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Summary

This thesis presents a study on a novel diagnostics method for use in dynamics based mainten-
ance. Structural Health Monitoring (SHM) is becoming an essential part of maintenance strategies.
The demand from the industry for better diagnostic tools is on the rise. A fast, non-contact and
non-destructive measurement device based on scanning laser vibrometry can be used for damage
detection methodologies. Early detection of damage, or deterioration of sti�ness, in operating
conditions is key in determining the expected remaining lifetime of the system.
Continuous Scanning Laser Doppler Vibrometry (CSLDV) measures the vibration response of a
component remotely, obtaining spatial and temporal information in seconds. It can be used as a
powerful and rapid approach to damage detection in operating conditions.
This thesis describes the development of a diagnostic tool using the output spectra of the CSLDV
method. The focus of the study lies on cantilever structures, where one end of a beam is clamped,
and the other end is subjected to an excitation force. A two dimensional numerical study is un-
dertaken, in which multiple cases of di�erent damage types and severities are simulated. The
frequency responses in a range up to 9000 Hz are investigated. The nodal responses of the scanned
line are obtained from the simulation and the output time signal of the CSLDV method is sim-
ulated. At every frequency a discrete Fast Fourier Transform (dFFT) of the time signal yields a
characteristic frequency spectrum. This spectrum consists of sidebands that carry spatial inform-
ation of the de�ection shape for that excitation frequency. The introduction of damage to the
system changes the strain energy distribution over the beam, altering the dynamic behaviour at
that speci�c frequency. Observing the dFFT spectrum at that frequency reveals that the sideband
amplitudes have changed for the damage case with respect to the Pristine case.
A damage indicator is de�ned to gauge the deviation in the frequency spectrum as a result of
the damage. The indicator should be robust, independent of the excitation force. The damage
criterion is calculated by assigning a percentage to the contribution of the spectral sidebands to the
summation of all the sidebands in that spectrum. This method is named the RASTAR method,
Relative Amplitude of the Sidebands to the Total Amplitude Reference. The indicator behaves as
expected; a more severe damage case yields a higher indicator value. The strain analysis suggested
that the anti-resonances might be more sensitive to the damage than the eigen-frequencies, this
is also seen in the numerical results. The de�ection shape of the anti-resonance seems to imply
an additional constraint that in�uences the strain energy distribution. Which in turn a�ects the
spectrum.
An experimental analysis was performed on an aluminium beam. Two damage severities were ap-
plied and compared to the pristine case. The experiments are conducted up to 1000 Hz to obtain
the highest signal-to-noise ratio. The general behaviour of the indicator is as expected; the larger
damage resulted in a higher indicator value. The RASTAR method was able to detect a damage
of 1x1x30 mm in a 400x10x30 mm beam.
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Samenvatting

Dit rapport presenteert een onderzoek naar een nieuwe methode voor diagnose voor gebruik in op
dynamica gebaseerd onderhoud. Structureel gezondheidsmonitoring (SHM) begint een essentieel
onderdeel te worden van nieuwe onderhoudsstrategieën. De vraag naar betere methoden voor dia-
gnose vanuit de industrie stijgt. Een snel, contactloos en niet-destructief meetapparaat gebaseed
op laser vibratiemeting kan toegepast worden in schade opsporingsmethodes. Vroege ontdekking
van schade, ook wel de achteruitgang van de stijfheid, in bedrijfsomstandigheden is belangrijk voor
het vaststellen van de verwachte levensduur van het systeem.
'Continuous Scanning Laser Doppler Vibrometry' (CSLDV) haalt in seconden de ruimte en tijd
informatie uit de trillingsreactie van een component op afstand. Het is een krachtige en snelle
aanpak voor het opsporen van schade in een component gedurende bedrijfsomstandigheden.
Dit rapport beschrijft de ontwikkeling van een diagnose gereedschap die gebruik maakt van de spec-
tra resulterend uit de CSLDV methode. De focus van het rapport ligt op ingeklemde constructies,
waar één uiteinde van de balk is ingeklemd en één uiteinde is onderworpen aan een excitatiekracht.
Een tweedimensionale numerieke studie is uitgevoerd, waarin meerdere verschillende dieptes en
soorten schaden zijn gesimuleerd. De trillingsreacties van frequenties tot 9000 Hz zijn onderzocht.
De beweging van de knooppunten in het model op de scanlijn zijn verzameld en het tijdssignaal
van de CSLDV methode is gesimuleerd. Een discrete snelle Fouriertransformatie (dFFT) van het
tijdssignaal resulteert in een karakteristiek frequentiespectrum voor elke frequentie. Dit spectrum
bestaat uit zogenaamde 'sidebands', deze dragen de ruimtelijke informatie over de trillingsvorm
voor die frequentie. Wanneer schade wordt geintroduceert aan het systeem veranderd de rek en-
ergie verdeling over de balk, wat het dynamisch gedrag voor deze speci�eke frequentie veranderd.
Het dFFT spectrum voor deze frequentie, met schade, is veranderd ten opzichte van deze frequentie
zonder schade.
Een schade criterium is gede�nieerd om de verandering in het frequentiespectrum door de intro-
ductie van schade te meten. Het criterium moet robuust zijn en onafhankelijk van de hoogte van de
excitatiekracht. Het criterium is berekend door de sidebands uit te drukken in een percentage van
de som van alle sidebands in dat spectrum. De methode heet de RASTAR methode, naar Relative
Amplitude of the Sidebands to the Total Amplitude Reference. Deze schade-indicator vertoont het
verwachte gedrag; een zwaardere schade levert een hogere waarde in de indicator op. De analyse
van het rek gedrag suggereerd dat de anti-resonantie gevoeliger is voor de schade dan de eigen-
frequentie. Dit blijkt ook uit de numerieke resultaten. De trillingsvorm van de anti-resonantie lijkt
een extra beperking op te leggen welke invloed heeft op de rek energieverdeling over de balk. Dit
heeft vervolgens e�ect op het spectrum.
Een experimentele analyse van een aluminium balk is uitgevoerd. Twee zwaartes van schade zijn
aangebracht op de balk en vergeleken met de meting van de nog intacte balk. De experimenten
zijn ondernomen tot 1000 Hz voor een zo hoog mogelijke signaal-ruis ratio. Het algemene gedrag
van criterium is zoals verwacht; de zwaardere schade resulteerde in een hogere waarde van de
schade-indicator. De RASTAR methode is in staat om een schade van 1x1x30 mm te detecteren
op een balk van 400x10x30 mm.
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Nomenclature

CSLDV Continuous Scanning Laser Doppler Vibrometry
dFFT discrete Fast Fourier Transform
DOF Degrees Of Freedom
FEA Finite Element Analysis
FEM Finite Element Method
FFT Fast Fourier Transform
FRF Frequency Response Function
LDV Laser Doppler Vibrometry
MAC Modal Assurance Criterion
MSE Mean Square Error
ODS Operational De�ection Shape
RASTAR Relative Amplitude of the Sidebands to the Total Amplitude Reference
SBA Sideband Amplitude
SHM Structural Health Monitoring
SLDV Scanning Laser Doppler Vibrometry

Damage Designations
D10L 10 Percent Longitudinal Damage case
D25L 25 Percent Longitudinal Damage case
D50L 50 Percent Longitudinal Damage case
D10T 10 Percent Transverse Damage case
D25T 25 Percent Transverse Damage case
D50T 50 Percent Transverse Damage case
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1 Introduction

A fundamental part of maintenance technology is monitoring the structural integrity of the system.
By doing so, the remaining life of a component in operating conditions can be accurately predicted.
Researchers and companies recognise the importance of maintenance by investing in research in
better diagnostic tools.
In recent years, interest surrounding extension of life of components has increased. In the past,
components where replaced upon failure, which resulted in much unexpected downtime. This
improved when components were replaced on a timed interval, for instance after every month. The
downside to this scheme is that it does not consider the actual operating hours of the system in
that time. If this knowledge would be included, even further improvement would be made to the
maintenance scheme. However, this approach still means that the full lifetime of the component
might not be reached, and replacement would not have been necessary yet. The solution lays in
monitoring the structural health of the system and applying a dynamic maintenance strategy based
on collected data. Such dynamic maintenance strategies present schemes that suggest component
replacement or repair based on its expected remaining lifetime. This will decrease downtime and
overall maintenance costs. To adequately set up such a scheme, the condition of the component
needs to be monitored. Structural Health Monitoring (SHM) focuses on detection of unhealthy
dynamic behaviour as damage occurs and propagates in the structure.
There are currently many di�erent methods available to perform SHM. The challenge is �nding
a method that can do this in operating conditions. Some current methods need components to
be isolated from the system and tested in a more sterile laboratory environment. Other methods
utilise sensors that can measure during operating conditions and can be attached to the component
in the design phase. When such contact sensors are not applicable, there are various non-contact
methods available. With the ever increasing capabilities of these measurement techniques, more
potential and robust diagnostic tools can be developed.
In this study, a diagnostic tool is developed to assess the dynamic behaviour of a vibrating beam.
The beam is clamped at one end and subjected to an excitation force at the free end. This simple
cantilever system represents a component in operating condition. When damage is applied to the
system, the dynamic behaviour changes. This di�erence caused by the damage is sought after
with the diagnostic method developed in this study. SHM applications require a non-destructive
diagnostic tool to assess the structural health of the system. The Continuous Scanning LDV

method is a very fast, non-destructive and non-contact measurement method. The output spectra
of this method are of interest for the development of a novel diagnostic tool that can be used for
SHM.

1.1 Goal of the study

Dynamics based maintenance is highly interesting for maintenance in the industry, who are con-
stantly looking for new and better diagnostic tools. The method presented in this paper is mainly
aimed at cantilever structures such as turbine blades for power generation but could easily be
extended to a much wider application �eld.
The goal of this study is to develop a diagnostic method based on scanning laser

vibrometry. This is achieved by performing the following sub tasks:

• The literature is studied on current measurement techniques and damage detection methods.

• The beam is modelled in the �nite element method to assess the dynamic behaviour and
response to damage.

• A strain analysis is done to reveal the sensitivity of the system to damage.

• Multiple indicators are de�ned and compared to �nd the most robust and sensitive method.

• Experiments are conducted for the validation of the method.

The result is a novel approach based on a continuously scanning non-contact device to determine
if a structure undergoes sti�ness degradation with respect to a known condition. This research
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did not aim at identifying the location of the damage, but instead aimed at quickly resolving the
health of the structure.

1.2 Outline of the study

The study is approached as follows. Section 2 of the paper will review the most relevant measure-
ment techniques to carry out diagnostics. The section explains the di�erence between the contact
and non-contact techniques when applied to SHM. Next, the theory behind the Continuous Scan-
ning Laser Doppler Vibrometry (CSLDV) methods is explained and the techniques that apply this
to the detection of structural degradation are presented.
In Section 3, a numerical study is undertaken to examine the e�ect on the dynamic behaviour as
a result of the structural degradation. A simple model is made in ANSYS and the CSLDV output
signal is simulated using Matlab. Several damage types and severities are applied and their impact
on the dynamic behaviour is assessed. A strain analysis is done to further assess the change in
dynamic behaviour by the applied damage. Robustness of the spectral analysis is achieved by
studying the strain energy �eld and to observe its changes depending on the excitation frequency.
The novelty of this research with respect to the past literature is the focus on the spectral sidebands
of the CSLDV output signal, which carry both spatial and temporal information on the state of the
structure. The condition can be derived directly from the spectra, without resolving the de�ection
shape, as is commonly done in past research. The model is kept two dimensional, which severely
limits the amount of spatial information that can be measured. This is a fundamental case study
in which the behaviour is limited but predictable.
Section 4 presents the results of the simulations. The results are subjected to multiple damage
indicators in pursuit of the most robust and sensitive indicator. The indicator yielding the most
satisfying results is applied to several damage cases to assess its performance. Noise is added to the
simulated LDV output signal to further study the response and robustness of the selected damage
indicator.
The simulation of the �nal damage indicator is validated with an experimental analysis in Section
5. The results of the experiments are compared to the simulation, where only the transverse dam-
age type is applied as described in the modelling phase.
The study �nalises in Section 6 with conclusions and future plans regarding the results are listed
in Section 7. In the appendix, a conference proceeding presenting part of the numerical study is
displayed.

1.2 Outline of the study 2



2 Background

In this section, past work in the �eld of structural health monitoring is reported. There are
many detection techniques and processing methods to determine damage. First some common
measurement techniques are summarised, both contact and non-contact techniques. Then the
theory behind the CSLDV method used in this study will be further explained. A more in-depth
look is taken at the processing methods to detect damage with the CSLDV technique. Finally the
fundamental studies used for this thesis are stated and the implications for the present study are
summarised.

2.1 Detection techniques

SHM is used to detect changes in the system that are the result of damage over time. The
damage detection methods that are considered for this application are non-destructive and based
on vibration analysis. Damage detection methods can be categorised as either contact or non-
contact.

2.1.1 Contact methods

When a damage detection method uses sensors that are attached to the structure in question they
are considered contact methods. Most common sensors to be used for SHM are piezoelectric strain
gauges and accelerometers, as Chopra reviewed in [1]. Strains/displacements generate a voltage in
the strain gauge which can be measured. This can then be related to the structural integrity of
the system at the sensor locations. Accelerometers are similar to strain gauges but measure the
accelerations instead of the strains. Another contact technique that is gaining interest in the �eld
of sensing is the use of �bre optics, where re�ecting light gives information on the strain on the
component the �bre is attached to. Multiple sensors and multiple types of sensors are commonly
applied to one component to monitor the condition.
These sensors are used in various methods to detect damage. In the research of Johnson et al. [2]
a sensor array was used to describe dynamic transmissibility features as indicators of structural
damage. Both accelerometers and strain gauges where used, which lead to the recommendation
for future work to research the trade-o� between high strain but low accelerations at the root of a
cantilever beam and vice versa at the tip.
A common application �eld of dynamic maintenance are wind turbine blades. This is the subject
of the research of Sierra-Pérez et al. [3], who used �bre optics to detect damage and compared
the results to conventional strain gauge methods. It was found that the number of sensors that
were needed to adequately perform SHM was too high to be viable. However, it was claimed that
�bre optics could become much more applicable in composites if they are embedded in the product
during the production process.
Abry et al. [4] proposed a method to detect damage in composites by measuring a change in
electrical resistance. Copper electrodes were placed at both ends of the beam and a current is send
through. The study showed that very low damage levels could be detected.
Contact methods are sometimes not viable under operating conditions, because they require ex-
pensive and/or complicated electronics for transferring the data. Other reasons that the techniques
are not applicable are too extreme temperatures in operating conditions or rotation of components.
Also, determining the location of the sensors is model based, an FEA needs to be conducted to
�nd the proper sensor placement. Non-contact, non-destructive damage detection methods might
o�er alternatives.

2.1.2 Non-contact methods

Many remote sensing methods have been researched, a selection is presented here, keeping in
mind their application in SHM. A widely used and researched method is Digital Image Correlation
(DIC). DIC compares multiple digital photographs of a vibrating structure. The pixels in the
high resolution photographs are tracked and after post-processing, a strain-�eld can be composed.
The high contrast and light intensity levels that are required for this technique can be reached
in a laboratory environment if adequate lighting is used. In the study, McCormick and Lord
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[5] presented that the texture of most structures is enough for the tracking software to pick up.
However, Avril et al. [6] found that in applications outside the lab, surface treatment is often
needed to allow for consistent tracking. This considerably lowers the in situ SHM measurement
capabilities of this technique.
Detecting damage in composite beams can be done using a thermal camera. When a delamination
between two plies occurs, the areas rub together and cause heat due to friction. This heat is
conducted to the outer surface and can be captured with a thermal optic or infra-red camera.
Mian et al. [7] used infra-red surface imaging to detect such a delamination. This thermal e�ect
can also be induced by the detection method itself, using sound wave pulses to vibrate crack
surfaces, causing them to locally heat up. Currently, this technique is most commonly used for
composite materials. The technique can also be applied to metals, but mostly in destructive test
environments and near-yield strength tests, as explained by Pastor et al. [8]. The high amounts
of stress initiates dislocations and their movement causes the resulting heat. Small and gradual
damage progression through metals does not produce such heat and is therefore not a viable
measurement method.
The advances made in laser technology allowed for an increase in research of non-contact damage
detection methods using laser light. Speckle interferometry is a technique that uses multiple laser
beams as well as a camera to extract phase information of a vibrating structure. Jacquot [9]
summarises the basic principles behind the widely researched Speckle interferometry technique.
The patterns that arise from the interfering laser beams on the rough surface, together with video,
yields information on the response of the system to excitation. Hertwig et al. [10] have taken this
technique and implemented it for SHM purposes; it can be used for both a pristine and damage case
to �nd di�erences due to structural degradation. The speckle interferometry technique requires a
very expansive and precise set-up. A closely related technique, Holography, uses roughly the same
set-up. It is capable of acquiring comprehensive data from the system, as De la Torre et al. [11]
reviewed. Holography di�ers from Speckle interferometry in that it requires the reconstruction of its
3D complex amplitude [9]. The sterile environment and expansive set-up make these measurement
techniques inappropriate for assessing structural health in operating conditions.
Another Non-contact measurement technique that uses laser light is Laser Doppler Vibrometry

(LDV). Castellini et al. [12] present the applications of LDV methods, including SHM. In its core,
LDV uses a laser beam, which is re�ected o� a surface, also called backscatter, and collected by a
detector. When this is measured (scanned) over time, not only spatial information is obtained, as
is the case in Speckle interferometry, but also temporal information. This technique is commonly
referred to as Scanning LDV (SLDV). SLDV can be done at discrete points (Stepped SLDV) or with
sweeping mirrors, (Continuous SLDV). Both are viable techniques to be used in SHM. However,
Stepped SLDV needs several seconds of measuring per discrete measurement point, which is time
and data intensive. Continuous SLDV (CSLDV), scans a line or area over the specimen for several
seconds to obtain the information, which makes it a much faster technique. It obtains information
from virtually thousands of points in one measurement. The theory behind the CSLDV technique
and its application to SHM are explained more in-depth in the section below.

2.2 Theory on scanning laser vibrometry (CSLDV)

As stated above, the Continuous Scanning Laser Doppler Vibrometry (CSLDV) method can obtain
spatial and temporal information of a vibrating system in a matter of seconds. This makes it a
viable technique for rapid damage detection. In this section, the theory behind the method is
elaborated upon.

2.2 Theory on scanning laser vibrometry (CSLDV) 4



Figure 1: Basic LDV set-up [13]

In Figure 1 the basic LDV set-up is schematically drawn. The laser source is stationary and
emits a monochromatic laser beam with a high intensity. This is passed through a beam splitter
to create a reference beam and a measuring beam. The measuring beam hits the target and is
backscattered to the detector, then it is compared to the reference beam. When the measured
surface is vibrating, and the laser source and detector are stationary, the relative motion causes
a frequency shift of the light in the laser beam. The shift is related to the relative velocity of
the system, also known as the Doppler e�ect. This is why the monochromatic light from the laser
beam is ideal for measurements using the Doppler phenomenon. This frequency shift can be picked
up by the detector, allowing for calculation of the moving velocity of the target surface.
Scanning LDV uses this basic LDV set-up combined with scanning mirrors. The mirrors point the
laser beam at di�erent points on a grid. The target is then excited and information is obtained
during a few seconds. When the data is collected, the laser is pointed to the next point of the
grid by rotating the mirrors. The target is excited again and the information is collected. This
continues for every point on the measurement grid, once the data from all points is collected, it
is post-processed and the Operational De�ection Shapes (ODS) can be derived. The ODS is the
shape in which the specimen is vibrating. As stated before, this approach is very time consuming
and very data intensive, since a comprehensive analysis needs a very dense measurement grid.
The scanning mirrors that move the laser beam over the measurements grid can also be used to
move continuously, while the measurement is taking place. This is referred to as Continuous SLDV.
The main advantage over SLDV is that it scans a virtually in�nite number of points in the same
time it takes SLDV to scan just one point. The CSLDV method can scan a line sinusoidally, or
scan in a pattern over an area.
Some previous work by Stanbridge ad Ewins [14] explored this technique in the form of modal
testing, where the advantages of CSLDV method are described. The CSLDV method output is a
time signal, which can be modulated to a frequency spectrum. It was shown that this spectrum
contains information on the modal parameters of the system. This work is elaborated upon by
Martarelli [13], where the basic principles and working of the CSLDV method are described. The
theory on simulating the CSLDV method and applying the modulations as used in the present
thesis is obtained from this Ph.D. Thesis.
The potential to use CSLDV for damage detection in vibrating structures is clear and has been
researched. Most research depend on reconstructing the ODS from the CSLDV output signal, as
done by Chen et al. [15]. After obtaining the ODS in polynomial form using the demodulation
method, the curvature of the polynomial ODS was used to identify abnormalities from the pristine
case. More research found that CSLDV could be used to detect cracks in a cantilever beam. A
transverse crack of more than half the thickness of the beam was identi�ed by Khan et al. [16], by
looking at the frequency response. Discontinuities in the mode shape where found, but only under
very speci�c loading and heavy damage conditions.
The behaviour of a steel plate was also researched in pursuit of novel damage detection methods.
The damage was simulated by adding a magnet to the plate and analysing its e�ect on the dynamic
response, using di�erent excitation locations. In the research, Di Maio et al. [17] used continuous
area scanning as well as grid measurements, and compared them to numerical results. The damage
was measured by taking the Mean Square Error (MSE), as well as a more sensitive adaptation

2.2 Theory on scanning laser vibrometry (CSLDV) 5



of it, between the pristine and damaged ODS. This research concludes with a need for a better,
more sensitive damage de�nition. This is sought after in another research by Di Maio [18], that
strictly covers numerical simulations. This paper introduces the use of the frequency spectrum,
characteristic to the CSLDV method. A beam is simulated with di�erent damage severities. The
frequency response of the beam is simulated and the spectrum analysed. The paper �nds that
solely using the spectrum would be enough for health monitoring.

2.3 Implications for the present work

The �ndings summarised above form the basis for the present work. A damage indicator should be
found, based solely on the output spectrum of the CSLDV method, without the need of extracting
the ODS. Past research has focused on not only detecting damage but also locating it and/or
quantifying the severity. In this thesis, just the detection of damage would be enough. The problem
set in [18] is reduced to two dimensions. This makes it a worst-case scenario in terms of spatial
information that can be acquired, but also makes the behaviour controllable and predictable.

2.3 Implications for the present work 6



3 Numerical Study

In this Section, the numerical aspects of the study are described. First, a �nite element model is
made to simulate the behaviour of the system speci�ed. The damage implementation and boundary
conditions are described here. Next, a strain analysis is performed in which the behaviour of
the model is further assessed. Some de�ection shapes and strain distributions are analysed and
compared and a identi�cation strategy is de�ned. Finally the data from the simulations is collected
and the output of the CSLDV method is simulated.

3.1 Finite element model

A numerical model is made in the Finite Element Method (FEM) using ANSYS Mechanical APDL
16.2. For this study, a prismatic, cantilever beam is de�ned. The beam is clamped at one end and
subjected to an excitation force in y-direction at the free end. The conventional material properties
of aluminium are used, as listed in Table 1. The beam dimensions are given in Table 2.

Table 1: Beam properties

Material property Value
Young's Modulus 69 MPa
Density 2700 kg/m3

Poisson's Ratio 0.334
Damping Ratio 0.004

Table 2: Beam Dimensions

Designation Length
Length (l) x-direction 400 mm
Thickness (t) y-direction 10 mm
Width (w) z-direction 40 mm

3.1.1 Speci�cation on element con�guration

The simulation of the beam will be kept to a strictly two-dimensional approach. The idea is to
keep the structure as simple as possible to get a very predictable response. Another advantage is
that this way of modelling allows for application of a wide variety of damage types, by altering the
sti�ness properties of the elements that are considered damaged. This approach allows for many
crack path designs, such as transverse crack, delamination or interlaminar crack paths.
Three element con�guration are described here. A number of tools and analyses are used to review
their performance in the FEA. The models are compared using the same material properties,
dimensions and number of elements. First a static analysis is done, comparing the tip de�ection of
the model to the analytic solution described by equation 1. The force (F) at the tip dictates the
maximum de�ection (δ).

δ =
Fl3

3EI
(1)

Analytically, with a force of 100 N this yields a de�ection of 9.275 mm. The maximum de�ection
per element con�guration is presented in Table 4. A modal analysis is done to obtain the eigen-
frequencies of the system, which can be compared to the analytical solution. The analytical values
for the ith eigen-frequency are calculated with equation 2. The dimensions and properties of the
beam as described above are used, the constants for a cantilever beam are: A1 = 1.875, A2 = 4.694
and A3 = 7.854.

ωi = A2
i ·
√
EI

ml3
(2)

The minimum number of elements to be used in the simulations is based on a sensitivity analysis.
To set a baseline mesh, the sensitivity analysis is undertaken for PLANE182 elements. These
elements are meant for 2D modelling of solid structures, it is an element with four nodes and
two Degrees Of Freedom (DOF). Five meshes are de�ned with increasing re�nement, see Table 3.
A modal simulation is done for each mesh, a �ner mesh will obviously perform better, but the
computation time also increases. The mesh is considered 'good enough' when the improvement
stagnates in relation to the growth of the mesh size.
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Table 3: Model mesh size

Iteration 1 2 3 4 5
Mesh(txl) 5x50 10x100 20x200 30x300 40x400

The �rst three eigen-frequencies from the simulations are compared to the analytical values. The
analytical values for the ith eigen-frequency are calculated with equation 2. Using the dimensions
and properties of the beam described above. The error of the simulation is then calculated using
equation 3. The results are plotted in Figure 2. The error of the �rst three eigen-frequencies
obtained by the di�erent models of the other element type with the same number of elements are
displayed in Table 4.
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Figure 2: Mesh sensitivity analysis

error =
|ωsim − ωana|

ωana
· 100% (3)

From Figure 2, it can be concluded that iteration 3, or 20x200 elements, is enough as the increase
in performance is very minimal from that point on.
Two element types are evaluated, PLANE182 and SHELL181. PLANE182 was brie�y described
above. SHELL181 is a four node, 3D element with six DOF, if membrane sti�ness is included.
If not, the element only has 3 DOF (no rotations). Membrane sti�ness is used when the main
de�ection shape is out of plane. For this application, in plane bending of the elements, only
membrane sti�ness is used. Both full and reduced (red.) integration are considered, since multiple
elements through the thickness of the beam are chosen.

Table 4: Comparison of de�ections and resonances of di�erent elements

PLANE182 SHELL181 (Full) SHELL181 (Red.) Analytical
Max. δ (m) 0.00916 0.00914 0.00916 0.00928
Error ω1 (%) 0.136 0.002 0.002 -
Error ω2 (%) 0.433 0.290 0.023 -
Error ω3 (%) 1.653 0.727 0.726 -

The values from Table 4 show that the textitSHELL181 element with reduced integration is the
best choice, since it is closest to the analytical solution. Investigating the de�ection shapes revealed
a problem with this element. The elements started to behave problematic in higher frequency range,
the nodal displacements became very unstable. The ODS of one of the problematic frequencies
was plotted for all three element con�gurations. An example frequency of 8500 Hz is shown in
Figure 3 for all three element con�gurations.

3.1 Finite element model 8



Figure 3: De�ection shape from ANSYS for three element con�gurations

In Figure 3, the elements at the tip on the right-hand side start to become very unstable for
both the PLANE182 and the SHELL181 with reduced integration. The elements deform in a non-
realistic way, as can be seen by the fuzzy shape. Re-running the simulation with more elements to
make it stable did not solve the problem. SHELL181 with full integration performed second best
in Table 4 and behaves more stable at these frequencies. This is the selected element con�guration
for the simulations in this work.

3.1.2 Damage typology

As said before, damage is applied to the model by altering the sti�ness properties of the elements.
This can be done in a number of di�erent ways:

• Deleting damaged elements

• Reducing thickness of damaged elements

• Replacing damaged SHELL elements with spring elements

• Assigning di�erent material properties to damaged elements

For stability in obtaining convergence in the simulation of the beams response, continuity in the
beam is of major importance. This is why completely deleting the elements is not advisable.
Reducing the thickness of the elements, especially in a two-dimensional model is motivated by
[19] and [20]. Replacing the SHELL elements with springs is common practice but adds modelling
complexity when crack paths throughout the beam would be modelled. Assigning di�erent material
properties such as lower Young's modulus is less common and could easily alter the dynamic
behaviour of the model too much or in unexpected ways. As a reference, the results found in
[21] are used as guidance. In the study, two cuts are made, at around 40- and 80% of the beams
length, the maximum depth of the cracks is about 30% of the beams thickness. Numerical and
experimental analysis in the study show a frequency shift of 1.5% for the second bending mode.
As explained before, multiple di�erent crack paths can be modelled. The current study is limited to
two distinct damage types. A transverse crack, or saw cut, and a delamination, or longitudinal cut.
A delamination is not expected to occur in an aluminium beam, this is implemented as a theoretical
damage case only. Both damage types will be modelled and analysed in three severities: 2 elements
(10% thickness), 5 elements (25% thickness) and 10 elements (50% thickness). The transverse crack
originates from the bottom and is applied at 0.04 m from the root, which is at 10% of the beams
length. The delamination will grow toward the free end from 0.04 m and is located at 2.5 mm
below the neutral axis. The damage designations for future reference are de�ned in Table 5.
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Table 5: Damage designations

Length Transverse Longitudinal
2 elements 1 mm D10T D10L
5 elements 2.5 mm D25T D25L
10 elements 5 mm D50T D50L

3.1.3 Final model con�guration

For this study, 4000 SHELL181 elements with membrane sti�ness only and full integration will be
used. The �rst column of 21 nodes will be locked in x-, y- and z-direction. A force of 100 N in
positive y-direction is placed on the node in the bottom row of the 199th (out of 200) column. The
damage is applied to the model by reducing the elements that represent the damage in thickness
in z-direction by 90%. All nodes are locked in z-direction to make it a strictly 2D problem. The
material properties of aluminium are used.
In Figure 4, the �nal ANSYS model con�guration is displayed. The arrows on the left-hand side
of the white beam visualise the clamping. The red arrow on the right visualises the force. The
expanded part of the beam displays the possible damage typologies. Red for the transverse damage,
green for the delamination and purple for possible interlaminar damage cracks (not implemented
in this study).

Figure 4: Final ANSYS model con�guration

3.2 Strain Analysis

Following the numerical modelling, a strain analysis is performed on the simulations. The Op-

erational De�ection Shapes (ODSs) are observed for both the eigen-frequencies and the anti-
resonances. This is done at the �xed pristine eigen-frequencies. If the corresponding eigen-
frequency of the damaged case are compared instead, the ODS would be almost exactly the same.
The strain energy distributions over the ODSs are compared to distinguish which frequencies would
be most sensitive to the applied damage.

3.2.1 ODS comparison between pristine and damage case

The simulation results heavily depend on the ODS, the shape induced by the excitation force and
frequency. At the (anti-) resonances, a characteristic shape is expected. The damaged elements,
which are reduced in thickness, exhibit a local stress concentration. This changes the strain
distribution over the entire beam, resulting in a slight change in the ODS at that �xed frequency.
This should then be picked up by the CSLDV method and after post-processing result in a positive
indication for damage. The ODS is extracted from the model by taking the y-component of
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displacement of the top row of nodes. These nodes are marked with blue dots in Figure 4. The
ODSs of the �rst six eigen-frequencies are shown for the pristine and damaged condition in Figure
5 and for the �rst six anti-resonances in Figure 6.
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Figure 5: ODS of �rst 6 eigen-frequencies for pristine (blue) and damaged (red) case

The blue lines represent the pristine cases, the red lines the damaged cases. As can be seen,
the change in ODS is very minor for a fairly large damage case (D50T), especially for the anti-
resonances. All pristine shapes are as expected, the maximum amplitude of the ODS becomes
lower for every eigen-frequency. The amplitude of the anti-resonances are overall lower than the
eigen-frequencies. A sensitivity analysis is done to further investigate the strain behaviour at these
frequencies.
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Figure 6: ODS of �rst 6 anti-resonances for pristine (blue) and damaged (red) case

3.2.2 Sensitivity of dynamic behaviour to the damage

The sensitivity of the model is shown per eigen-frequency in Table 6. Here, for three damage
severities, the eigen-frequencies and phase are listed. The phase shift is measured at the pristine
eigen-frequency.

Table 6: Response to damage severity

Frequency (Hz) Phase shift at ωP (deg)
Eigen Pris D10T D25T D50T Pris D10T D25T D50T
ω1 51 51 50 50 -79 -134 -164 -170
ω2 319 318 317 316 -94 -117 -145 -158
ω3 889 889 888 887 -92 -97 -107 -117
ω4 1731 1731 1731 1731 -96 -94 -92 -91
ω5 2837 2837 2835 2833 -94 -97 -105 -115
ω6 4196 4193 4184 4178 -96 -108 -131 -142
ω7 5794 5785 5766 5750 -100 -120 -148 -157
ω8 7616 7602 7571 7546 -104 -127 -154 -163

What can immediately be seen is that the fourth eigen-frequency does not seem to be e�ected
by the damage at all. This also seems to be the case when the ODS is observed in Figure 5d. To see
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why this is the case, the strain energy distribution along the beam is plotted in Figure 7 for various
eigen-frequencies. Isolating the fourth eigen-frequency in Figure 8, it can be seen that the strain
energy is very low at the damage location, 40 mm from the root. When the ODS is inspected, it
becomes clear that this is an in�ection point of the ODS. This means that very little stress is put
on the damaged elements. This behaviour is compared to the second eigen-frequency, which does
show a lot of sensitivity in Table 6. As can be seen from Figure 9, the strain energy at the damage
location is much higher in this case. This means that the change in dynamic behaviour as a result
of damage is frequency dependent. In search of a sensitive damage indicator, an identi�cation
strategy is set up to assess what frequencies show most sensitivity to the damage.

0 100 200 300 400
Distance from root (mm)

0

0.2

0.4

0.6

S
tr
ai
n
E
n
er
gy

(a) First

0 100 200 300 400
Distance from root (mm)

0

0.5

1

1.5

S
tr
ai
n
E
n
er
gy

×10-3

(b) Second

0 100 200 300 400
Distance from root (mm)

0

1

2

3

S
tr
ai
n
E
n
er
gy

×10-5

(c) Third

0 100 200 300 400
Distance from root (mm)

0

2

4

6

S
tr
ai
n
E
n
er
gy

×10-5

(d) Fourth

0 100 200 300 400
Distance from root (mm)

0

1

2

S
tr
ai
n
E
n
er
gy

×10-6

(e) Fifth

0 100 200 300 400
Distance from root (mm)

0

1

2

3

S
tr
ai
n
E
n
er
gy

×10-6

(f) Sixth

Figure 7: Strain energy of �rst 6 eigen-frequencies
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Figure 8: Strain energy at damage location
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Figure 9: Strain energy at damage location

3.2.3 Identi�cation strategy

The eigen-frequencies and anti-resonances are compared to each other and a table of the strain
energy at the damage location is made, see Table 7. The values at the damage location are listed
for all resonances and anti-resonances. It appears that for higher frequencies, the anti-resonance
would be more sensitive to the applied damage than the resonances. These anti-resonances show
higher values than its surrounding eigen-frequencies. This is portrayed by the percentage in the
�fth column that displays the percentage increase or decrease (-) of strain energy between the
resonance and the following anti-resonance. The sixth column shows this di�erence between the
anti-resonance and its following resonance.
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Table 7: Strain energy at damage location for resonance and anti-resonance

Res. (n) Strain Energy (10−6) Anti Res. (n) Strain Energy(10−6) ∆ SE n:n ∆ SE n+1:n
1 448540

1 49.6970 -99.98 % -87.87 %
2 409.62

2 3.9423 -99.04 % 236.92 %
3 1.1701

3 0.0095 -99.18 % -96.16 %
4 0.2477

4 0.8234 232.42 % 213.08 %
5 0.2630

5 2.1810 729.28 % 171.37 %
6 0.8037

6 3.1822 295.94 % 61.44 %
7 1.9711

7 3.5857 81.91 % 28.79 %
8 2.7842

The strain energy of the �fth and sixth eigen-frequency and �fth anti-resonance are plotted in
Figure 10b. Interestingly, the strain energy peaks are higher for the anti-resonances. Based on the
�ndings from Figure 8, a very low strain energy at damage yields a low sensitivity of the dynamic
behaviour to the damage. The anti-resonances seem to be interesting frequencies to investigate
further. While past literature like [15] only focusses on the eigen-frequencies. The anti-resonance
shape seems to imply an additional constraint to the cantilever structure, which in turn could be
the cause of the higher strain energy results.
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Figure 10: ODS and strain energy of 5th and 6th eigen-frequency and 5th anti-resonance

3.3 Simulation of output spectrum using CSLDV method

CSLDV measures velocity information along the complete length of the vibrating beam. To obtain
this from the numerical model, the y-displacements of all nodes in the top row of the model are
extracted for all frequency responses. These nodes are marked with blue dots in Figure 4. The
selected frequency range is 1 to 9000 Hz with a frequency step of 1 Hz. Next, the mathematical
model is applied to construct the time signal that the CSLDV method would give. These time
signals are then put through a Fourier analysis and the output spectra are generated.

3.3.1 Damage severity based on Frequency Response Function

The data is analysed using Matlab. Both amplitude and phase information of the y-displacement
of the top row of nodes is acquired. First, the Frequency Response Function (FRF) is made for the
tip of the beam. This is done in Figure 11 for the Pristine case (blue line) and the D50T damage
case (red line).
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Figure 11: Frequency Response Function of P & D50T (zoomed)

In Figure 11 a close look is taken at the second eigen-frequency of the FRF, the full FRF of
the tip of the beam can be found in Appendix A. Equation 2 presented the calculation on the
analytical eigen-frequencies. EI/L is an equivalent measure for sti�ness k, so an easier way of
calculating the �rst eigen-frequency is shown in equation 4.

ω(1) =

√
k

m
(4)

According to equation 4, the eigen-frequency is proportional to k/m, where k is sti�ness and m
is mass. The eigen-frequency obviously shifts when damage is introduced to the system. The
damage applied to the structure reduces the sti�ness in the beam, as described by Ostachowicz
and Krawczuk [22]. This property is also commonly used to assess the sensitivity of a system to
damage. As said before, the damage is modelled in three severities. For each severity, the frequency
shift is calculated in the same manner as equation 3. However, for a given structural damping,
the phase angle of a damaged structure shows much larger deviation from the pristine condition
than the frequency shift. To show this, both the frequency shift, Figure 12, and the di�erence in
phase angle at the pristine eigen-frequency, Figure 13, are plotted for each damage severity of the
transverse damage case. The shifts observed in the Figures have been presented before in Table 6
in the previous Section.
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Figure 12: Frequency shift
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Figure 13: Phase shift

As can be seen in the Figures, the phase angle shows a high sensitivity to the applied damage.
This is heavily dependent on the damping, in this case a constant structural damping coe�cient
of 0.004.

3.3 Simulation of output spectrum using CSLDV method 16



3.3.2 Operational De�ection Shape de�nition

The next phase in simulating the output spectrum is extracting the Operational De�ection Shapes
(ODSs) from the model for all frequencies. This is done by performing a harmonic analysis and
evaluating the y-displacement of all the top row nodes for all frequencies. These values are described
in amplitude and phase, with which the ODSs are constructed.
The x-coordinate of the beam is normalised to be −1 at the root and 1 at the tip, making 0
the middle and the a normalised beam length of 2, using equation 5. This is done to allow for
simulation of the continuous sinusoidal line-scan.

Xnorm = Scale ·X + O�set (5)

Where:

Scale =
1

1
2 · (max(x)−minx))

O�set = −1 (6)

The normalised length is used as the new x-coordinate of the ODS. Now a poly�t-function is used
in Matlab to obtain the polynomial coe�cients of the ODS shape. This function approximates the
shape with a polynomial like in equation 7.

f = A0 +A1x+A2x
2 +A3x

3 + ... (7)

The amount of polynomial coe�cients needed to adequately describe the ODS is dependent on the
frequency, since a higher frequency vibration shape is more complex and thus requires more poly-
nomial coe�cients. The minimum number needed is calculated by the Modal Assurance Criterion
(MAC), equation 8, which relates the approximate shape to the real shape [23]. To get an idea of
the necessary amount of coe�cients, the MAC value necessary to describe the eigen-frequencies is
evaluated. The number of coe�cients is increased as long as the MAC value is below 0.999. The
results are shown in Table 8.

MAC =
(Φa · ΦT

r )2

Φa · ΦT
a · Φr · ΦT

r

(8)

Where Φa is the approximate polynomial by the poly�t-function and Φr is the ODS from the
model.

Table 8: Minimal Nr. of Coe�cients

eigen-freq. 1 2 3 4 5 6 7 8
Nr. of coe�. 2 4 5 8 9 10 13 14

In the following Sections, 15 polynomial coe�cients are used for all frequencies. This means
that higher order terms will be close to zero for lower frequencies.

3.3.3 CSLDV output signal using ODS

Now the shapes of all 9000 frequencies are approximated by polynomial functions, the time signal
can be simulated. As stated before, the CSLDV method uses a continuous sinusoidal line-scan that
scans the vibrating beam. The CSLDV measures the velocity of the vibration, this can be written
as equation 9.

v =

p∑

n=0

Anx
n cos (ωt) (9)

Where the �rst part is the polynomial described in equation 7, ω is the vibration frequency and p
is the number of coe�cients. The equation is obtained from [13], the ODS is assumed real. Since
the x-component is normalised, equation 10 can be used for the scan-line.

x(t) = cos (Ωt) (10)
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Where Ω is the scan rate of the laser. When this is plugged in as the x-component of the polynomial
in equation 9, the function for the time signal becomes:

v(t) =

p∑

n=0

An cosn (Ωt) cos (ωt) (11)

This is the �nal equation for simulating the time signal obtained by the CSLDV. For the simulation,
a sampling rate of 20 kHz and a test time 10 seconds per frequency is used. Obeying equation 12
for minimal sample frequency (fs) at 9000 Hz excitation frequency (fn).

fs ≥ 2fn (12)

The result is a time signal whose envelope resembles the vibration shape of, in this case, the second
eigen-frequency. This is shown in Figure 14. Since the plot is very dense, a zoom is shown in Figure
15. In this Figure, the composition of the time signal can be seen more clearly.
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Figure 14: Portion of time signal of second eigen-frequency
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Figure 15: Scan rate in time signal

The time signals processed by Fast Fourier Transform (FFT). As can be seen in equation 11
above, the time signal is composed of various frequencies. FFT translates the time signal into
the frequencies which make up the signal. Discrete FFT (dFFT) does this only at a discretised
frequency interval. The dFFT is discretised at the excitation frequency (ω) and subsequently at
interval of the scan rate (Ω). This yields a symmetric spectrum around the excitation (or middle)
amplitude with equally spaced sidebands around it, as seen in Figure 16. The number of one
sided sidebands, seen on the x-axis, equals the amount of polynomial coe�cients. The magnitude
of these sidebands carry spatial information of the ODS. The mathematical relation between the
sidebands and the polynomial coe�cients, and thus the ODS, are explained in [14].
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Figure 16: dFFT at 2nd eigen-frequency

Since the amplitude of the sidebands carry this information, the distribution of these sideband
amplitudes can be considered characteristic for a speci�c system at a �xed excitation frequency.
When damage is introduced to the system, its dynamic response changes, and thus, the spectrum
changes. This can be seen in Figure 17. The blue stems show the pristine case and the damaged
case is displayed by the red stems, at the pristine second eigen-frequency.
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Figure 17: dFFT at pristine 2nd eigen-frequency (Pris and D50T)

The stems representing the damaged case are clearly lower at the �rst few sidebands than
the pristine stems. This is as expected, because the amplitude in the FRF at the pristine eigen-
frequency is higher for pristine case than for the damaged case, as seen in Figure 11. If measured
at the pristine eigen-frequency, the excitation amplitude is no longer at a peak if the beam is
damaged, explaining the lower overall amplitude of the damaged sidebands. In the higher order
sidebands more change in the distribution is visible. As said before however, these higher order
terms are near zero and hold little meaning for the ODS at these excitation frequencies. What is
clear, is that the distribution of the sideband amplitudes has changed from its characteristic one,
it has not just shifted down.
The insight that the spectrum changes from its characteristic shape when damage is introduced
to the system can be exploited for SHM purposes. This behaviour was already seen in earlier
work [20]. The next step is developing a damage indicator that computes this change in sideband
amplitude distribution. This is elaborated upon in Section 4. The same methodology of extracting
the spectrum is done on the time signals obtained by the experimental analysis in Section 5, which
is done to verify the numerical analysis.
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4 Damage indicator de�nitions

In this Section, the results from the numerical study are displayed and analysed to de�ne di�erent
damage indicators. Then the results of the de�ned damage indicators are compared. The most
robust and sensitive indicator is tested on multiple damage types and severities. Finally, white
noise is added to the frequency spectrum for the selected damage indicator.

4.1 Development of damage indicators

In Section 3 the methodology towards the numerical approach was explained. It was determined
that the dFFT of the time signals would be used to de�ne a damage indicator. The indicator is
required to distinguish whether the spectral sideband amplitudes are not just shifted in overall
amplitude, but individually present di�erent behaviour. As was already seen in the higher order
sidebands in Figure 17. In the real world, the sidebands will be a�ected by noise, which means a
robust damage indicator is needed that can adequately assess the distribution of sideband amp-
litudes of the spectrum despite the noise. In the following subsections, noise will be disregarded to
�rst �nd an indicator that can adequately compare the spectra, keeping in mind the overall lower
amplitude of the damaged case at pristine eigen-frequency with respect to the pristine case.

4.1.1 Fingerprint method

Comparing the pristine and damaged spectra directly by subtraction does not compute a relevant
indication of the damage. It is therefore important to normalise the sideband amplitudes of the
pristine and damaged case to make them comparable. A change in distribution of the sideband
amplitudes must be found regardless of the excitation amplitude. This condition is used to de�ne
a damage indicator where all sideband amplitudes are normalised to the middle, or excitation
amplitude. In this way, the vertical shift in the spectrum is avoided, the middle amplitudes
will normalise to 1 in both cases. The result is a �ngerprint of the shape of the spectrum for
that frequency. If change is observed in this �ngerprint, damage must have occurred. This is
mathematically expressed in equation 13. Where the �ngerprint amplitude (FPAi(ω)) of the ith

sideband at excitation frequency ω is calculated by dividing the ith sideband amplitude (SBAi) by
the middle amplitude.

FPAi(ω) = SBAi(ω + Ω · i)/SBA(ω) (13)

By doing this for i from 0 to 15 for the respective cases, all amplitudes become a factor of the
middle amplitude. Now the shapes can be compared, this is done in Figure 18 for the second
eigen-frequency. The blue line represents the pristine case and the red line the damaged case. As
expected, the higher order sidebands immediately show the di�erent behaviour. This is, again, less
relevant due to the low absolute value of the amplitudes and the little meaning these hold for the
de�ection shape. Figure 19 shows that also for the �rst few sidebands the �ngerprint is di�erent.
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Figure 18: Fingerprint method
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Figure 19: Fingerprint zoom

As can be seen in the Figures, the method seems to work for the second eigen-frequency. Turning
this result in a scalar value indicator would make the method more readable and comparable when
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multiple frequencies are assessed. Detecting damage from Figure 18 can be done, but assigning a
scalar value would be preferable. One way to quantify the plot in Figure 18 is to take the mean

square error (MSE) between the two cases. The MSE is expressed in equation 14, with p as the
number of sidebands.

MSE(ω) =
1

p

p∑

i=1

(FPAPris

i (ω)− FPAD50T

i (ω))2 (14)

4.1.2 Polynomial method

Another method that is explored is based on the relation between the spectral sideband amplitudes
and the polynomial coe�cients of the wave shape of the ODS. Spatial di�erentiation of the poly-
nomial function results in a function related to the strain. When damage is introduced to the
system the strain distribution changes. This also causes a change in the ODS at that frequency,
which is a polynomial function. This knowledge is used to de�ne some damage indicators based
on the sideband amplitudes. The �rst sideband corresponds to the linear term, the second to the
quadratic, and so on. This can be recognised in the indicator descriptions in equations 15, 16, 17
and 18:

PM1 =

p∑

i=1

SBAPris(ω ± Ωi)i − SBAD50T(ω ± Ωi)i (15)

PM2 =

p∑

i=1

SBAPris(ω ± Ωi) · i(p−i) − SBAD50T(ω ± Ωi) · i(p−i) (16)

PM3 =

p∑

i=1

SBAPris(ω ± Ωi) · ii−1 − SBAD50T(ω ± Ωi) · ii−1 (17)

PM4 =

p∑

i=1

(SBAPris(ω ± Ωi) · ii − SBAD50T(ω ± Ωi) · ii) · ω (18)

Where ω is the excitation frequency and Ω is the scan rate, p is the number of polynomial coef-
�cients. Since the �rst few sidebands hold most information on the shape and the strain, the
indicators are also tried including less than all 15 sidebands. These are four di�erent indicators
based on the same approach of using the relation between sideband amplitudes and the polyno-
mial coe�cients. Di�erent factors per sideband are used to �nd the most sensitive indicator to the
di�erence in strain behaviour.

4.1.3 RASTAR method

Another method called the RASTAR method is devised. This method evolved from the �ngerprint
method. RASTAR stands for Relative Amplitude of the Sidebands to the Total Amplitude Ref-
erence. Where the �ngerprint method based its normalisation on only one (the middle) sideband,
this method makes use of all sidebands. To normalise the amplitudes of both cases, �rst, the
amplitude of all sidebands in the spectrum is summed, referred to as the total amplitude. The
individual sideband amplitude is calculated as a percentage of the total amplitude; every sideband
is assigned a percentage value of its relative contribution to the total amplitude. This is expressed
in equation 19. By doing so for the pristine and damage cases, the relative contribution percentages
per sideband can be compared. The damage indicator for that frequency is acquired by summing
all di�erences per relative sideband. A lesson learned from the polynomial sideband method is
that this RASTAR method can be applied for any number of sidebands chosen. As said before,
at lower frequencies, most information is in the �rst few sidebands, so only applying the method
for these sidebands would not change the sensitivity much. It would change for higher frequencies,
since more sidebands are needed to describe the shape.

ε(ω) =

n∑

j=1

(
SBAP (ω ± Ωj)
n∑

i=1

SBAP (ω ± Ωi)
· 100%− SBAD(ω ± Ωj)

n∑
k=1

SBAD(ω ± Ωk)
· 100%

)
(19)
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4.2 Results of indicators on the simulation

4.2.1 Fingerprint results

A scalar value damage indicator is de�ned, so it can now be applied over the full frequency range.
The result can be seen in Figure 20, MSE from equation 13 is displayed on the y-axis. The graph
shows a few very high spikes (107) which make it an inconsistent and unreadable graph.
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Figure 20: Mean Square Error for all frequencies

The reason for these spikes is investigated. The �rst local maximum, at 731 Hz, in Figure 20 is
selected and the spectrum is viewed in Figure 21a. The middle amplitude is very low in relation to
the �rst sideband for the pristine case. This is also true for the damaged case, however considering
the log scale y-axis, the di�erence between these two cases is around a factor of 100. The impact
that this has on the MSE is more easily identi�ed by looking at the resulting �ngerprint in Figure
21b. It can be concluded that this large di�erence in the middle amplitude, which is used for
normalisation, results in unusually large Mean Square Errors. Since this behaviour does not occur
consistently and in varying levels throughout the frequency range, the method is deemed unstable.
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Figure 21: Problem case Mean square error

4.2.2 Polynomial method results

In the polynomial method, multiple possible indicators are mentioned to calculate the reaction to
the damage. The main di�erence with the �ngerprint analysis is that here, the sideband amplitudes
are not normalised. This makes the magnitude of the resulting damage indicator heavily dependent
on the frequency, at the resonance the magnitude will be higher. All approaches have similar results
in terms of shape, all need to be plotted on a log scale for comparison.
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Figure 22: Polynomial method results from equations 15, 16, 17 & 18

One large di�erence between the four is the magnitude itself, ranging from 10−10 in Figure 22a
to 1014 in Figure 22d. As is clear from the logarithmic y-scale, the method is very volatile, the
magnitude of the damage indicator shifts too much over the frequency range for it to be a robust
damage indicator.

4.2.3 RASTAR method results

In this method, all the sidebands in the spectrum are used to normalise the relative sideband
amplitude to a percentage of the summation. As explained above, the amount of sidebands that
are included in the calculation can be varied at will. The e�ect of changing the amount of included
sidebands can be seen in Figure 23, all three are the pristine case compared to the D50T damage
case. This method seems to behave more consistently. The indicator shows peak values at the
anti-resonances. As expected, the lower frequencies show little change from using more sidebands,
since the higher order terms do not hold much meaning for these frequencies. However, even for
the higher frequencies, the lower amount of sidebands taken into account seem to result in a more
sensitive indicator at the anti-resonances, but less at all other frequencies.
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Figure 23: RASTAR method for 4,8 & 12 sidebands

The method yields fairly consistent values over the frequency range. Figure 23 shows the 50%
damage case, which is a relatively excessive damage. To check the sensitivity the lower damage
severities are also plotted in Figure 24. The indicator behaves as expected, a gradual increase in
damage results in a gradual increase in damage indicator. The overall shape remains similar.
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Figure 24: RASTAR method for three damage severities

The damage indicator should only indicate damage if there is any. Therefore, the pristine
simulation is ran once more, this time with the excitation force halved. This should not change the
dynamic behaviour of the sidebands, but only cause a vertical shift in overall amplitude. This case
is then compared to the original pristine case and the D10T damage case, the smallest damage
case. The result is shown in Figure 25. As can be seen, the blue line, which represents the damage
indicator for the pristine case compared to the pristine case at low force, is non-existent in relation
to the damaged case. The method works regardless of the input force. So this shows that just a
vertical shift in the spectrum does not result in an indication for damage.
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Figure 25: Pristine at Low Force comparison

Longitudinal damage

As mentioned in Section 3.1, longitudinal damage, or a delamination, is also modelled and simu-
lated. The RASTAR method is also used to calculate the indicator for this damage type. The three
severities are compared and plotted in Figure 26. As can be seen in the Figure, the behaviour is
as expected, increasing damage results in increasing indicator. When compared to the transverse
damage in Figure 24, the indicator is less sensitive to the longitudinal damage. As said before,
this is not a damage type that is expected to occur in an aluminium beam, this is just for proof of
concept purposes. The indicator should not solely detect transverse cracks.
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Figure 26: Three severities of longitudinal damage

Introduction of random noise

Numerically the generated time signal is perfect without loss of data. The damage indicator should
however be robust enough to generate a higher damage indicator value than the noise �oor in a
more realistic environment. When the overall amplitude is low in the simulation, the criterion still
works if there is no noise. This would be di�erent in the real world where no perfect signal is
generated. White noise is added to the sideband amplitudes of every spectrum. A random number
between 0 and 1 is generated and multiplied with (10−8). This random value is then added to
all sideband amplitudes over the full frequency range. This does not produce realistic noise, since
the power level is uniform over the frequency range in this simulation, but gives a good indication
on how robust the method is. The indicator for a damaged case should always yield a higher
value than the benchmark. The benchmark is the pristine case with random noise, compared to a
pristine case with di�erent random noise.
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Figure 27: Damage indicator for transverse damage cases with random noise

In addition to all damage severities, the benchmark case is plotted (blue line). A distinctive
behaviour is seen by the benchmark case. Some frequencies show a near-zero indicator value, these
are the eigen-frequencies, where the signal-to-noise ratio is very high and is therefore less e�ected
by the noise. It is clear from Figure 27 that in the higher frequencies (> 3000 Hz), the 10%
damage case can result in a lower indicator value than the benchmark. This is not the case in the
lower frequencies, which can be seen better in Figure 28. Here, a clear distinction can be made
between all damage severities and the benchmark, despite the noise. This means that selection of
frequencies to test is important for damage detection.
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Figure 28: Zoom of damage indicator for the 4 cases up to 1000 Hz
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5 Experimental validation

The results obtained in the numerical study are validated by experimental analysis. The experi-
ments are conducted with the knowledge that the result will di�er from the numerical model. The
general behaviour is expected to be the same, the peaks of the indicator at the anti-resonances as
found in the numerical analysis are not expected to be as high, mainly because of the lower ex-
pected signal-to-noise ratio. First an overview of the test set-up is described. Then the procedure
used for the experiments is explained. Finally the experimental results are discussed and compared
to the numerical results.

5.1 Test set-up

For the experimental analysis, a test set-up was build. A steel L-frame was available in which
the samples could be clamped. The frame was bolted to a metal plate using steel framework and
bolts to fasten it down. The metal plate is �xed to a concrete block on rubber legs to damp
most vibrations from the room. The specimen is an aluminium beam of 30 mm wide and 10 mm
thick. The length is approximately 500 mm, but the beam is clamped to have an e�ective length
of 400 mm. The di�erence in width to the simulation does not matter for the eigen-frequencies,
as explained with equations 20. The beam is categorised as aluminium 6082-T6. The laser used
for the experiment is the Polytec PSV-I-560. The laser is positioned su�ciently far from the rig so
the mirror rotation allows for the laser to scan the entire length of the beam. As in the simulation,
only the bending of the beam should be measured. Some torsional component is expected in the
experiment. To minimise this, the laser is aligned with the middle of the beams width. The system
will only use the x-scanning mirror, so the scan head must be as level as possible. This makes sure
only the centre line of the beam is measured, which should only show bending.

ωi = A2
i ·
√
EI

ml3
= A2

i ·

√
E bh3

12

bhlρl3
= A2

i ·

√
E h3

12

hlρl3
(20)

At the free end of the beam, a shaker is attached via a stinger and a force gauge. The force gauge
is glued directly to the beam. The shaker is connected via an ampli�er to the computer with the
control and acquisition software. The shaker is set up to excite the beam at a horizontal angle.
The computer is also connected to the laser head and controls the scanning mirrors. A picture of
the experimental set-up is shown in Figure 29.
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Figure 29: Experimental set-up

5.2 Experiment description

The experiments are conducted for six cases, three damage severities and two scan rates. The
damage cases are: Pristine, a 1 mm by 1 mm cut at 40 mm from the root, and a 2 mm by 2.5 mm
cut at 40 mm from the root. The scan rates are set at 1.1 Hz and 0.9 Hz. For all tests, the
same beam is used. Conducting the experiments for the full frequency range used in the numerical
analysis is not considered viable. Aluminium does not have a fatigue limit and fatigue will start to
be a factor if the full range would be tested for multiple damage severities. Considering this and
limited time, a frequency range is de�ned. The tests are done from 20 to 1000 Hz with a frequency
step of 1 Hz. In this frequency range, the numerical results indicate a clear di�erence between the
damage severities, even in the presence of noise. This is because the excitation amplitude of the
beam is relatively high in this region, yielding a favourable signal-to-noise ratio. The trade-o� is
that in the simulation the higher frequencies result in the highest peaks in the damage indicator.
In the region below 1000 Hz the settings of the laser precision, sample rate and force ampli�cation
can be kept constant and still yield good results throughout.
Before every run, the FRF of the tip of the beam is collected with the laser, up to 2000 Hz to �nd
the eigen-frequencies and anti-resonances. Then, the test is done for the speci�ed frequency range
and the time signals are saved for every frequency. Every frequency is scanned for 10 seconds with
a sample time of 9.765625E−5 seconds. After both scan rate tests for one damage case are done,
the beam is removed from the rig and milled to the damage speci�cation mentioned above.
The time signal is post-processed in the same manner as in the simulation, a dFFT at the speci�c
scan rate up to 15 sidebands is performed. To reduce noise, the left- and its respective right-hand
sidebands are averaged, since these should be equal. The damage indicator is calculated for all
frequencies, the results are discussed in the following section.

5.3 Results and discussion

The FRF of the pristine beam is viewed in Figure 30. The �rst 3 eigen-frequencies and anti-
resonances are marked. The FRF shows that the beam does not vibrate in pure bending motion,
as expected some torsional vibration modes can be seen. These are some of the small peaks between
the resonances of the bending modes.
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Figure 30: FRF of Pristine case

First, for the benchmark case, the pristine case of 1.1 Hz scan rate is compared to the 0.9 Hz
scan rate. The result shown in Figure 31 behaves as expected. At the resonances of the beam,
the signal-to-noise ratio is very high, resulting in a low damage indicator. In between the eigen-
frequencies, a higher indicator value is reached due to the noise.

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

10

20

30

40

S
u
m
m
ed

D
iff
er
en
ce

Figure 31: Un�ltered results of benchmark case

The output spectra of the pristine case at the 1.1 Hz scan rate are compared to the 1 mm
damage case and the 2.5 mm damage case. This is done in the same manner as described above
in the indicator de�nition using equation 19 for the RASTAR method, the �rst 8 sidebands are
included in the calculation. The result is viewed below in Figure 32. The blue line represents the
benchmark case. The red line shows the damage indicator of the 1 mm damage case with respect
to the pristine case and the yellow line the 2.5 mm damage case with respect to the pristine case.
In the ideal situation, the yellow line should yield the highest value on the damage indicator, the
red line the second highest and the blue line the lowest over the entire frequency range, this is the
case for most frequencies.
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Figure 32: Un�ltered results of benchmark case

One observation that immediately stands out from the results is that many peak values ap-
pear very periodically. The spikes in the experimental results of the damage cases are all linear
combinations of 11 Hz, or a tenfold of the scan rate of 1.1 Hz. This can be explained as scan rate
harmonic speckle noise. Martarelli and Ewins published on speckle noise related to the scan rate
in 2006 [24]. It was stated that at the scan rate and its harmonics, noise is expected in the signal.
If noise is introduced by the scan rate, and at the scan rates harmonics, then all measurements
that are a multiple of 1.1 will be e�ected. The beam is excited at integer frequencies, so the �rst
scan rate harmonic that occurs is at 11 Hz. Because of the discrete sideband operations in the
damage indicator, the scan rate harmonics coincide precisely with the sidebands at that harmonic
excitation frequency. The noise at exactly these frequencies contribute to a changing spectrum
shape on which the damage indicator is based, resulting in a higher damage indicator value. The
trend of the damage indicator result would be more clear without this speckle noise. Therefore
these peaks should be �ltered out. The periodicity of these peaks can be more clearly seen when
a FFT of the damage indicator result itself is taken over the frequency range. The result for the
1 mm damage case is viewed in Figure 33. The peaks can immediately be distinguished, however,
the x-axis needs to be modi�ed to present the correct frequencies.
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Figure 33: FFT of indicator graph for the 1 mm damage case

As implemented above, an FFT takes a time signal and transforms it to a frequency spectrum
of that signal. In this case, the input is in the frequency domain, so the output should be modi�ed.
The input is treated as a time signal of 1 second, the measurements range from 20 Hz to 1000 Hz,
this means 981 sample point. So a 'sampling frequency' of 981 Hz. An FFT of such a signal
results cuts o� at a Nyquist frequency of half that, 491 Hz. The �rst peak appears at 90 Hz in
the unmodi�ed FFT. This means a period of 1

90 s. This multiplied with the number of samples:
981, equals nearly 11 Hz. When the x-axis is modi�ed to represent that, the peaks at the 11 Hz
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harmonic become clear, as seen in Figure 34. The graph is now also cut o� at 491 Hz, the expected
Nyquist frequency. To make the graph smoother, notch �lters were placed at these harmonics. This
will make the behaviour of the damage indicator more clear. The �ltered FFT is also plotted in
Figure 34. This gives a better sense of the general, underlying behaviour of the damage indicator.
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Figure 34: Filter e�ect of FFT of 1 mm damage case with modi�ed x-axis

These �lters are also applied to the benchmark case. An important thing to note is that the
comparison of the pristine case consists of a scan at 1.1 Hz and a scan at 0.9 Hz, meaning that the
speckle noise harmonics at 9 Hz should also be �ltered as well. The result of the �ltered damage
indicators is shown in Figure 35.
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Figure 35: Filtered experimental results of damage indicator

5.4 Comparison to numerical

In the introduction to this section, the hypothesis was made that the numerical results would not
be the same as the experimental results. In this section, the experimental part is compared to
the numerical part. The FRF and the damage indicator are compared in Figure 36, where the 1
mm damage case is plotted over the FRF up to 1000 Hz. There are a few frequencies that stand
out, the peaks in the indicator at 267 Hz and 678 Hz. The relevance of these frequencies can be
explained when compared to the FRF.
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Figure 36: Filtered indicator results (left axis) in relation to the FRF (right axis)

Both peaks in the damage indicator are close to the anti-resonances at 225 Hz and 717 Hz,
however both also show a small peak in the FRF around these actual frequencies. These are spec-
ulated to be torsional components. The FRF does not align well with the analytically calculated
eigen-frequencies, shown in Table 9. A contributing factor to this is that it was found that the
rig build to clamp the frame is not perfectly rigid in this frequency range. Some compliance was
found in the system that has in�uence on the eigen-frequencies.

Table 9: Eigen-frequency comparison

ω Analytical (Hz) Experimental (Hz)
1 51 45
2 319 291
3 889 795

There is some con�icting information. The low noise between 700 and 800 Hz for the Pristine
case indicates the resonance, namely high signal-to-noise ratio due to the large excitation amp-
litude. This does not truly line up with the peak of the third eigen-frequency in the FRF, like it
does in the numerical analysis. This also seems to be the case for the second eigen-frequency. If
the FRF were to shift left to accommodate for this, the peak in the indicator does line-up with
the second anti-resonance, but the �rst anti-resonance would not line-up with the peak at 267 Hz
in the D10T damage case.
The general behaviour of the pristine case, compared to another pristine case correlates very well
to the numerical results with added random noise. The noise at frequencies between the resonances
result in a relatively high damage indicator. At and around the eigen-frequencies, the signal-to-
noise ratio increases and the damage indicator becomes lower. This shows up less in the range
between 20 and 1000 Hz in the numerical results, however the overall behaviour is similar, as
displayed by the blue line in Figure 27.
Another di�erence is found in the overall shape between the damage indicator results of the ex-
perimental and numerical analyses. This is because of a fundamental di�erence in the way the
experiments are conducted and the simulation is performed. In the simulation, a set force mag-
nitude is applied to all frequencies, while in the experiment, the force magnitude di�ers for every
frequency. This is part of the reason why the indicator had to include some sort of normalisation
of the force input level. This is also why the signal to noise ratio is so high for the �rst 1000 Hz in
the model.

5.4 Comparison to numerical 32



6 Conclusions

In this thesis, an existing measurement method in the form of Continuous Scanning LDV (CSLDV)
was used to devise a novel way of performing structural health monitoring. The literature study
reviews that the CSLDV method has the potential for rapid damage detection. Where most cur-
rent methods reconstruct the operational de�ection shape from the CSLDV output signal. This
method directly uses the spectral sidebands extracted from the CSLDV method.
A �nite element model of the beam is made and the dynamic behaviour of the beam is analysed.
By keeping the simulation to a two-dimensional problem, the spatial information obtained from
the method is minimal.
A strain analysis indicated a higher sensitivity at the anti-resonance than at eigen-frequency. It
seems that the anti-resonance implies an additional constraint in cantilever applications, which
causes a higher sensitivity to damage. Where previous literature is only interested in eigen-
frequencies, a potential application for use in SHM was suggested.
Multiple damage indicators were formulated in pursuit of a sensitive and robust indicator. The
indicators where applied to the numerical results. The RASTAR method, which tracks the con-
tribution per sideband to the sum of the sidebands in a spectrum and compares it to a known
condition, was found to be able to measure the change in dynamic behaviour as a result of the
sti�ness degradation. The method does this independent of the excitation force. The indicator
still performed well when noise was added to the simulation.
The method was then validated by conducting experiments with a pristine case and two damage
cases. In the numerical simulation, it was revealed that the anti-resonances are the most sensit-
ive to the applied damage using the RASTAR method. Although some spikes in sensitivity were
observed, the experimental work could not de�nitively validate this. It did demonstrate that the
method yields logical results. An increase in severity returns an increase in the damage indicator
value.
The goal of the study was to develop a diagnostic method that makes use of solely the spectral
sidebands of the CSLDV method. The RASTAR method was able to detect a damage in the form
of a 1x1x30 mm transverse cut in a 400x10x30 mm beam. The method is considered a robust and
successful damage indicator for application in cantilever structures.
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7 Recommendations & Future work

This section provides an outlook on future application of the method. After which, a list of
recommendations on future work is presented.
For future application of the method it is recommended to be applied to cantilever structures,
excited in anti-resonance. This frequency seems to be the most sensitive to damage. Another
frequency of interest is the eigen-frequency. The high signal-to-noise ratio at the eigen-frequency
shows the lowest value on the benchmark damage indicator. At that frequency, a false positive
indication of damage is less likely to occur. For small expected damages this could be advantageous.
So a combination of excitation frequencies should be employed.
A dynamic maintenance scheme can be implemented using the RASTAR method by evaluating the
damage indicator on a short time interval. Before implementation, tests should be done to �nd an
indicator value that triggers further inspection when reached. This should be established for every
test frequency that will be applied. The rapid method is able to pick up small transverse damages,
so it should be implemented in structures where this damage type is most likely to occur.
For future work, this thesis provides insight in the use of the spectral sidebands of the CSLDV
method for SHM purposes. These recommendations are listed below:

• A very brief strain analysis indicated the use of anti-resonances for application in measuring
structural health. A solid conclusion on the sensitivity to damage at anti-resonance for
cantilever structures could not be drawn based on the experimental work. The novelty of the
potential of the use of anti-resonances should be further investigated.

• The inclusion of the third dimension in the analysis is a logical next step. The laser is
capable of scanning in both x- and y-direction, and more spatial information can be obtained.
Evaluating the damage using the RASTAR method is advised to be implemented separate for
x- and y-scan rates respectively. This should allow for distinction in bending and torsional
components to the damage. Certain damages are expected to e�ect certain de�ection shapes
more heavily and might therefore be more sensitive.

• The method should also be tested on beams with varying damage and excitation locations. A
relation between the damage location and the sensitivity to the damage indicator is apparent,
looking at the strain energy behaviour through the beam. This could be combined with the
analysis of the anti-resonances. Since the eigen-frequencies do not change with the excitation
frequency, but the anti-resonances (measured at excitation location) do vary.

• Another aspect that should be studied is the e�ect of the scan rate, an optimum should
be found where the speckle noise has a minimal impact on the experimental results. There
could also be a scan rate that is more sensitive overall, or more sensitive at certain excitation
frequencies. Also the number of sidebands to be included could be varied per frequency, this
should reduce noise by only taking the most important sidebands in consideration.

• On the current work, the results from the experiments are not as similar to the analytical
or the numerical results as expected. Repeating the experiments could be done with a more
rigid structure. The damage should be applied while the beam is in the rig, to prevent
occurrence of di�erence in modal behaviour other than that due to the damage. This should
yield a better FRF, and probably more agreement with the numerical simulation.
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Diagnostics based on continuous scanning LDV methods:
numerical study

S Bruinsma, D Di Maio, T Tinga
Dynamics Based Maintenance, Department of Engineering Technology, Horst 2, 7522 LW, Enschede, The
Netherlands

Abstract. This paper presents a research work on diagnostics using continuous scanning laser methods.
Structural Health Monitoring based on laser vibrometry can exploit the ability of a scanning laser to measure
vibration responses remotely both regarding temporal and spatial resolution. Therefore, it can be a powerful
approach for rapid damage detection of components presenting an unhealthy dynamic behaviour. The work
is focused on numerical analysis of a cantilever beam which is subjected to damage of different severity levels.
The severity will be measured regarding response phase shift for a fixed excitation frequency. The simulated
nodal responses of the surface being scanned by a laser beam are selected and used for simulating the spectral
responses obtained from CSLDV methods. The main objective of this work is to determine the structural
integrity based on an indicator obtained by referencing the relative spectral sidebands between a pristine and
damage condition.

1. Introduction
In recent years, durability and extension of life of components has become an important topic of research.
Structural Health Monitoring (SHM) focuses on detection of unhealthy dynamic behaviour as damage occurs
and propagates in the structure. The early detection of damage is highly interesting for for maintenance
in the industry, which supported research for better diagnostic tools. These consist of destructive and non-
destructive methods. Obviously, non-destructive methods are preferred, as these are most applicable in the
industry for SHM. A conventional way of testing is to apply strain gauges to the component. However, these
cannot be placed on rotating shafts, for example. Also, the fastening methods cannot always be applied due
to high operating temperature. This can be omitted by using a non-destructive and non-contact measure-
ment technique. Most of these techniques use either laser light, such as Holography, Speckle interferometry
and Scanning Laser Doppler Vibrometry (SLDV), or a camera, like Digital Image Correlation (DIC).
DIC uses a camera and image processing to obtain dynamic information[1]. DIC requires surface preparation
and a lot of post processing to obtain results on the strain. Holography is a expensive method that allows
for comprehensive measurements [3]. The downside for the industry is that the part needs to be isolated and
placed in this large and finely tuned test set-up, increasing downtime of the system. Interferometry needs a
similar sterile environment to do the measurements [9]. SLDV is a more robust approach that allows for the
possibility of in-situ measurements [2]. Continuous SLDV strengthens this application by making it a very
fast measurement method.
This paper focuses on Continuous SLDV, which main advantage is fast acquisition of both spacial and tem-
poral information. CSLDV uses a laser that scans a vibrating structure. The time signal from a sinusoidal
line scan can be modulated to a frequency spectrum [4], which can be used for SHM. The level of depth
in damage detection is categorised in 4 levels, as explained in [5], the definition of the different levels are
displayed in Table 1. Most of the current research with this technique is on locating the damage [6], which
is quantified as SHM level 2. To exploit its main advantage of speed, the level of SHM is reduced to 1 in this
study, where only the detection of damage is pursued.



Table 1: Level of SHM

Level 1 Determination that damage is present
Level 2 Determination of the geometric location of the damage
Level 3 Quantification of the severity of the damage
Level 4 Prediction of the remaining service life

A numerical study is undertaken, analysing a cantilever, aluminium beam. The prismatic beam is
subjected to an oscillating force at the free end. The goal of the study is to determine the sensitivity
of the CSLDV method to introduced damage. To accomplish this, different approaches to defining a damage
criterion are taken.

2. Method
In this chapter the methodology of the research is presented. First the construction of the model is described.
The model is checked and the sensitivity to the damage is analysed. This is then used to define damage
indicators that are sensitive enough to show propagation of damage.

2.1. Numerical Model
Researching the viability and sensitivity of this method is done on a simple geometry, a prismatic, cantilever
beam. The dimensions of the beam are 0.4x0.04x0.01 m (l,w,h) or (x,z,y). The beam is modelled in Finite
Element Program ANSYS Mechanical APDL 16.2. The beam is modelled with 200x20 (x,y) rectangular
SHELL181 elements. Only membrane bending is used, and full integration. All nodes are locked in z-
direction, one end is fixed in y- and x-directions as well. At the other end, an excitation force is applied
in y-direction. The harmonic response is simulated from 1 to 9000 Hz with a frequency step of 1 Hz. The
model shows good correspondence to analytical eigen frequency calculations. The first six eigen frequencies
are compared in Table 2.

Table 2: Comparison Analytical and Numerical

ω1 ω2 ω3 ω4 ω5 ω6

Analytical (Hz) 51.04 319.9 895.4 1755 2901 4334
Numerical (Hz) 51 319 889 1731 2837 4196
Error (%) <0.1 0.3 0.7 1.4 2.2 3.2

The prismatic beam has a consistent width (z-direction) of elements of 0.04 m. Damage is introduced to
the model by reducing the width of the elements, which results in a stress concentration around the damaged
elements. This way of modelling allows for a wide variety of elaborate damage cases, such as delamination
and interlaminar cracks. In this study, a simple damage case is defined: a transverse cut, or saw cut. The
transverse cut is placed at 0.04 m from the root, starting on the lowest row of elements, made in three
severities. The most extreme case is the 50% damage case, where the cut is 0.005 m, thus half the thickness
(in y-direction), which corresponds to 10 elements with reduced width. Furthermore, 25% of the thickness
and 10% of the thickness are evaluated, corresponding to 5 and 2 elements respectively.
The ODS for all frequencies is extracted and a curve is fitted through the shape using the polyfit-function
in MATLAB. The x-coordinates are transformed between −1 and 1, to allow for simulation of the CSLDV
time signal. This time signal is the result of equation 1, from [7].

v(t) =

p∑

n=0

VRn cosn(Ωt) cos(ωt) (1)

Where p is the order of the polynomial used to describe the ODS, VR is the real part of the polynomial
coefficients, Ω is the scan frequency of the CSLDV (in this paper 1.1 Hz.). ω is the excitation frequency.



2.2. Sensitivity
To establish an indicator for the damage severity levels in relation to the vibration modes three FRFs were
simulates for the damage cases. The crack is placed close to the root of the beam (10% the beams length,
measured from the clamped end). The 50% transverse crack is 2 mm wide and 5 mm in length, which causes
a frequency shift of less than 1% from the pristine natural frequency for almost all eigen frequencies, both
FRFs from pristine and damage cases are presented in Figure 1.
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Figure 1: FRF of Pristine & D50T

This behaviour is as expected, the applied damage to the structure reduces the stiffness in the beam [8].
The eigen frequency is proportional to k/m, where k is stiffness and m is mass. The severity of the damage is
commonly measured in the frequency shift of the eigen frequencies. However, for a given structural damping,
the response phase of a damaged structure shows much larger deviation from a pristine condition. As seen
in Figure 1 this shows a higher sensitivity due to phase behaviour at a fixed frequency, such as the eigen
frequency. Table 3 shows both the frequency shift and the phase shift with respect to the resonant frequency.

Table 3: Response to damage severity

Frequency (Hz) Phase shift at ωP (deg)
Eigen P D10T D25T D50T P D10T D25T D50T
ω1 51 51 50 50 -79 -134 -164 -170
ω2 319 318 317 316 -94 -117 -145 -158
ω3 889 889 888 887 -92 -97 -107 -117
ω4 1731 1731 1731 1731 -96 -94 -92 -91
ω5 2837 2837 2835 2833 -94 -97 -105 -115
ω6 4196 4193 4184 4178 -96 -108 -131 -142
ω7 5794 5785 5766 5750 -100 -120 -148 -157
ω8 7616 7602 7571 7546 -104 -127 -154 -163

These differences are visualised in Figures 2 & 3. Where the found values are normalised to the pristine
case and a relative shift is plotted.
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Based on such indicator, the most sensitive modes to the damage can be highlighted and closely observed
during the next phase of the research.

2.3. signal processing
All the ODSs simulated by the FEM are curve-fitted with a 15th order polynomial. LDV output modulated
signals are generated and processed by dFFT. the dFFT is discretised at the excitation frequency and
subsequently at interval of the scan frequency, as in [10]. This results in a middle amplitude with sidebands
at equal distances. The amount of sidebands is equal to the amount of polynomial coefficients. The magnitude
of these sidebands carry the spatial information of the ODS. Meaning that the distribution of the amplitude
of each sideband is characteristic for that system at that specific frequency.
When damage is introduced to the beam, this characteristic distribution of amplitudes over the sidebands
differs, as seen in Figure 4. This is more clearly seen when a log scale on the y-axes is used.
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Figure 4: dFFT at 2nd eigen frequency (P and D50T)

As already introduced, 15 coefficients are used for the polynomial evaluation. However, the ODSs require a
different amount of coefficients, less are needed if the shape is simple like the first bending mode. The minimal
number of coefficients needed to adequately describe the ODS is investigated at the eigen frequencies of the
beam. This is done by checking the MAC value of the fit for increasing number of polynomial coefficients.

Table 4: Minimal Nr. of Coefficients (MAC = 0.999)

eigen freq 1 2 3 4 5 6 7 8
Nr. of coeff. 2 4 5 8 9 10 13 14



So for the second eigen frequency (319 Hz), only 4 coefficients are required to construct the ODS. This
results in many near-zero coefficients, as can be seen in Figure 4. It is important to note that the amplitude
of the sidebands does not simply shift up or down, this would mean that is is the same ODS but at lower or
higher (excitation) amplitude. In the higher order sidebands, it is clear that this is not the case. However,
as said before, these sidebands do not hold much meaning since the amplitudes are near-zero. So it becomes
critical to analyse the difference of the first four sidebands as well.
The following two subsections will provide an attempt to quantify the deviation between a pristine and
damaged case by developing an indicator to rank the damage severity with respect to mode shapes.

2.4. Fingerprint
A method to observe the difference between a pristine and damaged case is to create a so-called fingerprint.
Every sideband is scaled by the one measured at the excitation frequency (ω). This is done for each sideband
(i) following equation 2.

FPAi(ω) = SBAi(ω + Ω · i)/SBA(ω) (2)

FPAi is the fingerprint (normalised) amplitude of sideband i, obtained by dividing sideband amplitude
SBAi over the excitation or middle amplitude. Hence, both pristine and damaged case will present a typical
fingerprint.

2.5. Sideband polynomial
As described before, the spectral sideband amplitudes are related to the polynomial coefficients of the wave
shape of the ODS. The relation between the sideband amplitude and the polynomial coefficient is used to
define a damage indicator. The difference in sideband amplitudes between the pristine case and damage case
is related to the change in ODS, which is a polynomial function. The first sideband corresponds to the linear
term, the second to the quadratic, and so on. This is integrated in the damage indicators defined below.

DIP1 =

n∑

i=1

SBAi
P i − SBAi

Di (3)

DIP2 =
n∑

i=1

SBAPi · ii − SBADi · ii (4)

DIP3 =
n∑

i=1

SBAPi · ii−1 − SBADi · ii−1 (5)

DIP4 =
n∑

i=1

(SBAPi · ii − SBADi · ii) · ω (6)

Where SBAPi is the ith sideband of the Pristine case. ω is the excitation frequency. This is done for a
number of sidebands up to 15.

3. Results
In this section the results of the damage indicators described in the section above are shown.

3.1. Fingerprint
The fingerprint method yields a characteristic shape for the pristine case and the damaged case as seen in
Figure 5. These shapes are referred to the fingerprint of the beam.
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As can be seen in Figure 5, the higher order sidebands show most difference in relative amplitude. These
are however most difficult to detect and in absolute numbers have very low value. The difference is visible
in the first four sidebands when these are observed, see Figure 6. Detecting damage from this Figure can be
done, but assigning a scalar value would be preferable. One possible damage criterion to obtain from this
is the mean square error between the two fingerprints. The mean square error is 0.1 for the second eigen
frequency. When this is evaluated over the entire frequency range, some spikes appear, as seen in Figure 7.
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Figure 7: Mean Square Error for all frequencies

The reason for these spikes is investigated and can be explained with Figure 8.



710 715 720 725 730 735 740 745 750

Frequency (Hz)

10
-10

10
-8

10
-6

10
-4

A
m
p
li
tu
d
e

Pristine

D50T

Figure 8: Problem case Mean square error

From Figure 8, it can be concluded that a large difference in the middle amplitude results in unusually
large Mean Square Errors.

3.2. Sideband polynomial
The result of the sideband polynomial methods are damage indicators that are highly dependent on the
frequency and the method does not normalise the sideband amplitudes. Therefore the indicators only
show meaningful difference around the eigen frequency, where the vibration amplitudes are generally high.
Furthermore, at the anti-resonance a spike occurs, because vibration amplitudes are very small. The
frequency dependency built in to equation 6 shows more consistency regarding the value indicated by the
damage severity. However, at any frequency away from the eigen frequency, the damage is not indicated.
The frequency dependent indicator is view in Figure 9.
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Figure 9: Sideband Polynomial Indicator

4. Conclusions
In this study, the use of the CSLDV method for SHM purposes is explored. The method is fast in assessing
the ODS of a beam by using the FFT frequency spectrum. This spectrum has a characteristic shape that can
be used as a reference. The fingerprint method shows potential in detecting the difference between a damaged
and pristine spectrum. However, this method shows inconsistent behaviour over the frequency range, making
it an unsuitable approach for this application. The other methods suffer from the same problem, a very small
window of frequencies is found where a useful value can be extracted. This makes it heavily model dependent
and not much more useful than the current technique of measuring the shift in eigen frequency.
The problem with the fingerprint method is that the indicator is too dependent on the amplitude of one of



the sidebands used for the calculation and therefore makes the indicator unstable. The approach of relative
contribution of the sidebands does hold. When fixed frequencies are observed, the overall amplitude changes
when damage is introduced, as seen in the FRF. From an application point of view, this is also the case when
not the exact same force is applied. So making the sidebands a relative, or normalised factor would make it
comparable again.
Instead of normalising the sideband amplitudes to one sideband, it would be better to assign partial
contributions to the sidebands in relation to all other sidebands. This is further investigated, mathematically
and experimentally, in an upcoming paper.
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