
1

Method fo r Legacy Software Eva lua tion Bas ed on

the Balanced Scorecard and AHP

Frank den Heijer
Univers ity of Twente

P.O. Box 217, 7500AE Enschede

The Netherlands

denheijer.frank@gmail.com

ABSTRACT

Many businesses have adopted information systems in a certain

way. As the IT industry rapidly moves forward, quickly a gap

is formed between old technologies and current technologies.

Therefore, legacy systems become inevitable to many

businesses. Companies that have to deal with legacy systems

encounter many setbacks due to the fact that legacy systems

impede change and are poorly compatible with the latest

technologies. Companies often struggle to make informed

decisions regarding the identification legacy. Knowing which

application are at risk and why they are at risk remain to be

among the top concerns of IT decision makers. This paper

provides a method for defining and identifying the degree of

legacy in a software product taking into account the company’s
unique characteristics regarding their definition of legacy.

First, several metrics for measuring legacy are identified based

on existing quality measurements. Then the Balanced

Scorecard will be considered as evaluation framework for

structuring the found software metrics. Lastly, by using the

Analytical Hierarchy Process (AHP) a method will be proposed

for tailoring the software metric to reflect the companies

interests and scoring the application portfolio.

Keywords

Legacy Scorecard, Legacy Systems, Software Metrics,

Balanced Scorecard, AHP, Application Portfolio

1. INTRODUCTION
Since the entrance of information technology in business there

has been an ongoing development. The IT industry has grown

tremendously and new technologies have been emerging

rapidly. These industry innovations provide new opportunities

to companies, on the other hand they cause legacy. The

definitions for legacy related to information technology vary

greatly [10][14]. According to Rai et al. (2015) a typical legacy

system aims to support the core IT processes of organizations,

and are filled with maintainability and scalability issues [13].

Other definitions of legacy describe the relation of legacy to a

company’s organizational structure [18].

Besides the limited abilities to adapt, risks are a main concern

when dealing with legacy systems. Bisbal et al. (1999) presents

some of the risks that are associated with having legacy systems

[5]. Risks can relate to the hardware that is needed to support

the system. Most likely, the uncertainties surrounding the

maintainability of a system belong to the riskiest aspects of a

legacy software.

Although, the definition of legacy may be ambiguous, the

problems it causes touches the entire business [8]. Therefore, it

is no surprise companies would like to have insight in the

degree of legacy their application portfolio contains. This

information is important for managers to be able to derive

appropriate steps for their roadmaps. To give actionable

insights on the degree of legacy within an application portfolio

each and every application within the portfolio has to be

evaluated.

Currently, there is no clear methodology for measuring and

visualizing the degree of legacy in information systems. Some

research has been done to identify the legacy status of an

information system from the perspective of its causes and

effects [11]. This method only covers a limited number of

indicators for measuring legacy, which makes it difficult to

derive actionable results.

2. RESEARCH PROBLEM
The previous section introduced the desire of companies to

have insight in the degree of legacy in their application

portfolio. Subsequently, they want to know which aspects of

their portfolio cause legacy, in order to take appropriate actions.

Therefore, the main research question can be stated as:

• How to provide insight in the degree of legacy of an

information system?

Answering this main question should provide companies

answers to questions as: Do we have legacy in our application

portfolio? Is the degree of legacy at a level that should make us

worry? What aspects of the information systems cause the

legacy? What prioritization should be given to systems to be

improved?

In order to answer the main research-question several sub

questions should be answered first. Related questions concern

the method for measuring legacy in information systems and

the ability to visualize the results insightfully.

• How is legacy being measured?

• What method for scoring, weighing and

visualization are relevant for legacy indicators?

• How can these concepts be put together to provide

insight in the degree of legacy of an application?

In this paper, the novel contribution to existing knowledge is to

provide a methodology for the creation of a legacy scorecard

using AHP. Based on the concept of the Balanced Scorecard

and the use of AHP on existing software quality metrics a

thorough method for legacy evaluation is provided.

3. RESEARCH METHOD
The paper is structured according to the Design Science

Research Methodology as described by Peffers et al. (2007) [7].

2

This section, the first, introduces the problem and defines the

objectives of this research. Section 2 will discuss the relevant

literature to support the next sections. Covering the legacy

indicators, ranking and visualization methods. Section 3 up to

section 5 will apply the found measurement tools and concepts

to design a coherent methodology. Section 6 will cover the

validation of the methodology based on the case of a Dutch

software supplier for the staffing industry. Subsequently, the

case will be evaluated. Finally, Section 7 sums up this paper,

draws conclusion, and points out some possible future research

directions.

4. LITERATURE REVIEW
To be able to measure the degree of legacy in information

systems the question arises how legacy should be defined. As

mentioned in section 1 definitions of legacy vary greatly. This

may indicate that software legacy has a wide impact on

organizations. Among others, Althani et al. (2017) describes

several concerns of information systems that indicate legacy.

1. Switching from a legacy system might have a high

financial cost for the organization. In addition, the

risk associated with legacy migration is high [14].

2. Legacy applications cannot utilize the latest

developments in hardware, neither can they make use

of the latest software paradigms [14].

3. Legacy systems maintenance is very expensive [7].

Replacing any legacy system could decrease costs by

half [19].

4. Legacy systems may not be compliant with current

standards, as they are often built in different

timeframes. Often, they serve only a single purpose.

Therefore, they rarely meet the requirements

necessary to support an organization. Business

processes and decisions are often integrated with

predefined procedure flows, making intertwined

software and business applications very inflexible

and unfeasible [19].

5. The availability of skilled staff and appropriate

documentation of legacy systems are often scarce

[13].

6. Legacy systems are difficult to scale to the growth of

the company and cannot easily be integrated with

other systems [14].

Although, these concerns reflect the meaning of legacy quite

well, finding an appropriate way of measuring all these aspects

through a collection of KPIs remains to be difficult. O’Byrne
&Wu (2002) established a definition of legacy by choosing 3

dimensions: software quality, system suitability and underlying

platform suitability [7]. Another view on the definition of

legacy is that of Sneed (1995), considering 2 dimensions:

business value and technical quality [17]. Lastly, Ransom et al

(1998) identified 3 dimensions: business value, external

environment and application.

Apparently, all of the approaches recognize quality aspects on

a technical dimension and a business value dimension. For

measuring software quality, worldwide the most recognized

standard is the ISO 25010 [1]. Consisting of 8 categories and

31 indicators in total this standard allows for a detailed

evaluation of information systems.

As with other standards, ISO 25010 does not detail the

thresholds for the evaluation metrics to be used, nor does it

describe how to group these metrics in order to assign a quality

value to a software product [12].

Identifying different dimensions to define legacy is a useful

approach to structure the available legacy metrics, as

mentioned earlier. Instead of using one of the existing

approaches as defined by O’Byrne &Wu (2002) or Sneed
(1995) it seems valuable to consider a non-software related

scoring framework: The Balanced Scorecard by Kaplan &

Norton (1996) [11][17][6].

The BSC provides a strategic framework to provide critical

information on four perspectives: financial, customer, internal

processes and learning & growth. It allows to have a broad

view of the performance of an organization without focusing

solely on the financials, the latter is common for senior

management [6][5].

Now, the comparison between an organization versus an

information system is not far off. Consider the four

perspectives of the BSC: financial, customer, internal

processes and learning & growth. Software has relations to all

of these perspectives: Financial is relevant because of the costs

of legacy [2]. The customer perspective can be compared to the

user of an information system, which relates to functionality

aspects. The internal processes perspective relates to the non-

functional aspects of an information system and learning &

growth can be compared to aspects related to the development

of information systems, such as maintainability.

One of the main reason for the BSC being so powerful is the

balanced insight it brings across the organization. At the same

time, does the BSC allow for flexibility in the choice of KPIs

[6].

5. SOFTWARE METRICS
As discussed in previous section, the degree of legacy in

information systems is difficult to assess. However, the ISO

25010 standard for software quality does provide a detailed

collection of metrics [1]. Financial aspects are not considered

by the ISO standard, but are among the most relevant for

decision-making in businesses. Costs are especially relevant for

the identification of legacy within an application portfolio,

because it often is the driver to start a legacy migration project

[5]. Therefore, two financial metrics are added to the collection:

maintainability costs and developments costs. Althani et al.

(2017) incorporates maintainability costs as the only financial

factor in his paper on legacy identification.

It is essential to deeply understand the metrics that are used to

score information systems, because the quality of the final

scorecard is fully dependent on the quality of the input. Below

is a full list of the collection of metrics discussed. See appendix

A for a full list of the ISO quality metrics including specific

indicators per category.

5.1 Financial Metrics

5.1.1 Maintainability Costs
The costs related to keeping the system operational. Including

recurring hardware costs, costs of bug fixing, costs of keeping

the systems compliant and other costs related to keeping the

system operational.

5.1.2 Customization Costs
Costs involved with building specific features for specific

customers. According to Stamelos et al. (2002) are costs

incurred for customization related to the quality of the software

[17].

3

5.2 Quality Metrics

5.2.1 Functional Suitability
Indicators related to the extent to which a software application

provides functionalities that meet the stated and assumed

needs, when used under the intended conditions.

5.2.2 Performance Efficiency
Performance metrics determine the performance of an

information system in relation to the amount of resources used

under stated conditions.

5.2.3 Compatibility
The extent to which a software application can exchange

information with other systems and perform desired

functionalities while sharing the same hardware or software

environment.

5.2.4 Usability
Degree to which a product or system can be used by specified

users to achieve specified goals with effectiveness, efficiency

and satisfaction in a specified context of use.

5.2.5 Reliability
The extent to which a software application performs specific

functionalities under specified conditions for a specified

amount of time.

5.2.6 Security
The extent to which a software application protects information

and data in a way that people or other systems have the right

degree of data access appropriate to their type and level of

authorization.

5.2.7 Maintainability
The extent to which a software application can be changed

effectively and efficiently by the designated developers and

administrators.

5.2.8 Portability Metrics
Degree of effectiveness and efficiency with which a system,

product or component can be transferred from one hardware,

software or other operational or usage environment to another.

6. MAPPING OF METRICS ONTO THE

BALANCED SCORECARD
Because the total number of metrics discussed in previous

section can be overwhelming and difficult to grasp, the next

step is to create coherence by categorizing the metrics properly.

The four perspectives of the BSC: financial, customer, internal

processes and learning & growth are a great reference for

identifying the dimensions of how legacy should be

approached. Because of the similarities between organization

and information systems discussed in section 2, a mapping of

software metrics onto the BSC is possible. See figure 1 for a

visual representation.

Figure 1. Mapping of legacy metrics on the BSC

The purpose of the BSC to focus on the non-financial indicators

makes this framework highly useful for the evaluation of

information systems [6]. This is because most of the identified

metrics are non-financial.

Characteristics of the BSC, such as the ability to set objectives,

are also applicable for the scorecard on software metrics [16].

For example, if for a particular application the usability scores

exceptionally low, the related metrics can be used to determine

the steps needed to improve.

7. WEIGHING AND SCORING

METRICS USING AHP
Although, it has been tried to capture each aspect of legacy

using the collection of metrics defined in section 3, in the end

every company has its own characteristics. Which means the

legacy indicators cannot be handled equally for all companies.

For example, tax authorities will may find the security to be

way more important than the compatibility of their software. In

contrast to another company having a mobile app, which may

value compatibility way more than security. Both of these

organizations have information systems, but their perception of

legacy is different. For the second company a security leak may

cause an unpleasant situation, but they will get away with it.

For tax authorities a security leak probably has far-reaching

consequences. In short, what is legacy for one company may be

no issue for.

To be able to deal with these differences between companies,

weights are applied to each metric within the legacy scorecard.

For determining weights several Multi Criteria Decision

Analysis method are available, such as: ELECTRE III and AHP

[15]. The ability of AHP to simplify a complex problem using

a structural hierarchy and the principle of comparative

judgment of criteria and alternatives make AHP the better

choice [9].

The four perspectives of the BSC itself do not have to be

weighted, doing so would make the BSC lose its balanced

nature. Therefore, AHP will be applied only within the four

perspectives of financial, functional, non-functional and

development. See figure 2 for the related problem hierarchies.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
13thTwente Student Conference on IT, June 21st, 2010, Enschede, The

Netherlands.

Copyright 2010, University of Twente, Faculty of Electrical Engineering,

Mathematics and Computer Science.

4

Figure 2. AHP problem hierarchies related to the four

perspectives of the legacy scorecard

The process of weighing metrics using AHP consists of

pairwise comparisons for each combination of metrics within

the same layer. Take for example the functional perspective:

here functional suitability needs to be compared to usability.

Also, each metric within functional suitability needs to be

pairwise compared to each other, the same goes for each metric

within usability. In total there will be three sets of comparisons.

From each set of comparisons a reciprocal matrix can be

constructed, like figure 3 shows.

Functional

Suitability

Functional

Completeness

Functional

Correctness

Functional

Appropriat.

…

Functional

Completeness

1 5 1/3

Functional

Correctness

1/5 1 1/7

Functional

Appropriateness

3 7 1

…

1

Figure 3. Matrix example showing pairwise comparisons

Pairwise comparisons are done on a 9-points scale. A score of

1 stands for neutral, a score of 9 stands for extreme preference

to one side. The scale should be interpreted in such way that

when two metrics are compared a score of 9 should be given if

the first metric is 9 times more preferable than the second one.

If the second metric is 9 times more preferable than the first

one, the score should be 1/9 [9].

Determining the final weights of the metrics is done by

calculating the priority vectors for each reciprocal matrix. The

vector is calculated by first summing each column in the

matrix. Then divide each element of the matrix with the sum of

its column, resulting in the normalized relative weight. The sum

of each column should be equal to 1. The priority vector can be

obtained by averaging across the rows.

The framework has been created and the weights have been

determined. The very final step is to score the relevant

applications using the specified collection of metrics. It is

recommended to use a score ranging from 1 up to 10, since it is

easy grasp for most people. Having a scoring range that is too

large will lead to an exhausting scoring process, because of the

level of detail needed to determine each score.

8. LEGACY CASE
Consider the case of a software supplier for the staffing

industry. The delivered software provides full business process

outsourcing covering the registration of new candidates that are

looking for a job. Also, creating vacancies, receiving job

applications, assigning candidates to a job, contracting and

payrolling are supported by the software. To support all of the

necessary business processes several applications have been

developed over time. Currently, there are 4 main applications:

1 centralized administrating system that is around for about 15

years. A second system is positioned as a candidate portal,

enabling candidates to enter timesheets and view salary slips.

This second system has been operational for 5 to 10 years.

Application 3 and 4 are both newly developed systems

replacing the older applications: one centralized system used

by staffing companies and one online portal for candidates.

This case is particularly interesting because of the 4

applications consisting of 2 pairs of similar application, one of

which is suspected of legacy.

Because of privacy issue the name of the application cannot be

specified, to summarize:

• Application 1 – Core administrative system

(suspected legacy)

• Application 2 – Online portal

(suspected legacy)

• Application 3 – New administrative system

• Application 4 – New online portal

8.1 Determining metric weights
The weights of the individual metrics and the overarching

categories have been identified by pairwise comparisons

according to the AHP method and can be seen in appendix C.

By first determining the metric weights before scoring the

application portfolio revealed the important aspects of the

software considered in this case. For example, usability,

security and maintainability are weighted relatively high,

indicating that failures in these areas will contribute more to the

degree of legacy in this particular portfolio.

8.2 Scoring the applications portfolio
Determining the score of an application on each metric is no

easy task. There are 31 metrics in total, therefore it is not

recommended to assess them all in one session. It would be

even better to split the assessment of the application to different

teams, for two reasons. Firstly, having to assess less metrics

allows for more focus, hence a higher quality of the assessment.

Secondly, by splitting the assessment and scoring of

applications to multiple teams will allow more people with the

right understanding to provide input. An example of how the

assessment can be split is to let the financial perspective of

application be assessed by the management team. The

functional perspective can be assessed by the support staff or

the requirement engineers, because they are the closest to the

5

end-users. Even better would be to incorporate the view of the

actual users of the system in the assessment. The non-

functional perspective can be assessed by the product-owners.

Lastly, the development perspective can be assessed by the

entire development team. Since the development perspective is

very detailed and technical the thorough understanding of

specific topics is often split among the team, therefore no single

person could asses this aspect properly.

The results of the assessment of applications related to this case

can be found in appendix B. The identified scores are shown in

the final scorecard. The lightly coloured cells represent the

scores on each metric related to one application. The left

columns show the weights calculated by the AHP, the related

matrices can be found in appendix C.

8.3 Evaluation
The final results of the legacy scorecard can be found in

appendix B, showing a final application score per application

for each of the four perspectives: financial, functional, non-

functional and development. In figure 4 these final scores are

mapped onto a radar chart for easy comparison between

application in the portfolio.

Figure 4. Final legacy scores per application related to the

four perspectives of the legacy scorecard

The suspected legacy in application 1 and 2 are clearly visible

in the results. Although, application 2 seems to hold up quite

well. Its functional perspective contains some legacy, but not

as bad as application 1. The financial perspective is even better

than the newly developed applications. Another aspect that is

reflected by the final results is that all applications score about

7 to 8 on the non-functional perspective of legacy. This is no

surprise considering the mission critical tasks executed by the

software, such as payrolling.

9. CONCLUSION
Information systems will always be prone to legacy. And the

definition of legacy varies per company, which is not an issue.

Having a proper definition for legacy is a must if a company

wants to get insight in their degree of legacy. Approaching

legacy as a quality deficiency is an effective and unified

method for identifying legacy, but falls short in tailoring the

unique characteristics of company. Combining existing quality

metrics with AHP provides a structured method for assessing

the degree of legacy within an information system as well as

for entire application portfolio. Mapping software quality

metrics combined with financial metrics onto the Balanced

Scorecard allows for increased understanding of the origin of

legacy and provides directions for improvements.

10. FUTURE WORK
Possible future work could relate to finding a way to transform

the legacy scorecard into a software quality scorecard that can

be assessed on a regular basis to keep track of the qualitative

development of software. Also, possible actions and targets to

improve the quality related to certain metrics can be further

researched. This would bring more aspects of the BSC as it was

intended by Kaplan & Norton (1996) to software development

[6]. Another area of interest for further research is the

combination of legacy scores to existing portfolio management

concepts. This could allow application portfolio valuation

techniques, such as proposed by Iacob et al. (2012) to

incorporate the legacy score as factor to determine migration

prioritization or resource allocation [4].

6

11. REFERENCES

[1] Anon. 2017. ISO - International Organization for

Standardization. (August 2017). Retrieved January

24, 2018 from

https://www.iso.org/standard/35733.html

[2] Bashair Althani and Souheil Khaddaj. 2017.

Systematic Review of Legacy System

Migration. 2017 16th International Symposium on

Distributed Computing and Applications to

Business, Engineering and Science

(DCABES)(2017).

DOI:http://dx.doi.org/10.1109/dcabes.2017.41

[3] Bisbal, J. et al. 1999. Legacy information systems:

issues and directions. IEEE Software. 16, 5 (1999),

103-111.

DOI: http://dx.doi.org/10.1109/52.795108

[4] Iacob, M.E., Quartel, D., and Jonkers. H., 2012.

Capturing Business Strategy and Value in Enterprise

Architecture to Support Portfolio Valuation. 2012

IEEE 16th International Enterprise Distributed

Object Computing Conference(2012).

DOI:http://dx.doi.org/10.1109/edoc.2012.12

[5] Jain, H., "Green ICT Organizational

Implementations and Workplace Relationships," in

Handbook of Research on Green ICT: Technology,

Business and Social Perspectives, Hershey, IGI

Global, 2011, pp. 156- 168.

[6] Kaplan, R. S., and Norton. D. P., 1996. The balanced

scorecard: translating strategy into action, Boston,

MA: Harvard business school Press.

[7] Ken Peffers, Tuure Tuunanen, Marcus A.

Rothenberger, and Samir Chatterjee. 2007. A Design

Science Research Methodology for Information

Systems Research. Journal of Management

Information Systems24, 3 (January 2007), 45–77.

DOI:http://dx.doi.org/10.2753/mis0742-

1222240302

[8] Khadka, R., Saeidi, A., Jansen, S., Hage J. and Haas,

G. P., "Migrating a large scale legacy application to

SOA: Challenges and lessons learned," in Reverse

Engineering (WCRE) 20th Working Conference ,

2013, pp. 425-432.

[9] Monti, A., De Toro, P., Droste-Franke, B., Omann,

I., and Stagl. S., Assessing the quality of different

MCDA methods. Retrieved January 24, 2018 from

http://people.unica.it/adm/files/2008/11/05_de_mon

ti_et_al.pdf

[10] Ning, Egberts, J., A., W. Kozaczynski, 1994

“Automated support for Legacy Code

Understanding” Communications of the ACM, Vol.
37, No. 5, pp. 50 - 57, Chicago.

[11] Obyrne, P., and Bing Wu. 2001. LACE frameworks

and technique-identifying the legacy status of a

business information system from the perspectives of

its causes and effects. Proceedings International

Symposium on Principles of Software

Evolution(2001).

DOI:http://dx.doi.org/10.1109/ispse.2000.913235

[12] Piattini. M., Software Product Quality Evaluation

Using ISO/IEC 25000. Retrieved January 24, 2018

from

https://ercim-news.ercim.eu/en99/special/software-

product-quality-evaluation-using-iso-iec-25000

[13] Rai, R., Sahoo. G., and Mehfuz, S., "Exploring the

factors influencing the cloud computing adoption: a

systematic study on cloud migration," SpringerPlus,

vol. 4, (1), pp. 1-12, 2015.

[14] Ransom, J., 1. Sommerville, I. Warren, 1998 “A
method for assessing Legacy Systems for Evolution”
February SEBPC workshop, Durham University.

[15] Saaty, T. L., “How to make a decision: the analytic
hierarchy process,” European journal of operational
research, vol. 48, no. 1, pp. 9–26, 1990.

[16] Sim, K. L., and Koh, H. C., "Balanced Scorecard: A

Rising Trend in Strategic Performance

Measurement," Measuring Business Excellence, vol.

5, no. 2, pp. 18-26, 2001.

[17] SNEED, H., 1995 “Planning the reengineering of
legacy systems” January IEEE Software.

[18] Xin Meng, Jingwei Shi, Xiaowei Liu, Huifeng Liu

and Lian Wang, "Legacy application migration to

cloud," in Cloud Computing (CLOUD), IEEE

International Conference, 2011, pp. 750-751

[19] ZSL Inc, "Strategic approach to modernize your

legacy systems and wreck the business bottlenecks,"

ZSL Inc, Edison, NJ, 2008

https://doi.org/10.1109/52.795108

7

APPENDIX

A. ISO 25010 - Software Quality Metrics

A.1 Functionality Indicators
The extent to which a software application provides

functionalities that meet the stated and assumed needs, when

used under the intended conditions.

11.1.1 Functional appropriateness
The extent to which the functionalities of the application

contribute to the achievement of specific tasks and goals. Also,

the perception users have about the system being appropriate

for their needs.

11.1.1.1 Performance
The extent to which a systems response and processing times,

throughput and resource utilization meet the requirements.

A.2 Performance Efficiency
This characteristic represents the performance relative to the

amount of resources used under stated conditions.

11.1.2 Time behavior
Degree to which the response and processing times and

throughput rates of a product or system, when performing its

functions, meet requirements.

11.1.3 Resource utilization
Degree to which the amounts and types of resources used by a

product or system, when performing its functions, meet

requirements.

11.1.4 Capacity
Degree to which the maximum limits of a product or system

parameter meet requirements.

A.3 Compatibility Indicators
The extent to which a software application can exchange

information with other systems and perform desired

functionalities while sharing the same hardware or software

environment.

11.1.5 Interoperability
The extent to which two or more systems can exchange

information and use the exchanged information.

11.1.6 Co-existence
The extent to which a software application can efficiently

perform its desired functionalities while sharing a common

environment and resources with other products, without

adversely affecting any other product.

A.4 Usability
Degree to which a product or system can be used by specified

users to achieve specified goals with effectiveness, efficiency

and satisfaction in a specified context of use.

11.1.7 Appropriateness recognizability
Degree to which users can recognize whether a product or

system is appropriate for their needs.

11.1.8 Learnability
Degree to which a product or system can be used by specified

users to achieve specified goals of learning to use the product

or system with effectiveness, efficiency, freedom from risk and

satisfaction in a specified context of use.

11.1.9 Operability
Degree to which a product or system has attributes that make it

easy to operate and control.

11.1.10 User error protection
Degree to which a system protects users against making errors.

11.1.11 User interface aesthetics
Degree to which a user interface enables pleasing and satisfying

interaction for the user.

11.1.12 Accessibility.
Degree to which a product or system can be used by people

with the widest range of characteristics and capabilities to

achieve a specified goal in a specified context of use.

A.5 Reliability Indicators
The extent to which a software application performs specific

functionalities under specified conditions for a specified

amount of time.

11.1.13 Maturity
The extent to which a software application meets reliability

needs under normal working conditions.

11.1.14 Availability
The extent to which a software application is operational and

accessible when you want to use it.

11.1.15 Fault tolerance
The extent to which a software application works as intended

despite the presence of hardware or software errors.

11.1.16 Recoverability
The extent to which a software application can, in case of an

interruption or in case of a fault, restore the data directly

involved and return the system to the desired state.

A.6 Security Indicator
The extent to which a software application protects information

and data in a way that people or other systems have the right

degree of data access appropriate to their type and level of

authorization.

11.1.17 Confidentiality
The extent to which a software application ensures that data is

only accessible to those who are authorized.

11.1.18 Integrity
The extent to which a software application prevents

unauthorized access to or adaptation of computer programs or

data.

11.1.19 Non-repudiation
The extent to which it can be proven that actions or events have

taken place.

11.1.20 Authenticity
The extent to which it can be proven that the identity of a

subject or source is as claimed.

11.1.21 Accountability
The extent to which actions of an entity can be traced to that

specific entity.

8

A.7 Maintainability Indicators
The extent to which a software application can be changed

effectively and efficiently by the designated developers and

administrators.

11.1.22 Modularity
The extent to which a software application is built in separate

components so that changes to one component have minimal

impact on other components. In other words, the architecture

of the software.

11.1.23 Reusability
The extent to which an existing part can be used in more than

one system or can be reused when expanding the software.

11.1.24 Analyzability
The extent to which it is possible to effectively and efficiently

assess the impact of a planned change on one or more

components. To identify deviations or errors caused by a

system or to identify components that have to be changed. The

presence of documentation.

11.1.25 Modifiability
The extent to which a product or system can be changed

effectively and efficiently without errors or quality reduction as

a result.

11.1.26 Testability
The extent to which effective and efficient test criteria can be

established for a system, product or component and in which

tests can be performed to determine whether these criteria have

been met.

A.8 Portability Indicators
Degree of effectiveness and efficiency with which a system,

product or component can be transferred from one hardware,

software or other operational or usage environment to another.

11.1.27 Adaptability
The extent to which a software application can be effectively

and efficiently adapted for new hardware, software and other

operational environments.

11.1.28 Installability
Degree of effectiveness and efficiency with which a product or

system can be successfully installed and/or uninstalled in a

specified environment.

11.1.29 Replaceability
The extent to which a software application can replace another

specific application having the same purpose in the same

environment.

9

B. LEGACY SCORECARD

10

C. RECIPROCAL MATRICES

C.1 Financial

C.2 Functional

C.3 Non-functional

11

C.4 Development

