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Summary

Unicycles have a very small footprint, giving them a lot of potential for certain applications,
one of which is delivery drones. In this project the feasibility of a specific concept known as
the Moment Exchange Unicycle Robot (MEUR) is investigated. More specifically, it is explored
whether the MEUR can be used to carry loads and to drive over sloped surfaces.
To do this, first the existing prototype has been evaluated. A new sensor algorithm has been

created in order to obtain more accurate angle measurements and side wheels have been added
to the prototype in order to allow for easy testing.
Next various control systems, which were found to be working in literature, have been created

and the performance of these controllers has been compared using simulations. It was found
that for both the lateral and longitudinal direction the sliding mode controller gives the best
performance.
The sliding mode controllers have been implemented and tuned, showing that they are able to

stabilize the actual unicycle robot. Next the performance of the unicycle for tracking a reference
has been tested and it has been found that the unicycle gives better tracking performance
compared to the results found in literature.
Finally, experiments have been performed to investigate the ability of the unicycle to carry

additional loads and drive along sloped surfaces. They showed that additional loads of up to
0.8 kg can be carried and sloped surfaces of up to 12° in either direction can be driven over.
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1. Introduction

Figure 1.1.: Transwheel de-
livery drone concept. [1]

Technology is advancing every day and more and more tasks are
being automated. Autonomous delivery vehicles have already be-
come a reality [2] and the market for autonomous delivery will
undoubtedly grow the coming years. Different kinds of delivery
drone concepts are being used for this. Flying drones are not
bound to the streets, giving them the option to deliver packages
much faster than wheeled drones, but they do offer more safety
risks and cannot operate everywhere due to airspace restrictions.
Wheeled drones do not have this restriction since they can sim-
ply use our road network, but in general they do take up quite
a lot of space on our already busy roads since they use three or
more wheels in combination with a large chassis and suspension system for stability. To greatly
reduce the footprint of wheeled drones, single wheeled or unicycle robots can be used instead.
An example of what such a drone could look like is the Transwheel delivery drone concept [1, 3]
which can be seen in figure 1.1. Due to the unicycle design these drones have a very small
footprint and can even navigate through small alleys to deliver packages at the door.

Figure 1.2.: Moment
Exchange Unicycle
Robot (MEUR). [4, 5]

The design and realisation of a unicycle robot is however quite chal-
lenging from both the mechanical and control perspectives. Com-
pared to the commonly known two-wheeled robots like the Segway
[6], also sideways stability needs to be implemented, which involves
additional actuation and control. This makes unicycles more com-
plex, but does allow them to drive over sloped and uneven surfaces
where two-wheeled robots would topple over.
The goal of this assignment is to investigate the feasibility of a

specific concept known as the Moment Exchange Unicycle Robot
(MEUR). This concept uses a wheel with a large inertia for stabil-
isation in the lateral direction. During a previous student project in
the group Structural Dynamics, Acoustics and Control (SDAC) at the
University of Twente a prototype MEUR has been build [4, 5], which
can be seen in figure 1.2. However, controlled motion has not been
demonstrated yet due to time constraints and issues with the sensors,
so this prototype is taken as the starting point. In this project a new
sensor algorithm has been created and experiments have been per-
formed carrying additional loads and driving over sloped surfaces in
order to answer the following research question:
"Is it feasible to use the Moment Exchange Unicycle Robot as a delivery drone?"
In this thesis the background information and findings from previous studies are described

and used to further clarify the research question in chapter 2. Chapter 3 describes the evaluation
and modification of the prototype. In chapter 4 the design of various control systems for the
unicycle are described and evaluated using simulations. In chapter 5 the implementation of
the controllers is described and experimental results are shown. A discussion of these results is
given in chapter 6, after which conclusions are drawn in chapter 7 and chapter 8 will give further
recommendations on how the work presented in this thesis can be improved in future work.
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2. Background

2.1. Wheeled Systems

Figure 2.1.: Murata Boy,
a bicycle-riding robot. [7]

In order for wheeled systems stay upright intrinsically, a minimum
of three wheels is required. Two wheeled systems, like bicycles (two
wheels in line) and dicycles (two wheels with a common wheel axis),
do not posses this static stability. Bicycles are dynamically stable
above a certain velocity [8], but at lower velocities stabilization is
required in the lateral direction, which can for example be done
by using an inertia wheel [7], like the robot shown in figure 2.1.
Dicycles, like the Segway [6], have an unstable equilibrium located
directly above the center of their wheels and need to be stabilized
in the longitudinal direction, which can be done by driving forwards
and backwards.

Figure 2.2.: Self-
stabilizing monowheel
robot prototype. [9]

Systems which only use one wheel are either a monowheel or a uni-
cycle depending on where their center of gravity is positioned [10].
Monowheels have their center of gravity located below the center of
the wheel, which is usually achieved by using a relatively large wheel,
making them only unstable in the lateral direction. An example of a
self-stabilizing monowheel robot can be seen in figure 2.2, which uses a
balancing lever to change its center of gravity and produce a moment
in order to stabilize and steer [9]. Unicycles have their center of gravity
located above the center of the wheel, making them also unstable in the
longitudinal direction, but allowing their wheel to be much smaller.

2.2. Unicycle Robots

Figure 2.3.: Axis definitions of
a (moment exchange) unicycle.

A general schematic of the orientations of a unicycle can be
seen in figure 2.3. Unicycles need to be stabilized in both the
lateral and longitudinal direction. Similarly as for dicycles, the
longitudinal direction is generally stabilized by using the drive
wheel. Hence a single actuator controls both the position and
pitch angle, thus making the system underactuated.
To stabilize the robot in the lateral direction, various tech-

niques can be used. Unicycles and monowheels tend to fall over
when their center of gravity is not located directly above the
point of contact with the floor, so one way to stabilize them
is by using a changing center of gravity [10, 11], similar to the
monowheel shown in figure 2.2. Using this technique the robot
can also be stabilized in a leaning position, making it possible
to drive around corners. The drawback of this approach is that
the reaction force exerted onto the unicycle when changing the
center of gravity tends to push the unicycle over during standstill.
Another technique which has been used for stabilizing unicycles is by using fast rotating
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flywheels which utilize the gyroscopic precession effect [12, 13, 14]. Due to precession a flywheel
affects both the roll and jaw angle, but these effects can be decoupled by using two flywheels
rotating in opposite direction. This makes it possible to stabilize the lateral direction while also
being able to change the jaw angle to steer the unicycle. These designs do however require a lot
of energy, since the gyroscopes need to be constantly rotating at high speeds.
A reaction wheel can also be used for lateral stabilization. This technique uses an exchange of

moment between this wheel and the unicycle for stabilization [10, 15, 5]. Applying a torque on
the reaction wheel makes it spin in a certain direction, which in turn exerts a reaction moment
in the opposite direction on the unicycle. If aligned properly, this moment will mostly be in the
lateral direction, so the yaw angle will not be influenced much by the lateral stabilization.
The technique using an exchange of moment does not suffer from reaction forces like the

technique using a changing center of gravity, but rather utilizes them. Next to that, it does
not require a lot of energy like the technique using the gyroscopic effect, since it only needs to
rotate the reaction wheel when necessary. This method was therefore chosen to be used for the
unicycle and this project will therefore focus on a so called Moment Exchange Unicycle Robot
(MEUR).

2.3. Moment Exchange Unicycle Robots

In recent years various research groups have been working on moment exchange unicycle robots
and a couple of different control techniques have been applied. Some have only shown the
performance of their controllers using simulations [4, 5, 16, 17, 18], but also a few have been able
to successfully implement them and test their performance experimentally. One of these is the
Murata Girl [19], which not only shows lateral and longitudinal stability, but also yaw control
by using an additional reaction wheel. Unfortunately the company has not published much
documentation about this robot and it is therefore unknown what kinds of control techniques
have been used. The other robots which have shown to be working luckily do have proper
documentation and their techniques and results will be discussed in this section.
Next to researching the stability of moment exchange unicycle robots, also papers have been

published investigating means of steering for the moment exchange unicycle robot. One tech-
nique which can be used for steering is by adding an actuator and making use of an additional
reaction wheel, as shown by [19, 20]. A technique which does not require an additional actu-
ator is by leaning while driving forwards or backwards, similarly as the monowheel shown in
figure 2.2, but this has only been demonstrated to work in simulations [21].

2.3.1. Unibot

One of the first unicycle robots using a reaction wheel was the Unibot [15], a collaboration
between the University of Twente and the University of California San Diego, which can be seen
in figure 2.4. To control the longitudinal direction a Linear Quadratic Regulator (LQR) was used
and for the lateral direction H∞ loop-shaping was applied in combination with a proportional
motor controller used to overcome dry friction. Experiments showed good stability robustness
for the longitudinal control, but a much less robustly stable lateral system, probably caused
by saturation of the motor voltage. Combined control showed that both controllers can work
together to stabilize the robot and did not show much coupling. When adding a driving speed
to the motor the designed controller followed the trajectory, but did not show very accurate
tracking, as can be seen in figure 2.5.

4
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Figure 2.4.: Unibot. [15] Figure 2.5.: Speed tracking performance of the Unibot. [15]

Figure 2.6.: Unicy-
cle robot from [24].

Figure 2.7.: Straight-line distance
tracking of the unicycle from [25].

Figure 2.8.: Straight-line driving ve-
locity of the unicycle from [25].

2.3.2. Pusan National University

A team of researchers from the Pusan National University has also developed a moment exchange
unicycle robot [22, 23, 24, 25], which can be seen in figure 2.6. They initially used a fuzzy-
sliding mode controller for both the lateral and longitudinal directions, but later replaced the
longitudinal controller by an LQR control scheme. Experiments showed that the robot can
follow a ramp (see figures 2.7 and 2.8), ladder or parabolic trajectory while keeping the pitch
and roll angles within about 2° and 4° of the equilibrium position respectively. The experiments
do show a steady state error of about 0.1 meters after stabilization, while the maximum tracking
error is about 0.25 meters. Rather high velocity errors were obtained during the experiments,
showing oscillations and reaching as high as 0.22 m/s for a reference value of 0.05 m/s, which is
probably because the controller prioritizes stabilization over tracking.

2.3.3. National Cheng Kung University

At the National Cheng Kung University another moment exchange unicycle robot has been de-
veloped, which can be seen in figure 2.9. Initially they just used a reaction wheel for stabilization
[26], but later a turntable was added to steer the robot as well [20]. Sliding mode control was
used for the longitudinal direction, which uses a saturation function to eliminate the chattering
problem. For the lateral direction initially LQR control was used, which was later replaced by
a sliding mode controller. The turntable used for yaw-control (steering) is also controlled using
sliding mode control.
To let the robot move from point to point, the strategy is to first balance the robot at the

initial point, then set the yaw angle reference and use steering control to rotate the robot, after
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Figure 2.9.: Unicy-
cle robot from [20].

Figure 2.10.: Step tracking perfor-
mance of the unicycle from [20].

Figure 2.11.: Point to point tracking
of the unicycle from [20].

Figure 2.12.: Unicycle
robot from [27].

Figure 2.13.: Speed tracking performance of the unicycle from [27].

which the reference angle of the wheel is set and the robot drives in a straight line to the next
point. The experimental results without yaw control show that the robot can make a step of
about 0.3 meters in about three seconds with an overshoot of about 0.05 meters, see figure 2.10,
while keeping the robot stable and the yaw angle about constant. After adding yaw control,
the robot could move between points about 0.16 meters apart in about 10 seconds (including
steering), as can be seen figure 2.11. The robot shows quite accurate tracking, but even though
it uses a driving wheel with a flat profile rather than a round wheel, it still requires the reaction
wheel to rotate at high speeds in order to keep the robot stable.

2.3.4. Electronic Engineering Polytechnic Institute of Surabaya

Another moment exchange unicycle robot was created by the Electronic Engineering Polytechnic
Institute of Surabaya [27], which can be seen in figure 2.12. Cascaded PID control was used
in the longitudinal direction, with the outer loop for speed control and the inner loop for pitch
control. The roll angle was also controlled using a PID controller, which uses angular velocity
feedback to limit the motion of the reaction wheel.
The experimental results showed that the pitch and roll angles could be controlled with

settling times of 1.13 and 2.6 seconds, having maximum recoverable angles of 23° and 3.5°
respectively, and disturbance rejection was also demonstrated. The tracking performance of
the speed controller does however show rather large oscillations, as can be seen in figure 2.13.
Finally, they showed that the robot can stabilize itself on a floor with a varying slope in the
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longitudinal direction, with a maximum slope of 30°, with the controller adjusting the pitch
angle accordingly.

2.4. Summary & Problem Statement
Unicycle robots need to be stabilized in both the lateral and longitudinal direction. For the
longitudinal stabilization the drive wheel is generally used, while for the lateral stabilization
a few different techniques can be used. An energy efficient way of doing this is by using a
reaction wheel. Various studies have been performed on these moment exchange unicycle robots
and different types of controllers have been investigated for the stabilization. Some studies
have only shown the performance of their controllers in simulations, but a few have also been
able to successfully implement them in an actual robot. For the lateral direction sliding mode
control (SMC) is mostly used, but also PID control and H∞ loop shaping have been successfully
implemented. For the longitudinal direction state feedback control using a linear–quadratic
regulator (LQR) was mostly used and shown to be effective, but also SMC and PID control
have been successfully implemented.
Experiments performed using the robots showed that in general they do not suffer a lot from

the coupling between the lateral and the longitudinal directions. The robots do have quite some
difficulty tracking a certain path, often overshooting and sometimes suffering from a steady
state error, while the obtained velocities oscillate quite a bit, even when using velocity control
with a constant setpoint. These are attributed to the controllers prioritizing stabilization of the
unicycle over tracking of a reference. The robustness of the controllers regarding changes in the
parameters of the robots, like having them carry additional weight, has not been demonstrated
yet and only limited testing has been performed for driving over sloped surfaces.
Looking at the control of the yaw angle and the steering of the robots, only experiments using

a turntable have been performed so far, which require an additional actuator to control this
degree of freedom. An option for steering the unicycle without using an additional actuator
is by leaning, but for moment exchange unicycle robots this has only been shown to work in
simulations.
For the moment exchange unicycle robot to be feasible as a delivery drone, it should not only

be able to follow a trajectory while keeping the unicycle stable, as is mostly shown by current
literature, but it should also be able to carry additional loads and drive over uncertain terrains.
The weight of loads being carried might not be constant, so the unicycle should be able to handle
this without knowing what the actual weight of the load is. Regarding uncertain terrains, the
streets over which the unicycle has to travel might not be flat, but could contain bumps or have
certain slopes, either in the lateral or longitudinal direction, so the unicycle should be able to
handle this. These factors have not been experimentally tested yet, so the main problems which
should still be investigated in order to answer the research question are:

• Can the MEUR be used to carry various loads of unknown weights?

• Can the MEUR be used to drive over sloped surfaces of unknown slope and orientation?
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3. Evaluation of the Prototype

Figure 3.1.: Design of the Mo-
ment Exchange Unicycle Robot
as created by Giesen et al. [4]
and adapted by Dannenberg [5].

This project continues on the Moment Exchange Unicycle
Robot created by Giesen et al. [4] and adapted by Dannen-
berg [5], which can be seen in figure 3.1. The robot uses its
drive wheel for the longitudinal and a large reaction wheel for
the lateral stabilization, using the axis definitions as shown in
figure 2.3 on page 3. To measure the rotations of the unicy-
cle an inertial measurement unit (IMU) was used, but it was
observed that it did not give very accurate readings. Hence
a new sensor set-up and algorithm to calculate the angles
should be created. Next to that, in order to be able to tune
the controllers and perform experiments without the unicy-
cle falling over and getting damaged, an adjustable testing
rig should be created which offers the opportunity to test the
robot under various circumstances.

3.1. Sensor Set-up

In order to be able to control the unicycle, a few things need
to be measured. The rotations of the reaction wheel and
drive wheel can simply be measured using the encoders from
the motors. To measure the pitch, roll and yaw angles the
SparkFun 9DoF Razor IMU [28] was used, but it was observed that it did not give very accurate
readings. A new sensor block has therefore been created using three analog gyroscopes (EVAL-
ADXRS623 [29]) and a triaxial accelerometer (EVAL-ADXL327Z [30]). To obtain the angles
from these sensors, an algorithm had to be written which processes the analog signals.

3.1.1. Initial algorithm

Since gyroscopes measure rotational velocity, their measurement data can be integrated to ob-
tain the rotation angles, but due to noise and a bias being present in the measured signal, the
integration causes drift in the obtained angles. Next to that, the initial condition for the inte-
gration is unknown when not starting exactly in the upright position, so there will be an offset
in the angle. A high pass filter can be used to remove the bias and drift, making gyroscopes
mostly useful for measuring high frequency changes in angle.
The accelerometer can be used to measure the angles by looking at gravity [31]. Due to its

orientation, the accelerometer has its x-axis oriented in the vertical, its y-axis in the lateral and
its z-axis in the longitudinal direction when the unicycle is oriented upwards. In that case the
horizontal accelerometer axes (y and z) are perpendicular to gravity, so they will not measure
any accelerations because of it. When the unicycle is tilted, these accelerometer axes will no
longer be horizontal and will measure a certain part of the gravitational acceleration depending
on the angle of rotation. When assuming the angles stay small, they can simply be calculated
using the inverse sine: θacc,p = arcsin

(
az
g

)
, θacc,r = arcsin

(
ay

g

)
, in which g is the gravitational

acceleration, θacc,p and θacc,r are the pitch and roll angles and az and ay are the accelerations

9



3.1. Sensor Set-up 3.1. Sensor Set-up

measured by the accelerometer using its z- and y-axis. Accelerometers do however usually suffer
from high frequency noise, so a low pass filter should be used to remove this and only obtain the
accelerations due to gravity. Because of the filter a delay is obtained when measuring an angle
using accelerometers, making them only useful for measuring the low frequency changes.
Since the gyroscope is mostly useful for the high and the accelerometer for the low frequency

content, both signals can be combined using a complementary filter [32], which acts as a low-
pass filter for the accelerometer data and as an integrator and high-pass filter for the gyroscope
data. This approach cannot be used for the yaw angle since its axis of rotation is aligned with
gravity, so only the gyroscopic data can be used in that case. It was decided to use the second
order complementary filter in order to increase the cut-off and get rid of as much parasitic data
as possible, giving the following equation to calculate the angles:

θi =
2ξiω0,i s+ ω2

0,i
s2 + 2ξiω0,i s+ ω2

0,i
θacc,i + s2

s2 + 2ξiωi,0 s+ ω2
i,0

1
s
ωi, i = p, r (3.1)

In which the subscripts p and r represent the pitch and roll angles, θacc,i the angles calculated
using the accelerometer data, ωi the angular velocities measured using the gyroscopes, ω0,i the
cut-off frequencies and ξi the damping factors. A flat frequency response will be obtained for
ξi ≥ 1 and the value can be increased to obtain a smoother response.

3.1.2. New algorithm
The initial algorithm showed good performance when tilting the unicycle on its place, but when
driving forwards and backwards without rotating it, the algorithm also showed a change in angle.
This was because the accelerometer also picked up the horizontal acceleration due to the motion
of the unicycle and the algorithm was unable to distinguish between this and the acceleration
due to gravity. Since the accelerometer is located in the center of the unicycle, it will not only
measure gravity, but also the horizontal driving acceleration and the rotational accelerations, so
these will affect the calculated angle during motion.

Since the horizontal driving acceleration can be obtained using the gyroscope and the encoder
from the motor of the drive wheel (alon = r(φ̈dw + ω̇p) (see figure E.2)) and the rotational
accelerations can be obtained from the gyroscopes (αp = Lpω̇p, αr = Lrω̇r, in which Lp and

Figure 3.2.: Orientation of the measurement axis az
of the accelerometer and the accelerations g, alon and
αp being measured in the longitudinal direction. Af-
ter changing the orientation of the accelerometer by
45°, the measurement axis āz will be obtained.

Figure 3.3.: Orientation of the mea-
surement axis ay of the accelerometer
and the accelerations g and αr being
measured in the lateral direction.
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Lr are the distance between the points of rotation and the sensor), a new algorithm can be
created using figures 3.2 and 3.3. The driving acceleration and gravity have a fixed direction,
while the rotational acceleration and the measurement axes of the accelerometer depend on the
angle of rotation, so for the longitudinal direction the accelerometer (z-axis) will measure the
following values: az = −g sin(θp)− alon cos(θp)− αp. Since the only unknown is the angle (θp),
the equation can be solved, giving:

θp = 2 arctan

g ±
√
|a2
lon + g2 − (αp + az)2|
alon − αp − az

 , alon 6= αp + az (3.2)

θp = 0, alon = αp + az (3.3)

In here ±
√
|...| represents the signed square root. Since the first equation causes the denomi-

nator to approach zero when the angle approaches zero, a switch is required and the algorithm
requires quite a lot of computational power. To improve this, the accelerometer can be oriented
differently, placing the z-axes at a 45° angle from the horizontal axes (āz in figure 3.2). The
measured accelerations will then change and the formula to calculate the angle will become:

āz = −g sin
(
θp −

π

4

)
− alon cos

(
θp −

π

4

)
− 1

2
√

2αp (3.4)

θp = −2 arctan

−alon ±
√
|a2

lon + g2 − 1
2α

2
p − ā2

z −
√

2αpāz|
1
2
√

2αp + g + āz

+ 3π
4 ,

1
2
√

2αp + g + āz 6= 0 (3.5)

In this equation the denominator will no longer become zero in the range of motion of the
unicycle and the performance of the algorithm is much better.
Since the lateral direction is not affected by the driving acceleration, only the effect of αr

should be removed. Since αr will always be aligned with the y-axis of the accelerometer, the
rotational acceleration can simply be subtracted from the measured acceleration, after which
the initial algorithm can be used (assuming small angles): θr = arcsin

(
ay−αr

g

)
.

The performance of the old and new algorithm have been compared experimentally by com-
paring their outputs under various circumstances, giving the results shown in figures 3.4 and 3.5.

Figure 3.4.: Performance of the algorithms
used to calculate the pitch angle, showing the
calculated angle when changing the angle dur-
ing standstill (A) and while driving forwards
and backwards with a constant angle (B).

Figure 3.5.: Performance of the algorithms
used to calculate the roll angle, showing the
calculated angle for quick and slow changes.
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For the pitch angle the new algorithm no longer shows a large influence from the driving motion
and gives a much better reading of the actual angle. For the roll angle the difference between
the algorithms is not very large, but does show that the amplitude is a bit larger when using
the old algorithm, probably because the angular motion gives the accelerometer some additional
acceleration, which caused the old algorithm to overestimate the angle.

3.2. Testing Rig

Figure 3.6.: Side wheels
fixed to the unicycle.

In order to be able to test and tune the designed controllers without
the unicycle falling over, a testing rig should be used. To allow for
individual testing and tuning of the controllers as well as combined
testing, the rig should be adjustable. The motions in the lateral
and longitudinal directions of the unicycle should be isolated such
that they can be tuned individually. The unicycle should still not
fall over during these isolated tests though.
To achieve this, a set of additional wheels has been used and two

metal frames were designed, which can be seen in figure 3.6. The
frames are fixed to the unicycle using slots such that their height
is adjustable. To isolate the motions of both directions, also the
height of the wheels used in the lateral direction can be adjusted
relative to the frames.

3.3. Updated Design
The updated design of the Moment Exchange Unicycle Robot with the new sensor block and
the side wheels can be seen in figure 3.7 and the actual robot is shown in figure 3.8. A list
of the design parameters can be found in appendix A, the wiring schematics showing how all
electronics are connected can be found in appendix B and the Simulink real-time files showing
how the measured signals are processed and the unicycle is controlled can be found in appendix C.

Figure 3.7.: Updated unicycle design,
with the new sensor block shown in white.

Figure 3.8.: Realized design, including a tray at-
tached on the top for carrying loads.
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4. Controller Design
As discussed in chapter 2, previous studies have shown that a couple of different methods can
be used to control moment exchange unicycle robots successfully. Using the axis definitions
as shown in figure 2.3 on page 3, for the lateral direction the control methods are SMC, PID
control and H∞ loop-shaping, while for the longitudinal direction these are LQR, SMC and PID
control. A more detailed explanation of how these controllers work and can be tuned is given in
appendix D. To investigate which of these controllers give the best performance, for each type
a controller is tuned using the parameters of the robot as given in appendix A and simulations
are performed using the (nonlinear) mathematical models derived in appendix E.

4.1. PD & PID
The PD and PID controllers have been tuned using the approach explained in appendix D.2
using the formulas derived in [33]:

CPID(s) = kp
(sτz + 1)(sτi + 1)
sτi(sτp + 1) , CPD(s) = kp

(sτz + 1)
(sτp + 1) (4.1)

τz =

√
1
α

ωc
, τi = βτz, τp = 1

ωc
√

1
α

(4.2)

kp = meqω
2
c√

1
α

, β = 2, α = 0.1 (4.3)

Using these equations, the equivalent mass meq can be obtained from the model parameters
and the cross-over frequency ωc is used to tune the controller values. To find the cross-over
frequencies, pole placement is used, placing the zeros of the controllers (1/τz) at the stable poles
of the system. Values of α = 0.1 and β = 2 were chosen, so the obtained values for τz can then
be used to find ωc and determine the other parameters of the controllers.
To find the poles of the systems, the parameters and mathematical models of the systems are

used, giving the pole-zero maps shown in figure 4.1. The figure shows that both models have
a single real pole located in the right half plane, making the systems unstable. The obtained
cross-over frequencies using this approach are: ωc,lat = 17.5 rad/s and ωc,lon = 32.3 rad/s.

To test the stability of the controllers, the Nyquist criterion is used, as explained in ap-
pendix D.1. The pole-zero maps of the open loop controlled systems can be seen in figure 4.2.
As expected, the plot shows an additional pole and zero for the PID controller while the other
poles and zero overlap. For both the lateral and longitudinal direction the open-loop systems
still have one unstable pole. The Nyquist plot of the systems, which can be seen in figure 4.3,
shows that each of the open-loop systems encircle the -1 point once in the counter-clockwise
direction, so all controllers will stabilize their closed-loop systems.

4.2. SMC
For the sliding mode controllers, a switching gain ρ and the tracking error e are used and the
controller can be tuned using the equations for the the sliding surface σ and the input signal
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4.3. LQR 4.3. LQR

Figure 4.1.: Pole-zero map of
the lateral and longitudinal di-
rections of the unicycle.

Figure 4.2.: Pole-zero map of
the open-loop controlled sys-
tems.

Figure 4.3.: Nyquist plot of
the open-loop controlled sys-
tems.

u(t) as derived in appendix D.3:

σ = ė+ ωe (4.4)

u(t) = ρ
σ

|σ|+ ε
+ kdė+ kpe (4.5)

kd = 2ω, kp = ω2, ω = ωc (4.6)

In which ω determines the bandwidth of the system and ε determines the smoothness of the
switching function. To tune the parameters of the controller, the cross-over frequencies derived
for the P(I)D controllers can be used here for ω as well. The value of ε will have to be tuned
heuristically and will determine the smoothness of the control input at the cost of response time.
The value of the parameter ρ is rather important, since asymptotic stability is ensured as long
as ρ is larger than the amplitude of the disturbances.
The focus of this thesis is to investigate whether the unicycle can not only stabilize and

track a reference, for which it will need to handle general disturbances like model uncertainties
and outside influences, but can also handle additional disturbances like extra loads and sloped
surfaces. The value of ρ should therefore be relatively large in order to be able to compensate
for these unknowns. A value of ρ = 1 seems more than sufficient, since disturbances as large
as 1 radian probably will not occur. To have reasonably smooth control action but still a fast
response, it was decided to choose a value of ε = 0.1. For the lateral direction the control
parameters will therefore be: ωlat = 17.5 rad/s, ρlat = 1 and εlat = 0.1, and for the longitudinal
directions these will be: ωlon = 32.3 rad/s, ρlon = 1 and εlon = 0.1.

4.3. LQR
The LQR controller for the longitudinal direction was tuned using the approach explained in
appendix D.4, using the state space matrices (A and B) derived in appendix E:

K(t) = −R−1BT (t)S(t) (4.7)
[S,CLeig] = care(A,B,Q,R) (4.8)

In which the Matlab function care solves the algebraic Ricatti equation in order to obtain the
state feedback controller K, using the weighting matrices Q and R for the states of the system

14



4.5. Offset Compensation

and the control input respectively. The states of the system are equal to: [θp θ̇p φdw φ̇dw]T .
The most important states are the angle of the unicycle θp and the angle of its drive wheel
φdw. These will determine whether the unicycle will remain upright and on its place. Since
the stability is more important than the position of the robot, the pitch angle will get the
highest weighting factor. The angular velocity states are less important and therefore get lower
weighting factors. The height of the control input is also not too important and therefore also
gets a lower weighting factor. After heuristically tuning the matrices, the following were found
to give good performance in simulations (see section 4.5):

Q =


0.8 0 0 0
0 0.01 0 0
0 0 0.2 0
0 0 0 0.05

 , R = 0.01 (4.9)

Using these weighting factors, the obtained control matrix K and the closed-loop eigenvalues
are approximately:

K =
[
207.83 42.12 4.47 4.07

]
, CLeig =


−588.24
−5.16
−4.59
−2.00

 (4.10)

As can be seen, all of the closed-loop eigenvalues are negative, so the system will be stable.

4.4. H∞ Loop-shaping
The H∞ loop-shaping controller for the lateral direction was tuned using the approach explained
in appendix D.5. First the weighted plant is found using: Gs = augw(G,W1,W2, 1), in which
W1 and W2 are weighting factors applied to the control and error signals respectively. Then
the H∞ norm is used to obtain the controller (K∞) and closed-loop transfer function (CL):
[K∞, CL] = hinfsyn(Gs). Finally, the weights are shifted from the plant to the controller in
order to obtain the feedback controller: K = W1K∞W2.

The lateral state-space model derived in appendix E was converted to a transfer function to
obtain the plant G and the weighting factors W1 and W2 were tuned heuristically, obtaining
good performance forW1 = W2 = 0.1. Computing the poles of the obtained closed-loop transfer
function gave only negative poles, so the system is stable. Strangely, good performance was
only obtained when applying different weighting factors to the system in the simulation, using
W1 = W2 = 10 instead of the valuesW1 = W2 = 0.1 used to synthesise the controller. Using this
controller did give the performance as expected, stabilizing the system similarly as the SMC,
PD and PID controllers.

4.5. Offset Compensation
Since the sensors of the unicycle cannot be perfectly calibrated, there will be a small offset
present between the measured and actual angle, so a compensation for this is necessary. Without
compensation, the controller will not stabilize the unicycle at its equilibrium position, so a
constant torque is required to keep it at this angle. This will make the unicycle drive away
and causes the drive and reaction wheels to be accelerated constantly, until they reach their
maximum speed, after which they will no longer be able to supply the required torque and the
unicycle will fall over.
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Of the designed controllers, only the LQR uses all states of the system and therefore already
has compensation built in. The other controllers only look at the pitch and roll angles, so a
second control loop is required. The cascaded control structure as introduced in appendix D.6
can be used for this. The controllers of the different directions will have similar responses, so
the same outer loop control can be used for the different controllers of the same direction.

4.5.1. Lateral direction

The response of the controlled systems without offset compensation for an initial angle of 4°
and a sensor offset of +1° can be seen in figure 4.4, showing that the reaction wheel will keep on
accelerating and will reach the maximum speed of the motor (3190 RPM) rather quickly, after
which the actual robot would fall over.

The offset compensation can be done by using a feedback controller on the angular velocity
of the reaction wheel, but to obtain this velocity the derivative of the encoder signal needs to
be taken, which will cause amplification of noise. A method for which this will not be the case
is by using the control output (torque) instead [34]. If the torque is used to compensate for the
offset, the controller will be made to stop feeding a torque into the system, stopping the wheel
from being accelerated, after which damping in the system will decelerate it.
Since the additional controller needs to compensate for an offset, an integral controller with

low-pass filter can be used similarly as done by [34]. The low-pass filter will make sure that
the controller will not react and limit the torques used to stabilize the unicycle and the integral
action will only compensate for the offset in angle. A small proportional action can be added
to speed up the response of the controller. To tune the controller a heuristic method is used.
Increasing the integral action makes the unicycle settle faster at the correct angle, but does also
respond more aggressive on the stabilization action, which cannot be filtered out completely by
the low-pass filter, causing the unicycle to overshoot more during the stabilization.
The response using the additional controller for an initial angle of 4° and a sensor offset of

+1°, with some damping added to the simulation, can be seen in figure 4.5. Compared to the
simulations without offset compensation in which none of the controllers settle at the correct
angle, they now all do, but they do take more time to settle. Initially the settling time was less
0.5 seconds for the SMC and about 1 second for the PID, PD and H∞ controllers, while they
now all take about 3 seconds to settle. The torques into the system return back to zero in about
2 seconds, after which the damping slowly decelerates the motor and the reaction wheel.

Figure 4.4.: Performance of the lateral controllers without offset compensation for an initial
angle of 4° and a sensor offset of +1°.
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Figure 4.5.: Performance of the lateral controllers with offset compensation for an initial angle
of 4° and a sensor offset of +1°.

4.5.2. Longitudinal direction
The response of the controlled system without offset compensation for an initial angle of 4° and
a sensor offset of +1° can be seen in figure 4.6. The simulation shows that the LQR controller is
the only controller which already has offset compensation build in and therefore already settles at
the correct angle. Because of this the LQR controller is also the only one for which the distance
settles, although here still an offset is present. The other controllers will keep on accelerating
the drive wheel, making it drive away rather fast. Since the position of the unicycle should be
controlled in order to make it follow a certain reference, the additional outer loop controller can
be used for the offset compensation as well as reference tracking.
The LQR controller already has position control, but produces a steady state error. To remove

this error, an additional loop can be added to the drive wheel angle state of the system. For
the additional control a PID controller can be used, which compensates for the distance offset.
To tune this controller, the same approach is uses as for the stabilization PID controller, but a
lower cross-over frequency is used to prevent interference with the stabilization. Using a heuristic
method, good performance was obtained by using a frequency equal to half of the cross-over
frequency of the stabilization controller.
For the offset compensation and position control of the SMC, PD and PID controllers a

cascaded control structure can be used. The outer loop can use drive wheel angle to control the
position and update the pitch angle reference such that the inner loop will make the unicycle

Figure 4.6.: Performance of the longitudinal controllers without offset compensation for an initial
angle of 4° and a sensor offset of +1°.
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Figure 4.7.: Performance of the longitudinal controllers with offset compensation for an initial
angle of 4° and a sensor offset of +1°. After 17.5 and 27.5 seconds skew sine reference profiles
are applied for the drive wheel angle.

move accordingly. A PID controller with low-pass filter can be used, similarly as the PI controller
with low-pass used for the lateral outer loop, with the derivative action added in order to obtain
smoother motion of the unicycle. The controller can also be tuned using a heuristic method and
it was found that for each of the controller types optimal performance was found for different
parameters, while the same parameters could be used in the lateral direction for the different
types of controller.
The performance of the controllers including offset compensation and distance control for an

initial angle of 4°, a sensor offset of +1° and a reference signal consisting of two skew sines can
be seen in figure 4.7. The simulation shows that the PD and PID controller have a rather high
overshoot of more than 4°, while the overshoot of the LQR and SMC is only half that. The LQR
controller settles fastest with about 3 seconds, while the SMC and PD controllers take about 8
seconds to settle and the PID controller takes about 15 seconds. When the skew sine references
are applied for the drive wheel angle, the controllers show similar performance, following the
reference with a slight overshoot. The LQR controller does however give a very spiky torque
input signal when tracking the reference.

4.6. Evaluation of the Controllers
As can be seen in figures 4.5 and 4.7, the designed controllers are able to stabilize the unicycle,
even for an initial angle of 4° and an offset of +1° in the measured angle. The longitudinal
controllers also show good tracking of a reference for the position of the unicycle. In this section
the controllers will be compared into detail and a decision will be made on which controllers will
be implemented in the actual robot. In order to do this, additional simulations are performed
in order to test the robustness of the controllers for parameter uncertainties.

4.6.1. Lateral
To test the robustness of the lateral controllers, a load of 3 kg is added to the unicycle at the
height of the reaction wheel, giving the simulation shown in figure 4.8. It can be seen that the
PD, the H∞ and especially the PID controller are starting to show oscillations and will probably
become unstable when the load is increased much more. When increasing the load in steps of 1
kg, the PID controller becomes unstable at 4 kg, the PD controller at 6 kg, the H∞ controller at
7 kg and the SMC at 10 kg. In reality they will become unstable much faster since the maximum
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Figure 4.8.: Performance of the lateral controllers with offset compensation for an initial angle
of 4 degrees, a sensor offset of +1 degree and an additional load of 3 kg.

motor speed has already been reached at a load of 3 kg, but the test does confirm that the SMC
is indeed much more robustly stable regarding the parameters of the unicycle and should be
able to handle additional loads much better than the other controllers. Since it also showed the
best performance when no load was added, with a fast settling time without a large overshoot,
the SMC will be implemented for the lateral direction.

4.6.2. Longitudinal
To test the robustness of the longitudinal controllers, a load of 4 kg is added to the unicycle,
giving the simulation shown in figure 4.9. The PD controller already shows large oscillations for
this load and will probably become unstable first. When increasing the load, the PD controller
becomes unstable for a load of 7 kg and the PID controller for a load of 11 kg. The LQR and
SMC could both handle additional weights of more than 100 kg, so both show a large robustness
for model uncertainties. Comparing the SMC and LQR, the LQR has a faster settling time
but does create very spiky torque signals and is much harder to tune. Because the SMC has
comparable performance, but is much easier to tune and has a smoother torque signal, it has
been chosen to be implemented for the longitudinal control of the unicycle robot.

Figure 4.9.: Performance of the longitudinal controllers with offset compensation for an initial
angle of 4 degrees, a sensor offset of +1 degree and an additional load of 4 kg. After 17.5 and
27.5 seconds skew sine reference profiles are applied for the drive wheel angle.
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5. Implementation & Experimental Results

The controllers designed in chapter 4 can now be implemented on the actual robot. To test and
optimize the controllers, the side wheels can be attached such that the motions in the lateral and
longitudinal directions can be tested separately, using the axis definitions as shown in figure 2.3
on page 3. Then for both the lateral and longitudinal directions first the sliding mode controllers
without offset compensation are implemented and optimized. Since there will be a small offset
between the measured angles and the actual values, the controllers will continue accelerating the
reaction and drive wheel, but that does not influence the tuning of the stabilization controllers.
Next the offset compensation is added and tuned such that the unicycle is actually stabilized in
its equilibrium position and will stay on its place.
After the controllers for the lateral and longitudinal directions have been tuned individually,

they are combined to test the influence of the coupling between the two directions. Next the
tracking performance is tested to see how well the robot follows a reference. Finally, to answer
the research question of this thesis, the ability of the robot to carry additional loads and to drive
over sloped surfaces is tested.

5.1. Lateral Stability

The tests for the lateral controller (without offset compensation) showed that for a too high
bandwidth the robot responds too aggressively, causing it to overshoot too much, while for a
too low bandwidth it does not respond aggressively enough, making it unable to move towards
the equilibrium at all. Good performance was obtained for ωlat = 12 rad/s, ρlat = 1, εlat = 0.1,
kd,lat = 2ωlat and kp,lat = ω2

lat.
To compensate for any offset present in the measured angle and to limit the speed of the

reaction wheel, the PI controller with low-pass filter was implemented as well and tests were
performed to tune this controller. The tests showed that making this controller too aggressive
limits the performance of the stabilizing controller, while if not aggressive enough the reaction
wheel will still reach its maximum speed. Good performance was obtained for Kp,RW = 0.25,
Ki,RW = 1 and fc,RW = 1 Hz.

The performance of the tuned lateral controller can be seen in figure 5.1, showing that it can
stabilize the robot when released close to its equilibrium position without having to accelerate
the reaction wheel to its maximum speed (211 RPM). When triangular disturbances were applied
as inputs to the system, giving a small pulse with a magnitude of 6 Nm to the reaction wheel and
the unicycle, the controller can easily keep the roll angle close to its equilibrium. Tests showed
that larger disturbances could also be compensated for, but the timing of those disturbances
did have an influence, giving difficulties when the unicycle was already somewhat away from its
equilibrium. Smaller disturbances were sometimes not even noticed. When pushing the unicycle
by hand, the controller also reacts directly and instantly tries to push the hand away in order
to stay at its equilibrium.
To find the limits of the lateral controller, the maximum initial angle at which it can be

released was investigated as well as the effect this has on the settling time. It was found that
when tilting the robot to the left the maximum release angle was about 2.4°, while when tilting
it to the right the unicycle could be released even when resting on its side wheel at about 5.5°.
The settling time also depends on whether the unicycle is tilted to the right or left, but also
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(a) Roll angle. (b) Reaction wheel speed. (c) Motor current.

Figure 5.1.: Lateral stability test, where after five seconds the motors are enabled and the
unicycle is released. A triangular pulse disturbance with a magnitude of 6 Nm is applied to the
input torque of the system negatively at 15 seconds and positively at 22 seconds.

depends on the release angle. The settling time is about one second when released from an angle
of 2°, while taking less than half a second when released within 1° of equilibrium. Performing
a simulation for an initial angle of 2° with an offset of 0.1° also gives a settling time of about 1
second, so the controller appears to behave as expected.

5.2. Longitudinal Stability
The longitudinal tests showed quite some vibrations in the robot, so making the controller
less aggressive was necessary in order to prevent amplification of these vibrations. The main
source turned out to be noise in the measured angular velocity, which could not be filtered
out without adding too much delay in the signal. By lowering the derivative action and the
switching amplitude of the sliding mode controller the effect of this noise could be minimized
and the best performance was obtained for ωlon = 5 rad/s, ρlon = 0.3, εlon = 0.1, kd,lon = ωlon/5
and kp,lon = ω2

lon.
To compensate for any offset present in the measured angle and to control the position of

the unicycle, the PID controller with low-pass filter was implemented as well and tests were
performed to tune this controller. Making it too aggressive again showed interfere with the
stabilization of the unicycle. Good performance was obtained for Kp,DW = 0.015, Kd,DW =
0.005, Ki,DW = 0.002 and fc,DW = 5 Hz.

The performance of the tuned longitudinal controller can be seen in figure 5.2, showing that
it can stabilize the robot when released close to its equilibrium position. The controller does
require some time to bring the robot back to its initial position, but it can keep the robot stable
and on its place despite a small offset in the angle. When applying triangular input pulses
as inputs to the system, giving a small pulse with a magnitude of 4 Nm to the drive wheel
and the unicycle, the controller can easily keep the pitch angle close to its equilibrium and the
position of the unicycle also recovered from the pulse quite fast. Larger disturbances cause the
side wheels of the unicycle to hit the ground, but without the side wheels they could probably
be compensated for. Also when pushing the unicycle by hand, quite large excitations could be
applied, pushing the robot forwards up to ten centimetres did not give much problems.
To find the limits of the longitudinal controller, the maximum initial angle at which it can be

released was investigated as well as the effect this has on the settling time. For initial angles
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5.3. Combined Stability

(a) Pitch angle. (b) Drive wheel speed. (c) Distance. (d) Motor current.

Figure 5.2.: Longitudinal stability test, where after five seconds the motors are enabled and the
unicycle is released. A triangular pulse disturbance with a magnitude of 4 Nm is applied to the
input torque of the system negatively at 15 seconds and positively at 22 seconds.

of about 3° in either direction, the settling time for the pitch angle is about two seconds, while
the position takes about three to four seconds to get back to its initial value. The response of
the unicycle did not depend strongly on the release angle and it showed to be able to handle
angles up to 5° without problems and without needing much additional settling time. Larger
angles caused the side wheels to hit the ground, but could probably also be compensated for.
Performing a simulation with an initial angle of 3° and an offset of 0.1° shows a settling time
of about 4 seconds for the pitch angle and about 2 seconds for the position, so probably due to
different tuning slightly different results are obtained, but the performance is quite similar and
the controller appears to behave as expected.

5.3. Combined Stability

After tuning the controllers individually, they were combined and tested together, giving the
performance shown in figure 5.3. The tests show that as long as the unicycle is released close to
its equilibrium position, the controllers will not affect each other much and both directions can
be stabilized. When the unicycle is released further from its equilibrium, coupling effects started
to show more and could cause instability. When disturbances were applied, the coupling between
the two directions also showed up, with the unicycle rotating a little when compensating, but
overall the orientation of the unicycle did not change much. The magnitude of the disturbances
could not be as large as for the isolated directions. When larger amplitudes were applied, the
controllers started to influence each other and could grow unstable.
The tests also showed that the cable connecting the robot to the computer had quite a large

influence on the yaw angle, especially when having to pull or push the cable while driving. To
minimize this effect the cable is laid as freely as possible and has been attached to the center of
the robot, limiting the moment it exerts as much as possible.
To find the limits of the controllers working together, the maximum initial angles at which

the unicycle can be released and the effect this has on the settling time was investigated. It
was found that the maximum release angles depended on each other. When the pitch angle
was released close to its equilibrium, the maximum roll angle was about 2.5°, while for larger
pitch angles the maximum reduced to about 2°. The pitch angle did not show much influence
from the roll angle and the maximum pitch angle was found to be about 4.5°. To consistently
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5.4. Following a Reference 5.4. Following a Reference

(a) Angles. (b) Wheel speeds. (c) Distance. (d) Motor currents.

Figure 5.3.: Combined stability test, where after five seconds the motors are enabled and the
unicycle is released. A triangular pulse disturbance with a magnitude of 1.5 Nm is applied to
the longitudinal (DW) input torque of the system negatively at 25 seconds and positively at 35
seconds and a triangular pulse disturbance with a magnitude of 4 Nm is applied to the lateral
(RW) input torque negatively at 15 seconds and positively at 45 seconds.

obtain good performance, it was found that the unicycle should be released within about 2° of
the equilibrium position for both angles. The settling times for the roll angle depended on the
release angle, but were mostly within one second. The pitch angle usually took about three
seconds to stabilize while the position took about four to six seconds depending on the pitch
angle at which it was released.

5.4. Following a Reference

To test whether the controllers can also keep the robot stabilized while following a reference,
test were performed using skew sine and ramp reference signals of various magnitudes. The skew
sine references, which can be seen in figure 5.4, show that the unicycle can perform steps of up
to 2.5 meters within 10 seconds. As expected, the velocity shows to follow a sine shape when
performing the step. Oscillations are present in the velocity though, which is probably caused
by the unicycle prioritizing stabilization over tracking. The position of the unicycle shows quite

(a) Distances. (b) Speeds. (c) Tracking errors.

Figure 5.4.: Response of the unicycle for skew sine inputs of various amplitudes.
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5.5. Load

(a) Distances. (b) Speeds. (c) Tracking errors.

Figure 5.5.: Response of the unicycle for ramp inputs of various slopes.

accurate tracking, with a small lag behind the reference and some overshoot at the end. The
tracking error shows that the lag increases from about 5 cm for the smaller steps to about 12
cm for the largest step, while the overshoot increases from 1 cm to about 8 cm. During the
experiments it was observed that the unicycle also became a little less stable when increasing
the step size, keeping the deviation of the roll angles within 0.8° for the steps up to two meters,
but for the step of 2.5m a deviation of 1.4° was observed. The pitch angles showed a slight
increase in deviation for increased step sizes, increasing from 1.5° to 2°, which was required in
order to obtain the acceleration necessary to follow the reference.
When following a ramp input with a certain slope the unicycle also showed good tracking,

as can be seen in figure 5.5. It initially lags behind a bit, but then overlaps with the reference
very well, keeping the tracking error within 4 cm. Again some overshoot was observed when
stabilizing after following the ramp, which increases when the unicycle is driving at faster speeds.
The velocities show to be stabilizing at the slope of the ramp quite well, but here also some
oscillations are obtained. For the different slopes not much difference could be seen for the
lateral stabilization, all keeping the deviation of the roll angle within 0.6°. The pitch angle
showed relatively large deviations when speeding up at the beginning of the ramp and slowing
down at the end of the ramp, requiring angles of 3° for the ramp of 0.2 m/s, but next to these
pulses not much deviation could be observed. While following the ramp references, the unicycle
drove in a straight line, but did show a little steering in the counter-clockwise direction.

5.5. Load

Figure 5.6.: Tray fixed to
the unicycle, with weights.

A delivery drone would have to carry packages of various weights,
so the unicycle should be able to compensate for this additional
weight without having to change its control parameters, effectively
making the additional load an unknown for the system. To test
whether it can handle additional loads, a tray was mounted on top
of the unicycle and various weights were placed in there, as can be
seen in figure 5.6. To prevent the weights from shaking and starting
to move around in the tray, they were fixed in place using tape.
During the experiments the load was increased incrementally and

the results can be seen in figure 5.7. The experiments show that
for smaller loads the unicycle can easily be released and follow a
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(a) Distances. (b) Pitch angles. (c) Roll angles.

Figure 5.7.: Response of the unicycle following a skew sine for various loads.

skew sine. For heavier loads it needs to be released very close to its equilibrium position for it
to stabilize. The maximum weight for which the unicycle could stabilize was about 800 grams.
With the heavier loads the unicycle also overshoots more and takes longer to settle.

When following the reference without any loads, the unicycle was observed to drive in a
straight line, not influencing the yaw angle much. When placing the weights not exactly in the
center of the tray (laterally), the unicycle would no longer drive in such a straight line and would
start to steer in a certain direction. This effect was however a bit inconsistent and the influence
of the cable seemed to be much larger than the effect of the offset.

5.6. Slope
To be able to use the unicycle as a delivery drone, it should be able to drive over uncertain
surfaces which could have various slopes. To test its ability to do this, the unicycle was made
to drive over a surface of which the slope was increased in steps in order to find the maximum
slope that it can stabilize on and drive over. This was done for a surface with a slope in the
longitudinal direction and one with a slope in the lateral direction, as can be seen in figure 5.8.
The results for a surface with various slopes in the longitudinal direction can be seen in

figure 5.9. To perform the test the side wheels in the longitudinal direction had to be removed
and for a slope of 12° the frame to which the side wheels are normally attached also almost

Figure 5.8.: Testing the unicycle a surface with a slope in the longitudinal direction (left) and
one with a slope in the lateral direction (right).
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5.6. Slope

(a) Distances. (b) Pitch angles. (c) Roll angles. (d) DW motor currents.

Figure 5.9.: Response of the unicycle for various longitudinal slopes. After 17.5 and 27.5 seconds
skew sine reference profiles are applied for the drive wheel angle.

started to hit the surface. The results show that for relatively low slopes (up to 4°) the unicycle
barely notices the slope and has no problems following skew sine reference signals while keeping
the unicycle stabilized. For larger slopes a small steady state error is obtained when following
the reference. Next to that, the pitch angle shows that the unicycle needs to lean forward in
order to be able to stabilize and drive over the surface, while the currents also show a certain
bias in order to prevent the unicycle from driving back down due to the pull of gravity. As
expected, the lateral stabilization is not influenced by the slope and the roll angle shows similar
behaviour regardless of the slope. When following the reference the robot drove in a straight
line, so the sloped surface did not seem to have much effect on the yaw angle either.
The results for a surface with various slopes in the lateral direction can be seen in figure 5.10.

The figures show that a slope in the lateral direction does not have much influence on the
tracking of a reference and that the distance and pitch angles do not change much. The roll
angle does show to be stabilized at a different value depending on the slope of the surface and
the unicycle shows to have more problems stabilizing when released on a surface with a higher
slope. For a slope of 12° the reaction wheel almost reaches its maximum speed and during the
experiment the unicycle had a lot of trouble stabilizing, wanting to rotate and drive down the
surface. Once stabilized, the unicycle showed not to be bothered much by the surface though
and could still drive in a straight line.

(a) Distances. (b) Pitch angles. (c) Roll angles. (d) RW speeds.

Figure 5.10.: Response of the unicycle for various lateral slopes. After 17.5 and 27.5 seconds
skew sine reference profiles are applied for the drive wheel angle.
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6. Discussion

6.1. Stabilization
The experimental results have shown that the designed sliding mode controllers for the lateral
and longitudinal direction are able to stabilize the unicycle. When the unicycle was released
within a few degrees of its equilibrium position, not much influence of the coupling between the
two direction could be seen. When released further away, often the longitudinal direction did
not seem to be bothered much, but the lateral direction could grow unstable. Since this was not
the case when testing the lateral direction individually, the oscillatory motion in the longitudinal
direction probably somewhat amplifies the oscillations in the lateral direction and at a certain
point the controller can no longer compensate for these.
For the lateral direction it was observed that the maximum release angle depended on the

direction, so probably the center of mass of the unicycle is not located directly above the drive
wheel. Due to this it could be that the profile of the wheel, which has a very small flat region
at the bottom, could cause the overshoot of one direction to reach this flat region, while the
other direction reaches a round region of the wheel. The flat region probably helps stabilizing
the unicycle, making this direction more forgiving for overshoots.
The actual robot has some additional dynamics which were neglected in the model and a small

difference also exists between the parameters used for the model and the actual parameters.
Because of this the controllers had to be tuned again for the actual robot, but the experiments
still showed similar results compared to the simulations. The pitch angle has some additional
noise which could not be filtered out, but this is the only large deviation from the simulations.
Overall the used mathematical model therefore seems to represent the behaviour of the unicycle
good enough to use it as a basis for tuning the controllers and comparing their performance in
the simulations.

6.2. Tracking
The tracking performance of the unicycle while following a reference showed quite good per-
formance. The unicycle could track the references with a little overshoot and with quite small
tracking errors. Not much oscillations were observed and the overall motion of the unicycle was
quite smooth. The velocity of the unicycle while following the references did show some more
oscillations, but in general the velocity showed the expected shape. Comparing the tracking
performance to the unicycles found in literature, as described in chapter 2, the robot shows
much smaller oscillations in the velocity for the same set-points, while the tracking error is also
smaller when following a similar reference.
The overall stability of the unicycle tended to decrease for higher speeds, with the pitch angle

and the driving motion probably influencing the roll angle due to a coupling present in the
system, causing this to become unstable. When driving at the highest velocities, the side wheels
could also sometimes hit the floor since the unicycle had to lean forward in order to obtain
the desired acceleration. Finally, the cable to which the unicycle is attached to the computer
running the controllers also showed a large influence on the stability. The cable is quite stiff and
has to be pulled or pushed by the robot, so the instabilities obtained for higher speeds might
also have been partially caused by the robot having to pull or push the cable.
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6.3. Load, Slope and Steering
The experiments for the unicycle with various loads showed that at a certain point the unicycle
had problems stabilizing, while smaller loads did not seem to be much of an issue. This is
probably because the unicycle is heavier, so more torque is required in order to move it to its
equilibrium position. If the controller parameters are adapted accordingly, the unicycle will
probably have less problems carrying the loads. Next to that, it would probably be better if the
loads could be placed in line with the center of mass, since they now also cause an additional
offset, which the controller has to compensate for, making it take longer to stabilize and causing
more coupling. If the loads could be placed lower on the unicycle, it would probably have less
problems carrying them, but there is no space for them there and that would make them less
accessible.
For the sloped surfaces, the unicycle showed to have not much problems driving over the

slopes. For the longitudinal directions it can probably drive over even larger slopes in case the
frame of the side wheels is removed, since it did not show any sign of becoming unstable. For
the lateral direction this might also be the case, but releasing it on a high slope was rather
difficult, since due to a slight coupling it would start to rotate a bit and then drive down the
surface. If the unicycle would be released on a flat surface and the slope of this surface would
then be increased, it might be able to handle slopes more easily. The main limitation of driving
over sloped surfaces is probably the slip that might occur rather than the performance of the
controllers.
Unfortunately, the experiments looking into the ability of the unicycle to steer did not give

consistent results. The main reason for this was that the effect of the cable was much larger than
the effect of leaning due to the high cable stiffness. The experiments suggest that it is possible,
but further experiments need to be performed in which the effect of the cable is removed in
order to confirm this. Another limitation is the measurement of the yaw angle, which is done by
just a gyroscope. The drift in the angle due to the integration of the signal can be minimized
by removing the bias of the measured signal, but it was observed that this bias has a rather
high dependence on temperature. During a day of testing, the drift would sometimes change
quite a bit when the room would heat up or cool down. The gyroscope does however have a
temperature sensor on board, so this effect can possibly be removed using this sensor in order
to obtain much more accurate measurements. The bias shift is not much of an issue for the
pitch and roll measurements, since this is filtered out by using the accelerometer data and the
complementary filter.
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7. Conclusion

The focus of this project was to answer the following research question: "Is it feasible to use
the Moment Exchange Unicycle Robot as a delivery drone?" To investigate this, first a literature
research was performed, in which it was found that two main questions which should still be
answered in order to answer the research question are: "Can the MEUR be used to carry various
loads of unknown weights?" and "Can the MEUR be used to drive over sloped surfaces of unknown
slope and orientation?"
To answer these questions, first the existing prototype was evaluated, a new sensor set-up

was created and side wheels were added in order to allow for easy testing. The controller types
which were found to be working in literature were then compared using simulations and it was
found that the sliding mode control structure gave the best performance for both the lateral
and longitudinal direction. These controllers were therefore implemented and tuned, showing
that they are able to stabilize the actual unicycle robot. Next the performance of the unicycle
for tracking a reference was tested and it was found that the unicycle gave better tracking
performance compared to the results found in literature.
To answer the research question, experiments were then performed by carrying additional

loads and driving over sloped surfaces. The unicycle showed to be able to carry additional loads
of up to 0.8 kg and could drive over surfaces with a slope in the longitudinal direction of up to
12°. For the lateral direction also a maximum slope of 12° could be handled.
It can thus be concluded that the unicycle is able to stabilize itself, track a reference, carry

additional loads and can drive over sloped surfaces. To actually be able to implement it as a
delivery drone, the robot should still be made wireless and steering should be added, but it
has already been shown in literature that by adding an additional actuator and reaction wheel,
active steering can be obtained, so it can be concluded that it is definitely possible to use the
Moment Exchange Unicycle Robot as a deliver drone!
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8. Recommendations

The performed experiments have shown that the Moment Exchange Unicycle Robot is able to
stabilize itself, track a reference, carry additional loads and drive over uncertain surfaces with
various slopes. It is therefore definitely feasible to use it as a delivery drone, but to actually be
able to implement it as such, a few things should still be improved.
First of all, the yaw angle measurement can be improved. This angle is currently measured

by just a gyroscope, of which the bias needs to be removed in order to prevent drift. Since this
bias depends on the temperature, it is difficult to remove it. For the pith and roll angles the
accelerometer data and a complementary filter are used for this, but for the yaw angle this is not
possible. Usually a magnetometer is used instead, but this is not possible inside, since buildings
distort the magnetic field of the earth. One way in which the measurement can probably be
improved is by compensating for the bias shift by using the temperature sensor present on the
gyroscope.
To improve the stability of the unicycle, the sensor noise should be reduced. Especially in

the longitudinal direction the sensor noise causes vibrations in the response of the system. This
noise can possibly be reduced by tuning the on-board filter better by using a different capacitor.
Otherwise, sensors with less sensitivity to noise should be used. Next to that, the stability can
be further improved by decoupling the system, for example by using the mass matrix, removing
the coupling effects which cause instability for larger deviations from the equilibrium position.
The side wheels currently used for preventing the robot from falling over during the exper-

iments should probably also be replaced by a better way of preventing damage when falling
over. The side wheels were designed for tuning the controllers of the lateral and longitudinal
direction individually, but when tracking a reference or driving over sloped surfaces, they are
not ideal. They limit the maximum angle of the surfaces over which can be driven and when
having to accelerate quickly for a certain reference, they could sometimes hit the ground. Since
stability is already obtained and the controllers have been tuned properly, they can probably be
replaced by a different protection mechanism which only prevents damage in case the unicycle
falls over, but does not limit its motion. This could for example be done by creating some kind
of (circular) bumper around the unicycle which would be the only part hitting the ground in
case the unicycle might fall over.
Next, the unicycle should also be made wireless. The cable which is currently used to connect

it to the computer running the control software is rather stiff and showed quite some influence
on the stability and yaw angle of the robot. The cable can be removed by either using an on-
board controller or by using a wireless connection between the robot and a computer running
the control software. In order to ensure performance, the wireless system should be able to send
sufficient data in a short enough time in order to make sure that the controllers can perform
their task accurate and fast enough for the unicycle to not loose performance. The wireless
solution will probably add some additional weight to the unicycle, but as the experiments have
shown, this should not give an issue as long as this weight is not too high. Heavier solutions are
probably also not a big problem, but in that case the controllers need to be tuned again and it
should be investigated if the reaction wheel can still deliver sufficient torque, since otherwise a
heavier reaction wheel might be desirable.
Finally, a means of steering the unicycle robot should still be implemented. Some experiments

were already performed looking in the possibility of steering by leaning the unicycle, but due to
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the cable the results were inconsistent. When the robot is made wireless, additional experiments
need to be performed in order to test the feasibility of steering the unicycle this way. In case
this is not possible, an additional actuator and reaction wheel (or turntable) can be added in
order to perform the steering instead.
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A. Design Parameters

In the parameters below the back EMF max speed is the speed after which the back EMF will
start to affect the current input into the motor, as calculated by Dannenberg [5]. Due to this
the output torque of the motors will be lower than specified and at the maximum continuous
speed it will actually completely counteract the input current and the motor can no longer de-
liver additional torque to the system (in that direction). The specifications of the driving of
the reaction wheel, taking into account the limits of the motor [35] and the transmission [36] are:

Transmission ratio: 49/4
Torque constant motor: 70.5 mNm/A

Max continuous torque motor: 368 mNm
Stall torque motor: 1837 mNm

Max continuous current: 5.22 A
Stall current: 25.5 A

No load motor speed: 3190 rpm
Max cont. motor speed: 2590 rpm

Max cont. reaction wheel speed: 211 rpm
Max reaction wheel speed (Back EMF): 158 rpm

And the same specification for the motor [37] and transmission of the drive wheel are:

Transmission ratio: 60/25
Torque constant motor: 217 mNm/A

Max continuous torque motor: 533 mNm
Stall torque motor: 4460 mNm

Max continuous current: 2.27 A
Stall current: 21.1 A

No load motor speed: 2080 rpm
Max cont. motor speed: 1610 rpm

Max cont. drive wheel speed: 670 rpm
Max drive wheel speed (Back EMF): 122 rpm

The mechanical parameters of the unicycle are approximately:

Mass drive wheel (m3): 0.115 kg
Mass reaction wheel (m2): 1.5 kg

Mass frame (incl. electronics): 5.5 kg
Inertia drive wheel (J3): 0.0001 kgm2

Inertia reaction wheel (J2): 0.017 kgm2

Inertia frame (lateral, J1): 0.086 kgm2

Inertia frame (longitudinal, J4): 0.122 kgm2

Radius drive wheel (r): 0.05 m
Height reaction wheel (L2): 0.316 m (+0.05 m (r))

Height CoM (without reaction wheel, L1): 0.18 m (+0.05 m (r))
Height CoM (with reaction wheel, L4): 0.21 m (+0.05 m (r))
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B. Wiring Schematic

The unicycle is driven by two Maxon EC 90 flat motors [35, 37], which in turn are powered by
two ESCON 50/5 motor controllers [38]. The unicycle is controlled using Simulink Real-Time
R2015B [39] using a sampling time of 0.001 seconds. To interface with the computer the National
Instruments BNC-2110 connector block [40] is used in combination with the National Instru-
ments PCI-6221 interface board [41]. To power the motors and motor controllers a 22.2V LiPo
battery [42] is used. To measure the orientation of the robot, an analog triaxial accelerometer
(EVAL-ADXL327Z [30]) and three analog gyroscopes (EVAL-ADXRS623 [29]) are used.
The wiring schematic of the moment exchange unicycle robot can be seen in figure B.1. The

control signals are send from the analog output ports of the connector block to the analog input
ports of the motor controllers. To enable the motors a digital signal is send from the connector
block to the motor controllers. The motor controllers use the hall sensors and the encoders
to control the motor. The encoder signals are connected to the connector block according to
the specifications of the National Instruments PCI-6221 Incremental Encoder Simulink block
in order to measure the wheel rotations. The digital grounds are also connected to the con-
nector block to make sure that the connector block and the motor controllers have a common
ground. The 5V output ports of the motor controllers are used to power the gyroscopes and the
accelerometer. Since the accelerometer has a maximum input voltage of 3.6V, the 5V from the
motor controller is led through three diodes to step the voltage down to about 3.2V. Finally, the
measurement signals from the sensors are connected to the analog input ports of the connector
block.
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Figure B.1.: Wiring schematic.

42



C. Simulink Real-Time

The moment exchange unicycle robot is controlled using Simulink Real-Time from Matlab
R2015B [39], with a sampling frequency of 1000 Hz. The main Simulink diagram can be seen
in figure C.1, which consists of four subsystems. The first subsystem ’Encoders’ is used to read
out the encoders and determine the angle, angular velocity and angular acceleration of the drive
and reaction wheel. The second subsystem ’Sensor block’ is used to read out the signals from
the gyroscopes and accelerometer and use these to determine the roll, pitch and yaw angles and
their derivatives. The third subsystem ’CONTROL’ contains the controllers which compute
the required inputs into the system from the angles and angular velocities. Finally, the fourth
subsystem ’SYSTEM’ is used to convert the control inputs (torques) into the required motor
currents and feed these into the actual robot.

Figure C.1.: Main Simulink Real-Time diagram.

C.1. Encoders Subsystem
The Simulink diagram of the ’Encoders’ subsystem can be seen in figure C.2. On the far left
side of the diagram the encoders of the reaction and drive wheel motors are read out, after
which their signals are converted into the angles of the reaction and drive wheel (in degrees).
On the top these signals are named and then linked to the main diagram using an output port.
The drive wheel angle and reference (which is obtained from the ’CONTROL’ subsystem via
the main diagram) are then converted to distances in meters and these signals are shown during
operation using a target scope. On the bottom the first and second derivatives of the angles are
taken using a third-order state variable filter to obtain the angular velocities and accelerations,
after which these signals are also named and linked to the main diagram using output ports.
The angular velocities of the wheels are also shown during operation using a target scope.
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Figure C.2.: Simulink Real-Time diagram of the ’Encoders’ subsystem.

C.2. Sensor Block Subsystem
The Simulink diagram of the ’Sensor block’ subsystem can be seen in figure C.3. On the far
left side of the diagram the output signals from the sensors are read using the analog input
block. These signals are then converted into the accelerations and angular velocities measured
by the sensors using their sensitivity and calibration values. To calculate the roll and pitch
angles, the formulas derived in chapter 3 are used, for which also the acceleration of the drive
wheel is used, obtained from the ’Encoders’ subsystem via the main diagram. The yaw angle
is simply obtained by integrating the gyroscope signal, keeping in mind that the bias changed
with temperature and therefore can cause a certain drift when not calibrated properly. The
three angles are shown during operation using a target scope. The derivative of the roll angle is
obtained using a derivative block in combination with a low pass filter and the derivative of the
pitch angle is obtained using the gyroscope signal, filtered by a high pass and low pass filter,
since this gave better performance than using a derivative block in this case. Finally, the angles
and angular velocities of the pitch and roll are linked to the main diagram using output ports.

Figure C.3.: Simulink Real-Time diagram of the ’Sensor block’ subsystem.
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C.4. Motor Input Subsystem

C.3. Control Subsystem

The Simulink diagram of the ’CONTROL’ subsystem can be seen in figure C.4. On the top of
the diagram the lateral control system can be seen. The angles calculated in the ’Encoders’ and
’Sensor block’ subsystems are obtained from the main diagram and used to compute the required
torques to control the unicycle. As can be seen, the RW speed control uses the output torque
of the SMC to adjust for the offset in roll angle. On the bottom of the diagram the longitudinal
control can be seen. The sliding mode controller stabilizes the pitch angle, while the PID
controller uses the angle and speed (for derivative action) of the drive wheel to compensate for
any offset in the angle measurement. The reference signal is used to update the error in drive
wheel angle, making the controllers generate the torques required to follow this reference. More
details about the controllers can be found in chapter 4.

Figure C.4.: Simulink Real-Time diagram of the ’CONTROL’ subsystem.

C.4. Motor Input Subsystem

The Simulink diagram of the ’SYSTEM’ subsystem can be seen in figure C.5. The required
torques to control the unicycle calculated in the ’CONTROL’ subsystem are obtained from the
main diagram and converted into the currents which should be fed into the motors to obtain
these torques. A saturation block is used in both cases to prevent feeding in higher values
than the maximum specifications of the motors. A step is used to enable the motors after five
seconds of runtime, giving the operator the time to start the experiment and release the unicycle
properly as well as giving the filters used for the angles time to settle. The input currents are
shown during operation using a target scope and fed to the unicycle using the analog output
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block. The gains just in front of the analog output block can be used to turn off the current
signals going to the motors, which can be used to run the lateral and longitudinal controllers
individually or test the sensors without the motors running.

Figure C.5.: Simulink Real-Time diagram of the ’SYSTEM’ subsystem.
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D. Control Methods

Usually a feedback control loop is used to make sure a certain system variable will be equal to
a desired setpoint or reference. For this the system variable will need to be measured, either
directly or indirectly, and a control element, like an actuator, should be present. The control
loop will then calculate the input for the control element required for the system to follow the
reference. The general schematic of a feedback control loop can be seen in figure D.1.
Many different control methods exist, which each use a different approach to convert the

measured system variable(s) into input signals for the actuators of the system. For the unicycle
robot a couple of these methods will be investigated and compared in chapter 4 in order to find
out which one will give the best performance. These methods will be introduced in this chapter.

Figure D.1.: General feedback control loop. [43]

D.1. Stability

In general, an equilibrium point of a system is a stable point in case that when starting close
enough to the point, the system will always remain arbitrarily close to it. For an asymptomati-
cally stable equilibrium point the system will also always move towards the point.

The stability of a system can be determined by looking at the response of the system to its
initial conditions without any additional inputs, its so called natural response. The natural
response of a linear single-input and single-output (SISO) system to a set of initial conditions
is described by:

y =
n∑
i=1

Cie
pit (D.1)

Where the constants Ci are determined from the given set of initial conditions and the exponents
pi are the poles of the system. For positive poles the response will grow exponentially, while for
negative poles it will decay exponentially, as shown in figure D.2.
In general a controller is added to a system because it is not stable by itself. The stability

of the controlled system should then be determined, which can be done by using the Nyquist
stability criterion, which says: "When the Nyquist plot of G(s) encircles the point −1 as many
times in counter-clockwise direction as there are unstable poles in G(s), then the closed loop
transfer function G(s)

1+G(s) will be stable."
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Figure D.2.: General shape of the components of the natural response of a system depending on
the location of its poles. [44]

D.2. PD & PID
PD and PID controllers are widely used due to their simplicity and effectiveness. They consist
of a Proportional action, a Derivative action and in case of the PID controller also of an Integral
action. Each of these actions use the error value, which is the difference between the setpoint
and the measured value. The proportional action reacts directly on the error signal and feeds an
input into the system directly proportional to the error. Proportional action alone is however
usually not enough to stabilize a system at the required setpoint within the required time,
since it does not take into account the rate of change of the error. This will cause the system
to overshoot once the setpoint is reached, making it oscillate around the desired value. The
damping present in the system will eventually make it settle at the setpoint, but this could take
quite some time. To make the controlled system settle much faster, artificial damping can be
used in the controller, which is done by the derivative action. For this the derivative of the error
is used to adapt the input signal and dampen the response of the controlled system. Due to
certain system dynamics, there might still be a steady state error present in the system when
only the proportional and derivative actions are used. In those cases integral action can be
added to compensate for this, which uses the integrated error signal for this. Since taking the
derivative of the error might cause amplification of noise, a low-pass filter can be added to the
controller in order to prevent it from responding to this noise too much.
The proportional, derivative and integral action of the PD and PID controller simply apply

a gain on the error signal, its derivative and its integral value. Since most of the noise will be
present in the derivative action, the low-pass filter can be added to this part of the controller,
giving the following equation:

C(s) = Kp + Ki

s
+ Kds

sτ + 1 (D.2)

The response of the controlled system can be adjusted by tuning the controller constants Kp,
Ki and Kd and the time constant τ of the low-pass filter. A simple way of tuning the controller
is by using a heuristic approach, using a systematic trial and error method to first find a good
value for the proportional gain, then find a derivative gain which gives good performance and
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D.3. Sliding Mode Control

finally, if necessary, find an integral gain which gives good performance. What can be understood
as good performance often depends on the type of application and usually a trade-off has to be
made between fast tracking and the amount of overshoot. Under-damped systems will still have
overshoot and might oscillate a few times before settling at the reference value but do respond
relatively fast, while over-damped systems will take longer to reach the reference value but will
not have any overshoot. A so-called critically damped system will have the fastest response
for which there will be no overshoot. In case of the unicycle, a fast response is very important
to prevent it from falling over, so an under-damped controller will most likely give the best
performance.
Rather than using the heuristic method, the PD and PID controller can also be tuned by

frequency domain loop-shaping using the method described in [33]. This approach uses the
serial form of the PID controller, which has the following equation:

C(s) = kp
(sτz + 1)(sτi + 1)
sτi(sτp + 1) (D.3)

In here the parameters kp, τz, τi and τp are uniquely related to the controller constants Kp, Ki,
Kd and τ of the parallel form shown in equation (D.2). Each of these parameters can be tuned
using a desired cross-over frequency ωc with the equations derived in [33]:

τz =

√
1
α

ωc
, τi = βτz (D.4)

τp = 1
ωc
√

1
α

, kp = meqω
2
c√

1
α

(D.5)

In these equations, α determines the amount of phase-lead and is usually set between 0.1 and
0.3. Since the start of the derivative action (determined by the transfer-zero in 1

τz
) should be

higher in frequency than the stop of the integral action (determined by the transfer-zero in 1
τi
),

it should be the case that β ≥ 1. A value of α = 0.1 has been chosen, which usually gives
good performance, and to make sure the integral action does not deteriorate the phase-advance,
it was chosen to use β = 2. The PID controller then only depends on the desired cross-over
frequency ωc. To tune a PD instead of a PID controller, the same formulas can be used to
tune the parameters and the controller equation is simplified by leaving out the integral action:
C(s) = kp

sτz+1
sτp+1 .

D.3. Sliding Mode Control
When designing a controller for a system, there will always be a difference between the actual
system and its mathematical model, since assumptions have to be made, parameters are esti-
mated and disturbances cannot be taken into account. Designing a control law that provides
the desired performance despite these uncertainties and disturbances is a very challenging task
and has led to the interest in developing so-called robust control methods. One approach to
such a robust controller is the so-called sliding mode control technique [45, 46].
Consider a system of which the state variables x′1(t) and x′2(t) need to be controlled to an

equilibrium point located in the origin. First a new variable is introduced: σ = x′2 + cx′1. The
system dynamics will consist of a known part and an unknown part and in general will look
something like:

σ̇ = c1x
′
2 + c2x

′
2 + f(x′1, x′2, t) + u(t), σ(0) = σ0 (D.6)
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The unknown part of the system dynamics typically only drives the states to a bounded domain:
f(x′1, x′2, t) ≤ D > 0. To achieve asymptotic convergence of the state variables to the equilibrium
point, the variable σ needs to be controlled to zero in finite time using the system input u. This
can be achieved by using Lyapunov’s stability criterion, which states: "In case there exists a
differentiable positive definite function V(x) such that V̇ (x) < 0 for x 6= 0 then the origin is
asymptotically stable." For a candidate Lyapunov function V (σ) = 1

2σ
2, asymptotic stability

will therefore be obtained if V̇ (σ) < 0 for σ 6= 0.
The derivative of the Lyapunov function is given by:

V̇ (σ) = σ̇σ = σ(c1x
′
1 + c2x

′
2 + f(x′1, x′2, t) + u(t)) (D.7)

Assuming u(t) = −c1x
′
1 − c2x

′
2 + u′ and taking into account the bounds of the unknown system

dynamics, the following is obtained:

V̇ (σ) = σ(f(x′1, x′2, t) + u′) = σf(x′1, x′2, t) + σu′ ≤ |σ|D + σu′ (D.8)

Selecting u′ = −ρ sign(σ), with ρ > 0, and substituting this into the equation, the following is
obtained (σ sign(σ) = |σ|):

V̇ (σ) ≤ |σ|D + |σ|ρ = −|σ|(ρ−D) (D.9)

When selecting a controller value ρ > D, the condition V̇ (σ) < 0 for σ 6= 0 is satisfied, so
asymptotic stability will be obtained.
In general the control input of a sliding mode controller will therefore consist of two parts,

a discontinuous part (u′) and a so-called equivalent part: u(t) = u′ + ueq. The design of the
controller therefore exists of three parts, the design of the sliding surface (σ) and the design of
the discontinuous and equivalent control inputs.

D.3.1. Sliding Surface Design
The first step in designing a sliding mode controller is to design the sliding surface (σ). This
is also known as the switching function, since it determines the direction of the discontinuous
control and therefore switches the output of this part of the controller. Conventionally, the
tracking error (e) is used and the sliding surface is defined as:

σ =
(
d

dt
+ ω

)k
e, ω > 0 (D.10)

In which ω can be an arbitrary positive number and k should be equal to rsys − 1, where rsys
is the relative degree of the system. In case of the unicycle, k = 1 and the sliding surface can
simply be defined as:

σ = ė+ ωe, ω > 0 (D.11)

As the equation shows, ω actually determines the slope of the sliding surface and therefore sets
the bandwidth of the error dynamics. On the sliding surface, for σ = 0 and e = yr − y, the
dynamics show that the system (y) will follow a reference (yr) as long as it stays on the sliding
surface:

0 = ė+ ωe

ẏ + ωy = ẏr + ωyr

y(s+ ω) = yr(s+ ω)
y = yr

(D.12)
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D.3.2. Discontinuous control input design
The standard discontinuous part of the control input is equal to: u′ = ρ sign(σ). After reaching
the sliding surface the system will however repeatedly cross the line σ = 0, so high frequency
switching will occur. This switching of the input signal is known as chattering and is often
undesirable. To prevent the chattering, a continuous estimation of the signum function can be
used instead. A few different functions can be used for this and one of the most common is
using the sigmoid function:

u′ = ρ
σ

|σ|+ ε
(D.13)

In which ε is a small positive number which should be tuned according to the application, since
a higher value will give a smoother signal, but will also make the controller respond slower.

D.3.3. Equivalent control input design
As shown in equation (D.12), the system will follow a reference as long as it stays on the sliding
surface. To keep the system on the surface and obtain ideal sliding, the equivalent control is
used. Neglecting the disturbances and the discontinuous control input used to compensate for
these, the system dynamics will be equal to:

ÿ = 1
mn

ueq (D.14)

In which mn is the moving mass. Knowing that ë = ÿr− ÿ, ideal sliding motion can be obtained
by using:

σ̇ = 0 = ë+ ωė = − 1
mn

ueq + ÿr + ωė → 1
mn

ueq = ÿr + ωė (D.15)

As can be seen, the equivalent control will consist of a feed-forward part and a derivative control
part. Since the unicycle will have to be stabilized in its equilibrium position rather than follow
a reference, the feed-forward part can be left out. To improve the response of the controller a
proportional part can be added, making the equivalent control equal to:

ueq = kpe+ kdė (D.16)

Since ω determines the bandwidth of the sliding dynamics, which can be expressed as: ω = ωc,
the proportional and derivative actions can be tuned using this value. When using kd = 2ω and
kp = ω2, the sliding dynamics become:

σ̇ = ë+ ωė = −ueq + ωė = −ω2e− 2ωė+ ωė (D.17)

Knowing that ωσ = ωė+ ω2e, the following differential equation is obtained and can be solved:

d

dt
|σ| = −ω|σ| (D.18)

|σ| = |σ(0)|e−ωt (D.19)

In here |σ(0)| represents the initial distance away from the sliding surface. The equations show
that using these parameters, the rate at which the sliding surface is reached is determined by
the parameter ω. The parameter ρ can therefore be as small as possible, depending on the
disturbances since it only has to compensate for these, while the equivalent control brings the
system to the sliding surface and ensures that ideal sliding is obtained.
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Figure D.3.: State feedback loop.

D.4. State-feedback Control - LQR

A state-feedback controller [47] is a special type of feedback controller which uses the states of a
system to control its output. The general control loop with a state-feedback controller K can be
seen in figure D.3. Using this control loop, the state space equation of the system will become:

ẋ = (A−BK)x+Bv (D.20)

For stabilization, the setpoint v = 0 and the complete dynamics of the system are described
by the eigenvalues of (A+BK). To be able to apply state-feedback control, the system should
either be completely reachable or stabilizable, meaning that the eigenvalues in the non-reachable
sub-space should be stable since these cannot be changed. To find the control matrix K a few
different methods can be used.
The linear-quadratic regulator (LQR) is a special algorithm which automatically finds the

optimal state-feedback controller with respect to the criterion being applied. For a continuous
system this criterion is defined as:

J = xT (tf )Sfx(tf ) +
∫ tf

t0

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt (D.21)

In which Sf = STf ≥ 0, Q(t) = QT (t) > 0 and R(t) = RT (t) > 0. Q and R represent
the weighting functions on the states of the system and control inputs respectively. To find
the optimal state-feedback control law, the solution for u(t) has to be found such that J is
minimized. Using Pontryagin’s Principle, the solution can be found to be equal to [48]:

u(t) = −R−1(t)BT (t)S(t)x(t) = K(t)x(t), K(t) = −R−1BT (t)S(t) (D.22)

To find S the differential algebraic Riccati equation can be used:

Ṡ + SA+ATS − SBR−1BTS +Q = 0, Sf = S(tf ) (D.23)

In Matlab the function care can be used to automatically find S and the closed-loop eigenvalues
of the system by inputting the state-space and weighting matrices: [S, CLeig] = care(A,B,Q,R).
The stability of the controlled system can be checked by looking at these closed-loop eigenvalues,
as long as these are all negative the system will be stable and will behave as shown in the left
part of figure D.2.
For non-zero setpoints, the control loop needs to be adapted. If it is known what the state

values should be in order to obtain the desired output of the system, like is the case for the
unicycle, a setpoint (xp) can be subtracted from the individual states as shown in figure D.4.
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Figure D.4.: State feedback loop with a setpoint matrix xp for the system states.

D.5. H∞ Loop-shaping
For the H∞ loop-shaping controller, the design procedure proposed by [49] was used, similarly
as done by [15]. This method uses weighting functions W1 and W2, which add a weight on the
control and error signals of the plant dynamics respectively. A controller K∞ is designed and the
weighting can be added to the controller instead of the plant without changing the closed-loop
behaviour, as shown in figure D.5, such that the controller will become: K = W1K∞W2.

(a) Weighted plant. (b) Weighted controller.

Figure D.5.: Control loop including weighting functions W1 and W2. [49]

The Matlab function augw can be used to convert the system and its weight functions into
an augmented plant: Gs = augw(G,W1,W2, 1). To synthesize the H∞ controller K∞ for the
weighted system Gs, the Matlab function hinfsyn can be used: [K∞, CL] = hinfsyn(Gs), which
also gives the closed-loop transfer function CL. This function computes the controller via the
γ-iteration, computing the minimal cost function for which the closed-loop system minimizes the
H∞ norm. The weighting functions can then be used to obtain the controller: K = W1K∞W2.

To find the best values for the weighting matrices, a heuristic method can be used, testing
which values give the best results. To check the stability of the controller, the function hinfsyn
also outputs the closed-loop system, which will be stable when all its poles are located in the
negative plane as shown in figure D.2.

D.6. Cascaded Control
A system which has a single input, but has multiple outputs that should be controlled, is called
an underactuated system. For such systems, a cascaded control structure can be used, which
usually combines a fast inner loop with a slow outer loop. The inner loop is usually used for
stability while the outer loop is used for tracking. The general schematic of the cascaded control
structure can be seen in figure D.6. In here the slave controller is the inner loop, which in case
of the unicycle will stabilize the pitch and roll angles, while the master controller is the outer
loop, which updates the reference signal of the stability controller in order to control a second
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state variable. The outer loop can thus be used to compensate for any offsets in the angle
measurements by updating the reference angle at which the unicycle will settle and can also be
used to make the unicycle follow a reference by tilting it forwards or backwards such that the
drive wheel will start moving the unicycle accordingly.

Figure D.6.: Cascaded control structure. [50]
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E. Mathematical Model
Assuming that the unicycle will remain close to its upright position and only small angles are
obtained, using the axis definitions as shown in figure 2.3 on page 3, the lateral and longitudinal
direction can be considered as uncoupled systems, similarly as done in literature [4, 15, 24].
When also assuming rigid bodies, no slip occurring and no friction present in the system, the
mathematical models become relatively simple. The neglected effects can be considered as
disturbances to the system and be dealt with accordingly.

E.1. Lateral Model
For the lateral system, the driving wheel can be considered as part of the frame, such that the
system is essentially an inverted pendulum with a reaction wheel on top, giving the schematics
shown in figure E.1.

Figure E.1.: Schematics showing the variables and parameters of the lateral system.

E.1.1. Kinematics
The first step in finding the equations of motion is identifying the independent (qi) and dependent
coordinates (qd) and expressing the dependent coordinates and their derivatives in terms of the
independent coordinates (using the positions at the center of mass of the bodies):

qi = {θr, φrw} (E.1)
qd = {y1, z1, y2, z2} (E.2)

y1 = −L1 sin(θr), ẏ1 = −L1θ̇r cos(θr) (E.3)
z1 = L1 cos(θr), ż1 = −L1θ̇r sin(θr) (E.4)
y2 = −L2 sin(θr), ẏ2 = −L2θ̇r cos(θr) (E.5)
z2 = L2 cos(θr), ż2 = −L2θ̇r sin(θr) (E.6)
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E.1.2. Kinetics

To derive the equations of motion, Lagrange’s equation is used assuming rigid bodies and no
damping and friction present:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Qi (E.7)

In here Ti is the kinetic energy (T = 1
2mv

2 + 1
2Jω

2), Vi is the potential energy (V = mgz) and
Qi is the generalized force of the ith degree of freedom. For the lateral direction of the unicycle
these become:

T1 = 1
2m1(ẏ2

1 + ż2
1) + 1

2J1θ̇
2
r = 1

2(m1L
2
1 + J1)θ̇2

r (E.8)

T2 = 1
2m2(ẏ2

2 + ż2
2) + 1

2J2(θ̇r + φ̇rw)2 = 1
2m2L

2
2θ̇

2
r + 1

2J2(θ̇2
r + φ̇2

rw + 2θ̇rφ̇rw) (E.9)

V1 = m1gz1 = m1gL1 cos(θr) (E.10)
V2 = m2gz2 = m2gL2 cos(θr) (E.11)
Q = δ1Q1 + δ2Q2 = −τlatδθr + τlatδ(θr + φrw)→ Q1 = 0, Q2 = τlat (E.12)

Next the partial derivatives of Lagrange’s equation can be calculated:

d

dt

(
∂T

∂θ̇r

)
= (m1L

2
1 + J1 +m2L

2
2 + J2)θ̈r + J2φ̈rw (E.13)

d

dt

(
∂T

∂φ̇rw

)
= J2θ̈r + J2φ̈rw (E.14)

∂V

∂θr
= −(m1L1 +m2L2)g sin(θr) (E.15)

∂V

∂φrw
= ∂T

∂θr
= ∂T

∂φrw
= 0 (E.16)

With all terms of Lagrange’s equation known, the equation can be rewritten in order to obtain
the equations of motion:[

m1L
2
1 + J1 +m2L

2
2 + J2 J2

J2 J2

] [
θ̈r
φ̈rw

]
+
[
−(m1L1 +m2L2)g sin(θr)

0

]
=
[

0
τlat

]
(E.17)

The coupling in the equations of motion can be removed by rewriting the bottom line and
substituting it into the equations of motion:

J2θ̈r + J2φ̈rw = τlat → φ̈rw = τlat − J2θ̈r
J2

= 1
J2
τlat − θ̈r (E.18)

(m1L
2
1 + J1 +m2L

2
2 + J2)θ̈r + J2(τlat

J2
− θ̈r)− (m1L1 +m2L2)g sin(θr) = 0 (E.19)

θ̈r = − 1
Jeq,lat

τlat + (m1L1 +m2L2)g
Jeq,lat

sin(θr) (E.20)

φ̈rw = ( 1
J2

+ 1
Jeq,lat

)τlat −
(m1L1 +m2L2)g

Jeq,lat
sin(θr) (E.21)

Jeq,lat = m1L
2
1 +m2L

2
2 + J1 (E.22)
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E.1.3. Linearisation

The equations of motion can be linearised around the upright position using the small angle
approximation, due to which higher order terms can be neglected and the trigonometric functions
can be simplified using cos(θ) ≈ 1 and sin(θ) ≈ θ. Choosing both angles as the outputs of the
system, the state space matrix then becomes:


θ̇r
θ̈r
φ̇rw
φ̈rw

 =


0 1 0 0

(m1L1+m2L2)g
Jeq,lat

0 0 0
0 0 0 1

− (m1L1+m2L2)g
Jeq,lat

0 0 0



θr
θ̇r
φrw
φ̇rw

+


0

− 1
Jeq,lat

0
1
J2

+ 1
Jeq,lat

 τlat (E.23)

y =
[
1 0 0 0
0 0 1 0

]
θr
θ̇r
φrw
φ̇rw

 (E.24)

E.2. Longitudinal Model

For the longitudinal system, the reaction wheel can be considered as part of the frame, such
that the system is essentially a wheeled inverted pendulum, giving the schematics shown in
figure E.2.

Figure E.2.: Schematics showing the variables and parameters of the longitudinal system.

E.2.1. Kinematics

The first step in finding the equations of motion is identifying the independent (qi) and dependent
coordinates (qd) and expressing the dependent coordinates and their derivatives in terms of the
independent coordinates (using the positions at the center of mass of the bodies):

qi = {θp, φdw} (E.25)
qd = {x3, z3, x4, z4} (E.26)
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x3 = −r(φdw + θp), ẋ3 = −r(φ̇dw + θ̇p) (E.27)
z3 = r, ż3 = 0 (E.28)
x4 = −r(φdw + θp)− L4 sin(θp), ẋ4 = −r(φ̇dw + θ̇p)− L4θ̇p cos(θp) (E.29)
z4 = r + L4 cos(θp), ż4 = −L4θ̇p sin(θp) (E.30)

E.2.2. Kinetics
To derive the equations of motion, Lagrange’s equation is used assuming rigid bodies and no
damping and friction present:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Qi (E.31)

In here Ti is the kinetic energy (T = 1
2mv

2 + 1
2Jω

2), Vi is the potential energy (V = mgz) and
Qi is the generalized force of the ith degree of freedom. For the longitudinal direction of the
unicycle these become:

T3 = 1
2m3ẋ

2
3 + 1

2J3(φ̇dw + θ̇p)2 = 1
2(m3r

2 + J3)(φ̇2
dw + θ̇2

p + 2φ̇dwθ̇p) (E.32)

T4 = 1
2m4(ẋ2

4 + ż2
4) + 1

2J4θ̇
2
p = (E.33)

1
2m4

(
r2(φ̇dw + θ̇p)2 + L2

4θ̇
2
p + 2rL4(φ̇dw + θ̇p)θ̇p cos(θp)

)
+ 1

2J4θ̇
2
p

V3 = m3gr, V4 = m4gr +m4gL4 cos(θp) (E.34)
Q = δ1Q1 + δ2Q2 = τlonδ(φdw + θp)− τlonδθp → Q3 = τlon, Q4 = 0 (E.35)

Next the partial derivatives of Lagrange’s equation can be calculated:

d

dt

(
∂T

∂φ̇dw

)
= (m3r

2 + J3)φ̈dw + (m3r
2 + J3)θ̈p (E.36)

+m4r
2φ̈dw +m4r

2θ̈p +m4rL4θ̈p cos(θp)−m4rL4θ̇
2
p sin(θp)

d

dt

(
∂T

∂θ̇p

)
= (m3r

2 + J3)φ̈dw + (m3r
2 + J3)θ̈p +m4r

2φ̈dw + (m4r
2 +m4L

2
4 + J4)θ̈p (E.37)

+m4rL4φ̈dw cos(θp)−m4rL4φ̇dwθ̇p sin(θp) + 2m4rL4θ̈p cos(θp)− 2m4rL4θ̇
2
p sin(θp)

∂V

∂θp
= −m4gL4 sin(θp) (E.38)

∂T

∂θp
= −m4rL4(φ̇dw + θ̇p)θ̇p sin(θp) (E.39)

∂V

∂φdw
= ∂T

∂φdw
= 0 (E.40)

With all terms of Lagrange’s equation known, the equation can be rewritten in order to obtain
the equations of motion:[ (

m3r
2 +m4r

2 + J3
) (

m3r
2 +m4r

2 + J3 +m4rL4 cos(θp)
)(

m3r
2 +m4r

2 + J3 +m4rL4 cos(θp)
) (

m3r
2 +m4r

2 +m4L
2
4 + J3 + J4 + 2m4rL4 cos(θp)

)] [φ̈dw
θ̈p

]

+
[

−m4rL4θ̇
2
p sin(θp)

−m4rL4θ̇
2
p sin(θp)−m4gL4 sin(θp)

]
=
[
τlon
0

]
(E.41)
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The coupling in the equations of motion can be removed by rewriting the top line and substi-
tuting it into the equations of motion:(

m3r
2 +m4r

2 + J3
)
φ̈dw +

(
m3r

2 +m4r
2 + J3 +m4rL4 cos(θp)

)
θ̈p −m4rL4θ̇

2
p sin(θp) = τlon (E.42)

→ φ̈dw = 1
m3r2 +m4r2 + J3

τlon −
m3r

2 +m4r
2 + J3 +m4rL4 cos(θp)

m3r2 +m4r2 + J3
θ̈p +

m4rL4θ̇
2
p sin(θp)

m3r2 +m4r2 + J3

Jeq,lon = m3r
2 +m4r

2 + J3 (E.43)

Jeq,lon +m4rL4 cos(θp)
Jeq,lon

τlon −
(Jeq,lon +m4rL4 cos(θp))2

Jeq,lon
θ̈p +

(Jeq,lon +m4rL4 cos(θp)m4rL4θ̇
2
p sin(θp)

Jeq,lon

+
(
Jeq,lon +m4L

2
4 + J4 + 2 ∗m4rL4 cos(θp)

)
θ̈p −m4rL4θ̇

2
p sin(θp)−m4gL4 sin(θp) = 0 (E.44)

This equation can be rewritten into the form θ̈p = ... and can then be plugged into the other
equation to obtain a similar equation for φdw. These equations do however contain a lot of
different terms and therefore offer little overview, so only the simpler linearised versions will be
shown in the next section.

E.2.3. Linearisation
The equations of motion can be linearised around the upright position using the small angle
approximation, due to which higher order terms can be neglected and the trigonometric functions
can be simplified using cos(θ) ≈ 1 and sin(θ) ≈ θ. Choosing both angles as the outputs of the
system, the state space matrix then becomes:

Jeq,lon2 = Jeq,lon +m4L
2
4 + J4 + 2m4rL4 −

(Jeq,lon +m4rL4)2

Jeq,lon
(E.45)


θ̇p
θ̈p
φ̇dw
φ̈dw

 =


0 1 0 0

m4gL4
Jeq,lon2

0 0 0
0 0 0 1

− (Jeq,lon+m4rL4)m4gL4
Jeq,lonJeq,lon2

0 0 0



θp
θ̇p
φdw
φ̇dw

+


0

−Jeq,lon+m4rL4
Jeq,lonJeq,lon2

0
(Jeq,lon+m4rL4)2

J2
eq,lon

Jeq,lon2
+ 1

Jeq,lon

 τlon (E.46)

y =
[
1 0 0 0
0 0 1 0

]
θp
θ̇p
φdw
φ̇dw

 (E.47)
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