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Summary

Stroke is a ’brain attack’. Stroke occurs when blood flow to an area is disrupted, either by
bleeding or by blockage of an artery. To guide management of stroke patients, neuroimaging is
essential. The aim of this thesis is to explore to which extent the clinical management of both
hemorrhagic and ischemic stroke patients can become more informed by using machine learning
techniques to both extract relevant features from more primary data and characterize the state
of the patient’s stroke.

In intracerebral hemorrhage (ICH), the most occurring subtype of hemorrhagic stroke, com-
puted tomography (CT) accurately visualizes the hematoma. Decisive in treatment of intracere-
bral hemorrhage is whether there are indicators of further expansion or worse outcome, justifying
more invasive treatment. No satisfying marker has yet been found, able to predict hematoma
expansion with high sensitivity and specificity. By using dual-energy CT (DECT) angiography,
one can quantify the amount of contrast medium in the hematoma and study the texture of the
hematoma separately. In this study, we assess the utility of quantitative features of contrast
medium distribution and texture analysis of the hematoma in predicting hematoma expansion.
Therefore, 15 DECT-based features were designed based on contrast medium quantification in
the hematoma and hematoma texture analysis. The best performing combination of features
was modeled using a support vector machine with radial kernel to classify hematomas as either
expanding or stable. On the train set of 45 hematomas, our model outperformed the conven-
tional spot sign in our cohort and in literature on sensitivity and specificity. On the test set of 69
hematomas, our model outperformed the conventional spot sign in our cohort and in literature
on specificity, but not on sensitivity. Although the drop in sensitivity of our model between the
train and test set indicates that more data and a more standardized image acquisition is required
to make a model with a higher generalization ability, we believe that quantitative features can
aid in the prediction of hematoma expansion.

In acute ischemic stroke (AIS), treatment is based on the size of the ischemic lesion and on
clinical presentation. CT is not able to quantify the volume of the ischemic lesion in the acute
setting. However, the quality of the collateral circulation and the quality of tissue perfusion,
related to the volume of the ischemic lesion, can be estimated using CT angiography and delayed-
phase CT angiography. In this study, we explore the use of deep learning to predict lesion shape
and size using multiple CT acquisitions. We have designed a deep convolutional neural network
(CNN), transforming a CT input into a probability distribution of the pixels belonging to an
ischemic lesion. The network was trained on a train set of 53 patients, minimizing the Dice loss
between the probability distribution, and a segmented mask of the ischemic lesion on diffusion
weighted imaging (DWI). On the train set, the network reached a Dice loss <0.4. Unfortunately,
on the validation set the Dice loss remained close to 1. This indicates that our network overfitted
on the training data, and therefore was not able to generalize to new, unseen data.

We demonstrate that machine learning can be useful for DECT-based clinical decision making
in ICH triage. In AIS triage, our deep CNN is not yet able to predict ischemic lesion shape and
size based on CT acquisitions.
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Chapter 1

Introduction

1.1 Stroke

Each year, almost 800.000 people suffer from stroke, leading to about 1 of every 20 deaths in the
United States [1]. Stroke is caused by a disruption of blood flow to the brain, depriving brain
tissue of oxygen and other essential nutrients. Stroke can be caused by either a bleeding artery,
called hemorrhagic stroke, or a blocked artery, called ischemic stroke. Hemorrhagic stroke can
be further categorized as either intracerebral hemorrhage (ICH), bleeding within the brain tissue
or ventricles, or subarachnoid hemorrhage, bleeding in subarachnoid space (SAH). 87% of all
strokes are ischemic strokes, while only 10% are caused by ICH and 3% are caused by SAH [1, 2].

1.1.1 Intracerebral hemorrhage

Pathophysiology

ICH is an acute and spontaneous bleeding into the brain parenchyma, resulting from spontaneous
rupture of small arteries [3]. The 30-day mortality after initial ICH is reported to be as high as
50%, with approximately half of all deaths occurring in the first 48 hours after treatment [4]. The
most common risk factors for primary ICH are hypertension and cerebral amyloid angiopathy,
both accelerating vascular deterioration [5, 6]. In deep hematomas, spontaneous vessel rupture
is attributed to degenerative changes in the vessel wall [7]. In ICH related to cerebral amyloid
angiopathy, the cause of vessel rupture is a combination of amyloid deposition and breakdown
of the vessel wall [8]. ICH can be a multiphasic event, with persistent bleeding and resulting
expansion of the hematoma up to 6 hours in noncoagulopathic ICH and up to 24 hours in
coagulopathic ICH [9]. Hematoma expansion is a common and serious complication after ICH,
potentially leading to hydrocephalus, severe tissue shifts, increased intracranial pressure and
mass effect [10], visualized in fig. 1.2. Hematoma expansion is strongly associated with increased
mortality, worse functional outcome and neurologic deterioration [12, 13, 14]. Each millimeter
of hematoma expansion is associated with an increase of risk on long-term disability of 7% [14].
The mechanism driving hematoma expansion has not been fully explained, possibly being caused
by the inflammatory response after initial bleeding, hemostatic dysregulation, breakdown of the
blood-brain barrier or local tissue distortion [15, 16, 17].

Treatment

Due to the risk of rapid deterioration shortly after ICH onset, a correct diagnosis is essential
to guide quick and adequate treatment. Relief of secondary symptoms is an essential part of
ICH treatment, since hematoma expansion increases risk on rapid neurologic deterioration and
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Figure 1.1: Schematic representation of spontaneous intracerebral hemorrhage and possible ex-
pansion of the hematoma. Adapted from [11].

mortality. Hemostatic agents such as recombinant factor VII have shown to significantly reduce
hematoma volume growth, but fail to reduce mortality or improve functional outcome. The
lack of improvement in clinical outcome may be due to a reported increase in serious arterial
thromboembolic adverse events after recombinant factor VII administration [18]. If and when
surgical intervention should be done in ICH remains an ongoing topic of discussion. While some
studies show a tendency for improved immediate outcomes after craniectomy in ICH, a long-
term improvement in outcomes has not been demonstrated compared to medical management
only [19, 20, 21, 22]. However, neurosurgical intervention is standard of care if the intracerebral
hemorrhage is large or if it causes intraventricular shift, hydrocephalus, obtundation or brainstem
compression [10]. Fig. 1.6 shows the protocol at our institution for imaging-based decisions on
treatment of ICH.

Imaging

Abrupt onset of focal neurological symptoms has to be presumed to be of vascular origin until
proven otherwise. However, due to the lack of hemorrhage-specific clinical symptoms, discrimi-
nation between acute ischemic stroke or hemorrhage on clinical characteristics alone is difficult
[23]. For initial imaging in the evaluation of focal neurological symptoms with abrupt onset,

Figure 1.2: CT imaging of ICH. A: Parenchymal intracerebral hemotoma appears hyperdense on
non-contrast CT. B: Hematoma expansion on follow-up non-contrast CT.
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CT is sensitive in the identification of acute hemorrhage and is considered the ’gold standard’.
Although magnetic resonance imaging (MRI) acquisitions such as gradient echo and T2* suscep-
tibility weighted imaging are equally sensitive, the time, cost, availability and patient tolerance
issues involved with acute MRI prevent the use of magnetic resonance (MR) in most cases [24, 25].
CT angiography has been used as a means to characterize risk of hematoma expansion in acute
presentations. 28% to 38% of patients undergoing head CT within 3 hours of ICH onset are
reported to have hematoma expansion [26, 14]. Therefore, timely identification of patients at
risk for hematoma expansion is critical in management of ICH. Non-radiographic risk factors for
hematoma expansion include early presentation [27, 28, 29] and antecedent use of anti-coagulation
medication [30, 31]. Several studies also found that high systolic blood pressure is a risk factor
for hematoma expansion [32, 33, 34], while others did not [35]. Although many radiographic
markers have been used to qualitatively assess ICH on both non-contrast computed tomography
(NCCT) and computed tomography angiography (CTA), they lack adequate sensitivity in gen-
eral [36, 37]. In NCCT, examples of such markers are hematoma location [38] and markers that
describe morphologic appearance of a hematoma, such as shape and density variation, possibly
reflecting active hemorrhage, more variable hemorrhagic time course or multifocality of bleeding,
which are both considered as independent predictors of hematoma expansion [35, 39]. Specific
radiographic markers taking into account shape or density variations in the hematoma are: the
island sign [40], satellite sign [41], black hole sign [42], blend sign [43], swirl sign [44], margin ir-
regularity [45] and hematoma hypodensities [46]. In CTA, the presence of foci of hyperintensities
in the hematoma - known as the spot sign and assumed to represent active contrast extravasation
- is independently associated with an increased risk of hematoma expansion and has a specificity
of 80−90% and a sensitivity of 50−60% in predicting hematoma expansion [47, 48, 49]. Although
delayed CTA imaging is able to improve spot sign sensitivity, triage based on spot sign presence
on delayed CTA did not improve treatment efficacy [50, 51]. So far, none of all these markers
are able to show good predictive value of identifying patients who will likely develop hematoma
expansion with both high sensitivity and specificity.

1.1.2 Acute ischemic stroke

Pathophysiology

Acute ischemic stroke (AIS) is a focal neurological condition with sudden decrease of blood supply
to an area of the brain. A reduction of the cerebral blood flow to below a threshold value leads to
a series of functional, biochemical and structural changes and eventually to irreversible neuronal
death if not reperfused quickly enough [52]. Affected brain tissue can be divided into ischemic
core, penumbra and benign oligemia according to the severity of the ischemia, as presented in
fig. 1.3. The ischemic core is an area of irreversibly injured brain tissue at the time of imaging.
Surrounding the core lies a penumbra which is functionally impaired but still viable hypoperfused
tissue that may be recruited into the infarct core if perfusion is not restored on short term
[53, 54, 55, 56]. The penumbra is predominantly maintained by blood supply from the collateral
circulation, meaning the rate of progression into infarction without reperfusion is dependent on
the quality of this collateral circulation and the duration of the insult [52, 57], as visualized in
fig. 1.4. The penumbra can be surrounded by benign oligemia, which is hypoperfused tissue with
normal function, recovering spontaneously irrespective of improvement in blood supply [52, 58].

Treatment

The purpose of therapy in AIS is to save the penumbra from culminating into infarction. Intra-
venous alteplase (IV-tPA) administered within the first 4.5 hours has long been the only reper-
fusion therapy with proven efficacy in patients with AIS [59]. However, the limited efficacy of

11



Figure 1.3: Representation of ischemic core (non-viable tissue), penumbra (hypoperfused tissue
which will be recruited into ischemic core without timely reperfusion) and benign oligemia (hy-
poperfused tissue which will recover independent of reperfusion). Collaterals supply the benign
oligemia and penumbra with blood in case of occlusion of the irrigating artery. Adapted from
[11].

IV-tPA was due to a moderate rate of early reperfusion in patients with an LVO [60]. 60-80%
of patients with a proximal vessel occlusion in the anterior circulation treated with IV-tPA die
or lack functional independence 90 days after stroke onset [59, 61]. In addition, because of the
strict therapeutic time window and a high risk for cerebral and systemic hemorrhage, less than
10% of patients presenting with ischemic stroke met the eligibility criteria for the use of IV-tPA
[62, 63]. Because of the multitude of constraints involved in IV-tPA treatment, trials studying
the clinical efficacy of intraarterial treatment (IAT) have been set up. Intraarterial treatment can
be divided into intraarterial administration of alteplase and endovascular thrombectomy (EVT).
Initial trials studying the effects of IAT in combination with IV-tPA compared to IV-tPA alone,
such as SYNTHESIS, IMS III & MR RESCUE, failed to demonstrate a beneficial clinical effect.
However, these trials were limited by the intraarterial administration of t-PA or endovascular
thrombectomy using early-generation thrombectomy devices, a long period between onset of
stroke symptoms and start of IAT and a lack of adequate vessel imaging to confirm the patients’
eligibility for IAT [61, 64, 65]. Subsequently, the MR CLEAN trial has been able to demonstrate
a beneficial clinical effect of IAT in selected patients by employing more strict inclusion crite-
ria, using third-generation mechanical thrombectomy devices and ensuring imaging-confirmed
occlusion of the anterior circulation. Results of the MR CLEAN trial shifted focus of triage in
AIS to selecting the specific subset of patients who are expected to have most clinical benefit
from EVT. In selected patients, based on qualitative CTA-based assessment of the quality of the
collateral circulation [60] or the CT perfusion derived size of the ischemic core and penumbra
[66, 67], EVT combined with IV-tPA administration has been shown to have an even larger
clinical benefit versus IV-tPA administration alone in patients with AIS when performed within
6 hours after stroke onset. Recently, the DAWN trial showed that even patients who undergo
treatment 6-24 hours after stroke onset and have a mismatch between clinical deficit and infarct
benefit from EVT combined with standard care compared to standard care alone, if selected
correctly [68]. The evolution of the demonstrated clinical effect of EVT indicates that EVT will
have most clinical benefit in selected patients with an imaging-confirmed proximal occlusion of
the intracranial circulation with a large area of salvageable brain tissue and a small ischemic core
[59, 67, 60, 66, 69, 68]. Several studies have shown the decisive role of infarct core size in predict-
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Figure 1.4: Evolution of the infarcted tissue depending on the time before reperfusion is estab-
lished. If reperfusion is established quickly, the ischemic core will recruit only minimal portions
of the penumbra. Without timely reperfusion, the penumbra will be entirely recruited into the
infarct core. Adapted from [11].

ing the long-term functional outcome after EVT [70, 71]. Patients presenting with large infarcts
have a small chance for a beneficial response to IAT [72, 73], and a higher risk of reperfusion
hemorrhage [74, 75]. Thus, patients with a large infarct at baseline imaging will most probably
not be eligible for EVT.

Imaging

Patients with a treatable occlusion confirmed on imaging therefore depend on infarct size to deter-
mine eligibility for EVT, and imaging should quickly, accurately and reliable define infarct core.
The triage of AIS patients is based on three major imaging features: exclusion of intracranial
hemorrhage and stroke-like mimics, detection of the site of arterial occlusion and the determina-
tion of the extent of the ischemic lesion. For the initial assessment in AIS triage, imaging should
exclude the possibility that symptoms are caused by brain hemorrhage or stroke mimics. Both
CT and MRI have are considered gold standard for detection of brain hemorrhage [76, 77]. If
brain hemorrhage and stroke mimics are excluded, vessel imaging is performed to evaluate the
site of arterial occlusion. AIS caused by proximal large vessel occlusion is better accessible for
thrombectomy and less likely to recanalize by IV-tPA administration alone and can therefore be
considered for EVT [78]. To evaluate the brain parenchyma for the extent of infarction in AIS,
diffusion weighted imaging (DWI) and the apparent diffusion coefficient (ADC) maps are the
gold standard for identification of infarct core in AIS, being the most reliable and most accepted
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technique to measure infarct size [56, 79, 78, 80, 81]. Even though the delineation of infarct core

Figure 1.5: Data present after imaging with the Massachusetts General Hospital acute ischemic
stroke protocol. A: non-contrast CT, B: dual-energy CT angiography 80 kVp, C: dual-energy
CT angiography 140 kVp, D: DWI MR scan. AIS shows increasing loss of grey matter - white
matter differentiation over time on non-contrast CT. In case of ongoing occlusion, a discontinuity
in hyperdense arterial vessels caused by presence of contrast medium can be seen on CTA. On
DWI, ischemic lesions are hyperintense.

is not perfect, DWI is able to visualize AIS with a sensitivity of up to 73-92% within 3 hours after
onset of stroke symptoms and up to 95-100% within 6 hours [76, 82, 83]. For detection of acute
infarcted areas, CT is significantly less sensitive than DWI with a sensitivity of up to 12% in the
first 3 hours after onset of stroke symptoms and up to 57-71% in the first 24 hours. Perfusion
imaging has been used in several trials to evaluate cerebral hemodynamics as a measure of iden-
tification of ischemic core and penumbra [67, 66, 68]. However, while perfusion imaging assesses
the cerebral hemodynamics at a single point in time, there is no single hemodynamic state that
uniquely and robustly characterizes the infarct core [56]. CT perfusion has a high burden of ra-
diation exposure and suffered from a lack of clear guidelines for indication, acquisition methods
and interpretation leading to a high variability in data [56]. As an alternative to DWI and CT
perfusion imaging, AIS patients have been successfully selected for EVT based on multiphase
CT angiography to qualitatively assess collateral function, based on filling of the pial arterial
circulation of the middle cerebral artery (MCA) [60]. In addition to traditional performance
metrics, in the case of AIS other factors also weigh in on the decision to perform imaging for
patient selection, such as optimal triaging workflow and availability, reliability and repeatability
of the imaging modality [56]. Several trials have shown successful patient selection based on
different triage workflows. The common denominator in nearly all workflows is the presence of
a non-contrast CT scan for the exclusion of intracranial hemorrhage and stroke like mimics and
the acquisition of CT angiography to confirm the site of large vessel occlusion [67, 66, 68, 69, 60].
Upon comparison of AIS patients treated with EVT between different methods of patient se-
lection, all with similar times from stroke onset to EVT puncture, the rates of patients with
functional independence after EVT range from 53% to 71% and the ratio of patients treated to
patients screened varies from 1:3 to 1:14 [69, 60, 67, 66]. Patient selection for EVT in AIS should
optimize the trade-off between clinical efficacy in the treated group and the ratio between treated
and screened patients. Fig. 1.6 shows the patient selection protocol at our institution, selecting
only those patients with non-large infarct volumes on DWI, and is estimated to treat 1 in every
3 screened patients, while reaching functional independence at 90 days in 53% of the patients in
AIS patients treated with EVT [56, 69]. This DWI-based EVT patient selection might be close
to the optimal trade-off between clinical efficacy and number of patients treated [69]. However,
the cost and workflow related constraints involved in implementing MRI in an acute setting raise
the question if the patient selection can be performed using less resources.
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Figure 1.6: Stroke imaging protocol implemented at the Massachusetts General Hospital. If
patients present within 6 hours of onset of stroke symptoms, primary neuroimaging is CT-based,
otherwise primary neuroimaging is MRI-based. Primary neuroimaging has the objective to assess
the etiology of the stroke symptoms: hemorrhage, ischemia, or stroke-like mimics. In case of
ischemic stroke, patients are selected for EVT based on the extent of the ischemic lesion. In case
of hemorrhagic stroke, patients are selected for invasive therapy based on the presence of spot
sign or other indicators of worse outcome. Adapted from the Massachusetts General Hospital
Stroke protocol [56].

Collateral function

The quality of the collateral function is an independent predictor of stroke outcome, regardless
of treatment, and a small lesion on follow-up imaging. Results from the ESCAPE, EXTEND-
IA, SWIFT PRIME and DAWN trial demonstrated that the patients who will benefit most from
EVT within 6 hours and within 24 hours after onset of stroke symptoms are patients with a small
ischemic core and large amount of salvageable brain tissue [60, 67, 66, 68]. In addition, it has been
shown to predict response to IV-tPA [84, 85, 86]. Good quality collateral function is associated
with large penumbra size and a small infarct core size at presentation, where worse collateral
function is associated with rapid infarct progression [85, 86]. Absence of collaterals at delayed
phase CT angiography is a specific predictor for large DWI infarct core at presentation and poor
clinical outcome [87]. The quality of the collateral circulation can be measured by imaging of
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retrograde filling of arteries distal to the occlusion using delayed-phased CT angiography, digital
subtraction angiography (DSA), dynamic CT angiography (dCTA), contrast-enhanced MR an-
giography (CE-MRA), and dynamic MR angiography (dMRA). Other than invasive modalities
(DSA) or modalities constrained by availability (MR), CT angiography is already incorporated
in the AIS imaging workflow, widely available, non-invasive and able to qualitatively assess ret-
rograde filling and laterality in parenchymal enhancement [57, 60]. CT techniques combining ac-
quisitions over multiple time-points are able to assess collateral flow despite variations in cerebral
hemodynamics [88, 89]. Several studies for evaluating the function of the collateral circulation
in AIS patients have been performed based on qualitative observations on 2-dimensional CT an-
giography maximum intensity projections (CTA MIP) and 3-dimensional CT angiography source
images (CTA-SI) based scoring systems of the affected vascular territory relative to non-affected
brain territories [90, 86]. Collateral function can also be assessed by the level of hypoattenuated
brain tissue in CT angiography, since hypoattenuation in CT angiography does not only reflect
the tissue density as in non-contrast CT, but also incorporates the amount of contrast received
in the brain tissue [91]. A typical CT angiography measurement is shown in fig. 1.5.

1.2 Machine learning

Medical imaging has become indispensable in the diagnosis and therapy of diseases. Advances
in medical imaging increase the amount of information available for making an informed clinical
decision. To make use of all available information in medical imaging, technologies to extract the
information from raw data and transform relevant information into a clinical decision have to be
developed. Machine learning identifies patterns in existing data representations and uses these
identified patterns to make predictions on new, unseen data. Supervised machine learning seeks
to learn a model, f(x) = y, returning an output state, ŷ, according to a conditional distribution
function, P (y|x), based on N known data pairs (xi, yi), with i = 1, . . . , n, composed of feature
vectors x, with each feature vector consisting of M features with xi ∈ IRm and output states
y, see fig. 1.7. Since the objective is to define a model able to generalize to new data, it is

Figure 1.7: A predictive model, f , estimates the mapping of a feature vector, xi, to an output
variable, yi. The mapping iteratively improves by adapting to minimize the discrepancy between
the estimated output, ŷi, and the supervision, yi, using a loss function, g. When a new, unseen
feature vector is presented, the predictive model predicts the corresponding output variable.

assumed that the data pairs (xi, yi) are drawn independently from a fixed, unknown probability
distribution P (x, y), which is identical for all feature vectors x. Without putting restrictions on
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our model, f could do particularly well on training data but need not generalize well to new
data. A small training error does not imply a small test error. Therefore, the model should be
restricted to the set of functions f suitable for the amount of training data available [92, 93].

1.2.1 Support vector machine

In the case of classification of hematomas in expanding and stable hematomas, the objective is
to separate the feature vector xi = xi,1, xi,2, . . . , xi,m in two classes, y = ±1, using a classifica-
tion hyperplane T . If the assumption of normality regarding the distribution of x is violated,
traditional methods to determine the optimal decision boundary overemphasize outliers, thereby
negatively influencing the classification boundary. A distribution-free method to decrease the
influence of outliers is the use of a support vector machine (SVM). SVMs construct a classifica-
tion hyperplane in feature space based on the position of the data samples close to data samples
of the opposite class, the support vectors [94]. By constructing the decision boundary based on
these data samples, the margin between the two classes is maximized. In a linearly separable
case, the classification hyperplane separating feature vectors in two classes is:

wTx + b

{
< 0 if y = −1,

≥ 0 if y = 1.
(1.1)

With weight vector w, feature vector x, bias b and class y. If the classes are not linearly separable,
the original feature vector, x, is mapped to a feature vector in a higher-dimensional feature space,
φ(x), using a non-linear transformation φ, to improve linear separation of classes, see fig. 1.8.

Figure 1.8: Non-linear mapping, φ, of the feature vector, xi, into higher-dimension feature space
where the feature vector, φ(xi) becomes easier to separate linearly. A linear classification bound-
ary is drawn perpendicular to the line between the closest points on the two hull convexes
surrounding the data samples of each class in feature space.

Kernel function

In the maximization of the classification margin, feature vectors only show up in the form of a
mutual dot product. In maximization of the classification margin in feature space, the dot product
between two feature vectors, (xi · xj), is replaced by the dot product of those feature vectors
in feature space (φ(xi) · φ(xj)). To avoid computation of the feature vector in feature space,
implementation of a kernel function allows the computation of the equivalent of the classification
hyperplane in feature space, without explicitly computing the feature vector in feature space [94].
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The kernel function, K, defines dot products in feature space:

K(xi,xj) = φ(xi) · φ(xj). (1.2)

1.2.2 Deep learning

In clinical practice, detection and diagnosis of diseases using medical imaging is predominantly
performed by trained humans. In the case of AIS, a radiologist determines whether a patient is
eligible for EVT based on lesion volume on DWI, core volume on a perfusion CT or collateral
luminance on a CT angiography. Human analysis of ischemic lesion extent on both DWI and
CT perfusion is quantitative and accurate. However, quantification of collateral function is hard

Figure 1.9: Representation of a convolutional neural network. A convolutional neural network
transforms the input via feature maps in several convolutional layers, consisting of convolution
operations with a kernel composed of learned weights, a non-linear activation function and a
subsampling operation and fully connected layers into the output. Each convolutional layer
transforms the input in a non-linear way, decreasing image dimensions, increasing feature map
quantity and increasing the complexity that can be captured in the feature maps. In a typical
CNN, the supervision is a classification.

based on the diffuse presence of collaterals, the small volume of collaterals and the influence
of delay time on collateral luminance. In machine learning, patterns in informative features
present within sample data are learned to make generalizable data-driven models for prediction
and classification of new data samples. Conventional machine learning techniques are limited in
their capability to process raw data and require engineering of specifically designed features to
transform raw data into a meaningful representation from which patterns can be recognized. In
representation learning, the manual feature engineering step is replaced by automated learning
of meaningful data representations - features - inherent in observed raw data samples. Deep
learning is a set of representation learning methods characterized by multiple, hierarchical layers
of data representations of increasing complexity, achieved by performing non-linear operations
at each layer. The distinguishing principle behind deep learning is that these abstract features
are learned instead of human-designed.
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Figure 1.10: Operations in a convolution layer: convolution, non-linear operation and sampling.
The top row shows convolution of a layer input with a kernel composed of learned weights using
a stride of 1 in both directions and no padding. The middle row shows the effect of a non-linear
operation, a rectified non-linear unit, on the result of the convolution operation. The bottom row
shows a max-pooling subsampling operation with stride 2 in both directions on the non-linearly
activated convolved input.

Convolutional neural networks

In medical image analysis, deep learning models have to make optimal use of the structural in-
formation present in image data, must be insensitive to irrelevant variations in the input data,
such as variations in translation, rotation, scaling and illumination, and very sensitive to relevant
variations in the input data, such as variations in luminance of the collaterals in AIS detection.
Convolutional neural networks (CNN) are deep, feed-forward artificial neural networks specifi-
cally designed to make optimal use of the spatial configuration of data that come in the form of
tensors. A typical CNN is visualized in fig. 1.9. A CNN is structured as a series of hierarchical
layers. Deep CNNs allow the detection of complex features by composing higher level, abstract
features from low-level features. A CNN utilizes spatial properties in tensors using four concepts:
multiple layers, sampling, shared weights and local connections [95]. The principal building block
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of a CNN is the convolutional layer, detecting local features in the input by performing convo-
lution operations with a kernel composed of learnable weights on spatially contiguous subsets
of the input. A convolutional layer consists of feature maps, in which each feature map is con-
nected to a feature map of the previous layer by a set of learnable weights in the convolution
kernel. Every unit in one feature map has the same set of weights, but different feature maps
use different sets of weights. The shared weights in each feature map make a convolutional layer
spatially invariant, detecting equal features on different positions in the input tensor. On the
output of the convolution operation a non-linear operation is performed, a combination of mul-
tiple non-linear operations layers throughout the various network layers yields a more complex
mapping from network input to output. Sampling the non-linear convolution output removes
less prominent features by only taking one unit from a group of values, thereby reducing image
dimensions and making the network invariant to small shifts and differences in configuration
in each layer. The convolution operation, non-linear activation and sampling are visualized in
fig. 1.10. Conventionally, CNNs are used for classification tasks, assigning a label to an input
tensor (e.g. an image). However, in characterization of stroke lesions, the desired output has
a structured form. Fully convolutional networks adapt the conventional CNN architecture and
replace fully connected layers by deconvolution layers, upsampling the sparse representation to
the original input resolution while decreasing the amount of feature maps per layer [96].

Training convolutional neural networks

The key advantage of deep learning is that the extraction of features can be learned autonomously
using a general-purpose learning procedure. All functional elements composing a convolutional
neural network are subject to learning. Supervised learning is the most common method to train
a deep CNN, where each input has a corresponding supervision reflecting the desired output. An
objective cost function, g(ŷ,y), compares the distance between the network output, ŷ, and the
supervision over a batch of training data, y. During training, weights are adjusted iteratively
to minimize g. The estimation of the impact of small variations in weights is measured by the
gradient of the loss function with respect to the weights. The set of weights, W, is iteratively
adjusted using a procedure called stochastic gradient descent (SGD) :

W = W − η∇g(W). (1.3)

Where g(W) is the loss over a mini-batch as a function of the set of weights as estimation of
the g(W) over the entire train set and η is the learning rate [97]. Starting at the output of the
cost function, the gradient vector backpropagates through the layers of the network. At each
layer, the gradient for each weight kernel can be computed using the chain rule. The weight
in the convolution kernel is corrected in the opposite direction of the gradient. The weight
optimization continues until the average of the cost function over a batch of training data stops
decreasing, meaning a local minimum for the cost function in multi-dimensional weight space has
been reached. After training, the kernel weights are fixed and the model performance is tested
on an independent test set. The performance on the test set compared to the performance on
the train set gives an indication of the model’s ability to generalize.
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Chapter 2

Research objective

Stroke is one of the most devastating medical conditions. Both hemorrhagic stroke and ischemic
stroke are caused by disruption of blood flow to the brain, either due to bleeding or blockage of
an artery and require a quick judgment on the type of treatment required. Too aggressive man-
agement of both hemorrhagic and ischemic stroke patients induces risk for the development of
serious adverse events. Endovascular thrombectomy in AIS patients with a stroke too large cre-
ates a high risk for hemorrhagic conversion, restraining therapy from being beneficial. Conversely,
too aggressive medical therapy in ICH patients leads to a high risk for arterial thromboembolic
events. Since aggressive therapy on the entire population of ICH or AIS patients has not been
proven to be beneficial, stratification of stroke patients for risk of serious adverse events in aggres-
sive therapy may improve the long-term outcomes of therapy. In AIS triage, the risk of serious
adverse events during or after EVT is too high when the ischemic lesion is too large, therefore
the objective is to detect patients with an ischemic lesion on CT, and to be able to differentiate
between large ischemic lesions (lesion volume > 70 ml) and small ischemic lesions (lesion volume
< 70 ml). In ICH, the objective is to identify patients who have a high risk for expansion and
therefore are suited for early invasive treatment.

Research questions:

• How does a support vector machine based on quantitative DECT features compare to
conventional, qualitative markers in predicting hematoma expansion in patients with in-
tracerebral hemorrhage?

• To which extent can a deep convolutional neural network characterize the size and shape
of the ischemic lesion on CT acquisitions in patients with acute ischemic stroke compared
to DWI images?

Subquestions:

• Which DECT-based features are individually most accurate in predicting hematoma ex-
pansion in patients with intracerebral hemorrhage?

• How do DECT-based features rank in predicting hematoma expansion in a model consisting
of multiple features?

• Which design choices for the architecture of a deep convolutional neural network encourage
detection of relevant features for the detection of acute ischemic stroke and reduce noise?
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Chapter 3

Early identification of expanding intracerebral hem-

orrhage on dual-energy CT using machine learn-

ing

3.1 Study goal

Hematoma expansion in ICH is individually associated with worse outcome and neurologic de-
terioration, and may benefit from early and aggressive medical or surgical intervention. There
have been several clinical trials recently exploring medical and surgical treatment in ICH [18,
98, 22, 19]. Active blood pressure lowering, medical intervention and early surgical interven-
tion did not improve the clinical outcomes or long-term benefits [99, 100, 18, 22]. Developing a
method for early identification of patients at high risk for hematoma expansion who are most
likely to benefit from early medical or surgical intervention can improve stratification of patients
and thereby improve treatment efficacy [18]. In the past, several radiographic markers have
been proposed to stratify patients for risk of hematoma expansion. The majority of described
markers reflect baseline hematoma volume, contrast medium extravasation [47, 48, 49] and dif-
ferences in hematoma morphology or the spatial configuration of intensities within a hematoma
[40, 43, 41, 42, 44, 45, 46]. As of today, none of all these markers are able to show good pre-
dictive value of identifying patients who will likely develop hematoma expansion with both high
sensitivity and specificity.

Dual-energy computed tomography (DECT) angiography enables separation of pixel intensi-
ties into hemorrhage, brain and contrast medium through three-material decomposition, utilizing
the relative attribution of the photoelectric effect and Compton scattering to the energy-specific
attenuation [101, 102]. This allows generation of separate virtual non-contrast (VNC) images and
iodine-only maps (IOM), which can be used for quantification of contrast medium, see fig. 3.1.
In this way, the IOM is able to provide unique, quantitative information about the distribution
of contrast medium, while the VNC allows texture analysis of the hematoma. Combined with
a semi-automatic delineation of the hematoma, it is possible to give a quick, standardized and
quantitative assessment of the predictive value of several DECT-based features for hematoma
expansion.

The aim of this study is to create a model of quantitative DECT-based features to predict
hematoma expansion with higher sensitivity and specificity than current markers. Moreover,
we assess the individual predictive value of different quantitative DECT-based features, their
correlation and their relative rank of importance in predicting hematoma expansion.
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Figure 3.1: Three material decomposition decomposing voxel intensities into either blood
or parenchyma, and attributing any deviations from the interpolation between blood and
parenchyma to the presence of iodine [101]

3.2 Methods

3.2.1 Patient selection

Patients were included if they had intracerebral hemorrhage confirmed on CT angiography and
follow-up CT. Exclusion criteria included: surgical intervention before follow-up imaging, place-
ment of intraventricular drain before baseline scan, time between baseline and follow-up imaging
of more than 48 hours and patients with exclusively intraventricular hemorrhage. The dataset
was divided into a training set and test set, both obtained during different periods of time and
are therefore independent from each other.

3.2.2 Image acquisition & hematoma classification

All DECT images were obtained using a Somatom Definition Force scanner (Siemens Health-
care, Forchheim, Germany) and post-processed using SyngoVia (Syngo Dual Energy Brain Hem-
orrhage, Siemens Healthcare) with the following scan protocol: tube A at 80 kVp, 499 mA,
tube B at 140 kVp, 118 mA, with a collimation of 14 × 1.2 mm. Each image stack consisted
of 80 kVp and 140 kVp series, both with a voxel resolution of 1 mm3. The image stacks were
post-processed to perform three-material decomposition using water and hemorrhage as base ma-
terials, attributing measured deviations from the linear combination of the attenuations of the
two base materials to the presence of iodine, thereby reconstructing a VNC image and an IOM at
a voxel resolution of 3 mm3. The IOM in Hounsfield units were converted to iodine concentration
images (in mg

ml ) by fitting a linear regression to the calibration curve. Hematomas were classified
as “expanders” if expansion was > 3 cm3 or > 25%, and the classification was confirmed by two
experienced neuroradiologists blinded to data analysis. For patients whose follow-up hematoma
volume could not be calculated using our automatic segmentation algorithm because of the pres-
ence of a ventriculostomy catheter, the classification (expansion or stable) was determined by
consensus between two neuroradiologists who independently and blindly reviewed the images
to assess for hematoma expansion. For comparison, two neuroradiologists independently and
blindly determined the presence or absence of the conventional spot sign in each case using pre-
viously described strict radiological criteria: a) one or more foci of contrast pooling within the
ICH, b) with an attenuation > 120 Hounsfield units, c) discontinuous from normal or abnormal
vasculature adjacent to the ICH, and d) of any size and morphology [48].
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3.2.3 Feature engineering

Figure 3.2: Visualization of the feature engineering process. The hematoma is delineated using
a 3D continuous max-flow min-cut algorithm for multiple labels [103, 104, 105]. The delin-
eation is superimposed on the IOM and VNC images, computing all features from the delineated
hematoma. Iodine-based features in the hematoma calculated on the IOM are: iodine content in
the hematoma, mean iodine content in the hematoma, iodine content in all spots, mean iodine
content in all spots, iodine content in the brightest spot and the maximum voxel value in all spots.
Features based on the hematoma texture on the VNC are: mean, variance, kurtosis, skewness,
texture entropy, texture energy, texture dissimilarity, texture contrast and texture homogeneity.

Image analysis was performed in Matlab r2017b (The Mathworks inc., Natick, MA, USA).
VNC images were semi-automatically segmented into skull, brain parenchyma and hematoma us-
ing a continuous max-flow algorithm to solve the 3D continuous-cut problem with multiple labels
[103, 104, 105]. The boundary of the hematoma in the VNC image stack was used to delineate
the hematoma on both IOM and VNC, see fig. 3.2. Based on the hematoma delineation on the
VNC and IOM images, a variety of quantitative features were computed reflecting focal iodine
extravasation, diffuse iodine extravasation and hematoma texture. Spots of iodine extravasation
within the boundary of the hematoma were automatically identified in the IOM, using a quantile
filtered mixture separation of a gamma distribution, representing spot sign pixel values, from a
uniform distribution, representing brain parenchyma pixel values [106]. To prevent classifying
noise or anatomic structures as spots, the connected components of pixels assigned to the gamma
distribution need to fulfill size constraints in order to be classified as spots. The brightest spot
was identified as the connected component within the identified spots with the highest mean pixel
value. Iodine content in all spots, iodine content in the brightest spot and maximum voxel value
in the spots were calculated to quantify the amount of focal iodine extravasation. Iodine con-
tent in the hematoma was calculated to quantify diffuse extravasation of iodine. To analyze the
hematoma texture on VNC, mean, variance, kurtosis, skewness, texture entropy, texture energy,
texture dissimilarity, texture contrast and texture homogeneity were computed. Mean, variance,
kurtosis and skewness are computed based on the histogram of the hematoma in 3 dimensions on
the VNC. Entropy, energy, dissimilarity, contrast and homogeneity are based on a 2D gray-level
co-occurrence matrix [107].
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3.2.4 Feature selection

Statistical analyses were performed using R language for statistical computing. Features were
assessed for normality using the Shapiro-Wilk test. Since the majority of features is non-normally
distributed, for the sake of comparability all feature values are presented as median with their
corresponding interquartile range (IQR). To create a prediction model to classify hematomas as
expanders or stable, a classifier has to be constructed as a function of a subset of the available
features. Therefore, the best performing subset of features has to be determined according to
some criterion. For all individual features, their accuracy in classifying hematomas as expanders
or non-expanders was computed using the area under the curve (AUC) of the receiver-operator
characteristic (ROC). A feature was only retained if the 95% confidence interval of the AUC did
not cross the random chance rate, equal to 0.5. Between all individual features a correlation
coefficient was computed, eliminating the individually worst performing feature (measured using
by their respective AUC) from a pair of predictors whose correlation coefficient was above 0.95 or
below -0.95. On the remaining individually predictive features, a linear regression-based forward
stepwise parameter selection approach was used, optimizing criteria such as the optimizing the
coefficient of determination (R2), adjusted coefficient of determination (adjusted R2) and root
mean square of the error between the predicted outcome and the supervision [108]. Starting with
an empty model, at each iteration the forward parameter selection selected the parameter with
the lowest p-value for the F -test between the existing model and the model plus that parameter.

3.2.5 Model creation

Using the combination of features derived from forward parameter selection, we defined a classi-
fication model based on a support vector machine learning algorithm for classifying hematomas
as expanders or stable. The classification boundary was constructed automatically, implicitly
maximizing the margin between the different classes in higher-dimensional feature space using a
radial basis function kernel K, defining the dot product of two feature vectors in feature space
as:

K(xi,xj) = exp(−γ|xi − xj |2). (3.1)

With xi and xj being the input feature vectors, and γ a constant defining the influence of a single
data sample on the model. The classification boundary was constructed on the training set. The
SVM model was then validated on an independent data set. The training set and test set were
acquired during two different periods of time, and therefore independent. A confusion matrix was
used to evaluate the performance of the classification model on the training set and on the test set
and to compare the performance to the presence of conventional spot sign, reporting sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy.

3.3 Results

3.3.1 Patient population

Between October 2014 and February 2018, a total of 176 patients who had ICH were referred to
DECT angiography for assessment. Of these patients, 40 had no follow-up CT within 48 hours,
4 had craniotomy or hematoma evacuation before follow-up, 20 had exclusively intraventricular
hemorrhage, 6 had an extraventricular drain at the initial scan and 1 had inadequate image
quality. The 105 remaining patients had 114 hematomas (1 patient had 6 hematomas, 1 patient
had 3 hematomas and 2 patients had 2 hematomas each) of which 28 hematomas expanded while
86 did not (table 3.1). The dataset was divided in a training set of 41 patients (45 hematomas),
acquired between October 2014 and January 2017, and an independently obtained test set 64
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Table 3.1: Distribution of predictors for expanding and stable hematomas

Stable
(n = 86)

Expanding
(n = 28)

P-value

Iodine quantification on IOM
Total iodine in hematoma (mg) 3.39 (0.91 – 7.32) 20.61 (8.35 – 30.16) <0.01
Total iodine in focal spots (mg)

All spots 0.0034 (0 – 0.069) 0.49 (0.12 – 1.05) <0.01
Brightest spot 0.0024 (0 – 0.025) 0.044 (0.022 – 0.21) <0.01

Mean iodine in hematoma (mg/ml) 0.44 (0.38 – 0.64) 0.48 (0.41 – 0.61) 0.58
Mean iodine in all spots (mg/ml) 1.45 (0 – 2.16) 2.34 (1.86 – 3.04) <0.01
Max pixel value in focal spots (mg/ml) 4.93 (2.85 – 7.74) 1.48 (0 – 3.56) <0.01
Hematoma analysis on VNC
Mean 56.54 (54.56 - 59.54) 56.36 (51.65 - 60.22) 0.36
Variance 53.09 (41.88 - 64.53) 50.14 (40.80 - 61.46) 0.42
Kurtosis 2.81 (2.56 – 3.09) 2.95 (2.59 – 3.23) 0.56
Skewness -0.32 (-0.56 – -0.086) -0.35 (-0.59 – -0.17) 0.75
Texture entropy 5.57(5.42 – 5.72) 5.49 (5.32 – 5.67) 0.25
Texture energy 0.0054 (0.0046 - 0.0063) 0.0058 (0.0047 - 0.0072) 0.30
Texture dissimilarity 1.70 (1.61 - 1.86) 1.73 (1.57 - 1.96) 0.50
Texture contrast 0.024 (0.014 – 0.035) 0.052 (0.033 – 0.071) 0.38
Texture homogeneity 1.00 (1.00 – 1.00) 1.00 (1.00 – 1.00) 0.32

patients (69 hematomas), acquired between February 2017 and February 2018. The 105 included
patients had a median time before follow up of 7 hours (interquartile range: [5 – 16]).

3.3.2 Feature selection

We designed the following features based on the VNC and IOM of the DECT angiography: iodine
content in the hematoma (Ih), iodine content in the brightest spot (Ibs), iodine content in all
spots (Is), mean iodine content per voxel in all spots (mean Is), max iodine content per voxel in
all spots (max Is), mean, variance, kurtosis, skewness, texture entropy, texture energy, texture
dissimilarity, texture contrast, texture homogeneity.

Individual predictive value of predictors

The median and interquartile range of every predictor for both expanders and non-expanders are
presented in table 3.1. The medians were significantly different (p < 0.05) between the stable
and expanding hematomas for the following predictors: Ih, Is, Ibs, mean Is and max Is. For
each predictor, the area under curve (AUC) of the receiver-operator characteristic (ROC) curve
is visualized in fig. 3.3. The features considered for modeling of hematoma expansion are the
features whose confidence interval did not cross the random chance rate (AUC = 0.5), which
were in order of decreasing AUC: Is, Ibs, Ih, max Is and mean Is.

Feature correlation

In order to exclude predictors which do not contain exclusive predictive information, the cor-
relation coefficient was computed among all the predictive features, see fig 3.4. The following
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Figure 3.3: AUC of the ROC for all individ-
ual features. Only features whose 95% con-
fidence interval does not cross the random
chance rate of AUC = 0.5 are considered for
expansion modeling.

Figure 3.4: Visualization of the correlation
coefficient between features. Strongly corre-
lated features turn dark red or dark blue. If
the correlation coefficient between two fea-
tures is r > 0.95 ∪ r < −0.95, the individ-
ually least predictive feature is dropped for
hematoma modeling.

features had a too strong correlation to be considered individually predictive: texture homogene-
ity & texture dissimilarity (r = −0.96), texture energy & texture entropy (r = −0.96), skewness
& kurtosis (r = 0.98), variance & kurtosis (r = 0.95), variance & skewness (r = 0.95). The
excluded features based on correlation coefficient were: texture dissimilarity, texture entropy,
kurtosis and variance.

Optimal combination of features for prediction model

On the remaining individually predictive features, a linear regression-based stepwise parameter
selection approach was used without a limitation on maximum p-value for the F -test. To de-
termine the optimal number and combination of features, the coefficient of determination (R2),
adjusted coefficient of determination (adjusted R2) and root mean square of the error between
the predicted values and the actual values (RMSE) were computed for every number of features
ranging from 1 to all candidate features. Starting with an empty prediction model, at each it-
eration the feature was selected which explained the largest portion of variance in outcome in
addition to the existing model, having the lowest p-value for the F -test. This process yielded a
ranking of relative importance of features in explaining outcome variance, taking into account
interactions among the features. This ranking in order from most to least important feature was:
Ih, Ibs, Is, mean Is, max Is, hematoma contrast, hematoma homogeneity and hematoma entropy.
Fig. 3.5 shows that R2, the proportion of explained variance in outcome, kept increasing with
each feature addition to the model. Adjusted R2 corrects for the modeling of random chance by
additional features, showing only the proportion of explained variance in outcome larger than
the proportion which can be modeled by random chance. Adjusted R2 was maximal at a model
of 3 features: Ih, Ibs and Is. The RMSE between the predicted values and the actual values
was minimal at the combination of the same 3 features. After recomputation of the forward
parameter selection, selecting only those parameters whose p-value is smaller than 0.05, the only
parameters included in the model were: Ih and Ibs.
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Figure 3.5: Metrics of model performance as a function of the amount of features included in
the model. The metrics for measuring model performance were: the coefficient of determination
(R2), adjusted coefficient of determination (adjusted R2) and the root mean square of the error
(RMSE). The model showed optimal performance at 3 features, Ih, Ibs and Is, minimizing
adjusted R2 and RMSE.

3.3.3 Model performance

The constructed support vector machine classification model was based on Ih and Ibs, and is
visualized in fig. 3.6. The classification boundary separated the training set of 45 hematomas
in stable and expanding hematomas, correctly identifying 30/31 stable hematomas (specificity of
97%) and 10/14 expanding hematomas (sensitivity of 71%), see table 3.2. Using the support vec-
tor machine classification model tuned on the training set, the model separated the independently
acquired test set of 69 hematomas into stable and expanding hematomas, correctly identifying
50/55 stable hematomas (sensitivity of 91%) and 7/14 expanding hematomas (sensitivity of 50%),
see table 3.2.

Conventional spot sign performance

The performance of the conventional spot sign was also evaluated on the training and test set,
see table 3.3. In total, 12 out of 88 stable hematomas were marked with a spot sign, and 16 out
of 28 expanding hematomas were marked with a spot sign. The conventional spot sign separated
the training set of 45 hematomas in stable and expanding hematomas, correctly identifying 8/14
expanding hematomas (sensitivity of 57%) and 28/31 stable hematomas (specificity of 90%). On
the test set, the conventional spot sign identified 8/14 expanding hematomas correctly (sensitivity
of 57%) and 47/56 stable hematomas correctly (specificity of 83%).

3.4 Discussion

In this study, we designed, identified, and evaluated quantitative DECT-based features of sponta-
neous intracerebral hemorrhage for prediction of hematoma expansion. We evaluated the perfor-
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Figure 3.6: Visualization of employed clas-
sification model. Predicted expansion is
shown in purple and predicted stability is
shown in blue, actual expansion is shown
in green and actual stability is shown in
red. Data points functioning as support
vectors and therefore have an influence on
the position of the classification boundary
are shown as a circle, other data points are
shown as a triangle.

Figure 3.7: Visualization of classification
model on test data. Predicted expansion
is shown in purple and predicted stability is
shown in blue, actual expansion is shown in
green and actual stability is shown in red.
The classification boundary is constructed
during training and is equal to the classifi-
cation boundary in fig. 3.6

mance of our quantitative model by comparing it to the conventional spot sign. Furthermore, we
assessed the individual and cumulative predictive value of our quantitative DECT-based features.

Our quantitative approach employing a support vector machine model had a superior sensi-
tivity and specificity than the conventional spot sign on the train set as classified by our neuro-
radiologists and what is reported in literature (50% - 60% sensitivity and 80% - 90% specificity),
a superior specificity on the test set than the conventional the spot sign in our cohort and in
literature, but a lower sensitivity on the test set than the conventional spot sign in our cohort and
comparable to the sensitivity reported in literature [109, 48, 49, 110, 47, 36]. The performance of
the conventional spot sign in our cohort is comparable to the performance reported in this litera-
ture. Assuming that the set of feature vectors and corresponding output, (x, y), are independent
and identically distributed and drawn from a fixed but unknown probability distribution, P(x, y),
the decrease in performance of our model is caused by an insufficient amount of training or test
data. An insufficient amount of data implicates that the set of feature vectors and outcomes
(x, y) is not an accurate representation of the actual probability distribution in the population
P(x, y). An increase in the amount of data reduces the performance gap between train and test
set, improving model generalization [97]. A different explanation for the performance drop in
sensitivity between train and test set is that the data samples are not independent or identically
distributed. Varying settings among different CT acquisitions, such as contrast injection rate
and reconstruction kernel, influence the quantification of iodine and therefore changes P(x, y)
between different acquisitions. Moreover, the evaluation of prediction probability is based on
single hematomas, and there are multiple cases where a patient has multiple hematomas which
are considered independent data samples while they share an underlying physiology and therefore
do not meet the criterion for independent features. However, this occurs in both the train as the
test set, and would be unlikely to cause the observed drop in model performance.
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We designed and evaluated 15 quantitative dual-energy CT-based features, and included 2
of those features in our classification model, the iodine content in the hematoma and the iodine
content in the brightest spot. The cumulative model performance of the the candidate features
was computed by forward stepwise selection, implicitly defining a rank of feature importance
when the interactions with other, already included features were considered. This ranking was:
iodine content in the hematoma, iodine content in the brightest spot sign, iodine content in all
spots, maximum voxel value in all spots and mean voxel value in all spots, see fig. 3.5. The
features included in the model were the only features that could be included in a linear model with
p-value < 0.05. However, the best performing model according to adjusted R2 and RMSE was
with the addition of a third feature, the iodine content in all spots. Although this third variable
had explained variance in the outcome variable superior than random chance, demonstrated by
the increase in adjusted R2, this explanation of outcome variance apparently was not sufficient to
effectuate a p-value < 0.05. Addition of other features decreased the generalizable performance
of the model, indicated by an increase of R2, decrease of adjusted R2 and decrease of RMSE
as shown in 3.5. The most important predictor in our model was the iodine content in the
hematoma, indicating that diffuse iodine extravasation in the hematoma is an important marker
for hematoma expansion, in addition to the currently well known focal spot sign [29, 36, 48].
Since hematoma expansion can be due to either focal or diffuse extravasation of blood [111], the
quantification of iodine content in the hematoma is a new, DECT-based method to model diffuse
iodine extravasation. The possibility to more accurately capture the physiology behind hematoma
expansion could improve identification of patients at risk by recognition of diffuse bleeding in
addition to the focal bleeding of the conventional spot sign. The second most important feature
in our model was the iodine content in the brightest spot, reflecting focal iodine extravasations.
The iodine content in the brightest spot was identified to be more important for modeling of
hematoma expansion than the total content of iodine in all spots, contradicting the current
practice of characterizing spot signs by their number, size and intensity into a composite score
[109]. Our results indicate that the intensity of the brightest spot may be a better indicator
for hematoma expansion than number and size of the spots. In this analysis, the stepwise
forward parameter selection used a linear regression to compute the p-values, possibly over- or
underestimating the importance of features that require different modeling than a linear model.
The p-values computed during stepwise forward parameter selection are a measure of difference
in outcome variance. However, since our output can only assume two states, expansion or stable,
outcome variance might not be an adequate metric to evaluate feature importance.

The classification accuracy of the 15 quantitative DECT-based features was also computed
individually for each feature and expressed in terms of area under the receiver-operator charac-

Table 3.2: Model performance

Predicted expansion Predicted stable
Training set

Expansion TP = 10 FN = 4 Sensitivity = 71%
Stable FP = 1 TN = 30 Specificity = 97%

PPV = 91% NPV = 88% Accuracy = 89%

Test set
Expansion TP = 7 FN = 7 Sensitivity = 50%
Stable FP = 5 TN = 50 Specificity = 91%

PPV = 58% NPV = 88% Accuracy = 83%
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Table 3.3: Conventional spot sign performance

Spot sign No spot sign
Training set

Expansion TP = 8 FN = 6 Sensitivity = 57%
Stable FP = 3 TN = 28 Specificity = 90%

PPV = 73% NPV = 82% Accuracy = 80%

Test set
Expansion TP = 8 FN = 6 Sensitivity = 57%
Stable FP = 9 TN = 48 Specificity = 84%

PPV = 47% NPV = 89% Accuracy = 79%

teristic. The rank for the individual accuracy of the features in order of decreasing AUC was:
iodine content in all spots, iodine content in the brightest spot, iodine content in the hematoma,
maximum voxel value in all spots, mean voxel value of all spots, skewness, kurtosis, mean, mean
iodine content in the hematoma, homogeneity, dissimilarity, variance, contrast, energy and en-
tropy. A clear distinction in the individual accuracies was that the 5 features with highest AUC
were based on quantifications of iodine on the IOM, while all 9 features based on hematoma
texture on the VNC had a lower AUC and had a 95% confidence interval that crossed random
chance rate. This indicates that features based on iodine quantification capture physiology un-
derlying hematoma expansion better than hematoma-texture-based features. The quantitative
features based on hematoma texture are not able to capture the qualitative-texture-based signs
reported in literature, such as [111, 112, 113]. Please note that a different study did find a pre-
dictive value for similar quantitative hematoma-texture-based features in predicting hematoma
expansion [114]

Our study has multiple limitations. First, we only obtained data from 105 patients, inherently
limiting the ability of our model to generalize to new data. Second, the images were acquired on
only 1 scanner in 1 hospital, making the derived model sensitive to different scanners, hospital
settings, acquisition methods and scan protocols. Third, we have treated and counted multiple,
non-contiguous regions of intracerebral hemorrhage in any patient as separate, independent oc-
currences of hemorrhage. While the DECT-based features for these hematomas in one patient
can be computed independently, they are not independent as they are subject to a common
underlying physiology. Fourth, acquisitions in our cohort had a non-trivial variability in scan
settings and acquisition timing. Different scans were reconstructed with different kernels, with
different kernels highlighting high-frequent or low-frequent spatial information and subsequently
affecting the identification and characterization of spot signs and the nature of hematoma tex-
ture. On top of that, the variability in the delay time from initial CT angiography acquisition
to the delayed CT angiography acquisition influenced the appearance of iodine in the CT scan.
Since timing of delayed imaging can impact the identification of spot signs, our features were
probably not immune to this variability in delay time [48, 115].

Future research should focus on evaluating quantitative DECT-based features with indepen-
dent and identically distributed data samples where the data samples in the train and test set
approximate the underlying probability distribution. Therefore, several changes have to be made
with respect to this study. To start, the amount of data samples has to be increased to better
approximate the probability distribution from which they are drawn. Especially since expanding
hematomas are relatively scarce compared to stable hematomas, the current amount of data is
not enough to construct a generalizable model. Moreover, to make sure that data samples are
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drawn from an identical distribution, acquisitions should be standardized with an identical pro-
tocol and reconstruction settings. To enforce that data samples are independent, only patients
with 1 hematoma should be included in the study. If the added value of quantitative DECT-
based features is proven in such a controlled environment, protocol constraints can be relaxed to
evaluate the value of these features in clinical practice.

3.5 Conclusion

We have demonstrated that a support vector machine, constructed from quantitative DECT-
based features, can identify expanding hematomas better than the conventional spot sign on the
train set and similar to the conventional spot sign on the test set. The support vector machine
was constructed using only 2 features: iodine content in the hematoma and iodine content in the
brightest spot. All the features with individual classification accuracy whose confidence interval
did not cross random chance rate were based on iodine quantifications, indicating that hematoma
texture is either less useful for predicting hematoma expansion than iodine-based features or that
our texture-based features did not capture the actual hematoma texture correctly.

This research shows the potential of quantitative DECT-based features in the prediction of
hematoma expansion, which can be used to stratify patients with intracerebral hemorrhage for
invasive treatment to increase therapeutic efficacy.
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Chapter 4

Identification of acute ischemic stroke on CT an-

giography using deep learning

4.1 Study goal

Whether a patient suffering from AIS is eligible for EVT is based on the extent of infarction
observed on DWI in combination with the patient’s clinical presentation. Although presumably
superior in supporting clinical decision making compared to other modalities, DWI is widely
constrained due to workflow and availability issues. The search for modalities able to provide
similar information about the extent of the parenchymal lesion as DWI while using less resources
sparked interest in further research into CT angiography to quantify the patient’s collateral
function in AIS. It has previously been shown that better collateral function in AIS is associated
with small ischemic core, large clinical penumbra and slower progression of infarcted tissue [85,
86]. Since collateral function is related to ischemic core and penumbra size, a comprehensive
assessment of the collateral function in AIS patients may aid in patient selection for EVT without
the necessity to utilize CT perfusion or MRI-based acquisitions [85, 86]. However, currently only
qualitative methods describing grading scales of the affected vascular territory exist for evaluating
collateral function [90, 85]. A more quantitative approach of assessing iodine distribution in CT
angiography images and delayed phase CT angiography images could open up possibilities to
rethink patient selection for EVT in AIS.

The non-contrast CT, CT angiography and delayed-phase CT angiography contain informa-
tion about the blood supply in non-affected brain tissue and ischemic brain tissue to potentially
aid in clinical decision making for the triage of AIS patients. The primary challenge is to derive
a model based on relevant and generalizable features able to predict whether a patient is eligible
for EVT. In medical image analysis, deep learning methods have proven to be highly effective in
classification, localization and segmentation when the amount of available labeled training data
is large enough to learn complex patterns [116, 117]. The aim of this study is to optimize a deep
convolutional neural network to determine the presence, extent and location of acute ischemic
stroke based on CT and CT angiography.

4.2 Methods

4.2.1 Patient selection

Patients were included if they were referred to CT and subsequently to MRI for the evaluation
of acute stroke symptoms. Exclusion criteria included: CT or MRI acquisitions that did not
image the entire head and inadequate delay times between CT angiography and delayed-phase
CT angiography (< 15 seconds or > 60 seconds). Patients were divided in either train set or
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test based on the presence of a large hematoma (infarct volume on follow up DWI > 30 ml).
75% of patients with a large hematoma and 75% of patients with a small or no hematoma were
included in the train set, 25% of patients with a large hematoma and 25% of patients with a
small hematoma were included in the test set.

4.2.2 Image acquisition & image analysis

CT images were obtained using a both a DECT scanner and a regular CT scanner. Since data
was obtained retrospectively, no clear-cut protocol defining voxel size, reconstruction kernel and
tube voltage was applicable to all scans. The default imaging protocol for the assessment of acute
ischemic stroke on this scanner consisted of a non-contrast CT, bolus-tracked CT angiography,
and a delayed-phase CT angiography with a 20-30 seconds time delay. DWI images were obtained
using multiple MR scanners, with varying protocols for acquisition of DWI images. Rigid reg-
istration of non-contrast CT, CT angiography, delayed CT angiography and diffusion weighted
MRI to a standard space was performed using SPM12 (Wellcome Trust Centre for Neuroimag-
ing, University College London, London, United Kingdom). In standard space, each image stack
had 28 slices, with a slice thickness of 5 mm, of 512 × 512 voxels with an axial resolution of
1 × 1 mm. Segmentation of DWI images into ischemic lesion masks for supervised learning
was performed semi-automatically in Matlab using a custom algorithm and was supervised by a
neuroradiologist.

4.2.3 Deep learning

All deep learning was performed using a custom algorithm in Keras (F. Chollet, https://keras.io)
and TensorFlow (TensorFlow, https://www.tensorflow.org) running in Python 3.5 (Python Soft-
ware Foundation, https://www.python.org/).

Convolutional neural network

To learn the identification of AIS on CT images in a supervised fashion, the CT input was passed
through a convolutional neural network (CNN). The CNN is a 16 layer encoder-decoder network,
denoted as X. The layers are indexed from 0 to L, with layer 0 being the input layer and layer
L the output layer. The state of layer i is denoted as xi. The entire network is constructed by
concatenation of layers xi for i = 0, · · · , L. The basic operations of the employed CNN are the
convolution and deconvolution, which both map a feature map i to a subsequent feature map j
using a Rectified Linear Unit (ReLU) as activation function:

xj = max(0, wij ~ xi + bj). (4.1)

Where W represents the weights matrix between each feature map i and feature map j, and bj is
the bias of feature map j. However, since each convolution is followed by batch normalization, bj

will be canceled out by mean subtraction and can thus be ignored [118]. Leading to the following
expression for a convolution followed by batch normalization (BN):

xj = max(BN(0, wij ~ xi)). (4.2)

Where batch normalization serves the purpose to standardize the input to each layer in the
network to zero mean and unit variance, accelerating network training by allowing higher learning
rates and be less careful about parameter initialization [118]. Consider the input x passed through
the CNN of L layers, each implementing a non-linear transformation Hl at layer l. Layer l maps
a given layer input xl to a representation xl+1 which serves as the input for the subsequent layer.
Hl can be a composite function of operations such as transposed convolutions, convolutions,
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batch normalizations and ReLUs. If we denote the output of layer l as xl, considering we have
a short skip connection inside the layer l and a long skip connections between each layer l and
L− l, each encoding layer l can be expressed as:

xl+1 = [Hl(xl), xl]. (4.3)

Long skip connections between each layer l and L − l serve to pass on low-level features and
eliminate gradient singularities that slow down training but are inherent in nodes in a deep
networks, while short skip connections inside each layer enhance optimization of deeper networks
by allowing uninterrupted gradient flow [119, 120]. Because each decoding layer receives a skip
connection from an encoding layer, for the decoding layer L− l follows:

xL−l+1 = [HL−l([xL−l,xl]), xL−l, xl]. (4.4)

The encoding part of the network performs convolutions and max pooling operations resulting
in a learned downsampling of the feature maps, while the decoding part of the network performs
transposed convolutions and convolutions, serving to perform a learnable upsampling. The cur-
rently implemented model is visualized in fig. 4.1. The topography of both the encoding and

Figure 4.1: Schematic representation of the convolutional neural network. The orange layers are
the encoding part of the network performing a learnable downsampling, the green layers are the
decoding part performing a learnable upsampling. Black arrows are feature map concatenations
either within a layer, known as short skip connections, or between layers l and L − l, known as
long skip connections.

decoding layers are visualized in fig. 4.2. The network input is a u × v × 3 volume, with the
individual channels consisting of non-contrast CT, CT angiography and delayed-phase CT an-
giography. The supervision is a u × v mask of infarcted lesion, denoted as R, with supervision
pixel values ru,v. The output is a u × v pixel-wise probability distribution of a pixel being in-
farcted P, with pixel values pu,v. P is optimized to match R by minimizing the generalized
dice loss, which has shown to be most robust against class imbalance in the data [121]. The
generalized dice loss (GDL) is:

GDL = 1− 2

∑2
l=1 wl

∑
u

∑
v rl,u,vpl,u,v∑2

l=1 wl

∑
u

∑
v rl,u,v + pl,u,v

. (4.5)

Where each label l has a label weighting to correct for class imbalance, wl, inverse to its relative
volume as:

wl = (
∑
u

∑
v

rl,u,v)−2. (4.6)
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Figure 4.2: Topography of the encoding and decoding layers. Encoding layer l has a short skip
connection inside the layer and sends a long skip connection to layer L−l, learnable downsampling
is performed during the max pooling operation. Decoding layer L− l has a short skip connection
inside the layer and receives a long skip connection from layer l, learnable upsampling is performed
during the transposed convolution.

Implementing the Dice score in a two-class problem with SGD, as in our case, the gradient with
respect to a pixel having probability of infarction pi becomes:

δGDL

δpi
= −2

(w1, w2)2)(
∑

u

∑
v pu,vru,v − ri

∑
u

∑
v(pu,v + ru,v)) + uvw2(w1 + w2)(1− 2ri)

((w1 − w2)
∑

u

∑
v(pu,v + ru,v) + 2uvw2)2

,

(4.7)
as shown in [121]. The gradient with respect to each preceding input layer can be subsequently
computed using the chain rule.

4.2.4 Hyperparameters

The employed CNN was trained during 150 forward and backward passes through the network of
all training samples, called epochs. Each forward and backward pass is computed over a number
of training samples, called the mini-batch size, which was set to 8. The employed optimizer for
weight adjustment was a stochastic gradient descent algorithm with momentum, using a learning
rate scheduler to decrease the learning rate gradually as a function of the completed amount of
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epochs with a starting learning of 0.1. The network depth of 16 layers and the amount of hidden
units were not varied during training.

4.3 Results

4.3.1 Patient population

Between February 2017 and February 2018, a total of 101 patients were assessed for AIS using
both CTA and MR. Of these patients, 16 patients had a delayed-phase CT angiography acquisi-
tion that did not contain the entire head, 11 patients had delay times appropriate for evaluation
of intracerebral hemorrhage but not for AIS evaluation, 2 patients had an MR acquisition with-
out DWI and 1 patient was excluded due to poor image quality. The remaining 71 patients were
divided in either train set or test. The train set was composed of 53 patients, of which 5 had a
large hematoma, and the test set was composed of 18 patients, of which 2 had a large hematoma.

4.3.2 Identification of acute ischemic stroke

The CNN was trained on 53 patients, minimizing the Dice loss by gradually matching the contin-
uous function network output to the ischemic lesion mask supervision. The Dice loss gradually
decreased from almost 1 at epoch 1 to 0.32 at epoch 150, see fig. 4.3. This Dice coefficient after

Figure 4.3: Visualization of the
Dice loss (orange line) and the
Dice coefficient (blue line) as a
function of the amount of com-
pleted epochs during training.

Figure 4.4: Example of the pre-
dicted model output on train-
ing data without large stroke
volume.

Figure 4.5: Example of the pre-
dicted model output on train-
ing data with a large stroke vol-
ume.

training loss means that there was a 68% union between the ischemic lesion on the supervision
and the generated output. The results of the generated output compared to the supervision are
presented in fig. 4.4 and fig. 4.5. After training, the deep learning model was validated on new,
unseen data in the test set. However, the Dice loss on the validation set remained close to 1, as
can be seen in fig. 4.6, with the results of the generated output compared to the supervision on
the test set are presented in fig. 4.7 and fig. 4.8.

4.4 Discussion

In this study, we designed and evaluated a deep convolutional neural network aiming to char-
acterize the size and shape of ischemic lesions in patients with acute ischemic stroke based on
CT angiography acquisitions. The CNN was designed to detect abnormalities in anatomy and
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Figure 4.6: Visualization of the
Dice loss (green line) and the
Dice coefficient (red line) of
the validation set as a function
of the amount of completed
epochs during training.

Figure 4.7: Example of the pre-
dicted model output on test
data without large stroke vol-
ume.

Figure 4.8: Example of the pre-
dicted model output on test
data with a large stroke vol-
ume.

physiology in different CT acquisitions. We evaluated the performance of our CNN by comput-
ing a Dice loss for the train set and validation set as a function of the amount of epochs during
training, as well as computing a Dice loss for the test set after training.

While our CNN showed promising performance in the identification of AIS on CT on the train
set (Dice loss < 0.4), this performance could not be reproduced on the test set (Dice loss ≈ 1).
The increasingly larger difference between Dice loss on the train set and Dice loss on the valida-
tion set during training indicates that the CNN overfitted on the training data. The expected
generalization error, the difference in expected train error and expected test error, is shown to be
proportional to h

P , where P is the number of training samples and h is a measure of complexity,
or effective capacity, of the model [97]. The most probable cause of overfitting in this case is an
insufficient amount of data presented during training. Although the amount of available data
samples during training equals 53 patients × 28 slices = 1484 data samples, the large variety in
slices from different, parallel parts of the brain in contrast to the subtle physiological changes
in ischemic territory in combination with the low proportion of slices containing ischemic lesions
make the problem of ischemic lesion characterization too complex to solve in a generalizable
fashion with this amount of data. It is important to note that the effective capacity of CNNs has
been shown to be sufficient for memorizing entire datasets of random noise [122]. The concept
of regularization is to restrict the possible set of functions to a subset of less complex functions,
reducing effective capacity and thereby improving generalization. The role of explicit generaliza-
tion, such as weight decay, dropout, data augmentation and L1/L2 regularization, and implicit
generalization, such as batch normalization and early stopping, is an active topic of discussion in
deep learning [122]. In the employed CNN we incorporated both explicit generalization, weight
decay, as implicit generalization, both batch normalization and early stopping, but it did not
suffice to prevent a large generalization error. The implementation of data augmentation, syn-
thetically generating ’new’ data samples by performing affine transformations on existing data
samples and their supervision, would increase the amount of data samples but also the com-
plexity of the task for the CNN, since the data would not be registered to the same standard
space. Implementing more regularization techniques to make the model more generalizable, such
as dropout or L1/L2 regularization can help to reduce generalization error [123]. However, the
generalization error appears to be too large to be solved with only regularization. A different
approach would be to reduce the task complexity by delivering a more structured input to the
network, such as only 2-dimensional slices of the same anatomical region for one CNN or only
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3-dimensional volumes of the entire brain.
This study has several limitations. First and foremost, the amount of training and test data

is too small for achieving a small generalization error. Second, the input data varies in the way
the CTs are acquired. The reconstruction kernel, contrast injection rate, delay time between
CT angiography and delayed-phase CT angiography and acquisition settings vary among data
samples. Third, there is a variation in the etiology of ischemic lesions and the time since onset
of stroke symptoms in our dataset, both causing a variation of input data.

Future research should focus on the trade-off of between generalization and network complex-
ity for complex deep learning problems. With respect to this study, future research would benefit
from improving standardization of input data and above all gather more training and test data
to try and detect ischemic lesions based on CT acquisitions.

4.5 Conclusion

We have not been able to characterize the shape and size of ischemic lesions in a generalizable
fashion. The amount of training data available was not sufficient to reach a small generalization
error given the complexity of the characterization task and the complexity of the deep CNN.
Future work should focus on the inclusion of more patients, standardization of input data in
both acquisition protocol and stroke etiology and the adaptation of the CNN to optimize between
network complexity and the ability to generalize to new data.
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Chapter 5

Conclusion

In this study we attempted to develop CT-based machine learning models to identify subgroups
of either patients at risk for hematoma expansion in intracerebral hemorrhage or patients with a
large ischemic lesion in acute ischemic stroke. Identification of these subgroups of patients can
potentially increase treatment efficacy in both hemorrhagic and ischemic stroke.

In order to identify expanding hematomas in patients with intracerebral hemorrhage, we
employed an SVM-based machine learning model using quantitative DECT-based features. The
model showed superior performance to the conventional spot sign on the train set, and similar
performance to the conventional spot sign on the test set. The 2 features included in the model
were: iodine content in the hematoma and iodine content in the brightest spot. These features
exemplify the usefulness of quantitative DECT-based features, quantifying contrast medium to
aid in accurately capturing the physiology behind hematoma expansion. Future research should
focus on gathering more data and implementing more strict protocols to ensure standardization
of both input and output.

For the identification and characterization of ischemic lesions on CT acquisitions using deep
learning, no generalizable results were obtained. Although the performance of the model on the
train set was promising, this appeared to be due to overfitting on the training data since the
results could not be generalized to a new, unseen test set. Future research has to focus on the
gathering of more data, studying the trade-off between generalization and network complexity in
complex deep learning tasks and the standardization of input data.

In the near future, more and more machine learning methods will make their introduction in
the hospital, from feature extraction to the classification of medical conditions and the generation
of alternative imaging methods. The amount of available data will keep increasing, paving the
way for more applications of machine learning in clinical practice.
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