there is a small delay between the two peaks. This
indicates that the correlation between these physical quantities is largest with a time lag. To
verify this a correlation analysis has been performed.

Since the study mainly focusses on the effect of precipitation on peak discharges, the above
mentioned correlation analysis is done for the precipitation and peak discharges. Correlations
with the peak discharges were calculated using different combinations of time lags and temporal

Table 4: Sensitivity of model on precipitation in numbers

Precipitation input -20% -10% Initial +10% +20%

Mean discharge (m3/s) 68.5 85.8 104.4 124.0 144.4
Percentage from initial state 66% 82% 100% 119% 138%
Initial storage (mm) 259.6 259.6 259.6 259.6 259.6
Final storage (mm) 205.7 210.7 214.7 217.5 219.9
Absolute mass balance error (mm) -0.224 -0.222 -0.228 -0.223 -0.241
Relative error (%) 0.42 0.45 0.51 0.53 0.61

18 4 RESULTS



MSc. thesis

Figure 6: Model sensitivity to precipitation. Crosses indicate the peak flows

Figure 7: Water storage in the area
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Figure 8: Percentage saturated cells and precipitation at each time step

Figure 9: Discharge and precipitation at each time step
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Figure 10: Correlation between peak discharge and precipitation for different time lags and
temporal scales. Highest correlation is 0.93 and indicated with a black dot

resolution of the precipitation that were generated as was explained in Section 3.1. The correla-
tions that were calculated are visualised in a colour map, see Figure 10. The highest correlation
coefficient was found at a time lag of 2 days and a temporal scale of 8 days and had a value of
0.93. Which is with a 95% confidence interval a significant correlation.

4.1.3 Conclusion

The addressed research question in this section is: How is the currently used precipitation data
treated and what is the effect of precipitation data on peak flow simulation? The answer to this
can be divided into two parts. First, it has become clear that the data that is currently used has
been cleared of measurement errors due to failure of equipment. Also, the model already corrects
for height when interpolating the precipitation. However, structural errors in the measurements
such as wind induced errors and, wetting and evaporation loss are not corrected for. This
correction might help to improve the simulation of peak discharges. The second part of this
research question further examined the relation between precipitation and (peak) discharges. It
was found that precipitation correlates with discharge in a non linear relationship. When the
precipitation was changed with 10%, the discharge changed with almost 20%. It was also visible
that the precipitation and discharge peaks occurred around the same time, which indicated that
there is a relation between the two physical quantities. The relation between the precipitation
and peak discharges was examined through a correlation assessment that varied the time lag and
temporal scale of the precipitation to find what combination of these two caused the highest
correlation. It turned out that for a temporal scale of 8 days and a time lag of 2 days, the
correlation between peak discharge and precipitation was at its highest (R=0.93). From this it
can be concluded that the precipitation has a significant influence on (peak) discharge simulation
and it is worthwhile to use the precipitation as a way to improve the model performance.
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4.2 Influence of the model on (peak) discharge simulation

Besides the precipitation it is also a possibility that the model parameters are an important
cause for the underestimation of peak discharges. Therefore this will be looked into this in the
following paragraph.

4.2.1 Effect of parameter estimation on discharge generation

In this paragraph it is examined how the parameter estimation influences the simulation of
the discharge. First, the sensitive parameters were selected from Pan et al. (2017), who found
through a two-step sensitivity analysis that DHSVM applied in this river basin is most sensitive
to the following parameters:

1. Root zone depth of crop land (D)

2. Lateral conductivity of clay loam soil (K)

3. Porosity of clay loam soil (φ)

4. Rain Leaf Area Index multiplier (Rj)

5. Field capacity of clay loam soil (θfc)

6. Wilting point of clay loam soil (θwp)

7. Understory minimum resistance of crop land (URsmin)

The model is not as sensitive to the parameters of the other soil types and land use, because
crop lands and clay loam dominate the area of the Jinhua river basin, as can be seen in Figure 4.

The effects of the changes described in Section 3.2 on the mean discharge are visualised in
Figure 11. This figure represents the results of a univariate sensitivity analysis where the different
parameters are changed individually. This way the effect of a parameter on different objectives
can be analysed, in this case the mean discharge. The parameter that is represented by a line
with a steeper slope has more impact on the mean discharge, because the change in value of the
the mean discharge is higher for the same change in parameter value in terms of percentage.

When looking at Figure 11 it is visible that the rain LAI multiplier (Rj), the field capacity (θfc),
the wilting point (θwp) and the understory minimum resistance (URsmin) have a relatively large
effect on the mean discharge. Especially the rain LAI multiplier and the field capacity affect the
mean discharge greatly.

4.2.2 Model performance

To see how the parameter values influence the performance of the model as a result of their
relative change, the NS and PBIAS are used. First, this is done for the entire discharge series.
The results for this can be seen in Figure 12. In this figure it is visible that the rain LAI
multiplier (Rj) causes the largest change in the NS and PBIAS, just as it did with the average
discharge. The wilting point (θwp) and the field capacity of clay loam (θfc) seem to have a larger
effect on the PBIAS-value of the discharge, but they also affect the NS-value. The porosity of
the clay loam (φ) has a large effect on the NS-value, while it relatively does not change as much
as the rain LAI multiplier. The understory minimum resistance (URsmin), on the other hand
influences the value of the PBIAS more than that of the Nash Sutcliffe coefficient.
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Figure 11: The change in the mean discharge as function of the relative change in parameter
values. Circle indicates the initial values

Most of these parameters affect the storage ability of the soil in some way. The porosity influences
the storage capacity of the soil directly. The wilting point and field capacity describe the mobile
water in the root zone of the soil. These parameters affect the evapotranspiration and thus the
water balance with consequences to the water storage and discharge. The rain LAI multiplier,
however, influences the amount of water that actually reaches the ground due to interception
and can therefore infiltrate or become run off.

After analysing the effect of the parameters on the entire discharge series, the model performance
is also analysed for independent peak flows by calculating the NS and PBIAS. This is visualised
in the same way as has been done for the entire discharge time series, and can be seen in
Figure 13. Here again the same parameters have a high influence on the model performance.
However, the understory minimum resistance (URsmin) now seems to have a higher influence
on the NS-value, than it did in the discharge series. Also the lateral conductivity has a larger
effect on the model performance for peak flows than it does on the entire discharge series.

Comparing Figures 12 and 13 a irregularity is noted. When looking at the course of the PBIAS
for the entire discharge series it suggests that there is enough water in the system to cause peak
discharges, since the value is both positive and negative. In other words, there is a surplus or
shortage of water. The value of the PBIAS for the peak discharges is always negative. This
result suggests that there is not enough water to account for the observed peak discharge
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(a) Model performance for discharge series expressed in NS value as function of the relative change in
parameter values

(b) Model performance for discharge series expressed in PBIAS valueas function of the relative change
in parameter values

Figure 12: The change in model performance for discharge series as function of the relative
change in parameter values. Circles indicate the initial values
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(a) Model performance for peak flows expressed in NS value as function of the relative change in parameter
values

(b) Model performance for peak flows expressed in PBIAS value as function of the relative change in
parameter values

Figure 13: The change in model performance for peak flows as function of the relative change
in parameter values. Circles indicate the initial values
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4.2.3 Conclusion

In this section the research question to be answered is: What is the effect of parameter estimation
on peak flow simulation? From the above it can be concluded that the parameters influence
the discharge and model performance for the entire discharge time series and peak discharges,
which was expected. The parameters, however, influence the discharge simulation to a lesser
extent than the precipitation did, since the slope of the graphs is steeper for precipitation than
for the parameters. The parameters that influenced the (peak) discharge simulation most are
the porosity (φ), rain LAI multiplier (Rj), the field capacity (θfc), the wilting point (θwp) and
the lateral conductivity (K). Most of these parameters have an influence on the storage of the
soil in some way. The modelling of the peak discharges can probably be improved through more
extensive calibration, which focusses on the storage capacity of the soils.

4.3 Improving current model results

This paragraph will discuss the results of the steps undertaken to improve the model perfor-
mance. To start with, the systematic measurement errors that are still present in the currently
used data shall be removed. After this more meteorological stations shall be added to the model
which will increase the rainfall representation of the, amongst other things, precipitation data.
Finally, an attempt has been made to improve the model through parameter optimisation. The
section will end with a conclusion giving the answer to the research question addressed in this
section.

4.3.1 Removing measurement errors

In Figure 14 the hydrograph before and after the correction of the precipitation data is shown,
together with the observed values. This shows that all the simulated discharges have increased
compared to the uncorrected data. This makes sense, since the input data of the precipitation
has been increased through measurement error correction. At some moments this means that the
peaks are closer to the observed discharge, or even more or less equal to the observed discharge.
In other cases the peaks are overestimated while the initial state was already very close to the
observed peaks. Lastly, it is visible that at some points the peaks were already overestimated by
the uncorrected data, so the correction of the data, and with that the increase of precipitation,
the peaks are now even more overestimated.

Table 5: Model performances for (peak) discharges after precipitation correction

Nash-Sutcliffe PBIAS

Discharges
Initial 0.77 -1.2 %
Corrected 0.72 10.2 %

Peak discharges
Initial 0.61 -15.6 %
Corrected 0.75 -7.0 %

Table 5 contains the values of the model performance belonging to Figure 14. It compares
the corrected and uncorrected (initial) data for the entire discharge series as well as the peak
flows. It can be seen that for the entire discharge series the model performance goes down.
Mostly because the low flows were already reasonably well simulated and with the increase of
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Figure 14: Simulated discharge after precipitation correction. Crosses indicate the peak flows

precipitation they are now overestimated. This is mostly visible in the PBIAS that indicates now
a general overestimation of the simulated discharge after correction instead of an underestimation
as it did before the correction of the precipitation data. This means that where there was a
slight shortage of water in the initial state of the model, there is now a surplus of water in the
model of approximately 10.2%. When merely looking at the peak flow simulation the model
performance increases. According to the PBIAS value there is still an underestimation of the
peak flows using the corrected precipitation data, however it is more than halved compared to
the uncorrected data.

4.3.2 Introducing more meteorological stations

To further improve the model performance the rainfall representation of the precipitation data
has been increased through adding 16 additional meteorological stations. While preparing the
data for the model it came to notice that the variable values of the same station that were
present in both data sets differed from each other. The cause of this is most likely that the
second data set was aggregated differently than the first data set. The first data set was hourly
data aggregated from 8pm until 8pm the next day. However, the second data set was hourly
data aggregated from 12am until 12am the next day. Another discrepancy was found in the
definition of Jinhua meteorological station in the model. The elevation that was defined there
was approximately 10 meters higher than the elevation that was provided in the second data
set. When comparing the generated discharges it was visible that this did have a slight effect.
From this point onwards the second dataset will been used as leading. Also the available time
period has changed from 2004-2008 to 2006-2008.

In Figure 15 the result of the model run for the initial state, the corrected data for five stations
and the inclusion of the 16 other stations, that were also corrected, are visualised. Also the
observed values are added into the plot. From this it is already visible that the simulated
discharges with 21 stations are lower than those of the other simulations. For some peaks this
results in a better match, but mostly the peaks are even more underestimated. With regard to
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Table 6: Model performance after implementing additional stations

Nash-Sutcliffe PBIAS

Discharges
Initial (uncorrected 5 stations) 0.58 1.0 %
Corrected 5 stations 0.50 11.7 %
Corrected 21 stations 0.77 -18.1 %

Peak discharges
Initial (uncorrected 5 stations) 0.70 -10.7 %
Corrected 5 stations 0.74 -3.3 %
Corrected 21 stations 0.47 -23.6 %

Figure 15: Simulated discharge after the addition of 16 meteorological stations. Crosses indicate
the peak flows

the entire hydrograph, there is a general underestimation of the flows. This is also clear when
looking at the PBIAS values of the model with 21 meteorological stations, given in Table 6.
However, for the entire discharge series the Nash-Sutcliffe coefficient improves drastically.

Since the current model is calibrated using five meteorological stations and no correction for
systematic measurement errors, the model should be recalibrated to actually improve the model
performance. This process will be elaborated on in Section 4.3.3.

4.3.3 Model parameter optimisation

The final step of improving the model is changing the parameter optimisation. For the optimi-
sation 5 parameters were taken into account found in Section 4.2. These parameters are the rain
LAI multiplier (Rj), porosity (φ), lateral conductivity (K), field capacity (θfc) and the wilting
point (θwp) of the clay loam soil. The ranges of possible parameter values were based upon the
ranges found in Pan et al. (2017). However, there are some constraints to the parameter ranges,
since the porosity cannot be smaller than the field capacity, and the field capacity in its turn
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cannot be smaller than the wilting point (S. Pan, personal communication, May 2, 2018). The
ranges are set in such a way that the above cannot happen in any case. After the algorithm
has finished with the optimisation the ranges will be adjusted based on the results of the first
calibration iteration. The parameter value ranges for the optimisation iterations can be found
in Appendix C. After five iterations of the calibration it was concluded that the objective func-
tions were reasonably stable and the optimum parameter values at that point were used for the
validation. After the calibration it became clear that compared to the initial state some of the
parameters had been changed, that were not taken into account for the calibration. This made
the comparison between the initial state and the calibrated situation unfair. However, due to
the limited time after this discovery it was decided to not redo the calibration. Instead, to make
a fair comparison to the initial state of the model, the choice was made to adjust parameter
values that were unintentionally changed during calibration in the initial state. This way the
effect of the precipitation and parameter estimation could still be analysed.

In Figure 16 the result of the calibration for 5 and 21 stations in the calibration period is
visualised, together with the initial state of the model during the calibration period. It can
be seen from this figure that compared to the initial state of the model the calibrated model
with 21 stations greatly improves the discharge simulation at some point. At other points the
discharge is overestimated while it was not the case in the initial state. The peak flows seem to be
simulated better and are in general closer to the observed discharges. However, the largest peak
that occurs in this time period is still greatly underestimated. On the other hand it is better
than the initial state of the model. The model improves less when comparing it to the situation
with the 5 corrected stations. Most peaks have a similar value, only the two peaks just before
October 2007 differ greatly. The first peak is more accurate in the situation with 21 stations and
the second peak is overestimated in the situation with 21 stations and underestimated in the
situation with 5 stations. The model with the 5 corrected stations is in that case more accurate.
When looking further at the hydrograph it is visible that the model also has some issues with
the small variations that occur in the lower flows. Even though the model with 21 stations also
has some issues in with the small variations, especially from October 2007 until December 2007,
it seems to perform better during these lower flows than the model with 5 stations.

Table 7 contains the model performance that belong to Figure 16. The NS and PBIAS have been
calculated again for the entire discharge series. Also for the peak discharges the calculation was
done again, despite that there are only four independent peaks present in this period. It should
be noted that especially for the peak flows these values cannot be used to draw solid conclusions
from. They are only presented for a complete picture. The model performance in this period
has been drastically improved compared to the initial state of the model and also compared
to the non-calibrated model which is quantified in Table 6. Compared to the calibrated model
with 5 stations the improvement is less significant. For both the peak discharges and the entire
discharge series the NS value stays the same and the PBIAS value only decreases slightly with
5 percent points when introducing the additional stations.

The hydrograph of the validation period is visualised in Figure 17 with the quantification in
Table 8. From the hydrograph it is visible that at some points the simulated discharge from
the model with 21 stations improves compared to the initial state of the model. However,
improvement is less visible than during the calibration period. The simulation of peak discharges
also improves, although it remains difficult to correctly predict the highest peak flow, which is
still greatly underestimated. Compared to the model situation with 5 corrected stations the
improvement is not really visible for the peak discharges. In both cases the peak flows remain
underestimated, the model situation with 21 stations even has a larger underprediction than that
with 5 corrected stations. Again the model has trouble with the variations that are observed in
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Table 7: Model performance after calibration in the calibration period

Nash-Sutcliffe PBIAS

Discharges
Initial (uncorrected 5 stations) 0.77 -24.1 %
Corrected 5 stations 0.80 -7.5 %
Corrected 21 stations 0.80 -2.5 %

Peak discharges
Initial (uncorrected 5 stations) 0.59 -23.0 %
Corrected 5 stations 0.77 -13.0 %
Corrected 21 stations 0.77 -8.5 %

Figure 16: Simulated discharge after calibration in the calibration period. Crosses indicate peak
flows

the lower flows . However, in this case the model situation with 21 stations does not necessarily
improves in this, as it did do during the calibration period.

The fact that the model improvement is not really present in this period is also visible in the NS
and PBIAS values in Table 8. The model performance values are a little better for the model
with 21 stations than for the initial state of the model with regard to the peak flows. However,
compared to the calibrated model with 5 meteorological stations there is even a decline in the
model performance, for both the peak discharges as the entire discharge series. In general the
performance is poor in this period. Since there are only two peak discharges in this period again
it must be noted that conclusions with regard to the peak flows cannot be drawn from this.

To make an easy comparison between all the different model situations and the corresponding
model performance all the NS and PBIAS values are summarised in Table 9. It is clear that
based on these model performance indicators there is an improvement compared to the initial
state of the model. However, between the 5 corrected stations and the 21 corrected stations this
improvement is hardly present. This contradicts the hypothesis that with a better representation
of rainfall throughout the area the model will perform better. In Section 2.4.2 a table is given
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Table 8: Model performance after calibration in the validation period

Nash-Sutcliffe PBIAS

Discharges
Initial (uncorrected 5 stations) 0.75 -27.0 %
Corrected 5 stations 0.76 -21.0 %
Corrected 21 stations 0.74 -21.7 %

Peak discharges
Initial (uncorrected 5 stations) 0.18 -39.3 %
Corrected 5 stations 0.26 -35.2 %
Corrected 21 stations 0.22 -37.6 %

Figure 17: Simulated discharge after calibration in the validation period. Crosses indicate peak
flows

providing the total amount of measured precipitation in 2008 per station. It is visible that the
5 initial stations measured precipitation amounts well above 1200 mm, while the other stations
also measured precipitation amounts in that year below 1000. The model interpolates and
extrapolates the measured precipitation. The outcome of this is bound to be influenced when
additional data points are added, and since the additional data points used here mostly provide
lower precipitation there is a high chance that the total interpolated precipitation is also lower.
To see the effect of this a small cross-validation is done by using the inter- and extrapolated
values of the model when using only 5 stations to see if it matches the precipitation that was
measured at the locations of the other 16 stations. This is done using the total precipitation
in 2008 and the results of this are visualised in Figure 18. It turned out that the measured
precipitation is lower than the model interpolated using the 5 station data. The total amount
of precipitation over the entire area that the model outputs using 5 stations compared to the
21 stations is also higher. Which is a logical explanation why the simulated peak discharges do
not increase as much as might be expected and are even more underestimated.

Furthermore, the PBIAS values suggest there is structurally too little water compared to the
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real world. This can be because of the stage-discharge relationship that is used by the hydro-
logical bureau to determine the discharges. Higher flows are often unreliable because the linear
relationship used is not applicable for higher flows in the field (T. Rienjes, personal communi-
cation, July 16, 2018). These relations should be updated each year to guarantee the correct
output. However, not much is known about the stage-discharge relationship, since the Bureau
of Hydrology directly provides the discharges and nothing else.

Table 9: Overview model performances for the different model situations and time periods

NS PBIAS

Discharges Peak discharges Discharges Peak discharges

Initial (uncorrected 5 stations)
2004/2008 0.77 0.61 -1.2% -15.6%
2006/2008 0.58 0.70 1.0% -10.7%
2006/2007 0.77 0.59 -24.1% -23.0%
2007/2008 0.75 0.18 -27.0% -39.3%

Corrected 5 stations
2004/2008 (before calibration) 0.72 0.75 10.2% -7.0%
2006/2008 (before calibration) 0.50 0.74 11.7% -3.3%
2006/2007 (calibration period) 0.80 0.77 -7.5% -13.0%
2007/2008 (validation period) 0.76 0.26 -21.0% -35.2%

Corrected 21 stations
2004/2008 - - - -
2006/2008 (before calibration) 0.77 0.47 -18.1% -23.6%
2006/2007 (calibration period) 0.80 0.77 -2.5% -8.5%
2007/2008 (validation period) 0.74 0.22 -21.7% -37.6%

(a) Network with 5 stations (b) Network with 21 stations

Figure 18: Mean precipitation in 2008 per grid cell in meters

4.3.4 Conclusion

The goal of this section was to improve the model performance, with a focus on the peak dis-
charges. This was firstly tried by correcting the precipitation data for structural measurement
errors. This had an effect on the simulated discharges, and with respect to the peak discharges
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the model performance improved. However, for the entire discharge series the model perfor-
mance decreased. After this the effect of an increased representation of the precipitation data
was examined. The difficulty was that the time period was decreased, due to the limited available
data from the additional stations and missing observed discharges after 2008. After the imple-
mentation of the additional stations the model performance was assessed again. Although the
value of the Nash-Sutcliffe coefficient improved over the entire discharge series the PBIAS value
decreased. The model performance with a focus on the peak discharges decreased drastically
compared to the situation with five meteorological stations. Therefore it was chosen to perform
a calibration procedure using an automatic genetic calibration algorithm with three objectives,
where the five parameters that were found to affect the peak discharges most were taken into
account. This was done for the situation with corrected precipitation for 21 stations as well as
for 5 stations to make the results more comparable, since a new objective has been added. After
the calibration it turned out that for both models the performance increased drastically com-
pared to the initial state in the calibration period. However the model with 21 meteorological
stations did not improve greatly compared to the one with 5 meteorological stations, although
there was a slight improvement in the PBIAS value in this period. For the validation period the
model performance increased slightly for the two calibrated models compared to the initial state
of the model. The performance did not improve when comparing the model with 21 stations to
the model with 5 stations, it even declines. This is possibly due to the interpolated precipitation
that is too high when using 5 stations.
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5 Discussion

The results in the previous chapter have shown that precipitation is an important variable
in peak flow simulation and also parameter estimation plays an important role. The change
in precipitation data input, the representation of it as well as the correction of measurement
errors, have changed the model performance. To further improve the model a small calibration
has taken place. This chapter will reflect on the taken steps in the research and the results
and will relate them where possible to the literature. Besides this it will be discussed what the
potential as well as the limitations of this research are.

5.1 Reflection

The study that was performed can be divided into two parts. First the influence of the precipita-
tion and parameter estimation on the (peak) discharge simulation were individually investigated.
Based on these results an attempt was made to improve the model performance as a second part
of the research. This was supposed to be achieved by increasing the representation of the precip-
itation data and parameter optimisation. The increase in rainfall representation was achieved
through the implementation of 16 additional meteorological stations. However, even after opti-
misation no clear improvement was visible. This raises the question why the inclusion of more
stations does not change the model performance for the better. The most probable reason for
this is that the spatial variability of the precipitation in this area is not captured with this
number of stations and more stations are needed to capture this. When looking at Figure 5
and Table 3 in Chapter 2 it is visible that all the stations are located close to the river and the
elevations of the stations vary from 62.5 to 466 meter with an average of 155 meter, while the
entire area has elevations that go up to almost 1300 meter and has an average of 254 meter.
This means that especially precipitation patterns at higher elevations are not well represented
and it is therefore not known how the precipitation responses when the elevation increases. The
spatial variability plays an even more important role when it comes to the simulation of peak
discharges. The question is then: what is the spatial variability of the precipitation and what
are the number of stations necessary to capture this variation? In an area where there is little
spatial variation, such as a field, a rain gauge can be representative for a larger area than in a
mountainous area where there is a larger spatial variation. This study area lies in a mountainous
region, so the spatial variability of precipitation will probably be large. The exact spatial vari-
ability of precipitation in this area cannot be determined using the data that is available now.
The variability can be based on areas that are similar to this study area. Dong et al. (2005)
tried to identify the appropriate number of rain gauges in a catchment using the lumped model
HBV. They showed that the correlation between the mean areal precipitation and discharge
increases hyperbolically with the increase in number of gauge stations until a critical number of
rain gauges, after which it levels off. The number of critical gauge stations was found to be five
for their study area, the Qingjiang river basin. Both the Qingjiang and the Jinhua river basin
have a subtropical climate and consists of a mountainous area. However, the range in elevation
in the Qingjiang river basin is larger and the total surface area is almost three times the size of
the Jinhua river basin. The World Meteorological Organisation (2008) states that the density of
rain gauges should be between 250 and 575 km2 per station for mountainous areas. Arsenault
and Brissette (2014) tried minimizing the number of gauges while maintaining a good model
performance. They performed their study in the Toulnustouc river basin in Québec, Canada.
This is a hilly to mountainous catchment that has a continental climate (Gouvernement du
Québec, 2018). Although the climate is different from the Jinhua river basin, the size of the
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two basins is more comparable. Arsenault and Brissette (2014) found that for the Toulnustouc
river basin the optimal density of gauge stations is between 1600 and 4000 km2 per station,
which corresponds to two to five stations in their catchment. They do note that although two
or three stations would suffice, the optimal number of stations is four or five. Both Arsenault
and Brissette (2014) and Dong et al. (2005) used a lumped model in their studies, while this
study used a distributed model. Whether this makes a difference in the optimum density is not
found.

5.2 Limitations

There is one obvious limitation in this research, the data quantity. This resulted in a limited
period for calibration and validation. This limitation will be addressed in this section together
with the precipitation lapse rate and calibration and validation.

5.2.1 Data quantity

The meteorological data used in this study was acquired from two different data sets and not
all the necessary variables for the model were measured at all stations. Also the temporal scale
differed for the different stations. The stations that were initially used provided daily data, how-
ever the additional stations had hourly meteorological data. Since the current model is a daily
model and the time was too limited to change the model to an hourly model, the choice was
made to aggregate the hourly data to daily data. Furthermore, the additional stations missed
the measurements of sunshine hours, which are required for the calculation of a model input: the
long and short wave radiation. This affects the evapotranspiration that occurs during the day in
the area. To solve this the available sunshine hours from the five initial stations were used and
interpolated to the coordinates of the stations where these were not available, even though this
introduces an error into the model. The interpolation technique used was the nearest neighbour
technique, because the usage of other interpolation techniques resulted in NaN-values. A num-
ber of studies has been done to investigate what the effect of evapotranspiration is on discharge
simulation, also Andréassian et al. (2004) and Oudin, Michel, et al. (2005a) investigated this.
They both found that in terms of model efficiency a simple assumption on potential evapotran-
spiration in a watershed does not yield more accurate results in discharge simulation. Oudin,
Michel, et al. (2005a) state that these results bring into question whether a detailed knowledge
of evapotranspiration is necessary for rainfall-runoff modelling. Andréassian et al. (2004) raises
this question as well, although they note that additional research is necessary. Oudin, Hervieu,
et al. (2005b) further investigated the need for detailed evapotranspiration in a model. They
proposed a temperature-based PE model, which only requires the mean air temperature. This
new model leads to a slight improvement in rainfall-runoff model efficiency. So, even though the
small error in evapotranspiration that was introduced in this study, it will probably not have
the largest effect on the results of the study. If a more accurate evapotranspiration is desired
the model proposed by Oudin, Hervieu, et al. (2005b) can be used.

Four meteorological stations were available in both data sets: Dongyang, Jinhua, Yiwu and
Yongkang. While preparing the data from all the meteorological stations it came to notice
that the measured variables at the common stations slightly differ from each other at the same
date. This might be explained by the different ways of aggregation that were used in both
datasets. The first data set contained data that was aggregated by the hydrological bureau,
which aggregates the data from 8 pm until 8 pm the next day. The second data set was
aggregated by Suli Pan, who did this from 12 am until 12 am the next day. When looking
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at the daily variations in a subtropical climate in the Eastern part of China it is visible that
precipitation falls in two peaks: early morning and late afternoon (Yuan et al., 2012). The
choice of aggregation method has an impact on the amount of precipitation that falls at any
given day in the model. Peak flows will respond stronger to this difference than low flows, since
the peak flows are generated by larger and shorter precipitation events.

5.2.2 Precipitation lapse rate

As pointed out in Section 5.1 it is important to obtain more measurements at a wider variation
of elevations to determine the spatial variability of precipitation. Besides this, it is also of
importance to determine the appropriate precipitation lapse rate. Momentary the value of the
lapse rate is based on calibration that took place in a previous study (Pan et al., 2017) and the
simplest linear precipitation lapse rate formula is used, which is not common practice. Although
Liston and Elder (2006) proposed a non-linear lapse rate formula for precipitation, the formula
is not changed, since the precipitation lapse rate is dependent on many geographic factors and
little is known of how the precipitation responds to elevation in this area. When this is unknown
it is best to use the most simple equation (M. Booij, personal communication, April 5, 2018).
However, the lapse rate is a measurable variable which can be determined based on precipitation
measurements. It might be possible that in this area the precipitation lapse rate is not a linear
relationship as is used now. To make this fit the reality better it is necessary to use measurements
of a wider variation of elevations than are now available. The discharge stations that are now
available do not provide data at higher elevations, it is therefore necessary to use other sources of
data, such as satellite or radar. These types of precipitation data might also be able to capture
the spatial variability of the precipitation better than the currently used meteorological stations.

5.2.3 Calibration and validation

The model used in this research is a distributed model which requires quite extensive data input.
The gathering of the data is a difficult job, especially with a high resolution. For this research
data from 24 different meteorological stations was available for varying time periods. This made
the overlapping time period for all the stations limited. Combined with the even more limited
available observed discharges the total period that could be used for all 24 stations was one year.
Excluding three stations resulted in approximately 2.5 year of usable data for calibration and
validation. Calibration took place from August 2006 until December 2007 and validation took
place from January 2008 until December 2008. Although in other studies calibration with such a
short time period has been done before (Brown et al., 2013; Sun et al., 2016), it is not desirable
and it would be better if more data for calibration and validation was available. Perrin et al.
(2007) did a study to the minimum number of data points necessary to perform a calibration
in case a time series is not continuous. They found that 350 calibration days sampled out of
a longer data set including dry and wet conditions are sufficient to obtain robust estimates of
model parameters. In this study the calibration consisted of 426 consecutive days, so all seasons
were taken into account during calibration. Another issue that was raised due to this short
calibration and validation time was the small number of peaks that was available to assess if the
model performance had improved with regard to peak flows. The calibration period consists of
only four independent peaks and the validation period even less, namely two independent peaks.

This calibration has been performed using five parameters that the peak flow was found to be
most sensitive to in Section 4.2. However, this sensitivity analysis only included the parameters
that the entire discharge series was found to be sensitive to, according to a previous study (Pan
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et al., 2017), and not specifically for peak flows. It might be possible that the peak flows are
more sensitive to other parameters, such as those related to surface run off generation, that are
not taken into account in this research. The reason for the less extensive sensitivity analysis is
mainly the limited amount of time that was available.

5.3 Potential

This study confirmed that the precipitation is an important factor in the discharge simulation
in the Jinhua river basin using DHSVM, although the increase in rainfall representation did not
give results that were expected. That more meteorological stations do not necessarily result in
better discharge simulation has been shown in other studies as well (Arsenault and Brissette,
2014; Dong et al., 2005). Both these studies were performed in a mountainous area with lumped
models. The type of climate and catchment size differed in these studies, which shows that
these results are generic for mountainous areas despite their climate. This study adds to these
results, having the climate in common with Dong et al. (2005) and having the catchment size in
common with Arsenault and Brissette (2014). This study does differ in the type of model used,
which gives a new insight in the topic that also for distributed models more gauge stations does
not necessarily give a better discharge simulation. However, Arsenault and Brissette (2014) and
Dong et al. (2005) also investigated the placement of the stations and concluded that this was of
great importance. Arsenault and Brissette (2014) used a virtual gauge network and was able to
place stations at specific useful locations such as the areas where spatial and temporal coverage
was lacking. They acknowledge that in the real world it is not always possible to locate stations
wherever it is desired, but it is worth to sometimes choose more remote locations.

Even though there was no improvement in the model performance, the methods used in this
study are easily applicable in similar studies to the effect of a natural phenomenon on discharges,
whether these are peak discharges, low flows or discharges in general. The sensitivity analyses
done are basic, but give an understanding of how the study area and model respond to changes
in the precipitation and the parameter values. Which helps in determining effective ways to
improve hydrological models. However, certain phenomena and parameters also influence each
other. So for a full understanding of the situation a more extensive analysis should be performed.
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6 Conclusions and recommendations

In this chapter the conclusions that can be drawn from the results are given. The answers to
the research questions regarding the influence of precipitation and parameter estimation on the
simulation of peak discharges will be given in Section 6.1, as well as the conclusions regarding the
improvement of the model through increasing the rainfall representation of the data and model
calibration. After this the recommendations that come from this study are given in Section 6.2.

6.1 Conclusions

There were three research questions addressed in this study that aimed to fulfil the objective
that was set for this research. The conclusions in this section will be given first per research
question, and after that some general conclusions that can be drawn are given.

6.1.1 Influence of precipitation data on (peak) discharge simulation

It has become clear that the precipitation data that is currently used has been cleared of mea-
surement errors due to failure of equipment. Also, the model already corrects for height when
interpolating the precipitation. However, structural errors in the measurements such as wind in-
duced errors and, wetting and evaporation loss are not corrected for. This correction might help
to improve the simulation of peak discharges. Furthermore the relation between precipitation
and (peak) discharges was examined. It was found that precipitation correlates with discharge
in a non linear way. When the precipitation was changed with 10%, the discharge changed with
almost 20%. It was also visible that the precipitation and discharge peaks occurred around
the same time, which indicated that there is a relation between the two physical quantities.
The relation between the precipitation and peak discharges was examined through a correlation
assessment that varied the time lag and temporal scale of the precipitation to find what combi-
nation of these two caused for the highest correlation. It turned out that for a temporal scale
of 8 days and a time lag of 2 days, the correlation between peak discharge and precipitation
was at its highest (R=0.93). This high correlation coefficient and the way discharge simulation
changes when precipitation is increased, indicated that the precipitation has a significant influ-
ence on (peak) discharge simulation and it is worthwhile to use the precipitation data in a way
to improve the model performance.

6.1.2 Influence of the model on (peak) discharge simulation

The influence of the parameters is identified through a univariate sensitivity analysis with seven
parameters that were chosen based on the results of the two step sensitivity analysis performed
by Pan et al. (2017). The model was most sensitive to five of these seven parameters. The
parameters that influenced the (peak) discharge simulation most are the porosity (φ), rain LAI
multiplier (Rj), the field capacity (θfc), the wilting point (θwp) and the lateral conductivity
(K). Most of these parameters have an influence on the storage of the soil in some way. The
largest sensitivity in the mean discharge was by the field capacity, where a change of 50% in
the parameter value caused around 30% change in mean discharge. For the effect on the peak
discharges the model performance was examined in terms of the Nash Sutcliffe coefficient and
PBIAS value. These model performance indices measure to which extent the model simulates the
observed values correctly and if the observations are under- or overestimated. The effect of the
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parameters on the peak discharge is similar to that on the mean discharge. It can be concluded
that the parameters influence the discharge and model performance for the entire discharge time
series and peak discharges, which was expected. However, the parameter estimation does not
have as large an effect on the discharge simulation as the precipitation had.

6.1.3 Improving current model results

Improving the model performance, with a focus on the peak discharges was firstly tried by
correcting the precipitation data for structural measurement errors. This had an effect on the
simulated discharges, and with respect to the peak discharges the model performance improved.
However, for the entire discharge series the model performance decreased. After this the effect
of an increased representation of the precipitation data was examined. The difficulty was that
the time period was decreased, due to the limited available data from the additional stations
and missing observed discharges after 2008. After the implementation of the additional stations
the model performance was assessed again. Although the value of the Nash-Sutcliffe coefficient
improved over the entire discharge series the PBIAS value decreased. The model performance
with a focus on the peak discharges decreased drastically compared to the situation with five
meteorological stations. Therefore it was chosen to perform a calibration procedure using an
automatic genetic calibration algorithm with three objectives, where the five parameters that
were found to affect the peak discharges most were taken into account. This was done for
the situation with corrected precipitation with 21 stations as well as 5 stations to make the
results more comparable, since a new objective function has been added. After the calibration
it turned out that for both models the performance increased drastically compared to the initial
state in the calibration period. However the model with 21 meteorological stations did not
improve greatly compared to the one with 5 meteorological stations, although there was a slight
improvement in the PBIAS value in this period. For the validation period the model performance
increased slightly for the two calibrated models compared to the initial state of the model. The
performance did not improve when comparing the model with 21 stations to the model with 5
stations, it even declines. This is possibly due to the interpolated precipitation that is too high
when using 5 stations.

6.1.4 General conclusions

The main objective of this study was to find the effect of precipitation and parameter estimation
on simulating the peak discharges in the Jinhua river basin using DHSVM. This was done with
the goal to improve the discharge simulation with a special focus on the peak flows. It was
found that the precipitation was the most important factor in the simulation of the discharge.
By increasing the density of the precipitation network, together with the calibration of five pa-
rameters, an attempt was made to achieve an improvement of the simulation of peak discharges.
Even with a higher density of the precipitation network, the peak discharge simulation did not
improve. An explanation for this might be the interpolation of the precipitation throughout the
area. The measured precipitation of the 16 additional stations was on average lower than that
of the 5 initial stations. This made for a total precipitation throughout the entire study area
that was lower when the extra stations were added to the model.

6 CONCLUSIONS AND RECOMMENDATIONS 39



MSc. thesis

6.2 Recommendations

Based on the above discussion and conclusions several recommendations are formulated. First,
the sensitivity analyses performed in this study have not been extensive enough and were based
on an earlier two-step sensitivity analysis on the entire discharge series, due to the limited time.
However, it is possible that the peak discharges respond more strongly to other parameters that
were not included in the sensitivity analysis performed in this study. Therefore it is wise to do
a sensitivity analysis with a focus on peak discharges more extensively in further research.

Secondly, after increasing the representation of the precipitation data through implementing
additional meteorological stations into the model, the performance of the model for the peak
flows did not increase with this change. A likely explanation for this is that the spatial variability
of the study area is not captured and the spatial representation of the precipitation data should
be increased further. The question is then how much this should be increased. To answer this
question the spatial variability should be determined. This is a difficult task, which requires more
measurements. It is also possible that the precipitation lapse rate can be based on known lapse
rates in similar areas. Especially the way the precipitation responds to the increase of elevation
is not known in this study area. For the improvement of the model there is still much to be
won. Other studies also showed that with the right placement of gauge stations the same model
performance can be obtained as with a denser gauge network. Therefore the recommendation
is to invest in opening meteorological stations that are located on more remote locations, even
though this might not always the most convenient location.

Third, the model was calibrated and validated with a limited time period. This was mainly due
to the fact that the overlapping observed data, meteorological data and discharges, was limited.
There is more discharge data present at the station, however it was not available for this study.
If the additional observed discharges would be accessible for future research the calibration and
validation of the model could be done more extensively which would help with improving the
peak discharge simulation and also the analysis of the model performance with regard to the
peak flows. Also, other discharge stations in the study area can be used to see whether the
underestimation of peak discharges is a problem in the entire catchment or only at the Jinhua
outlet.

Fourth, in the study area there is not a uniformly spread precipitation throughout the year,
which causes for high peak flows in the summer and low flows in the remaining of the year. This
makes it hard to simulate both these types of discharges correctly. A possible solution for this
can be a dynamic model parametrisation, which makes a distinction between the peak flows and
low flows. This way the hydrograph can match the peak flows as well as the low flows better to
the observations.
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http://www.gouv.qc.ca/EN/LeQuebec/Pages/Geographie.aspx

Gwozdz, R. (2009). [Dhsvm-users] Discrepancy between Precipitation Lapse Equations. Re-
trieved April 5, 2018, from http://mailman13.u.washington.edu/mailman/htdig/dhsvm-
users/2009-January/000498.html

Haile, A. T., Habib, E., Elsaadani, M., & Rientjes, T. (2012). Inter-comparison of satellite rainfall
products for representing rainfall diurnal cycle over the Nile basin. International Journal
of Applied Earth Observation and Geoinformation, 21 (1), 230–240. doi:10.1016/j.jag.2012.
08.012

Kollat, J. B. & Reed, P. M. (2006). Comparing state-of-the-art evolutionary multi-objective
algorithms for long-term groundwater monitoring design. 29, 792–807. doi:10 . 1016 / j .
advwatres.2005.07.010

Kumar, H. & Yadav, S. P. (2017). NSGA-II based fuzzy multi-objective reliability analysis.
International Journal of System Assurance Engineering and Management, 8 (4), 817–825.
doi:10.1007/s13198-017-0672-y

REFERENCES 41



MSc. thesis

Lang, M., Ouarda, T. B. M. J., & Bobée, B. (1999). Towards operational guidelines for over-
threshold modeling. Journal of Hydrology, 225, 103–117. doi:https://doi.org/10.1016/
S0022-1694(99)00167-5

Legates, D. R. & DeLiberty, T. L. (1993). Precipitation Measurement Biases in the United States.
Water Resources Bulletin, 29 (5). doi:https://doi.org/10.1111/j.1752-1688.1993.tb03245.x

Liddament, M., Oakes, D., Skinner, A., & Wilkinson, W. (1981). The use of a groundwater
model in the design, performance assessment, and operation of a river regulation scheme
(Severn River). In Logistic Benefits of Using Mathematical Models of Hydrologic and Water
Resource Systems.

Liston, G. E. & Elder, K. (2006). A Meteorological Distribution System for High-Resolution
Terrestrial Modeling (MicroMet). Journal of Hydrometeorology, 7 (2), 217–234. doi:10 .
1175/JHM486.1

Liu, L., Gao, C., Xuan, W., & Xu, Y. (2017). Evaluation of medium-range ensemble flood fore-
casting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast
China. Journal of Hydrology, 554, 233–250. doi:http://dx.doi.org/10.1016/j.jhydrol.2017.
08.032

Miao, C., Ashouri, H., Hsu, K.-L., Sorooshian, S., & Duan, Q. (2015). Evaluation of the PERSIANN-
CDR Daily Rainfall Estimates in Capturing the Behavior of Extreme Precipitation Events
over China. Journal of Hydrometeorology, 16 (3), 1387–1396. doi:10 .1175/JHM- D- 14-
0174.1

Müller, A. (2011). Analyzing Radar-Measured Rainfall vs. Rain Gauges in GIS. In Gis ostrava
2011. Ostrava. Retrieved from http://gisak.vsb.cz/GIS/Ostrava/GIS/Ova/2011/sbornik/
papers/Muller.pdf

Nash, J. E. & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models, Part 1-
A discussion of principles. Journal of Hydrology, (10), 282–290.

Ng, J. L., Abd Aziz, S., Huang, Y. F., Wayayok, A., & Rowshon, M. (2017). Generation of a
stochastic precipitation model for the tropical climate. Theoretical and Applied Climatol-
ogy, 1–21. doi:10.1007/s00704-017-2202-x

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., & Loumagne, C.
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A Model description DHSVM

DHSVM provides a dynamic representation of watershed processes at the spatial scale described
by Digital Elevation Model (DEM) data (Wigmosta, Nijssen, and Storck, 2002). The model has
evolved since it was first introduced and consists of multiple layers, which all have underlying
formulas that need input data. In this appendix a short introduction of the different layers will
be given, for a more detailed description refer to Wigmosta, Nijssen, and Storck (2002).

A.1 Evapotranspiration

Wigmosta, Nijssen, and Storck (2002) describes that the evapotranspiration is calculated sep-
arately for the overstory and the understory. First the potential evaporation for the overstory
is calculated. Water intercepted by the overstory is subtracted from the wet fraction and the
transpiration from the dry fraction is calculated using a Penman-Monteith approach. The calcu-
lated overstory evapotranspiration is subtracted from the potential evapotranspiration and the
understory is calculated from the modified potential evaporation rate. This stepwise approach
allows for the overstory to dry during a time step.

A.2 Two-layer ground snowpack model

According to Wigmosta, Nijssen, and Storck (2002) the snowpack is modelled as two layers:
a thin surface layer and a lower pack layer. The accumulation of the ground snowpack are
simulated using the energy- and mass-balance model of Storck and Lettenmaier (1999) and
Storck (2000) (in Wigmosta, Nijssen, et al., 2002). Depending on the presence of an overlayer
the snowpack on the underlayer can be determined. The canopy processes follow the same
principle as in the evapotranspiration layer of the model.

Since the study area of this research seldom encounters snowfall, this module can be disregarded
here (Pan et al., 2017).

A.3 Canopy snow interception and release

This layer of DHSVM uses the canopy snow model described by Storck and Lettenmaier (1999)
and Storck (2000) (in Wigmosta, Nijssen, et al., 2002) to represent the combined canopy pro-
cesses that control snow interception, sublimation, mass release, and melt from the forest canopy.

Since the study area of this research seldom encounters snowfall, this module can be disregarded
here (Pan et al., 2017).

A.4 Unsaturated soil moisture movement

The amount of throughfall, snowmelt and surface run off from adjacent cells determine the water
that the soil surface receives. The user defines the maximum infiltration rate, which determines
the total depth of water that can be infiltrated during each time step. The excess water will be
available for surface routing (Wigmosta, Nijssen, and Storck, 2002). The unsaturated moisture
movement is modelled using a multi-layer representation based on the two-soil layer model,
first introduced by Wigmosta, Vail, and Lettenmaier (1994). The model first calculates the
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infiltration into the upper layer, then downward vertical moisture transfer. The net flux of
lateral saturated subsurface flow is then added to the bottom soil layer and soil moisture is
updated for each layer. From bottom to top each soil layer is checked whether the soil moisture
is larger than the porosity, if this is true then the excess water will be added to the layer above,
eventually resulting in a possible surface run off (Wigmosta, Nijssen, et al., 2002).

A.5 Saturated subsurface flow

DHSVM applies a cell-by-cell approach to route saturated subsurface flow (Wigmosta, Vail, and
Lettenmaier, 1994), using either an approximation by local ground surface slopes (kinematic
assumption) or by local water table slopes (diffusion assumption). The flow direction of the
subsurface flow is assigned through the index k, which is numbered from 0 to 7 in a clockwise
direction from the North (Wigmosta, Nijssen, and Storck, 2002). When the subsurface flow
crosses a road network and the water table is less deep than the road cut, it will be intercepted
by the road. The same goes for when the subsurface flow crosses a channel.

A.6 Overland flow

According to Wigmosta, Nijssen, and Storck (2002), surface run off is generated when: (1)
the input of throughfall and snowmelt, exceeds the infiltration capacity set by the user, (2)
throughfall or snowmelt occurs on a saturated cell, or (3) the water table rises above the ground
surface. In DHSVM there are two methods to route the surface run off. This can be done
by an explicit cell-by-cell approach (must be used in case of roads or channels), or by a unit
hydrograph approach. The explicit method works in a similar way as the method used for the
subsurface flow. The unit hydrograph approach calculates the function for the response time
per cell. These functions can consist of a linear translation component as well as a linear storage
component.

A.7 Channel flow

The routing of channel flow is done by a relatively simple linear storage routing algorithm. In
this each channel reach is treated as a reservoir with a constant width, with outflow linearly
related to storage. The constant flow velocity is calculated from Manning’s equation (Wigmosta,
Nijssen, and Storck, 2002). The flow routing of road drainage ditches and stream channels is
more complicated and uses numerous linear channel reservoirs, also allowing for reinfiltration
and overland flow routing.
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B Adapting the optimisation algorithm

During this research a optimisation algorithm was used written for DHSVM. During the prepa-
ration of the code to apply it on this specific case it came to light that the code is difficult and it
is also not well documented how it is supposed to be adapted. It also turned out that the used
version of the Linux machine and compiler programme influence whether or not the algorithm
works or not. The error occurring on one system could not be resolved. This makes it not a
very robust algorithm to use. In this research the algorithm was compiled using gcc version
4.4.7 on a CentOS Linux machine release version 6.4. For the sake of future reference a small
documentation is written and added to this report in this appendix. The code and use of the ac-
tual model is better documented, for this refer to https://dhsvm.pnnl.gov/documentation.stm.
This appendix is divided in a number of sections each describing the process of changing a dif-
ferent aspect of the algorithm. Each of these sections first name the documents that need to be
changed and then what needs to be changed. The algorithm is placed in the folder “ensga2r”.
After changes in the code it is necessary to recompile the programs that are changed. If the
problem definition is changed it is also necessary to recompile the ensga2r program, since the
compiling of this uses the new lib-file created by the recompiling of the problem definition.

B.1 Adapting calibration period

This section will describe the procedures needed to change the calibration period that will be
used.

B.1.1 Documents to be changed

1. /ensga2r/src/problemdef.c

2. /ensga2r/improved dhsvm/configfiles

3. /ensga2r/improved dhsvm/metfiles/

4. /ensga2r/improved dhsvm/modelstate/

5. /ensga2r/improved dhsvm/obsfile.txt

B.1.2 problemdef.c

In the problem definition file the amount of time steps for calibration are defined in line 11.
If the calibration period is changed, and with that the amount of days, this number should be
changed. The amount of time steps is equal to the total amount of time steps the model runs
minus the spin up period of the model. As the algorithm is written now this is 61 timesteps,
since the model is a daily model this corresponds to 61 days.

If the spin up period of the model is different the part where the streamflow.only file is loaded
in the problem definition file should also be changed. Here the amount of lines to be deleted
is defined through the amount of lines that state fgets(string,200,fp);. Each one of these lines
defines a line that is to be deleted.
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B.1.3 configfile

In the configfile the start and end date of the model run should be changed. These can be found
in lines 76 and 77.

B.1.4 metfiles

The metfiles of the different stations need to be changed so the data they contain match with
the given the start and end date that are set in the configfile.

B.1.5 modelstate

DHSVM requires four model state files that contain information on the channel, soil, interception
and snow state on the first day of the model run. These model state files should match the given
start date in the configfile.

B.1.6 obsfile.txt

The obsfile contains the observed discharges that are used for the calculation of the objectives.
This file should contain the same number observations as the time steps given in the problem
definition file. The first observation is on the day that the actual calibration begins, so the
model run without the spin up time.

B.2 Adapting objectives

This section will describe the procedures needed to change the objectives that will be used for
calibration.

B.2.1 Documents to be changed

1. /ensga2r/src/problemdef.c

2. /ensga2r/leaf/leaf.par

B.2.2 problemdef.c

The objectives are defined in the problem definition after the streamflow.only file is loaded. At
this point the desired problem definition can be written using C as a language. At the bottom of
the code, before the “box fitness assignment”, the objectives should be assigned to the variable
“obj[k ]”.
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B.2.3 leaf.par

In the file leaf.par all the variables that influence the calibration are defined. The here defined
amount of objectives should match the amount of objectives defined in the problem definition.
Besides this, also for each objective an epsilon value needs to be given and an epsilon-performance
value. The line where the epsilon-performance values are given starts with a 1 and after this
the values for the different objectives are given.

When in this research a third objective was defined an extra empty line had to be included
before the epsilon-performance values for the algorithm to be run. Why this was necessary is
not known.

B.3 Adapting calibration parameters

This section will describe the procedures needed to change the calibration parameters that will
be used.

B.3.1 Documents to be changed

1. /ensga2r/src/problemdef.c

2. /ensga2r/leaf/leaf.par

3. /ensga2r/improved dhsvm/sourcecode/MainDHSVM.c

4. /ensga2r/improved dhsvm/sourcecode/InitTables.c

5. /ensga2r/improved dhsvm/sourcecode/InitConstants.c

B.3.2 problemdef.c

In the problem definition the model will be called to run. Depending on the number of calibration
variables this command changes. Therefore the variable name for system needs to be changed.
In the line below the name of the system for five calibration parameters is given. Here each
%f is a float that gets assigned a value of a calibration parameter, stored in the variable xreal.
When there are more calibration parameters, more %f should be added and for each of these
also an extra xreal[i] should be included into the system’s name. When there are less calibration
parameters there should be less floats and xreal[i] given to the name of the system.

sprintf(name for system,“./improved dhsvm/sourcecode/DHSVM3.1.1
./improved dhsvm/configfiles/jinhua200.txt %f %f %f %f %f %d %d %d %d”, xreal[0], xreal[1],

xreal[2], xreal[3], xreal[4], run, gen, popsize, mark);

B.3.3 leaf.par

In the leaf.par file the amount of calibration parameters and there ranges are defined. These
should be adjusted such that the desired amount of calibration parameters is used. also the
ranges should be set in such an order that they match the order that is set in the files InitTables.c
and InitConstants.c.
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B.3.4 MainDHSVM.c

In line 128 to 132 in this file the variable values and indicators of the model run are defined. In
line 128 the parameter values for that model run are defined. This is done with the function
atof(argv[k]) for each calibration parameter. Here k indicates the parameter number and starts
counting at 2.

In the lines 129 to 132 the indicators of which model run is performed at that moment. The
same function is used for this as for the parameter values. The numbering of k continues where
it has ended in the previous line.

B.3.5 InitTables.c and InitConstants.c

In these files the parameters that are to be used for calibration are indicated. The file InitCon-
stants.c contains the parameters that are constant over space, such as LAI rain multiplier in
this research. InitTables.c contains the parameters that vary over space and thus related to the
soil and vegetation. The variable CaliPara contains the values of the parameters assigned by
the algorithm.

The parameters that should be used to calibrated can be added through calling the value in this
variable. The order of the parameter values in this variable corresponds to the order of ranges
set in the leaf.par file. If the parameter only, such as the lateral conductivity in this research,
has one value for each soil layer and month the parameter value can be called like the line below.

(*SType)[i].KsLat = CaliPara[k];

This line should be placed below the line where the variable is introduced in the file. This looks
as follows for the lateral conductivity.

if (!CopyFloat(&((*SType)[i].KsLat), VarStr[lateral ks], 1)) ReportError(KeyName[lateral ks],
51);

The correct parameter values should be calculated if a parameter has more than one value for
each soil layer and month. This is done through the line below for the porosity. If more values
are needed, for example by the overstory monthly LAI, more %lf should be added for storing
the values.

sprintf(VarStr[porosity],“%lf %lf %lf”,CaliPara[i],0.93*CaliPara[i],0.9*CaliPara[i]);

This is placed directly above the line where the variable is introduced in the file.
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C Calibration values

The calibration of the model ins an iterative process in which the ranges of the parameter values
are changed after each optimisation run. This is because if the range of the parameter is too large
it might not find the optimum solution within the maximum amount of function evaluations.
However, if the parameter range is too small the optimum solution might not be found, because
it lies outside the given ranges. In this appendix the ranges for the parameters at each iteration
are given in Table 10, as well as the optimum Nash-Sutcliffe coefficient, PBIAS-value and Mean
Fourth-power Error.
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