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Abstract 

Researchers predict 1 out of every 3 adults will get type 2 diabetes. It is important for diabetes 

patients to keep their blood glucose in a healthy range. However, managing blood glucose is a 

challenging task because there are many factors that have to be taken into account. 

That is why the Delicate project aims to use data on blood glucose, food intake, physical activity 

and health records, collected in a large cohort study, to provide type 2 diabetics with personalized 

diabetes and lifestyle coaching. This will be done through an app that will give coaching and also 

provides blood glucose predictions based on the patient’s behaviour, helping them to better 

manage their disease. In this research we aim to predict future blood glucose levels based on a 

patient's characteristics and behaviour. We also determine how such as prediction model can be 

deployed and how the different input features influence the predicted blood glucose. 

As a baseline we use an autoregressive model that uses previous blood glucose values to make a 

prediction. We failed in replicating results of a study aimed at predicting blood glucose of type 1 

diabetics. This might be due to some flaws discovered in the study or to the inherent differences 

between type 2 and type 1 diabetes. However, we were able to significantly (p<0.1) outperform our 

baseline on longer time horizons (>= 60 minutes) using a multitask long short-term memory 

network (LSTM). The multitask LSTM predicts blood glucose for multiple timesteps into the future 

at the same time. This not only improves performance (compared to a regular LSTM) but also 

makes it more convenient to apply in a real world application. 

The trained multitask LSTM uses input features such as food intake in a consistent manner, this 

makes it useful in showing patients how their actions affect their predicted blood glucose.  

We recommend visualizing the expected error of the predicted blood glucose in such a way that 

patients are aware of the limitations of the model, while still benefiting from the insight it provides. 
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1. Introduction 

Diabetes Mellitus is a chronic condition that affects the body’s ability to control the blood glucose 

level. In the Netherlands 1.2 million people have diabetes (1 out of 14) and researchers predict 1 out 

of every 3 adults will get type 2 diabetes . 1

It is important for diabetes patients to keep their blood sugar levels within a certain range, as too 

high blood sugar (hyperglycemia) can lead to serious long-term micro- and macrovascular 

complications such as kidney failure or blindness [1, 36] and too low blood sugar (hypoglycemia) 

can lead to blackouts, seizures and even death [2, 38].  

In order to keep blood sugar in safe bounds it is important for diabetes patients to be aware of 

their blood glucose level and how their actions influences this during the day. However, being 

aware of this is challenging, as there are many factors that have to be taken into account e.g. diet, 

physical activity and medicine usage. This is especially a problem for type 2 diabetes patients, as 

they usually get their disease at a later age and are often less educated about how to manage 

their blood glucose levels [37]. Also most type 2 diabetes patients only measure their blood 

glucose a few times per day.   

The University of Twente (UT) and Ziekenhuis Groep Twente (ZGT) are conducting a cohort study 

called “Diabetes en Lifestyle Cohort Twente” (DIALECT) with patients suffering from type 2 

diabetes. In this study data is being collected about heart rate, physical activity, glucose levels and 

food intake for a period of two weeks. 

The Delicate project {"Diabetes en leefstijl coaching Twente") aims to use this data to provide type 

2 diabetes patients with personalized diabetes and lifestyle coaching, through the daily use of an 

app on their smartphone. This app will provide coaching and also give blood glucose predictions 

based on the patient’s behaviour, helping them to better manage their disease.  

We want to predict how the health of type 2 diabetics is influenced by their lifestyle choices. 

Mainly we are interested in predicting the future blood glucose levels of patients based on 

previous blood glucose values, patient's characteristics (such as age and gender) and actions that 

a patient takes (food intake and physical activity). 

1 source:  https://www.diabetesfonds.nl/over-diabetes/diabetes-in-het-algemeen/diabetes-in-cijfers 
(retrieved at 16-4-2018) 
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1.1. Research goals 

The main goal of this research is to create a model that takes historic data such as previous blood 

glucose values, step count or food intake as input and outputs an accurate blood glucose 

prediction. We are interested in predicting blood glucose values 30 minutes up to 120 minutes in 

the future (this is called the prediction horizon). This is expected to be the most useful prediction 

horizon, because the blood glucose during this time is most affected by actions (such as eating) 

that a patient takes at the time of the prediction. 

A secondary research goal is to determine how the prediction model could best be deployed in a 

real world application and if it is prefered to train a separate model for each patient, or to use a 

patient independent model. 

Finally, we also aim to learn which input features are important in making an accurate prediction 

and to find out how a prediction model behaves when we manually change these input features.   
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2. Background 

2.1. Diabetes Mellitus 

Diabetes Mellitus is a chronic condition that affects the body’s ability to control blood glucose 

levels.  

In a healthy subject the digestive system breaks down carbohydrates from food into glucose. Most 

of this glucose appears in the bloodstream, thus increasing blood glucose levels. This causes the 

pancreas to produce insulin, a hormone that signals cells to take in glucose from the bloodstream. 

When cells take in glucose from the bloodstream they either use it as energy or store it as 

glycogen which is basically a fuel reserve. This storage happens mostly in the liver and muscle 

cells. 

As the blood glucose level decreases, the pancreas get triggered to produce another hormone 

called glucagon, which signals cells to degrade the stored glycogen back into glucose which can 

then be used as energy.  2

Type 2 diabetes patients either can’t use insulin (cells become insulin resistant) and/or their 

pancreas can’t produce (enough) insulin (insulin deficiency), which results in high levels of blood 

glucose (hyperglycemia). 

Hyperglycemia can damage the tiny blood vessels in the organs or the nervous system. In the 

long-term this can result in serious health issues such as [36, 41]: 

● diabetic retinopathy (potentially causing blindness); 

● nerve damage (neuropathy); 

● kidney damage or kidney failure; 

● peripheral artery disease (causing serious foot infections and in some severe cases even 

requires amputation); 

● cardiovascular disease. 

A too low blood sugar (hypoglycemia), which is often caused by an overdose of insulin medicine, 

can lead to blackouts, seizures and even death [38]. 

2 Source:  https://www.healthline.com/health/diabetes/insulin-and-glucagon  (retrieved on 16-9-2018) 
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There are three types of diabetes : 3

● Type 1 diabetes ,   also called insulin-dependent diabetes, is an autoimmune condition (that 

often starts in childhood) that causes the body to attack its own pancreas. The damaged 

pancreas stops producing insulin. 

● Type 2 diabetes ,   also called non-insulin-dependent diabetes, is by far the most common 

form of diabetes, accounting for 95% of diabetes cases in adults. This is a milder form of 

diabetes that often starts later in life, although with the epidemic of obese and overweight 

kids more teenagers are now developing type 2 diabetes. With type 2 diabetes the 

pancreas usually produces some insulin. But either the amount produced is not enough for 

the body's needs or the body's cells are resistant to it. Insulin resistance happens primarily 

in fat, liver and muscle cells and results in the pancreas having to work overly hard to 

produce enough insulin. People who are obese are at particularly high risk of developing 

type 2 diabetes.  

● Gestational diabetes  is a form of diabetes that is triggered by pregnancy. In 2% to 10% of 

pregnancies pregnancy leads to insulin resistance. Because high blood sugar levels in a 

mother are circulated through the placenta to the baby, it must be controlled to protect the 

baby's growth and development.  

2.2. Diabetes (self-)management 

In order to avoid complications due to too high blood sugar as discussed in the previous section it 

is important for diabetes patients to control their blood sugar levels. 

Type 1 diabetes patients manage their blood sugar level by using insulin. They either receive 

insulin via an insulin pump or by multiple daily injections. [6] 

Type 2 diabetes is a slowly progressing disease with several stages that starts with cells becoming 

insulin resistant, causing the body to produce more insulin to keep blood sugar levels low. 

However, at some point the pancreas becomes too stressed; insulin production goes down and 

eventually no insulin is produced at all (see  figure 1 ), this process can take more than 10 years. In 

the early stages of the disease when the patients still produce insulin, they are treated with oral 

antidiabetic medicine that lower insulin resistance and/or lower glucose in the blood. They are 

also advised lifestyle changes (mainly focussing on physical activity and diet). In further developed 

3 source:  https://www.webmd.com/diabetes/guide/types-of-diabetes-mellitus  (retrieved on 27-3-2018) 
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cases of type 2 diabetes patients may also need to use exogenous insulin to manage their blood 

sugar levels. [6] 

 

 

Figure 1.  Progression of Type 2 Diabetes Mellitus  4

Blood glucose level monitoring is an important aspect in diabetes self-management, it is used by 

diabetes patients and their families to make appropriate day-to-day treatment choices about diet 

and physical activity, as well as about insulin or other medication [8]. Zecchin et al. [9] showed that 

by predicting the future glucose levels and alerting patients when the blood sugar will go too low, 

patients are better able to avoid hypoglycemic events. 

However, type 2 diabetes patients are often less educated about their disease and do not 

necessarily know what to do with their blood sugar monitoring information in order to keep their 

blood glucose within a healthy range. That is why an application that coaches these patients and 

accurately predicts and visualizes the effects of the patients' actions on their future blood glucose 

values can be beneficial. It can give these patients a much better insight in how their current 

behaviour (mainly food intake, physical activity) influences their future blood glucose levels and 

thus how they should adapt their behaviour. It is important that this application gives a reasonably 

accurate prediction, as an incorrect prediction may lead patients to use too much insulin 

(potentially causing hypoglycemia) or to incorrectly adjust their behaviour (potentially causing 

hyperglycemia). It might also make patients lose their trust in the application, making it less likely 

that they will adapt their behaviour accordingly. 

4 Adapted from:  http://www.diabetesclinic.ca/en/diab/1basics/insulin_resistance.htm  (retrieved on 
12-4-2018) 
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2.3. Computational models 

There is a variety of computational models that can be applied to the blood glucose prediction 

task. In this section we describe the most relevant models. 

2.3.1. Autoregressive model 

An autoregressive model is a regression model that uses its own past values to make a prediction 

about the next value. For example we might use the past 3 blood glucose values to predict the 

blood glucose in 60 minutes, applying a weighted sum in the form of: 

 ay60 =  * x 30− + b * x 15− + c * x0  

Where is the predicted blood glucose at time  and is a previous blood glucose value at timeyt t xt  

. We can easily determine the optimal parameters for a, b and c by minimizing the error betweent  

the actual blood glucose value and the predicted value for all available data points. 

An important decision in training an autoregressive model is how many previous values are used 

as input to the model. Generally the last known value has the highest correlation with the value 

that has to be predicted and this correlation decreases with values further into the past. This 

means that as  more previous values are added as additional input, the improvements in 

performance become smaller. 

2.3.2. Support vector regression 

Support vector regression (SVR) is based on support vector machines, which is a binary 

classification model that works by splitting two classes by a hyperplane (or line) using the largest 

possible margin between the closest points (the support vectors) and the hyperplane (see  figure 

2 ). 
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Figure 2 . In this image H 2  and H 3  both separate the training examples perfectly, but intuitively H 3 

seems like a better division because the margin between the line and the two classes is higher.  5

In case the data is not directly linearly separable, a kernel function is used that transforms the data 

in such a way that it becomes linearly separable. For example the data can be transformed into 

polar coordinates to make it linearly separable (see  figure 3 ). 

 

Figure 3.  Transforming data from original space to polar coordinates to make it linearly separable.  6

SVR uses the same principle, but instead of a binary classification it outputs a real number. In this 

case a kernel function is used to make the data linearly predictable instead of linearly separable 

(see  figure 4 ). 

5 
http://nl.wikipedia.org/wiki/Support_vector_machine#/media/File:Svm_separating_hyperplanes_(SVG).s
vg  (retrieved at 19-9-2018) 
6 Source:  http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf  (retrieved at 17-9-2018) 
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Figure 4.  Use a kernel function to make the data linearly predictable.  7

We then minimize the cost function:  

∣∣w∣∣² C2
1 +  ∑

N

i=1
ξi  

Where  refers to the weights of the linear function and  refers to the distance between thew ξ  

error margin and points that fall outside of the error margin ] (see  figure 4 ).  is a, ε  [− ε  C  

hyperparameter that determines the weight the algorithm will put on minimizing the cost (instead 

of on minimizing the weights). 

2.3.3. Neural network regression 

An artificial neural network is a type of computational model that is loosely inspired by how 

neurons in the biological brains function. A neuron in the brain receives signals from its dendrites 

and, if a certain threshold is met, it fires a signal across its axon which branches out to the 

dendrites of multiple other neurons (see  figure 5 ). Each neuron can  learn  by changing how much 

weight it puts on the different inputs from other neurons.  

.  

Figure 5.  A visualization of the biological neuron (left) and the mathematical model of an artificial 

neuron (right).  8

7 Source:  https://www.saedsayad.com/support_vector_machine_reg.htm  (retrieved at 17-9-2018) 
8 Source:  http://cs231n.github.io/neural-networks-1/  (retrieved at 17-9-2018) 
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In the computational model the analogy to this biological neuron is that each artificial neuron has 

one or more inputs that are weighted and summed with an added bias, there is then an activation 

function applied to this value which is analogous to a set threshold of when a neuron fires (see 

figure 5 ). Training an artificial neural network means optimizing these weights and biases for each 

neuron. 

The computational model based on a biological neuron has already been proposed in the 1940s 

[43], but has only been popularized in recent years with additional algorithmic innovations (such as 

backpropagation [44]), increased computational power and more available data.  

A neural network is typically visualized using a graph structure (see  figure 6 ) where each node 

represents a neuron and the connections between neurons represent weights. By feeding data 

into the network from left to right, we get a certain output that can be compared to the expected 

output using a cost function. For example, using the Mean Squared Error (MSE):  

SE )²M =  1
N ∑

N

i=1
(yi − y︿i   

Where is the number of examples, is the true value of example i and  is the predicted valueN yi yi︿  

of example i. We calculate the derivative of this cost with respect to the weights and biases of the 

model to find out in which direction to change these parameters, in order to decrease the cost 

(this is called backpropagation). We can then iteratively improve the model by continually feeding 

a batch of data into the network and updating the weights and biases based on the calculated 

derivatives. 

 

Figure 6.  Graph visualization of a neural network.  9

A common problem with neural networks is  overfitting . This means that the network is too much 

adapted to the noise of the training data and thus won't perform well on unseen data (it doesn't 

9 Source:  http://cs231n.github.io/neural-networks-1/  (retrieved at 17-9-2018) 
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generalize well). One way to try to solve this issue is with  weight   regularization . This means 

putting a cost on the weight parameters and thus giving the network an incentive to keep the 

weights low. Another more recent method to avoid overfitting is  dropout  [47]. In this method a 

certain percentage of randomly selected neurons is not taken into account during each training 

iteration. This avoids co-dependence between neurons and makes it harder for the network to 

overfit on the training data.  

2.3.4. Recurrent Neural Network 

Another issue of regular artificial neural networks is that it is impractical to apply to sequential 

data. Let's say that we want to predict the next word in a sentence using neural networks. This 

would require information about previous words in the sentence. So we could decide to use the 

previous five words as an input to the network and attempt to predict the next word. However, 

maybe information from a few sentences earlier is required to know which word comes next. For 

example in the text "I was born and raised in the Netherlands […]. I speak fluent Dutch" the 

network could only predict the word "Dutch" using information that came earlier.  

To solve this issue we can use a recurrent neural network (RNN) architecture. In this architecture 

the neurons in the hidden layer can receive an additional input from its own previous  state  (see 

figure 7 ). This previous state is also connected using weights that can be learned through 

backpropagation. In this way it is possible to preserve information about earlier inputs while only 

feeding the network data about one timestep. 

 

Figure 7.  An unrolled recurrent neural network.  10

A common problem experienced with this architecture is the  vanishing gradient problem , this is 

the phenomena that as the network computes the gradient of the cost function based on an input 

many timesteps into the past, the gradient can vanish (become very small) due to a lot of 

computation steps between the output and an earlier input. In practice this means that it is hard for 

the network to learn long term dependencies. 

10 Source:  http://colah.github.io/posts/2015-08-Understanding-LSTMs/  (retrieved at 17-9-2018) 
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2.3.5. Long short-term memory networks 

To solve the issue of vanishing gradients and to make it easier for a neural network to learn 

long-term as well as short-term dependencies, an adaptation to the regular recurrent neural 

network (RNN) architecture has been proposed by Hochreiter et al. [26]. 

 

Figure 8 . LSTM architecture using different  gates  (left) vs. the default RNN architecture (right).  11

This architecture, called long short-term memory (LSTM) network, extends the default RNN by 

adding so-called  gates  to the hidden layer (see  figure 8 ). These gates are basically just extra 

weight parameters that are used by the network to determine what information of the previous 

hidden state and of the current input to use, what information to forget and what information to 

remember. Since these weights are all differentiable they can be optimized using backpropagation 

as well.   

11 Source:  https://github.com/llSourcell/LSTM_Networks/blob/master/LSTM%20Demo.ipynb  (retrieved at 
17-9-2018) 
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3. Related work 

3.1. Predicting blood glucose 

There are two recent studies that aim to do smartphone-based personalized blood glucose 

prediction [1, 11] and also aim to create an application that is able to help type 2 diabetes patients 

manage their disease by predicting future blood glucose levels. 

S. Chemlal et al. [1] have done this by using previous blood glucose values (manually entered) and 

also physical activity (based on the accelerometer in the smartphone), they report an average 

accuracy of 90.24%. However, they don’t mention any prediction horizon on this result, which is an 

important factor in the accuracy of these algorithms.  

In " Smartphone-based personalized blood glucose prediction"  [11] the blood glucose prediction is 

also based on manually entered blood glucose values and physical activity, but they also use 

nutrition and sleep. They claim to use a combination of patient-based and population-based 

analysis to come to a more accurate prediction of blood glucose. However they are using a small 

and quite artificial dataset [12] and it seems like they didn’t use a separate test and validation set, 

making reported performance improvements by for example clustering potentially invalid (could 

simply be overfitting to the dataset). Also they only have a visual prototype of their application. it is 

not clear that results from the paper transfer to a real-world scenario.  

In [48] an algorithm is developed to predict the occurence of hypoglycemia (too low blood 

glucose) using machine learning, but they don’t attempt to directly predict blood glucose levels. 

Because of the importance of insulin regulation for type 1 diabetes patients, there are more studies 

with the aim of accurately predicting blood glucose levels of type 1 diabetes patients. Some 

studies assume that the performance of models used for type 1 diabetes roughly transfer to type 2 

diabetes [50], since the dynamics are very similar. Other studies don't differentiate between the 

two types at all [11]. But in the case of certain models, type 2 diabetes is actually harder to model 

than type 1 diabetes, since the model also has to take into account insulin that is still being 

produced by the body (which is not a factor in adult type 1 diabetes patients). 

Figure   9  gives an overview of the performance of various models that aim to predict blood 

glucose of type 1 diabetics on varying time horizons, ranging from 15 to 180 minutes into the future, 

and with a variety of input variables.  
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Figure 9 . An overview of blood glucose prediction models for patients with type 1 diabetes [7].  

It turns out that having more input features increases the accuracy of a prediction model and we 

expect this to also be the case for type 2 diabetes patients. As expected, the performance drops 

when the prediction horizon (PH) is increased. Although models in  figure 9  are not directly 

comparable, hybrid models using a combination of Compartmental Models (CM) and a data-driven 

model such as Recurrent Neural Networks (RNNs) seem to result in the lowest error [7]. 

3.2. Relevant features for prediction 

There are many input features used in the literature to predict blood glucose levels. By far the 

most commonly used feature for predicting future blood glucose is (unsurprisingly)  previous blood 

glucose values,  which are used in practically every model [1, 11, 13-21]. After that  insulin dosage  or 

insulin infusion rates  [13, 15, 16, 18, 19, 20],  carbohydrate intake  or  food intake  [11, 13, 15, 16, 18-20] 

and  physical activity  or the  level of exercise  [1, 11, 15-17, 20] seem to be the most commonly used 

features.  
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There are no studies that use the patient’s  microbiome composition  as a feature in predicting 

blood sugar levels. Since  Zeevi D.  et al. [10] showed that there is a high correlation between the 

blood sugar response to specific food and an individual’s microbiome composition, this could be 

an interesting novel feature to include. Gut microbiome compositions are relatively stable over 

time [22-25], so this is something that could still be collected for previous participants.  

Other lesser used but perhaps helpful features are  time of day  [19],  stress  or  emotional states  [13, 

15, 16] and  population statistics  [11].  

Except for insulin dosage or infusion rates information from health records is not used as input in 

any of the studies. This is probably because most of these models are trained separately for each 

patient and thus don't benefit from population statistics such as BMI or age. A patient independent 

model could potentially benefit from this information. 

3.3. Compartmental models 

In compartmental modeling the human body is divided in a number of compartments which 

represent an organ or a body part [39]. In the case of blood glucose prediction knowledge of the 

human physiological processes is used to model the dynamics and transportation of insulin and 

glucose within the different organs (compartments) to determine the blood glucose level. In [19] 

two compartmental models are combined to predict glucose levels of type 1 diabetics: 

1. Insulin model 

In the insulin model the absorption of administered insulin is modeled by calculating the 

exogenous insulin flow  at time t, using the following formula:Iex  

 
(adapted from: [19]) 

Where  is a constant that defines the absorption rate,  is the insulin concentration inBd cd  

subcutaneous tissue (tissue directly below the skin),  r  is the distance from the injection point and 

is the total subcutaneous tissue volume. This exogenous insulin flow is then used to model theV sc  

insulin concentration in blood plasma  using the following formula:Ip   

 
(adapted from: [19)] 
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Here is the concentration of insulin in the liver and the concentration in the interstitial tissue.Ih Ip  

,  and  are the rates at which insulin is eliminated from the blood plasma, liver andk1 k2 k3  

interstitial tissue. Because this model is aimed at type 1 diabetes patients, they don’t take insulin 

produced by the pancreas into account. Since type 2 diabetes patients might still produce insulin 

themselves, a compartmental model aimed at type 2 diabetes would require some additional 

complexity. 

2. Meal model 

The meal model of Georga et al. [19] models the intestine as a single compartment in which the 

amount of glucose in the gut at time  after a meal that contained  carbohydrates is defined by:t D  

 
(adapted from [19}) 

Here  is the rate at which glucose in the gut is absorbed and  is the gastric emptyingkabs Gempt  

function, a trapezoidal function that increases or decreases with a 30 minute interval (see  figure 

10 ). 

 
Figure 10 . The gastric emptying function (adapted from [19]) 

The rate of appearance of meal-derived glucose in the blood is then determined by: 

 
(adapted from [19]) 

These two variables (  and ) are then used as input to the Support Vector Regression (SVR)aR Ip  

model, besides previous blood glucose measurements. 

There is also a more advanced compartmental model that models blood glucose for type 2 

diabetes that also takes into account glucagon (a hormone that makes the liver and muscles 

release glucose) and incretin (a hormone released in the intestines after a meal intake) [39]. 
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However, this model requires multiple blood measurements over a time of 250 minutes after an 

oral glucose tolerance test, in order to determine the parameters of the model for an individual 

patient, which is not feasible in our case. 

3.4. Hybrid models 

As shown in [7] hybrid models that use a combination of Compartmental Models (CMs) and a 

data-driven model such as an SVR, seem to outperform other models on the blood glucose 

prediction task. 

In the best performing hybrid model [19] they use two compartmental models (described in the 

previous section) to “ simulate 1) the absorption and the kinetics and dynamics of s.c. administered 

insulin and 2) the absorption of ingested carbohydrates ”. The output of these compartmental 

models is used as input in the data-driven Support Vector Regression (SVR) model that aims to 

make the prediction more patient-specific. However, since this is applied to type 1 diabetes 

patients they don’t have to take insulin produced by the pancreas into account. In the case of type 

2 diabetes this makes the CM more complex, as we don’t know exactly how much insulin the 

pancreas is still producing and how insulin resistant the body’s cells are. 

3.5. Long short-term memory networks 

As far as we can tell long short-term memory (LSTM) networks have not yet been applied to blood 

glucose prediction. LSTMs (described in section 2.3.5) are a specific kind of recurrent neural 

network that have been very successfully applied to a variety of tasks involving sequential data. 

LSTMs have achieved state-of-the-art performance in language-to-language translation [27, 28], 

generating image descriptions [29, 30], handwriting recognition [31, 32], protein structure 

prediction [33] and many more.   
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4. Methodology 

In order to create a blood glucose prediction model that is able to accurately predict blood 

glucose values up to 120 minutes into the future, a variety of models are evaluated. 

To set a baseline we first apply a simple autoregressive model, only using previous blood glucose 

values as input. We then compare this with more complex models such as compartmental models 

and support vector regression, as these have been shown effective in the prediction of blood 

glucose for type 1 diabetics [7]. However, our primary focus is on applying long short-term memory 

networks, because these have been very effective in related tasks dealing with sequential data 

[27-33] and haven’t been extensively researched in the context of blood glucose prediction. 

After training several models we determine if a separate model for each patient or a patient 

independent model is prefered based on the performance and considerations about which type 

would be most practical in a real world application. 

Finally, we test the importance of input features by excluding a certain feature in the best 

performing model and observing how this affects performance. We also manually adapt the input 

of the model to find out how sensitive it is to changes in the input features.  

4.1. Dataset description 

DIALECT is a observational cohort study within ZGT that started in 2009 in which lifestyle effects 

such as food intake and physical activity will be monitored for 850 patients with type 2 diabetes.   12

Currently around 700 patients have joined this cohort study and over the years the data that is 

recorded of these patients incrementally increased. The newest 80 participants within this study 

have also been equipped with a blood glucose measuring device (Freestyle Libre ), recording the 13

patient’s blood glucose level every 15 minutes and the patient's step count and heart rate every 

minute for a period of two weeks. This was done in a blind study, meaning the patients were not 

able to see their own blood glucose values, because this might influence their behaviour. These 

80 patients have also been requested to keep a detailed log on their food intake during these two 

weeks. Our dataset only includes the 60 patients that joined at the start of this thesis. 

12 source: 
https://www.zgt.nl/patienten-en-bezoekers/onze-specialismen/wetenschap/visie-op-onderzoek/medisc
he-disciplines/diabetes-mellitus/  (retrieved on 21-3-2018) 

13  https://www.freestylelibre.nl/  (retrieved on 21-9-2018) 
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 Figure 11 . Dataset statistics. On the left side of the table data is shown about the entire dataset 
(such as the mean blood glucose over all measurements) and on the right side data about patient 
characteristics are shown (such as the mean of the average blood glucose level of each patient). 

Figure 11  shows some interesting statistics about the data that has been collected on these 60 

patients. Not all data has been successfully collected, some of the patients did not keep track of 

their food intake and the patients that did track their food intake, did not always do this very 

accurately (sometimes meals were skipped, the time was not recorded or the description was not 

specific enough). Also some of the steps and heart rate data is missing due to needing to charge 

the Fitbit or because a Fitbit without heart rate sensor was used.  

To give a better insight in what this blood glucose data typically looks like, we plotted the blood 

glucose of a randomly selected patient over a period of three days (see  figure 12 ). We also plotted 

the carbohydrate intake to show how this affects the blood glucose levels of this diabetes patient. 

 

Figure 12.  Blood glucose levels (blue) and carbohydrate intake in grams (red) for a randomly 
selected patient over a period of three days. As can be observed a carbohydrate intake is often 

followed by a blood glucose peak. Also, during the night blood glucose is often more stable than 
throughout the day. 
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4.2. Performance metric 

To evaluate the performance of our models we use the Root Mean Squared Error (RMSE) since this 

is widely used in research on blood glucose prediction (making it easier to compare) and because 

it puts higher weight on more extreme errors of the model which is suitable to our use case. The 

Root Mean Squared Error is calculated as follows: 

MSE  R =  √ N

(Predicted Actual )²∑
N

i=1
i− i

 

4.3. Training scenarios 

There are two scenarios that we consider for training our model.  

1. The  patient dependent  scenario; in this case we train and evaluate a model for each 

patient separately. Training the model on the first N-100 measurements of a certain patient 

and evaluating the model on the last 100 measurements. We then use the average RMSE 

over all patients as our evaluation metric for a certain model. Because we don’t have the 

same number of collected measurements for each patient, the amount of data used for 

training varies per patient. 

2. The  patient independent  scenario; in this case we train a model on 54 patients and then 

validate the model on the remaining 6 patients. We then perform cross-validation over the 

other 9 folds and use the average RMSE over these folds as our evaluation metric for a 

certain model (see  figure 13 ). We use this approach in order to get results of high 

significance (because we can use 9 samples to determine the RMSE) while still being able 

to use a separate validation set. This allows us to maximally benefit from the limited 

amount of available data. As there are still new patients participating in the cohort study, 

these could serve as an additional test set in the future. 
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Figure 13 . Performing 10-fold cross validation. We use fold 1 as validation data to choose the best 

hyperparameters and fold 2-10 as test data to evaluate the performance of a model. 

A patient independent model has the advantage that we don't have to train a new model for each 

patient. However, this most likely comes at a loss of accuracy as it is harder to model 

patient-specific dynamics. The patient independent scenario also has the advantage that more 

data is available and that we can perform cross-validation (which is harder in the patient 

dependent case because we are using sequential data and sequential models).  

4.4. Data preprocessing 

In order to train different models on the available data, we first have to preprocess the data in 

such a way that it is easily fed to the algorithm. There are various data sources that we have to 

combine: 

- medical records (one file that includes all patients); 

- blood glucose data (a separate file for each patient); 

- steps data (a separate file for each patient); 

- food records (one file includes all patients that have been processed through a web app, 

for other patients there is a separate file from "Eetmeter" with added date and time). 

Since the datasets are in different formats and separate files, we process the data in Python in 

order to get one file per patient that contains all available data with one row per glucose 

measurement. For steps and food intake data we take the sum of all data points since the 

previous glucose measurement, for heart rate we use the average. As a time interval we use 15 

minutes, since the Freestyle Libre records a blood glucose value every 15 minutes. 
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4.4.1. Missing data  

Lipton et al. tested several approaches for dealing with missing data in LSTMs using a variety of 

different models on several performance metrics. They concluded that adding a binary feature to 

indicate that data is missing resulted in the best performance on all metrics [34]. 

That is why we define an additional boolean variable for missing heart rate data that is set to "1" if 

heart rate is "0" or if there is no heart rate sensor on the device. We also define a boolean variable 

for missing steps data that is set to "1" when there is no steps data available. Finally we define a 

boolean variable to indicate when there is no food intake data available for a certain patient, 

determined by the fact that there are no food intake records for the patient. 

4.4.2. Food intake data 

Patients manually keep track of their food intake on paper logs, in these logs patients write down 

what they eat and at what date and time. It is not clear if the recorded time is the start or the end 

of a meal and the duration of a meal is also not taken into account. 

These logs have been processed through an app called ‘Eetmeter’  by comparing each recorded 14

meal to the available products in the database. However, this is an inconvenient and 

time-consuming process because ‘Eetmeter’ doesn’t provide the option to add a time to your input 

and thus the time has to be added manually to the exported file. Also ‘Eetmeter’ outputs only 27 

nutritional values, while the Dutch food nutrition database called ‘NEVO’ [5] has 136 nutritional 

values. For example ‘Voedingscentrum’ only provides carbohydrates while ‘NEVO’ provides 

carbohydrates as well as ‘of which sugars’, which might be useful information in the prediction 

task.  

To solve these issues, we developed our own food input tool  increasing the speed at which 15

patient's food logs can be processed and using the nutritional information from 'NEVO'. This tool 

has been used to process most of the patient's food logs. It could potentially also be used by 

patients directly to keep track their food intake, saving researchers time a lot of time on 

processing food logs. However, because a significant part of the patients' food intake data was 

solely processed using 'Eetmeter', we were still unable to take advantage of the additional 

nutritional information provided by 'NEVO'. 

14  https://mijn.voedingscentrum.nl/nl/eetmeter/  (retrieved at 19-9-2018) 
15  https://daviddemeij.pythonanywhere.com  (retrieved at 17-9-2018) 
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To preprocess the food intake data, we first load the patient's data from the appropriate file (either 

a file generated through 'Eetmeter' or a file exported from our own food tool). We then loop 

through the blood glucose measurements and sum the nutritional content of all recorded food 

intake since the previous blood glucose measurement and use this as input features. 

4.4.3. Health records  

For the health records (see  figure 14 ) there are a lot of features that could potentially be included, 

but we will keep only it to a few basic features that we believe might have a significant correlation 

with blood glucose dynamics: 

- Gender 

- Age 

- BMI 

- HbA1c (glycated hemoglobin; value measured in a blood sample that represents the 

average blood sugar in the previous weeks) 

- Fast-acting insulin (A10AB ) and Intermediate-acting insulin (A10AC  & A10AD ) dosage 16 17 18

- Metformin (A10BA02 ) dosage 19

- Number of years since diagnosed with Diabetes Mellitus type 2 

 

Figure 14.  Sample of the available health records data. 

Since the three different types of insulin that we are interested in are prescribed exclusive from 

each other, we sum these three variables into a single feature. 

16  https://www.whocc.no/atc_ddd_index/?code=A10AB  
17  https://www.whocc.no/atc_ddd_index/?code=A10AC  
18  https://www.whocc.no/atc_ddd_index/?code=A10AD  
19  https://www.whocc.no/atc_ddd_index/?code=A10BA02  

28 

https://www.whocc.no/atc_ddd_index/?code=A10AB
https://www.whocc.no/atc_ddd_index/?code=A10AC
https://www.whocc.no/atc_ddd_index/?code=A10AD
https://www.whocc.no/atc_ddd_index/?code=A10BA02


 

4.4.4. Final processed dataset 

The final processed dataset contains a value every 15 minutes for all patients for the following 

features. 

Measured using a Freestyle Libre: 

● datetime  from the date and time recorded by the Freestyle Libre at each measurement; 
● blood glucose  as recorded by the Freestyle Libre; 
● seconds elapsed  since previous measurement; 
● hour of day  an integer between 0 and 24 based on the datetime. 

Measured using a Fitbit: 

● missing heart rate  a boolean that is either 0 or 1 based on whether any heart rate is 
recorded; 

● heart   rate  averaged over the period since the previous blood glucose measurement; 
● missing steps  a boolean that is either 0 or 1 based on whether step data is missing; 
● steps  summed over the period since the previous blood glucose measurement. 

 

Retrieved from the processed food logs (all summed over the period since the previous blood 

glucose measurement): 

● Energy (kcal) 
● Fat (g) 
● Saturated fat (g) 
● Carbohydrates (g) 
● Protein (g) 
● Fiber (g) 
● Alcohol (g) 
● Water (g) 
● Natrium (mg) 

● Salt (g) 
● Kalium (mg) 
● Calcium (mg) 
● Magnesium (mg) 
● Iron (mg) 
● Selenium (µg) 
● Zinc (mg) 
● Vit. A (µg) 
● Vit. D (µg) 

● Vit. B1 (mg) 
● Vit. B2 (mg) 
● Vit. B12 (µg) 
● Nicotinic acid (mg) 
● Vit. C (mg) 
● Vit. B6 (mg) 
● Folic acid (µg) 
● Iodine (µg) 
● Vit. E (mg) 

 

Retrieved from the patients health records:: 

● Gender  0 for male and 1 for female; 
● Age  at the time of joining the cohort study; 
● Years suffering from diabetes type 2  based on the moment of diagnosis; 
● Body Mass Index (BMI)  value calculated based on weight and height; 
● HbA1c  glycated hemoglobin a value measured in the blood that indicated the average 

blood glucose concentration; 
● Sum dosage A10A*  a sum of the prescribed dosage for insulin types A10AB, A10AC and 

A10AD;  
● Dosage A10BA  the prescribed dosage of Metformin. 

 

Using our preprocessing code described in  Appendix B  we obtain a large matrix with the 

dimensions:  

umber of  patients number of  timesteps number of  features 60 1321 46n ×  ×  =  ×  ×   
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Number of timesteps refers here to the maximum number of glucose values that has been 

recorded by a single patient. Since not all patients have recorded 1321 blood glucose values (this 

is equal to 13.75 days), the matrix is padded with zeros.  

4.4.5. Normalization 

For our neural network we want the input of the model to be between 0 and 1 as this has been 

shown to make neural networks converge faster and decrease the likelihood of getting stuck in a 

local optima [45]. To achieve this we normalize all the data by applying min-max normalization to 

each feature as well as to the output: 

zi = x min(x)i−
max(x) min(x)−  

Where for each feature ,  is the normalized value of .x , ..., x )x = ( 1   n zi xi  

4.5. Compartmental models 

4.5.1. Modeling rate of appearance (Ra)  

In order to attempt replicating the compartmental model experiments as described in section 3.5, 

we have to model the rate of appearance (Ra) of exogenous glucose in the blood. We can model 

the formulas described in section 3.5 using a object-oriented Python script (see  Appendix A ). A 

sample of the resulting data can be seen in  figure 15 . 

 
Figure 15 . A typical eight hour period modeling the rate of appearance of exogenous glucose 

(blue) in the blood plasma based on the carbohydrate intake (red). After the Ra reaches its 
maximum (a fixed model parameter), it will stay there until most glucose is absorbed.  
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4.5.2. Modeling sum of rate of appearance (SRa)  

The sum of the rate of appearance is calculated as an additional feature, as it might be useful in 

taking into account the amount of glucose absorbed by the blood over a longer time period [19]. 

This is easy to model - as we already modelled the rate of appearance (Ra) - by summing the 

values of Ra over the previous 90 minutes (see  figure 16 ). 

 
Figure 16.  Modelling the sum of the rate of appearance over the previous 90 minutes (in green 

on a separate y-scale).  

4.6. Training procedure 

4.6.1. Autoregressive model 

For an autoregressive model the training procedure is quite straightforward. There is only one 

hyperparameter that we have to set which is the number of previous values that the model uses to 

make a prediction. Thus we can simply optimize the parameters of the model on the training data 

and then evaluate the performance on the validation data for different values of this 

hyperparameter. In the patient dependent case this means evaluating the results on the last 100 

data points and determine the average over all patients. In the patient independent case this 

means cross-validating the results over 9 different sets of training and validation data. 

4.6.2. Support vector regression 

For support vector regression the training procedure is less straightforward as there are three 

hyperparameters that we can tune. In this case we use the same approach as in [19], applying a 

Differential Evolution algorithm to the hyperparameter selection. This involves " maintaining a 

population of candidate solutions subjected to iterations of recombination, evaluation, and 
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selection. The recombination approach involves the creation of new candidate solution 

components based on the weighted difference between two randomly selected population 

members added to a third population member."   To evaluate a candidate we use a separate part 20

of the training data and only the final candidate is evaluated on the test data. It is unclear that this 

is done properly in [19], meaning the positive results of this paper might be exaggerated due to 

overfitting. 

4.6.3. Long short-term memory networks 

For neural networks and LSTMs in particular there is a large amount of hyperparameters that can 

be set and also a few architectural choices that have to be made, among which: 

● What features to use as input to the network. Using more input features gives more 

information that the network might be able to use to make a better prediction. But when 

we use more input features we also introduce more noise and increase the chance of 

overfitting. 

● The number of layers in the network. More layers increases the computational complexity 

and makes it possible for the network to learn a higher level of abstraction. However, more 

layers can also make it harder for the network to converge to a solution. 

● The number of neurons per layer. Using more neurons increases the computational 

complexity and memory of the network, but also makes it more susceptible to overfitting 

the training data and makes the network require more data to converge to a solution. 

● The amount of dropout or weight regularization to apply. A higher value reduces 

overfitting, but also makes it harder for the network to converge to a solution. 

● The learning rate (the size of the update to the weights during each iteration). A higher 

learning rate can increase the speed at which the network learns, but if it is set too high 

we might overshoot the desired weights making the network unable to converge to a 

solution. 

We use the first fold to train and evaluate different models and we do this for many different 

hyperparameter settings and with different architectural set-up. The best performing set-up is then 

cross-validated on the other 9 folds (different combinations of training data and test data) and the 

results are averaged over all 9 folds.  

To determine which input features are important for the network 500 LSTMs with randomly 

selected features are trained and evaluated. For each of the 500 experiments a feature is set to -1 

20 http://www.cleveralgorithms.com/nature-inspired/evolution/differential_evolution.html 
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if it is not used in the network and to 1 if it is used. Using these values the Pearson correlation 

coefficient between each feature and the validation RMSE can be calculated using: 

  r =  
(x x)(y y)∑

500

i=0
i− i−

√ (x x)(y y)∑
500

i=0
i− i−

 

Where  is the Pearson correlation coefficient and and  represent the value of the feature forr xi yi  

experiment  (either -1 or 1) and the validation RMSE for experiment , respectively.i i  

4.7. Transfer learning 

A popular technique in the field of Machine Learning is training one neural network on multiple 

related tasks (in succession or at the same time) with the idea that the knowledge learned in one 

task can improve the performance of the other task. 

In the case of blood glucose prediction we can apply this technique by training one network that 

predicts blood glucose level for 30, 60, 90 and 120 minutes at the same time, instead of training a 

separate LSTM for each of these prediction horizons. 

4.8. Model ensembles 

Another popular method to improve performance of neural networks is training several models 

and then combine the output of the models to obtain the final prediction. An obvious downside to 

this method is that it requires training multiple models which can be time consuming and also 

increases the computation and memory required to make a prediction (making it for example less 

suitable to run on a smartphone). 

4.9. Testing statistical significance 

In order to test the statistical significance of the correlation coefficient described in 4.6.3 we use a 

t-test. However, in conducting a t-test certain assumptions are made: 

1) The data is measured on an interval or ratio scale (meaning it increases with a equal 

intervals). 

2) The samples are randomly selected. 

3) Samples are independent from each other. 
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4) Variances are approximately equal. 

Assumption 2 to 4 hold in the case of correlation coefficients. However, assumption 1 does not 

hold and to solve this we apply a Fisher Z-transformation [49] which is defined as: 

arctanh(r)  z =   

We can use this Z-score to calculate the probability that the correlation  of a feature is lower thanr  

zero ( ) and thus useful to the model by using a one-tailed t-test. A 95% confidence interval(r )P < 0  

of the Z-score is then defined by: 

z .96 , z .96 ]  [ − 1 *
1

√500 3−
 + 1 *

1
√500 3−

 

To obtain the 95% confidence interval of the correlation coefficient we just have to transform the 

obtainer Z-scores for the lower and upper bound back using: 

tanh(z)  r =   

To evaluate if a model performs significantly better than the baseline we can perform a standard 

one-tailed t-test without transforming the input space, because the results are assumed to lie on a 

regular normal distribution with equal intervals already.      
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5. Results 

In this section the results of the most relevant experiments are described and discussed. Models 

to experiment with are selected based on related work and by doing some initial experiments. If 

these initial experiments give any promising results we conduct a full evaluation. As a patient 

independent LSTM showed most promise for our use case, we decided to attempt to further 

improve the performance of this model by trying some popular techniques such as: adding noise, 

transfer learning and model ensembles. To better understand the model we test the importance of 

the features to model's performance by excluding a certain feature and evaluate the effect on the 

performance. We also experiment with the sensitivity of the model to each feature by manually 

adapting the input values. To get a better sense of how the trained model can be used in a real 

world application, we visualize the predictions from the perspective of the patient, also showing 

the expected error of our predictions. 

5.1. Comparing models 

When experimenting with various models in practice it turns out that some of the models don't 

work in the patient dependent case and some don't work in the patient independent case. In the 

patient dependent case Recurrent Neural Networks don't work because two weeks of data is 

simply not enough to train such a complex model. In the patient independent case Support Vector 

Regression does not work because the dataset is too large, fitting a SVR models exponentially 

increases in complexity as we have more data points. The autoregressive model can easily be 

applied in both cases. 

5.1.1. Patient dependent models 

For the patient dependent model we solely focus on 36 patients of which we have food intake 

data, as this allows us to better evaluate how much food intake data improves the performance of 

these models.     

Model RMSE \ Pred. Horiz. (minutes)  30  60  90  120 

Autoregressive Model (baseline)  17.43  28.53  34.70  38.32 

Support Vector Regression (SVR)  18.25  29.21  34.81  37.40 

SVR + Ra   19.65 ± 6.0  28.82 ± 8.1  33.77 ± 10.8  36.43 ± 12.2 

SVR + Ra + SRa  19.54 ± 5.73  28.73 ± 8.3   33.60 ± 11.0  36.86 ± 13.4 
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SVR + Ra + SRa + time  20.70 ± 6.7  29.28 ± 10.6  33.95 ± 12.6  37.22 ± 14.8 

SVR + Ra + SRa + time + steps  21.77 ± 10.9  31.47±13.2  36.04 ± 14.6  38.02 ± 15.5 

Table 1.  Patient dependent performance of various models on the last 100 timesteps (average over 
all 36 patients that recorded food intake). 

 

For the longer time horizons Support Vector Regression seems to works slightly better than a 

simple autoregressive model (see  table 1 ), but as there is a high standard deviation these 

improvements are not significant. Adding a compartmental model that models the exogenous 

blood glucose rate of appearance (Ra) also slightly, but not significantly, improves this 

performance. Adding additional information such as the time of day and step count does not seem 

to help at all. 

We also attempted applying Recurrent Neural Networks in the patient dependent case. However, 

the initial results of this were not very promising. Since training and evaluating Neural Networks in 

the patient dependent case is very time-consuming (because we need to train and evaluate a 

separate Neural Network for each patient) we decided not to put any more time in this.  

5.1.2. Patient independent models 

In the patient independent case the regular LSTM model significantly outperforms the 

autoregressive model on a short time horizon (see  table 2 ). A multitask LSTM using transfer 

learning (described in section 4.6) significantly outperforms the autoregressive baseline on longer 

time horizons (>= 60 minutes). This not only results in better performance, but it also saves time, 

since only one network has to be trained instead of four. It is also convenient that we can directly 

use this multitask LSTM to create a graph showing the predicted blood glucose for the upcoming 

two hours. An ensemble of multitask LSTMs (described in section 4.7) has the best performance on 

longer time horizons (>= 60 minutes), but doesn't significantly improve the regular multitask LSTM. 

The code (including the hyperparameters) of the best performing multitask LSTM kan be observed 

in  Appendix C .  

Model RMSE \ Pred. Horiz. 
(minutes) 

30  60  90  120 

Autoregressive Model (baseline)  19.53 ± 1.8  32.06 ± 3.3  39.45 ± 4.7  44.24 ± 5.8 

LSTM  18.21 ± 1.6  30.76 ± 3.1  36.95 ± 4.4  41.47 ± 5.4 

Multitask LSTM  19.33 ± 1.7  30.01 ± 3.1  36.21 ± 4.6  40.22 ± 5.8 

Multitask LSTM ensemble  19.26 ± 1.5  29.92 ± 3.1  34.98 ± 4.1*  40.08 ± 5.7 
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Table 2 . Patient independent 9-fold cross-validated performance of various models. Results that 
are significantly better than the baseline are bolded (calculated using a one-sided t-test with p < 0.1 

and * indicating p<0.05).  

5.2. Feature selection 

A challenging task in training our LSTM is selecting the most useful features. We evaluate this by 

training 500 networks on randomly selected features and observe how often certain features are 

used in the 20 best performing models (see  table 3 ).  

We also calculate the correlation between each feature and the Validation RMSE as described in 

section 4.6.3. In this case a negative correlation is good since this means using the feature 

decreases the RMSE. We can then calculate a 95% confidence interval for this correlation and 

calculate the probability that the correlation  of a feature is lower than zero ( ) and thusr (r )P < 0  

useful to the model (using the methods described in section 4.9). However, we must note that the 

features themselves are not independent. For example the amount of fat and the amount of 

saturated fat are quite similar; if we have fat as an input, also having saturated fat might be less 

useful than if we don't have fat as an input already. What is also interesting to note, is that using 

gender actually decreases the accuracy on average. This might be due to a gender atypical blood 

glucose pattern for one or more of the patients in the validation set. Since the validation set only 

consists of 5 patients, the usefulness of patient characteristics such as age, gender, BMI and 

HbA1c might not always be accurately represented.      

Feature  Top 20  Correlation   Lower bound 
Correlation 

Upper bound 
Correlation  

P(r < 0) 

Time of day  20/20  -0.297  -0.375  -0.215  100.0% 

HbA1c  6/20  -0.097  -0.183  -0.009  98.5% 

Fibers  4/20  -0.079  -0.165  0.009  96.1% 

Steps  8/20  -0.056  -0.143  0.032  89.5% 

Time since 
measurement 

6/20  -0.056  -0.143  0.032  89.3% 

Saturated fat  3/20  -0.054  -0.141  0.034  88.7% 

Energy (Kcal)  2/20  -0.043  -0.130  0.045  83.0% 

Alcohol  3/20  -0.035  -0.122  0.053  78.1% 

BMI  6/20  -0.030  -0.118  0.058  75.1% 

Carbohydrates  4/20  -0.024  -0.112  0.064  70.6% 

A10BA  1/20  -0.017  -0.105  0.071  64.8% 
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Fat  2/20  -0.004  -0.092  0.084  53.6% 

Protein  2/20  -0.004  -0.092  0.084  53.4% 

Missing food  6/20  0.008  -0.080  0.096  43.0% 

Age  3/20  0.014  -0.074  0.101  38.0% 

Missing HR  3/20  0.024  -0.064  0.112  29.7% 

Missing Steps  1/20  0.029  -0.059  0.116  26.1% 

Salt  7/20  0.031  -0.056  0.119  24.2% 

Heart rate  2/20  0.057  -0.030  0.145  10.0% 

Years diagnosed  0/20  0.081  -0.007  0.167  3.6% 

Sum A10A  0/20  0.114  0.027  0.200  0.5% 

Gender  3/20  0.136  0.049  0.222  0.1% 

 

Table 3.  Results of training 500 multi-task LSTM models on randomly selected features and 

validated on our validation fold. The top 20 shows how often a certain feature occurs in the 20 

best performing models. The correlation column shows how much each feature is correlated to 

the validation RMSE. The lower and upper bounds columns show the 95% confidence interval of 

this correlation. The last column shows the probability that the correlation is negative (meaning it 

is useful to the model). 

5.3. Using partial data 

To test to what extend the model might improve with obtaining more data, we can observe what 

happens when we train the model on a percentage of the available data and gradually increase 

the amount of data that we feed the model.  

Multitask LSTM   30 min  60 min  90 min  120 min  Overall 

Using 25% of patients  23.43  33.05  39.11  43.14  35.67 

Using 50% of patients  20.17  30.78  37.12  40.96  33.52 

Using 75% of patients  19.65  30.30  36.72  40.83  33.12 

Using 100% of patients  19.68  30.21  36.47  40.59  32.91 

Table 4.  Gradually increasing the amount of data fed to a Multitask LSTM (the reported results are 
the average RMSE of 9-fold cross-validation). 
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As expected the performance of the network improves as we use more data for training (see  table 

4 ). However, the increase in performance does seem to slow down as we add more data. It is not 

likely that the performance would improve significantly if we would have slightly more data.  

5.4. Adding noise 

A common way to make neural networks more robust to small perturbations to the input is by 

adding random noise to the input. The intuition behind this is that relative small changes to the 

input should generally not have very big effects to the output of a model. This should improve the 

generalization of the network and reduce overfitting. However, it turns out that in our case it does 

not improve the multitask LSTM model (see  table 5 ). 

Multitask LSTM   30 min  60 min  90 min  120 min  Overall 

Noise = 0%  19.80  30.32  36.51  40.54  32.36 

Noise = 1%  20.56  30.65  36.61  40.55  33.17 

Noise = 2.5%  22.53  31.85  37.45  41.12  34.18 

Noise = 10%  29.20  35.70  39.88  42.70  37.39 

Table 5.  Adding increasing amounts of noise to a Multitask LSTM model (the reported results are 
the average RMSE of 9-fold cross-validation). 

5.5. Model ensembles 

Using an ensemble of 5 models doesn't significantly improve the performance compared to the 

average RMSE when we apply these 5 models individually. However, this is using a simple 

ensemble method where we take the average prediction of the 5 models as the output. We could 

also use more intelligent ways to use the different models for example by training a Neural 

Network to weigh the output of the different models perhaps based on the age or gender of a 

patient.  

Multitask LSTM   30 min  60 min  90 min  120 min 

Average  19.51  30.31  36.56  40.57 

Ensemble  19.26  29.92  34.98  40.08 

Table 6.  9-fold cross-validated RMSE of using a 5 model ensemble compared to the Average 
RMSE of these 5 individual models. 

39 



 

5.6. Testing importance of features 

An interesting question is how important the different input features are for the model's 

performance. In order to test this we can leave out a certain feature and observe how this affects 

the performance. 

Multitask LSTM   30 min  60 min  90 min  120 min 

Include carbohydrates & fat  19.22  29.49  35.01  38.73 

Exclude carbohydrates & fat  19.13  30.67  35.30  38.92 

Table 7.  9-fold cross-validated performance (RMSE) of the best performing multitask LSTM (solely 
evaluated on patients that recorded their food intake). 

 

Even though food intake has been selected as a feature that benefits the performance, the 

usefulness of this feature seems to be very limited.  

Multitask LSTM  30 min  60 min  90 min  120 min 

Include all selected features  19.33  30.01  36.21  40.22 

Exclude steps  19.89  30.27  36.43  40.46 

Exclude time of day   20.12  30.85  37.43  41.84 

Exclude Hba1C  19.20  29.81  35.89  39.89 

Exclude all (except blood glucose)  19.16  30.91  37.76  42.19 

Table 8.  9-fold cross-validated performance (RMSE) of the best performing multitask LSTM 

excluding certain features to see the usefulness of each feature. 

Even if we exclude all features, the performance doesn't seem to be affected very much. 

Especially the 24-h time seems to be an important feature (and this is actually a feature that we 

can obtain without any additional effort). 

5.7. Sensitivity analysis 

Besides analyzing how much performance is improved by each feature, it is also interesting to 

observe how sensitive the model is to changes to the input of a certain feature. To analyze this we 

use a multitask LSTM and adapt the input data of a randomly selected patient from the test set. We 

visualize this by showing the predicted blood glucose graph for a certain day when we adapt the 
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input data. We also provide the mean and standard deviation of the blood glucose for different 

changes to the input as this also tells us something about how the prediction is affected. 

5.7.1. Varying carbohydrate intake 

As expected when we increase the carbohydrate intake, blood glucose has higher peaks and 

lower valleys and thus a higher standard deviation (see  figure 17  and  table 9 ). Decreasing the 

carbohydrate intake to zero doesn't seem to have a large influence on the prediction. This might 

be because - as a lot of patients did not (accurately) keep track for their food intake - the network 

also learns to predict these post-meal blood glucose peaks by relying on the time of day. 

 
Figure 17.  Varying the carbohydrate input for a random patient in the test set to observe how this 

influences the predicted blood glucose. 

Input \ Predicted blood glucose  Mean  Std. dev. 

True carbohydrate intake  150.49  22.32 

Carbohydrate intake x 4  149.32  25.94 

Carbohydrate intake x 0  153.76  23.53 

Table 9.  Effect of varying carbohydrate intake on the mean and standard deviation of the 

predicted blood glucose (prediction horizon = 120 minutes). 

5.7.2. Varying fat intake 

Varying the fat intake has a similar effect to changing the carbohydrate intake (see  figure 18 ). 

What is interesting to note is that when we decrease the fat intake the standard deviation of the 

blood glucose actually increases slightly (see  table 10 ). This makes sense because fat actually has 

been shown to slow down the glucose absorption of a meal [42]. 
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Figure 18.  Varying the fat input for a random patient in the test set to observe how this influences 

the predicted blood glucose. 

Input \ Predicted blood glucose  Mean  Std. dev. 

True fat intake  150.49  22.32 

Fat intake x 4  151.05  22.75 

Fat intake x 0  153.76  23.53 

Table 10.  Effect of varying fat intake on the mean and standard deviation of the predicted blood 
glucose (prediction horizon = 120 minutes). 

5.7.3. Varying fat and carbohydrate intake 

It is also possible that the model takes certain dynamics between different features into account, 

so it might be interesting to see what happens if we change fat and carbohydrate intake at the 

same time. As expected when we increase both fat and carbohydrate intake at the same time, the 

mean predicted blood glucose is higher and the standard deviation is also increased (see  table 

11 ). When we increase carbohydrates and set fat at zero the standard deviation is also higher. 

When we set fat to zero and increase the fat content the standard deviation of the blood glucose 

goes down and blood glucose peaks are delayed. These findings are also in accordance with the 

research which shows that fat slows down glucose absorption of a meal [42]. 
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Figure 19.  Varying the carbohydrate and fat input at the same time for a random patient in the test 

set to observe how this influences the predicted blood glucose. 

Input \ Predicted blood glucose  Mean  Std. dev. 

True carb & fat intake  149.24  23.35 

Carbs x 4 & fat x 0  150.40  27.83 

Carbs x 0 & fat x 4  151.15  24.43 

Carbs x 0 & fat x 0  152.94  24.89 

Carbs x 4 & fat x 4  154.29  33.45 

Table 11.  Effect of varying carbohydrate and fat intake on the mean and standard deviation of the 
predicted blood glucose (prediction horizon = 120 minutes). 

5.7.4. Varying HbA1c 

 
Figure 20.  Varying the HbA1c for a random patient in the test set to observe how this influences 

the predicted blood glucose. 

The model seems quite sensitive to changes in HbA1c value. As expected a higher HbA1c value 

translates to higher peaks and a higher mean blood glucose. What might be surprising is that a 

lower HbA1c value actually also has a higher standard deviation. This might be because a lower 
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HbA1c also increases the risk of hypoglycemia which would result in high blood glucose 

fluctuations or because such a low value does not occur in the training data.  

Input \ Predicted blood glucose  Mean  Std. dev. 

True HbA1c (53)  150.49  22.32 

HbA1c + 50% (80)  163.39  28.65 

HbA1c + 25% (66)  154.83  24.04 

HbA1c - 25% (40)  153.74  25.88 

HbA1c - 50% (27)  170.01  37.36 

Table 12.  Effect of varying HbA1c on the mean and standard deviation of the predicted blood 
glucose (prediction horizon = 120 minutes). 

5.7.5. Varying steps 

 
Figure 20.  Varying step count input for a random patient in the test set to observe how this 

influences the predicted blood glucose. 

Input \ Predicted blood glucose  Mean  Std. dev. 

True Steps  150.49  22.32 

Steps x 20  144.43  24.34 

Steps x 10  148.33  21.55 

Steps x 5  150.15  21.82 

Steps x 0  150.31  22.56 

Table 13.  Effect of varying step count input on the mean and standard deviation of the predicted 
blood glucose (prediction horizon = 120 minutes). 
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Step count does not have a very large influence on the prediction, but as expected more steps 

results in a lower average blood glucose prediction. Increasing steps by a large factor actually 

results in a higher standard deviation, this might be caused by the large fluctuations and 

potentially unrealistic values that don't occur in the training data.  

5.7.6. Varying age 

 
Figure 20.  Varying age for a random patient in the test set to observe how this influences the 

predicted blood glucose. 

Age seems to be an important factor for the network. As expected a lower age means lower 

predicted average blood glucose levels and most of all a lower standard deviation. 

Input \ Predicted blood glucose  Mean  Std. dev. 

True Age (68)  150.49  22.32 

Age + 50% (102)  159.26  40.24 

Age + 25% (85)  151.75  27.59 

Age - 25% (51)  149.95  19.85 

Age - 50% (34)  149.87  18.49 

Table 14.  Effect of varying age on the mean and standard deviation of the predicted blood glucose 
(prediction horizon = 120 minutes). 

5.8. Visualizing predictions 

In a real world application the patient should be made aware of the limitations of our model, while 

still benefiting from seeing the effects that their actions will have on their blood glucose. We can 

realize this by indicating an area in which we expect the real future blood glucose value to be in, 

using the cross-validated RMSE as a margin (see  figure 21  or go to 
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http://daviddemeij.pythonanywhere.com/static/visualizing_prediction.gif  for an animation 

throughout the day). This margin is larger for predictions further into the future because the RMSE 

is also higher for longer time horizons.  

 
Figure 21.  Predicted blood glucose for the upcoming 120 minutes for a random patient with a 

margin that has a width based on the RMSE. 

We visualize this prediction from the perspective of a patient, meaning that we only show one 

prediction (consisting of 7 outputs for different time horizons). We make this prediction interactive 

by directly showing how certain actions affect the predicted blood glucose by altering the input of 

the model. For example eating an apple instead of a donut (see  figure 22 )   or interactively 

changing the portion size of a meal (see animation at 

http://daviddemeij.pythonanywhere.com/static/adapting_food.gif ). 

 

Figure 22.  Predicted blood glucose for the upcoming 120 minutes when choosing to eat a donut 
(left) or when choosing to eat an apple (right) for a randomly selected patient by setting the 
respective carbohydrate and fat content as input to the model. 
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6. Discussion 

6.1. Evaluation methods 

In the patient independent case we use 10 folds of data each containing 54 patients for training 

and 6 patients for validation. We use 1 fold for choosing hyperparameters and determining the 

architecture of our model and 9 folds for evaluating each model. An alternative approach might 

have been to first separate a test fold of 10 patients and then use cross-validation on the other 50 

patients for choosing the hyperparameters, making it easier to select the appropriate 

hyperparameters and features to use. However, this approach would come at the cost of 

significance, since you can only evaluate the final model on 10 patients instead of on 54 patients 

across 9 folds in our case.  

In the patient dependent case we use the last 100 data points to evaluate the performance of the 

model for each patient and then average the results. This method resulted in a high standard 

deviation, giving us no significant results. This could potentially be done more thoroughly by using 

cross-validation. We did not choose to apply cross-validation, because this would make it 

impractical to experiment with recurrent neural networks, as these models rely on the entire data 

sequence (so you can’t shuffle them).  

It might have been interesting to evaluate certain simpler models before evaluating a complex 

LSTM. For example, evaluating the performance of a neural network with a sliding window. 

However, some initial experiments using neural networks with a sliding window did not give us any 

promising results, making us not inclined to continue in this direction. 

6.2. Patient dependent vs. patient independent 

In our experiments we find that patient dependent models seem to slightly outperform patient 

independent models. However, we cannot say this with certainty as by definition the evaluation of 

the two methods is performed on different test data. Most of the best performing blood glucose 

prediction models in the literature are patient dependent [7] and thus it is interesting that we can 

obtain a similar performance with a patient independent model.  

A big advantage of the patient independent method is that its performance can improve as we 

add more patients to our dataset. This is something that won't improve with patient dependent 
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models unless we have longer observation periods (longer than the current two weeks). Besides 

the potential for improving the performance when adding additional data, another upside to using 

a patient independent model is the fact that we can immediately use this model on an unseen 

patient, without first having to collect data for two weeks. It also gives us insight in how patient 

characteristics such as age or HbA1c value influence the blood glucose prediction (something that 

a patient dependent model cannot learn).  

An interesting research direction might be to combine patient dependent and independent 

models in some way to benefit from patient specific dynamics while also taking advantage of 

population-wide information. This could for example be done by training a SVR model on the first 

week of data for each patient and then train a LSTM using the output of these SVR models as 

input data together with other features such as age, hbA1c and actual blood glucose values. A 

disadvantage of this is that we would cut our training data for the LSTM in half. 

6.3. Patient dependent models 

In the patient dependent case it seems that Support Vector Regression (SVR) in combination with 

a compartmental model that models the Rate of appearance (Ra) of exogenous glucose in the 

blood, has the best performance for longer time horizons. However, we don't get close to the 

performance as reported by E. Georga et al. [19] and the results are not significantly better than 

the baseline. This may be due to one or more of the following reasons: 

● It seems like E. Georga et al. don't have a separate test and validation set and thus might 

overfit when selecting their hyperparameters using Differential Evolution. 

● E. Georga et al. model blood glucose for type 1 diabetes patients, which may be easier to 

model using compartmental models as the patients don't produce any insulin themselves 

anymore and completely rely on exogenous insulin. 

● E. Georga et al. use continuous blood glucose sensors with a sample every 5 minutes, 

instead of every 15 minutes, giving them more data and a higher resolution which might 

both improve the performance. 

● E. Georga et al. selectively remove data from their training and test set when a food intake 

occurred within the current time and the time that the prediction is made and then they 

use the Rate of appearance at the time of the prediction. In our opinion this is a flaw in 

their research method, as we wouldn't be able to do this in a real-world scenario, that is 

why we use the Rate of appearance at the time of the prediction instead. 
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● E. Georga et al. had more precise data on administered insulin and they were able to 

model this. 

It is also possible that there is a flaw in our Differential Evolution algorithm. Perhaps a much 

simpler approach such as exhaustive search would result in a better performance.  

Collecting data on administered insulin for the patients in the cohort study and modeling insulin 

(and perhaps also glucagon and incretin) in the blood using compartmental models might be an 

interesting direction for future research. It might also be worthwhile to try combining 

compartmental models with other types of models such as hidden Markov models [40] or long 

short-term memory (LSTM) networks [26] as this has not been attempted yet. However, our initial 

experiments with LSTMs were not very promising for the patient dependent case and we expect 

that there is not enough data available per patient to train a LSTM (as we have maximally two 

weeks of data for one patient). Perhaps a simpler regular neural network with a sliding window 

would perform better on this task, as this generally requires less data to train. However, our initial 

experiments using regular neural networks in the patient dependent case were also not very 

promising and take a long time to evaluate (because you have to train and evaluate a separate 

model for each patient). 

6.4. Patient independent models 

For patient independent models a multitask LSTM has the best performance and is also most 

practical, as only one network has to be trained to make blood glucose predictions for an entire 

time period. These predictions can be conveniently used to generate a predicted blood glucose 

graph to show the patient. An ensemble of multitask LSTMs performed slightly better, but does 

increases the computation and memory required linearly by the amount of networks that we use in 

the ensemble (making it for example less suitable to run on a smartphone). In the ensemble model 

we used the average prediction of 5 separate models to make a prediction. Another method that 

could be further researched is to use linear regression to weight the predictions or even use 

another neural network that learns to weight the model outputs based on input features such as 

age or HbA1c value.  

In order to further improve upon the obtained performance, it might be interesting to experiment 

with the recently introduced attention-based algorithms [46]. It might also be worthwhile to 

experiment with decorrelating the input features as especially the food intake features are highly 

correlated, potentially making it harder for the network to learn [45]. Although with enough training 

data this should not be a problem. A method that could be applied to decorrelate the input 
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features is using principal component analysis [47]. However, this does complicate the training 

procedure and may introduce flaws in the model evaluation methodology. 

6.5. Usefulness of features 

The most beneficial feature for the LSTM seems to be time, which is a feature that basically comes 

for free (as each blood glucose measurement already has a timestamp) and should thus definitely 

be included. HbA1c also seem to be a feature helpful, but other patient characteristics such as age 

and gender don't seem to be helpful in our feature selection experiments. This might be due to 

the network overfitting on these features during training and then putting too much weight on 

these features during validation (for example there might be an older women with a more stable 

blood glucose in the validation set, while the network never encountered this during training).  

Food intake data does not significantly improve the performance of the network. However, the 

network does seem to be sensitive to changes in food intake data in a consistent manner. This 

means that even though tracking food intake might not give better predictions, it can still help 

patients get an insight in how changing the amount they eat right now influences the predicted 

blood glucose, which is an important aspect of our application. The same can be concluded for 

steps data, which also doesn't significantly improve the performance of the prediction, but could 

still be used to give patients insight in how their physical activity changes the predicted blood 

glucose levels. 

Currently we have only used nutritional information that is available when exporting data from the 

"Eetmeter"  by the "Voedingscentrum". However, we have also processed most of the data using 21

our own food registration app  which uses the NEVO table [5] and provides us with a lot of 22

additional nutritional information. An interesting future research direction is testing if this additional 

information - such as what kind of glucose the food contains (monosaccharide, disaccharide or 

polysaccharide) - can benefit the accuracy of our network.  

There is only some information on medicine usage available through the health records, if we 

would have more precise information on insulin dosage including the time when it is administered 

this might significantly help the prediction model. Another novel feature that could be included in 

the future is the microbiome composition. This has been shown to be an effective feature in 

predicting postprandial blood (post-meal) glucose responses in non-diabetics [10] and it also 

seems to have an important role in the development of diabetes [52]. 

21  https://mijn.voedingscentrum.nl/nl/eetmeter/  (Retrieved at 3-9-2018) 
22  http://daviddemeij.pythonanywhere.com/  (Retrieved at 3-9-2018) 
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6.6. Real world application 

It is difficult to determine if the achieved accuracy is good enough to be useful in a real world 

application, this is probably something that has to be experienced in practice. However, what we 

can do, is visualize the achieved accuracy by adding a margin that shows the expected error of 

the model for a prediction (as described in section 5.8). This may be helpful in giving the patient 

insight in how reliable the prediction actually is, while still showing how the patient's actions affect 

their predicted blood glucose levels.   

Currently we use a margin based on the evaluated RMSE as a way of visualizing the expected 

error for the patient. However, a more accurate way to show the expected error would be 

prefered. This could be done by determining the standard error of a prediction using a method 

such as described in [51] and using this error to determine a 95% confidence interval of the 

network.  

Because hypoglycemia is the most dangerous possibility in the short-term and is often caused by 

too much insulin medicine, future work can include using insulin as an additional input to the 

model, attempting to model the effect of a certain insulin dosage. However, before deploying this 

feature in a real world application, this should be extensively validated as wrongly advising 

patients on insulin usage could potentially lead to dangerous situations. That's why in our opinion 

the initial application should probably not give advice on insulin and should also not be used by 

the patient to adapt their insulin dosage.   
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7. Conclusion 

We have shown that it is possible to predict blood glucose for type 2 diabetes patients with a 

significantly better accuracy than using an autoregressive model by using a multitask LSTM. As 

expected the accuracy drops as we try to make predictions for longer time horizons. Patient 

dependent models seem to outperform patient independent models, although they cannot be 

directly compared as they are evaluated using a different evaluation method. Patient independent 

models have our preference and have been the main focus of this research because:  

1. Patient independent models can be applied immediately to a new patient (we don't have 

to train a new model for each patient), making it more practical and convenient. 

2. Patient independent models give us more insight in the relationship between input data 

(such as food intake) and the predicted blood glucose.   

3. Patient independent models have more potential to improve as we add more data in the 

future. Patient dependent models can only gain more data by increasing the (already quite 

long) two week observation period. 

Even though using additional features such as food intake only slightly improve the performance, 

the network is sensitive to the additional input and uses it in a consistent manner, making it useful 

for showing patients how changes in this input (for example increasing the carbohydrate intake) 

influences the predicted blood glucose values. 

When an application is developed it is recommended to visualize the expected error of the 

prediction in such a way that patients are aware of the limitations of the model, while still 

benefiting from the insight in how their actions influence the predicted blood glucose values. 
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Appendix 

Appendix A. Modelling the Rate of Appearance 

We first model a carbohydrate intake class as follows: 

class   carb_intake : 
     def   __init__ ( self , carbs_mmol) : 
         self .initial_carbs = carbs_mmol 
         self .available_carbs = carbs_mmol 
         self .Ra =  0 . 0 
         if   self .initial_carbs <=  60 : 
             self .small_intake = True 
         else: 
             self .small_intake = False 
 
     def   update_rate ( self ) : 
         if   self . small_intake: 
             if   self .available_carbs >  0 . 5  *  self . initial_carbs: 
                 self .Ra +=  4.0  /  60 
            elif  self .available_carbs <  0 . 5  *  self . initial_carbs: 
                 self .Ra -=  4.0  /  60 
         else: 
             if   self .available_carbs >  30 : 
                 self .Ra +=  4.0  /  60 
            elif  self .available_carbs <  30 : 
                 self .Ra -=  4.0  /  60 
 
         # Keep Ra within boundaries 
         self .Ra = max( 0 . 0 ,  self .Ra) 
         self .Ra = min( 120.0 ,  self .Ra) 
 
     def   get_carbs ( self , carbs) : 
         if  carbs <=  self . available_carbs: 
             self .available_carbs -= carbs 
             return  carbs 
         else: 
            available =  self .available_carbs 
             self .available_carbs =  0 
             return  available 

 
We then create a carbohydrate processor class using the previously created carbohydrate intake 
class. 

class   carb_processor : 
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     def   __init__ ( self , time_interval =  1 ) : 
         self .time_interval = time_interval 
         self .max_Ra =  120 
         self .carb_intakes = [] 
 
     def   add_carb_intake ( self , carbs_mmol) : 
         self .carb_intakes.append(carb_intake(carbs_mmol)) 
        keep_idx = [] 
         for  i  in  range(len( self .carb_intakes)): 
             if   self .carb_intakes[i].available_carbs >  0 : 
                keep_idx.append(i) 
         self .carb_intakes = [ self .carb_intakes[idx]  for  idx  in  keep_idx] 
 
     def   update_rates ( self ) : 
         for  carb_intake_obj  in   self . carb_intakes: 
            carb_intake_obj.update_rate() 
 
     def   get_Ra ( self ) : 
        Ra =  0 . 0 
         for  carb_intake_obj  in   self . carb_intakes: 
            Ra_obj = carb_intake_obj.Ra 
             if  Ra + Ra_obj <=  self . max_Ra: 
                carb_intake_obj.get_carbs(Ra_obj /  3600 ) 
                Ra += Ra_obj 
             else: 
                remaining_carbs =  self .max_Ra - Ra 
                carb_intake_obj.get_carbs(remaining_carbs /  3600 ) 
                Ra =  self .max_Ra 
         return  Ra 

Now we can process the rate of appearance for a patient by going through the patient's data from 

start to end: 

carb_processor_obj = carb_processor()  
for  s  in   range (start, end): 
     if  carb_intake[s] > 0: 
        carb_processor_obj. add_carb_intake (carb_intake[s]) 
    carb_processor_obj. update_rates () 
    Ra[s]  = carb_processor_obj.get_Ra() 
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Appendix B. Preprocessing Data 

To preprocess the data we first have to load the health records and food intake file (including all 

processed data of food intakes that are processed through 

https://daviddemeij.pythonanywhere.com/ ). 

from dateutil  import  parser 
import  numpy  as  np 
parse = lambda x: parser.parse(x) 
import  pandas 
import  datetime 
import  os.path 
 
patients = [ '1001' ,  '596' ,  '604' ,  '609' ,  '614' ,  '619' ,  '624' ,  '629' ,  '634' , 
'639' ,  '644' ,  '649' ,  '1002' ,  '597' ,  '605' ,  '610' , '615' ,  '620' ,  '625' , 
'630' ,  '635' ,  '640' ,  '645' ,  '650' , '572' ,  '598' ,  '606' ,  '611' ,  '616' ,  '621' , 
'626' ,  '631' ,  '636' ,  '641' ,  '646' ,  '651' ,  '574' ,  '600' ,  '607' ,  '612' , 
'617' ,  '622' ,  '627' ,  '632' ,  '637' ,  '642' ,  '647' ,  '652' ,  '595' ,  '601' , 
'608' ,  '613' ,  '618' ,  '623' ,  '628' ,  '633' ,  '638' ,  '643' ,  '648' ,  '653' ] 
 
 
health_records = pandas.read_csv( 'DIALECT 23-02-2018.csv' , sep= ';' ) 
health_records = health_records[health_records[ 'Subjectnr' ].isin(patients)] 
health_records_features = health_records[[ 'Subjectnr' ,  'Geslacht' , 
'Leeftijd_poli1' ,  'Jaren_DM2' ,  'Gewicht_poli1' ,  'SerumHbA1c_1' ,  'dosA10AB' , 
'dosA10AC' ,  'dosA10AD' ,  'dosA10BA' ]] 
 
# Import food intake that was processed through the food tool 
food = pandas.DataFrame(pandas.read_csv( 'all_food_records.csv' , sep= '\t' , 
parse_dates=[ 'datetime' ])).fillna( 0.0 ) 
# We have to calculate salt based on the value for natrium (this is how 
voedingscentrum also calculates salt because this is not given in the NEVO 
table) 
food[ 'salt' ] = (food[ 'field_09006' ]/ 1000.0 )/ 0.4 
# List of patients that have their food intake logs processed through 
daviddemeij.pythonanywhere.com 
patients_tool = list(food.patient_id.unique()[:]) 
 
headers = [ "datetime" ,  "glucose" ,  "seconds_elapsed" ,  "hour_of_day" , 
"missing_hr" ,  "hr" ,  "missing_steps" ,  "steps" ,  'missing_food' , 
'Energie (kcal)' ,  'Vet (g)' ,  'Verz. vet (g)' ,  'Koolhydr (g)' ,  'Eiwit (g)' , 
'Vezels (g)' ,  'Zout (g)' ,  'Alcohol (g)' ,  'Water (g)' ,  'Natrium (mg)' , 

60 

https://daviddemeij.pythonanywhere.com/


 

'Kalium (mg)' ,  'Calcium (mg)' ,  'Magnesium (mg)' ,  'IJzer (mg)' ,  'Selenium 
(µg)' ,  'Zink (mg)' ,  'Vit. A (µg)' ,  'Vit. D (µg)' ,  'Vit. E (mg)' ,  'Vit. B1 
(mg)' ,  'Vit. B2 (mg)' ,  'Vit. B6 (mg)' ,  'Foliumzuur (µg)' ,  'Vit. B12 (µg)' , 
'Nicotinezuur (mg)' ,  'Vit. C (mg)' ,  'Jodium (µg)' , 
'Geslacht' ,  'Leeftijd_poli1' ,  'Jaren_DM2' ,  'BMI' ,  'HbA1c' , 
'dosA10AB' ,  'dosA10AC' ,  'dosA10AD' ,  'dosA10BA' ] 

 

We then process each patient individually and store in a separate CSV file. 

for  patient  in  patients: 
     print (patient) 
    patient_dir =  os .curdir +  "/data/"  + patient +  "/" 
    heart =  os . path .isfile(patient_dir + patient +  "-heart.xlsx" ) 
    food_manual =  os . path .isfile(patient_dir + patient +  "-voeding.xlsx" ) 
 
    # Preprocess glucose data 
     table  = pandas.read_table(patient_dir + patient +  "-glucose.txt" ) 
     table  =  table .where(getattr( table ,  "Type vastlegging" ) ==  0 ) 
     table  =  table [pandas.notnull( table .ID)] 
     table  =  table [['Tijd', 'Historie glucose (mmol/L)']] 
    times_parsed = np.array([parse( time )  for   time   in 
table [ 'Tijd' ].values.tolist()]) 
    glucose_values = np.concatenate( 
        (times_parsed.reshape( -1 ,  1 ),  table [ 'Historie glucose 
(mmol/L)' ].values.reshape( -1 ,  1 )), axis= 1 ) 
 
    # preprocess HR data 
     if  heart: 
        hr_table = pandas.read_excel(patient_dir + patient +  "-heart.xlsx" ) 
        datetimes, hr_values = [], [] 
         for   date   in  hr_table.columns: 
             if   date  !=  "time" : 
                data = hr_table [['time', date]] .values 
                 for  i  in  range(data.shape[ 0 ]): 
                    datetimes.append(parse( date  +  " "  + data[i,  0 ])) 
                    hr_values.append(data[i,  1 ]) 
        hr_data = np.concatenate((np.array(datetimes).reshape( -1 ,  1 ), 
np.array(hr_values).reshape( -1 ,  1 )), axis= 1 ) 
 
    # Preprocess STEPS DATA 
    steps_table = pandas.read_excel(patient_dir + patient +  "-steps.xlsx" ) 
    datetimes = [] 
    steps_values = [] 
     for   date   in  steps_table.columns: 
         if   date  !=  "time" : 
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            data = steps_table [['time', date]] .values 
             for  i  in  range(data.shape[ 0 ]): 
                datetimes.append(parse( date  +  " "  + data[i,  0 ])) 
                steps_values.append(data[i,  1 ]) 
        steps_data = np.concatenate((np.array(datetimes).reshape( -1 ,  1 ), 
np.array(steps_values).reshape( -1 ,  1 )), axis= 1 ) 
 
    # Preprocess FOOD INTAKE DATA 
     if  food_manual: 
        food_table = pandas.read_excel(patient_dir + patient + 
"-voeding.xlsx" , header=None) 
        df = pandas.DataFrame(food_table) 
        df = df[df.iloc[:,  0 ].notna()] 
        df = df.fillna( 0 ) 
        food_intake_data = df.values[:, [ 0 ] + list(range( 5 ,  32 ))] 
     else : 
        food_records_filtered = food[(food.patient_id == int(patient)) & 
(food.missing_time == False)].fillna( 0.0 ) 
 
    # Preprocess health records data 
    health_records_data = list( 
        health_records_features[ 
            health_records_features[ 'Subjectnr' ] == patient 
            ].replace( ' ' ,  '0' ).values[ 0 ,  1 :].astype(float)) 
    bmi = float(health_records_data[ 4 ]) / ((float(health_records_data[ 3 ]) / 
100.0 ) **  2 ) 
    health_records_data = np.array([health_records_data[: 3 ] + [bmi] + 
health_records_data[ 5 :]]) 
 
    # Combine data 
    prev_date = glucose_values[ 0 ][ 0 ] - datetime.timedelta(minutes= 20 ) 
    data = np.array([headers]) 
     for  row  in  glucose_values: 
 
        steps = steps_data[(steps_data[:,  0 ] < row[ 0 ]) & (steps_data[:,  0 ] > 
prev_date) & (steps_data[:,  1 ] !=  -1 ),  1 ] 
         if  food_manual: 
            food_intake = food_intake_data[(food_intake_data[:,  0 ] < row[ 0 ]) 
& (food_intake_data[:,  0 ] > prev_date),  1 :] 
            sum_food_intake = np.array([np.sum(food_intake, 
axis= 0 ).astype(float)]) 
         else : 
            # The fields refer to the NEVO  table  fields corresponding to the 
nutritional values that we use 
            food_records_values = 
food_records_filtered[(food_records_filtered.datetime <= row[ 0 ]) & 
 
(food_records_filtered.datetime > prev_date)] [[ 
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                'field_01001', 'field_03001', 'field_03004', 
                'field_05001', 'field_02002', 'field_06001', 'salt', 
'field_08001', 
                'field_07001', 'field_09006', 'field_09007', 'field_09001', 
                'field_09008', 'field_09003', 'field_10001', 'field_09009', 
                'field_11002', 'field_11009', 'field_11010', 'field_11005', 
                'field_11006', 'field_11007', 'field_11013', 'field_11008', 
                'field_11014', 'field_11011', 'field_10003']] .values 
            sum_food_intake = np.zeros(( 1 ,  27 )) + 
np.sum(food_records_values, axis= 0 ) 
 
        missing_steps =  0 
         if  heart: 
            hr = hr_data[(hr_data[:,  0 ] < row[ 0 ]) & (hr_data[:,  0 ] > 
prev_date) & (hr_data[:,  1 ] !=  -1 ),  1 ] 
             if   len (hr) >  0 : 
                avg_hr = np.sum(hr) / float( len (hr)) 
                missing_steps =  0 
             else : 
                avg_hr =  0 
                missing_steps =  1 
         else : 
            avg_hr =  0 
 
         if   len (steps) >  0 : 
            sum_steps = np.sum(steps) 
             if  sum_steps >  0 : 
                missing_steps =  0 
         else : 
            sum_steps =  0 
            missing_steps =  1 
 
        # Store current  date   for   next  iteration 
         if  prev_date != datetime.datetime( 2000 ,  1 ,  1 ,  0 ,  0 ): 
            seconds = (row[ 0 ] - prev_date).seconds 
         else : 
            seconds =  0 
 
        prev_date = row[ 0 ] 
         print (row[ 0 ], (row[ 0 ] - datetime.datetime( 1970 ,  1 , 
1 )).total_seconds()) 
        data_row = np.array( [[(row[0] - datetime.datetime(1970, 1, 
1)).total_seconds(), float(row[1].replace(",", ".")), 
                              seconds, row[0].hour, int(not heart), avg_hr, 
                              missing_steps, sum_steps, int(not food_manual 
and not (int(patient) in patients_tool))]] ) 
 
        data_row = np.concatenate((data_row, sum_food_intake), axis= 1 ) 
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        data_row = np.concatenate((data_row, health_records_data), axis= 1 ) 
        data = np.concatenate((data, data_row), axis= 0 ) 
     print (data.shape) 
 
    df = pandas.DataFrame(data[ 1 :, :], columns=data[ 0 , :]) 
    df.to_csv( "/test_data_processing/"  + patient +  "-processed.csv" ) 
 
 

Finally we combine these separate files in one large matrix using the following code: 

# Create matrix that includes all data 
datasets = [] 
nr_missing_food, nr_food =  0 ,  0 
max_length =  0 
patient_ids = [] 
for  filename in os.listdir(os.curdir +  "./processed_data_per_patient" ): 
    #  if  np.genfromtxt(os.curdir +  "./processed_data_per_patient/"  + 
filename, delimiter= ',' )[ 1 , 9 ] ==  0 : 
    data = np.genfromtxt(os.curdir +  "./processed_data_per_patient/"  + 
filename, delimiter= ',' )[ 1 :, :] 
    data[:,  2 ] = data[:,  2 ] *  18 
    patient_id = np.ones((data. shape [ 0 ],  1 )) *  int (filename. split ( "-" )[ 0 ]) 
    patient_ids. append (patient_id) 
    datasets. append (data) 
     if  data. shape [ 0 ] > max_length: 
        max_length = data. shape [ 0 ] 
     if   int (data[ 0 ,  9 ]) ==  1 : 
        nr_missing_food +=  1 
     else : 
        nr_food +=  1 
    #  print ( int (filename. split ( "-" )[ 0 ])) 
print ( "# food" , nr_food) 
print ( "# missing food" , nr_missing_food) 
# x_train. append (np.genfromtxt(os.curdir+ "/all_patients-processed.csv" , 
delimiter= ',' )[ 1 :, 3 ]) 
all_data = np.zeros((len(datasets), max_length, datasets[ 0 ]. shape [ -1 ])) 
for  i in range(len(datasets)): 
    patient_id = patient_ids[i] 
    all_data[i, (max_length - datasets[i]. shape [ 0 ]):, :] = 
np.concatenate((patient_id, datasets[i][:,  1 :]), axis= 1 ) 
 
np. save ( "all_data_zeros_first" , all_data) 
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Appendix C. Multitask LSTM network 

The code below shows the architecture and hyperparameters of the best performing multitask 

LSTM network. 

 
import  tensorflow  as  tf 
from  tensorflow.python.keras.models  import  Sequential 
from  tensorflow.python.keras.layers  import  Dense, LSTM, Dropout, Activation 
from  tensorflow.python.keras.optimizers  import  RMSprop, Adam 
from  tensorflow.python.keras.callbacks  import  EarlyStopping, TensorBoard 
import  random 
import  os 
import  numpy  as  np 
 
dataset = np.load( 'all_data_zeros_first.npy' ) 
 
# Experiment Parameters 
lr =  0.01 
dropout =  0.3 
hidden_state =  85 
# [glucose, time of day (0-24), steps, saturated fat, carbohydrates,  
#  salt, age, HbA1c) 
features = [ 2 ,  4 ,  8 ,  12 ,  13 ,  16 ,  38 ,  41 ] 
nr_features = len(features) 
 
ix_test = [ 44 ,  34 ,  2 ,  1 ,  27 ,  36 ] 
ix_train = [i  for  i  in  range( 60 )  if  (i  not   in  ix_test)] 
 
# Dataset preparation 
if  len(features) ==  1 : 
    x_data = dataset[:, : -10 , :][:, :,  2 : 3 ] 
else : 
    x_data = dataset[:, : -10 , :][:, :, features] 
y_data = np.concatenate((dataset[:,  8 : -2 ,  2 : 3 ], dataset[:,  7 : -3 ,  2 : 3 ], 
dataset[:,  6 : -4 ,  2 : 3 ], dataset[:,  5 : -5 ,  2 : 3 ], dataset[:,  4 : -6 ,  2 : 3 ], 
dataset[:,  3 : -7 ,  2 : 3 ], dataset[:,  2 : -8 ,  2 : 3 ]), axis= 2 ) 
 
x_train = x_data[ix_train, :, :] 
x_test = x_data[ix_test, ::, :] 
 
y_train = y_data[ix_train, :, :] 
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y_test = y_data[ix_test, :, :] 
 
num_x_signals = x_train.shape[ 2 ] 
num_y_signals = y_train.shape[ 2 ] 
 
# Scaling data to [0, 1] 
x_min_scaler = np.min(x_train, axis=( 0 ,  1 )) 
x_max_scaler = np.max(x_train, axis=( 0 ,  1 )) 
 
x_train_scaled = np.zeros_like(x_train) 
for  i  in  range(x_train.shape[ 2 ]): 
    x_train_scaled[:, :, i] = (x_train[:, :, i] - x_min_scaler[i]) / 
(x_max_scaler[i] - x_min_scaler[i]) 
 
y_min_scaler = np.min(y_train, axis=( 0 ,  1 )) 
y_max_scaler = np.max(y_train, axis=( 0 ,  1 )) 
 
y_train_scaled = (y_train - y_min_scaler) / (y_max_scaler - y_min_scaler) 
 
y_test_scaled = (y_test - y_min_scaler) / (y_max_scaler - y_min_scaler) 
 
x_test_scaled = np.zeros_like(x_test) 
    for  i  in  range(x_test.shape[ 2 ]): 
       x_test_scaled[:, :, i] = (x_test[:, :, i] - x_min_scaler[i]) / 
(x_max_scaler[i] - x_min_scaler[i]) 
 
validation_data = (x_test_scaled, y_test_scaled) 
 
model = Sequential() 
 
model.add(LSTM(hidden_state, return_sequences= True , stateful= False , 
input_shape=(x_train.shape[ 1 ], num_x_signals))) 
model.add(Dropout(dropout)) 
 
model.add(LSTM(hidden_state, return_sequences= True , 
input_shape=(x_train.shape[ 1 ], hidden_state), stateful= False )) 
 
model.add(Dropout(dropout)) 
 
model.add(Dense(num_y_signals)) 
 
 
def   rmse_120 (y_true, y_pred): 
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    y_true_120 = y_true[:, :,  0 : 1 ] 
    y_pred_120 = y_pred[:, :,  0 : 1 ] 
     return  rmse(y_true_120, y_pred_120) 
 
def   rmse_90 (y_true, y_pred): 
    y_true_90 = y_true[:, :,  2 : 3 ] 
    y_pred_90 = y_pred[:, :,  2 : 3 ] 
     return  rmse(y_true_90, y_pred_90) 
 
def   rmse_60 (y_true, y_pred): 
    y_true_60 = y_true[:, :,  4 : 5 ] 
    y_pred_60 = y_pred[:, :,  4 : 5 ] 
     return  rmse(y_true_60, y_pred_60) 
 
def   rmse_30 (y_true, y_pred): 
    y_true_30 = y_true[:, :,  6 : 7 ] 
    y_pred_30 = y_pred[:, :,  6 : 7 ] 
     return  rmse(y_true_30, y_pred_30) 
 
def   rmse (y_true, y_pred): 
    y_true_unscaled = tf.add(tf.scalar_mul(y_max_scaler[ 0 ] - 
y_min_scaler[ 0 ], y_true), y_min_scaler[ 0 ]) 
    y_pred_unscaled = tf.add(tf.scalar_mul(y_max_scaler[ 0 ] - 
y_min_scaler[ 0 ], y_pred), y_min_scaler[ 0 ]) 
    y_pred_unscaled = tf.where(tf.less(y_true_unscaled,  0.01 ), 
tf.zeros_like(y_true_unscaled), y_pred_unscaled) 
 
    diff = 
tf.reduce_sum(tf.square(tf.keras.backend.flatten(y_true_unscaled) - 
tf.keras.backend.flatten(y_pred_unscaled))) 
    loss = tf.sqrt(diff / tf.cast(tf.count_nonzero(y_pred_unscaled), 
dtype=tf.float32)) 
     return  loss 
 
 
def   loss (y_true, y_pred): 
    y_true_unscaled = tf.add(tf.scalar_mul(y_max_scaler[ 0 ] - 
y_min_scaler[ 0 ], y_true), y_min_scaler[ 0 ]) 
    y_pred = tf.where(tf.less(y_true_unscaled,  0.01 ), 
tf.zeros_like(y_pred), y_pred) 
    loss = tf.reduce_sum(tf.square(tf.keras.backend.flatten(y_true) - 
tf.keras.backend.flatten(y_pred)) / 
                            tf.cast(tf.count_nonzero(y_pred), 
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dtype=tf.float32)) 
     return  loss 
 
 
optimizer = Adam(lr=lr) 
model.compile(loss=loss, optimizer=optimizer, metrics=[rmse, rmse_30, 
rmse_60, rmse_90, rmse_120]) 
model.summary() 
 
early_stopping = EarlyStopping(monitor= 'val_loss' , min_delta= 0 , 
patience= 10 , mode= 'auto' ) 
callback_tensorboard = TensorBoard(log_dir= './log/' ) 
callbacks = [early_stopping, callback_tensorboard] 
 
x_batch = x_train_scaled 
y_batch = y_train_scaled 
 
def   batch_generator (): 
     """ 
    Generator function for creating random batches of training-data. 
    """ 
     while   True : 
        idx = np.random.permutation(x_train_scaled.shape[ 0 ]) 
        x_batch = x_train_scaled[idx] 
        y_batch = y_train_scaled[idx] 
         yield  (x_batch, y_batch) 
 
 
num_epochs =  200 
model.fit_generator(generator=batch_generator(), 
                              epochs=num_epochs, 
                              steps_per_epoch= 10 , 
                              validation_data=validation_data, 
                              verbose= True , callbacks=callbacks) 
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