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Summary
Field Programmable Gate Arrays (FPGA) are digital hardware devices that can be
reprogrammed to implement a variety of tasks. In most application this is done
before start-up. However, it is also possible to reconfigure during runtime. Cur-
rent FPGA development platforms offer the ability to implement new function-
ality on a part of the hardware, otherwise known as partial reconfiguration. The
implementation of this methodology is limited mainly because partial reconfig-
urable modules can only be constrained in their placement on the FPGA fabric.
When these restrictions can be overcome, it is possible to implement more com-
plex partial reconfigurablemodules instead of the currently supported island con-
figuration.

This work analyses the routing of partial reconfigurable modules and how this
can be changed using the open-source tool RapidSmith2. This tool provides an
important interface for projects created in Vivado. Furthermore, RapidSmith2
provides data structures that allow for the modification of individual cells and
routes in the FPGA design. Using this tooling, it is possible to interfere in the nor-
mal design flow in order to analyse the interfaces of partial reconfigurable mod-
ules. Moreover, the tooling can be applied to identify nets crossing the border of
these partial reconfigurable modules and re-route them using a simple algorithm.
This has been performed and tested on a simple VHDL design to verify its opera-
tion. With this analysis, the paper provides a basic framework for the analysis of
partial reconfigurable FPGA designs using RapidSmith2.
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Bachelor's Thesis:

�Design Flow for Creating FPGA-based Partial Recon�gurable Hardware

Modules�

Student: Matthijs van Minnen
Supervision: Assoc. Prof. Dr. Daniel Ziener

Background:

Dynamic reconfiguration of FPGAs means the exchange of the FPGA configuration
during runtime. Partial dynamic reconfiguration means that parts of the configura-
tion can be exchanged during runtime, whereas the remainder of the configura-
tion stays active. FPGA support for partial reconfiguration is the precondition for
utilizing partial reconfiguration. However, a corresponding design flow in order
to build such a system is also needed. A partial reconfigurable design is usually
split into two parts: The a) static part is always present and only configured at
power up of the system. In this part, usually the interfaces to peripheral devices,
memory controllers, and the access to the configuration interface of the FPGA
(e.g., the ICAP for Xilinx FPGAs) is included. The configuration of one or several
b) partial reconfigurable parts or areas can be exchanged during runtime. These areas
are usually embedded and surrounded by the static part. In these partial reconfig-
urable areas, modules and operations are implemented which can be adapted or
exchanged during runtime [10].

The partial reconfigurable areas can be arranged in different configuration styles.
The simplest configuration style is the island style which is capable to host one
module exclusively per partial reconfigurable area. One drawback is the frag-
mentation if partial reconfigurable modules with different logic and routing uti-
lization are used. The size of the partial reconfigurable area must be large enough
to host all instances of the largest module which might result in a low utilization
of the smaller modules. The negative effect of fragmentation can be reduced if the
slot or grid style is used [10]. Here, the partial reconfigurable area is partitioned
into slots or fields. The partial reconfigurable modules can utilize multiple slots
or fields depending on the required amount of resources.

Relocation of partial reconfigurable modules means, that the same partial configu-
ration can be loaded on different locations onto the FPGA which makes also pos-
sible to instantiate one partial reconfigurablemodulemultiple times on the FPGA.
A very flexible hardware system can be designed by combining relocation with
the slot or grid configuration style. However, such a system needs sophisticated
communication structures to establish the transfer of data in and out of the partial
reconfigurable area and between the different reconfigurable modules.

Xilinx and Altera offer design tools for partial reconfigurable systems and sell li-
censes to enable this feature. Xilinx integrated the partial reconfiguration feature
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ORIGINAL THESIS DESCRIPTION iv

in their design tool PlanAhead [5] and Vivado. Also, Altera supports partial recon-
figuration for the new Stratix V series and integrated a partial design flow in their
tools which is quite similar to the Xilinx approach [3]. However, these approaches
support only an island reconfiguration style with the inclusion of static nets in the
reconfigurable areas which forbids the relocation of partial reconfigurable mod-
ules.

To overcome these restrictions, the FPGA research community has introduced
some partial design flows which are able to support the more advanced slot style
and module relocation. A very comfortable flow for building partial reconfig-
urable systems is the tool ReCoBus-Builder [11]. This tool provides the easy gener-
ation of communication structures for bus-based and data-flow-oriented commu-
nications for the slot configuration style. The successor of ReCoBus-Builder is the
tool GoAhead [2] which supports also newest Xilinx FPGA generations.

Problem statement:

In this bachelor thesis, the first steps to a novel design flow for building relocat-
able partial modules should be developed. Routing constraints are very impor-
tant for the creation of such modules. However, Xilinx does not support routing
constraints. GoAhead [2] deals with this issue by blocking routes which should
not be taken by the Xilinx router. In this work, constraint-less routed modules
should be analyzed in order to find nets that leave the desired area. If such nets
are found, these nets have to be corrected by rerouting. This should be done by
using the freely available tool “Rapidsmith2 ” [7] which is able to modify placed
and routed netlists by using a Java library.

The following issues should be solved:

• Get familar with the FPGA design flow and Xilinx Zynq architecture.

• Get familar with partial reconfiguration of FPGAs.

• Get familar with Rapidsmith2 [7].

• Set up a simple reconfigurable system.

• Develop an algorithm for detecting and rerouting net which leaving the de-
sired area.

• Implement and test this algorithm by using Rapidsmith2 [7].

• Writing the thesis.
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Chapter 1

Introduction
The area of the Field Programmable Gate Array (FPGA) has undergone a large
growth over the last few decades which is thanks to the advantages this plat-
form brings in the ever increasing digital generation. Themarket demands higher
speeds at lower prices which requires dedicated hardware. Developing ASICs for
every application requires long development cycles which in turn increases costs.
The ever flexible FPGA platform is able to provide the basis for all the different
applications and requires a reconfiguration to implement the desired task. This
significantly reduces development time and cost whilst delivering high speeds as
a result of the FPGA still being a hardware system.

Thanks to the flexibility in reconfiguring the FPGA it is simple to implement a
large variety of functions on the platform by simply reprogramming it. The FPGA
can be reconfigured to perform a completely different function. This is useful as it
makes the general FPGAplatformapplicable in a variety of situations. By having a
general FPGAplatform itmight occur that some of the hardware resources remain
unused as it is not optimised for a specific task. This concept can be extended to
several subsystems implemented on the FPGA. All of them take up a set amount
of space, but not all subsystems will be used during all clock cycles. This problem
is commonly known as fragmentation (in time) and should be avoided to improve
the efficiency of the system.

A solution to this problem was derived by Xilinx in 2002 [17]. They proposed
to reprogram/reconfigure the board during run time, which is known as recon-
figuration. Since some portions of the board are always utilised, they will not be
changed. Hence, a selected amount of area will be reconfigured; this is known
as partial reconfiguration (PR). With this type of reconfiguration, modules which
are not used can be replaced by other modules to increase efficiency. Besides in-
creasing efficiency, PR could pose a solution to many other problems in FPGA
development. An example here would be increasing the lifespan by moving a
computationally intensive module around the FPGA and thus reducing the local
heating and thus ageing of the device [1].

Both Altera and Xilinx have already implemented tools that allow for recon-
figuration into their software package. For Xilinx devices this tool is implemented
in the Vivado IDE. With these tools however, it is not possible to implement ad-
vanced reconfiguration structures (multiple reconfigurable slots) or to dynami-
cally relocate modules. Community based tools, such as GoAhead [2], allow for
these more complex type of structures. Unfortunately, the routing constraints re-
quired for this type of functionality are not possible in Vivado. To solve the prob-
lem, GoAhead the program simply blocks (deletes) inappropriate routes.

To allow for optimal use of the previously described designs, routes should
not be blocked but instead be intelligently rerouted to still allow for the desired
operation, this leads to the following question. How can the routing of partial
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reconfigurable modules be analysed and altered on an FPGA device using Rapid-
Smith2 and without blocking possible routes? This report will provide the basis
for both analysis and rerouting and serve as a starting point for future research.

Before delving into a possible solution for this problem, Chapter 2will describe
the details of the FPGA design flow. Moreover, this chapter will discuss PR to a
larger extend and explain the required tools: Vivado and Rapidsmith2 tools. The
next Chapter 3 builds upon this by implementing algorithms that perform the re-
routing. In Chapter 4 a PR project is created. The routing in this design is analysed
and the performance of the algorithm is evaluated in Chapter 5.
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Chapter 2

Theoretical background
The concept of PR and it’s advantages were briefly discussed in the introduction.
In this section, the details that are relevant for this research are explored with
further depth. Given the research question, specifically PR methods and the cor-
responding routing thereof are of interest. These topics will be explored below
and some concept are defined more properly.

2.1 FPGA design flow
Developing an FPGA application is performed using so called hardware descrip-
tion languages (HDL). With these languages the designer has more direct control
over the hardware. The most two most common languages for programming FP-
GAs are VHDL and Verilog. For converting this HDL-code to a bitfile that can
be uploaded to a device, multiple IDEs are available, e.g. Quartus (Altera) and
Vivado (Xilinx). The programs perform a number of steps before creating the bit-
stream that is uploaded to the FPGA board.

An overview of the FPGAdesign flowhas been created in Figure 2.1. The steps
are elaborated here. The designer starts with designing a circuit in the preferred
HDL (Step 1). All the required functionality is implemented in this design. This
code is the starting point of the design flow. Like with any other type of pro-
gramming the code is validated to see if it actually performs what the designer
intended, this is performed in the second step. If the performance is satisfactory,
the code can be synthesised (e.g. converting the code to a netlist of LUTs and FFs)
in Step 3. Step 4 and 5 are often mentioned together [4] but are in fact separate
which can be exploited for use of PR or other more advanced techniques, such as
manual floorplanning1. By extracting the design before placing or routing, man-

1"Floorplanning is the process of choosing the best grouping and connectivity of logic in a design, and
of manually placing blocks of logic in an FPGA, where the goal is to increase density, routability, or perfor-
mance." [18] The floorplanning can be (manually) optimised to decrease the critical path and allow

Figure 2.1: The design flow from creating the code to uploading the code on an
FPGA device.
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ual adjustments can bemadewhich can help in implementing such systems. After
this step is completed, another simulation is performed to test the timing of the
system and to identify possible errors. When timing is not satisfactory, routing
and placing could be adjusted or the initial design should be changed (see blue
lines in Figure 2.1). When everything is complete, the placed and routed netlist
can be converted to a bitstream which can be uploaded to the FPGA board (Step
7).

It must be noted that planning and routing is completely separate from the
original design and dependent on the device it will be uploaded on. The result
of synthesis will remain the same however. Hence, the designer can influence the
design both through the initial code or by intervening in the placement and/or
routing procedure.

2.2 Partial reconfiguration on the FPGA platform
The goal of PR is to exchangemodules on the FPGA platform during runtime. Do-
ing so requires the routing of I/O signals to the correct location on the FPGA. To
be able to perform this, a portion of the FPGA needs to keep executing the re-
quired tasks (including the reconfiguration). This part of the FPGA is known as
the static region. This region will also host static parts of the system, such as I/O
ports as they can never be (physically) moved. Logically, the part that will host the
reconfigurable modules is named dynamic region. This region can host a variety
of different modules which can be initialised whenever required. The applica-
tion of this region is limited by the configurable logic blocks (CLB) available in
the hardware. Designers should take this into consideration when creating their
reconfigurable modules.

2.2.1 Partial reconfiguration methodologies
Currently there are a select number of choices for PR methodologies. The sim-
plest and most widely supported form is the island style reconfiguration. The PR
region is surrounded by the static region (hence the name; island) and the area
can exclusively host one PR module at a time. The advantage of this type of con-
figuration is that the interfaces to themodule can be standardised, simplifying the
communication from the static to the dynamic area. There are however, a num-
ber of disadvantages that can be decreased by utilising a different methodology.
For instance, the island should be large enough to host the largest PR module. In
which case the utilisation of the available area is optimal. When a smaller module
is inserted however, a large portion of area may go unused which is known as in-
ternal fragmentation. The fact that solely one module can be hosted in an island
means that this unused area cannot be utilised otherwise.

To overcome these limitations, the slot and grid style reconfiguration method-
ologies were conceived [10]. The first divides the dynamic area into vertical slots
of a fixed size, the latter divides the area in both horizontal and vertical direc-
tion, e.g. a 2-D grid of relocatable chunks (see Figure 2.2). With these styles, PR
modules can use several slots/chunks to create the required area to host a PR

for an increase of the clock frequency.
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Figure 2.2: Three different PR methodologies: a) Island style, b) slot based and c)
chunk based. Taken from [10].

module. If a module does not fully utilise a slot or chunk, some area goes unused,
but this amount is significantly reduced when compared to the area of a larger
island. Supporting these reconfiguration styles does require more effort however.
Instead of communicating with a single island, several slots/chunks need to be
interfaced. Next to the fact that slots/chunks need to communicate internally to
perform the required task. Enabling all of this communication requires overhead
which decreases the efficiency of the implementation [10].

It was stated before that slots or chunks have a fixed size. For communica-
tion with each section, a fixed amount of overhead is required. Hence, it would
make sense to make larger slots/chunks. But this would reintroduce the issue of
internal fragmentation. Hence, a trade-off should be found between the size and
communication overhead of the slots/chunks.

2.2.2 Link between static and dynamic region
The static region should, as the name suggests, remain the same. At the same
time, however, several different dynamic modules could be loaded during run-
time. These should all work correctly and be interfaced with the static region. To
accomplish this, a standardised interface has to be created. This is not a new idea
as seen in sub-figures a) and b) in Figure 2.3. These methods utilise cells which
force the router to make a connection to the edge of both the PR module and the
static region. When inserted, the PR module can then interface with the static re-
gion. In the case of Figure 2.3 the older bus macros2 or the newer proxy logic are
used. The use of these cells means an additional overhead of two cells for each
connection. Additionally the proxy logic cells used today are set to route-through
which makes them behave like a wire. Except for the fact that they introduce a
small delay. When dealing with larger streams of data this delay can become sig-
nificant and is hence not desired. Figure 2.3 also proposes a new method where
PR-links, or in otherwordswires, are used for the connection. Modern day routers
are not able to create this type of PR-links, which is why a different solution must
be sought for.

2Bus macros were required in the design for the router to have a point to attach to.
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Figure 2.3: Three differentmethods of connecting the dynamic to the static system.
Taken from [12].

2.2.3 Switching PR modules
When all prior steps have been successfully completed, PRmodulesmust be loaded
onto the FPGA board. The first module can be loaded with the static system in
what is knownas a full-configuration. However, the goalwith PRmodules is to ex-
change themduring runtime. This can be achieved in a number ofways. Using for
example the Vivado IDE (see Section 2.3) it is possible to load a partial bitstream
solely containing the information for the partial module. As such the information
in the RP site will be overwritten with the information of the new module. Load-
ing this partial bitstream is done using a JTAG interface. Alternatively, the Zynq
family (with boards such as the Zedboard; see section 2.5) provides the ability to
upload a bitstreamusing the onboardprocessing system. Using this, the bitstream
can be loaded into the programmable logic at any time using a PCAP interface. By
utilising the communication between the two parts, the module can be loaded at
the appropriate timing. A final option is to utilise ICAP to reconfigure the fab-
ric. This method is similar to PCAP, but now the FPGA fabric itself implements
a different module. This allows the FPGA to independently host partial dynamic
reconfigurable projects.

2.3 The Vivado IDE
As previously mentioned, the Vivado IDE [9] is one of the most commonly used
tools for performing; synthesis, placing, routing and creating the bitstream (see
Figure 2.1). This IDE provides a graphical and a TCL interface. Moreover, it pro-
vides support for the island style partial configuration. Still, implementing a de-
sign requires some effort as each PRmodule has to be processed individually. The
first step is to synthesise, place and route the static region together with a black-
box that allocates the PR region. After this process is completed, the black box
can be removed and a checkpoint can be made. Using this checkpoint, each PR
module can then be placed and routed to provide a bitstream for each individ-
ual configuration. Since Vivado only supports island style PR, it is not directly
possible to implement the slot style reconfiguration. However, it is possible to al-
locate the desired area such that it can be configured as a PR slot using a different
method.
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2.3.1 Implementing a PR island
The first step in implementing is to individually synthesise all parts of the de-
sign. This means both the static design as well as all PR modules individually.
A checkpoint must be created for each synthesised project, such that they can be
loaded into the design later on. Next, the static design synthesis checkpoint must
be loaded together with either a PR module, or a blackbox indicating the location
of the modules. This design can then be placed and routed, after which the mod-
ule/blackbox can be removed to leave only the static design. A checkpoint must
be created of this design because this can then be used to execute placement and
routing for all the other PRmodules, each time loading a differentmodule into the
static system. A bitstream can be made for each implementation independently,
such that it can be uploaded to the FPGA board (see Section 2.2.3).

It must be noted that all of these steps can be combined and executed using
a TCL file. This automates many of the steps but relies on the Vivado tools to
properly execute all steps. In some instances it can be good to manually execute
certain steps, such as allocating pblocks, to improve the overall design.

2.4 Rapidsmith2
WhereasVivado tries to automate and abstractmanyprocesses, RapidSmith2 (RS2)
[13] provides a lot of low level control (it is possible to interact with individual
BELs3 for example). As such, it is possible to change both the floorplan and the
routing on a larger scale, as well as fine-tune small elements. Installing and using
RS2 is simplified through the use of the techreport [15]. This document also ex-
plains how to use many of the components/functions. A small summary of the
relevant information is given here for use in the report.

2.4.1 Storage types
To store the design created in Vivado, RS2 uses a number of variables. In order to
properly use RS2, a good understanding of the different variables is required:

• Device: An overview of the platform; e.g. what sites are placed where in
the fabric.

• Design: Provides an overview of the design created by the user; e.g. what
cell types (from the cell library) are placed where in the fabric and how these
cells are routed.

• Cellnet: An overview of the connections between netlists.

• RouteTree: A structure to store routes in, more details are given in Section
2.4.3.

• Cell Library: A library with all available cell types to be implemented in the
design.

• Tile: Equal to Vivado tiles; contains a number of sites.
3Basic element, e.g. a LUT or flip-flop.
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• Site: Equal to Vivado sites; contains a number of cells.

• Cell: Similar to Vivado cells, the available types are found in the cell library.

• Wire: A structure for describing a connection. More details are given in
Section 2.4.2.

• RS2providesmore datastructures (e.g. BELs, PIPs, etc.), but thesewill not be
discussed in detail as they are not relevant for the routing. These structures
are mainly used for implementing low-level changes to the design.

2.4.2 Manipulation commands
Using RS2 it is possible to list all elements in the design, e.g. tiles, sites, cells, BELs,
wires and PIPs. A list of all items can easily be invoked by issuing: getTiles(),
getSites(), etc. Alternatively, specific elements can be searched for by for ex-
ample issuing getBEL('PAD'). This will return all PAD elements on the specific
tile/site.

Wires

RS2 implements a special structure for documenting wires. In essence, there are
twowire types: Programmable Interconnect Point (PIP) connections andNon-PIP
connections. Here Non-PIP connections are simply a wire connecting to another
wire, thus forming a simple connection. The PIP connections are locations where
two wires are connected using a PIP which can be programmed. The PIP connec-
tions can connect to a number of specific objects; site pins, BEL pins or a (BEL)
route-through connection. The most important parts of a wire connection are the
source and sink(s), these are labeled, whereas the Non-PIP connections are not
[15]. The power supply and ground nets are handled separately, but do not have
to be changed manually for changing the routing, so will not be discussed into
more depth here.

To determine how routing is performed, more insight into thewire structure is
required. RS2 identifies three major commands for retrieving information about
wires [15]:
• "mywire.getWireConnections(): Returns a collection of all Connection ob-
jects whose source is “mywire”. This collection can be iterated over to find
all places a specific wire goes (i.e. what wires it connects to).

• conn.isPip(): Returns true if the wire connection “conn” is a PIP connec-
tion. Returns false otherwise.

• conn.getSinkWire(): Returns the sink wire of a wire connection."
The RS2 techreport goes into more detail and gives code examples for using

the specific commands and identifying the different types of wire (connections).

2.4.3 Route trees
The first version of RapidSmith had no way of managing the wire elements. A
great improvement with RS2 is the introduction of RouteTrees, which manages
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these object for the user. To effectively change the routing, the structure of the
route tree must be properly understood.

A RouteTree is a struct for eachwire that contains about the connection it is part
of. It links the source of the connection and also lists all the sinks. Moreover the
struct contains the route from the source element to the current RouteTree element
[15]:

• Wire: the actualwire theRouteTree is describing. This can be any of thewires
described before.

• Source: The name of the source of this connection. Here source is of the
previously described type.

• Connection: shows the path from the source to the current wire.

• Sinks: Shows the sinks that are part of the connection.

• Cost: A field for entering the cost of a wire. This can be useful for routing
algorithms.

2.4.4 Implementing routing
RS2 converts the routing of Vivado in a three-part routing structure. The first part
is the lower level routingwithin a site. The second part, intersite routing, connects
different sites together. Once a connection has been made between sites, the third
part of the routing connects the intersite routing pin to elements within the site.

If there are routes leaving the specified tiles, this must be the intersite routes.
Since a connection is required between the two sites, a route must be constructed
between them. It is possible to adjust the routing however, fit within the specified
tiles of the module. Since this route is part of the route tree (See Section 2.4.3) the
elements currently part of the tree must be removed. Subsequently, a new path
must be created and the corresponding elements must be added to the routetree
to once again complete the structure.

If the new route does not conflict with any of the existing routing, the design
is still able to perform the original task as the sites are still connected. However,
this new implementation does not contain nets that move outside the specified
bounds.

Routing algorithms

In the example section RS2 provides two samples of routing algorithm. The first
is very simple and named handrouter. This algorithm analyses the connections
available to the routeTree. These options are printed and it is up to the user to select
the best route. As the name suggests, a manual solution.

Alternatively, RS2 provides the A* (A-star) router which is based on the orig-
inal A* algorithm created by the Stanford Research Institute as early as 1968 [8].
This algorithm is not the most efficient, but provides a simple starting point for
developing new routing algorithms.
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Figure 2.4: An overview of the Zedboard and it’s interfaces from the Vivado soft-
ware [9].

2.5 The Zedboard
To actually test the implementation on hardware, a platform to work on is re-
quired. Within the Zynq family, the Zedboard, an educational board, is avail-
able. Besides the Artix-7 FPGA with 53,200 LUT’s and 106,400 FF’s, this board is
equipped with a dual ARM R© CortexTM -A9 MPCoreTM which can operate up to
866MHz. Moreover, it hasmultiple I/O options, such as: slide switches, push but-
tons, LEDs and a 128x32 OLED screen [20]. These interfaces and more are shown
in Figure 2.4.

Since the goal is to adapt routing on the FPGA, the ARM cores will not be
used. In an actual application, these can be useful to extend the applicability of
the board. The several I/O options however allow for easy debugging as they can
quick visualising what is going either right or wrong.
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Chapter 3

Analysing the Vivado routing
A number of elements of the created example design have to be analysed; the
proxy logic used to connect the static and dynamic parts, the routing of the partial
reconfigurablemodule and if the nets in themodule leave the specified area. Once
incorrect routes are detected theymust be corrected, which is discussed in Section
3.3.

3.1 Proxy logic
In the 2017 version of Vivado, Xilinx presented the partition pins [19]. These pins
satisfy the desire as posed in Figure 2.3 as it does not require additional physi-
cal cells which require resources and could influence timing performance. Since
the interfaces between the static design and the reconfigurable modules are now
handled by Vivado, it is not required to implement these using RS2. What can
be analysed is the routing to-and-from these pins. If this is different for different
modules it can have an influence on the performance between modules.

Before partition pins were implemented, an additional step had to be per-
formed using RS2 to insert connection points between the static and dynamic re-
gion to avoid the use of proxy logic. In the list described in Chapter 4, this would
have been inserted after Step 2. There the project would be exported to RS2, the
desired interfaces would be inserted, after which the design would be reinserted
into Vivado.

3.2 Routing analysis
The second item to be investigated is if routes go outside the boundaries set for
the (PR) module. This is not meant to happen as it might have influences on the
(routing of the) static system. Detecting the crossing of these boundaries is imple-
mented using functions which are elucidated in Sections 3.2.1 and 3.2.2.

3.2.1 Specifying bounds
When determining routes that go out-of-bounds, the first step is to define what
the boundaries are. The function in Listing A.1 does this using two tiles which act
as two corners of a rectangle. The function then creates a Collection<Tiles> of
all selected Tiles within the indicated rectangle. This algorithm is implemented
using Java and the RS2 framework and is based on the functionality described in
Section 2.4. Once a collection has been made of all selected tiles, it is possible to
find the nets originating from those tiles and make a Collection<CellNet> out
of these, which is performed in Listing A.2 These collections provide the basis for
the incorrect route detection algorithm.
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3.2.2 Detecting incorrect routes
Once the allowed tiles are specified and the nets originating from these tiles are
found, it is possible to find all individual route trees and determine if the routes
they describe are actually going outside the determined tiles. This is done in List-
ing 3.1. The detection of routes that leave the specified P-block is handled using
the recursive function iteratingOverRouteTreewhich is called by a helper func-
tion sinksOutsideArea. The recursive function performs all the work and calls
upon itself to traverse along the net. The function has methods for determining
the different types of connections (e.g. leaf cells which connect to a site or BEL pin,
or a simple wire connection) and is based on the design analyser example from
RS2. The goal of this algorithm is to find routes that originate from the P-block
and return to the P-block again. Other routes that leave the P-blockmight connect
to the static region or I/O-pins and should not be removed.

The iteratingOverRouteTree function marks any route leaving the P-block
from a site pin as a possible incorrect route. If this route then leaves the specified
tiles, a flag is raised. This flag is recursively passed down, until the route reaches
a leaf cell again. At this point it is evaluated on which tile the connected pin is
located. If this is a tile part of the P-block, the net is added to the list of incorrectly
routed nets. If this is not the case, the route is continued until the end.

It was chosen to iterate over the routetrees to find all relevant information. This
way, all information is based on the current implementation. Another possibility
would have been to utilise the targetTile variable which is used in the A* algo-
rithm. This way, as soon as a route leaves the specified tiles, this variable can be
evaluated to find if a route is correct or not. This does assume that this variable is
always correctly set, which is not guaranteed by RS2.

1 public static Collection<SitePin> sinksOutsideArea(Collection<Tile> selectedTiles, CellNet
selectedNet) {

2 Collection<SitePin> sinksToRoute = new ArrayList<>(); //Start a list to add sinkPins to
3 if (selectedNet.isSourced() && !selectedNet.isGNDNet() && !selectedNet.isVCCNet()

&& !selectedNet.isClkNet()) {
4 sinksToRoute.addAll(iteratingOverRouteTree(selectedNet,

selectedNet.getSourceRouteTree(), true, 0, selectedTiles));
5 }
6 return sinksToRoute;
7 }
8
9 public static Collection<SitePin> iteratingOverRouteTree(CellNet n, RouteTree rt, boolean

inside, int possible, Collection<Tile> selectedTiles) {
10 Collection<SitePin> wrongPins = new ArrayList<>();
11 if (rt == null) return wrongPins;
12
13 Collection<RouteTree> sinkTrees = rt.getSinkTrees();
14 if (rt.isLeaf()) {
15 SitePin sp = rt.getConnectedSitePin();
16 if (sp != null) {
17 if (inside) {
18 // Inside site, so look for correct intersite route tree to leave on
19 for (RouteTree rt1 : n.getIntersiteRouteTreeList()) {
20 if (sp.getExternalWire().equals(rt1.getWire())) {
21 possible = 1;
22 wrongPins.addAll(iteratingOverRouteTree(n,

rt1, !inside, possible, selectedTiles));
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23 return wrongPins;
24 }
25 }
26 return wrongPins;
27 }
28 else
29 // Outside site, so just follow the route from the general

routing fabric and into a site
30 if(possible == 2 &&

selectedTiles.contains(sp.getInternalWire().getTile())) {
31 for(SitePin sitePin : n.getSitePins()) { //Add all the

input sitePins from the net
32 if(sitePin.isInput())
33 wrongPins.add(sitePin);
34 }
35 return wrongPins;
36 }
37 possible = 0;
38 wrongPins.addAll(iteratingOverRouteTree(n,

n.getSinkRouteTree(sp), inside, possible, selectedTiles));
39 return wrongPins;
40 }
41 } // End of rt.isLeaf()
42
43 else {
44 // Otherwise, if it is not a leaf route tree, then iterate across its sink trees
45 for (Iterator<RouteTree> it = sinkTrees.iterator(); it.hasNext(); ) {
46 RouteTree sink = it.next();
47
48 if(!selectedTiles.contains(sink.getWire().getTile())) { //If it is in the

wrong tile add it to the list
49 possible = 2;
50 wrongPins.addAll(iteratingOverRouteTree(n, sink, inside,

possible, selectedTiles));
51 return wrongPins;
52 }
53 wrongPins.addAll(iteratingOverRouteTree(n, sink, inside, possible,

selectedTiles));
54 }
55 }
56 return wrongPins;
57 }

Listing 3.1: The code for identifying which nets leave the area specified by the
function from the previous Section 3.2.1.

In the helper function (sinksOutsideArea), another check is being performed
to avoid analysing nets that are either for the clock, VCC or GND since these do
not follow the standard routing method and do not have to be adjusted.

In the recursive function it can be found that the leaf cells are analysed in lines
14 to 41 and thewire connections in line 45 to 54. A flag is raised if routes leave the
site. If one of thewire connections is then located outside the boundaries a second
flag is raised. The route is returned if a route is detected that left the boundaries
and ends at a site pin within those boundaries. Once this occurs, all input pins of
the net are added to wrongPins and they are recursively passed up such that a big
collection of pins is returned to the helper function.
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Figure 3.1: The routes in the AES design after being removed by the routes-out-
of-bounds function. It can be noted that the top I/O-bank is now disconnected.

Removing selective routes

The first iteration of this function removed almost all routes leaving the P-block,
since it performs a simple check if the intersite-route ever leaves the specified tiles.
The result of which can be found in Figure 3.1. Since communication between
static and dynamic region is required, these routes should not be removed. It
can be seen how the routes to the top I/O-bank are disconnected, which is unde-
sirable. To solve this problem, the algorithm described previously was properly
implemented. Now only routes leaving and returning to the P-block are marked
as incorrect. This yields the results found in Figure 3.2.

With the updated code, a collection is filled with pins attached to the found
incorrect nets. Based on the designAnalyser, the recursive function iterates over all
elements. For the original purpose this example function prints every element in
the net. Instead, this application performs an analysis on each element to see if
it is not on one of the allowed tiles, the corresponding input pins of the net are
added to the collection. From Figure 3.2 it can be seen that all the out-of-bounds
routes are found and removed, whereas the other routes (such as those to the static
region) remain.

3.3 Alternative routing
As discussed in Section 2.4.4, RS2 provides the A* algorithm as example code.
The re-routing is performed based on this algorithm. Since the goal is to avoid
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Figure 3.2: The routes in the AES design after being removed by the routes-out-of-
bounds function. With the altered algorithm, only routes returning to the P-block
are removed. The routes at the bottomof the P-block are routed to a site elsewhere.

going out-of-bounds, the routing algorithm was slightly adjusted to incorporate
the current tile the wire is in such that it will not again create an incorrect route
outside of the bounds. The new implementation of the A* routeNet function is
shown in ListingA.3. The function receives the appropriate tile and net collections
created using Listings 3.1 and 3.1 to determine which SitePins must be re-routed.

To get it working properly, the priority queue –which is used to select the most
cost efficient route– must be initialised. This way, a isEmpty() call can be made to
determine if a new queuemust bemade using the resortPriorityQueue function
from the original RS2 algorithm.

3.4 Wrapper
To call all previously described functions in the correct succession, a class named
routeOutOfBounds_Example is used. It is given in Listing 3.2. This function first
determines the correct tiles and nets using the functions from Listings A.1 and
A.2. Subsequently it calls the function from Listing 3.1 to determine which routes
go out of bounds. It was found that one should be very careful which nets to
unroute, otherwise errors will occur when exporting the adjusted design. Hence,
this function only removes routes if there are incorrectly routed pins. Since those
will also be rerouted by the algorithm from Listing A.3. After all the alterations
have been made to the design, statistics are printed to represent the quality of the
work performed.
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1 public static void main(String[] args) throws IOException {
2 double startTime = System.nanoTime(); //This is the time at which the analysis is

started
3 // load the device and design
4 String checkpoint = "/home/matthijs/AES3.3.rscp";
5 System.out.println("Loading Device and Design...");
6 VivadoCheckpoint vcp = VivadoInterface.loadRSCP(checkpoint);
7 CellDesign design = vcp.getDesign();
8 Device device = vcp.getDevice();
9 CellLibrary libCells = vcp.getLibCells();
10
11 // loading reverse wire connections
12 device.loadExtendedInfo();
13
14 //Creating variables which can hold both the routetree and the statistics
15 Results results = new Results();
16 int reroutedRoutes = 0;
17 int correctRoutes = 0;
18 int wrongRoutes = 0;
19 int errorRoutes = 0;
20
21 // Routing net
22 System.out.println("Re−routing Nets...");
23 RouteOutOfBounds router = new RouteOutOfBounds();
24
25 //Find the selected Tiles and nets originating from those Tiles
26 Collection<Tile> areaTiles = RouteOutOfBounds.selectingArea(device,

device.getTile("CLBLM_L_X36Y28"), device.getTile("CLBLM_R_X43Y49"));
//Collection of allowed Tiles

27 Collection<CellNet> areaNets = RouteOutOfBounds.selectingNets(areaTiles, design);
//Collection of allowed nets (those leaving from the allowed Tiles)

28
29 for(CellNet net : areaNets) {
30 System.out.println("\tCurrently working on net: " + net.toString());
31
32 // Find the pins that need to be routed for the net
33 Iterator<SitePin> sinksToRoute =

RouteOutOfBounds.sinksOutsideArea(areaTiles, net).iterator(); //Iterator for
the sinks that must be re−routed

34
35 if(sinksToRoute.hasNext()) {
36 net.unrouteIntersite();
37 results = router.routeNet(areaTiles, areaNets, sinksToRoute, net);
38 }
39
40 if(results.routeTree != null) {
41 net.unrouteIntersite();
42 net.addIntersiteRouteTree(results.routeTree);
43 }
44
45 //Update the statistical values
46 reroutedRoutes += results.reroutedRoutes;
47 correctRoutes += results.correctRoutes;
48 wrongRoutes += results.wrongRoutes;
49 errorRoutes += results.errorRoutes;
50 }
51
52 // Displaying results
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53 System.out.println("Done!");
54 double estimatedTime = (System.nanoTime() − startTime)/1000000000;
55 System.out.println("This took " + estimatedTime + " seconds");
56
57 System.out.println(reroutedRoutes + " pins were rerouted of which " + correctRoutes +

" were correct, " + wrongRoutes + " could not be rerouted and " + errorRoutes + "
caused an error.");

58 float percentage = (correctRoutes∗100f)/reroutedRoutes;
59 System.out.println("Therefore, " + percentage + "% is correct.");
60
61 // Re−evaluate if routes are correct by applying the sinksOutsideArea function again
62 int counter = 0;
63 for(CellNet net : areaNets) { //Iterate over all nets again and see if wires leave area
64 if(!net.isClkNet() && !net.isGNDNet() && !net.isVCCNet()) {
65 for (Iterator<SitePin> sinksToRoute =

RouteOutOfBounds.sinksOutsideArea(areaTiles, net).iterator();
sinksToRoute.hasNext();){

66 SitePin sink = sinksToRoute.next();
67 if(sink != null)
68 counter++;
69 }
70 }
71 }
72 System.out.println("\nThe routes−out−of−bounds function found that " + counter + "

routes are still incorrect.");
73
74 // Evaluate all nets
75 int numrouted= 0;
76 for (CellNet n: design.getNets())
77 if (n.getIntersiteRouteTreeList()!= null)
78 numrouted++;
79 System.out.println("The design has: " + design.getNets().size() + " nets, " + numrouted +

" of them are routed.");
80
81 //Export the altered design
82 System.out.println("\nExporting now...");
83 VivadoInterface.writeTCP("/home/matthijs/Documents/temp.tcp", design, device,

libCells);
84 System.out.println("Done!");

Listing 3.2: The code for importing a Vivado design and calling the appropriate
functions to reroute nets that go outside the specified boundaries.
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Chapter 4

Example applications
The general goal is to adapt the routing of the FPGA to make it more coherent.
Doing this requires a number of stepswhich are listed below. This list does assume
that a PR design is ready and synthesised and only goes through the steps that
follow after synthesis.

1. Load the static design into Vivado.

2. Allocate black box(es) for the PR module(s).

3. Perform the usual design flow steps; place and route (e.g. 4 & 5 from Figure
2.1).

4. Perform the same steps for all PR modules in order to get checkpoints for all
of them. As described in Section 2.4.

5. Apply pr_verify in order to validate all PR implementations.

6. Export to RS2 to evaluate the routing of the module and possibly adjust it.

7. Convert the project back to Vivado and create the final bitstream (step 7 from
Figure 2.1).

Analysing and testing the implementation of adjusted routing requires an ex-
ample program on which this analysis can be applied. This will need to be a PR-
system so, this requires a static systemable to host a PRmodule. Twoprojectswere
utilised. On the one hand anAES core [6] and on the other a project that can create
randomnumbers using onemodule and test for primalitywith another. The latter
will be created to work with larger (32 bit) prime numbers, which will require a
significant amount of logic. Both the module for prime verification as well as the
random number generator module will utilise the same interface structure. The
exact code implementation for the prime verification can be found in Appendix
B.

4.1 AES core
In contrast to many other applications, the verification of the re-routing requires
projects that are large, such that there are a number of routes (that leave the mod-
ule). Hence, a 128-bit AES corewas sourced to serve as an application. The project
is subdivided into smaller sections. Unfortunately, all of these sections do not con-
tain much logic. So, instead, the entire core is implemented as a module fitting
within a simple wrapper function. The resource utilisation is smaller when com-
pared to the prime verification (see section 4.2) with 738 LUTs and 327 FFs.
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Figure 4.1: The interfaces of the partial reconfigurable modules.

4.2 Prime verification
To allow for the switching between PR modules, a standardised interface is re-
quired. In this way, each module connects to the same interfaces and the routing
of the static system can be simplified. For the created system (see Appendix B for
the source code), a number of interfaces are defined for the PRmodules as defined
in Figure 4.1.

The difference between the twomodules is that one should send and the other
receive the 32-bit random number. VHDL offers ’inout’ interfaces. These are
however, not supported by the FPGA fabric as this does not support bidirectional
communication. Hence, Vivado needs to implement a route for either direction
which is not efficient in terms of gates and is error prone. Instead, it was chosen
to implement two interfaces for ’in’ and ’out’ respectively. The isPrime interface
indicates if the the number is in fact prime, or not. The PRmodule indicator is a sim-
ple boolean that indicates to the static system which module is currently loaded.
This makes sure that the static system will only communicate with the module
if the correct one is loaded. The other interfaces are for correct communication
between the static and dynamic region in order to properly time all events.

4.2.1 Final implementation
When applying the code from Appendix B as a PR project, the code can be fully
synthesised and implemented. The total resource costs for this project are pre-
sented in Table 4.1. Since this is a simple example program, the resources take
up a fraction of the Zedboard’s available gates (see Section 2.5), but more than
the AES core. The P-Block has been arbitrarily placed in the fabric, but does (as
Vivado requires) span the height of an entire clock region.

An attempt was made to implement this project as a static design. Unfortu-
nately, Vivado simplifies the design to 2 LUTs and 5 FFs, which is not suitable for
this application.

Table 4.1: An overview of the resource requirements of the individual parts of the
example design.

LUT FF
Static design 833 376
Prime verification module 325 33
Number generator module 366 60
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Chapter 5

Evaluation
5.1 Prime verification project
Creating the example project provided a proper tutorial to understanding both
the Vivado tooling, as well as partial reconfiguration. Using this it was easier to
understand how PR worked and what difficulties would arise from working on
projects with PR modules.

During the implementation of the example project, a few problems occurred,
many of which were solvable. Except for the prime verification module. The ap-
pliedmethod (which is inefficient, but this ensures larger amounts of logic) for de-
termining primality requires the FPGA to divide the random number by all num-
ber up to the square root of the number itself. For a 32-bit number this requires
at most

√
232 = 65536 divisions. With this number of iterations on a for-loop, the

design did not synthesise correctly. After trial and error, it was determined that
using a 27-bit number is still eligible for prime verification with

√
227 ≈ 11586

iterations of the for-loop. This was implemented and the random number was
adjusted in the final code too by discarding the top bits.

5.2 Routing analysis
The algorithms posed in Chapter 3 were applied to the AES core project. Initially
this yielded no results as Vivado was able to format all routes within the partial
reconfigurable module. An attempt was made to resize the P-block allocated for
the module to force routes to go outside. Unfortunately, the block has a minimum
size depending on the amount of logic it must fit. If the size is decreased fur-
ther. With this limitation it was not possible to create routes that move out of the
bounds.

To circumvent this problem, a different VHDL project was sourced. This AES
core contained a little less logic, but could also not be forced to route outside the P-
block. Aftermore tinkering it was observed that a static implementation restricted
to a specified area does create routes leaving that area, similar to the desired sit-
uation where routes leave the partial reconfigurable module1. This could be the
starting point for the re-routing algorithm. For the prime verification project a
static implementation proved troublesome as Vivado simplifies the design to 2
LUTs and 5 FFs which is not enough logic to perform any kind of analysis on.

Moving forward, the AES core is used for verification. With this project it was
possible to apply the algorithm described in Chapter 3. Using the class from List-
ing 3.2 the design is imported and the appropriate functions are called. This piece
of code requires the user to manually specify the corner tiles of the PR area and

1This also circumvents the need for the expensive Vivado partial reconfiguration license, as it
is now possible to create it using the standard Vivado package and RapidSmith2.
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Table 5.1: An overview of the result obtained on the AES core project.

AES core
Correct routes 12490
Incorrect routes 241
Erroneous routes 0
Total routes 12731

Percentage correct 98.11%
Execute time 8.88 seconds

the file location of the RSCP checkpoint. These can differ depending on the use-
case and between projects. With the correct names set, the AES core project was
imported into RS2 and the code was run. The results are summarised in Table 5.1.

From the results in Table 5.1 it can be observed that there is a small number
of routes that could not be rerouted. Since the available fabric is limited within
the P-block, it can occur that some routes cannot be routed within the boundaries.
Hence, they are not unrouted and the design will keep some imperfections. It can
be seen that these routes make up 1.89% of the total routes. Figure 5.1 illustrates
how there are still some nets fanning out from the P-block. There are still some
red nets which correspond to the incorrect routes from Table 5.1.

Figure 5.1: An overview of the corrected routing of theAES core project in Vivado.
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Chapter 6

Discussion
This thesis required a thorough understanding of many different aspects regard-
ing the FPGA. Aspects that are not part of the Electrical Engineering curriculum.
Naturally, learning and understanding new material is integral part of a Bache-
lor Assignment. However, learning how to operate the software programs Vivado
andRapidSmith2 required a significant portion of timewhich limited the progress
that could be made on actual research.

In order to adapt routing on a very low level, RapidSmith2 was used. Since
this program is currently still under heavy development, there are still some bugs.
Some of which are solved by software updates, because RS2 is updated regularly.
Unfortunately, some issues still remained, and getting RS2 compatible with the
available Zedboard proved to be very troublesome.

A significant portion of time was spent on fixing the numerous problems that
arose during installation of the Zedboard with RS2. After numerous attempts of
creating the required configuration files, the program was downgraded to ver-
sion 1.1.1. This version did not allow for the creation of the configuration files,
but was able to recognise the Zedboard. All of this thanks to the help of Gerhard
Mlady, who helped with solving many of the issues with RS2. Moreover, he was
able to provide the required configuration files which I was not able to create my-
self through RS2. After numerous tests, it turns out that the Zedboard is still not
fully supported by RS2 yet. Many of the sites are improperly named during file
creation which results in error prompts when the file is imported. Solving this
would require going through hundreds of pin names and replacing them with a
name that is supported by RS2.

It is likely that problems such as these are solved in the future. For this re-
search however, this meant the Zedboard could not be utilised for the creation of
the Vivado project. This also eliminated the testing option of uploading the ad-
justed project to the Zedboard to verify if the operation is the same as before.

The choice for using the Zedboard was made as it was physically available.
This allowed for the option to test the example project when initially making it,
as well as after the re-routing process. The latter would be a feasible method to
verify if the functionality indeed remains the same. Since it was not possible to
use the Zedboard in RS2, an alternative was found in an Artix7 (xc7a100t-csg324)
FPGA. This boardwas not available, but is supported by default in RS2. Therefore
it is at least possible to apply the discussed algorithms and verify if they operate
correctly. Using the Artix7 FPGA made the usage of RS2 trivial, but all testing
has to be in the digital domain and cannot be produced on an actual FPGA board.
Seeing that Gerhard Mlady is able to use the RS2 tooling together with the Zed-
board which would suggest that it is possible to use it, when given more time.

When working on the routing algorithm in particular, many exceptions oc-
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curred in the example code supplied by RS2. For example, the resizing of the
PriorityQueue did not properly work. This meant that only a handful of routes
could be rerouted before running into exception which voided the rest of the
routes. Moreover, a problem occurred when trying to read the wire and connec-
tion of each RouteTree as some had no wires connected, so returned null. With
this value, retrieving a connection type threw another exception.

These kind of errors forced me to analyse the existing routing algorithm in
more detail than I initially hoped, which also took more time than initially in-
tended. This did give me a proper insight into the structure of these functions
and RS2. The work did lead to a working solution where all routes can evalu-
ated by implementing a smarter requirement for when nets actually have to be
rerouted. Due to limitations in the fabric, the A* router is not always able to find
an alternative route, but this is in a minority of the cases at just 1.89%.
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Chapter 7

Conclusion
This research has proven that it is feasible to utilise RS2 to analyse and adjust the
routing. It was possible to apply the developed algorithm to the AES project for
verification. The prime verification module was created to host enough logic to
test applications created using RS2, which can be found to be true when compar-
ing the resources of the two designs. It was found that routes only leave the allo-
cated area if the design is implemented statically, whereas the routes remain inside
a partial reconfigurable module. It was not possible to implement the prime veri-
fication project as a static design, so the AES core was used for all verification pro-
cesses. Despite not being used for verification, the prime verification project has
proven that the default Vivado routing for partial reconfigurable modules routes
within the module itself, which is what is desired for these modules. The fact that
routes remain within the partial reconfigurable modules proves hopeful for fur-
ther development of PR projects including more advanced reconfiguration styles
such as the slot based design.

The routing analysis is performed accurately, all incorrect routes (those that
leave the partial reconfigurable module and do not route to outside the module)
are found and can effectively be removed as is shown in Figure 3.2. Subsequently,
an A* algorithm is employed to reroute the nets that have been unrouted. Due to
the limited amount of logic within the specified area it is sometimes not possible
for the simple A* algorithm to find a route that adheres to the requirements. As
an effect, 1.89% of the routes cannot be properly re-routed. By reducing the num-
ber of incorrect routes the disadvantageous effects of the PRmodules on the static
fabric can be significantly reduced.

It can be found that all problems regarding the default RS2 have been solved
as every single route can be processed and no errors occur. So, what can be taken
from this report is the foundation for the analysis of PR projects using Vivado
which provides a fully functional algorithm for determining incorrect nets and
is able to re-route 98.11% of those routes on a small example application. It was
found that despite the support for the Zynq family by RS2, the Zedboard is not yet
fully supported. It has been proven that RS2 provides support for other families.
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Chapter 8

Recommendations
In this work, the first steps towards alternative routing in RS2 are made. It must
be noted that the methods here are not the most efficient or fastest methods and
can most certainly be improved. A small portion of 1.89% of the routes cannot be
properly rerouted. This number should be improved and most preferably be re-
duced to 0% to provide the desired outcome. The example A* algorithm, created
by RS2 is known not to be the most efficient algorithm [8]. When improving the
routing it is thus advised to implement a different algorithm with better perfor-
mance that is also able to fit all routes within the required area.

Additionally, the currently implementedmethod requiresmore testing, prefer-
ably on an actual hardware device as was attempted with the Zedboard. This
would verify if the routing procedure is actually effective and can directly show
if the re-routed nets still deliver the same performance. When the design is im-
ported into Vivado, it is also possible to perform a timing analysis and contrast it
to the original design. This way, the effect of the re-routing can be evaluated. It
would make sense that timing performance is affected since fitting routes within
the partial reconfigurable module does not deliver the most time effective routes.

With the detection of out-of-bounds routes, the analysis of routing around PR
modules is not complete. When analysing the routing within PR modules, it is
also important to verify if each module uses the same routing towards the parti-
tion pins (or the older proxy logic cells). If these routes differ depending on the
module, this could lead to differences in the performance. Also, it would be in-
teresting to study the effect of shrinking the size of the modules and which effects
this has on both the routes inside the module moving out-of-bounds, as well as
the effect on these routes to the partition pins.

After these effect have been studied, a next step can be taken to research PR
projects implementing slot based designs. Since they need routing between the
slots, this will bring amore challenges for the routing. Proper analyis of the routes
around these slots can be beneficial for the correct implementation of slot based
designs.
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Appendix A

Re-routing algorithm code
In Section 3.2, a description has been given of a number of functions. The code to
realise the described behaviour is presented here.

Specifying tiles

1 public static Collection<Tile> selectingArea(Device device, Tile bottomLeft, Tile topRight) { //
This function finds all the nets leaving the specified (PR) area

2 Collection<Tile> allTiles = device.getTiles();
3 Collection<Tile> selectedTiles = new ArrayList<>();
4
5 int[] coordinateBottomLeft =

{bottomLeft.getTileXCoordinate(),bottomLeft.getTileYCoordinate()};
6 int[] coordinateTopRight =

{topRight.getTileXCoordinate(),topRight.getTileYCoordinate()};
7
8 for(Tile tile : allTiles) { //Populate selectedTiles with all tiles within the boundaries
9 int[] tempCoordinate = {tile.getTileXCoordinate(), tile.getTileYCoordinate()};
10 if(tempCoordinate[0] <= coordinateTopRight[0] && //See if X−coordinate is

smaller that the topRight coordinate
11 tempCoordinate[0] >= coordinateBottomLeft[0] && //See if X−coordinate

is larger that the bottomLeft coordinate
12 tempCoordinate[1] <= coordinateTopRight[1] && //See if Y−coordinate is

smaller that the topRight coordinate
13 tempCoordinate[1] >= coordinateBottomLeft[1]) { //See if Y−coordinate is

larger that the bottomLeft coordinate
14 selectedTiles.add(tile);
15 }
16 }
17 return selectedTiles;
18 }

Listing A.1: The code for specifying the tiles which are part of the region based
on a bottom left and top right coordinate.

Specifying nets

1 public static Collection<CellNet> selectingNets(Collection<Tile> selectedTiles, CellDesign
design) {

2 Collection<CellNet> selectedNets = new ArrayList<>(); //A list for nets originating
from the selectedTiles

3 for (CellNet n : design.getNets()) { //Populate the selectedNets collection
4 if(n.isSourced() && !n.isGNDNet() && !n.isVCCNet() && !n.isClkNet()) {
5 for(SitePin p : n.getSourceSitePins()) {
6 if(selectedTiles.contains(p.getSite().getTile()))
7 selectedNets.add(n);
8 }
9 }
10 }
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11 return selectedNets;
12 }

Listing A.2: The code for specifying which nets originate from the collection of
tiles derived in Listing A.1.

Adapted A* routing algorithm

1 public Results routeNet(Collection<Tile> areaTiles, Collection<CellNet> areaNets,
Iterator<SitePin> sinksToRoute, CellNet net) {

2 // Initialize the route
3 RouteTree start = initializeRoute(net); //The routetree to be returned
4 Set<RouteTree> terminals = new HashSet<>();
5
6 //Initialize return object
7 Results results = new Results();
8 results.routeTree = new RouteTree(null);
9 results.reroutedRoutes = 0;
10 results.correctRoutes = 0;
11 results.wrongRoutes = 0;
12 results.errorRoutes = 0;
13
14 assert sinksToRoute.hasNext() : "There are no CellNet objects to be re−routed for this

net. This means the detection of incorrect routes went wrong!";
15
16 // Iterate over each sink SitePin in the net, and find a valid route to it.
17 SKIP_SINK :
18 while(sinksToRoute.hasNext()) {
19 // initialize the target wire, and priority queue
20 SitePin sink = sinksToRoute.next();
21 Wire targetWire = getTargetSinkWire(sink);
22 targetTile = targetWire.getTile();
23 resortPriorityQueue(start);
24
25 // Notify user which pin we are working on
26 System.out.println("\t\tActually re−routing sink: " + sink);
27
28 // Update the number of routes being worked on for the statistics
29 results.reroutedRoutes++;
30
31 // Variables for while−loop
32 boolean routeFound = false;
33 int count = 0;
34
35 while (!routeFound) { //This loop actually builds the routing data structure
36 count++;
37 if(count > 50000) { // max = 1000000
38 System.out.println("\t\t\tCould not find an alternative route,

so skipping this!");
39 results.wrongRoutes++;
40 break SKIP_SINK;
41 }
42 // Grab the lowest cost route from the queue
43 RouteTree current = priorityQueue.poll();
44
45 // Get a set of sink wires from the current RouteTree that already exist

in the queue
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46 Set<Wire> existingBranches =
usedConnectionMap.getOrDefault(current, new HashSet<Wire>());

47
48 // Search all connections for the wire of the current RouteTree
49 try { // In case the wire does not have a connection, the exception is

caught
50 for (Connection connection :

current.getWire().getWireConnections()) {
51 Wire sinkWire = connection.getSinkWire();
52
53 // Solution has been found
54 if (sinkWire.equals(targetWire)) {
55 RouteTree sinkTree =

current.addConnection(connection);
56 sinkTree = finializeRoute(sinkTree);
57 terminals.add(sinkTree);
58 routeFound = true;
59 results.correctRoutes++;
60 break;
61 }
62 // Only create and add a new RouteTree object if it

doesn’t already exist in the queue
63 if (!existingBranches.contains(sinkWire) &&

areaTiles.contains(sinkWire.getTile())) {
64 RouteTree sinkTree =

current.addConnection(connection);
65 sinkTree.setCost(current.getCost() + 1);
66 priorityQueue.add(sinkTree);
67 existingBranches.add(sinkWire);
68 }
69 }
70 }
71 catch(NullPointerException ex) {
72 System.out.println("\t\t\tCould not find wire connected to

this pin!");
73 results.errorRoutes++;
74 break SKIP_SINK;
75 }
76 usedConnectionMap.put(current, existingBranches);
77 }
78 // prune RouteTree objects not used in the final solution. This is not very

efficient...
79 start.prune(terminals);
80 results.routeTree = start;
81 }
82 return results;
83 }

Listing A.3: The code for re-routing the incorrect nets based on the original A*
code by RapidSmith2 [13] (this listing shows only the altered function routeNet)
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Appendix B

VHDL code
As described in Chapter 4, a sample VHDL code is required to work with. The
source code of both the static system as well as the two PR modules are stated
here. It must be noted that the prime verification algorithm is most certainly not
the best or most efficient algorithm, but for the sake of this example it is more than
sufficient.

For the creation of a random32-bit number, a long (8000 bits) std_logic_vector
with randombits is used. An index increases every clock cycle. Because of the ran-
dom timing of requesting a number, the index will have a ’random’ value. Using
the index, a 32 bits can be retrieved from the std_logic_vector. When the in-
dex is within the last 32 bits of the first 32 bits of the std_logic_vector will be
returned. The possibility that this happens is 1

250
so reasonably small. The final

implementation can be found in Listing B.2.
For the conversion of this 32-bit number to a format that can be printed on

the OLED on the Zedboard (BCD), the solution by Stan Ng was used [16]. This is
implemented as a function in the static design (Listing B.1).

To print the number on the Zedboard’s OLED screen; the Digitlent OLED li-
brary modified for Zedboard by Michael Mattioli was used [14]. It must be noted
that such an OLED screen is not available for the Artix7 board which was used as
an alternative to the Zedboard.

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.NUMERIC_STD.ALL;
4
5 entity Zedboard is
6 Port (
7 clk : in STD_LOGIC;
8 reset : in STD_LOGIC;
9 nextState : in STD_LOGIC;
10 displayLed : out STD_LOGIC;
11 primeLed : out STD_LOGIC;
12 generateLed : out STD_LOGIC;
13 LD7 : out std_logic;
14 oled_sdin : out std_logic;
15 oled_sclk : out std_logic;
16 oled_dc : out std_logic;
17 oled_res : out std_logic;
18 oled_vbat : out std_logic;
19 oled_vdd : out std_logic
20 );
21 end Zedboard;
22
23 architecture Behavioral of Zedboard is
24
25 FUNCTION number2bcd (in_binary:UNSIGNED(31 DOWNTO 0)) RETURN std_logic_vector IS
26
27 variable concatVector : std_logic_vector (39 downto 0) := (others => ’0’);
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28
29 variable s_digit_0 : unsigned( 3 downto 0):= "0000";
30 variable s_digit_1 : unsigned( 3 downto 0):= "0000";
31 variable s_digit_2 : unsigned( 3 downto 0):= "0000";
32 variable s_digit_3 : unsigned( 3 downto 0):= "0000";
33 variable s_digit_4 : unsigned( 3 downto 0):= "0000";
34 variable s_digit_5 : unsigned( 3 downto 0):= "0000";
35 variable s_digit_6 : unsigned( 3 downto 0):= "0000";
36 variable s_digit_7 : unsigned( 3 downto 0):= "0000";
37 variable s_digit_8 : unsigned( 3 downto 0):= "0000";
38 variable s_digit_9 : unsigned( 3 downto 0):= "0000";
39
40 BEGIN
41 for i in 31 downto 0 loop
42 if (s_digit_9 >= 5) then s_digit_9 := s_digit_9 + 3; end if;
43 if (s_digit_8 >= 5) then s_digit_8 := s_digit_8 + 3; end if;
44 if (s_digit_7 >= 5) then s_digit_7 := s_digit_7 + 3; end if;
45 if (s_digit_6 >= 5) then s_digit_6 := s_digit_6 + 3; end if;
46 if (s_digit_5 >= 5) then s_digit_5 := s_digit_5 + 3; end if;
47 if (s_digit_4 >= 5) then s_digit_4 := s_digit_4 + 3; end if;
48 if (s_digit_3 >= 5) then s_digit_3 := s_digit_3 + 3; end if;
49 if (s_digit_2 >= 5) then s_digit_2 := s_digit_2 + 3; end if;
50 if (s_digit_1 >= 5) then s_digit_1 := s_digit_1 + 3; end if;
51 if (s_digit_0 >= 5) then s_digit_0 := s_digit_0 + 3; end if;
52 s_digit_9 := s_digit_9 sll 1; s_digit_9(0) := s_digit_8(3);
53 s_digit_8 := s_digit_8 sll 1; s_digit_8(0) := s_digit_7(3);
54 s_digit_7 := s_digit_7 sll 1; s_digit_7(0) := s_digit_6(3);
55 s_digit_6 := s_digit_6 sll 1; s_digit_6(0) := s_digit_5(3);
56 s_digit_5 := s_digit_5 sll 1; s_digit_5(0) := s_digit_4(3);
57 s_digit_4 := s_digit_4 sll 1; s_digit_4(0) := s_digit_3(3);
58 s_digit_3 := s_digit_3 sll 1; s_digit_3(0) := s_digit_2(3);
59 s_digit_2 := s_digit_2 sll 1; s_digit_2(0) := s_digit_1(3);
60 s_digit_1 := s_digit_1 sll 1; s_digit_1(0) := s_digit_0(3);
61 s_digit_0 := s_digit_0 sll 1; s_digit_0(0) := in_binary(i);
62 end loop;
63
64 concatVector(3 downto 0) := std_logic_vector(s_digit_0);
65 concatVector(7 downto 4) := std_logic_vector(s_digit_1);
66 concatVector(11 downto 8) := std_logic_vector(s_digit_2);
67 concatVector(15 downto 12) := std_logic_vector(s_digit_3);
68 concatVector(19 downto 16) := std_logic_vector(s_digit_4);
69 concatVector(23 downto 20) := std_logic_vector(s_digit_5);
70 concatVector(27 downto 24) := std_logic_vector(s_digit_6);
71 concatVector(31 downto 28) := std_logic_vector(s_digit_7);
72 concatVector(35 downto 32) := std_logic_vector(s_digit_8);
73 concatVector(39 downto 36) := std_logic_vector(s_digit_9);
74
75 RETURN concatVector;
76 END number2bcd;
77
78 −− Component declarations for OLED
79 component oled_init is
80 port ( clk : in std_logic;
81 rst : in std_logic;
82 en : in std_logic;
83 sdout : out std_logic;
84 oled_sclk : out std_logic;
85 oled_dc : out std_logic;
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86 oled_res : out std_logic;
87 oled_vbat : out std_logic;
88 oled_vdd : out std_logic;
89 fin : out std_logic);
90 end component;
91
92 component oled_ex is
93 port ( clk : in std_logic;
94 rst : in std_logic;
95 en : in std_logic;
96 bcd : in std_logic_vector(39 downto 0);
97 sdout : out std_logic;
98 oled_sclk : out std_logic;
99 oled_dc : out std_logic;
100 fin : out std_logic);
101 end component;
102
103 component rModule_primegenerate is
104 port( clk : in STD_LOGIC;
105 prime : out STD_LOGIC;
106 notificationIn : in STD_LOGIC;
107 notificationOut : out STD_LOGIC;
108 nIn : in UNSIGNED(31 downto 0);
109 nOut : out UNSIGNED(31 downto 0);
110 prModule : out STD_LOGIC);
111 end component;
112
113 −− OLED FSM
114 type states is (Idle, OledInitialize, OledExample, Done);
115
116 −− OLED variables
117 signal current_state : states := Idle;
118
119 signal init_en : std_logic := ’0’;
120 signal init_done : std_logic;
121 signal init_sdata : std_logic := ’0’;
122 signal init_spi_clk : std_logic;
123 signal init_dc : std_logic := ’0’;
124
125 signal example_en : std_logic := ’0’;
126 signal example_sdata : std_logic := ’0’;
127 signal example_spi_clk : std_logic;
128 signal example_dc : std_logic;
129 signal example_done : std_logic := ’0’;
130
131 −− Static design FSM
132 type control is (createRandomNumber, checkPrime, displayData); −−Define FSM
133
134 −− Signal containing the desired bcd codes
135 signal bcd : STD_LOGIC_VECTOR(39 downto 0) := x"0000000000";
136
137 signal notificationIn : STD_LOGIC := ’0’;
138 signal notificationOut : STD_LOGIC := ’0’;
139 signal prModule : STD_LOGIC;
140 signal numberIn : UNSIGNED(31 downto 0) := (others => ’0’);
141 signal numberOut : UNSIGNED(31 downto 0) := (others => ’0’);
142 signal prime : STD_LOGIC := ’0’;
143
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144 begin
145
146 −− OLED portmaps
147 Initialize: oled_init port map (clk => clk,
148 rst => reset,
149 en => init_en,
150 sdout => init_sdata,
151 oled_sclk => init_spi_clk,
152 oled_dc => init_dc,
153 oled_res => oled_res,
154 oled_vbat => oled_vbat,
155 oled_vdd => oled_vdd,
156 fin => init_done
157 );
158
159 Example: oled_ex port map ( clk => clk,
160 rst => reset,
161 en => example_en,
162 bcd => bcd,
163 sdout => example_sdata,
164 oled_sclk => example_spi_clk,
165 oled_dc => example_dc,
166 fin => example_done
167 );
168
169 verifyPrimePR : rModule_primegenerate port map (
170 clk => clk,
171 prime => prime,
172 notificationOut => notificationIn,
173 notificationIn => notificationOut,
174 nOut => numberIn,
175 nIn => numberOut,
176 prModule => prModule
177 );
178
179 −−MUXes to indicate which outputs are routed out depending on which block is enabled
180 oled_sdin <= init_sdata when current_state = OledInitialize else example_sdata;
181 oled_sclk <= init_spi_clk when current_state = OledInitialize else example_spi_clk;
182 oled_dc <= init_dc when current_state = OledInitialize else example_dc;
183 −− End output MUXes
184
185 −−MUXes that enable blocks when in the proper states
186 init_en <= ’1’ when current_state = OledInitialize else ’0’;
187 example_en <= ’1’ when current_state = OledExample else ’0’;
188 −− End enable MUXes
189
190 process(clk)
191
192 variable random : UNSIGNED(31 downto 0) := numberIn;
193 variable state : control := createRandomNumber; −−Create FSM and default at start (creating a

random number)
194 variable primeLocal : STD_LOGIC := ’0’;
195 variable temp : unsigned(31 downto 0) := x"0012D687";
196
197 begin
198
199 if rising_edge(clk) then
200
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201 if reset = ’1’ then
202 current_state <= Idle;
203 elsif nextState = ’1’ then
204 current_state <= OledExample;
205 else
206 case current_state is
207 when Idle =>
208 current_state <= OledInitialize;
209 −− Go through the initialization sequence
210 when OledInitialize =>
211 if init_done = ’1’ then
212 current_state <= OledExample;
213 end if;
214 −− Do example and do nothing when finished
215 when OledExample =>
216 if example_done = ’1’ then
217 current_state <= OledExample;
218 end if;
219 −− Do nthing
220 when Done =>
221 current_state <= Done;
222 when others =>
223 current_state <= Idle;
224 end case;
225 end if;
226
227 case state is
228 when createRandomNumber => −−Send signal to randomNumberGenerator module

to create a new number.
229 generateLed <= ’1’;
230 primeLed <= ’0’;
231 displayLed <= ’0’;
232 LD7 <= ’0’;
233
234 if prModule = ’0’ then −− Only run this code when the correct module is loaded
235 notificationOut <= ’1’;
236 if notificationIn = ’1’ then
237 notificationOut <= ’0’;
238 random := numberIn;
239
240 −− Display the number
241 bcd <= number2bcd(random);
242 current_state <= OledExample;
243
244 −− Random number received, move to next step
245 state := checkPrime;
246 end if;
247 end if;
248
249 when checkPrime => −−Send the previously created number to the checkPrime

module to see if number is prime.
250 generateLed <= ’0’;
251 primeLed <= ’1’;
252 displayLed <= ’0’;
253 LD7 <= ’0’;
254
255 if prModule = ’1’ then −− Only run this code when the correct module is loaded
256
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257 numberOut <= random; −− Send the number to the prime module
258 notificationOut <= ’1’;
259 if notificationIn = ’1’ then
260 if prime = ’1’ then
261 primeLocal := ’1’;
262 else
263 primeLocal := ’0’;
264 end if;
265 notificationOut <= ’0’;
266 state := displayData; −− All data is available −−> print it
267 end if;
268
269 end if;
270
271 when displayData => −−Display both the number and if it is a prime or not. (Can be

run regardless of module)
272 generateLed <= ’0’;
273 primeLed <= ’0’;
274 displayLed <= ’1’;
275
276 −− Display the number
277 bcd <= number2bcd(random);
278 current_state <= OledExample;
279
280 −−Set led[7] to the right state to match prime y/n
281 LD7 <= prime;
282
283 −− Only continue after button press
284 if reset = ’1’ then
285 random := (others => ’0’);
286 primeLocal := ’0’;
287 state := createRandomNumber; −−Do the entire cycle again
288 end if;
289 end case;
290 end if;
291 end process;
292
293 end Behavioral;

Listing B.1: The VHDL code used for the static part of the PR system.

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity rModule_primegenerate is
6
7 port (
8 clk: in std_logic;
9 prime: out std_logic;
10 notificationIn: in std_logic;
11 notificationOut: out std_logic;
12 nOut: out UNSIGNED(31 downto 0);
13 nIn: in UNSIGNED(31 downto 0);
14 prModule : out std_logic
15 );
16
17 end entity;
18
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19 architecture behavioral of rModule_primegenerate is
20
21 constant bits : std_logic_vector(7999 downto 0) := x"[long array of hexadecimal bits here]";
22 constant bitsLength : integer := 8000;
23 signal arrayIndex : integer := 0;
24 signal number : std_logic_vector(31 downto 0) := (others => ’0’);
25
26 begin
27 −− Drive output signal.
28 −− nOut <= unsigned(number);
29 nOut <= unsigned(number);
30 prModule <= ’0’;
31 prime <= ’0’;
32
33 −− Synchronous process.
34 process (clk) is
35 begin
36 if rising_edge(clk) then
37 notificationOut <= ’0’;
38 arrayIndex <= arrayIndex + 1;
39 if arrayIndex = bitsLength then
40 arrayIndex <= 0;
41 end if;
42 if notificationIn = ’1’ then −− If a number is requested, return 32 bits starting from

arrayIndex
43 if arrayIndex >= bitsLength − 27 then
44 number(26 downto 0) <= bits(26 downto 0);
45 else
46 number(26 downto 0) <= bits(arrayIndex + 26 downto arrayIndex);
47 end if;
48
49 notificationOut <= ’1’;
50 end if;
51 end if; −−End clock
52 end process;
53 end behavioral;

Listing B.2: The VHDL code for the module that generates 32-bit random
numbers.

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.NUMERIC_STD.ALL;
4
5 entity rModule_primegenerate is
6 port( clk : in STD_LOGIC;
7 prime : out STD_LOGIC;
8 notificationIn : in STD_LOGIC;
9 notificationOut : out STD_LOGIC;
10 nIn : in UNSIGNED(31 downto 0);
11 nOut : out UNSIGNED(31 downto 0); −−Dummy interface
12 prModule : out STD_LOGIC
13 );
14 end rModule_primegenerate;
15
16 architecture Behavioral of rModule_primegenerate is
17
18 signal number : integer := 0;

37



19
20 begin
21
22 nOut <= (others => ’0’);
23 prModule <= ’1’;
24
25 process(clk)
26 begin
27
28 if rising_edge(clk) then
29 if (notificationIn = ’1’) then
30 number <= to_integer(nIn);
31
32 if number = 1 then
33 prime <= ’0’;
34 else
35 for i in 2 to 11586 loop −−46341 is sqrt of 2^31
36 if number mod i=0 then
37 prime <= ’0’;
38 else
39 prime <= ’1’;
40 end if;
41 end loop;
42 end if;
43 notificationOut <= ’1’;
44 end if;
45 end if; −− End clock
46 end process;
47
48 end Behavioral;

Listing B.3: The VHDL code for the prime verification module.
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