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Abstract 

Background: Pain is a subjective experience and multiple factors play a role in the processing of 

pain. The network for the processing of pain, involving cortical and subcortical structures, has often 

been addressed in the neuroimaging of pain. Spinal cord stimulation (SCS) is used as a last-resort 

treatment for chronic neuropathic pain. Although there is plenty evidence that both, tonic and burst 

SCS, could be beneficial for neuropathic pain patients, the working mechanisms of SCS are still not 

fully understood. The goal of this study is to measure the neuronal activity in the pain processing 

brain areas and pathways involved in chronic neuropathic pain and assess how the different SCS 

settings affect the activity in these areas and pathways. 

 

Methods: Resting-state magneto-encephalography (MEG) recordings were done in three groups of 

subjects: chronic pain patients (PC), subjects without pain (HC) and patients with SCS (PT). All 

subjects in the PT group evaluated one week of tonic, one week of burst and one week of placebo 

stimulation. The data analysis was two-fold: differences between HC and PC were analyzed, and the 

difference between different SCS settings were analyzed. For the HC and PC, the alpha power 

distribution was analyzed by computing a ratio of high theta power (7-9 Hz) and low alpha power 

(9-11 Hz). This was done at sensor level, and after source reconstruction. At source level, regions of 

interest (ROI) were defined and connectivity analysis was performed by computing the correlation 

and the coherence. For evaluation of the different SCS settings, the alpha power distribution was 

also analyzed at sensor and source level. The differences between SCS settings in power for the 

theta (4-7.5 Hz), alpha1 (8-10 Hz), alpha2 (10-12 Hz), beta1 (13-18 Hz), beta 2 (18.5-21 Hz) and 

beta3 (21.5-30 Hz) frequencies was also analyzed. 

 

Results: Chronic pain patients showed significantly higher theta/alpha ratios predominantly at the 

right-sided sensors. Source reconstruction revealed significantly higher ratios in pain patients for 

the right insula, the mid-posterior and posterior cingulate cortex and the right S2. The coherence 

showed an increased connectivity between the right anterior insula and the right anterior S2. 

Comparing tonic to burst stimulation revealed a higher theta/alpha ratio during tonic stimulation 

for the temporal/occipital areas and the right insula. In addition, the somatosensory cortex and the 

parietal lobe showed increased alpha1 power for tonic stimulation. The power in the beta1 band for 

the somatosensory cortex and the parietal lobe was higher during burst stimulation. 

 

Conclusion: An overall slowing of the alpha frequencies was found for the chronic pain patients, 

mainly in the right insula, the mid-posterior and posterior cingulate cortex and the right S2, 

suggesting the involvement of thalamocortical dysrhythmia (TCD). Burst stimulation seemed to 

reduce TCD to a larger extent than tonic stimulation. The differences at source level will have to be 

explored further in a larger number of subjects.  
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List of abbreviations 

(A)CC  (Anterior) Cingulate cortex 

BPI   Brief pain inventory  
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ECD  Equivalent current dipole  

ECG  Electrocardiogram 

EEG  Electroencephalography 
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EQ5D-5L EuroQ 5 dimensions questionnaire (5 levels)  

FBSS  Failed back surgery syndrome 

FDR  False discovery rate 

FM  Fibromyalgia 

FWER  Family-wise error rate 

GABA  Gamma-amino butyric acid 

HADS  Hospital anxiety and depression scale 

HC  Healthy Controls 

HNP  Herniated nucleus pulposus 

IASP  International association for the study of pain 

ISI  Interstimulus interval 

MCP  Multiple comparisons problem 

MCS  Motor cortex stimulation 

MEG  Magneto-encephalography 

MNE  Minimum norm estimates 

MRI  Magnetic Resonance Imaging 

MSR  Magnetically shielded room 

NRS  Numeric rating scale 

PC  Pain Controls 

PCA  Principal component analysis 

PCS  Pain catastrophizing scale  

PSD  Power spectral density 

PT  Patients (with SCS) 

PVAQ  Pain vigilance and awareness questionnaire 

ROI  Region of interest 

S1  Primary somatosensory cortex 

S2   Secondary somatosensory cortex 

SCS  Spinal cord stimulation 

SD  Standard deviation  
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SEP  Somatosensory evoked potential 

SQUID  Superconducting quantum interference device 

SSP  Signal-space projections 

TCD  Thalamocortical dysrhythmia 

VAS  Visual analogue scale 

VEOG  Vertical electrooculogram 
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Chapter 1: Background 

1.1 Pain 
“Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue 

damage, or described in terms of such damage.” [1] This is the definition of pain, given by the 

international association for the study of pain (IASP) and acknowledges the multidimensional 

character of pain perception. Pain is processed through at least three different pathways: the 

ascending medial pathway, the ascending lateral pathway and the descending inhibitory pathway 

(fig 1). The medial pathway modulates the motivational, affective components of pain. It is activated 

by C-fibers, runs to the mediodorsal and ventral posterolateral nuclei of the thalamus and 

subsequently connects to the anterior cingulate and anterior insula respectively. The lateral pathway 

modulates the discriminatory components of pain. It is activated by C, Aδ and Aβ fibers, runs to the 

ventral posterolateral nuclei of the thalamus and connects to the somatosensory cortex and parietal 

area. The descending pathway suppresses ongoing pain. It connects the pregenual anterior cingulate 

cortex to the periaqueductal gray and then runs to the somatosensory periphery [2, 3]. So, cortical 

and subcortical structures are involved in the perception and processing of pain. This network has 

been referred to as the ‘pain matrix’ and has often been addressed in the neuroimaging of pain [4]. 

 

 
Figure 1: Schematic overview of three pain processing pathways: the lateral, medial and descending pathways. The lateral 
pathway processes the discriminatory components of pain, the medial pathway processes the motivational, affective 
components of pain and the descending pathway suppresses ongoing pain. Figure from de Ridder et al. [5].  

 

Neuropathic pain is a type of pain caused by a lesion or dysfunction of the nervous system [1]. A 

common cause of neuropathic pain is a herniated nucleus pulposus (HNP), whereby the 

intervertebral disc is degenerated, causing the soft, gelatinous portion of the disc (the nucleus 

pulposus) to prolapse. When the HNP compresses a nerve, it causes neuropathic pain. Patients with 

neuropathic pain typically suffer from continuously burning pain that occurs spontaneously. This 

can be accompanied by other sensations such as tingling or itching, also called dysesthesia. Other 

symptoms that can occur are an increased response to a normally painful stimulus (hyperalgesia) or 
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the sensation of pain due to a stimulus which is normally not painful (allodynia) [6]. Common 

treatment options of neuropathic pain are pharmacological options or, if possible, surgical 

intervention. However, these options do not always result in the desired pain relief.  

 

1.2 Spinal Cord Stimulation 
Spinal cord stimulation (SCS) is used as a treatment for chronic neuropathic pain, for example in the 

case of failed back surgery syndrome (FBSS) and diabetic neuropathic pain (DNP). Patients with 

FBSS still suffer from persistent neuropathic pain although they already had spinal surgery. This 

mostly involves lumbosacral spinal surgery for the treatment of spinal stenosis, with or without HNP 

[7]. DNP is caused by poor perfusion due to diabetes mellitus and is mostly presented as persistent 

pain in the feet and lower legs. 

 

For SCS therapy, an electrode lead is placed in the epidural space over the dorsal columns of the 

spinal cord. A current is applied via this electrode, which results in pain relief in the dermatome 

innervated by the stimulated nerves. The precise working mechanism behind SCS is not completely 

understood, but there are several theories. The assumed main working mechanism is the gate 

control theory, which was proposed in 1965 by Melzack and Wall [8]. The gate control theory 

suggests that stimulation of the dorsal horn results in activation of the large Aβ-fibers, which blocks 

the pain signal that is transmitted by smaller Aδ and C fibers. The activation of the Aβ-fibers 

produces a tingling sensation (paresthesia) in the innervated dermatome, but ideally patients do not 

perceive the pain in that dermatome anymore [5, 9, 10]. SCS might work through antidromic 

activation of the ascending pathways, but could also work through orthodromic activation of the 

descending pathway. In addition, some animal studies suggest that the stimulation of A-fibers 

results in the release of gamma-amino butyric acid (GABA), which results in pain suppression at the 

spinal level by local interneurons [10]. 

 

Currently, there are two general stimulation settings used in SCS: tonic stimulation and burst 

stimulation. Conventional tonic stimulation is generally programmed with an amplitude between 2 

and 15 mA, a pulse width between 0.1 and 0.5 ms and a frequency between 30 and 80 Hz [11, 12]. 

Nowadays, also high frequency tonic stimulation is used, with frequencies up to 10 kHz [13]. Burst 

stimulation generally has a lower amplitude and a larger pulse width compared with conventional 

tonic stimulation. For burst stimulation the pulses are delivered in packages (bursts) of five pulses, 

alternated with a resting period. The bursts are delivered with a frequency of 40 Hz, with the five 

pulses at 500 Hz [9]. Although conventional tonic stimulation is accompanied by paresthesia, both 

high frequency stimulation and burst stimulation can achieve pain relief without the occurrence of 

paresthesia. 

 

1.3 Magneto-encephalography 
To visualize the effects of pain and its treatment by SCS, we can analyze the brain activity. Magneto-

encephalography (MEG) is a method to study brain activity by capturing the magnetic fields 

generated by the electric currents of the brain. The method is similar to electroencephalography 

(EEG), which measures the dendritic currents of groups of pyramidal neurons that fire 
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synchronously and in parallel, directly [14]. MEG measures the activity of the same type of cells, but 

instead of measuring a potential difference between two electrodes, it measures the magnetic field 

that is evoked by large assemblies of neurons, which fire synchronously and in the same direction 

[14].  

 

As the magnetic fields, generated by neuronal currents, are very small (of the order of several tens of 

femto Teslas), the MEG sensors have to be very sensitive. To acquire this sensitivity, the MEG scanner 

uses superconducting quantum interference devices (SQUIDs) to capture the cortical activity. Liquid 

helium is used to create the extremely cold environment that is necessary for super conduction. As 

the sensitivity of the sensors is very high, the MEG signal is easily contaminated with noise. To 

minimize the influence of noise, MEG measurements are conducted in a magnetically shielded room 

(MSR) and subjects should not have any form of magnetic metals in or on their body (for example, 

dental work).   

 

Source localization is the principle whereby the source of the MEG signal is estimated. Source 

localization involves two main models: a forward model and an inverse model. The forward model 

consists of two parts: a source model, which explains how the neural electrical currents produce a 

magnetic field, and a volume conductor model, which explains how this magnetic field is transmitted 

through the tissues to the MEG sensors. A commonly used approach for the source model is the 

equivalent current dipole (ECD) approach, whereby multiple current dipoles represent post-

synaptic electrophysiological activity of groups of neurons. A volume conductor model is then used 

to describe the electrical properties of the tissue and explain how the currents flow towards the 

MEG sensors. An advantage of MEG is that the magnetic fields are not affected by the cerebrospinal 

fluid (CSF) and the skull, whereas these factors do distort the EEG signal. Therefore, simplified 

volume conductor models can be used for MEG [14, 15].  

 

The inverse model explains where the MEG signals are coming from. In the case of an ECD source 

model, we want to know which current dipoles produce which part of the MEG signal. However, we 

have a large number of current dipoles and a much smaller number of MEG sensors: this is called the 

inverse problem. Although there is no true solution to the inverse problem, there are multiple 

methods that approach a solution. An example of such an approach is the minimum norm estimate: 

this model minimizes the error between the source model and the recorded MEG signals [14, 15].  

 

Compared to EEG, MEG has the advantage of a better spatial resolution of source localization: MEG 

has a spatial resolution of 2-3 mm whereas EEG has a spatial resolution of 7-10 mm. Together with 

the very good temporal resolution of MEG, this enables the possibility to study the activity of specific 

brain areas more closely. However, due to its need for liquid helium, MEG is a much more expensive 

technique than EEG and it is not often used for clinical applications [14].  
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Chapter 2: Rationale 

2.1 Spinal cord stimulation 
During my previous internship at the neurosurgery department, we used EEG data to study the 

effect of SCS on the activity of the brain [16]. The goal of that internship was to examine whether the 

brain activity of chronic pain patients treated with SCS showed the same feature as previously 

described by Schulman et al. [17]: a slowing of the alpha frequencies towards the theta frequencies 

in chronic neuropathic pain patients. To quantify slowing of alpha frequencies, they defined a 

theta/alpha ratio as the power in the high theta frequency band (7-9 Hz) divided by the power in the 

low alpha band (9-11 Hz). They found an increased theta/alpha ratio for neuropathic pain subjects 

and failed SCS subjects, which was similar to the ratio of subjects with thalamocortical dysrhythmia 

(TCD) disorders. For successful SCS subjects however, the theta/alpha ratio was comparable with 

control subjects without pain. This caused the authors to believe the processing of pain works 

differently for subjects for whom SCS is not successful, compared to the subjects for whom SCS is 

successful. The main finding of my previous internship was in line with Schulman et al: patients, in 

whom SCS did not result in pain relief (subjects in pain), showed a relatively higher power in the 

theta frequency band and lower power in the alpha frequency band, than the control subjects 

without pain. However, these results were not statistically significant due to the limited number of 

subjects and the variation between subjects was very large.  Schulman et al. reported on a limited 

number of subjects as well.  

 

Another point of interest during my previous internship was the working mechanisms of two 

different stimulation settings; conventional tonic and burst stimulation. This was first studied by de 

Ridder et al. [5, 9]: during the trial stimulation phase of SCS, they tested one-week evaluation 

periods of tonic, burst and placebo (stimulator turned off) stimulation and recorded an EEG after 

each week of evaluation. They compared the EEGs of five subjects, wherefore the results showed 

more alpha activity in the dorsal anterior cingulate (which is a component of the medial pain 

pathway) during burst stimulation, compared to the other stimulation settings. Therefore, they 

suggested that burst stimulation modulates the lateral pathway and the inhibitory pathway, but also 

the medial pathway, whereas tonic stimulation only modulates the lateral pathway and the 

inhibitory pathway. During my previous internship I could not reproduce these results. 

 

Although there is plenty evidence that both, tonic and burst stimulation, could be beneficial for 

patients with neuropathic pain, the working mechanisms of SCS are still not fully understood [12, 

18]. It remains unclear which patients could benefit from SCS (either tonic or burst stimulation) and 

which patients could not. As (depending on the etiology) up to 35% of the chronic pain patients do 

not benefit from SCS, it is important to understand its working mechanisms, to be able to predict for 

whom it would be beneficial and to further improve and personalize the treatment of chronic 

neuropathic pain.  
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2.2 Chronic pain 
Pain is a subjective experience and multiple factors play a role in the processing of pain. Already 

several different pain processing pathways and specific brain areas have been mentioned for their 

involvement in the processing of pain. In addition, it has been suggested that somatosensory 

processing is altered for chronic pain patients [19-21]. There are multiple studies whereby 

electrophysiological measures such as EEG have been used to try and objectify these alterations.  

 

One of the reported alterations in EEG and MEG for chronic pain is slowing of the dominant rhythm 

[22]. For example, Schulman et al. described a shift of alpha peak frequency towards lower 

frequencies (theta) for chronic pain patients [17]. They compared resting state MEG recordings of 

subjects with deafferentation pain syndromes, subjects who had received SCS which resulted in pain 

relief and subjects who had received SCS which did not result in pain relief.  They analyzed the shift 

of the alpha peak by computing a ratio of power in the high theta band (7-9 Hz) and power in the 

low alpha band (9-11 Hz) and found that deafferentation pain patients and patients for whom SCS 

was not successful, showed a larger shift from alpha frequencies towards theta frequencies. The 

shifting of the dominant (alpha) rhythm towards the theta frequencies is often described to 

thalamocortical dysrhythmia (TCD). TCD is described as a decreased inhibition of the thalamus, 

which causes an increased theta activity that reduces lateral inhibition, causes an increased gamma 

activity and therefore causes abnormal pain processing [17, 20, 22-24].  

 

Possibly, the slowing of the dominant rhythm could be used to generate an electrophysiological 

marker of chronic pain. However, general slowing of the dominant rhythm has also been described 

in other neurological and psychiatric disorders (for example Alzheimer’s disease) and might not be 

specific enough [22, 25]. When more is known about the processing of chronic pain at the cortical 

level, it might also give better insights into the working mechanisms of SCS. At this moment, there is 

no clear, objective marker which describes the altered cortical activity of chronic pain patients yet. 

Such a marker would be useful to objectify, monitor or predict the effect of the treatment of pain, 

and to monitor or predict whether SCS in general or which stimulation settings in particular would 

be beneficial for an individual patient.  

 

2.3 Aim of the study 
The overarching goal of this project is to measure the neuronal activity in the brain areas and 

pathways that are involved in the processing of chronic neuropathic pain and assess how the 

different SCS settings affect the activity in these areas and pathways. As a first step to accomplish 

this goal, I proposed several objectives for this thesis: 

• Study with MEG whether there is a shift in power from alpha frequencies towards theta 

frequencies for chronic pain patients compared to control subjects without pain 

• Study which brain areas show this shifting of alpha frequencies towards theta frequencies, 

using a MEG source model.  

• Study how these brain areas relate to each other, using connectivity measures in the time 

domain and the frequency domain. 
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• Study with MEG whether there is a difference in shifting of the alpha frequencies as a result 

of different SCS settings: tonic stimulation and burst stimulation.  

• Study which brain areas show this shifting of alpha frequencies as a result of the different 

SCS settings, using a MEG source model.  

• Study in which brain areas activity in specific frequency bands is altered as a result of the 

two different SCS settings, using a MEG source model.  

 

The project will be continued after the completion of this thesis, and subsequent objectives will be 

proposed to accomplish the primary goal. Eventually, we hope to develop a MEG based pain 

signature, which is able detect chronic neuropathic pain and ideally predict whether SCS would be 

beneficial for a patient or not.  
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Chapter 3: Methods 

To achieve the goals described in 2.3, the study was divided into two parts. First, the differences in 

cortical activity between chronic pain patients and subjects without pain were analyzed. Second, the 

cortical activity of patients with a spinal cord stimulator was analyzed. After that, the results for the 

three different groups were compared. The data acquisition for all three groups was done in the 

same way, but the measurement protocol was different for the SCS patients as they evaluated three 

different stimulation settings. 

 

3.1 Study groups 
In total, three groups of subjects were recruited for this study; a group of chronic pain patients, a 

group of subjects without pain and a group of SCS patients. Because the overall goal is to study the 

effects of spinal cord stimulation, the groups of chronic pain patients and subjects without pain will 

be referred to as control groups. The three study groups and their inclusion criteria were as follows: 

• Subjects without chronic pain (Healthy Controls, HC): no pain and no other neurological 

disease, but moderate, non-painful other medical conditions were not an exclusion criterion.  

• Chronic pain patients (Pain Controls, PC): chronic neuropathic pain in the lower body part 

and preferably on a waiting list for a SCS implant. Subjects who also suffered from (severe) 

pain in another body part or another form of serious decline of general health, were 

excluded.  

• SCS patients (Patients, PT): a SCS system which is capable of burst stimulation and already 

experienced more than three months of stimulation. Subjects who also suffered from 

(severe) pain in another body part or another form of serious decline of general health, were 

excluded. 

 

3.2 Data acquisition 
MEG was used to record the cortical activity of the three groups. The recordings were done at two 

locations; the Montreal Neurological Institute (MNI, Montreal, Canada) and at the Donders Institute 

for Brain, Cognition and Behavior (Nijmegen, the Netherlands). The MEG system, the acquisition 

software and the measurement setup were the same for both locations. The subjects were measured 

in seated position with a 275-channel whole-head MEG system (CTF, Coquitlam, BC, Canada) inside 

a magnetically shielded room (MSR). The sensors and their distribution across the helmet are 

shown in figure 2. Before entering the MSR, the subjects were instructed to remove any metal 

materials that could distort the measurements. Recordings were made with a sample rate of 2400 

Hz and the 3rd order gradient compensation was applied for noise reduction. In order to detect eye 

blinks and cardiac artifacts, horizontal and vertical electrooculogram (EOG) and electrocardiogram 

(ECG) were recorded simultaneously during the MEG recording. To detect the subject’s head 

position in the MEG helmet before each recording, coils were attached close to three anatomical 

landmarks: the nasion and the left and right pre-auricular points. A 3-D digitizer system (Polhemus 

Isotrack) was used to digitize the subject’s head shape, the location of the coils and the true location 

of the anatomical landmarks. Before a subject entered the MSR, a two-minute empty-room 
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recording was made to capture the environmental noise. The noise recording was used for the noise 

cancellation in the process of source reconstruction (section 3.3.3).  

 
Figure 2: The distribution of sensors in the helmet of the CTF 275-channel whole-head MEG system.  

 

In the MEG, three conditions were tested; the resting state cortical activity, the cortical response to 

somatosensory evoked stimulation (somatosensory evoked potential, SEP) and the response to 

conditioned pain modulation (CPM). Because recording and cleaning the data (section 3.3.1) was 

very time-consuming, only the data of the first resting state recordings was analyzed for this thesis. 

For a better overview of the complete setup, the other conditions are explained briefly.  

 

3.2.1 Measurement protocol HC and PC 

The HC subjects and the PC subjects underwent one MEG session, which consisted of seven short 

recordings; one resting state recording in the beginning, two SEP recordings, three recordings for 

the CPM test and one resting state recording at the end. Before each session, the subjects were 

asked to fill in several questionnaires: the brief pain inventory (BPI), the pain catastrophizing scale 

(PCS), the EuroQol 5 dimensions 5 levels (EQ5D-5L), the hospital anxiety and depression scale 

(HADS) and the pain vigilance and awareness questionnaire (PVAQ). Each subject was offered to fill 

in the questionnaire in their own language (either Dutch, English or French). For this thesis, only the 
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results of the BPI were used to obtain the pain intensity for each subject. The pain intensity was 

expressed with the numeric rating scale (NRS), whereby 0 is no pain and 10 is the worst pain 

imaginable.  

 

Resting state recordings: the participants were instructed to sit still, keep their eyes open, relax and 

to focus on a fixation cross. This recording lasted five minutes. The instructions and the fixation 

cross were presented to the subjects on a screen in the MSR. The presentation was made in Matlab, 

using the Psychophysics Toolbox extensions [26, 27]. 

 

SEP recordings: approximately 200 stimuli were applied to the median nerve (the first SEP 

recording) and the tibial nerve (the second SEP recording) with a randomly varying interstimulus 

interval (ISI) between 0.7 and 1.5 seconds. The stimuli were applied with a constant current 

electrical stimulator (Digitimer Ltd), which was programmed to deliver the stimuli with varying ISI 

using Matlab (The MathWorks, Massachusetts, USA). We used a pulse width of 200 microseconds 

and an amplitude level which was just high enough for eliciting a twitch.  Subjects were instructed 

to silently count the number of stimuli, to ensure that the attention of the subjects was on the 

stimuli. After each SEP recording, we asked the subjects for the number of stimuli that they had 

counted, and they received feedback on their accuracy.  

 

CPM recordings: the test consisted of three recordings, whereby each time 22 unpleasant stimuli 

were applied to the tibial nerve with a randomly varying ISI between 6 and 10 seconds. The stimuli 

consisted of a burst of 5 pulses each with a pulse width of 200 microseconds and with 5 

milliseconds between each pulse. The amplitude of the stimuli was individually adjusted to the point 

where the subject indicated a pain score around 5 out of 10 (where 0 is no pain and 10 is the worst 

pain imaginable). During the first recording, only the stimuli were applied. During the second 

recording, the stimuli were applied in combination with an icepack on the left hand and forearm. 

After that, a third recording was done with the stimuli but without the icepack, to measure the 

extinction of the cold pressor test [28, 29].  

 

3.2.2 Measurement protocol PT 

To assess the effect of different stimulation settings on the cortical activity, the SCS patients 

underwent four MEG sessions. During the first session, a baseline recording was made with their 

own stimulation settings, after which the stimulation settings were changed to either tonic, burst or 

placebo stimulation. The type of stimulation was randomly chosen and neither the patient nor the 

researchers knew the type of stimulation. After this, the direct effects of the change of stimulation 

were recorded. One week later, the long-term effects of the change of stimulation were recorded 

with another MEG session (whereby the procedure of the first MEG session was repeated). Before 

each session, the subjects were asked to fill in the questionnaires (BPI, PCS, EQ5D-5L, HADS and 

PVAQ). From the BPI questionnaire, the NRS scores were used to indicate the pain intensity of the 

subjects.  

 

A MEG session for SCS patients started with a resting state recording of 5 minutes, followed by two 

recordings of SEPs (again, one with median nerve stimulation and one with tibial nerve stimulation) 
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and the CPM test. After this, the stimulation settings were changed to the next settings and another 

resting state recording of 5 minutes was done, followed by the two SEP recordings. During the 

fourth MEG session, the stimulation settings were not changed, therefore the session ended with a 

resting state recording only.  

 

3.3 Data Analysis 
The data analysis was performed with Brainstorm[30], which is documented freely and available for 

download online under the GNU general public license (http://neuroimage.usc.edu/brainstorm). 

All the steps that are explained in this chapter, are built-in options in Brainstorm. To learn about the 

possible steps and their technical background, I used the tutorials which are documented on their 

website. As mentioned before, these analyses were performed on the first resting state recording for 

every subject only.  

 

Before any data analysis could be performed, the data had to be cleaned. Subsequently, the data 

analysis was performed in two parts. The first part of the data analysis consisted of analyzing the 

differences in cortical activity between pain and no pain, wherefore I looked at the following 

measures: the alpha power distribution; at sensor level, at source level and at specific brain regions 

of interest (which are known to be involved in pain processing). Also, I analyzed the connectivity 

between those specific areas by computing the correlation and the coherence between the specific 

areas. The differences were quantified using the statistical tests for MEG, available in Brainstorm.  

The second part consisted of analyzing the differences in cortical activity within the SCS group as a 

result of the different stimulation settings. For this part, also the alpha power distribution (at sensor 

level and at source level) was analyzed. To be able to compare the results with de Ridder et al. [5, 9], 

the differences in specific frequency bands for the different stimulation settings were analyzed.  

 

3.3.1 Data cleaning 

Because of the large number of artifacts, each resting state recording was first visually inspected 

and cleaned manually. The inspection was done in the time domain, and in the frequency domain by 

computing the power spectrum density (PSD) using Welch’s method with a 4 second window and 

50% overlap. Individual or small groups of sensors that showed unexpectedly deviant behavior 

from their surrounding sensors, were marked as bad and excluded for further analysis.  

 

Notch filters 

Powerline artifacts were removed by applying a notch filter at the powerline’s frequency and its 

higher harmonics (50, 100 and 150 Hz at the Donders and 60, 120 and 180 Hz at the MNI). For the 

PT group, the SCS could also cause artifacts in the MEG signal, as the SCS stimulates with an 

electrical current (and therefore also creates a magnetic field). Although varying for individual 

patients, the frequency of the stimulation was always of a set frequency and therefore clearly visible 

in the PSD. This frequency, and its higher harmonics, could also be removed with a notch filter. In 

rare cases, the notch filter did not work sufficiently, in which case a narrow band-stop (for example 

39-40 Hz) filter was used. 

 

http://neuroimage.usc.edu/brainstorm
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Frequency filters 

If deemed necessary, a bandpass filter was applied to remove low (< 1 Hz) and high (> 200 Hz) 

frequency noise. Low frequency noise could occur as a result of any form of metal in the subject’s 

body (for example, dental work); breathing causes these metals to generate a low frequency 

oscillation in the MEG signal. High frequency noise could occur as a result of muscle activity due to 

movement of the subjects. Muscle activity can be seen in the MEG signal at frequencies between 20 

and 300 Hz [31], but the muscle activity lower than 200 Hz was not removed by using a lowpass 

filter, to prevent removing actual brain activity. The muscle activity below 200 Hz was removed 

differently, as will be explained in the next paragraph.  

 

Principle component analysis (PCA) 

The heart beat and eye movements cause artifacts in the MEG signal. The cardiac artifacts and the 

eye blinks, but also the muscle activity, were removed by using principal component analysis (PCA) 

[32, 33]. For the removal of the cardiac artifacts, the R-peaks in the ECG were detected and selected 

as an event. For the removal of the eye blinks, the peaks in the vertical EOG were selected as an eye 

blink event. If the recording was contaminated with multiple saccades, the horizontal EOG was used 

to mark the saccades as events. The events for muscle activity were selected either by automatic 

detection of data segments with an increased amplitude of frequencies between 40 and 240 Hz, or 

manually. After the detection of events, PCA was used to compute signal-space projections (SSPs) 

from these events. The resulting SSPs were topographies which represented the spatial distribution 

of the signal at the given events. For the SSPs which were similar to the artifact topography (for 

example, eye blinks occur at the most frontal sensors only), a linear projector was computed to 

remove this contribution from the signal.  Artifacts whereby no sufficiently resembling SSP could be 

computed, were marked as ‘bad’ and these segments were excluded from further analysis.  

 

3.3.2 Alpha power distribution: sensor level 

The first measure that was calculated, was the measure described by Schulman et al. [17]; a shift of 

alpha frequency power, towards the lower theta frequencies due to neuropathic pain. A PSD was 

calculated for every sensor, using Welch’s method, with a 4 second window and 50% overlap. 

Subsequently, the power of the frequencies in the high theta band (7-9 Hz) and the power of the 

frequencies in the low alpha band (9-11 Hz) were extracted (for every sensor). The theta/alpha 

ratio was then calculated by dividing the power in the theta band by the power in the alpha band. To 

observe the group differences, an average ratio across all subjects in a group was calculated for each 

of the 275 sensors and visualized with a colormap in a schematic head: a theta/alpha ratio 

topography. As the final goal is to be able to distinguish between pain and no pain at an individual 

level, also the individual theta/alpha ratio topographies were computed.  

 

In the paper of Schulman et al. the average theta/alpha ratio across the whole head was computed. 

To be able to compare our results with the literature, this was also done for our subjects. The 

average ratio across all sensors was calculated for each subject and the differences between the two 

groups were compared. To validate if the ratio could classify the subjects in the two groups, a cut-off 

value was determined by plotting a receiver operating characteristic (ROC) curve (using SPSS 

version 24.0). The sensitivity and the specificity were both maximized, using Youden’s index [34].   
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3.3.3 Alpha power distribution: source level 

For a better determination of the brain areas contributing to the MEG signal, the data was analyzed 

at source level. First, the MEG signal was linked to an MRI. If an individual MRI was available for the 

subject, the subject’s own anatomy was used. If there was no MRI available, the default ICBM152 

MRI was used, and warped to the subject’s head, using the digitized head shape which was made 

before each recording. The MRI was used to perform cortical reconstruction and volumetric 

segmentation with the FreeSurfer image analysis suite, which is documented and freely available for 

download online (http://surfer.nmr.mgh.harvard.edu/). The result of the FreeSurfer software was 

the cortical surface extracted from the MRI [35]. This cortical surface was then imported into 

Brainstorm and downsampled to 15000 vertices. These vertices represent the number of dipoles to 

estimate during the source estimation process. To ensure a correct position of the head model in 

relation to the MEG helmet, 6 fiducial points (the nasion, the left- and right pre-auricular points, the 

anterior- and posterior commissure and an interhemispheric point) were marked in the MRI. Those 

points were then used to match with the anatomical points which were marked in the digitized head 

shape. The product of these steps was a cortical surface consisting of 15000 vertices, with a known 

position in relation to the MEG helmet.  

 

The brain activity in the cortical surface was modeled in a current dipole model: one current dipole 

represents the post-synaptic electrophysiological activity of a group of neurons. To reduce 

computation time, the model was simplified, and the positions and orientations of the current 

dipoles were constrained. The positions of the current dipoles were set at the locations of the 15000 

vertices, and the orientations were set perpendicularly with respect to the cortical surface 

(assuming that the measured fields are produced by apical dendrites, which are oriented normal to 

the surface) [15, 36]. The next step was to create a forward model; a model which explained how 

the MEG sensors capture the activity of the groups of neurons (the current dipoles). As MEG is less 

sensitive to the different head tissues (white and grey matter, cerebrospinal fluid, skull bone and 

skin) compared to EEG, the forward model was also simplified. For each MEG sensor, a sphere was 

estimated which represents the shape of the inner skull. In the end, the model consisted of 

overlapping spheres for each of the 275 MEG sensors [37].  

 

Subsequently, the forward model was used to estimate the activity of the current dipoles, or in other 

words, to estimate the sources of the MEG signal. This is an inverse problem; we have the results 

(the MEG signal), but we have to compute the cause (the activity of the dipoles). The minimum norm 

imaging method of Brainstorm was used as a solution to this problem. This method minimizes the 

sum of the squared residuals of the source estimate, while trading off between reconstruction of the 

data and suppression of the noise [38]. In order to do this, a noise covariance matrix was estimated 

from the noise recordings, which were recorded before each MEG session (the same notch- and 

frequency filters that were applied to the actual data, were applied to the noise recordings). The 

advantage of the minimum norm estimates (MNE) is that it is a relatively simple method to compute 

the sources, but it also tends to place source activity at the surface of the cortex. To reduce this 

effect, the results were normalized by applying dynamical statistical parametric mapping (dSPM) 

[39]. This method normalizes the results for the MNE, based on the noise covariance matrix. This 

http://surfer.nmr.mgh.harvard.edu/
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resulted in source maps with values which were similar to z-scores and represented the measure of 

activity for each source.  

 

The source maps were used to extract the alpha power distribution for every source. To reduce 

computation time, the PSD was only computed for the high theta band (7-9 Hz) and the low alpha 

band (9-11 Hz). Furthermore, the alpha power distribution was computed the same way as for the 

sensor level (described in 3.3.2).  

 

3.3.4 Specific brain areas 

The alpha power distribution was also computed for specific brain regions of interest (ROIs), which 

are known to be a part of the pain processing network [2, 3]. This was done to study whether there 

is a relation between the ROIs and the alpha power distribution. The areas that were studied more 

closely were: the prefrontal cortex, the insular cortex (anterior and posterior), the primary 

somatosensory cortex (S1), the secondary somatosensory cortex (S2, anterior and posterior) and 

the cingulate cortex (CC, anterior, mid-anterior, mid-posterior and posterior).  

 

The source maps, that were obtained after the source reconstruction (see previous section), were 

used for analyzing the activity of the ROIs. The ROIs were defined by an assembly of sources on the 

cortical surface, which were situated in these brain areas. The Destrieux atlas, which is a 

parcellation scheme in FreeSurfer, was used to create these ROIs on the cortical surface [40, 41]. 

When the ROI from the Destrieux atlas did not completely cover the brain area, or cover more than 

the intended area, the ROI was modified in Brainstorm. The sources that represented the ROI are 

shown in appendix A. For each ROI, the average PSD across all sources in that ROI was calculated 

(again, for the high theta band (7-9 Hz) and the low alpha band (9-11 Hz) only). Subsequently the 

theta/alpha ratio was computed (section 3.3.2).  

 

The same ROIs were used to analyze their connectivity. This was done by using two different 

measures; the correlation between the ROIs and the coherence between the ROIs. The correlation 

was computed for every subject by first computing the average time series for each ROI and then 

computing Pearson’s correlation coefficient between these 5-minute time series at zero lag. This 

resulted in a correlation coefficient, whereby a coefficient of -1 indicates a perfect negative linear 

relation between the two ROI and a coefficient of 1 indicates a perfect positive linear relation 

between the two ROI [42]. As the direction of the correlation was assumed to be of less importance 

and to improve the interpretability, the absolute values of the correlations were taken. The absolute 

correlation values per ROI were then averaged for each group. For the coherence, the PSD for each 

ROI was computed with a frequency resolution of 0.6 Hz. Subsequently, the PSDs of two ROIs (x and 

y) were compared by computing the magnitude squared coherence (COHxy). This was done by 

dividing the cross spectral density between the two ROIs (Sxy) by the PSDs of the two ROIs (Sxx and 

Syy) [42]:  

𝐶𝑂𝐻𝑥𝑦(𝑓) = |𝐾𝑥𝑦(𝑓)|
2

=
|𝑆𝑥𝑦(𝑓)|

2

𝑆𝑥𝑥(𝑓) 𝑆𝑦𝑦(𝑓)
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The differences in coherence between the two groups were analyzed for the high theta band (7-9 

Hz) and the low alpha band (9-11 Hz). As I selected a total of 16 ROIs (the mentioned brain areas for 

the left- and right hemisphere, the sources for the cingulate cortex were assumed to be in the 

middle), this resulted in averaged 16x16 connectivity matrices (for the correlation and for the 

coherence) for each group. To evaluate the differences, the connectivity matrices for the PC group 

were subtracted from the connectivity matrices for the HC group. 

 

3.3.5 Statistical analysis 

For performing statistical tests on the MEG data, I had to take into account the multiple comparisons 

problem (MCP). In the time domain for example, the data of two groups was compared for all 275 

sensors at a lot of time points. This increases the chance of finding false positives; it increases the 

family-wise error rate (FWER). In Brainstorm, the nonparametric permutation test was used, 

because this method is more suitable to control for the FWER [43, 44]. 

 

For the nonparametric permutation test, first the trials of the HC group and the PC group were 

collected in a single set (resulting in 42 trials in total). Second, 21 trials were randomly selected 

from this set and put in subset 1, the rest was put in subset 2 (causing the HC and the PC to be 

mixed). Third, a two-tailed student’s t-test was performed between these subsets. Subsequently, the 

second and the third step were repeated 1000 times (1000 permutations) and a histogram was 

constructed of the test statistics. To reduce computation time, the Monte Carlo approach with only 

1000 permutations was used. Therefore, this histogram only approximates the permutation 

distribution. The p-value was then determined by comparing the histogram and the observed test 

statistic (the t-test between the actual HC and PC). The p-value was the proportion of permutations 

that resulted in a larger test statistic than the observed statistic [43, 44].  

 

To control for the FWER, the false discovery rate (FDR) correction was used, which corrected for the 

number of signals (the number of sensors or sources). The FDR corrected p-value represents the 

percentage of false positives of the significant values (without correction, the p-value represents 

false positive of all values) [45]. The corrected p-values were considered significant when they were 

smaller than 0.01.  

 

Statistical analysis was performed only for the first part (comparing the HC and the PC). The 

permutation test was used to analyze the difference between the two groups for the following 

measures: the theta/alpha ratio topographies (section 3.3.2), the theta/alpha ratio for the sources 

and the theta/alpha ratio for the ROIs. For the second part (comparing the different stimulation 

settings of SCS), statistical analysis was not performed due to the low number of subjects. 

 

3.3.6 Spinal cord stimulation 

The third part of the analysis consisted of evaluating the effects of SCS and its different stimulation 

settings. Therefore, for every subject in the PT group, the resting state recordings of the three 1-

week evaluation periods were analyzed. This was done by looking at some of the same measures as 

for the first part (pain vs no pain) and by looking at specific frequency bands.  
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The alpha power distribution for the sensors (section 3.3.2) and the alpha power distribution for 

the sources (section 3.3.3) were computed and averaged for each stimulation setting (tonic, burst 

and placebo). To observe the differences between the stimulation settings, these three averages 

were subtracted from each other. This resulted in three figures for each measure: the differences 

between tonic and burst, between tonic and placebo, and between burst and placebo. Due to the low 

number of subjects, statistical analysis was not performed for this part of the analysis.  

 

To compare our results with the results that have been published by De Ridder et al. [5, 9], for every 

PT subject the differences in cortical activity, as a result of the different stimulation settings, were 

analyzed at the following frequency bands: theta (4-7.5 Hz), alpha1 (8-10 Hz), alpha2 (10-12 Hz), 

beta1 (13-18 Hz), beta 2 (18.5-21 Hz) and beta3 (21.5-30 Hz). For every source, the mean frequency 

for each band was calculated and normalized by dividing the mean frequency of a band by the total 

power within all of these frequency bands. Subsequently, the results were averaged for each of the 

three stimulation settings and those means were subtracted from each other for a comparison 

(resulting in again three comparisons: tonic-burst, tonic-placebo and burst-placebo). Statistical 

analysis was not performed for this part either, due to the low number of subjects. 
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Chapter 4: Results 

4.1 Pain vs. no pain 
For the HC group, 21 subjects (8 females) were included. For the PC group, also 21 subjects (10 

females) were included. The mean age and standard deviation (SD) were 47 ± 11 years old for the 

HC group and 48 ± 10 years old for the PC group. The NRS pain score was 0 ± 0 for the HC group and 

5.5 ± 2.4 for the PC group. From the PC group, 38% suffered from pain in both (left and right) legs, 

33% suffered from pain in their left leg (and not their right), 14% suffered from pain in their right 

leg and 14% suffered from pain in their back only.  

 

4.1.1 Alpha power distribution: sensor level 

The results for the average theta/alpha ratio at each sensor for both groups are shown in figure 3. 

The ratio topography for the HC (left) showed ratios primarily below 1, which means that there is 

more power in the 9-11 Hz frequency band than in the 7-9 Hz frequency band. The ratio topography 

for the PC (right) showed ratios primarily above 1, meaning more power in the 7-9 Hz band than in 

the 9-11 Hz frequency band. 

 

 
Figure 3: The theta/alpha ratio for each of the 275 sensors. The ratio topographies are shown for (left) the healthy 
controls and (right) the pain controls. The values represented in the figure are the theta/alpha ratios, a higher ratio means 
more power in the 7-9 Hz frequency band and a lower ratio means more power in the 9-11 Hz frequency band.  

 

The statistical differences between the two groups are shown in figure 4. In this figure, only the 

sensors that were significantly different (p < 0.01) between the two groups were highlighted. A 

positive t-value corresponds to a higher ratio for the HC, a negative t-value corresponds to a higher 

ratio for the PC. The PC group showed a statistically significant higher ratio (more power in the high 

theta band) for the central and parietal (left and right), and the right temporal and occipital sensors.  
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Figure 4: The results for a permutation t-test between average (sensor level) theta/alpha ratios for the healthy controls 
(HC) and the average (sensor level) theta/alpha ratios for the pain controls (PC). The values represented in the figure are 
t-values based on a significance level of p < 0.01, a high t-value means a higher ratio for the HC and a low t-value means a 
higher ratio for the PC. The results were false discovery rate (FDR) corrected for the number of sensors. 

 

The individual ratio topographies (shown in appendix B.1) revealed that the topography could 

almost distinguish between HC and PC at the individual level, except for some outliers. The same 

individual differences were also visible in the theta/alpha ratio averaged across the whole head (fig. 

5). The ROC-curve (appendix B.2) showed a cut-off value of 0.94, whereby chronic pain patients 

were detected with a sensitivity of 76% and a specificity of 91%. 

 

 
Figure 5: The average ratio across all sensor for each subject. Subjects in the healthy control (HC) group are shown in blue 
and subjects in the pain control (PC) group are shown in red. The black line indicates the cut-off value (determined with a 
ROC curve) to distinguish between HC and PC.  
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4.1.2 Alpha power distribution: source level 

The differences between the two groups at source level are shown in figure 6. Sources which lighted 

up blue, showed a significantly higher theta/alpha ratio for the PC group (p < 0.01). The areas which 

showed the largest differences, were the insula (primarily the right insula), the cingulate cortex and 

the right temporal/occipital cortex.  

 

Figure 6: The results for a permutation t-test between the average (source level) theta/alpha ratios for the healthy 
controls and the average (source level) theta/alpha ratios for the pain controls. The results were false discovery rate 
(FDR) corrected for the number of sources. The values represented in the figure are t-values based on a significance level 
of p < 0.01. The areas which showed the largest differences between the two groups, were the insula (primarily the right 
insula), the cingulate cortex and the right temporal/occipital cortex. 

 

4.1.3 Specific brain areas 

The selected ROIs all showed a higher theta/alpha ratio for the PC group, compared to the HC group 

(fig. 7). The ROIs in the figure are sorted by the p-values for the difference in ratio between the two 

groups (p-values obtained through the permutation t-test, FDR corrected for the number of ROIs): 

the ROI with the lowest p-value is shown on the left and the ROI with the highest p-value is shown 

on the right. The right anterior insula, the right posterior S2, the right anterior S2, the posterior 

dorsal CC, the mid-posterior CC and the right posterior insula showed significantly higher ratios for 

the PC group (p < 0.01). 
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Figure 7: The average theta/alpha ratio in each region of interest (ROI) for the two groups, the error bars represent the 
standard deviation. The healthy controls (HC) are shown in blue and the pain controls (PC) are shown in red. The ROI with 
the most significant difference is shown on the left and the ROI with the least significant difference is shown on the right (p 
values were obtained by performing the permutation t-test). L = left, R = right, CC = cingulate cortex, S1 = primary 
somatosensory cortex, S2 = secondary somatosensory cortex, * = p < 0.01.   

 

The connectivity matrices (correlation and coherence) for the differences between the HC and the 

PC for each ROI are shown in figure 8. The correlation values between the ROIs were generally low 

for both, the HC and the PC (appendix C.1) and therefore the differences between those two groups 

were only small. This is shown in figure 8 (left): a positive value means that the correlation or 

coherence between the two ROIs was larger for the HC and a negative value means that the 

correlation or coherence between the two ROIs was larger for the PC. The largest difference in 

correlation between the two groups was about 0.3 and found between the right S1 and the left S1: 

the correlation between those areas is larger for the PC than for the HC.  

 

The coherence values between the ROIs showed a more distinct difference in connectivity between 

the two groups than the correlation values. The difference in coherence for the high theta band (7-9 

Hz) and the low alpha band (9-11 Hz) show a similar connectivity pattern between the ROIs, 

however the coherence values were higher for the high theta band (appendix C.2). The largest 

difference in coherence (fig 8, right) between the two groups for the high theta band was found 

between the right anterior S2 and the right anterior insula: the coherence between those areas was 

about 0.5 for the PC and about 0.1 for the HC (appendix C.3). In the theta frequency band, there 

were also clear differences in coherence between the two groups for the different ROIs within the 

cingulate cortex and for the cingulate cortex and the S1: the coherence values between those areas 

were higher for the PC than for the HC.  
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Figure 8: The differences in connectivity between the two groups, with (left) the difference between the correlation 
(within the regions of interest) of the healthy controls (HC) and the pain controls (PC) and (right) the difference between 
the coherence of the HC and the PC for the high theta band (7-9 Hz). The values are difference in correlation (left) or 
coherence (right) between the HC and PC, a positive value means a higher correlation/coherence between the two ROIs 
for the HC and a negative value means a higher correlation/coherence between the two ROIs for the PC. Note that the 
colorbars are scaled differently for the two matrices. L = left, R = right, CC = cingulate cortex, S1 = primary somatosensory 
cortex, S2 = secondary somatosensory cortex.   

 

4.2 Spinal cord stimulation 
For the PT group, 9 subjects (3 females) were included. The mean age for this group was 54 ± 10 

years old. The mean reported NRS was 4.1 ± 3.0 after one week of tonic stimulation, 3.9 ± 2.1 after 

one week of burst stimulation and 5.4 ± 2.4 after one week of placebo stimulation. Five of the 

patients suffered from pain on their right side of the body, three on their left side and 1 suffered 

from pain on both sides. 

 

4.2.1 Alpha power distribution: sensor level 

The theta/alpha ratio topographies for the different stimulation modes are shown in figure 9. From 

left to right these are average ratios after one week of tonic stimulation, one week of burst 

stimulation and one week of placebo stimulation. Burst stimulation seems to show slightly lower 

ratios in the frontal area than the other two settings.  
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Figure 9: The average theta/alpha topographies (from left to right) after one week of tonic stimulation, one week of burst 
stimulation and one week of placebo stimulation.  

 

The individual theta/alpha ratios averaged across the whole head seemed to be distributed 

similarly for each of the three settings (appendix D). The whole-head ratio averaged over the 9 

subjects showed a ratio of 0.97 ± 0.30 for tonic stimulation, 0.88 ± 0.21 for burst stimulation and 

0.94 ± 0.26 for placebo stimulation.  

 

4.2.2 Alpha power distribution: source level 

The differences in theta/alpha ratio between tonic stimulation and burst stimulation at source level 

are shown in figure 10. A positive difference (red) means a higher ratio during tonic stimulation and 

a negative difference (blue) means a higher ratio during burst stimulation. Especially the right 

temporal and occipital areas, but also the insula showed a higher ratio during tonic stimulation. The 

largest difference was seen in a small left frontal area, where the ratio was higher during tonic 

stimulation.  

 

 

Figure 10: The difference in theta/alpha ratio (source level) between tonic stimulation and burst stimulation. A positive 
difference indicates a higher ratio during tonic stimulation and a negative difference indicates a higher ratio during burst 
stimulation. 
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The differences in theta/alpha ratio between tonic stimulation and placebo stimulation are shown 

in appendix E.1. The largest (positive) difference was again observed in the frontal area of the left 

hemisphere, where the ratio was higher during tonic stimulation. The differences in theta/alpha 

ratio between burst stimulation and placebo stimulation (appendix E.2) did not reveal one specific 

area with a larger difference than other areas. Overall, the ratio was higher for placebo stimulation 

compared to burst stimulation, whereby the right hemisphere showed this difference more clearly 

than the left hemisphere. 

 

4.2.3 Specific frequency bands 

The comparison of the specific frequency bands (theta, alpha1, alpha2, beta1, beta2 and beta3) 

between the three different stimulation settings revealed the largest differences in the alpha1 band 

(8-10 Hz) and the beta1 band (13-18 Hz) when comparing tonic stimulation to burst stimulation. 

The somatosensory cortex and the parietal lobe showed increased alpha1 power during tonic 

stimulation, compared to burst stimulation (fig 11). The difference in alpha1 power was maximally 

0.04 (unitless), which represented about 10% difference between the two settings, as the maximum 

alpha1 power for both tonic and burst stimulation was about 0.3 (appendix F.1). The effect of 

increased alpha1 power was also visible when comparing tonic stimulation to placebo stimulation, 

but not when comparing burst stimulation to placebo stimulation (appendix F.2).  

 

On the contrary, the power in the beta1 band for the somatosensory cortex and the parietal lobe 

was higher during burst stimulation, compared to tonic stimulation (fig 12). Although the figures 

showed the same scales, the difference in beta1 power was larger than the difference in alpha1 

power: the maximum power for both tonic and burst stimulation was about 0.15 (unitless), 

therefore the value of 0.04 represented about 25% difference between the two settings. When 

comparing burst stimulation to placebo stimulation, the beta1 power for these same areas was also 

higher, but the comparison between tonic and placebo stimulation did not reveal a clear difference 

(appendix F.3). Note however that these differences are between the means of 9 subjects, the 

individual results varied as did the effect of the three stimulation settings on their pain perception.  

 

A small area in the prefrontal cortex showed more theta power during tonic stimulation, compared 

to burst stimulation (appendix F.4). This increase in theta power was also reflected by an increased 

theta/alpha ratio during tonic stimulation in the same area (section 4.2.2). The difference was also 

visible between tonic and placebo stimulation, but not between burst and placebo stimulation.  
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Figure 11: The difference in mean relative power in the alpha1 frequency band (8-10 Hz) between tonic stimulation and 
burst stimulation for every source. The positive values indicate more power in the alpha1 band during tonic stimulation, 
compared to burst stimulation. Especially the right hemisphere shows more alpha1 power in the somatosensory cortex 
and the parietal lobe during tonic stimulation. 

 

 
Figure 12: The difference in mean relative power in the beta1 frequency band (13-18 Hz) between tonic stimulation and 
burst stimulation for every source. The negative values indicate more power in the beta1 band during burst stimulation, 
compared to tonic stimulation. The somatosensory cortex and the parietal lobe show increased beta1 power during burst 
stimulation.  
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Chapter 5: Discussion 

5.1 Main findings 
Comparing between chronic pain patients and healthy, pain-free control subjects, we found that the 

alpha power distribution is significantly different between the two groups: the chronic pain patients 

showed higher theta/alpha ratios for several brain areas, indicative for slowing of the alpha 

frequencies. In the regions of interest, this difference in alpha power distribution was mainly 

observed in the right insula, the mid-posterior and posterior cingulate cortex and the right 

secondary somatosensory cortex. The coherence for the high theta frequencies between the right 

anterior insula and the right anterior S2 was much larger in the PC group, compared to the HC 

group. The comparison between tonic and burst stimulation showed a higher theta/alpha ratio 

during tonic stimulation for the temporal/occipital areas and the right insula. Furthermore, there 

were differences in power in the alpha1 and beta1 frequency bands in the somatosensory cortex 

and the parietal lobe between tonic and burst stimulation.   

 

5.2 Thalamocortical dysrhythmia 

5.2.1 Pain vs no pain 

The theta/alpha ratio was significantly higher in PC group, compared to HC group. This higher ratio 

indicates that the peak in alpha frequencies is shifted towards the (lower) theta frequencies in 

patients with chronic pain. The increased ratio could also be caused by an increased power in theta 

frequencies, which has been reported in other literature. In a review about EEG patterns in chronic 

pain by Pinheiro et al, four of the six studies found an increased theta frequency power for the 

chronic pain subjects [20]. The increased theta power could be the result of a decreased inhibition 

of the thalamus. The slower theta waves reduce the lateral inhibition, which could cause increased 

gamma activity in the areas that surround the areas which show an increased theta activity. This is 

called thalamocortical dysrhythmia (TCD) and has been associated with multiple neurological and 

psychiatric disorders, amongst which chronic pain [17, 20, 22-24]. The theta/alpha ratio might 

reflect this phenomenon in our chronic pain patients as well.  

 

In our source model, the increase in theta/alpha ratio seemed to originate from sources deeper than 

the cortex and spread into multiple cortical areas. We expected that this source could very well be 

the thalamus and to test this hypothesis, we incorporated the thalamus into our original source 

model (appendix E.3). That extended model indeed projected a vast part of the increased 

theta/alpha ratio in the thalamus. However, caution has to be taken when interpreting this finding, 

as more research is needed to confirm that MEG is indeed capable of detecting signals which 

originate in the thalamus [46]. Nevertheless, these results and the previous findings in literature, 

strongly suggest an alteration in thalamic behavior because of chronic pain.  

 

Both, at sensor level and at source level, we saw the largest differences in theta/alpha ratio in the 

right hemisphere. This could be caused by the fact that a large part of our subjects (33%) suffered 

from chronic pain exclusively on their left side, and not the right side of their body, but it could also 

mean that the right hemisphere is more involved in the processing of pain than in the left 
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hemisphere. This has also been reported in literature: Pauli et al. found that pain sensitivity was 

associated with an increased right hemispheric activity [47] and Lugo et al. suggested that pain 

intensity perception is lateralized to the right hemisphere [48]. Also, the right insula is known to 

play a more significant role in attentional processes than the left insula [3, 49]. Another explanation 

for the larger differences in theta/alpha ratio on the right side is that TCD is mainly visible in the 

right hemisphere.  

 

The average theta/alpha ratio across the whole head seemed to be able to distinguish quite 

accurately between the HC and PC. Especially the specificity (91%) was high for this method; most 

HC were correctly classified. The PC however showed a larger variation causing a sensitivity of 76%. 

The cut-off value could be decreased to obtain a larger sensitivity, as we could argue that the 

sensitivity is more important. Also, there are some clear outliers; the overall ratio of 3.1 for example, 

is clearly deviant from the other values and therefore has a larger impact on the cut-off value. 

Possibly, an explanation for the outliers can be found in the questionnaires (for example pain 

duration or peak pain intensity). The results from the questionnaires, but also the results from the 

other measures described in this thesis, could be incorporated in a more advanced model to 

improve the classifier. For this, a larger number of subjects would be desirable as well.  

 

5.2.2 Spinal cord stimulation 

The theta/alpha ratios at sensor level were slightly lower during burst SCS than during tonic or 

placebo stimulation. Also, the difference in theta/alpha ratio at source level between tonic and burst 

stimulation looks similar to the difference between chronic pain patients and healthy controls, 

except for the cingulate cortex (the CC shows comparable ratios for tonic and burst stimulation). 

Apart from the finding in the cingulate cortex, this could suggest that tonic stimulation does not 

affect TCD, but burst stimulation does or does to a larger extent. This might also be reflected in the 

pain scores; after one week of burst stimulation, the patients indicated lower pain scores on 

average. However, the differences in theta/alpha ratio and in the pain scores between the different 

stimulation settings were only small and there was variation between the subjects. With a larger 

number of subjects in the PT group, we would be able to group responders and non-responders to a 

certain stimulation setting, after which we expect to see clearer differences.  

 

Moens et al. showed in a fMRI study that brief periods of SCS (during the trial stimulation phase) 

resulted in bilateral deactivation of the medial thalamus and the anterior and posterior CC. 

Ipsilateral (to the stimulation site) deactivation was found in the dorsal premotor cortex, the 

anterior part of the insula, the lentiform nucleus, the caudate nucleus, the S1 and the S2. 

Contralateral deactivation was found in the hypothalamus, the insula, the S2, the proprioceptive 

cortex, the visual cortex and the parahippocampal gyrus [50]. Stančák et al. found, with fMRI, that 

SCS (also during the trial stimulation phase) activated the primary motor cortex, the ipsilateral S2 

and the contralateral posterior insula. When comparing periods with SCS to resting periods (no 

SCS), they saw decreased deactivation of the primary motor cortex, and the left postcentral gyrus 

[51]. With a larger number of subjects in the PT group, we can make a source model (preferably 

including the thalamus) and perform statistical analysis. Based on the described literature, we 

expect to find activity changes (compared to the PC) in the group with good responders to SCS for 
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the thalamus, the primary motor cortex, the CC, the S1 and S2 and the insula. Apart from the motor 

cortex, these same areas also showed an increased theta/alpha ratio (the S1 to a lesser extent) when 

comparing our PC to HC.  

 

The cingulate cortex, specifically the anterior cingulate cortex, has also been a target for cortex 

stimulation [52]. Boccard et al. performed deep brain stimulation (DBS) in the ACC for 16 

neuropathic pain patients, of which 11 subjects were included for analysis. They showed an overall 

improvement of visual analogue scale (VAS) scores [53]. Also, Spooner et al. presented a case study 

whereby they implanted DBS in a patient with neuropathic pain, they also reported better pain 

control after implantation [54]. Another form of cortex stimulation as a treatment of chronic pain is 

motor cortex stimulation (MCS). Although the precise working mechanism of MCS is unclear, MCS is 

believed to modulate pathologic hyperactivity of thalamic relay nuclei. The success rates for MCS 

were higher for facial pain (68%) than for central pain (54%) [55]. This literature shows that 

modulation of pain processing areas such as the motor cortex and the ACC is able to reduce pain in 

some chronic pain patients. Possibly, SCS works also through modulation of these (or other pain 

processing) brain areas, but by activating or deactivating the pain processing pathways through the 

spinal cord. 

 

5.3 Connectivity measures 
Differences in connectivity between the HC and the PC were mainly found in the coherence. The 

maximum coherence was found for the frequencies below 1.5 Hz. Since a large part of the PC had 

artifacts below 1 Hz, a 1 Hz high pass filter was applied for these subjects. Therefore, the coherence 

below 1 Hz is not expected to be reliable. The frequency band that showed the highest coherence 

after the frequencies below 1.5 Hz, was the high theta frequency band (7-9 Hz). Since this frequency 

band and the low alpha frequency band (9-11 Hz) were the main frequencies of interest, only these 

frequency bands were shown. The frequency resolution that was used for the coherence matrices 

(0.6 Hz) was different from the frequency resolution that was used for the other measures (0.25 Hz, 

for the alpha power distribution and the specific frequency bands). The reason for this was to 

reduce the computational effort; a higher frequency resolution caused the process to reach out of 

memory. A higher frequency resolution would however be desirable, since the width of the 

frequency bands of interest was only 2 Hz.  

 

The areas that showed the highest difference in coherence for the high theta band between the HC 

and the PC were the right anterior S2 and the right anterior insula. Also, the ROI within the CC, and 

the CC and S1 showed a higher coherence for the PC in the high theta band. These areas are all 

located closely to each other, therefore a higher connectivity could be expected. Since the power in 

the high theta band was higher for the PC (they had a higher theta/alpha ratio), the connectivity in 

this frequency band could also be higher for the PC. However, the difference between the two 

groups for the high theta band was very large for the right anterior insula and the right anterior S2 

(±0.1 for the HC and ±0.5 for the PC). Also for the low alpha band, the coherence between those ROIs 

was still larger for the PC and changes in connectivity for these ROIs in chronic pain patients have 

also been reported in literature.  
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Several studies have shown that the insula is involved in the processing of pain (amongst other 

psychological functions), specifically the affective/motivational component of pain [56, 57]. The 

insula has for example been mentioned for its involvement in pain processing for patients with 

fibromyalgia (FM): Hsiao et al. reported a decreased connectivity between the bilateral insula and 

the default mode network (DMN) for FM patients [58], Choe et al. reported a decreased connectivity 

within the DMN for FM patients [59] and Ichesco et al. reported an increased connectivity between 

the right insula and the CC for FM patients, but an increased connectivity between the left insula and 

the CC for controls [60]. So, there is literature which also shows an increased connectivity between 

the right insula and the other brain areas (involved in the processing of pain) for chronic pain 

patients, but there is also literature which suggests the opposite: that connectivity is decreased for 

chronic pain patients. Because the exact relation of the insula with other pain processing areas is 

still debated, this area and its connectivity with other ROI should be further explored with other 

connectivity measures.  

 

We only found a difference in connectivity for the right insula, not for the left insula. Besides the 

study of Ichesco at al., there are other studies that have reported that the right insula is more 

important in the processing of pain than the left insula [3, 49, 60]. For example, Cauda et al. also 

found a stronger connectivity between the right insula and the areas associated with attentional 

processes (such as the ACC and the thalamus) than the left insula. Our findings and the literature 

suggest that the right insula is more important in the processing of pain than the left insula.  

 

The correlation values showed very little difference between the two groups. Although both 

measures (correlation and coherence) were used to describe a relation between ROIs, the 

correlation values indicate a relation between areas in the time domain, where the coherence values 

indicate a relation between areas in the frequency domain. The correlation was computed with the 

assumption that the time lag between two ROIs was 0. This might not be entirely accurate, because 

the distance between two ROIs might cause a small lag in response. Also, the correlation values 

were averaged across the five-minute recordings, negative correlation values might have cancelled 

out positive correlation values, resulting in lower values than the coherence values. In order to 

reduce these effects, I also computed the maximum correlation across the five-minute recordings 

(appendix C.4). This however did not show larger differences than the mean correlations did. In 

addition, taking the maximum coherence across five minutes, is more sensitive to sudden non-

physiological changes in the time signal. Because of these disadvantages, the correlation might 

therefore be a suboptimal measure for describing the connectivity in this case.  

 

5.4 Specific frequency bands 
De Ridder et al. suggested that burst stimulation works through the lateral and medial pathway, but 

tonic stimulation only though the lateral pathway. Therefore, we expected to find the biggest 

differences in the ACC, the somatosensory and insular cortices, when comparing cortical activity 

during tonic and burst stimulation [5, 9]: the ACC and the anterior insula were expected to be more 

active during burst stimulation and the somatosensory cortex was expected to be more active 

during tonic stimulation. The somatosensory cortex indeed showed slightly more activity in the 

alpha1 band for tonic stimulation, however we did not find increased activity in the ACC and insula 
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during burst stimulation (in none of the frequency bands). The alpha1 power increase in the 

somatosensory cortex during tonic stimulation could be the result of the paresthesia, caused by 

tonic stimulation. This explanation was further supported after comparing tonic and placebo 

stimulation, and burst and placebo stimulation. The difference was also visible between tonic and 

placebo, but not between burst and placebo (where neither of the two causes paresthesia). Overall, 

our results do not show such a clear difference between tonic and burst stimulation to suggest that 

the two stimulation modes work through different pathways. It seems more likely that both, the 

tonic and the burst stimulation work through the concept of the gate control theory: the large Aβ-

fibers block the pain signals of the smaller Aδ and C-fibers but cause perceived sensations, whereas 

burst stimulation modulates the Aβ-fibers below the paresthesia threshold [9].  

 

When comparing tonic stimulation and burst stimulation, a difference was also found in the beta1 

frequency band, again for the somatosensory cortex. Although alpha1 power was higher during 

tonic stimulation in this area, beta1 power was higher during burst stimulation. The comparison 

between tonic and placebo stimulation did not reveal clear differences in beta1 activity, indicating 

that the beta1 power is increased during burst stimulation only. This suggests that both SCS settings 

are processed in the somatosensory cortex, whereby tonic stimulation causes alpha1 oscillations 

and burst stimulation causes beta1 oscillations. However, we do not have an explanation for this yet 

and further analysis with a larger number of subjects is needed to explore this finding. 

 

The prefrontal cortex showed an increased theta power when comparing tonic to burst stimulation. 

As this difference was also visible between tonic and placebo, but not during burst and placebo, this 

difference could be caused by the tonic stimulation. This increased theta power was also reflected in 

the theta/alpha ratio; the ratio was higher for a small area of the prefrontal cortex when comparing 

tonic versus burst stimulation. Although other areas of the prefrontal cortex (such as the 

dorsolateral prefrontal cortex) have been reported to be involved in the processing of pain [9, 20], 

this small prefrontal area has not been reported yet in association with chronic pain. The data has 

been cleaned of eye blinks, but the location and the frequency of this difference could also originate 

from remaining eye movements. The source models of the individual subjects revealed that the 

theta power in the prefrontal cortex was higher during tonic stimulation (compared to burst) in 

three of the nine subjects. These three subjects might have had more eye movements during the 

recording, but it is unlikely that they only showed more eye movements during tonic stimulation, 

and less during burst stimulation. A larger number of subjects and extended data analysis is 

necessary to further explore this finding.  

 

5.5 Considerations 

5.5.1 Measure for alpha power distribution 

The same measure as described by Schulman et al. [17] was used for looking at the alpha power 

distribution. The goal of this measure is to indicate whether the power of the dominant frequency 

peak, generally the alpha peak, is shifted towards the theta frequency for chronic pain patients, 

which could be indicative for TCD. The theta/alpha ratio however, only divides the power for the 

frequencies 7-9 Hz by the power for the frequencies 9-11 Hz. For most of our subjects, we saw a 
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very clear dominant frequency, wherefore a possible shift could be captured accurately, due to the 

shape of the peak. This is visualized in a schematic representation (fig 13): each line represents a 

PSD, with a different dominant frequency. The green line has a peak around 8 Hz, which is within 

the boundaries of the theta/alpha ratio. Although the blue line has its dominant peak around 12.5 

Hz, the ratio still gives a good indication about the location of the peak. For two of our subjects 

however (both in the PC group), the frequency of the dominant peak was even higher, or the peak 

was less clear. This caused the theta/alpha ratio to be less accurate, as the lower frequencies, with a 

higher power than the theta frequencies, caused an increased ratio although the actual peak was not 

shifted (as is the case for the red line in fig 13).  

 
Figure 13: A schematic representation of the working mechanism of the theta/alpha ratio. The three lines represent 
power spectral densities with different frequencies for their dominant peak. The theta/alpha ratio accurately describes 
the frequency of the dominant peak for the green line and the blue line. For the red line however, the frequency of the 
dominant peak is too high, causing an increased ratio, although the alpha peak is not shifted towards theta frequencies.  

 

There are also other ways to study changes in the alpha frequency band. For example, we could 

examine the alpha power distribution by looking at the alpha peak; the frequency where the alpha 

power is highest. An example of such a method is the center of gravity (CoG) method [61]. The CoG 

is computed within a predefined frequency band: the average frequency weighted by amplitude is 

divided by the sum of amplitudes:  

𝐶𝑜𝐺 =  
∑ 𝑓𝑖 ∗ 𝑎𝑖

𝑛
𝑖=1

∑ 𝑎𝑖
𝑛
𝑖=1

 

I also tested this method for a small number of subjects, to compare with the theta/alpha ratio. To 

also capture the peaks of the two subjects with a higher frequency, the frequency band that was 

used for the CoG method was chosen to be 7-13 Hz. The CoG method indeed described the location 

of the peak more accurately for the two subjects with a higher alpha peak frequency, but for some of 

the other subjects, it was less accurate. For example, when the alpha peak consisted of two peaks, 

the peak was placed in between the two peaks with the CoG method. However, the first peak (with 

lower frequency than the second peak) generally has a lower power than the second peak, 

wherefore the dominant frequency can be assumed to be the second peak. The distribution of power 

was captured more accurately with the theta/alpha ratio than the CoG method and the theta/alpha 

ratio was less accurate for only two subjects. Therefore, the theta/alpha ratio was chosen for further 

analysis.  
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5.5.2 Confounders 

There are several confounders that could have affected our results. An example of such a 

confounder is medication; most of our subjects in the PC group and the PT group used medication 

for their pain. This medication could also have caused the differences that we observed between the 

groups. Malver et al. reviewed the effects of analgesics on spontaneous EEG and found that 

analgesics primarily cause an increased activity in the delta band. Although a few studies reported 

that the spontaneous theta and alpha frequencies are affected by analgesics, the results of these 

studies are varying (some show an increased activity, some show a decreased activity) [62].  

 

Another confounder might have been the age of the subjects. Age is known to affect the frequency of 

the dominant brain rhythm: although the frequency remains relatively stable after the age of 20, 

there is a slow decline in frequency with increasing age [63]. The mean age for the HC group and the 

PC group was very similar, but the subjects in the PT group were slightly older. Therefore, the PTs 

might show a slower rhythm as a result of aging. However, since the HC and PC were of similar age 

and showed clear differences, we expect the influence of age to be minimal.  

 

Also, anxiety and depression often accompany chronic pain. For example, psychiatric disorders have 

also been related to TCD and could therefore also affect the theta/alpha ratio [20]. Depression is 

known to influence the insula, which is also involved in the affective-motivational dimension of pain. 

The brain areas involved in the sensory dimension of pain (mainly the somatosensory cortex) 

however, are not related to depression [56, 57]. However, there are EEG studies that have shown a 

reduced alpha power in the right anterior hemisphere and increased alpha power in right 

parietemporal areas for subjects with depression [64, 65]. Also, other studies reported an increased 

theta power in the right anterior hemisphere, whereby source localization revealed involvement of 

parts of the ACC [65]. Since these frequency changes could also be reflected by the theta/alpha ratio, 

it is important to further investigate the effect of depression on our measures. Therefore, we will 

include the results for the HADS questionnaires in the classification of our subjects.  

 

5.5.3 SCS settings 

The subjects in the PT group were recorded after one-week evaluation periods of tonic, burst and 

placebo stimulation. The placebo stimulation however, was the lowest possible intensity (0.05 mA, 

2 pulses with a pulse width of 100 µs) of burst stimulation. This is different from the study of de 

Ridder et al. [5, 9], where the SCS was turned completely off for placebo. We do not expect any 

functional effect of our placebo stimulation, as the intensity of placebo stimulation was very low. 

This was also reflected by the higher pain scores that our subjects indicated after one week of our 

placebo stimulation. However, we cannot rule out that there were no effects at all, since the 

stimulation was not completely turned off.  

 

The stimulation that the PTs had received before the start of this study varied as well. They had 

received SCS, either tonic or burst, for at least three months, but there are also subjects who had 

received SCS for multiple years. The long-term effect of SCS on the cortical activity has not been 

studied yet, but the duration that patients have received SCS might cause differences in cortical 

activity. Also, it is possible that the effect of tonic or burst stimulation on cortical activity is still 
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present after the stimulation settings were switched and that these effects were still present after 

for example one week of placebo stimulation.  

 

5.5.4 Individual anatomy 

For an accurate estimation of the cortical surface, for some subjects their individual MRI was used. 

However, not for every subject an MRI was available, especially not for the subjects with a spinal 

cord stimulator (which is in many cases not yet MRI compatible). To still make a plausible 

estimation of the cortical surface for every subject, the head shape was digitized with many points. 

Therefore, the default MRI could be warped to estimate an individual MRI and estimate an 

individual cortical surface. Although the warping of a default MRI is not as accurate as an individual 

MRI, the warping of a default MRI has shown to be a reliable approximation of an individual MRI 

[66]. 

 

The selection of ROI was however not equally accurate for each subject. As the Destrieux atlas did 

not fit the ROI perfectly, the vertices for the ROI were adapted manually using Brainstorm. The 

vertices were selected based on the default anatomy and subsequently projected on the subject’s 

anatomy (either warped or individual MRI). Since the vertices were selected based on the default 

anatomy, the subjects with an individual MRI might have slightly different vertices for each ROI. The 

analysis for the ROI could have been more accurate with a better fitting atlas for the intended ROI, 

so that the vertices could be segmented using the FreeSurfer software. However, visual inspection of 

the ROI showed that the projection of the manually selected vertices approximated the intended ROI 

sufficiently. 

 

5.5.5 Source model normalization 

Several assumptions were made to construct the source models. The source models were 

constructed with constrained dipoles, mainly to reduce computation time. Using constrained 

dipoles is an often-used technique, as the main contributor of the MEG signal is believed to be the 

synchronized activity of cortical pyramidal neurons. As these neurons are also oriented 

approximately normal to the cortical surface, the dipoles could also be assumed oriented towards 

the cortical surface [15, 36]. For the forward model method, the simplified overlapping spheres 

method was used. Although there are also more sophisticated forward models, the overlapping 

spheres method has shown similar accuracy with much less computational costs and was therefore 

chosen [37]. Another choice was the use of dSPM for the normalization of the minimum norm 

estimates. Normalization is often used, because MNE tends to estimate higher values for the sources 

closer to the sensors. Also, the amplitude of the estimates depends on the signal to noise ratio, 

which makes it more difficult to interpret. Brainstorm offers three normalization methods: dSPM, 

sLORETA and a Z-score transformation. The dSPM method was used, because it corrects for the 

noise and for overestimating sources closer to the surface, and gives z-score similar values, which 

makes the source models easier to interpret for the individual results. For the group results 

however, subsequent statistical analysis was performed, wherefore non-normalized source maps 

might have been more accurate [67]. In order to test this, the source model with the thalamus was 

computed without the dSPM normalization. As the model with the thalamus showed similar results 
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(whereby only areas surrounding the thalamus showed different activity) and recomputing the 

source models would be very time consuming, the dSPM normalization was used for further 

analysis.  

 

5.5.6 Statistical analysis 

For the statistical analysis, a nonparametric permutation t-test was used, with FDR correction for 

the number of signals. This method is also implemented in Brainstorm and since the data was not 

normally distributed, the most suitable available method. This method was designed with the 

intention of a very large number of permutations, since there is a very large number of pairs (with 

the number of sensors, sources, timepoints, frequency points). To reduce computation time, a Monte 

Carlo approximation was used with only 1000 permutations. Although this is a commonly used 

approximation and a larger number of permutations would probably not give completely different 

results, a larger number of permutations would increase the accuracy of the test [43, 44]. For the 

alpha power distribution at sensor level, I also ran the permutation test with 10,000 permutations. 

As this resulted in similar differences, the number of 1000 permutations were used for the other 

measures.  

 

5.6 Recommendations 
The findings for the theta/alpha ratio suggest the that TCD plays an important role. In order to 

further explore this idea, further analysis of this data within the gamma frequency band would be 

useful. If TCD indeed plays a role, we would expect an increased gamma activity for the areas that 

surrounded the areas which showed a slowing of the dominant frequency. Also, it would be useful to 

further explore the thalamic source model. For example, connectivity measures (for theta 

frequencies) between the thalamus and the ROIs could confirm TCD. The thalamic source model 

might also give insight in the thalamic response to SCS and its possible differences between tonic 

and burst stimulation.  

 

The connectivity was analyzed by calculating the correlation and the coherence. These are only two 

connectivity measures, and there are many other ways of looking at the connectivity. For further 

analysis, other connectivity measures (for example, phase synchronization indexes) could give more 

insights. The connectivity between the right anterior insula and the other (pain processing) brain 

areas would be a main area of interest.  

 

Before any conclusions can be drawn about the working mechanisms of SCS and its different 

stimulation settings, more subjects with SCS are needed, preferably with very favorable effects of 

one of the stimulation settings and much less effect of the others. Then, we can also make a clearer 

distinction between responders and non-responders and further explore why some subjects do 

respond well to SCS and others do not. With a larger number of subjects in the PT group and a 

distinction between responders and non-responders, it will also be possible to analyze whether 

there is a change in connectivity as a result of SCS.  
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Conclusion 

The theta/alpha ratios showed an overall slowing of the alpha frequencies for the chronic pain 

patients. This slowing of alpha frequencies was mainly observed in the right insula, the mid-

posterior and posterior cingulate cortex and the right secondary somatosensory cortex. These 

findings suggested the involvement of thalamocortical dysrhythmia. In addition, the coherence 

between the right anterior insula and the right anterior S2 showed to be much larger in the PC 

group, suggesting an increased connectivity between the right anterior insula and the pain 

processing network for chronic pain patients.  

 

As the comparison between tonic and burst SCS showed a higher theta/alpha ratio during tonic 

stimulation in the temporal/occipital areas and the right insula, burst stimulation seemed to reduce 

TCD to a larger extent than tonic stimulation. The analysis for the specific frequency bands did not 

give a clear reason to assume that burst stimulation works through different pathways than tonic 

stimulation. Modulation of the same pathways seems more likely, but the differences at cortical 

level will have to be explored further in a larger number of subjects, whereby the subjects can be 

grouped for responders and non-responders for each stimulation setting. 
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Appendix 

A Regions of interest 

 

Figure 14: The vertices that were selected as a region of interest (ROI). The following ROIs were selected: The prefrontal 
cortex, the insular cortex (anterior and posterior), the primary somatosensory cortex, the secondary somatosensory 
cortex (anterior and posterior) and the cingulate cortex (anterior, mid-anterior, mid-posterior, posterior).  
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B.1 Alpha power distribution (sensor level): the individual topographies 

 

Figure 15: The individual theta/alpha ratio topographies for the healthy controls (HC, left) and the pain controls (PC, 
right). The theta/alpha ratios were determined by calculating the ratio between power in the theta frequency band (7-9 
Hz) and the power in the alpha frequency band (9-11 Hz) for every MEG sensor.  
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 B.2 Alpha power distribution (sensor level): ROC curve 

 
Figure 16: The ROC curve that was used to determine a cut-off value for the classification between healthy controls and 
pain controls, using the average theta/alpha ratio across the whole head. The cut-off value was determined by using 
Youden’s index; this was the cut-off value whereby the sensitivity and the specificity of the classification were maximized. 
This resulted in a cut-off value of 0.94, whereby chronic pain patients were detected with a sensitivity of 76% and a 
specificity of 91%. 

 

C.1 Specific brain areas: correlation matrices HC & PC 

 
Figure 17: The correlation matrices for the healthy controls (left) and the pain controls (right), the values represent the 
absolute correlation. The correlation matrices of the two groups look very similar, the biggest difference is visible between 
the left and right primary somatosensory cortex. L = left, R = right, CC = cingulate cortex, S1 = primary somatosensory 
cortex, S2 = secondary somatosensory cortex.   
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C.2 Specific brain areas: coherence matrices high theta band and low alpha 

band 

 
Figure 18:  The coherence matrices for the high theta band (7-9 Hz, left) and the low alpha band (9-11 Hz, right), the 
values represent the average magnitude squared coherence for the high theta band and the low alpha band respectively. 
The coherence matrix for the low alpha band showed similar connectivity between the regions of interest as the coherence 
matrix for the high theta band, but coherence values were lower in the low alpha band. L = left, R = right, CC = cingulate 
cortex, S1 = primary somatosensory cortex, S2 = secondary somatosensory cortex.   

 

C.3 Specific brain areas: coherence matrices high theta band HC & PC 

 
Figure 19:  The coherence matrices for the healthy controls (HC, left) and the pain controls (PC, right), the values 
represent the average magnitude squared coherence for the high theta band (7-9 Hz). The coherence matrix for the HC 
showed generally low coherence values, except for the anterior insula. The coherence matrix for the PC showed higher 
coherence values between the regions of interest, especially between the right anterior insula and the right anterior S2. L 
= left, R = right, CC = cingulate cortex, S1 = primary somatosensory cortex, S2 = secondary somatosensory cortex.   
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C.4 Specific brain areas: correlation matrix with maximum across 5 minutes 

 
Figure 20: The difference in correlation between the HC and the PC, computed with the maximum correlation values 
across the five-minute recording. L = left, R = right, CC = cingulate cortex, S1 = primary somatosensory cortex, S2 = 
secondary somatosensory cortex.   

 

D Alpha power distribution (sensor level): Spinal cord stimulation 

 

Figure 21: The average theta/alpha ratio across the whole head for the 9 patients with a spinal cord stimulator, after one-
week evaluation periods of tonic, burst and placebo stimulation. The ratios were similarly distributed for each of the three 
stimulation settings. 
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E.1 Alpha power distribution (source level): tonic vs placebo stimulation 

 
Figure 22: The difference in theta/alpha ratio (source level) between tonic stimulation and placebo stimulation. A 
positive difference means a higher ratio during tonic stimulation and a negative difference means a higher ratio during 
placebo stimulation. 

 

E.2 Alpha power distribution (source level): burst vs placebo stimulation 

 

Figure 23: The difference in theta/alpha ratio (source level) between burst stimulation and placebo stimulation. A 
positive difference means a higher ratio during burst stimulation and a negative difference means a higher ratio during 
placebo stimulation. 
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E.3 Alpha power distribution (source level): Source model with thalamus 
The source model revealed a significant difference in theta/alpha ratio between the healthy controls 

(HC) and the pain controls (PC, section 4.1.2). The most significant areas showed to be the cingulate 

cortex, and cortical areas caudal to the cingulate cortex. As this model could only project activity on 

the cortical areas, we hypothesized that the difference in activity could also originate from a source 

deeper than the cortex: the thalamus. However, source modelling of surfaces deeper than the cortex 

is more complex and warrants a different strategy. Also, the validity of modelling deeper sources is 

yet uncertain.  

 

The vertices representing the thalamus were added to the cortical surface model that was already 

imported in Brainstorm. As the vertices of the thalamus represented current dipoles of deeper 

sources, the orientation of the current dipoles was set to unconstrained. This meant that the 

orientation was not set perpendicular to the cortical surface, but three orthogonal dipoles were 

used for each of the thalamic vertices (x, y and z). Subsequently a forward model was computed 

(overlapping spheres) and the minimum norm imaging method of Brainstorm was used to estimate 

the activity for each source. The theta/alpha ratio was then computed for each source and the 

differences between the HC and the PC were analyzed by using a permutation t-test with a false 

discovery rate (FDR) correction for the number of sources (p-values < 0.01 were assumed to be 

significant). The results for the thalamus were visualized in the form of a volume grid.  

 

The thalamus indeed showed significantly higher theta/alpha ratios for the PC group, compared to 

the HC group (fig 20). The cortical sources, surrounding the thalamus, were not significantly 

different between the two groups anymore (compared to fig 6, section 4.1.2).  

 

 

Figure 24: The results for a permutation t-test between the average (source level, with thalamus) theta/alpha ratios for 
the healthy controls and the average (source level) theta/alpha ratios for the pain controls. The results were false 
discovery rate (FDR) corrected for the number of sources. The values represented in the figure are t-values based on a 
significance level of p < 0.01. The areas which showed the largest differences between the two groups, were the insula 
(primarily the right insula), the cingulate cortex and the right temporal/occipital cortex. 
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F.1 Specific frequency bands: alpha1, tonic & burst stimulation 

 
 
 
A) 

 
 
 
 
B) 

 
Figure 25: The mean relative power in the alpha1 frequency band (8-10 Hz) for every source, (A) for tonic stimulation 
and (B) burst stimulation. There are only small differences in cortical activity between the two different stimulation 
settings.  

 

F.2 Specific frequency bands: alpha1, tonic & burst vs placebo stimulation 

 
 
 
A) 

 
 
 
 
B) 

 
Figure 26: The difference in mean relative power in the alpha1 frequency band (8-10 Hz) for every source, (A) between 
tonic stimulation and placebo stimulation and (B) between burst stimulation and placebo stimulation. The positive values 
indicate more power in the alpha1 band for either tonic stimulation (A) or burst stimulation (B), compared to placebo 
stimulation. Especially the right hemisphere shows more alpha1 power in the somatosensory cortex and the parietal lobe 
for tonic versus placebo stimulation, this is not the case for burst versus placebo stimulation. 
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F.3 Specific frequency bands: beta1, tonic & burst vs placebo stimulation 

 
 
 
A) 

 
 
 
 
B) 

 

Figure 27: The difference in mean relative power in the beta1 frequency band (13-18 Hz) for every source, (A) between 
tonic stimulation and placebo stimulation and (B) between burst stimulation and placebo stimulation. The positive values 
indicate more power in the beta1 band for either tonic stimulation (A) or burst stimulation (B), compared to placebo 
stimulation. When comparing burst to placebo (B), there is more beta1 power in the somatosensory cortex during burst 
stimulation. When comparing tonic to placebo (A), there is no clear difference for that area.  

 

F.4 Specific frequency bands: theta, tonic vs burst stimulation 

 

Figure 28: The difference in mean relative power in the theta frequency band (4-7.5 Hz) between tonic stimulation and 
burst stimulation for every source. The positive values indicate more power in the theta band during tonic stimulation, 
compared to burst stimulation. The prefrontal cortex of both hemispheres shows an increased theta power during tonic 
stimulation, compared to burst stimulation.  

 


