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ABSTRACT 
Means of producing your own energy using technology such as solar panels is 
becoming available to more people every day. HanzeNet is a Dutch start-up 
working on a platform for trading such locally generated energy within local 
communities. 

This thesis details the design of a software system enabling such trading of energy 
in a decentralized manner using blockchain technology. Our design allows 
consumers to directly trade energy with others in their community. This makes it 
feasible for many communities to run solely on locally produced energy 
throughout most of the day, only buying power from external energy suppliers 
when the local supplies are depleted. Multiple means of energy production can 
be tracked to allow customers to choose which type of energy they would like to 
consume. 

Our system is designed to scale from small neighbourhoods to entire cities using 
a layered design to ensure optimal performance and manageability, and is shown 
to perform well even on lightweight server platforms. The system is released as 
free and open source software, allowing anyone to verify the implementation 
and check whether all operation are performed correctly. An extensible design 
allows for future additions of additional functionality without having to fork the 
existing blockchain network. 
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1 INTRODUCTION 

1.1 CONTEXT 
HanzeNet is a Dutch start-up in the electrical energy industry working on 
decentralizing energy trading. They do this by introducing small scale 
marketplaces where local communities can trade their energy between 
themselves instead of all trading with a remote energy supplier. Trading with 
other local marketplaces and/or remote energy suppliers is used to balance any 
surplus or shortage of locally available energy. 

This move is enabled by a number of civilizational developments: The move to 
using electricity for many appliances which previously ran on other sources of 
energy (for example electric cars, electric heating and cooking) means electricity 
is being used more than ever. Technologies like affordable solar panels, battery 
banks and more efficient appliances result in increased decentralization: 
Consumers now produce, store and use their own energy. And new 
developments in software and digital communication now make it feasible to 
create smarter systems for monitoring, planning and accounting energy usage, 
enabling solutions for automated trading. 

So far, the HanzeNet start-up has developed a small-scale working proof-of-
concept in cooperation with a distribution network operator based in the 
Netherlands. where they run a simulation of how energy could be traded 
between a small number of households which both produce electricity by means 
of solar panels and consume it, showcasing how many of the participating 
households can run solely on energy produced within their community for most 
of the day, not needing an external energy supplier. This improves energy 
efficiency, helps distribute load on the central electricity grid and incentives local 
initiatives for cleaner energy. 

With the initial proof-of-concept showing good results, the next goal is to move 
from a simulation run externally at HanzeNet to a working system on-premise, 
and scale this system to make it work for larger environments. Here lie a few 
open research questions for determining how such a system may best be 
designed. 

1.2 PROBLEM STATEMENT 
In this report, we describe the design of a software system that allows energy 
trading and management services for cases such as but not limited to HanzeNet. 

 



 

Given this context we formulate our problem statement: 

How can we build decentralized, scalable, digital marketplaces for electrical 
energy? 

We aim to address both a number of high-level architecture concerns as well as 
lower-level technical concerns to form a broad overview for how such a system 
may be designed and build. 

We will scope our design specifically for cases in the context of the electrical 
energy systems in The Netherlands, which means we will document some of our 
decisions to be based in Dutch-specific law and other environmental 
circumstances. HanzeNet will be the example case we use throughout this report. 

1.3 RESEARCH QUESTIONS 
To help guide the research, we formulate a number of sub-questions which we’ll 
attempt to answer in order to answer the main question. Each of these is 
supplemented with a short rationale and first thoughts. 

 

I. How does the HanzeNet proof-of-concept work? 
The current proof-of-concept is the base upon which we’ll continue our research, 
both to make sure the goals are attainable within the available time as well as to 
build upon existing knowledge available within the HanzeNet team. The proof-
of-concept may also provide a basis which may be used as a testbed or for 
validating changes through simulation. 
 

II. How can we account energy usage? 
HanzeNet allows users to “trade energy”. However, the system is purely acting in 
the administrative domain and not in control of the physical energy being 
transported. Thus, we need a trustworthy source of information about produced 
and consumed energy; preventing malicious users from trading with energy in 
our administrative system that doesn’t actually exist in the physical world. This 
would likely involve making use of existing legal boundaries which prohibit 
tampering with electricity meters. 
 

III. How can we connect households for trading within the local marketplace? 
We need a way to connect households within the same local marketplace in order 
to make them trade energy between them. Internet-based solutions may be 
considered as well as simpler local radio-based connectivity. Considerations have 
to be made regarding what happens when there is no connectivity but the need 



to trade energy is. We show through simulations and prototypes concretely how 
these considerations function. 
 

IV. How to preserve privacy of individuals within the local marketplace? 
When trading energy within a local marketplace, neighbouring households can 
learn a lot about each other’s energy usage over time, which may cause privacy 
concerns. We show that using modern cryptography it is possible to reduce the 
amount of information one can learn about individual households. This yields 
some limitations as to what information is available to the system to work with 
however. We provide an overview of what the options for this and their 
respective impact to the system are. 
 

V. How will local marketplaces trade with external entities to resolve shortages 
and/or remainders? 

After local marketplaces have been trading internally to resolve all energy needs, 
it might happen that there isn’t enough energy available within the marketplace 
for the current demand, or there might be a surplus. Thus, the marketplace needs 
to trade with external parties, such as other nearby marketplaces or centralized 
energy suppliers to resolve this. We consider whether individual households or 
the marketplace as a whole should trade, and how well these approaches fit in 
our system. 

1.4 APPROACH 
The process for this research follows the typical outline of a system design 
project. 

We started off with an exploration of the design context where we provide a 
short study of relevant literature and technologies, and familiarized ourselves 
with the workings of energy delivery in The Netherlands. We also examined the 
previous prototypes and the outcome of the experiments conducted by 
HanzeNet to learn how these functioned. 

Based on the acquired information we started the exploration and design 
process. We explored various design elements and discussed these with both the 
HanzeNet team and external experts to verify our assumptions and better 
understand what effects specific decisions may have. During this process we also 
developed a number of small prototypes to help us better evaluate the impact of 
decisions on software design and/or resulting functionality. 

Extra attention was devoted to examine edge cases and unintended behaviour 
arising from the design decisions, to determine whether particular combinations 
of functionality could give rise to unwanted side effects in the system. 



Stemming from these design decisions a system design was made and a software 
implementation was written. The system design was subsequently validated 
using a set of predetermined qualitative measures regarding functionality, 
security and extensibility. Using the implementation, we also assessed the 
systems’ performance and scalability in a quantitative manner by simulating large 
numbers of operations in the system and measuring how it performed. 

1.5 STRUCTURE 
This documents’ structure reflects the research approach described in the 
previous section. Chapter 2 contains background information consisting of 
related work and descriptions of technology used within this research. Chapter 3 
goes in detail on the research approach and details the requirements, general 
solution architecture and evaluation process. Chapter 4 presents the base 
architecture of the system, addressing the hardware and environment questions 
as well as the base layer for the software implementation. Chapter 5 focusses on 
the system design from a conceptual and software perspective and presents the 
various important design decisions made within the system. Chapter 6 presents 
the designed implementation of the system in detail. Chapter 7 contains the 
evaluation of features, security and privacy properties, and performance and 
scalability properties of the developed system. Chapter 8 concludes this research 
and discusses future work. 

 

  



2 BACKGROUND 

2.1 RELATED WORK 

2.1.1 TRIANA 
TRIANA[1] is a control strategy for smart grids developed at the University of 
Twente as part of the PhD thesis of Vincent Bakker. It defines a three-phase 
strategy for identifying flexibility on the demand side of the energy grid and 
leveraging that information to let a centralized planner component optimize for 
given objectives such as reducing stress on the supply chain and maximizing 
economic value. 

TRIANA’s focus is primarily on managing flexibility and it does not handle the 
administrative properties we aim to handle with our system. It might however be 
an interesting option for future integration with HanzeNet to provide planning 
data for flexibility trading, something we recommend as future work. 

2.1.2 PowerMatcher 
PowerMatcher[2] is a distributed systems architecture and communication 
protocol for smart grid systems under active development at TNO in 
collaboration with members of the Flexiblepower Alliance Network[3]. It 
provides a standardized system for flexible end devices to register their interest 
in consuming energy at a future time, based on user-provided parameters such 
as a desire to consume green energy, optimize for the lowest price or to consume 
their energy (and subsequently perform their function) within a limited 
timeframe. A centralized “auctioneer” subsequently determines an equilibrium 
price based on the registered supply and demand, which in turn triggers the 
actual use of energy by devices. 

PowerMatcher focusses primarily on trading flexibility and decreasing peak loads 
on the power grid by controlling end devices. It however doesn’t provide 
functionality which would allow it to be used with entire households for 
administratively trading energy which has already been consumed or produced. 
It might however be an interesting option for future integration with HanzeNet 
as a means of flexibility trading with PowerMatcher compatible devices, 
something we recommend as future work. 

2.1.3 USEF Framework 
The USEF Framework[4] is a standard for interoperability between smart energy 
systems by specifying a set of rules and standards. It provides detailed business 
process definitions and a technical reference implementation of the various roles 



and interactions defined within the framework. The framework is maintained by 
the USEF Foundation. 

While a standardized framework could be of value for interacting with other 
parties in a standardized matter, in its current form the USEF Framework is 
focussing on tackling different problems from the one we’re addressing in this 
research, namely the business process aspects of interacting entities in the smart 
energy ecosystem. While it might be interesting to evaluate the USEF Framework 
at a later stage to allow interaction between HanzeNet and others implementing 
these same standard, it currently does not sufficiently address our needs for 
administratively trading energy based on smart meter readings for consumer 
households. 

2.1.4 DeKo and SolarCoin 
DeKo[5] is a proposed currency backed by a portfolio of electricity delivery assets 
in the form of physical power production assets such as fuel or power plants, as 
well as standardized power purchase agreements accepted as a proxy of power 
production value. The paper argues this diversified approach provides for a more 
stable retention of value compared to traditional currencies, with the additional 
benefit that investments may benefit development of cleaner energy solutions. 

SolarCoin[6] is a digital cryptocurrency based on blockchain technology which 
employs the various ideas presented by the DeKo paper. It assigns a value in coins 
to verifiable solar energy production which can subsequently be used to trade 
like most cryptocurrencies. It relies on Know-Your-Customer (KYC) processes to 
verify these solar energy claims. The technical maintenance and claim verification 
processes are performed by the SolarCoin Foundation. 

The concepts of DeKo and their implementation in SolarCoin are useful on a 
global scale and focusses on solar power, but for smaller scale trading of energy 
including different sources of power it is less suitable. It might however be an 
interesting option for future integration with HanzeNet to allow participant to 
trade their green energy with external parties in the SolarCoin community. 

2.1.5 Energy Web Blockchain 
The Energy Web Blockchain[7] is an open source blockchain platform based on 
Ethereum designed specifically with applications in the energy market in mind, 
while a number of closed-source applications is developed to support trading and 
regulatory operations. A permissioned blockchain test network currently exists 
but trading of energy is not yet possible. The blockchain and supporting 
applications are developed by the Energy Web Foundation. 

The Energy Web Blockchain focusses on providing a generic platform with 
consideration for regulatory requirements for permissioned use. It doesn’t 
provide any trading capabilities of itself. If expanded with such functionality in 



the future it may be an interesting option for integration with HanzeNet to allow 
traders from both platform access to a larger community of energy producers 
and consumers. 

2.1.6 PowerPeers 
PowerPeers[8] is a Dutch energy provider which allows its customers to 
administratively share/trade their produced energy with other customers, as well 
as providing real-time insights in energy use and which customer administratively 
supplied the energy being used. The functionality available to end-users is similar 
to what we aim to provide through HanzeNet, however the implementation and 
platform are closed-source and not available for external parties to work with, 
and additionally relies on customers switching to PowerPeers as their energy 
supplier. 

2.1.7 Blockchain Technology in the Energy Ecosystem 
In her masters’ thesis[9], Amber Voets demonstrated the economic and strategic 
viability of a blockchain based trading systems in the Dutch energy ecosystem. 
This serves as a confirmation of the business viability as assessed by the 
HanzeNet team for further development of a decentralized energy trading 
system. As an explorative study its work focusses mainly on the impact on 
economic and business ecosystems, but does not provide a more detailed look at 
the system implementation questions we aim to address. The general insights 
into the functioning of the current energy ecosystem in The Netherlands proved 
valuable during the initial exploration of our problem domain. 

2.2 TECHNOLOGY STACK 

2.2.1 Blockchain 
Blockchain is a technology which at its core allows forming an append-only list of 
data in a distributed fashion. This makes it an interesting technology to examine 
for our use case, because an immutable history means we can verify all past trade 
transactions and being distributed aligns well with our requirements. 

The first distributed blockchain was described in the paper detailing the design 
of the Bitcoin[10], a digital “cryptocurrency” using the blockchain as a core 
technology providing a distributed ledger of transactions. Since then many other 
blockchain-based applications have sprung up. 

Blockchain is not as much of a radical new technology as often presented in 
media and marketing. It builds upon well-known techniques in distributed 
networking and cryptography. What sets it apart is its smart use of a consensus 
algorithm combined with a chain-like append-only data structure. As such, we 
believe blockchain can often be described as a paradigm in distributed ledger 



system design as much as a technology in itself: It is a design pattern that allows 
easy creation of a distributed system, similar for example to how working with 
big data was made accessible for many by the introduction of the map-reduce 
paradigm. 

In a blockchain, all data is inserted using “transactions”, which are contained in a 
so-called block. A block contains a limited amount of transactions in a certain 
time span. Blocks are linked together by referring to the previous block to form 
a chain of blocks, the block chain. In most blockchains, all this happens in 
distributed fashion, meaning that at any time there may be multiple chains 
starting from the same block with different transactions appended. In such 
scenario’s, to ensure only a single version of the data is maintained, the longest 
available chain of blocks is considered by all parties in the network to be the 
canonical and valid list of transactions; ignoring shorter chains. 

Creating a new block is often referred to as “mining”, and the party creating the 
block as a “miner”. Not all nodes in a network necessarily need to be miners. 

To append a block to the blockchain, a miner finds the longest chain and mines a 
new block which is linked to latest block in that chain. The new block is shared 
with the rest of the network. The resulting chain is one block longer than the 
previously known longest chain, so other nodes in the network will begin 
accepting it as the new longest chain. 

If all this happens concurrently in a distributed network, there is the possibility 
that multiple new blocks are mined at the same time, and thus multiple 
contenders for “the longest chain” arise. The blockchain is “forked”, with 
different miners working on different chains. However, as time progresses and 
more new blocks are mined, one of these chains will be the first to grow even 
longer than the other chains. When that happens, it becomes the uncontested 
longest chain. The other chains are discarded by all other nodes. Since data in 
blocks in those other chains did not make it into the new longest chain, nodes 
will retry to append their data to the next block based on the new chain. 

Linking a block to a previous block is done using the output of a cryptographic 
hash function. This ensures that the previous block cannot be modified without 
detection, as it will have a different hash value than the one stored in the current 
block. As a recursive result, the integrity of the entire chain of previous blocks is 
protected by the hash contained in the current block. 

When mining a block, the miner checks than the data contained in it is valid. It 
then calculates a proof of validity. This proof is most commonly a set of 
cryptographic signatures from trusted parties (called proof-of-stake), or a 
solution to a computation-intensive problem (called proof-of-work), although 
other techniques exists. These signatures or solutions can be checked by all 
nodes in the network to ensure they are correct, preventing anyone from 
inserting invalid blocks into the blockchain. For distributed blockchains it also 



means that the creation of new blocks happens in a controlled manner, which 
reduced the number of blocks that are mined at the same time and resulting forks 
of the blockchain. 

These properties also make it hard for anyone to change data in previous blocks, 
since the only way to do so is by trying to create a longer chain than the current 
chain. This would mean mining a lot of blocks, which would in most cases require 
the trusted parties to sign these, or to be able to solve these computation-heavy 
problems faster than the rest of the network combined in a so-called 51% attack, 
both of which are generally hard to pull off without a majority of the network 
actively or passively colluding. 

Data stored in a blockchain is thus verified by consensus to be correct and stored 
on every node participating in the network. As the blockchain grows, data in 
historic blocks effectively becomes immutable due to the increasing cost of 
modifying it. It thus is a append-only, distributed data structure. 

Most of the first generation public blockchains make use of the mentioned 
computation-intensive problem solving in the mining process, which eliminates 
the use of trusted parties. This methodology has drawbacks, such as the huge 
waste of computational energy required to keep the network alive and the 
associated penalties to performance, scalability and costs. As such, for non-public 
or “permissioned” blockchains the trusted party setup is often preferred. 

2.2.2 Cryptocurrency 
Cryptocurrency is the application of blockchain technology to keep a distributed 
ledger of financial transactions.  

Typically, public keys used to sign transactions are referred to as addresses or 
wallets and are associated with a balance often referred to as “coins”. These are 
not actual coins, but rather the sum of all transactions associated that wallet. 
Transactions consists of an input, which is a list of (not previously spent) 
transactions, and an output, which is a list of wallet addresses and a ratio 
specifying how the funds should be distributed over these wallets. 

In most cryptocurrencies, to incentivize miners to mine blocks, the miner may 
specify a wallet address which receives a predetermined amount of coins as a 
reward for mining the block. This amount is usually determined by a curve which 
ensures new coins are gradually introduced into the market over time, also 
referred to as the difficulty curve, and is adjusted over time to optimize the speed 
and efficiency of the cryptocurrency[12]. 

2.2.3 Smart Contracts 
Smart contracts are contracts which are specified using a digital protocol instead 
of using natural language, allowing them to be verified and executed 
programmatically. Although conceptualized in 1996[13], the term nowadays 



most often refers to the implementation in cryptocurrencies where arbitrary 
(often Turing-complete) computations can be run as part of the smart contract 
computer code. This allows for complex contracts to be governed purely by code, 
providing many advantages such as automated validation and execution of 
actions defined in the smart contract. In cryptocurrencies, smart contracts are 
usually implemented by committing the smart contract code and subsequent 
transitions of its state machine on a blockchain. Ethereum[14][15] is currently 
the best-known blockchain providing such functionality. 

2.2.4 Zero-Knowledge Proofs 
A zero-knowledge proof[16] is a method to allow proving correctness of a 
statement without any other information about the statement being revealed. A 
“prover” can provide a statement while keeping its details secret, while a 
“verifier” can still verify that the statement is indeed correct. Zero-knowledge 
proofs often are interactive, requiring the prover and verifier to interact multiple 
times. 

A zero-knowledge proof satisfies three properties: Completeness: If the 
statement is true, the prover is (eventually) able to convince the verifier of this 
fact. Soundness: If the statement is not true, the prover will not be able to 
convince the verifier of this fact. Zero-knowledgeness: Apart from the fact that 
the statement is true, the verifier learns nothing about the statement from the 
prover. 

The properties of zero-knowledge proofs make them a useful tool in the context 
of digital identity systems, helping tackle various problems relating to security, 
confidentiality and privacy. 

A notable application of zero-knowledge proofs is in the digital cash systems such 
as Zerocash[17], a cryptocurrency which uses a specific form of zero-knowledge 
proofs, zk-SNARKs, to provide completely anonymous and private transactions, 
and Monero, which uses ring signatures and transactions[18] for the same 
purpose by hiding information about the source and content of all transactions. 

2.3 THE HANZENET PROTOTYPE 
The first prototype for HanzeNet had as goal to demonstrate the viability of the 
HanzeNet trading concept on a small scale. It also serves as a visual explanation 
of how the HanzeNet system is intended to be used. 

In this first prototype, energy usage data was acquired via the energy supplier 
from a set of households which had agreed to be part of the experiment. These 
households were equipped with solar panels as a means of producing energy 
locally. The energy data was collected via the regular channel of the energy 
supplier, meaning it was delivered to HanzeNet with a few days delay. The data 



consisted of energy counter deltas per 15 minutes, indicating whether a 
household had consumed or produced energy in that period of time. 

Upon receiving it, the data was entered in a prototype blockchain application 
built upon a heavily modified version of the Dragonchain platform[19], which 
supported a basic set of smart contracts written in Python. It consisted of an 
access control smart contract, and a generic transaction smart contract which 
could transfer energy from one address to another, or by specifying a hardcoded 
special case source address could introduce new energy to simulate production 
or consumption. 

After the production and consumption was entered into the prototype, all energy 
was then redistributed between all households using transactions using a 
minimization function trying to eliminate all negative balances. When no 
sufficient energy was available within the network, extra energy would be added 
to signify energy being bought from an energy supplier. 

The entire prototype functioned as a simulation showcasing how energy could 
theoretically be traded between parties. Its output was visualized to 
demonstrate how energy trade occurred between these households[20]. In 
Figure 1 we see a snapshot of the visualization animation. It shows six households 
on a map, represented by the icons of a house. Five of these households are 
producing energy, which is indicated by the green plus sign. The opaque circles 
are animated to move from one household to another and represent the energy 
flow between the households. Green circles indicate locally produced energy, 
while the red circle indicates energy acquired from an external supplier. Using all 
these elements, the visualization shows how locally produced energy is used over 
time. 

The experiment demonstrated the general viability of a system for trading energy 
by showing how locally produced energy could efficiently be consumed by 
neighbouring households. It also generated interest by external parties such as 
energy suppliers and housing corporations to explore the implementation of a 
trading system for their customers, indicating the economic viability of further 
developing this concept. The prototype itself is not well suited for this, as it 

Figure 1: The HanzeNet prototype visualization 



doesn’t consider any of the desired security, privacy and scaling properties as 
well as being limited in implemented functionality. The system we design as part 
of this project is aimed to address these questions and provide a solid basis for 
further development.  



3 APPROACH 

3.1 DESIGN REQUIREMENTS 
Through various brainstorm and refinement meetings with the HanzeNet team 
we identified a number of requirements which we consider of importance for 
designing the system. Some are based on business requirements, creating 
opportunity for the system to be deployed in varying environments, some are 
based on limitations imposed HanzeNet by Dutch law or physical limitations in 
energy systems, and some are based on the desire to put the user first and 
allowing them to choose what they do and what they do not want to do. 

3.1.1 Base functionality 
The system should fulfil the basic functions for trading energy. It should be able 
to be supplied with an input of energy usage data, and this data should be bound 
to time data to allow the system to account for changing energy prices over time. 
Users should be able to trade among each other. Preferably, we want users to be 
able to choose what type or source of energy they want to use (for example from 
the solar panels of their neighbour or from the coal-fired power plant a few miles 
away). Relevant administrative management functions should be available for 
the party managing the system. 

3.1.2 Security 
Since the system will be used for tracking and trading in energy, there is monetary 
value attached to the systems’ actions, and thus, there is the possibility some 
malicious users will attempt to manipulate the system for personal gain. The 
system should thus be secure against fraud by both end users and trusted parties, 
by either preventing such actions in the first place or providing the ability to 
detect and act upon such activity. The system should be reliable and safeguard 
against improper operations. Historical data should be immutable and any new 
changes must always be authenticated to ensure proper access control. 

3.1.3 Privacy 
The system will work with data which may be considered personal to some 
degree, which means we will have to take adequate measures to make sure this 
data is properly protected. At the same time, since we’re building a marketplace 
some information inherently needs to be shared. There should be options 
available to deal with multiple degrees of information sharing, both inside and 
outside the system (by protecting information in the system itself, or limit how 
information in the system may be linked to individuals outside it). 



3.1.4 Scalability 
The system will be deployed for a large number of households. To maintain the 
benefits the system can provide, it has to scale so its performance does not suffer 
when being used by such large numbers of users. We will evaluate this by 
benchmarking the amount of operations the application can process in a limited 
timeframe, as well as showing how these results can reliably be used to reason 
about performance of larger deployments. 

3.1.5 Extensibility 
The goal of HanzeNet is to develop an open platform both we and third parties 
can energy-related application upon. The system should thus allow for easy 
expansion of core functionality, and allow external systems to connect to it to 
interchange data between them. Design decisions made in the first iteration of 
the system should not be unnecessarily limiting functionality so future use cases 
may extend upon it. 

3.2 DESIGN APPROACH 
To address the requirements, we aimed to designed a software solution that 
enables measuring energy use and using that information to let user’s trade in 
energy. We will first explore and design a base architecture in the form of a 
distributed system based on blockchain technology. This platform will serve as a 
base which addresses common required functionalities such as acquisition of 
energy usage data, connectivity, immutable data storage and exchange, and 
secure user authentication. 

Upon this base architecture we will design the core of our system which is 
concerned with all the domain-specific design decisions for enabling energy 
trade. We may design and prototype a number of different options for resolving 
specific design problems while iterating over our overarching system design. This 
can for example include different approaches for handling trade, various ways to 
split up functionalities in smaller, access-controlled operations and so forth. 

After the iterative design process is complete we will develop an implementation 
of the core system design upon the base architecture in the form of a set of smart 
contracts on the blockchain. This implementation will be used to demonstrate 
the design as well be used for the validation of the system. Additional tooling we 
require during the development or testing process will be developed in this phase 
as well. 

While the end-users of the system will include consumers, how these users 
practically interface with the system is not within the scope of this research and 
we will thus not be conducting significant interface and interaction design. 



3.3 EVALUATION APPROACH 
The result of this work will be evaluated using a two different of measures, 
assessing both qualitative and quantitative concerns. 

The qualitative requirements defined in section 3.1 will be validated for the 
designed system. We will be providing a short analysis of how specific 
components of the system address the requirement or summarize how the 
requirement is met as a result of the overarching system design. 

A verification of the performance and scalability properties is supported by a 
quantitative evaluation of the implementation, by running a benchmark of the 
system in which a large number of operations will be simulated, which will 
involve every component of the designed system. By combining these 
performance measurements with a design that ensures these numbers scale well 
to larger deployments we argue that the system is well-performing and scalable. 

 

 

 

  



4 BASE ARCHITECTURE 
This chapter discusses the base architecture of the system, including the 
considerations made on the hardware and environmental aspects of the design. 

4.1 HARDWARE & ACCOUNTING 

4.1.1 Measuring energy usage in The Netherlands 
The first stage in the HanzeNet system is acquisition of energy 
production/consumption data. This data will subsequently be used for trading, 
so it is important we are able to acquire it accurately and with little delay. For 
this purpose, we aim to integrate the functionality we require into pre-existing 
smart energy meters. The advantages of this approach are multiple: Energy 
meters are already the legally required method in The Netherlands for measuring 
energy[21], and additionally are protected by that same law against tampering 
with the meter. That means that instead of having to develop various security 
countermeasures specifically to protect our entry point of data, we don’t have to 
introduce such complexity and rely on existing legal frameworks for protecting 
any operations within the boundary of the smart meter. Integrating with smart 
meters also means we will have immediate access to reliable energy data without 
significant measurement errors or delays that would occur when using external 
or older types of energy meters. 

Smart meters are just one class of meters and end users are not required by law 
to specifically use a smart meter. However, this will be a requirement for 
HanzeNet, as without the data from a smart meter it will not be possible to 
participate in trading of energy. 

Smart meters in The Netherlands already have the ability to transmit usage data. 
Measurements from the smart meter are transmitted via the grid operator to 
EDSN, Energy Data Services Netherlands[22], which in turn shares that data with 
energy suppliers and other certified companies. This functionality is actually used 
by all active energy suppliers to calculate energy use and bill the end user 
accordingly. The main disadvantage is its huge delay: It takes days for the data to 
be delivered this way, and in practise due to bureaucracy delays of several weeks 
have been observed. 

4.1.2 Acquiring reliable measurements 
All smart meters are equipped with a P1-port, a RJ-11 connector which provides 
live energy measurements directly from the meter about every 10 seconds. This 
kind of data is ideal for use with HanzeNet: It comes directly from the (trusted) 
energy meter, so our numbers will match with the numbers used by the grid 
operator / energy supplier, something that wouldn’t be guaranteed if we were to 



use a separate energy meter. The disadvantage of using the P1 port is that it is 
an externally connected device, and thus not protected by the legal boundaries 
which apply to the smart meter itself. As such, it would be easier to supply our 
device with false information or just disconnect it occasionally when the user 
thinks that would yield a benefit to him/her. 

Integration within a smart meter is thus our end goal, however, developing a 
customized smart meter including getting it certified and producing it on scale is 
out of scope for this research. HanzeNet will for the time being focus on building 
the blockchain platform. We will use a dualistic approach for collecting energy 
measurements: We will use the P1-port for real-time data, and also request that 
same data via the grid operator. When we receive the data from the grid 
operator, we will compare this to the data we acquired via the P1-port, and if 
there turns out to be any difference between the energy the user traded based 
on P1-data and the actual energy reported via the grid operator, we will simply 
send a bill to the end user, using the energy prices from the external supplier. 
This ensures that no matter how prices change, it will always be cheaper for the 
end user to keep its HanzeNet device connected and operational because we 
assume that either the external energy supplier is more expensive than local 
energy production, or if somehow energy from the external energy supplier is 
cheaper than locally produced energy, our system would buy its energy there 
regardless, eliminating the incentive to disconnect the device in any case. 

During this first stage, our device connected to the P1-port would not be 
protected by the legal protection of a smart meter. Using the same approach to 
handle disconnecting the device we can counteract tampered data inserted by a 
malicious user, and additionally we will implement a few limits on input data to 
detect and prevent unreasonable data from entering the system. 

Figure 2: Overview of setup for acquiring energy measurements 



Unintentional disconnects are handled in the same way, as distinguishing 
between these is not feasible during our first stage. This does mean that the 
possibility exists that users will pay the slightly higher prices from the external 
energy supplier in cases of a technical problem. We decided that that is an 
acceptable cost during this first stage, as given the stability of smart meters it is 
unlikely the connection will fail unpredictably, and because we detect 
disconnections we can always decide to refund the user in case we are able to 
confirm it was caused by a technical issue outside the influence of the user. In 
the second stage, when integrating directly into the smart meter, the problem of 
disconnection will by definition no longer exist. 

4.1.3 Connectivity platform 
For connectivity we chose to primarily focus on standard Internet connections 
via standard Ethernet or Wi-Fi for the first versions. These are standard and very 
widely deployed technologies and we can reasonably assume their availability. 
Other connectivity options were considered, such as LoRa mesh networks or 
LoRaWAN[23]. To limit complexity and keep initial costs and risks of 
implementation low we opted to not further develop these options. However, 
these are promising options for future development, especially when deploying 
HanzeNet in local communities with relatively small distances between 
households. In our system design we ensured implementation of such alternative 
connectivity technologies is possible without major changes to other parts of the 
system. 

4.2 BLOCKCHAIN-BASED SOFTWARE PLATFORM 
As a basis for the HanzeNet system we opted to go with a blockchain-based 
architecture. Coinversable had already been working on a new, open source 
blockchain platform called “Validana”. Since Coinversable is also one of the 
partners in HanzeNet, we choose to adapt this new blockchain platform for the 
HanzeNet system. 

Validana is written in TypeScript, a high-level language that compiles to 
JavaScript. The core platform, including all improvements that were contributed 
during this research, has been open sourced under the AGPL-3 license[24]. 

The Validana platform acts like a permissioned blockchain with a single miner, 
called the “processor”[25], and multiple nodes mirroring the blockchain. It has 
full support for complex smart contracts. The single processor acts as a central 
trusted party, the only one that can accept transactions and thus decide what 
data gets on the blockchain. While it can choose to accept or reject transactions, 
it cannot modify them (as this would violate the signatures from the submitter of 
the transaction) nor make any unnoticed changes (since all data is still mirrored 



across all nodes and all nodes can still check that the processed blocks are 
correct). 

The primary advantages of the single processor approach in Validana for our 
system are the performance properties and the ability of update smart contracts 
running on the blockchain. Validana doesn’t use a computation-intensive mining 
process but only requires a valid signature by the processor for a block to be 
validated. The performance of the blockchain can thus be scaled by scaling up 
the processor, something we will look into further during our system validation. 
Additionally, since there is only a single processor controlled by a trusted party, 
this trusted party can control which smart contracts it accepts and which ones it 
does not. By choosing the trusted party appropriately, this allows us to deprecate 
smart contracts as we want to replace them with newer versions, for example to 
allow patching issues, adding functionality or changing the underlaying logic 
entirely without having to fork the blockchain and update all nodes accordingly. 

Validana uses public key cryptography to secure all its operations, based on the 
Bitcoin protocol and thus inheriting its security properties. All identities on the 
blockchain are represented by a private/public keypair. The public key acts as a 
public address to reference to the identity, and the corresponding private key is 
used to sign invocations of smart contracts. 

All operations on the Validana blockchain are governed by smart contracts: There 
is no functionality besides calling a smart contract with a set of parameters. 
Smart contracts can access and modify a global, shared state. Smart contracts 
thus are trusted code, and as such only the processor, the single trusted party, 
can add new smart contracts. All existing contracts can be called by any other 
parties, and thus smart contracts should check whether the invoker of the smart 
contracts is allowed to perform the operation it is attempting.  

In the scenario of HanzeNet we already have a trusted party: The grid operator. 
The grid operator is required by law to operate the electricity grid and perform 
duties such as determining energy use. Since its role is embedded in Dutch law, 
they are expected to continue existing even as business models change, and thus 
are a good candidate to fulfil the role of trusted party in our blockchain by 
operating the processor. That way, they can set the rules by which the system 
operates, and their legal responsibility ensures that they should not misuse that 
power lest they be punished by law. 

We chose to build upon this platform for the HanzeNet system since its 
properties make it an excellent fit for what we aim to do. The single processor 
approach ensures we’ll have good performance, and is not a problem since we 
will have a trusted party in our system either way, and all nodes mirroring the 
data will be able to check the work done by this trusted party. The contract-based 
system makes it easy to develop and prototype new functionality, and the open 
source nature and TypeScript language makes it easily accessible to third-party 



developers wishing to develop upon the HanzeNet platform. The ability to 
deprecate contracts is very useful to have if we ever want to transition to newer 
versions of those contracts; given that direct trading of energy is still young and 
may change as the markets, technologies and government regulations mature it 
is important that we can adapt to those changes. There exist no other existing 
blockchain platforms out there which offer us the same set of functionalities. 

With the Validana blockchain as the base for the HanzeNet system, most 
functionality will be implemented using smart contracts. The trusted party, the 
grid operator, can manage which smart contracts are accepted in the blockchain. 
The HanzeNet start-up aims to build closed-source applications exclusive to 
paying customers to sustain its business model, while allowing anyone to build 
their own applications upon the open source blockchain platform and smart 
contracts. 

  



5 SYSTEM DESIGN 
This chapter will detail a number of the design decisions which were in 
development of the system, as well as discuss rationale and alternative options. 
At the end of the chapter, we give a short overview of the design choices and 
rejected alternatives in Table 1. 

5.1 SEPARATED CONTEXTS 
Users can only participate in a HanzeNet marketplace with permission. For this 
purpose, all smart contracts in HanzeNet operate within a context, which is a 
separate identity on the blockchain. The public address is used as an identifier 
for the context, and the private key is held by the context owner, allowing 
him/her to perform administrative duties within his/her context. All smart 
contracts take a “context” parameter, and before executing any functionality will 
check if the identity calling the smart contract is within a list of allowed 
addresses. The context owner can add and remove addresses to these lists using 
specialized smart contracts. 

A context thus functions as a closed system in which all operations take place. No 
information is shared between contexts; actions in one context will never affect 
any other context. Any valid identity can represent a context, and an identity can 
be part of any number of contexts. 

See Figure 3. Here we see a visual representation of two contexts, X and Y. The 
context owner is represented by the top block in each context. We see a total of 
three users: A, B and C. User A is added to both contexts, meaning it can perform 
operations in either one. But the only thing user A in context X and user A in 
context Y have in common is that they share a blockchain identity: They have the 
same address, and sign their transaction with the same private key. For all other 
purposes, they can be regarded as completely separate users. 

This separation of contexts allows us to have multiple marketplaces run upon the 
same blockchain platform without having to maintain completely separate 
blockchains for them. This ensures we can minimize the costs for running the 
system for multiple marketplaces and conveniently have data for multiple 

 

 
Figure 3: Two separate contexts with three blockchain identities as users 



contexts available in one place when cross-context operations become relevant 
in future versions of the system. 

5.2 KEEPING BALANCE 
Once a user is allowed to operate within a context, in its most general form, 
HanzeNet allows him/her to do two things: Account energy 
consumption/production and trade. For that purpose, HanzeNet keeps a balance 
for each user in the context. The balance is mutated whenever one of those two 
basic functions is performed. 

We can model this similar to a bank account: We sum the all amounts a user has 
produced, consumed, received through trading, or transferred away, resulting in 
a single amount. This amount is a users’ balance. 

When our energy meter shows a flow of energy, it is recorded and the “energy” 
smart contract is called. When the yield is a positive amount (energy was 
produced) the balance of the user will be increased, while a negative amount 
(energy was consumed) will decrease the users’ balance. 

These amounts (or derivatives thereof) can then be used for trading: Users can 
transfer amounts to other users by calling a “transfer” smart contract. 

Consequently, if a balance is negative, a user has “used” more energy than they 
provided, and thus need to pay for the remaining energy. Likewise, if their 
balance is positive, they have provided more energy than they’ve used, and need 
not pay for anything as of that moment. This principle of balance is used in all 
HanzeNet smart contracts. 

An additional limitation we maintain for HanzeNet is that users cannot trade 
more than they own, meaning they cannot make their balance go negative by 
trading. The only way a users’ balance can become negative is by them 
consuming energy. This measure is implemented to disincentivize trade not 
directly linked to already existing energy production or consumption. 

5.3 TRADING WITH EXTERNAL PARTIES 

5.3.1 Layered trading 
One of the goals of the HanzeNet team has always been to enable trading in small 
marketplaces, for example for a local neighbourhood, as this provides the most 
opportunity from an economic standpoint. We thus designed the system to 
function well for such a small, local marketplace, without requiring local 
marketplaces as the only way to run the system. 



We conceptualized a local marketplace as a platform where people could trade, 
and envisioned these marketplaces consequently having to deal with local 
shortages / surpluses by, only when no internal resolution was possible, trading 
with external parties. 

From a technical perspective, this meant figuring out how we could support this. 
Two different approaches were considered: We could choose between having 
individuals within the marketplace trade with external parties, or having the 
marketplace as a whole trade with other marketplaces. 

For the scope of this research we made the design decisions to let local markets 
trade as a whole. Having individual members of the marketplace trade with 
external parties would require introducing some additional complexity to deal 
with the marketplace not being a closed system anymore, and it also doesn’t align 
with our goal of prioritizing local trade and only trading with external parties 
when local trade can no longer resolve the trade deficit. 

Since a context represents a single marketplace, we opted to allow the context 
owner handle trade with other marketplaces on behalf of the marketplace. The 
context owner has total control over its local marketplace, including being able 
to mutate balances of participants. This enables the context owner to handle 
external trade by adding or removing balance from participants when these 
amounts represent trade with external parties. As an example, a context owner 
could use a mutation at the end of the month to bring all participants’ balances 
to zero, signifying that the energy was supplied by an external party, and bill 
those users for the corresponding amount of energy. 



5.3.2 Stackability 
An important design decision was to allow the design to stack, meaning that for 
layered trade between marketplaces we use the exact same contracts as are used 
within the local marketplaces themselves. This way, the entire local marketplace 
can be modelled as a single participating identity within a larger marketplace. See 
Figure 4 for a schematic representation. 

Aside from reducing complexity by reuse, the stacking approach also helps us 
address another important issue for the system: its scalability. From an 
organizational perspective, it allows us to use the system in multiple, isolated 
layers, each administered by potential separate parties, while still allowing high-
level trade between them. For example, a system in which each local 
neighbourhood is represented by a context could be encapsulated into a larger, 
city-wide context. From a technical perspective, it allows us to split up the entire 
market into small marketplaces which can be run separately, which we will not 
have a single, global processor processing every transaction, but are able to have 
multiple processors, one per local marketplace, making the systems performance 
only dependant on the size of the local marketplace, not on the size of the entire 
global market. 

5.4 REPRESENTING VALUE 
One of the first issues to tackle while designing the smart contracts for HanzeNet 
was what users would be able to trade with them. For HanzeNet, it was clear we 
wanted to “trade energy”, but we weren’t sure how we would model that. We 
could either directly trade energy, represented by a unit of energy such as kWh, 
or use another base unit which could be traded. 

Figure 4: Two contexts represented by their context owner in a higher layered context 



We concluded at some point we would have to represent the trade in terms of 
monetary value, since most consumers will be concerned with how much their 
energy use or production is costing or benefitting them. Thus, energy in our 
system would not have a constant value: 1kWh of energy today would have a 
different value than 1kWh in a few hours, a day, a month or even a years’ time, 
as energy prices change constantly. 

An important thing to note is that in our system, the amount of energy is 
determined at the edge, for example at each household’s smart energy meter. 
This means that any transportation costs are not explicitly represented within 
our system. In real life, there is always a small loss when transporting energy. We 
decided not to model this in our system to reduce the complexity of the overall 
system. Similar to how the current energy suppliers include the costs of transport 
as a factor in their prices, we expect the market to attach the correct value to the 
energy being traded in our system including any loss component. 

5.4.1 Conversion to coins 
The first approach we designed used two separate units. The first was energy, 
produced and consumed in kWh, and stored in the users’ energy balance 
together with the block number it was produced/consumed in. Users could not 
directly trade energy; it needed to be converted into “coins”, the other unit of 
value within the system. Converting energy into coins was done using a 
specialized smart contract called “convert”. The context owner would call this 
smart contract, specifying a previous block number and a “conversion factor”. 
The amount of energy for every user produced in that specific block would be 
multiplied by the conversion factor and given to the user as coins. These coins 
could subsequently be traded by users. 

With this design, the context owner could determine the value of energy per 
block number it converted. Since blocks are deterministically mined every few 
seconds, this effectively uses the blockchain to securely record when the energy 

Figure 5: A context owner converting energy for user A 



was produced. The conversion factor provided control over the value energy was 
assigned for a given timeslot, allowing the context owner control over the 
valuation of energy. 

5.4.2 Labels 
While the conversion factor provided some control over valuation of energy, we 
wanted to go further and differentiate between energy from specific sources. To 
facilitate this, we introduced the concept of “labels”. Coins have zero or more 
labels. Each of these labels is a string identifier, describing the coin has a certain 
property. An example of a label could be “solar”, denoting the fact the coin was 
produced with solar energy. 

Traders can trade coins with specific labels. They can also remove a label from a 
coin using the “reduce” smart contract, but they cannot add any labels to their 
coins. As a result, labels should only increase the value of a coin, since otherwise 
a trader would just remove the label to make the coin’s value increase. 

Each user has a set of labels which will be applied when their energy is converted 
to coins. They have no control over which labels get applied at conversion; this is 
completely controlled by the context owner. 

Since coins are partitioned by their labels, removing a label is also essential to be 
able to use the coin for to even out a negative balance. For example, consider a 
user which has consumed energy, which is converted to a balance of -10 
unlabelled coins. If they subsequently buy 10 “solar” coins from another user, 
these would not automatically balance out their negative coins, since they have 
a different set of labels. By removing the “solar” label from these 10 coins, they 
too become unlabelled coins and it bring the total coin balance to zero. 

5.4.2.1 Laundering labelled energy 
An important consideration is how these labels are assigned to prevent the 
problem of “energy laundering”. We have to make a distinction between two 
different classes that can produce and consume energy: a “device”, a singular 
piece of equipment such as for example a solar panel, and an “aggregation”, 
which is an energy system consisting of a multitude of devices, such as a 
household. It is tempting to conclude that since a household is equipped with 
solar panels, any energy it produces therefor deserves a label like “green” or 
“solar”. However, assigning such a label to an aggregation is problematic, since 
we cannot say for sure that energy produced by an aggregation is in fact all 
coming from the same source. 

As an example of how a customer may launder energy, consider a homeowner 
who also drives an electric car. Now if this customer charges his or her car at a 
fossil fuel power station, drives home and connects the car to the household, 
draining its batteries, as far as HanzeNet is concerned, there is energy being 



“produced” by the household, and it will be given the labels specified for that 
household. Clearly, this energy cannot be considered “green” or “solar” energy, 
and thus for HanzeNet we will not be assigning such labels to aggregations such 
as households. 

5.4.3 Coinless approach 
After introducing labels into the systems valuation was split into two steps: The 
conversion done by the context owner, and the additional value users would 
attach to energy with specific labels. In a subsequent iteration of our design we 
decided to unify this valuation and have energy be traded directly between users. 

The conversion step was removed and energy now was partitioned both by block 
number and set of labels, but could be traded directly between users. In this 
version of the smart contracts, a real-world value is attached directly to the 
energy based on when (determined by the block number) and how (signified by 
the labels) it was produced. 

In Figure 6 we see an example of a user with a balance spread over two different 
block numbers, block 1 and block 2, and two different labels: “solar” for all its 
produced energy, and no labels for the energy it has consumed. The user then 
uses a smart contract to remove the “solar” label from its energy, specifying the 
amount of energy (5kWh) and the block number (2) of the energy. By doing so, 
five unlabelled kWh’s were created in block 2, which subsequently cancelled out 
the pre-existing negative balance in block 2 have been cancelled out and has 
effectively disappeared from our balance. Note that the balance for block 1 is 
unaffected by any of this. 

Energy prices in this iteration of our model are completely left to the market to 
determine: Unlike the previous iteration the context owner does no longer 
determine a base valuation based on when the energy was produced. The block 
number recorded in each energy transaction allows the market to determine 

Figure 6: Using the “reduce” smart contract to remove a label from energy in a specific block number 



when that energy was produced or consumed, and determine the prices for it 
accordingly. 

An additional advantage of this “coinless” approach is that it makes the use of 
stacked marketplaces more straightforward: Instead of revaluating coins into 
energy before energy can be traded at a higher layer, we can now remove energy 
from one market and introduce it into another without a conversion step. 
Additionally, labels and timings specified by block numbers can be preserved 
between marketplaces. 

5.5 PERMISSIONS AND ROLES 
To provide finer-grained access to the system we split up production, 
consumption and trading to different roles assigned by the context owner. A 
producer is allowed to produce energy by calling the Energy smart contract with 
positive amounts of energy, a consumer can likewise consume energy by calling 
the Energy smart contract with negative values. Finally, a trader is able to remove 
labels from energy (using the Reduce smart contract) and trade it with other 
traders using the Transfer smart contract. A single address may be both producer, 
consumer and/or trader, or this may be split in multiple addresses. 
Producers/consumers are linked to a specific trader, which means all energy 
produced/consumer by them will be recorded on the balance of that specific 
trader. See Figure 7 for a visual overview of the different roles and the contracts 
they use to interact. 

This move to separated roles helps improve the security of the system by 
separating permissions. Besides being able to limit if a user is allowed to produce, 
consume and/or trade, it also has the practical implication that we are able to 
split up the private keys used for signing these transactions: We can now have a 
separate key in the smart energy meter which has the ability to produce and 
consume energy on the blockchain, and is protected by the legal boundaries 

Figure 7: Multiple roles within a context and the smart contracts they use to interact 



surrounding this smart energy meter. The user can still trade energy using his/her 
own private key, but no longer has access to the key needed to produce energy, 
preventing malicious users from submit false energy production transactions 
using the key they have access to. It also protects energy 
production/consumption transactions for non-malicious users in case their key is 
compromised. 

From a business perspective the move to separates roles enables a number of 
new ways to model business structures directly in the blockchain by having 
different parties control the trader keys. For example, one could imagine a 
leasing construct in which a user leases a set of solar panels from a company, for 
which we can then link the production directly to the trader address of the leasing 
company. 

Finally, this separation can enable users to maintain a multitude of trader 
addresses, similar to how in cryptocurrencies users usually split their balance 
over a large number of wallets. This can help improve privacy as the link between 
who owns which trader address does not have to be made public, allowing users 
to trade without exposing their identity. Because unlike various cryptocurrencies 
we do not have full traceability of energy by following the chain of transactions 
that introduced them, this can be an effective tool to help protect individual’s 
privacy within the system. 

5.6 CRYPTOGRAPHIC PRIVACY 
The last design improvement we looked at were various options to use modern 
cryptographic techniques to make certain information on the blockchain hidden 
while still being able to confirm the correctness of the system as a whole. 

The two things that are most interesting to apply this to are to replace the public 
key approach we use for signing transactions, and replace the energy balances 
including their label functionality. Since all information on the blockchain is 
linked to a public key which signed the transaction, this public key provides a 
direct mapping of various actions performed by the same actor. Amounts and 
labels are privacy-sensitive in themselves as their reveal a lot about the energy 
patterns of the associated users. 

To apply techniques for hiding balance we considered replacing the balance 
model of HanzeNet to be the best way forward since that way we can benefit 
from existing research and validation conducted in the context of privacy-
preserving cryptocurrencies such as Zcash and Monero instead of having to 
develop and verify our own methodology. 

Instead of storing the balance as a concrete amount, we would represent an 
addresses’ balance as a sum of transactions, signed with a one-time spendable 
key available to only the user. These could subsequently be used in transactions 



between traders. Both sender, contents and receiver could then be secured with 
the use of various zero-knowledge techniques (see section 2.2.4) such as zk-
SNARKs or ring signatures and transactions[18]. This allows third parties to be 
able to prove the total input and output of the transaction are equal, thus 
validating its correctness, while obscuring the exact amounts that were 
transferred between the parties. 

A drawback of encrypting all transaction information is that the information will 
also no longer be visible to the context owner. The context owner, representing 
the grid operator or another administrating entity, would still need insight into 
the end result of trade to determine whether additional energy would need to 
be supplied from an external supplier and whom in the network should be billed 
for that. There are two possible options to address this: 

1. Give the context owner direct insight into the transactions, for example 
by supplying the context owner with a read-only key for the transaction 
contents. 

2. Let the context owner set up a special trader address for each of the 
households in the local marketplace which receives all consumption, and 
requiring them to transfer energy into that traders’ balance to account 
for their energy use.  

A drawback of option two is that administrative functions such as mutation would 
be limited in such a model; the only available operation feasible would be to 
erase a balance completely, unaware of its actual value. 

A disadvantage imposed by replacing the simple public key setup with a system 
making the transactions unlinkable to users is that these links are still required 
by the administrating entity to allow them to bill or reimburse the correct user. 
In the simplest cases this can be remedied by instead of directly interacting with 
the balances of its users having the context owner redirect consumed energy to 
a trader address it controls itself, and requiring the user to transfer the required 
amounts or be billed accordingly. This does however not work in more complex 
setups which already delegate consumption to a different trader for different 
purposes. 

This functionality was explored from a theoretical standpoint by means of 
literature study (see chapter 2) and a few small prototype tests with the available 
cryptographic primitives. This implementation proved troublesome in the 
existing software foundation used in the system. With the additional limitations 
in functionality described above and the required additional engineering effort 
to resolve these, we concluded that further implementing this cryptographic 
support was out of scope for this research project and limited our efforts to a 
theoretical exploration. We recommend this as an important piece of future 
research. In the final implementation, we will implement the contracts as 
described in 5.5, forgoing any cryptographic additions described in this section. 



 

 

  

Decision area Selected option Rejected options 
Trading model Balance per user, negative 

values only caused by 
consumption, buys production 
to get to zero (5.2) 

Previous transactions 
as input for new 
transactions, allowing 
negative balance 

External trading Via context owner (5.3), 
preferring trade with higher 
layers (5.3.1) 

Having users trade 
directly with external 
parties outside context 
boundaries 

Value 
representation 

Energy per label (5.4.2) and 
time of consumption / 
production (5.4.3) 

Conversion to 
intermediate “coins” 
(5.4.1), based on direct 
origin instead of label 

Administrative 
functions 

Context owner controls access 
(5.5), available labels (5.4.2) and 
can mutate balance of any user 
(5.2) 

Uncontrolled access for 
traders 

 

 

Table 1: Smart contract design decision overview 



6 IMPLEMENTATION 
The Validana platform is written in TypeScript and runs on the Node.JS platform. 
The source code of all core components is available on GitHub[26] and includes 
a set of Docker files to make it easy for anyone to run any or all of the components 
the system consists of. 

6.1.1 CLI interface 
While the entire core system is available on GitHub, the only way to interface 
with it was using a client library which needed to be integrated in a program. As 
part of this research we implemented a command-line interface program for 
executing common operations: validana-cli. It is made available as open source 
under the AGPLv3 license[27].  

The program is designed using a structure of sub-commands to access its various 
functionalities, including the generation of keys, listing, creating, deleting and 
executing smart contracts, awaiting transactions completion and reporting its 
outcome. As input it accepts both parameters and files, including streaming from 
the standard input. All of its output is JSON. These properties allow for its 
commands to be composed using standard shell redirection techniques, allowing 
the user to easily execute more complex behaviours. For more information about 
the validana-cli program, we refer to its documentation1 which is available in the 
official npm repository[28]. 

6.2 SMART CONTRACTS 
All smart contracts are written in TypeScript, as this is the language the Validana 
platform itself was developed in as well and thus provided a good fit for 
integrating the smart contracts with it. The TypeScript code is compiled into 
JavaScript before being signed and submitted to the blockchain, where they are 
made available for execution. 

                                                         

 

 

1 https://www.npmjs.com/package/validana-cli 

https://www.npmjs.com/package/validana-cli


All smart contracts in Validana have access to a PostgreSQL database via a 
reduced SQL interface. We will use this interface for recording a shared state 
accessible by all smart contracts. Figure 8 denoted the tables used for this 
purpose. 

The final set of smart contracts described in this chapter are conforming the final 
iteration of design choices described in chapter 5.5. Other variations of the smart 
contracts are available as source code published alongside this document. 

6.2.1 Producer 
The Producer smart contract is used by the context owner to manage the list of 
allowed energy producers within its context. 

6.2.1.1 Input 
- The context address. 
- The address of the producer. 
- A boolean to determine whether that address is allowed or disallowed 

access. 
- An address indicating which trader will receive the energy produced by 

this producer. 
- A set of labels the energy will be associated with. 

6.2.1.2 Logic 
First the specified context address is compared to the submitter of the 
transaction to determine if the contract was called by the correct context owner. 

If the allowed field is false, the producer specified by the address will be removed 
from the producers table. If the allowed flag is true, a check is performed to make 
sure the trader is in the list of allowed traders, and then all this information is 
stored in the producers table. 

Figure 8: Diagram of database tables 



6.2.2 Consumer 
The Consumer smart contract is used by the context owner to manage the list of 
allowed energy consumers within its context. 

6.2.2.1 Input 
- The context address. 
- The address of the consumer. 
- A boolean indicating whether that address should be allowed or denied. 
- The address of the trader from whose balance the consumed energy will 

be subtracted. 
- The labels used for subtracting that energy. 

6.2.2.2 Logic 
First the specified context address is compared to the submitter of the 
transaction to determine if the contract was called by the correct context owner. 

When false is passed for the allowed field, the consumer matching the address 
will be removed from the consumers table. Else, the smart contract checks that 
the specified trader is allowed within the context, and then adds or updates the 
consumer data in the consumers table. 

6.2.3 Trader 
The Trader smart contract is used by the context owner to manage the list of 
allowed traders within its context. 

6.2.3.1 Input 
- The context address. 
- The address of the trader. 
- A boolean to indicate whether to add or remove the trader specified by 

the address. 

6.2.3.2 Logic 
First the specified context address is compared to the submitter of the 
transaction to determine if the contract was called by the correct context owner. 

When a trader is requested to be added, its address is added to the traders table. 
When a trader is requested to be removed, first a check if performed to check if 
there are any producers or consumers linked to the trader. If that is not the case, 
the trader is deleted from the traders table, and by cascade any energy balances 
the trader had are removed as well. 



6.2.4 Energy 
The Energy smart contract is called by producers and consumers to register their 
energy production or consumption in the system. 

6.2.4.1 Input 
- The context address. 
- The amount of energy as a floating-point number representing the 

amount of energy they want to record. 

6.2.4.2 Logic 
If the amount of energy is positive, it is considered production. The smart 
contract checks if the submitter of the transaction is in the list of allowed 
producers, and then adds the amount of energy to the balance of the trader 
specified in the producers table together with the specified labels and the current 
block number. 

If the amount of energy is negative, it is considered consumption, and a similar 
process is executed. The submitter is checked against the list of valid consumers, 
the energy is subtracted from the associated trader for the given labels and the 
current block number. 

If the amount of energy is zero (thus positive nor negative), the transaction is 
rejected. 

6.2.5 Transfer 
The Transfer smart contract is used by traders to transfer energy from to other 
traders within the same context. 

6.2.5.1 Input 
- The context address. 
- The address of the receiving trader. 
- The block number from which to transfer energy. 
- The labels of the energy to transfer. 
- The amount of energy to transfer as a floating-point number. 
- An optional string description field. 

6.2.5.2 Logic 
The smart contract first performs a number of checks to ensure the both the 
trader and the receiver are allowed to trade within the context, that the trader 
and the receiver are not the same entity, and that the amount to transfer is a 
positive amount. It then looks up the balance of the trader and checks if the 
trader has a sufficient balance for the given block number and labels. 



If all these checks succeed, the specified amount of energy is subtracted from the 
traders’ balance and added to the receivers’ balance. 

Energy balances are stored in the energy table per context, trader, block and 
label set. This means a trader can have a large number of smaller balances at a 
time. The aggregation of those balances is the traders’ total energy balance. 

6.2.6 Reduce 
The Reduce smart contract is used by traders to remove labels from their energy. 
As detailed in 5.4.2, this is an important operation to be able to combine distinct 
into a single balance, which traders can use to cancel out negative balances or to 
trade the requested type of energy with another party. 

6.2.6.1 Input 
- The context address. 
- A block number. 
- The set of original labels. 
- The amount of energy to reduce as a floating-point number. 
- A set of labels to remove. 

6.2.6.2 Logic 
The smart contract first checks if the trader is an allowed trader within the 
context, and if the amount of energy to reduce is positive. It then checks if the 
set of labels to be removed is a non-empty subset of the set of original labels. 
Finally, a check is performed to determine if the trader has a sufficient balance 
for the given block number and set of original labels. 

Once all these checks completed successfully, the specified amount is subtracted 
from the balance of the trader for the given set of original labels, and then the 
balance for the relative complement of the set of labels to remove in the original 
set of labels is increased with the specified amount. 

Labels in the HanzeNet database are stored as a text search vector type, which 
was chosen since it allows us to do all set operations on the database and makes 
it easy for applications to search for balances with specific sets of labels using 
built-in functionality of the PostgreSQL database system. 

6.2.7 Mutate 
The Mutate smart contract is used by the context owner to change the energy 
balance of any trader within its context. Its operation is similar to the Trade smart 
contract and be used for a variety of administrative purposes. 

6.2.7.1 Input 
- The context address. 



- The address of a trader. 
- A block number. 
- A set of labels. 
- An amount of energy as a floating-point number. 
- An optional description string. 

6.2.7.2 Logic 
The contract checks if the submitter is the context owner, and if the trader is a 
valid trader within its context, and then mutates the balance of the given trader 
for the given block number and label set with the given amount. 

6.3 EXAMPLE OF INTENDED USE 
We provide a few step-by-step examples to demonstrate how the system 
functions, clarify how the various components work together, and how its 
abilities may be used in an actual deployment. 

First, we set up a context by adding two traders, a producer, and a consumer: 

Caller Contract Parameters Result 
Context 
Owner 

Trader Context: [context], address: [trader A], 
allowed: true 

OK 

Context 
Owner 

Trader Context: [context], address: [trader B], 
allowed: true 

 

Context 
Owner 

Producer Context: [context], address: [producer], 
allowed: true, trader: [trader A], labels: 
[“solar”] 

OK 

Context 
Owner 

Consumer Context: [context], address: [producer], 
allowed: true, trader: [trader B], labels: [] 

OK 

 

We now have a context with four identities able to execute specific contracts.  
The producer and consumer each are linked to a trader and have a set of 
associated labels. 

Next, we will insert some energy data into the system by having the producer and 
consumer call the Energy smart contract: 

Caller Contract Parameters Result 
Producer Energy Context: [context], amount: 10 OK 
Consumer Energy Context: [context], amount: -15 OK 

 

We can now query the state of the system and we will see that the balances of 
the traders have been changed: 



Trader Block number Labels Amount 
Trader A 100 “solar” 10 
Trader B 100 (none) -15 

 

Since trader A was linked to the producer, it has received its production. Likewise, 
trader B was linked to the consumer and has now received its consumption. 

Trader A and B make a deal, resulting in the transfer of some energy from trader 
A to trader B. 

Caller Contract Parameters Result 
Trader A Transfer Context: [context], receiver: [trader B], 

block number: 100, labels: [“solar”], 
amount: 10 

OK 

 

Since trader A has trader away its entire balance for block number 100, it no 
longer appears on our balance overview. The balance for trader B looks as 
follows: 

Trader Block number Labels Amount 
Trader B 100 “solar” 10 
Trader B 100 (none) -15 

 

Trader B now has two separate balances for block number 100, since they have 
different sets of labels. Trader B wants to cancel out its negative balance with the 
energy it just acquired and will call the Reduce smart contract to remove the 
“solar” label from it: 

Caller Contract Parameters Result 
Trader B Reduce Context: [context], block number: 100, 

original labels: [“solar”], amount: 10, labels 
to remove: [“solar”] 

OK 

 

All labels are now removed from the energy, turning it into unlabelled energy and 
combining it with the pre-existing amount trader B already had. The balance now 
looks as follows: 

Trader Block number Labels Amount 
Trader B 100 (none) -5 

 

Now trader B is left with a deficit balance it can no longer resolve within its own 
context because there is no other trader left able to trade it some energy for that 
specific block. At this point, the context owner can initiate trade with an external 



energy supplier and use the Mutate smart contract to resolve the outstanding 
balance of trader B. 

Caller Contract Parameters Result 
Context 
Owner 

Mutate Context: [context], trader: [trader B], block 
number: 100, labels: [], amount: 5, 
description: “Energy supplied by external 
party, you will be billed for this at the end 
of the month” 

OK 

 

Since it knows the identity of every trader, it can bill trader B for the amount of 
energy that was supplied from external sources. 

  



7 EVALUATION 
With the design of the system complete as outlined in chapter 4 and 5 and 
implementation of the smart contracts completed in chapter 6, we evaluate 
whether this proposed design and implemented set of functionalities is a suitable 
solution for HanzeNet. 

7.1 GENERAL FEATURES 
We designed a blockchain-based system for trading electrical energy. It 
implements basic trading capabilities using a balance-based system in which 
selected participants can trade energy. All energy balances and associated trade 
is part of a context, and we allow for multiple of these contexts to co-exist 
without impacting each other or requiring multiple blockchains to be operated 
(see 5.1). 

Energy usage is measured using the standardized smart meters available in The 
Netherlands (see 4.1.1) and collected via both the EDSN network and via the P1 
port directly from the energy meter. Collected energy data is timestamped upon 
transmission into the blockchain so timebound price differences are supported 
in the system and energy prices can change over time as the market determines. 

We introduced labelled energy (see 5.4.2) as a way of tracking different sources 
of energy such as produced by solar panels, wind turbines, et cetera. Users can 
choose to specifically buy energy which has certain labels, allowing them to have 
direct control over sources they support through their purchasing of energy. It 
also allows users to choose to buy their energy from sources more specifically 
than they’d be able to with traditional energy suppliers, which usually only allow 
users to choose between greenly produced energy or just any energy, and 
specifically support local initiatives, specific techniques et cetera. 

Administrative functions are provided within each context. The creator and 
owner of the context can choose which users can produce, consume and/or trade 
energy as well as change the balance of any user within that context (see 5.2). 
This fulfils the requirements for basic functionality as described in 3.1.1. 

The design choice to make the entire system stackable (see 5.3.2) and use layered 
trading (see 5.3.1) both solves the problem of trading with external parties while 
keeping the local marketplaces small and scalable. 

The application we built is easily extendable. The open source blockchain basis 
allows easy integration of third-party application, something we showcased with 
the development of the CLI interface for working with the blockchain platform 
(see 6.1.1). Additionally, in the design of all our smart contracts we specifically 
left room for alternative implementations in future iterations such as flexibility 



trading, something which is made possible by the ability to deprecate and replace 
smart contracts in Validana (see 4.2). 

Our system is complementary to existing systems for smart grids and energy 
trading such as TRIANA, PowerMatcher, SolarCoin and others (see 2.1). Data from 
our system can fed into those systems to optimize using market data or trade 
energy externally, while information from those systems can fed back to enable 
users of our system to benefit from prediction capabilities and improved decision 
making. 

7.2 SECURITY AND PRIVACY 
Using an open source blockchain as the basis of its system gives us guarantees 
about correctness which can be checked by any interested party in a 
decentralized manner. This helps build trust in the system as participants have 
full visibility in how it functions and can verify the trusted party conforms to the 
agreed rules. 

It also provides us with a number of security properties required as per 3.1.2. 
Since all transactions are cryptographically signed and stored in a distributed 
fashion on all participating nodes, once a transaction is accepted it is impossible 
for it to be tampered with without any of the nodes detecting and refusing these 
changes. 

Additionally, our blockchain platform allows us to deprecate smart contracts 
which allows us to replace them as any security issues are found. By enforcing 
this ability through a trusted miner this also does not suffer from some of the 
common vulnerabilities in contract upgrade patterns[29]. 

The separation of roles (section 5.5) provides an additional layer of security by 
having separate keys for different operations within the blockchain, which limits 
the impact of a key being compromised. 

On the privacy front (see 3.1.3), the primary protection is provided in the form of 
the ability to have a multitude of producer, consumer and trader addresses. Only 
the context owner has to know to which real-life entities these addresses map 
(see 5.5). Using common metadata hiding techniques such as splitting the energy 
transactions over a number of transactions from multiple producer addresses 
with amounts modulo a fixed amount, specific usage could be obscured further. 
The same technique applies to consumption and trading. This makes it hard for 
outsiders to see how much energy is being used by a specific household as the 
link between addresses on the blockchain and households cannot be made, 
protecting the privacy of the users in those households. 

The system design allows for expansion with additional cryptographic techniques 
to further improve privacy and hide user data as explored in 5.6. 



7.3 PERFORMANCE AND SCALABILITY 
To evaluate the performance of our system, we set up a new virtual private server 
at a commercial datacentre and set it up with a complete copy of the system. We 
created the smart contracts on it and then generated large amounts of 
transactions for all those contracts. We submitted these transactions for 
processing and measured precisely how long it took until the last transaction was 
done processing. 

The system chosen was a single core, 2Ghz CPU, 2GiB memory, VPS running 
Ubuntu 18.04.1, one of the cheapest offerings available in Europe at the time of 
writing. By specifically opting to benchmark on such a low-performance system 
we argue that if our implementation can run. The Validana blockchain was 
running in its default configuration in Docker, and all transactions were first 
generated locally (as to not have the machine do both generation and processing 
of transactions simultaneously which could impact our measurements) and then 
we recorded the time from when we started transmitting the first transaction to 
the Validana server until the last transaction was reported by the server to have 
been processed. 

See Figure 9. This shows the time to process a batch of transactions over 
averaged over five test runs. Scaling up the number of transactions correlates 
linearly with the time until all transactions are processed. In this experiment we 
were able to process on average 37.86 transactions per second, which includes 
the overhead of waiting for the transaction to be reported as processed. Given 
that our primary and fastest data source is the P1-port (see section 4.1.2), which 
delivers measurement data once every ten seconds, this is equivalent to 
connecting over 378 households, which is well within the expected size of a 
“small, local marketplace” which the system is aimed to provide for. Thus, this 
experiment indicates we are well within our performance budget, especially 
considering the relative low specifications of the testing environment. 
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Figure 9: Time to process number of transactions 



Additionally, since the smart contracts are designed to function as a stackable 
system, we can scale horizontally by splitting different contexts onto different 
processors, meaning that by keeping the local marketplaces small enough to run 
on a single processor scaling is only limited by how many processors we are able 
to run. Since the philosophy behind HanzeNet already focusses on building small 
scale marketplaces for local communities this is expected to be a good fit for 
applying this type of scaling. 

 

  



8 CONCLUSION 
This research started off based on the previous work by the HanzeNet start-up to 
explore possibilities for digital trading of energy in small communities. This 
research provides HanzeNet with a system design for a blockchain-based energy 
trading system. Insight is provided into the various design choices which are to 
be considered for an energy trading platform. Additionally, a working core 
implementation of the described system is provided. The resulting system 
enables users to trade their energy securely with others in their community. 
Produced energy is timestamped and can be labelled to allow economic value to 
be attached to energy produced. A stackable design allows the system to be 
deployed at multiple layers, allowing households to trade in small local 
communities, which can trade as a whole within their city, which can trade with 
neighbouring cities, and so forth. This design keeps the focus for its users on local 
communities while allowing the architecture to perform at practically any scale. 

At the residential level, once energy is produced or consumed we acquire usage 
data via both local readouts of smart energy meters and remote readouts 
through EDSN. This data is transmitted to our blockchain and securely linked to 
the current time and a set of labels and is subsequently counted towards the 
balance of a predefined trader which represents the household. This trader can 
exchange energy with other households in the local community. The labels allow 
them to choose from which energy source to buy their energy, allowing 
customers to make choices to for example buy environmentally friendly 
produced energy or support local initiatives with their energy consumption. The 
context owner enables users to also trade with external parties, whether that be 
traditional energy supplier companies or neighbouring communities. 

We observed that the software implementation scales well to practically any size 
and the feature set of the overall system is considered a good fit for the goals of 
start-ups like HanzeNet, allowing them to bringing added value to local 
communities. The core implementation of the system is made available entirely 
as open source software 2  for the benefit of the larger community. Detailed 
instructions are available to aid readers in trying our core implementation for 
themselves, as well as additional tooling3 to make it easy to run this software on 
all popular and some unpopular platforms and operating systems. 

                                                         

 

 

2 https://github.com/DvdGiessen/hanzenet-smart-contracts 

3 https://www.npmjs.com/package/validana-cli 



8.1 FUTURE RESEARCH 
There is a number of open questions resulting from this work which can be looked 
into by future research. 

Currently we build upon standard Internet connections for our connectivity. 
While this is a feasible option in most cases in The Netherlands, there might be 
use cases where availability of Internet comes with additional costs prompting 
the exploration of other options. Local radio-based transmission of transactions 
between nodes using readily available technologies as using LoRa might be an 
interesting option for those use cases. We expect some optimization will be 
required to reduce the amount of data exchanged; future research could look 
into about alternative trading models optimized for low-bandwidth peer to peer 
trading. 

One direction that was theoretically explored but was out of scope to implement 
and iterate upon was the use of an alternative balance implementation for the 
smart contracts, making use of a sum of transaction similar to how many 
cryptocurrencies operate. While this model in itself only introduces unwanted 
complexity, it has the potential to be used in combination with homomorphic 
encryption techniques such as employed in Zcash and Monero, which may allow 
us to hide the entire contents of transactions while still maintaining the ability to 
have decentralized correctness checking. This will likely introduce some 
limitations on the trading model, so a trade-off will have to be made whether this 
is worth the improved privacy properties. 

Integration with existing systems for smart grids can help bring additional 
information into the system to help consumers choose their energy smarter and 
potentially help increase the efficiency for both participants and grid operators. 
Future research may look into how these gains can be made available to allow 
traders in our blockchain to better determine the value of their and their peers’ 
energy. Smart systems can also greatly benefit from flexibility trading. Allowing 
users to register intent to use energy in future blocks and trade in that flexibility 
might be a useful addition to our system which complements the prediction 
capabilities of existing systems for smart grids by linking these abilities to a real-
time marketplace. 
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