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Abstract—  MR images are needed in many percutaneous 

minimally invasive procedures in the liver. However, the 

acquisition of MRI happens at low frequency, which doesn’t 

enable real-time imaging under respiratory induced motion 

in the liver. One main contribution of this study is that it 

presents a new technique for generating synthetic MR images 

that have contrast and spatial resolution higher than the 

acquired ones. The new approach depends on respiratory 

motion estimation in the liver using a surrogate signal. 

Synthetic MR images are predicted at the same high 

frequency of the surrogate signal. Also, this study presents a 

new machine learning algorithm for predicting the x-y pixel 

coordinates of small targets with very high accuracy and 

frequency without generating full images. The strength of 

this algorithm is that it tries to find the exact non-linear 

function between the surrogate signal and the position of 

targets in the MR image if it exists. Otherwise, the algorithm 

tries to capture the correlation between them as close as 

possible.  The correctness of the first technique was evaluated 

by comparing the locations of liver features and the contours 

of the liver in synthetic images to their corresponding 

acquired ones. The mean error ranged between 0.659 pixel 

(1.3839 mm) and 1.2154 pixels (2.55 mm). The average 

blurriness of synthetic images was 0.3305, while that of 

corresponding acquired ones was 0.3306. The average 

entropy of synthetic images was 6.5631, while that of 

corresponding acquired ones was 6.5248. The mean error of 

the second technique was evaluated by comparing the 

predicted positions of targets to their real positions. The mean 

error ranged between 0.9859 pixel and 1.0034 pixels after 

training the algorithm by 50% of the acquired data. The mean 

error decreased to range between 0.8669 pixel and 0.8758 

pixel after training the algorithm by 75% of the acquired 

images. The algorithm was tested every time by the last 25% 

of the obtained data. Both techniques were evaluated by open 

source data, previously carried out experiments and 

experiments carried out on a phantom.  

 

Index Terms— 3D vision, Image Processing, Ultra-Sound, 

Respiratory Induced Motion, Surrogate Signal, MRI, 

Supervised Machine Learning. 

I. INTRODUCTION 

A. Respiratory Induced Motion 

  Liver Cancer is the second main cause of cancer deaths 

worldwide [2]. 70% of cancer deaths happen in 

developing countries because of the lack of proper 

diagnosis and treatment. According to the World Health 

Organization (WHO), 30%-50% of cancer patients could 

recover if cancer is diagnosed early and treated properly 

[3]. Percutaneous image-guided minimally invasive 

procedures are widely performed during cancer treatment 

in the liver. They are used for many purposes such as: 

biopsy, fluid collection drainages and tumor ablation [4]. 

Percutaneous minimally invasive procedures offer many 

advantages such as: lower complication rates, shorter 

recovery time, shorter hospital stays and less expenses [5]. 

However, hepatic motion due to respiration is a main 

obstacle for precise percutaneous instrument insertion [5] 

[9].  

  Respiration leads to liver motion in different directions 

mainly: superior-inferior (SI) and anterior-posterior 

directions (AP). Also, it leads to liver deformation as the 

liver is a non-rigid body [5]. The respiratory induced liver 

motion is more dominant in the superior-inferior direction, 

where it could range from 8 mm to 25 mm [10] [11]. The 

average frequency of human breathing is between 12-15 

breathes per minute [12]. Therefore, if the imaging 

modality doesn’t provide high update rate or the 

respiratory induced motion is not compensated, this 

would result in motion artifacts in the images and 

inaccurate targeting for lesions [13].  Some of the 

consequences of inaccurate targeting are: damage of 

healthy cells during needle insertion, misdiagnosis in case 

of biopsy and insufficient treatment in case of ablation 

[4]. 

B. Respiratory Motion Compensation 

 Different imaging modalities are used in image guided 

interventions such as: magnetic resonance imaging (MRI), 

ultrasound (US), fluoroscopy and computed tomography 

(CT) [4]. MRI is preferred for soft tissue organs such as 
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the liver. That is because it results in high quality 

non-invasive images with high spatial resolution and 

contrast. This enables the detection of small lesions [6] 

[7]. Getting high quality and high frequency images are 

contradicting properties. For instance, MRI results in high 

quality images but obtained with low frequency, while the 

opposite is true for ultrasound [7].  

   Therefore, many approaches have been suggested in 

literature for compensating respiratory induced motion in 

the liver. These approaches could be divided into either 

active or passive approaches [4]. The active approach is 

breath holding. The breath should be held at the same 

respiratory phase during imaging and instruments 

insertion. Statistics showed that 10-15% couldn’t hold 

their breath for a sufficient time [14].  On the other hand, 

passive approaches compensate for respiratory induced 

motion without breath holding. One example for a passive 

approach is “respiratory gating”.  This technique allows 

operating on the tissue only at identical points in the 

respiratory cycle. End of exhalation is usually chosen as it 

represents the longest natural pause [5]. The disadvantage 

of this technique is that features in the liver don’t occupy 

the same position at identical lung volumes [16]. Another 

example for a passive approach is “Modelling”, where a 

model is created for predicting the liver motion from 

previously acquired images [5]. The limitation of this 

technique is that the motion of the liver differs from one 

respiration cycle to another. One main passive approach 

is inferring the position of a target in the liver by 

combining an imaging modality with high resolution like 

MRI and a surrogate signal that can be obtained with high 

temporal frequency. The surrogate signal should have 

very high correlation with the imaged target [17].  The 

components of this technique are as follows: target 

motion data, surrogate data, motion model, fitting method 

and target motion estimate [15]. The “Motion Model” is 

developed between the surrogate signal and the target 

motion based on a supervised machine learning trained by 

target data and surrogate data obtained simultaneously. 

Depending on this model and only the provided surrogate 

signal, the target motion could be estimated at the same 

high frequency of the surrogate signal.  

C. Surrogate Signals 

  Different surrogate signals have been proposed in 

literature such as: spirometer, respiratory bellows, 

reference needle, skin markers, single element transducer 

etc. [4] [7] [15]. Spirometers measure the air flow out and 

into the lungs. They have the advantages of high 

correlation with respiration motion and they provide 

simple one-dimensional signal. The main disadvantages 

are that they are prone to drift due to air leakage and cause 

discomfort to patients [15].  The respiratory bellow is an 

air-filled bag that’s wrapped around the patient’s thorax 

or abdomen to measure its motion by measuring the air 

flow out and inside the bag. It has the same advantages 

and disadvantages of the spirometer. Also, its placement 

restricts the operating area of the patient [15]. A reference 

needle could be inserted in the liver and its motion data 

could be used as a surrogate, guiding the insertion of 

subsequent needles [4]. However, this adds the challenge 

of proper placement of the needle close to the target. The 

usage of optically tracked skin markers has been 

suggested and used as a surrogate signal by different 

studies [15] [18] [19] [20] [21]. However, the liver 

doesn’t have any fixed relationship with the skin surface 

or surrounding organs as reported by [22]. An MRI 

compatible single element ultrasound transducer could 

also be used as a surrogate signal. A single element 

transducer has the advantages of: high correlation with 

liver and respiration motion, no restriction for the 

operating area for MR, ultrasound data acquisition 

happens in parallel and synchronized with MRI 

acquisition and it doesn’t reduce the time needed for MRI 

acquisition [7]. The main disadvantage of using 

ultrasound as a surrogate signal is that the setup is 

complex and expensive. Preiswerk et al. suggested that 

the field of the ultrasound sensor shouldn’t be focused for 

the received signal to act as a unique signature for the 

arrangement of the organs at different points in time [7].  

D. Contribution 

  The study presents a new technique for respiratory 

motion compensation using the passive approach of a 

surrogate signal. The imaging modality used is MR. This 

technique generates synthetic MR images of the liver at 

the same high frequency of the surrogate signal. One 

main contribution of this paper is that synthetic images 

generated by this technique have spatial resolution and 

contrast better than the real acquired images. Having high 

frequency MR images with high contrast and spatial 

resolution is very beneficial for tracking and targeting 

small lesions in the liver under respiratory induced 

motion with very high accuracy. This in turn allows 

accurate percutaneous instruments insertion even for very 

critical targets. This algorithm was tested by using two 

different surrogate signals. The first is skin markers and 

the second is ultrasound.  

   Then, the study presents a new machine learning 

algorithm for predicting the x-y pixel coordinates of small 

targets inside the MR image of the liver with very high 

accuracy and frequency without generating synthetic 

images. This algorithm has the ability to conclude the 

exact non-linear mathematical function between the 
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surrogate signal and the position of targets in the MR 

image of the liver, if it exists, not just fitting a pre-chosen 

function to the data. If no exact mathematical function 

exists, it tries to capture the correlation between the 

surrogate signal and the targets as close as possible. The 

new learning algorithm is named “evolving function” as 

the function has the ability to change and improve itself 

over time as long as more data is provided to give a better 

modelling of the previously mentioned mathematical 

relation or correlation.  

   Also, this study presents a phantom experiment that was 

carried outside the MR. Surrogates used in the experiment 

were skin markers and ultrasound. More than one 

surrogate signal was used to evaluate whether it is 

important to use a precise surrogate with a complex and 

expensive setup like ultrasound or it is just sufficient to 

use a cheap one with less correlation to the target motion 

like skin markers to get results with accepted accuracy.  

II. BACKGROUND 

 

A. MRI Formation 

Before explaining the new idea, the process of MRI 

formation is explained as this would give a better 

understanding of the new technique. MR image is a 

display of the RF signals received from the tissues during 

imaging. Bright points in the image represent tissues 

emitting high intensity radio frequency (RF) signals and 

vice versa. The source of these RF signals is the 

magnetization applied to tissues during MR scanning 

[23]. The magnetization of tissues takes place due to the 

presence of hydrogen atoms in tissues; whose nuclei 

consist of a single proton. These protons have a magnetic 

property called “magnetic moment”. When protons are 

placed in a strong magnetic field, some of them align in 

the same direction of the magnetic field, which leads to 

the magnetization of the tissues and in turn RF signals 

emission. An imaged slice of tissues is divided into rows 

and columns of individual volume elements called 

voxels, where each voxel corresponds to a pixel in the 

image. One MR image acquisition consists of an 

acquisition cycle of period TR, which is repeated n times 

to form the image [24]. Every acquisition cycle, magnetic 

field gradients are turned on and off across the 

dimensions of the imaged tissues. In every cycle, 

frequency-encoding gradient is turned on during the echo 

event when RF signals are emitted by the tissues. This 

gradient is applied along one of the two dimensions of the 

imaged slice, where magnetic field is increased along that 

dimension as shown in Figure 1. This leads to voxels 

resonating at different frequencies along that dimension, 

where voxels present at higher magnetic field strength 

emit RF signals with higher frequency and vice versa.  

 

 
   Figure 1: Frequency-encoding gradient in MRI. 

 

 

 
   Figure 2: Phase-encoding gradient in MRI. 

 

Also, every acquisition cycle, phase-encoding gradient is 

turned on for a short period by increasing the magnetic 

field along the other dimension of the imaged slice as 

shown in Figure 2. This causes magnetization from voxel 

to voxel along that dimension to get out of step, which 

creates a phase difference between RF signals emitted by 

these voxels. The strength of the phase-encoding gradient 

is changed slightly from one acquisition cycle to another 

[23]. Due to the effect of these two gradients, voxels in 

the imaged slice emit RF signals which are different in 

both phase and frequency. All of these signals are emitted 

at the same time and collected by the imaging device at 
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echo time as a single composite signal. Every acquisition 

cycle, this composite signal is digitized and stored in 

computer memory in a configuration called k space. One 

or more rows in the k space matrix are filled every 

acquisition cycle as shown in Figure 3 [23]. The k space 

matrix is the 2D Fourier transform of the MR image. It is 

in spatial frequency and is conjugate symmetric. The total 

acquisition time of one MR image is: 

               𝑇 =  𝑇𝑅 𝑥 𝑁𝑌 / (𝑁𝑒𝑐ℎ𝑜𝑒𝑠 𝑥 𝑅)                       [1] 

, where NY is the size of the image matrix, Nechoes is the 

number of k space lines per TR period and R is the 

acceleration factor [7]. After the k space matrix is filled, 

image reconstruction takes place by applying inverse 

Fourier transform.  

 

 
Figure 3: K space matrix filling and image reconstruction. 

 

 

B. Related Work 

 The first approach represented by this paper in is an 

improvement of the idea presented by Preiswerk et al. in 

[7]. This study presented an approach for generating high 

frame rate MR images using ultrasound as a surrogate 

signal. In this approach, the acquisition of surrogate 

signal readings is triggered by the repetition cycle 𝑇𝑅, 

where a surrogate signal reading is acquired every 𝑇𝑅. 
Since, one image acquisition takes 𝑛 ∗ 𝑇𝑅 time units. 

Therefore, every image corresponds to the acquisition of 

𝑛 surrogate signal readings, where the last of these 

surrogate signal readings corresponds to the acquisition 

of the k space center of the image. 𝐷 represents all 

acquired data. Each entry in 𝐷 is a pair {IT, UT}, where IT 

represents the image acquired at time points T and  UT 

represents the 𝑛 surrogate signal readings corresponding 

to this image. The approach presented in this paper is 

based on a Bayesian learning algorithm. Each time a new 

surrogate signal reading is acquired at time 𝑡, it is 

combined with 𝑛 − 1 readings acquired before it to form 

a signal Ut . Ut is used to predict a synthetic MR image It 

whose k space center corresponds to the acquisition of 

this new surrogate reading, depending on past acquired 

data 𝐷 as follows:  

 

𝐸[𝐼𝑡 |𝑈𝑡, 𝐷] = ∫ 𝐼𝑡 𝑝(𝐼𝑡 |𝑈𝑡, 𝐷)𝑑𝐼𝑡 =  
∫ 𝐼𝑡 𝑝(𝐼𝑡,𝑈𝑡 | 𝐷) 𝑑𝐼𝑡 

𝑝(𝑈𝑡 |𝐷)
       [2] 

∫ 𝐼 𝑡 𝑝(𝐼𝑡, 𝑈𝑡 | 𝐷) 𝑑𝐼𝑡 ≈  
1

𝑁𝑇
∑ 𝐼𝑖 𝑁(𝑈𝑡; 𝑈𝑖, 𝛴)𝑖                    [3]         

𝑝(𝑈𝑡 |𝐷) ≈  
1

𝑁𝑇
∑  𝑁(𝑈𝑡; 𝑈𝑖, 𝛴)𝑖                                             [4] 

𝐸[𝐼𝑡 |𝑈𝑡, 𝐷]  ≈  
∑ 𝐼𝑖 𝑁(𝑈𝑡;𝑈𝑖,𝛴)𝑖

∑  𝑁(𝑈𝑡;𝑈𝑖,𝛴)𝑖
                                                 [5] 

 

, where 𝑝(𝐼𝑡, 𝑈𝑡 | 𝐷) is the joint density of the MR  image 

It and signal Ut . NT is the number of all acquired MR 

images so far. 𝑖 loops over all entries in 𝐷, where {Ii, Ui} 

represents a single pair.  𝑁(𝑈𝑡; 𝑈𝑖, 𝛴) is a Gaussian kernel 

that measures the degree of closeness between Ut and 

each Ui in 𝐷. Therefore, every predicted image It is a 

summation of weighted acquired images so far divided by 

the sum of all weights. The weight assigned to each image 

Ii depends on the degree of closeness between Ut and Ui.  

 

III. MATERIALS AND METHODS 

 

A. New Approach for Synthetic MRI Generation 

 

A.1 Learning Algorithm 

  Let, T: The collection of time points at which a single  

              MR image is Formed. 

         IT: MR image acquired at time points T. 

         TR: Period of the acquisition cycle. 

          n: Number of acquisition cycles required to form a  

               single MRI.  

          NTR: number of k space lines acquired every TR  

               period 

 

  As it has been explained, every MR image IT consists of 

a set of individual k space lines, where a number NTR rows 

of the k space are collected every repetition interval TR. 

The collection of the reading of a surrogate signal in this 

paper was triggered by the repetition time TR. One MR 

corresponds to the collection of n readings of the 

surrogate signal. Therefore, the frequency of collecting a 

reading of the surrogate signal is n times higher than that 

of MRI acquisition as shown in Figure 4. The learning 

algorithm introduced in this subsection generates 

synthetic images at the same high frequency of the 

surrogate signal, which is 𝑛  times higher than the 

acquisition frequency. The average human breathes are 

between 12-15 breathes per minute. Therefore, one 

respiratory cycle takes between 4-5 seconds. one MR 

image acquisition could take up to 1 second [15]. This 
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means that the duration of one MR image acquisition 

could take up to the quarter of a respiration cycle. Each  

 
Figure 4: Surrogate signal acquisition, which is acquired    

               with frequency n times higher than that of MR 

                  images. Sx refers to surrogate signal reading  

                  obtained at time x*TR, where x is a positive  

                  integer. 

  

MR image is not formed at one point in time, where the 

last signals in the k space are collected at a time (𝑛 − 1) ∗
𝑇𝑅 time units later than the first ones in the k space. This 

in turn indicates that the phase difference between the 

collection of the last entry in the k space and the first one 

of the same image could reach up to the quarter of a 

respiration cycle, which is a huge shift. Since, the liver is 

not a stationary organ, but it moves in different 

orientations due to respiration. Therefore, the entries of 

the k space of one MR image represent the liver in 

different positions, not in a single position. This leads to a 

reduced spatial resolution and contrast in the acquired 

image. Although considering each acquired MR image as 

a single unit will result in generating predicted images at 

the same frequency of the surrogate signal, which is 

1/𝑇𝑅 in this paper, these images will be predicted as if 

each has been acquired over 𝑛 ∗ 𝑇𝑅 time units, resulting 

in the same phase shift of ( 𝑛 − 1) ∗ 𝑇𝑅  time units 

between the last and first entries of the k space of each 

predicted image as shown in Figure 5. So, any learning 

algorithm that considers each acquired MR image as a 

single unit will result in predicted images with poor 

spatial resolution and contrast. An example of these 

algorithms is the algorithm introduced in [7], which 

resulted in blurred synthetic images with contrast worse 

than the real acquired ones.   This study presents a new 

technique that generates synthetic MR images, where all 

the entries of the k space of each represent the same 

respiratory phase and same position of the liver. It no 

longer considers an acquired MR image as a single unit. 

However, each MR image is disassembled into 𝑛 entries 

of the k space forming it, where each of these entries was 

acquired in a different acquisition cycle. 

 
Figure 5: Synthetic images generated considering each  

                acquired MR image as a single unit. They are  

                generated at high frequency of 1/TR. However,  

                they are predicted as if they have been acquired  

                   for n*TR time units. “Image_syn” refers to  

                   synthetic images, while “Image_acq” refers to  

                   acquired ones. 

 

The smallest unit used to build predictions from is NTR, 

which represents the number of k space lines acquired 

every acquisition time TR.  This algorithm creates a 

number ⌊𝑛/2 ⌋ + 1 of databases, which is almost equal to 

the half the number of acquisition cycles per acquired 

image. Every database consists of a number of NTR 𝑘 

space lines equals to double the number of acquired 

images and corresponding surrogate signals acquired 

simultaneously with each of these NTR  𝑘 space lines . 

Each database has entries double the number of acquired 

images because the k space matrix is conjugate 

symmetric as shown in Figure 6. The exception is that the 

number of entries of the last database is exactly equal to 

the number of acquired images as it consists of the NTR 𝑘 

space rows representing the k space centers in all acquired 

images. The first database consists of the first NTR  𝑘 

space rows and the conjugate of the nth NTR 𝑘 space rows 

in all acquired images and corresponding acquired 

surrogate signals to each. The second database consists of 

the second NTR  𝑘 space rows and the conjugate of (𝑛𝑡ℎ −
1) NTR  𝑘  space rows in all acquired images and 

corresponding acquired surrogate signals and so on as 

shown in Figure 7. The prediction of a new image could 

only start when every database has at least one entry of  

NTR 𝑘 space rows and the corresponding surrogate signal.  
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Figure 6: K space matrix is conjugate symmetric, where the   

        imaginary component at opposite K space 

                  co-ordinates has the opposite sign. 

 

A synthetic image is generated every time a new 

surrogate signal is obtained. A Gaussian kernel k (St, Sxn) 

is used as the learning algorithm in the form of: 

      k (St, Sxn) = exp( - 
1

2
  (St - Sxn)

T Σ-1(St - Sxn))            [6] 

, where St: represents the newly acquired surrogate signal 

at time t, Sxn: represents the surrogate signal number x in 

database n, for instance S21 represents the second 

surrogate signal in the first database, Σ is a covariance 

matrix. When the reading of a new surrogate signal is 

acquired, the Gaussian kernel is applied to measure the 

degree of closeness between the newly acquired surrogate 

and all surrogates in each database. Half of the k space of 

the predicted image is filled by k space lines from 

different images in the databases, whose corresponding 

surrogates are the closest to the newly acquired one. This 

means that these k space lines correspond to almost the 

same point in respiratory phase and liver position of the 

newly acquired surrogate. The NTR𝑘 space lines 

corresponding to the closest surrogate signal to the newly 

acquired one in the first database are used to fill the first 

NTR 𝑘 space lines in the predicted image. The NTR 𝑘 space 

lines corresponding to the closest surrogate signal to the 

newly acquired one in the second database are used to fill 

the second NTR 𝑘 space lines in the predicted image and 

so on as shown in Figure 7. When half of the k space of 

the predicted image is full, image reconstruction is 

applied in two steps. Firstly, the second half of the k space  

matrix is filled as conjugate symmetric from the first half 

to avoid any asymmetry between the two halves of the k 

space matrix, which leads to reduced spatial resolution 

and contrast. Secondly, inverse Fourier transform is 

applied to transform the image into the 2D space domain. 

The advantage of this new algorithm is that all k space 

lines of the predicted image correspond almost to the 

same point in respiratory phase and liver position and 

there is no longer the shift of (𝑛 − 1) ∗ 𝑇𝑅  time units 

between the last and first entries of the k space as it is the 

case for the acquired images. Also, the property that the k 

space matrix is conjugate symmetric is preserved. This 

means that any predicted image using this technique is 

equivalent to an image fully captured at the same point in 

time for a duration almost equal to TR time units as 

shown in Figure 8. This explains why predicted images 

using this technique have higher spatial resolution and 

contrast than acquired images corresponding to them as 

will be shown in “Results” section. 
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Figure 7: Newly introduced high frame rate MRI technique explanation. “Sx” refers to the reading of the surrogate signal acquired 

at time x. For instance, Sn refers to the surrogate signal obtained simultaneously with the last repetition cycle in the acquisition of 

the first image. Sn+1 refers to the surrogate signal obtained simultaneously with the acquisition of the first repetition cycle of the 2nd 

image. “current image” refers to the synthetic image generated simultaneously with the arrival of a new surrogate signal 

“S_current”. “Sn+1” is the closest surrogate reading to “S_current” in the first database. “S2n+2” is the closest reading to “S_current” 

in the second database. 

 

 

 

Figure 8: Synthetic 

images generated by 

the new technique. 

They are generated at 

high frequency of 

1/TR and as if each 

has been acquired 

only in TR time units.          

“Image_syn” refers 

to synthetic images, 

while “Image_acq” 

refers to acquired  

ones 
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B. “Evolving Function” Machine Learning Algorithm  

Another contribution of this study is that it presents a 

new algorithm for predicting the x-y pixel coordinates of 

small targets in the MR image with very high accuracy 

and at the same high frequency of the surrogate signal 

without generating synthetic images. The strength of the 

new algorithm is that it doesn’t fit a pre-chosen function 

to the data to generate a mathematical model between the 

surrogate signal and the position of targets in MR images. 

However, it tries to capture the exact non-linear function 

between both of them if it exists. If no exact mathematical 

relation exists, the generated mathematical model tries to 

capture the correlation between the surrogate signal and 

position of targets as precisely as possible. As more data 

is provided, the algorithm tries to capture the real 

mathematical relation or the correlation more precisely. 

That’s why it is called “Evolving Function” as the 

mathematical model evolves over time as long as more 

data is provided.   

 

B.1 Learning Algorithm: 

  Let, T: The collection of time points at which a single  

              MR image is formed. 

         IT: MR image acquired at time points T. 

         DT: Set of surrogate signals time-matching the  

              acquisition of image IT. 

As it was stated before, each MR image consists of a set 

of individual k space signals, each is acquired every 

repetition cycle 𝑇𝑅  and it takes 𝑛  repetition cycles to 

form a single image. A surrogate signal reading is 

obtained every TR. Therefore, 𝑛  surrogate signal 

readings correspond to an image acquisition, where the 

last of these surrogate readings is time-matched with the 

acquisition of the k space center of the image. Each 𝑛 

surrogate signals corresponding to an image IT are 

considered as a single unit in this algorithm named DT.  

   

  The function between targets in the MR image and the 

surrogate signal could be represented in two ways: 

• Equation 

• Graphical Representation 

This machine learning algorithm tries to find the 

graphical representation of the exact function between the 

surrogate data and the targets if it exists or the function 

modelling the correlation between them otherwise. This 

graphical representation is in 2D. The x-axis represents 

the surrogate signal, while the y-axis represents the 

position of targets in pixels. The steps of developing the 

“Evolving Function” between the surrogate signal and a 

certain target in the MR image are as follows. Firstly, the 

surrogate signal readings corresponding to acquired 

images are represented on the x-axis. DT, corresponding 

to the maximum inhalation or exhalation among all 

collected sets of data, is chosen as the reference set of 

surrogate signals, Dref. Since, each reading of the 

surrogate signal is multi-dimensional, which couldn’t be 

represented on a single axis. Therefore, the readings of 

the surrogate signal are represented on the x-axis by the 

degree of their closeness to the reference one. Hence, the 

range of values represented on the x-axis is from “0” to 

“1”. Large fractions close to “1” on the x-axis refer to 

readings so close to the reference one, which is 

represented by “1” on the x-axis, and vice versa. The 

degree of closeness between readings of the surrogate 

signal and the reference one is measured using a Gaussian 

kernel in the form of: 

 k (DT, Dref) = exp( - 
1

2
  (DT - Dref)

T Σ-1(DT - Dref))            [7] 

As DT gets closer to Dref, as the shift between the 

respiratory phase represented by DT and that represented 

by Dref decreases and vice versa. Secondly, the 

displacement of the target in pixels in all acquired images 

with respect to its position in the image corresponding to 

the reference signal Dref is measured using the Euclidian 

distance and is represented on the y-axis as shown by blue 

circles in Figure 9.  

 

 
               Figure 9: Target displacement in all acquired images  

                                compared to the reference one. The red line  

                                is a straight line, which is fitted to the data.  

 

So every point in this graph is a pair (px, py). “py” is the 

displacement of the target in pixels in a certain acquired 

MR image with respect to its position in the reference 

image. “px” is the degree of closeness between the set of 

readings of the surrogate signal DT, corresponding to this 

MR image, and the reference one Dref.  It could be 

observed that there is a correlation between the closeness 

of the reading of DT to Dref and the displacement of the 
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target, where both are inversely proportional. The closer 

the reading of DT to Dref, the less displacement of the 

target and vice versa. Thirdly, noisy data, which results 

from errors in tracking the target or sudden changes in the 

respiratory induced motion due to coughing or gasping, is 

removed. This is achieved by fitting a straight line to the 

data. This line captures the correlation between the 

surrogate signal and the position of the target as shown in 

Figure 9. The error between the values of the y-axis of all 

acquired points and the values of the y-axis of points on 

the fitted straight line corresponding to the same reading 

of the surrogate signal is computed by measuring the 

absolute distance between them. Acquired points whose 

y-axis have an absolute distance with respect to the 

corresponding ones on the fitted line greater than a certain 

hysteresis value are eliminated as shown in Figure 10. 

This hysteresis value is chosen here to be 0.6 of the 

standard deviation of all of the values of target 

displacement with respect to its reference position.  

 
           Figure 10: Removal of noisy data from the graph  

 

After this step, only reliable points are preserved. 

Fourthly, two graphs are created from the reliable data 

preserved after noise removal to capture the relation 

between the surrogate signal and the target. The plot in 

Figure 9 between the displacement of the target and the 

surrogate signal was developed to find the correlation 

between the target displacement and the surrogate signal 

to help in noise removal as shown in Figure 10. However, 

in this step two graphs are developed between the 

surrogate signal and the position of the target in pixels in 

the MR image instead of its displacement compared to the 

reference one, using only reliable points after noise 

removal as explained in Figure 10. Every point in the first 

graph is a pair (px, py). “py” is the column position of the 

target in a certain acquired MR image in pixels. “px” is the 

ratio between the reading of the surrogate signal DT, 

corresponding to this MR image, and the reference 

reading Dref as shown by red circles in Figure 11. 

 
Figure 11: Plot of the column index of the target in different  

                  images in pixels and the ratio between DT,  

                  corresponding to each of these images, and Dref. 

 

Every point in the second graph is a pair (px, py). “py” is 

the row position of the target in a certain acquired MR 

image in pixels. “px” is the ratio between the reading of 

the surrogate signal DT, corresponding to this MR image, 

and the reference reading Dref as shown by red circles in 

Figure 12. 

 
Figure 12: Plot of the row index of the target in different  

                  images in pixels and the ratio between DT,  

                  corresponding to each of these images, and Dref. 

  

Finally, linear interpolation is performed in both graphs, 

where every point is connected to the successive one by a 

straight line as shown in Figures 11 and 12. As more 

images are acquired, more reliable points are acquired by 

repeating the previous steps. Therefore, the graphs get 

more detailed, which is one of the main properties of the 

“Evolving Function” as shown in Figures 13 and 14.  
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             Figure 13: More detailed graph than that in Figure 11  

                                as a result of more acquired data. 

 

 
                 Figure 14: More detailed graph than that in Figure  

                                   12 as a result of more acquired data. 

 

If a new surrogate signal is acquired, it is combined with 

n-1 surrogate signals before it to form a set Dt. The degree 

of closeness between Dt and Dref is calculated and used to 

predict the position of the target at the same frequency of 

the surrogate signal as shown in Figures 13 and 14. The 

advantage of this newly introduced algorithm is that if an 

exact non-linear mathematical function exists between 

targets in the MR image and the surrogate signal, this is 

concluded by keeping reliable points and connecting 

them. So, as more points are obtained, the curve gets 

more detailed and closer to the real non-linear relation. If 

only a strong correlation between targets in the MR image 

and the surrogate signal and not an exact function, also 

this algorithm captures it. That is because only points so 

close to the straight line capturing the correlation are 

preserved. Moreover, connecting by straight lines 

between reliable acquired points leads to that any 

predicted position of the target will be an average of two 

reliable acquired positions of the target. These two 

positions correspond to the two closest sets of surrogate 

signals DT1 and DT2 to the new set Dt.  

 

C. Experiments 

 The two newly introduced approaches in this study were 

tested using: 

▪ Open source data provided by [7]. 

▪ Experiments carried out previously by our 

research group and presented in [15]. 

▪ Experiments carried out on a phantom outside 

MR. 

C.1 Open Source Data 

 Open source data is provided by Preiswerk et al. in [7]. It 

represents experiments carried out on humans. These 

experiments were MR images of the liver acquired 

simultaneously with ultrasound data using a single 

transducer. The acquisition of ultrasound data was 

triggered by the repetition cycle 𝑇𝑅 . The experiments 

setup was as follows: 

▪ The employed MR system was 3 Tesla.  

Experiments were implemented on a “GE Signa 

HDxt” (40 mT/m, 150 T/m/s) system 

(Milwaukee, Wisconsin, USA) as well as a 

“Siemens Verio” system (45 mT/m, 200 T/m/s) 

(Erlangen, Germany).  

▪ A single element transducer (Imasonics, 

Voray-sur-l’Ognon, France, 8-mmdiameter, 5 

MHz, impedance matching layer of 1.5MRayl), 

which is small enough to fit below or within the 

openings of a multi-element MR receiver 

coil(GE 8-channel cardiac array, or Siemens 

body matrix). 

▪ To achieve high accuracy, the transducer was 

positioned so that its beam passed near the center 

of the region of interest. 

▪ The field of the OCM sensor wasn‘t focused. It 

penetrated and reflected multiple times within the 

region of intereset.  

▪ The transducer was inserted into a rubber disc 

with diameter 3.5cm and thickness 1.4cm. 

▪ Fiber-optic temperature probes (Neoptix ReFlex, 

Qualitrol Company, Fairport, New York, USA) 

were used to detect potential heating of the 

transducer for safety. 
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▪ The front and the back of the transducer were 

coated with ultrasound gel for proper coupling 

with the skin and optical fibers. 

▪ The transducer and the optical fibers were fixed 

on the abdomen of the patient using adhesive 

bandage. Also, the coaxial cable of the transducer 

was covered by blue sheath of foam to insulate it 

thermally from the patient. 

▪ An Olympus 5072PR pulser receiver (Olympus 

Scientific Solutions Americas, Waltham, 

Massachusetts, USA) was used to control the 

transducer and it was triggered by MR pulse 

sequence. 

▪ A PCI digitizer card NI 5122, 150 MHz, 200 

MS/s, 12-bit, 512 MB (National Instruments, 

Austin, Texas) was used for analog to digital 

conversion of the ultrasound data. 

Data was acquired in eight imaging sessions. These 

experiments were carried out on seven volunteers, where 

one of them was imaged twice on different days. These 

experiments were labeled from A to H. In every imaging 

session, two planes of the liver were imaged. These 

planes were sagittal and coronal.  The open source data is 

found in this link: https://github.com/fpreiswerk 

/OCMDemo. It contains sample data of sessions A, B and 

H. The data used to test the two algorithms presented in 

this paper was the data of coronal plane in session A only. 

The parameters of used images for testing the algorithms 

are as follows: number of images (𝑁𝑡) is 92 images, NY is 

192, Nechoes is 2, 𝑇𝑅 is 18 ms, 𝑅 is 3.0 and the time 

required for one image acquisition is 0.576 s, slice 

thickness 5 mm, flip angle is 30°, matrix size is 192 x 192, 

field of view is 38 x 38 cm2, number of repetition cycles is 

32.  

 

C.2 Previous Experiment 

  Also, the two newly developed algorithms were 

assessed using experiments carried out by our research 

group previously and presented in [15]. In these 

experiments, MR images of the liver were obtained 

simultaneously with the images of skin markers. The 

position of skin markers was used as the surrogate signal. 

The speed of MRI acquisition was 1 frame per second, 

while that of skin markers acquisition was 10 frames per 

second. The setup of experiments was as follows: 

▪ 0.25 T open-bore MRI system. This system was 

the “ESAOTEc G-scan Brio system (Genoa, 

Italy)” installed at the university of Twente. 

▪ Two 3D printed skin markers, each with a 

diameter of 2 cm. The markers were fixed on the 

abdomen 5 cm apart from each other and away 

from the MR coil. 

▪ An industrial camera was used to track the skin 

markers. This camera was “MVBlueFox3” from 

Matrix Visionc (Oppenweiler, Germany). It was 

placed 2 meters away from the center of the MR 

bore.  

 Data was acquired from 6 imaging sessions on 3 

volunteers, one female and two males. Each subject was 

subjected to two imaging session, each for 3 minutes. MR 

images were acquired only for the sagittal plane. The 

properties of acquired MR images are as follows: slice 

thickness is 15 mm, repetition time is 7 s, echo time is 3.5 

s, flip angle is 40° and field of view is 38 mm x 38 mm. 

The two newly developed algorithms were tested using 

the data of the first session of the first volunteer only. The 

video of skin markers of the first session of the first 

volunteer was re-processed in this paper. That’s because 

the surrogate signal used here is the x-y pixel co-ordinates 

of the center of each skin marker in each frame of the 

video, not their relative positions to the reference frame as 

was used in [15]. The center of each marker was tracked 

between frames using Hough transform for detecting 

circles. Each image acquisition corresponds to the 

acquisition of 10 readings of the surrogate signal. Since, 

the acquisition of the surrogate signal was not triggered 

by the repetition time 𝑇𝑅 in these experiments. 

Therefore, the data had to be adapted to be suitable for the 

first algorithm presented by this study. Hence, the k space 

lines of each MR image were divided into 10 sections, 

where each section was time-matched with the 

acquisition of one reading of the surrogate signal.  

 

C.3 Phantom Experiment 

 The “Evolving Function” algorithm was also tested by 

carrying out an experiment on a phantom that mimics the 

human liver. Surrogate signals used were skin markers 

and ultrasound. The readings of both surrogate signals 

were acquired simultaneously to evaluate whether it is 

important to use a precise surrogate with a complex and 

expensive setup like ultrasound or it is just sufficient to 

use a cheap one with less correlation to the target motion 

like skin markers to get results with accepted accuracy. 

As experiments were carried outside MR, the real 

position of a specific target inside the liver mold was 

obtained using an electromagnetic (EM) tracker. The 

experiment setup was as follows: 

▪ Liver mold was prepared by mixing 120 g gelatin 

with 1200 cc of water. 

▪ NDI medical aurora EM tracker was inserted 

inside the liver mold as shown in Figure 15. 

▪ Liver mold was fixed on a plastic sheet as shown 

in Figure 15, which was allowed to move back 

and forth in both AP and SI directions by 

applying air pressure and vacuuming it. Two SI 

actuators and one AP actuator were used. 

▪ Pressure applied for AP actuator was around 2 
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bar, while that applied for SI actuators was < 1 

bar.  

▪ Maximum displacement in the SI direction was 

35 mm, while in AP direction 10 mm. 

▪ Three solenoid valves were used. A valve for 

each actuator. Each valve had two inputs. One 

input was connected to air flow coming from air 

compressor while the other was connected to 

vacuum pump. The output of the valve went into 

the actuator. 

▪ Switching the valves on and off was controlled 

using Arduino UNO board. 

▪ Latex sheet of thickness 0.38 mm was used to 

mimic skin. 

▪ Three plastic markers were fixed on the latex 

sheet. The markers were tracked using Logitech 

c920 hd pro camera. 

▪ The ultrasound setup was as follows: a single 

element 5 MHz unfocused transducer, 5077 PR 

Olympus pulser receiver that triggered the 

transducer at a frequency of 100 Hz and an 

oscilloscope.  

 
Figure 15: Phantom experiment. The orange part in the  

                  mold is the target tracked by the EM  

                  tracker, which is inserted inside it. 

D. Validation 

This subsection explains the methods used for 

quantitative and qualitative validation of the previously 

introduced two algorithms. 

D.1 New Approach for Synthetic MRI Generation 

The algorithm introduced for generating synthetic high 

frame rate MRI with spatial resolution and contrast better 

than real acquired images was evaluated regarding two 

aspects: the correctness of the algorithm and the quality of 

images generated by this algorithm regarding contrast and 

spatial resolution.  

D.1.1 Correctness Validation 

The correctness of the algorithm measures how close the 

positions of structures in synthetic images like: lesions, 

blood vessels and contour of the liver are to their real 

positions. Acquired MR images were used as the golden 

reference, indicating the real position of structures. 

Synthetic images, generated at the acquisition of 

surrogate signal corresponding to the acquisition of the k 

space centers of the corresponding acquired images, were 

used for the evaluation of the correctness of the algorithm 

by comparing them to their corresponding acquired ones.  

Correctness of the algorithm was evaluated by three 

methods: 

▪ Tracking the centroid of a blood vessel in MR 

images. 

▪ Tracking all surf features in the liver and 

structures surrounding it in MR images. 

 

Firstly, the position of the centroid of a blood vessel in the 

open source data, which looks like a lesion, was tracked 

between each acquired MR image and the corresponding 

synthetic one as shown in Figure 16. The centroid was 

detected by detecting minimum eigenvalue feature in the 

region where this blood vessel exists in each acquired 

image and tracking its position in corresponding synthetic 

ones.  The error between each acquired image and 

corresponding synthetic one was calculated as the 

Euclidian distance between the position of the centroid in 

each image. The total error was calculated as the average 

of all errors resulting from comparing synthetic images to 

their corresponding acquired ones.  

 

               
          Figure 16: Tracking the centroid of blood vessel  

                             between each acquired image and the     

                             corresponding synthetic one. The red 

                             marker refers to the position of the 

                             centroid in the acquired image, while  

                             the green one refers to its position in  

                             the corresponding synthetic image. 
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Secondly, all SURF features in the liver and structures 

surrounding it in MR images were tracked between each 

acquired image and the corresponding synthetic one as 

shown in Figure 17. SURF features were chosen as they 

are so fast to compute and they have the same high 

performance as SIFT features [26] [27]. Also, they are 

distributed over all the image not just focused in the 

center [28]. The error was calculated as the average of 

Euclidian distances between all surf features tracked 

between each acquired image and the corresponding 

synthetic one. The total error was calculated as the 

average of all errors resulting from comparing synthetic 

images to their corresponding acquired ones.  

 

             
         Figure 17: Tracking surf features in the liver  

                            and other structures between each  

                            acquired image and the corresponding                                    

                            synthetic one. The red markers refer to  

                            the positions of the SURF features in the    

                            acquired image, while the green ones  

                            refer to their positions in the corresponding  

                            synthetic image. 

 

D.1.2 Quality Validation 

 The quality of synthetic images was evaluated by two 

metrics:  

▪ Entropy 

▪ BlurMetric, introduced in [1]. 

Entropy was introduced by Shanon in 1948 and it is a 

measure of image information content. The higher the 

value of entropy of an image, the more detailed 

information the image has and vice versa [25]. Entropy of 

a gray scale image is calculated as:  

 H = − ∑ 𝑝𝑘 𝑙𝑜𝑔2(𝑝𝑘)𝑀−1
𝑘=0                                                      [8] 

Where 𝑀 is the number of gray levels and 𝑝𝑘 is the 

probability associated with each level. The minimum 

entropy happens for an image, where all pixels have the 

same level. Therefore, it could be concluded that images 

with high contrast have higher entropy and vice versa. 

Comparing the contrast of synthetic images to their 

corresponding acquired ones was achieved by comparing 

the average entropy of all acquired images to the average 

entropy of the corresponding synthetic ones. Also, the 

histograms of both synthetic and corresponding acquired 

images were generated to visualize whether higher 

entropy values meant more information content or more 

noise. Histograms show the number of occurrences of the 

256 gray levels in the image. If higher entropy means 

more information, then the histogram of the synthetic 

image should have more uniform distribution of the 

number of occurrences of the gray levels mainly forming 

the corresponding acquired image compared to the 

histogram of the acquired image. If higher entropy means 

noise, then this means that the number of occurrences of 

the gray levels mainly forming the corresponding 

acquired image doesn’t get more uniform in the 

histogram of the synthetic image, however the histogram 

of the synthetic image introduces noise in other gray 

levels which didn’t contribute to the formation of the real 

image. Figure 18 a shows an acquired image and its 

histogram, while Figure 18 b shows the corresponding 

synthetic image and its histogram.  

 

  The spatial resolution of the synthetic images was 

evaluated using the blur metric introduced in [1]. The 

blurriness of every image was given a value between 

[0,1], where 0 means a very sharp image and 1 means a 

very blurred one. The idea of the approach introduced in 

[1] is that blurriness means the loss of high frequency 

components and the more blurred the image is, the more 

the neighboring pixels converge to the same gray level. 

Therefore, if an image is very sharp and then it is blurred, 

there will be a very big difference between the sharp and 

the blurred versions. However, if the image is already 

blurred and then it is re-blurred, there won’t be a very big 

difference between both of them. Therefore, the 

blurriness of an image is evaluated by this approach by 

blurring the image with a strong low pass filter and 

comparing the blurred version to the original version. If 

the original version was sharp, there would be a 

significant difference between both versions and vice 

versa. The spatial resolution of synthetic images was 

compared to their corresponding acquired ones by 

comparing the average blurriness of all acquired images 

and the average blurriness of all corresponding synthetic 

ones.  

 

D.2 “Evolving Function” Machine Learning Algorithm  

 The evolving function introduced in subsection III B was 

validated regarding two aspects: correctness and the 

property of evolution. Correctness was measured by 

comparing the predicted x-y pixel co-ordinates of the 
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target, obtained as explained in Figures 16 and 17, to the 

real position of the target. The error was calculated as the 

Euclidian distance between the predicted position and the 

real one.  The real position of a target is obtained by 

tracking a certain feature in all acquired images. The 

property of evolution was tested by training the evolving 

function with different portions of the acquired data and 

testing the average error of the model every time by the 

same fixed portion of data. If the average error improves 

when the data used for training increases, this means that 

the property of evolution of the model is preserved. 

Firstly, the model was created using only the first 50 % of 

the acquired images and tested with the last 25% of the 

acquired images. Afterwards, it was created using 75% of 

the acquired data and tested with the same 25% of the 

data used for verification in the previous step. The model 

was validated by repeating all the previous steps for more 

than a target. These targets were: 

▪ The center of the blood vessel used for validation 

of the first algorithm. 

▪ A chosen surf feature in the liver. 

 

IV. RESULTS 

The validation strategy introduced in subsection III D was 

applied to the: open source data, data obtained from 

previously carried out experiments by our group and data 

obtained from carried out experiments on the phantom. 

For open source data, some of the used images 

corresponded to coughing or gasping. These images were 

not omitted from testing to challenge the newly 

introduced algorithms.  

A New Approach for Synthetic MRI Generation 

A.1 Correctness Validation 

The mean error for tracking the center of the blood vessel 

between all acquired images and their corresponding 

synthetic ones as shown in Figure 16 using the open 

source data was 0.659 pixel. The minimum error was 

0.1035 pixel. The maximum error was 3.4592 pixels in 

case of coughing and the standard deviation was 0.6238 

pixel. The mean error for tracking all surf features in the 

liver and neighboring structures between all acquired 

images and the corresponding synthetic ones as shown in 

Figure 17 using the open source data was 1.2154 pixels. 

The minimum error was 0.288 pixel. The maximum error 

was 6.0451 pixels in case of coughing and the standard 

deviation was 1.0635 pixel. 

A.2 Quality Validation 

 The average entropy of acquired images using open 

source data was 6.5248, while that of the corresponding 

synthetic ones was 6.5631. Since, higher entropy in this 

case means more information not noise as could be 

inferred from Figure 18. Therefore, the newly introduced 

algorithm results in synthetic images with contrast better 

than the real acquired ones using MR. The minimum 

entropy of the synthetic images was 6.3076. The 

maximum entropy was 6.8566 and the standard deviation 

was 0.1106. The average blurriness of acquired images 

using open source data was 0.3306, while that of 

corresponding synthetic ones was 0.3305. Therefore, the 

newly introduced algorithm results in synthetic images 

with higher spatial resolution than the real acquired ones. 

The minimum blurriness of the synthetic images was 

0.321. The maximum blurriness was 0.3416 and the 

standard deviation was 0.0047. The results are 

summarized in Table 1. On the other hand, the limitation 

of the newly introduced algorithm for generating high 

frame rate MRI in this paper is that the surrogate signal 

should be obtained at very high frequency, almost every 

repetition cycle TR. Otherwise, the resulting images will 

be of a poor quality compared to the acquired ones as it 

was the case using the data obtained from previous 

carried out experiments by our research group using skin 

markers as shown in Figure 19. In these experiments, the 

frequency of the surrogate signal was only 10 times 

higher than that of MR acquisition, while in the 

experiments of the open source data the frequency of the 

surrogate signal was 32 times higher than MR acquisition.  

 

 

Comparison 

Aspect 

Mean 

Value 

Min. 

Value 
Max. 

Value 

Standard 

Deviation 

Error in  

tracking the 

center  

of a blood 

vessel 

0.659 

pixel 

0.1035 

pixel 

3.4592 

pixels 

0.6238  

pixel 

Error in  

tracking 

SURF 

features 

1.2154 

pixels 

0.288  

pixel 

6.0451 

pixels 

1.0635 

pixels 

Entropy 6.5631 6.3076 6.8566 0.1106 

Blurriness 0.3305 0.321 0.3416 0.0047 

Table 1: Summary of the results of the new approach for     

               synthetic MRI generation. 
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                                                                                      (b) 

 
Figure 18: Acquired MR image and its corresponding histogram, showing the number of occurrences of each gray level forming 

the image (a). Synthetic MR image corresponding to the acquired image showed in (a) and its histogram (b). 

 

                                                   
 
                                                       Figure 19: The left MR image is the acquired one, while  

                                                                          the one to the right is the corresponding  

                                                                          synthetic one. 
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B. “Evolving Function” Machine Learning Algorithm  

     The mean error for estimating the center of the blood 

vessel using the open source data and after training the 

evolving function by 50% of the data and testing it by the 

last 25% of the data was 1.0034 pixels. The minimum 

error was 0.196 pixel. The maximum error was 1.6857 

pixels and the standard deviation was 0.3639 pixel. The 

mean error after training the evolving function by 75% of 

the acquired data presented in the open source decreased 

to 0.8669 pixel. The minimum error was 0.1535 pixel. 

The maximum error was 1.6435 pixels and the standard 

deviation was 0.4156 pixel. The mean error for estimating 

the position of one of the surf points in the liver using the 

open source data after training the evolving function by 

50% of the acquired data was 0.9859 pixel. The minimum 

error was 0.3884 pixel. The maximum error was 1.9863 

pixels and the standard deviation was 0.3534 pixel. The 

mean error decreased to 0.8758 pixel after training the 

algorithm by 75% of the data. The minimum error was 

0.2022 pixel. The maximum error was 1.8091 pixels and 

the standard deviation was 0.3995 pixel.  

     On the other hand, the main limitation of this 

algorithm is that acquired MR images should have good 

spatial resolution and contrast. Otherwise, the tracker 

used to detect the real position of the target in acquired 

images won’t be precise. This will result into training the 

algorithm with inaccurate data as it was the case using the 

data obtained from previous experiments carried by our 

group, where the mean error of the evolving function was 

around 2 pixels.    

   The mean error for estimating the position of a target in 

the phantom, using skin markers as a surrogate signal, 

was 2.79 mm after training the algorithm by 50% of the 

data. The mean error decreased to 2.75 mm after training 

the algorithm by 75% of the data. This proves that cheap 

surrogate signals with less correlation to the liver motion 

like skin markers could be used to achieve high accuracy. 

The mean error for estimating the position of a target in 

the phantom, using ultrasound as a surrogate signal, was 

8.5 mm after training the algorithm by 75% of the data. 

That was because the obtained ultrasound readings were 

so noisy due to some limitations in the experiment setup. 

The results are summarized in Table 2. 

V. CONCLUSION 

 This study introduces two techniques for overcoming the 

problem of low frequency MR imaging during 

percutaneous minimally invasive procedures in the liver, 

which hinders real-time tracking of targets. Both 

techniques presented by this study depend on the passive 

approach of respiratory motion compensation using a 

surrogate signal. The first technique enables generating 

synthetic images at the same high frequency of the 

surrogate signal. Hence, enabling real-time tracking of  

 

  

 

 

 

 

 

 

 

 

 

 

            

         Table 2: Summary of the results of the “Evolving   

                        Function”. “Mean 50%”: refers to the mean   

                        value of the error after training the algorithm by  

                        50% of the data. “Mean 75%”: refers to the  

                        mean value of the error after training the  

                        algorithm by 75% of the data. 

 

targets. Moreover, the contrast and spatial resolution of 

the synthetic images are higher than that of acquired ones. 

This enables better targeting for small and critical targets 

in the liver with very high accuracy. The correctness of 

that technique was measured by comparing the locations 

of liver features in synthetic images to their 

corresponding acquired ones. The mean error ranged 

between 0.659 to 1.2154 pixels. The second technique, 

named “Evolving Function”, enables predicting the pixel 

co-ordinates of a certain target at the same high frequency 

of surrogate signal acquisition without generating full 

synthetic images. The strength of this technique is that it 

concludes the exact non-linear relation between the 

surrogate signal and the target if it exists. If no exact 

function exists, it captures the correlation between them 

as close as possible. As more data is provided, the non- 

linear function modelling the relation between the 

surrogate signal and the target improves to capture the 

relation between them more precisely. Therefore, this 

technique allows high accuracy in estimating the location 

of very small targets in real-time. The correctness of the 

technique was measured by comparing the predicted 

positions of some targets to their real positions. The mean 

error after training the algorithm by 50% of the acquired 

data ranged between 0.9859 to 1.0034 pixels. The mean 

error decreased after training the algorithm by 75% of the 

data to range between 0.8669 to 0.8758 pixel.  

Comparison 

Aspect 

Mean  

Value 

50% 

Mean 

 Value 

75% 

Error in  

predicting  

the center  

of a blood 

vessel 

 

1.0034 

pixels 

(2.1 mm) 

 

0.8669 

pixel 

Error in  

predicting  

the Position  

of a SURF 

feature in  

the liver 

 

0.9859 

pixel 

 

0.8758 

pixel 

Error in  

predicting  

the position  

of a target 

in the phantom 

 

 

2.79 mm 

 

 

2.75 mm 



 21 

  On the other hand, there exists some limitations for these 

techniques. The limitation of the first technique is that the 

frequency of the surrogate signal should be so high. 

Otherwise, the quality of the synthetic images drops so 

much. The limitation of the second technique is that MR 

images used for training should have very high spatial 

resolution and contrast. Otherwise, the positions of the 

target used as golden references for training the algorithm 

will be unreliable. This in turn results in an unreliable 

model that generates inaccurate predictions. 

   Also, this study proves that it is not essential to use a 

surrogate signal with a complex and expensive setup like 

ultrasound and it is just sufficient to use a cheap one with 

less correlation to the target motion like skin markers to 

get results with accepted accuracy. That was proved by 

carried out experiment on a phantom, where the mean 

error in estimating the position of a target using skin 

markers as a surrogate and “Evolving Function” as the 

learning algorithm was 2.75 mm.  
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