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Summary

A platoon consists of several automated vehicles driving as one group on the road. Because of com-
munication between cars and lack of human drivers that require time to react, the distance between
vehicles can be decreased, improving traffic flow. One problem regarding platoons is the situation when
a new vehicle wants to enter the highway. Space between vehicles is small, so the platoon has to make
a gap for the merging vehicle, while the merging car has to arrive at the gap in the platoon at a specific
time. The goal is to extend and improve a current model for platoons such that a new vehicle is able to
merge into the platoon when it enters the highway.

First, the platoon is modeled. Based on the dynamics that describe a single vehicle and the desired
distance between two vehicles, it is possible to define an error and derive the error dynamics. Since
the error should converge to zero, a distributed controller is introduced such that the resulting system
is stable. This model for a platoon is extended by defining a new error that takes into account both the
vehicle in front and the vehicle behind a given vehicle. With this new error and the same distributed
controller, a more general model is derived and it is proven that this system is asymptotically stable
when certain constraints are met.

Next, the model for the platoon is adapted such that a vehicle is able to merge into the platoon on the
highway. This requires creating a gap in the platoon for the merging vehicle and controlling this merging
vehicle such that it will drive next to the created gap at some point. Furthermore, since the merging
vehicle is merging onto a highway, the merge must be completed before the merging vehicle reaches
the end of the acceleration lane. Two slightly different models are proposed: the ‘open-loop’ model aims
to complete the merge at a given time, whereas in the ‘closed-loop’ model the merging vehicle merges
between two given locations. Both models follow a similar approach:

1. A time or location is chosen where the vehicle should merge into the platoon.

2. Based on this time or location, and possibly additional (estimated) variables, two vehicles of the
platoon are selected to increase the distance between them to make room for the merging vehicle.

3. The platoon and the merging vehicle are controlled such that at the chosen time or position the
merging vehicle can merge into the platoon between the two chosen vehicles.

For merging onto the highway, using the ‘closed-loop’ model is the best choice. Simulations are per-
formed to show that with the proposed models a vehicle is able to successfully merge into a platoon
that is driving on the highway.
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Nomenclature

A system matrix of the error dynamics

Au part of the system matrix of the closed-loop platoon dynamics

B input matrix of the error dynamics

Br matrix used in the closed-loop platoon dynamics with a time-dependent standstill
distance r

Bu part of the input matrix of the closed-loop platoon dynamics

In identity matrix of size n× n

I(−1), n matrix of size n × n with ones on the diagonal below the main diagonal and zeros
elsewhere

I(1), n matrix of size n× n with ones on the diagonal above the main diagonal and zeros
elsewhere

J matrix used in the closed-loop platoon dynamics with a time-dependent standstill
distance r

Jm zero matrix of size n × n with the exception that Jm(m, m − 1) = β and Jm(m −
1, m− 1) = 1− β

Lcom maximum distance that the merging vehicle can be away from the platoon and still
communicate to the platoon

m

Lgap additional distance needed to create a gap m

Li length of vehicle i m

Lmerging length of the merging vehicle m

M matrix

P, Q positive definite matrix

R vector containing the second and third time derivatives of all standstill distances ri

Rm vector containing the standstill distance rm of vehiclem and its first two time deriva-
tives

Rmerging vector containing the standstill distance rmerging of the merging vehicle and its first
two time derivatives

U lumped input state vector

X lumped error state vector

7



CONTENTS

a0 acceleration of the virtual reference vehicle m/s2

ai acceleration of vehicle i m/s2

ai0 similar to aij , defines communication of the virtual reference vehicle to vehicle i

aij element of the adjacency matrix A

amerging acceleration of the merging vehicle m/s2

aramp constant acceleration of the merging vehicle used to estimate tramp m/s2

c0, . . . , c5 polynomial coefficients

di distance between vehicles i and i− 1 m

ddi desired distance between vehicles i and i− 1 m

dmerge distance required between vehicle m and the merging vehicle and between the
merging vehicle and vehicle m− 1 before the merging vehicle is able to merge

m

dmerging distance between the merging vehicle and the virtual reference vehicle driving in
front of the merging vehicle

m

ddmerging desired distance between the merging vehicle and the virtual reference vehicle
driving in front of the merging vehicle

m

ei error of vehicle i m

h time gap s

i, j vehicle index

k controller gain vector

k1, k2, k3 element of the controller gain vector

lij element of the Laplacian matrix L

l̂ij element of L̂

m the vehicle in front of which the merging vehicle will merge into the platoon

mij element of matrix M

n number of vehicles in the platoon

pi diagonal element of the pinning matrix P

q0 position of the virtual reference vehicle m

qend position of the end of the acceleration lane m

qi position of vehicle i m

qij element of matrix Q

qmerging position of the merging vehicle m

qramp position of the end of the entrance ramp and beginning of the acceleration lane m

qstart position of the beginning of the entrance ramp m
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r fixed default standstill distance m

ri standstill distance for vehicle i m

rmerging standstill distance for the merging vehicle m

t time s

taccelerate the amount of time it takes the merging vehicle to accelerate to the platoon velocity
with constant acceleration aramp

s

talign the amount of time given for the final adjustments in aligning the merging vehicle
with the gap in the platoon

s

tmerge the time where the merging vehicle merges into the platoon s

tramp the time where the merging vehicle leaves the entrance ramp and enters the accel-
eration lane

s

tstart the time where the merging vehicle enters the entrance ramp to the highway and
the platoon and the merging vehicle start preparing for the merge

s

t̃ramp estimated value of tramp s

u0 desired acceleration of the virtual reference vehicle driving in front of the platoon m/s2

u0,merging desired acceleration of the virtual reference vehicle driving in front of the merging
vehicle

m/s2

ui desired acceleration of vehicle i m/s2

umerging desired acceleration of the merging vehicle m/s2

ūi new input signal for the error dynamics m/s2

v0 velocity of the virtual reference vehicle driving in front of the platoon m/s

v0,merging velocity of the virtual reference vehicle driving in front of the merging vehicle m/s

vi velocity of vehicle i m/s

vmerging velocity of the merging vehicle m/s

vplatoon platoon velocity defined to be the velocity v0 of the virtual reference vehicle driving
in front of the platoon

m/s

vdplatoon desired platoon velocity m/s

v̄0 constant velocity of the virtual reference vehicle m/s

v̄platoon constant platoon velocity m/s

x vector

xi error state vector of vehicle i / element of vector x

xmerging error state vector of the merging vehicle

α scalar weight between 0 and 1 used in the communication topology

β scalar weight between 0 and 1 used in the error
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δend distance from the merging vehicle to the end of the acceleration lane qend m

δi distance from vehicle i to the beginning of the acceleration lane qramp m

δmerging distance from the merging vehicle to the beginning of the acceleration lane qramp m
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τ drive-line dynamics time constant s

φ drive-line dynamics time delay s

A adjacency matrix

E edge set representing the communication links between vehicles

E0 same as E but includes additional edges for communication with the virtual refer-
ence vehicle

L Laplacian matrix

L̂ sum of Laplacian matrix L and pinning matrix P

Ni neighboring set of vehicle i

Om×n zero matrix of size m× n

P pinning matrix

V set of vehicles that form the platoon

V0 set of vehicles that form the platoon plus the virtual reference vehicle

⊗ Kronecker product
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R set of all real numbers

Rm×n set of all real m× n matrices
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1. Introduction

As roads are getting more crowded day by day, it becomes increasingly difficult to handle the growing
numbers of vehicles while avoiding traffic congestion and guaranteeing the safety of users. Improving
the existing infrastructure, however, is not always possible due to, for example, high costs or a lack of
space. Another possible solution is to introduce (partially) automated vehicles, which will accelerate
and decelerate based on the surrounding traffic. Such vehicles use the signals obtained by on-board
sensors or through communication with nearby vehicles to adjust their speed. Using fully automated
vehicles would eliminate slow reactions and mistakes from human drivers and also enable vehicles to
better anticipate upcoming obstacles or future actions of other vehicles. As a result, vehicles will then
be able to drive closer together, which would improve traffic flow and increase the road capacity allowing
more vehicles to drive on any given part of the road, while it would still be possible to guarantee the
safety of the passengers.

With recent technological advancements in current cars such as automatic parking, lane keeping assist,
and adaptive cruise control, which is able to adjust its speed based on how fast the vehicles ahead are
driving, a first step towards fully automated vehicles has been made. The next step would be to let these
automated vehicles communicate with each other. This is possible with the cooperative adaptive cruise
control, which is an extension of the adaptive cruise control that allows vehicles to receive information
such as the velocity or acceleration of nearby vehicles through wireless communication.

When vehicles are at least automated in the longitudinal direction, meaning that their velocities are
automatically adjusted to the surrounding traffic, and they are able to communicate with each other in
some way, it is possible to let these vehicles drive grouped together in a so-called platoon. This is
the case, for example, when vehicles are equipped with cooperative adaptive cruise control. A platoon
consists of several automated vehicles that are driving close together on the road in a single line. The
vehicles that are driving in the platoon will all try to maintain the same velocity and will accelerate or
decelerate together. The first vehicle of the platoon, the leader of the platoon, determines the speed
of the platoon. The remaining vehicles, the followers, follow behind this vehicle at a desired distance
and hence will strive to maintain the same velocity as the leader. Each vehicle in the platoon is only
able to communicate with the vehicles that are nearby, often only with its direct neighbors. This means
that each vehicle only has access to local information. Not all vehicles know, for example, the desired
velocity of the platoon.

Platoons are formed by controlling the distances between the vehicles. The desired distance between
vehicles can be defined by using a constant distance, which is mostly used in truck platooning, or
by using a constant time gap, as is used in the cooperative adaptive cruise control [7]. By using a
spacing policy that is based on a constant time gap the desired distance between two vehicles becomes
dependent on their velocities. In combination with a constant standstill distance this results in an often
used spacing policy that is known to improve safety and string stability [6, 10, 11, 21, 22]. Since the
leader of the platoon does not follow behind a vehicle, for the leader only the velocity needs to be
controlled. It is also possible to introduce a virtual leader for the platoon that drives at the desired
platoon velocity such that the distance of the first vehicle of the platoon to the virtual leader can be
controlled in the same way as the distances between the other vehicles. The main goal of platooning is
to decrease the distances between vehicles such that they drive closer together. Advantages of letting
vehicles drive in platoons therefore include a higher road capacity, improved traffic flow, increased safety,
and reduced fuel consumption due to improved aerodynamics [7, 19, 21].

Platoons have mainly been modeled as distributed systems, since they only exchange local information
and no centralized control is required. For the same reasons, many approaches to controlling the
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CHAPTER 1. INTRODUCTION

vehicles in platoons include distributed controllers or control algorithms. Since vehicles have to agree
on the distances between them and their velocities, often distributed consensus algorithms are used
when dealing with cooperative vehicles [12, 13]. Such methods from distributed consensus control are
applied specifically to platoons in [19, 21, 22, 24]. In [1] a slightly different approach is used based on
partial differential equations to model vehicles equipped with cooperative adaptive cruise control. And
also [18] uses a method based on partial differential equations for modeling platoons. Other methods
for controlling the vehicles of a platoon include model predictive control which is based on solving
constrained optimization problems [2, 3].

There have been many successful trials with platoons of automated vehicles, where passenger cars
were equipped with the necessary hardware and control systems [6, 8, 9, 10, 22, 23], but there are
also still many problems that need to be solved before platoons will be used on a large scale. For
example, vehicles will need to be able to join and leave platoons, platoons need to be able to merge
together into one big platoon or split into smaller ones, and vehicles entering a highway need to be
able to merge with a platoon that is already driving on the highway. Some problems have already been
studied in recent research. In [23] velocity constraints are introduced to model the case where a slow
or faulty vehicle joins the platoon. Instead of the homogeneous platoons that are often considered, [19]
models a heterogeneous platoon taking into account differences between vehicles. In [1] the effect of
parametric uncertainties on the stability of platoons is studied. And [2] focuses on control of a mixed
traffic flow that consists of both autonomous vehicles and human driven vehicles, since it is very likely
that they will coexist in the future. The focus of this thesis will be the control of a platoon on a highway
and a separate vehicle entering the highway such that the vehicle will merge with the platoon.

Some previous research has been done regarding the merging of platoons. In [17], a lane change
maneuver is proposed for several different cases of lane changes. Some maneuvers such as forming
a platoon, merging, or splitting are considered in [19]. The merging of a vehicle into a platoon in the
adjacent lane is implemented in [19] as follows: the merging vehicle decides that it will become the
i-th vehicle in the platoon, a virtual copy of the (i − 1)-th vehicle is created in the lane of the merging
vehicle such that it will adjust its position and velocity accordingly, then a virtual copy of the merging
vehicle is inserted into the platoon such that it will create a gap for the merging vehicle, and finally the
vehicle merges into the platoon. This is simulated in [19] for a platoon consisting of three vehicles.
Scenarios considered in [5] do include the merge of a vehicle into a platoon and a lane reduction where
two platoons need to merge because one of the lanes ends, which could be applied to merging onto a
highway, but the research is mostly focused on the design of an interaction protocol. For merging onto
the highway, however, the merging protocols as described above are not very practical. On a highway,
such as the one in figure 1.1, it is only possible for a vehicle to enter the highway while it is driving in
the acceleration lane. And if a platoon is driving in the adjacent lane of the highway at the same time,
the vehicle will have to merge into the platoon before the end of the acceleration lane, which means that
there is a limited window to complete the merge.

As mentioned before, this thesis will model the merge of an automated vehicle into a platoon that is
driving on the highway. The situation that will be discussed is illustrated in figure 1.1. After driving on
the entrance ramp to the highway, a vehicle is now driving in the acceleration lane of the highway. This
vehicle wants to enter the highway by changing to the adjacent lane, which should be done before the
vehicle reaches the end of the acceleration lane. In the adjacent lane, however, a platoon is driving.
And because the distances between vehicles in the platoon are small, the vehicle is not able to change
lanes. The goal is therefore to control the vehicles of the platoon and the vehicle in the acceleration
lane such that it can merge into the platoon.

To model the merge of a vehicle into a platoon, however, we will first need to consider the behavior
of a platoon. Since the velocities of vehicles need to be automated in order to form a platoon, only

Figure 1.1: The highway.
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the longitudinal motion of the platoon will be considered. Based on the distributed methods used in
[21, 22, 24] a model will be derived for a platoon. This model will be able to capture the behavior
of a platoon, but will not include any maneuvers that are necessary for letting a vehicle merge into a
platoon. In particular, the following problems will have to be considered. First of all, the platoon should
be able to increase the distance between two vehicles such that a gap is created for the merging vehicle.
Secondly, the merging vehicle, which usually has a lower initial velocity than the platoon on the highway,
has to accelerate to match the speed of the platoon and at the same time make sure that it is driving
in the correct position with respect to the platoon such that it will be able to merge into the platoon. In
addition, it should be decided between which vehicles of the platoon the vehicle will merge. And finally,
the merge should take place before the merging vehicle reaches the end of the acceleration lane.

The outline of this thesis is as follows. First, the platoon is modeled in chapter 2. Based on the dynamics
that describe the longitudinal motion of one vehicle and the desired distance between two vehicles, it
is possible to define an error and derive the error dynamics. Since the error should converge to zero,
a distributed controller is introduced such that the resulting system is stable. This model for a platoon
is extended by defining a new error that takes into account both the vehicle in front and the vehicle
behind a given vehicle. With this new error and the same distributed controller, a more general model is
derived and it is proven that this system is asymptotically stable when certain constraints are met. Next,
in chapter 3 the model for the platoon is adapted such that a vehicle is able to merge into the platoon
on the highway. This requires creating a gap in the platoon for the merging vehicle and controlling this
merging vehicle such that it will drive next to the created gap at some point. Furthermore, since the
merging vehicle is merging onto a highway, the merge must be completed before the merging vehicle
reaches the end of the acceleration lane. Two slightly different models are proposed: the ‘open-loop’
model of section 3.2 aims to complete the merge at a given time, whereas in the ‘closed-loop’ model
of section 3.3 the merging vehicle merges between two given locations. Both models follow a similar
approach:

1. A time or location is chosen where the vehicle should merge into the platoon.

2. Based on this time or location, and possibly additional (estimated) variables, two vehicles of the
platoon are selected to increase the distance between them to make room for the merging vehicle.

3. The platoon and the merging vehicle are controlled such that at the chosen time or position the
merging vehicle can merge into the platoon between the two chosen vehicles.

For merging onto the highway, using the ‘closed-loop’ model is the best choice. Chapter 4 gives some
details on how the models are implemented and in chapter 5 some simulations are performed to show
that with the proposed models a vehicle is able to successfully merge into a platoon that is driving on
the highway. Finally, the conclusions are given in chapter 6.
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2. The platoon

Before including the merging in any model, we will first focus on the platoon. A platoon consists of
multiple automated vehicles driving in a group together on the road. The first vehicle of the platoon, or
the leader of the platoon, sets the pace for the platoon. The remaining vehicles follow in a line behind
the first vehicle, while each vehicle is trying to maintain a certain distance to its direct neighbors. This is
usually done based on signals that each vehicle can measure and on information received from others,
often their direct neighbors. Vehicles exchange local information only, which could mean that only the
first vehicle of the platoon knows the desired velocity of the whole platoon or that, when a vehicle in the
front of the platoon suddenly brakes, a vehicle further to the back does not know until the vehicle directly
in front of it starts to brake. Vehicles do not need to be fully autonomous in order to drive in a platoon,
but they need at least to be automated in the longitudinal direction. This means that any accelerating
or braking is done fully automatically, while a human driver might still be needed to steer the vehicle,
though also this lateral motion could be controlled. Nevertheless, in this thesis only the longitudinal
motion of vehicles is considered.

The outline of this chapter is as follows. Section 2.1 starts by explaining the mathematical description
of a platoon. The signals that are available to each vehicle in the platoon are listed in section 2.2.
Section 2.3 states a model that can be used for one vehicle. Based on this information and the desired
distance between two vehicles defined in section 2.4, it is possible to define an error and derive the
platoon dynamics, which is done in section 2.5. Section 2.6 introduces a controller such that a stable
system can be derived that describes the complete platoon. Next, in section 2.7 the communication
between the vehicles of the platoon is discussed and a new error is introduced that takes into account
both direct neighbors of a vehicle. With this general error, section 2.8 derives, in the same way as
before, a stable system that models the complete platoon. And finally, in section 2.9, it is proven that
this system is asymptotically stable when certain constraints are met.

2.1 Structure of a platoon

To model a platoon, first of all, it is necessary that we are able to clearly describe the platoon that
is to be considered. The structure of the platoon can be represented by a directed graph consisting
of a node set V and an edge set E ⊆ V × V. Suppose that the platoon consists of n vehicles, then
V = {1, . . . , n} is the set of all vehicles in the platoon. Vehicle i is defined to be the i-th vehicle from
the front of the platoon. The communication between vehicles is represented by the edges: if edge
(j, i) ∈ E , then vehicle j is able to communicate to vehicle i. All vehicles that communicate to vehicle
i form the neighboring set Ni of vehicle i, that is, j ∈ Ni whenever (j, i) ∈ E . The communication
topology is also given by the adjacency matrix A = [aij ] ∈ Rn×n, for which holds that

aij =

{
1 (j, i) ∈ E (or j ∈ Ni)
0 otherwise.

(2.1.1)

Thus, if aij = 1, vehicle i receives information from vehicle j. Vehicles do not communicate to them-
selves, so the graph does not contain any edges (i, i) and all diagonal elements aii are equal to zero.
The adjacency matrix can be used to assign weights to the communications links. In this case, any
element aij > 0 of adjacency matrix A represents a communication link from vehicle j to vehicle i with
weight aij .

15



CHAPTER 2. THE PLATOON

Another representation of the communication topology is the Laplacian matrix L = [lij ] ∈ Rn×n, which
is defined as

lij :=

{
−aij i 6= j,∑n
k=1 aik i = j.

(2.1.2)

The diagonal elements lii of the Laplacian matrix give an indication of how much information a vehicle i
receives: when all nonzero elements aij are equal to 1, as in (2.1.1), lii equals the number of neighbors
of vehicle i or the number of incoming communication links of vehicle i. The neighbors of vehicle i are
then all the vehicles j for which lij = −1.

Clearly, for the Laplacian matrix we have that lij ≤ 0 for i 6= j and lij ≥ 0 for i = j. From the definition
in (2.1.2) and the fact that aii = 0 for all vehicles, it follows that the Laplacian matrix also satisfies

n∑
j=1

lij = 0,

and hence has zero-sum rows. As a consequence, zero is an eigenvalue of L with corresponding
eigenvector [1, 1, . . . , 1]T . Furthermore, the Laplacian matrix is diagonally dominant, meaning that

|lii| ≥
n∑

j=1,j 6=i

|lij | ∀i = 1, . . . , n.

And all eigenvalues of the Laplacian matrix L have nonnegative real parts.

Consider, for example, the platoon of figure 2.1, where each vehicle communicates to the vehicle directly
behind. The corresponding adjacency matrix is given by

A =



0 . . . . . . . . . 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 1 0


(2.1.3)

and from the definition in (2.1.2) it follows that the Laplacian matrix is given by

L =



0 0 0 . . . 0

−1 1 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 1 0

0 . . . 0 −1 1


. (2.1.4)

Note that each vehicle now receives information from the vehicle directly in front, except for the first
vehicle of the platoon. This would mean that, later on in this chapter, we will have to design separate
controllers for the first vehicle of the platoon and for the remaining vehicles. Instead, however, it is
possible to introduce a virtual reference vehicle that will be defined to drive in front of the first vehicle of
the platoon and that will act as leader of the platoon (which will be done in section 2.3). This will also
allow us to define the distance di of vehicle i to vehicle i− 1 for all vehicles in the platoon including the
first vehicle. With a virtual reference vehicle, the same dynamics apply to all vehicles in the platoon and
the same controller can be used.

The virtual reference vehicle, denoted by the index i = 0, and the communication links to the vehicles in
the platoon can be included in the graph representation by adding a node 0 and any necessary edges
(0, i) to the graph. This results in a new node set V0 = V ∪ {0} and edge set E0 ⊆ V0 × V. Only
communication from the virtual vehicle to the platoon, represented by edges (0, i), is considered as
our main interest is the platoon. Also, the virtual car as described in section 2.3 is assumed to be
uncontrolled and does not require any communication from the platoon to the virtual reference vehicle.
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2.1. STRUCTURE OF A PLATOON

Figure 2.1: Schematic drawing of a platoon with n vehicles, where each vehicle communicates to the
vehicle behind (depicted by the dashed arrows).

Figure 2.2: Schematic drawing of a platoon with n vehicles and a virtual reference vehicle that drives
in front of the first vehicle, where each vehicle communicates to the vehicle behind (depicted by the
dashed arrows).

The adjacency matrix A = [aij ] ∈ Rn×n of the platoon does not change when the virtual vehicle is
added: the connections within the platoon (which does not include the virtual car) are the same as
before. Only the total number of communication links to a vehicle in the platoon, which is represented
by the diagonal elements of the Laplacian matrix, might change. Therefore, we define ai0 for all i ∈ V,
similar to the elements aij of the adjacency matrix given in (2.1.1), as

ai0 :=

{
1 (0, i) ∈ E0,
0 otherwise.

(2.1.5)

Then it is possible to define a new Laplacian matrix L̂ = [l̂ij ] ∈ Rn×n for the platoon as

l̂ij :=

{
−aij i 6= j,∑n
k=0 aik i = j,

(2.1.6)

where, compared to (2.1.2), the sum now starts at k = 0 instead of k = 1 in order to include the
communication links from the virtual leader to the platoon. For the matrix L̂ we again have that l̂ij ≤ 0

for i 6= j and l̂ij ≥ 0 for i = j. All eigenvalues of L̂ have nonnegative real parts, and L̂ is diagonally
dominant.

The matrix L̂, however, can be split into the Laplacian matrix L, which was defined in (2.1.2), and the
pinning matrix P such that L̂ = L+ P. The pinning matrix P ∈ Rn×n is a diagonal matrix,

P =


p1 0 . . . 0

0 p2
. . .

...
...

. . .
. . . 0

0 . . . 0 pn

 ,

where

pi :=

{
1 (0, i) ∈ E0,
0 otherwise.

(2.1.7)

As (2.1.5) and (2.1.7) show that pi = ai0, it is clear that adding the pinning matrix (2.1.7) to the Laplacian
matrix of (2.1.2) results in the new Laplacian matrix in (2.1.6). The pinning matrix P represents how the
virtual reference vehicle communicates to each of the vehicles in the platoon. For the diagonal entries
of P it holds that pi = 1 if vehicle i receives information from the virtual leader. In that case, we say that
vehicle i is pinned to the leader.

Consider, for example, the platoon of figure 2.2, where each vehicle receives information from the
vehicle directly in front. Since this is the same as the platoon of figure 2.1 but with an added virtual
reference vehicle in front of the first vehicle, the adjacency matrix is again given by (2.1.3) and the
Laplacian matrix by (2.1.4). The virtual reference vehicle communicates to the first vehicle of the platoon
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CHAPTER 2. THE PLATOON

Figure 2.3: Schematic drawing of a platoon with n vehicles and a virtual reference vehicle that drives in
front of the first vehicle. Each vehicle receives information from the vehicle directly in front with weight α
and from the vehicle directly behind with weight 1−α except for vehicle n which only receives information
from vehicle n− 1. The connections between vehicles are depicted by the dashed arrows.

and hence the pinning matrix is given by

P =


1 0 . . . 0

0 0
. . .

...
...

. . .
. . . 0

0 . . . 0 0

 . (2.1.8)

In the remainder of this chapter, we will consider the platoon of figure 2.3. This platoon consists of
n vehicles, where the first vehicle follows a virtual reference vehicle. Each vehicle i of the platoon
receives information from vehicle i − 1 with weight α, where α ∈ [0, 1], and from vehicle i + 1 with
weight 1 − α, except for vehicle n that only receives information from vehicle n − 1 with weight 1. The
weights determine whether the information received from the vehicle in front or from the vehicle behind
is considered to be more important. Using a weight 1 for vehicle n will allow us further on to use the
same equations for all vehicles of the platoon: for vehicle n we simply set α = 1.

The adjacency matrix of the platoon in figure 2.3 is given by

A =



0 1− α 0 . . . 0

α 0 1− α
. . .

...

0
. . .

. . .
. . . 0

...
. . . α 0 1− α

0 . . . 0 1 0


(2.1.9)

and hence, by definitions (2.1.2) and (2.1.7), the Laplacian matrix and the pinning matrix are given by

L =



1− α −(1− α) 0 . . . 0

−α 1 −(1− α)
. . .

...

0
. . .

. . .
. . . 0

...
. . . −α 1 −(1− α)

0 . . . 0 −1 1


(2.1.10)

and

P =


α 0 . . . 0

0 0
. . .

...
...

. . .
. . . 0

0 . . . 0 0

 . (2.1.11)

Note that for α = 1, (2.1.10) and (2.1.11) are the same as (2.1.4) and (2.1.8).

2.2 Measurements

Each vehicle of the platoon decides based on the available signals whether it should accelerate or
decelerate in order to keep its neighbors at the desired distance. These signals can be obtained through
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Figure 2.4: Schematic drawing of a part of a platoon. The position q, velocity v, distance d to its
predecessor, and length L of each vehicle are depicted by the arrows. The subscripts of the variables
indicate to which vehicle an arrow applies.

camera, radar, and lidar systems or through wireless communication with other vehicles in the platoon.
When modeling a platoon it is important to take into consideration that some signals might be difficult
to measure, might be inaccurate, or might not be available at all. It is assumed here that each car i in
the platoon is able to measure

• the distance di(t) to vehicle i − 1 directly in front of vehicle i and the distance di+1(t) to vehicle
i+ 1 directly behind vehicle i,

• the relative velocities vi(t)− vi−1(t) and vi(t)− vi+1(t) with respect to vehicle i− 1 directly in front
and vehicle i+ 1 directly behind vehicle i,

• the velocity vi(t),

• and the acceleration ai(t).

The distance and relative velocities can be measured using radar and lidar systems, while the velocity
and acceleration can be obtained from on-board sensors. The actual position qi(t) of vehicle i is as-
sumed to be unknown since GPS data might be inaccurate, but could be derived from the definition of
the distance di(t) between vehicles i and i− 1,

di(t) := qi−1(t)− qi(t)− Li ∀i ∈ V \ {1}, (2.2.1)

if the position of one vehicle is given and also the length Li of each vehicle is known. The position qi(t)
is defined as the position of the most rear part of the car. Some of these variables are illustrated in
figure 2.4.

2.3 Vehicle dynamics

Based on the assumptions of section 2.2 that for each vehicle i the distance di(t) to the car in front, the
velocity vi(t) and the acceleration ai(t) are available, we define the vehicle state of vehicle i asdi(t)vi(t)

ai(t)

 .

The longitudinal motion of each vehicle of the platoon can then be modeled as
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(vehicle dynamics) ḋi(t)v̇i(t)
ȧi(t)

 =

 vi−1(t)− vi(t)
ai(t)

− 1
τ ai(t) + 1

τ ui(t− φ)

 , (2.3.1)

where τ is the drive-line dynamics time constant, φ is the drive-line dynamics time delay, and ui(t) is the
input signal [10, 21, 22]. Since the engine of a vehicle reacts to driver inputs according to certain
dynamics, the input signal ui(t) is not a direct force. Instead it can be interpreted as the desired
acceleration of vehicle i since the acceleration ai(t) of vehicle i will eventually follow ui(t), though
with a delay φ. The engine characteristics are represented by τ and φ. Assuming that the platoon is
homogeneous, τ and φ are the same for all vehicles of the platoon. For now, it is assumed that φ = 0.
The dynamics in (2.3.1) are derived from nonlinear vehicles dynamics [15, 16], but still provide a more
realistic model for the longitudinal behavior of a vehicle than pure integrator dynamics and it has been
shown that these dynamics are suitable for modeling the longitudinal motion of vehicles [6, 10, 21].

Note that for the first vehicle of the platoon the distance d1(t) is not defined. According to the definition
in (2.2.1), the distance d1(t) depends on the position q0(t) of some vehicle 0, while it follows from (2.3.1)
that its derivative ḋ1(t) depends on velocity v0(t). Therefore, a virtual reference vehicle with index i = 0
is introduced with vehicle dynamicsq̇0(t)

v̇0(t)
ȧ0(t)

 =

 v0(t)
a0(t)

− 1
τ a0(t) + 1

τ u0(t)

 . (2.3.2)

These dynamics are the same as (2.3.1) with φ = 0, except that the vehicle state now includes the
position q0(t) of the virtual car instead of the distance d0(t), which is not defined for the virtual reference
vehicle. The virtual car is assumed to be uncontrolled, cruising at a constant velocity v̄0.

2.4 Desired distance between vehicles

The platoon is formed by controlling the distances di(t) between the vehicles. A commonly used
velocity-dependent spacing policy defining the desired distance ddi (t) between vehicles i and i − 1
is

ddi (t) = r + hvi(t), (2.4.1)

which consists of a constant term r, specifying the standstill distance between cars, and the time-
dependent part hvi(t) with time gap h and velocity vi(t) of vehicle i [21, 22]. This spacing policy is
known to increase road safety and platoon stability [6, 10, 11, 21, 22]. Ideally, the values of h and r are
as small as possible while still guaranteeing the safety of passengers. For homogeneous platoons, r
and h are the same for all vehicles in the platoon.

Instead of controlling the distances di(t) between vehicles directly, we define an error ei(t) for each
vehicle i as

ei(t) = di(t)− ddi (t)
= di(t)− r − hvi(t),

(2.4.2)

which represents the difference between the actual distance to the predecessor of vehicle i and the
desired distance. Since a virtual reference vehicle was introduced in (2.3.2), this error is defined for all
vehicles including the first vehicle, and hence it will be possible to control all vehicles in the same way.
The goal is to design a controller such that the error ei(t) will converge to zero for all vehicles i. When
the errors ei(t) in (2.4.2) are all equal to zero, the distances between vehicles i and i − 1 will be equal
to the desired distances ddi (t) defined in (2.4.1) for all i ∈ V. Note, however, that it is not necessary
that the virtual error of the first vehicle goes to zero, only ė1(t) needs to converge to zero, i.e., the first
car should reach the same speed as the reference vehicle. Nevertheless, it is assumed that also e1(t)
should converge to zero such that the same controller can be used for the whole platoon.
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Furthermore, in addition to controlling the distances between vehicles, the velocity vplatoon(t) of the
platoon should be controlled such that it follows the desired platoon velocity vdplatoon(t). As each ve-
hicle follows behind the leading vehicle, in this case the virtual reference vehicle, the platoon velocity
vplatoon(t) is defined to be the velocity of the leading vehicle:

vplatoon(t) := v0(t).

Because the platoon is supposed to maintain its formation while driving, the velocity vi(t) of each vehicle
i should also be equal to the desired platoon velocity vdplatoon(t). To summarize, the control objective
of the platoon is that all vehicles follow the desired platoon velocity vdplatoon(t) and that the distances
between vehicles match the spacing policy defined in (2.4.1). This objective can also be formulated as

lim
t→∞

ei(t) = 0 ∀i ∈ V,

lim
t→∞

vi(t) = vdplatoon(t) ∀i ∈ V.

For now, it is assumed that the desired velocity of the platoon is constant: vdplatoon(t) = v̄platoon. As
mentioned in section 2.3, it is also assumed that the virtual car is uncontrolled and driving at a con-
stant velocity v̄0. With this virtual reference vehicle, when all errors ei(t) defined in (2.4.2) converge to
zero, all vehicles will automatically be driving at the same constant velocity as the virtual reference car.
Therefore, by choosing the initial state of the virtual car as [q0(0), v̄platoon, 0]T , the reference vehicle will
have velocity v0(t) = v̄platoon, and all vehicles will eventually reach the same velocity.

2.5 Error dynamics

Consider a platoon of n vehicles, which are described by the vehicle dynamics of (2.3.1), with a com-
munication topology described by the adjacency matrix A in (2.1.9), the Laplacian matrix L of (2.1.10)
and the pinning matrix P of (2.1.11) (see also figure 2.3). The virtual reference vehicle is given by
(2.3.2). The drive-line dynamics time constant is denoted by τ and the drive-line dynamics time delay
φ is assumed to be equal to zero (as was mentioned in section 2.3). For a vehicle i, the error ei(t) is
defined in (2.4.2) as

ei = di − r − hvi, (2.5.1)

where r is the standstill distance and h is the time gap. With this error we can now derive the error
dynamics of the platoon. Time arguments are dropped to improve readability.

Using the expressions for the time derivatives of distance di, velocity vi, and acceleration ai given by
(2.3.1), the time derivatives of ei can be derived as

ėi = vi−1 − vi − hai, (2.5.2)

ëi = ai−1 − ai − h
(
−1

τ
ai +

1

τ
ui

)
= ai−1 +

h− τ
τ

ai −
h

τ
ui, (2.5.3)

and

...
ei =

(
−1

τ
ai−1 +

1

τ
ui−1

)
+
h− τ
τ

(
−1

τ
ai +

1

τ
ui

)
− h

τ
u̇i

= −1

τ

(
ai−1 +

h− τ
τ

ai −
h

τ
ui

)
+

1

τ
ui−1 −

1

τ
ui −

h

τ
u̇i

which becomes

= −1

τ
ëi +

1

τ
(ui−1 − ui − hu̇i)
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by substituting the expression for ëi given in (2.5.3) and, finally,

= −1

τ
ëi +

1

τ
ūi (2.5.4)

after defining a new input ūi as

ūi := ui−1 − ui − hu̇i.

This new input ūi can be rewritten as the filter

u̇i = − 1

h
ui +

1

h
(ui−1 − ūi), (2.5.5)

which determines the desired acceleration ui for each vehicle i based on the new input ūi and the
desired acceleration ui−1 of vehicle i− 1.

Next, we define the error state xi of vehicle i as

xi :=

eiėi
ëi

 . (2.5.6)

Combining this error state xi with the expression for ...
ei given in (2.5.4) results in

(error dynamics)

ẋi =

0 1 0
0 0 1
0 0 − 1

τ


︸ ︷︷ ︸

A

xi +

0
0
1
τ


︸ ︷︷ ︸
B

ūi. (2.5.7)

These error dynamics can also be written as

ẋi = Axi +Būi

with matrices A and B defined in (2.5.7).

The error dynamics in (2.5.7) and the filter in (2.5.5) are defined for all vehicles in the platoon as a result
of the introduction of a virtual reference vehicle in section 2.3. Therefore, the dynamics of the complete
platoon are given by

(platoon dynamics)(
ẋi
u̇i

)
=

(
A O3×1

O1×3 − 1
h

)(
xi
ui

)
+

(
B
− 1
h

)
ūi +

(
O3×1

1
h

)
ui−1 ∀i ∈ V, (2.5.8)

where Om×n denotes a zero matrix of size m× n.

Note that to retrieve the values of the vehicle state [di, vi, ai]
T from the error state xi = [ei, ėi, ëi]

T and
the input ui, (2.5.1) to (2.5.3) can be rewritten as

ai = τ
h−τ (ëi − ai−1) + h

h−τ ui,

vi = −ėi + vi−1 − hai,
di = ei + r + hvi,

given that a0 and v0 are known.

2.6 Closed-loop platoon dynamics

Continuing with the situation of section 2.5, in this section we will define a controller for the input ūi in
the platoon dynamics given by (2.5.8) and derive the closed-loop platoon dynamics.

Consider the following distributed controller for the input ūi of (2.5.8):
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(controller)

ūi = −
∑
j∈V

[
aijk

T (xi − xj)
]
− pikTxi, (2.6.1)

where

kT := [k1, k2, k3] (2.6.2)

is the controller gain vector, aij is an element of the adjacency matrix A and pi is the (i, i)-th entry of
the pinning matrix P [21, 22]. The controller given in (2.6.1) can be divided into the distributed part
−
∑
j∈V

[
aijk

T (xi − xj)
]

and the pinning constraint −pikTxi. The pinning constraint is added to ensure
that the state converges to zero [21, 22]. The controller gains kT are the same for the distributed term
and the pinning constraint, but could be designed differently [21].

Note that in (2.6.1) the controller gain k3 of the vector kT in (2.6.2) is associated with the ëi element
of the error state vector xi in (2.5.6), and that ëi in turn depends on ai−1 − ai for each vehicle i (see
(2.5.3)). However, in section 2.2, it was assumed that vehicle i is able to measure the acceleration ai,
but not ai−1 or ai−1 − ai. For this reason, the controller gain k3 is set to zero for all controllers.

Substituting the control law of (2.6.1) into the platoon dynamics of (2.5.8) gives

(
ẋi
u̇i

)
=

(
A O3×1

O1×3 − 1
h

)(
xi
ui

)
+

(
B
− 1
h

)−∑
j∈V

[
aijk

T (xi − xj)
]
− pikTxi

+

(
O3×1

1
h

)
ui−1

=

(
A− piBkT O3×1

pi
1
hk

T − 1
h

)(
xi
ui

)
+

(
B
− 1
h

)−∑
j∈V

lijk
Txj

+

(
O3×1

1
h

)
ui−1, (2.6.3)

where the pinning constraint −pikTxi of the controller is moved to the first term and the elements aij
of the adjacency matrix A are replaced by the elements lij of the Laplacian matrix L, for which, by
definition (2.1.2), holds that lij = −aij for i 6= j and lij =

∑n
k=1 aik for i = j.

Next, we introduce the lumped error state XT :=
[
xT1 , . . . , x

T
n

]
and the lumped input state U :=
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[u1, . . . , un]T such that (2.6.3) can be written as

(
Ẋ

U̇

)
=



A− p1Bk
T O3×3 . . . O3×3

O3×3
. . .

. . .
...

...
. . .

. . . O3×3

O3×3 . . . O3×3 A− pnBkT

O3n×n

p1
1
hk

T O1×3 . . . O1×3

O1×3
. . .

. . .
...

...
. . .

. . . O1×3

O1×3 . . . O1×3 pn
1
hk

T

− 1
h 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 − 1

h



(
X
U

)

+



−l11Bk
T −l12Bk

T . . . −l1nBkT

−l21Bk
T . . .

. . .
...

...
. . .

. . . −l(n−1)nBk
T

−ln1Bk
T . . . −ln(n−1)Bk

T −lnnBkT

O3n×n

l11
1
hk

T l12
1
hk

T . . . l1n
1
hk

T

l21
1
hk

T . . .
. . .

...
...

. . .
. . . l(n−1)n

1
hk

T

ln1
1
hk

T . . . ln(n−1)
1
hk

T lnn
1
hk

T

On×n



(
X
U

)

+



O3n×3n O3n×n

On×3n

0 . . . . . . . . . 0

1
h

. . .
...

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 1

h 0


(
X
U

)

+


O3n×1

1
h
0
...
0

u0.

By using the Kronecker product ⊗, this can be written more compactly as(
Ẋ

U̇

)
=

(
In ⊗A− P ⊗BkT O3n×n

P ⊗ 1
hk

T − 1
hIn

)(
X
U

)
+

(
−L⊗BkT O3n×n
L ⊗ 1

hk
T On×n

)(
X
U

)
+

(
O3n×3n O3n×n
On×3n

1
hI(−1),n

)(
X
U

)
+

(
O3n×1

Bu

)
u0,

(2.6.4)

where In is the n× n identity matrix, I(−1),n is given by

I(−1),n :=



0 . . . . . . . . . 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 1 0


,
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Figure 2.5: Schematic drawing of part of the platoon described by the closed-loop dynamics of (2.6.5)
with a communication topology given by Laplacian matrix (2.1.10) and pinning matrix (2.1.11). Each
vehicle i receives the weighted error states (1 − α)xi+1 and αxi−1 (dashed arrows) and the desired
acceleration ui−1 (dash-dotted arrow).

and

Bu :=

[
1

h
, 0, . . . , 0

]T
.

Finally, adding the first three terms of (2.6.4) together and using L̂ = L+ P (see section 2.1) results in
the closed-loop platoon dynamics

(closed-loop platoon dynamics)(
Ẋ

U̇

)
=

(
In ⊗A− L̂ ⊗BkT O3n×n

L̂ ⊗ 1
hk

T − 1
hIn + 1

hI(−1),n

)(
X
U

)
+

(
O3n×1

Bu

)
u0. (2.6.5)

Note that the closed-loop system of (2.6.5) only requires u0, which is the desired acceleration of the
virtual reference vehicle, as an external input.

2.7 Communication

The derivation of the closed-loop platoon dynamics of (2.6.5) uses the fact that each vehicle of the
platoon is able to communicate with some of the other vehicles in the platoon. The equations in sec-
tions 2.5 and 2.6 use, in addition to the signals that each vehicle can measure with on-board sensors
described in section 2.2, also some signals that must be provided by its neighbors. This includes the
desired acceleration ui−1 of vehicle i−1 that should be communicated from vehicle i−1 to vehicle i, as
follows from the platoon dynamics in (2.5.8). Furthermore, the controller in (2.6.1) shows that vehicle i
requires the error states xj of all its neighbors j ∈ Ni since aij > 0 whenever j ∈ Ni. Considering a
platoon that is described by the closed-loop dynamics of (2.6.5) with a communication topology given
by Laplacian matrix (2.1.10) and pinning matrix (2.1.11), each vehicle i thus communicates the input
signal ui to vehicle i+ 1 with weight 1 and the error state xi to vehicle i+ 1 with weight α and to vehicle
i− 1 with weight 1− α. This is illustrated by figure 2.5.

Which vehicles communicate their states to some vehicle i is completely determined by the communi-
cation topology. To change this in the closed-loop platoon dynamics of (2.6.5) or to change the weights
that are used only the matrix L̂ needs to be adapted. Changing which input signals are communicated
to vehicle i, however, requires a different error to be used. This will become apparent in section 2.8,
where the closed-loop platoon dynamics are derived for a different error.

One error that could be used instead of the error defined in (2.4.2) is given by

ei(t) = β
[
di(t)− ddi (t)

]
+ (1− β)

[
di+1(t)− ddi+1(t)

]
= β [di(t)− r − hvi(t)] + (1− β) [di+1(t)− r − hvi+1(t)]

(2.7.1)

with weight β ∈ [0, 1]. Each term of error (2.7.1) computes the difference between the actual distance
between two vehicles and the desired distance. Recall that the distance di was defined as the distance
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Figure 2.6: Schematic drawing of part of the platoon described by the closed-loop dynamics of (2.8.7)
with a communication topology given by Laplacian matrix (2.1.10) and pinning matrix (2.1.11). Each
vehicle i receives the weighted error states (1 − α)xi+1 and αxi−1 (dashed arrows) and the weighted
desired accelerations βui−1 and (1− β)ui+1 (dash-dotted arrows).

between vehicles i and i− 1 and that the desired distance ddi between vehicles i and i− 1 was defined
in (2.4.1) as

ddi (t) = r + hvi(t)

with standstill distance r and time gap h. Similar to the weights α and 1 − α that were used in the
communication topology of figure 2.3, error (2.7.1) employs weights to control how much each of the
neighbors of a vehicle contributes to the total error. The weight β in the first term applies to the error
in the distance di between vehicles i and i − 1 and the weight β − 1 in the second term to the error
in the distance di+1 between vehicles i and i + 1. This allows error (2.7.1) to take into account both
the preceding vehicle and the vehicle behind, whereas the error defined in (2.4.2) only considers the
preceding vehicle.

Instead of error (2.7.1), however, we will use a slightly different error in the remainder of this thesis. This
error is defined as

ei(t) = β
[
di(t)− ddi (t)

]
+ (1− β)

[
di+1(t)− ddi (t)

]
= β [di(t)− r − hvi(t)] + (1− β) [di+1(t)− r − hvi(t)]

(2.7.2)

with β ∈ [0, 1]. This error is the same as error (2.7.1) except that ddi+1 in the second term is replaced
by ddi . Here, the desired distance ddi should be interpreted as the distance that vehicle i requires
between itself and all its direct neighbors, and not just to the vehicle in front. This means that the
desired distance ddi should be compared to both the actual distance to the preceding vehicle and to the
vehicle behind, which then results in error (2.7.2). Using this error has the advantage that the dynamics
that will be derived in section 2.8 are slightly more convenient than if the same were done with error
(2.7.1). Furthermore, in contrast to error (2.7.1), error (2.7.2) does not include vi+1, which cannot be
measured directly by vehicle i, as was mentioned in section 2.2. Velocity vi+1 could be derived from vi
and vi − vi+1, but might be inaccurate. Note that, for β = 1, error (2.7.2) is the same as the error in
(2.4.2). Also note that the error in (2.7.2) is not defined for the first and last vehicle of a platoon. This
can be solved for the first vehicle by using the virtual reference vehicle described by (2.3.2) and for the
last vehicle by setting β = 1 (which is the same as using (2.4.2) instead of (2.7.2)).

As will be shown in section 2.8, it turns out that, when using error (2.7.2), the weights β and 1 − β
should be applied to the communicated input signals ui−1 and ui+1 respectively. This results in the
situation of figure 2.6, where vehicle i receives the weighted error states αxi−1 and (1 − α)xi+1 and
the weighted input signals βui−1 and (1 − β)ui+1. Note that figure 2.5 shows the case where β = 1.
It is possible to choose the same value for the weights α and β, i.e. α = β, such that the same
weight is applied to all communication that occurs between any two vehicles i and i− 1. However, this
is not necessary. Weight α has a slightly different interpretation than weight β. Weight α is applied
mostly to communicated signals. It is used in controller (2.6.1) and decides how much influence each
communicated error state has on the input signal. Weight β in error (2.7.2) only applies to signals that a
vehicle can measure itself. It determines whether the distance to the vehicle in front should count more
heavily towards the total error than the distance to the vehicle behind.
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2.8 General closed-loop platoon dynamics

Now that we have introduced an error that considers both the vehicle in front and the vehicle behind,
which was defined in (2.7.2) as

ei = β
[
di − ddi

]
+ (1− β)

[
di+1 − ddi

]
= β [di − r − hvi] + (1− β) [di+1 − r − hvi] ,

(2.8.1)

it is possible to derive the general closed-loop platoon dynamics. The case β = 1, where error (2.8.1)
simplifies to the error in (2.4.2), was considered in sections 2.5 and 2.6. Deriving the closed-loop
dynamics for the general error in (2.8.1) is done in a similar manner. Time arguments are dropped to
improve readability.

Again, consider a platoon of n vehicles, which are described by the vehicle dynamics of (2.3.1). The
drive-line dynamics time delay φ is still assumed to be equal to zero. A virtual reference vehicle given by
(2.3.2) drives in front of the platoon. For the last vehicle of the platoon we use β = 1. The communication
topology is given by the Laplacian matrix L of (2.1.10) and the pinning matrix P of (2.1.11) and is
depicted in figure 2.3, though this topology is not explicitly used in the derivation of the dynamics and
hence matrices L and P could be replaced by any matrices for which L̂ = L + P satisfies definition
(2.1.6).

Using the vehicle dynamics in (2.3.1), the time derivatives of the error in (2.8.1) are given by

ėi = β [vi−1 − vi − hai] + (1− β) [vi − vi+1 − hai] ,

ëi = β

[
ai−1 +

h− τ
τ

ai −
h

τ
ui

]
+ (1− β)

[
h+ τ

τ
ai − ai+1 −

h

τ
ui

]
,

and

...
ei = β

[
−1

τ
ai−1 +

1

τ
ui−1 −

1

τ

(
h− τ
τ

ai

)
+

1

τ

(
h

τ
ui

)
− 1

τ
ui −

h

τ
u̇i

]
+ (1− β)

[
−1

τ

(
h+ τ

τ

)
ai +

1

τ

(
h

τ
ui

)
+

1

τ
ui +

1

τ
ai+1 −

1

τ
ui+1 −

h

τ
u̇i

]
=− 1

τ

(
β

[
ai−1 +

h− τ
τ

ai −
h

τ
ui

]
+ (1− β)

[
h+ τ

τ
ai − ai+1 −

h

τ
ui

])
+

1

τ
(β [ui−1 − ui − hu̇i] + (1− β) [ui − ui+1 − hu̇i])

=− 1

τ
ëi +

1

τ
ūi, (2.8.2)

where the new input ūi is now defined as

ūi := β [ui−1 − ui − hu̇i] + (1− β) [ui − ui+1 − hu̇i] . (2.8.3)

Define the error state xi of vehicle i as

xi :=

eiėi
ëi

 .

The error dynamics for vehicle i then follow from (2.8.2) as

(error dynamics)

ẋi =

0 1 0
0 0 1
0 0 − 1

τ


︸ ︷︷ ︸

A

xi +

0
0
1
τ


︸ ︷︷ ︸
B

ūi (2.8.4)
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or

ẋi = Axi +Būi,

where matrices A and B are defined in (2.8.4).

The new input ūi defined in (2.8.3) can be rewritten as

ūi = βui−1 − (2β − 1)ui − (1− β)ui+1 − hu̇i,

or as the filter

u̇i = −2β − 1

h
ui +

1

h
(βui−1 − (1− β)ui+1 − ūi) . (2.8.5)

Because of the virtual reference vehicle, the error in (2.8.1), and hence also the error dynamics in (2.8.4)
and the filter in (2.8.5), are defined for all vehicles i ∈ V \ {n}. For vehicle n, we set β = 1 such that the
second term of (2.8.1) disappears. The error dynamics in (2.8.4) and the filter in (2.8.5) together form
the platoon dynamics, which are given by

(platoon dynamics)

(
ẋi
u̇i

)
=



(
A O3×1

O1×3 − 2β−1
h

)(
xi

ui

)
+

(
B

− 1
h

)
ūi +

(
O3×1
β
h

)
ui−1 +

(
O3×1

− 1−β
h

)
ui+1 ∀i ∈ V \ {n},(

A O3×1

O1×3 − 1
h

)(
xi

ui

)
+

(
B

− 1
h

)
ūi +

(
O3×1

1
h

)
ui−1 i = n.

(2.8.6)

Note that the values of the vehicle state [di, vi, ai]
T for all vehicles i ∈ V \ {n} can be found by solving

βai−1 −
(
2β − 1− h

τ

)
ai − (1− β)ai+1 = ëi + h

τ ui,

βvi−1 − (2β − 1)vi − (1− β)vi+1 = ėi + hai,

βdi + (1− β)di+1 = ei + r + hvi,

given that a0 and v0 are known. For vehicle n, the same equations can be used with β = 1.

By using the lumped states XT :=
[
xT1 , . . . , x

T
n

]
and U := [u1, . . . , un]T , and by substituting the same

distributed controller as used before in (2.6.1),

ūi = −
∑
j∈V

[
aijk

T (xi − xj)
]
− pikTxi

with controller gain vector

kT := [k1, k2, k3] ,

into the platoon dynamics of (2.8.6), we get the general closed-loop platoon dynamics:

(general closed-loop platoon dynamics)(
Ẋ

U̇

)
=

(
In ⊗A− L̂ ⊗BkT O3n×n

L̂ ⊗ 1
hk

T Au

)(
X
U

)
+

(
O3n×1

βBu

)
u0, (2.8.7)

where

Au := − 1

h



2β − 1 1− β 0 . . . . . . 0

−β
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1− β 0

...
. . . −β 2β − 1 1− β

0 . . . . . . 0 −1 1


(2.8.8)
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and

Bu :=

[
1

h
, 0, . . . , 0

]T
.

Note that for β = 1, the closed-loop platoon dynamics in (2.8.7) derived from the error defined in (2.8.1)
indeed simplify to (2.6.5), which was based on the error in (2.5.1). Also note that, as was mentioned in
section 2.7, it follows from the platoon dynamics in (2.8.6) that the desired acceleration ui−1 of vehicle
i−1 and the desired acceleration ui+1 of vehicle i+1 should be communicated to vehicle i with weights
β and 1 − β respectively. In addition, also the weighted error states αxi−1 and (1 − α)xi+1 should
be communicated when using the Laplacian matrix in (2.1.10) and the pinning matrix in (2.1.11). All
communicated signals are shown in figure 2.6.

2.9 Stability

Now that we have derived the closed-loop platoon dynamics in (2.8.7), we still need to find values for
the weights α ∈ [0, 1] and β ∈ [0, 1], and for the controller gain vector kT = [k1, k2, k3] such that
the closed-loop system is stable. Fortunately, since (2.8.7) is lower block triangular, we only need to
consider the diagonal blocks. First of all, we consider the subsystem Ẋ = (In ⊗ A − L̂ ⊗ BkT )X. It
turns out that, when using Laplacian matrix (2.1.10) and pinning matrix (2.1.11) with α > 0, the system
is asymptotically stable if and only if the values of kT satisfy

k1 > 0

k2 >
k1τ

mini{λik3+1}
k3 > − 1

maxi{λi}

(2.9.1)

where λi is the i-th eigenvalue of L̂ and τ is the drive-line dynamics time constant. This is proven
in appendix A. Next, we need to prove that matrix Au, which is defined in (2.8.8) and forms the right
lower block of the system matrix of (2.8.7), is stable. Since subsystem Ẋ = (In ⊗ A − L̂ ⊗ BkT )X
is asymptotically stable, X will converge to zero. Hence, in steady state the first term of subsystem
U̇ = (L̂ ⊗ 1

hk
T )X + AuU equals zero and thus we only need to consider the matrix Au. In appendix A,

it is proven that subsystem U̇ = AuU is asymptotically stable for β > 1
2 .

To summarize, the closed-loop platoon dynamics of (2.8.7) are asymptotically stable when α ∈ (0, 1],
β ∈

(
1
2 , 1
]
, and kT := [k1, k2, k3] satisfies (2.9.1).

29



CHAPTER 2. THE PLATOON

30



3. Merging onto the highway

In this chapter, the model of the platoon from chapter 2 is adapted such that an automated vehicle is
able to merge into a platoon on the highway. This requires creating a gap in the platoon for the merging
vehicle and controlling this merging vehicle such that it will drive next to the created gap at some point
before the end of the acceleration lane. Furthermore, in order to guarantee a successful merge it is
desirable that the platoon and the merging vehicle are able to interact. The merging vehicle should
adjust to any disturbances that occur in the platoon, and vice versa. Two slightly different models are
proposed in sections 3.2 and 3.3. Both models follow a similar approach:

1. A time or location is chosen where the vehicle should merge into the platoon.

2. Based on this time or location, and possibly additional (estimated) variables, two vehicles of the
platoon are selected to increase the distance between them to make room for the merging vehicle.

3. The platoon and the merging vehicle are controlled such that at approximately the chosen time or
position the merging vehicle can merge into the platoon between the two chosen vehicles.

A more detailed description is given in section 3.1. The difference between the models is that section 3.2
considers the case that the merging vehicle aims to merge at the end of a specified time interval,
whereas section 3.3 covers the scenario that the merging vehicle merges somewhere between two
given locations. For modeling the merge of a vehicle onto the highway, the model of section 3.3 is the
obvious choice: the merging vehicle that is driving on the entrance ramp to the highway cannot merge
before it reaches the acceleration lane and must complete the merge before the end of the acceleration
lane. The model of section 3.2 requires an estimate of the time that the merging vehicle reaches the
acceleration lane, and therefore results in a more open-loop model.

3.1 Problem description

Modeling the situation where an automated vehicle merges into a platoon on the highway requires
partly the same methods as used in chapter 2. Similar to chapter 2 the goal for the models in this
chapter is that eventually all vehicles, including the merging vehicle, drive behind each other with the
same constant velocity and that the distances between vehicles equal the desired distances. There are,
however, also some new issues that need to be addressed. In particular, we need to consider how to

• choose a time or location for the merge,

• choose between which vehicles of the platoon the merging vehicle will merge,

• control the merging vehicle such that it will accelerate to the right speed,

• control the platoon such that it will create the gap,

• control both such that the two chosen vehicles of the platoon and the merging vehicle will arrive
at the same location at the same time,

• check if the merging vehicle is able to merge,

• and, finally, ensure that the vehicle can merge before it reaches the end of the acceleration lane.
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Since the merge must be completed before the end of the acceleration lane, it might be a good idea
to design the model such that it aims to merge the vehicle and the platoon as soon as possible. For
the highway this means as soon as the merging vehicle enters the acceleration lane. This way, if any
problems arise that result in the merging vehicle not being able to merge at this time, the entire length
of the acceleration lane can be used to resolve these issues. As a consequence, the platoon needs
to start forming a gap before the merging vehicle enters the acceleration lane. Preferably the platoon
increases the distance between two vehicles gradually, and hence it will take the platoon some time to
create the gap. Therefore, it is desirable that the platoon starts forming the gap as soon as the merging
vehicle arrives at the beginning of the entrance ramp. At this moment it becomes certain that the vehicle
will enter the highway, and hence the platoon and the merging vehicle can start preparing for the merge.
The merging vehicle chooses where to merge and starts accelerating, and the platoon starts forming a
gap between the chosen vehicles at the same time.

These choices lead to the following situation, which is illustrated by figure 3.1:

1. A platoon consisting of n vehicles is driving on the highway. At time tstart a vehicle arrives at the
beginning of the entrance ramp, which is located at position qstart. At the same time this vehicle
decides between which vehicles of the platoon it will merge onto the highway, i.e., it chooses a
vehicle m and will then try to merge into the platoon between vehicles m and m− 1. The merging
vehicle starts accelerating to the platoon velocity and the platoon starts increasing the distance
between vehicles m and m− 1.

2. Next, at time tramp, the merging vehicle arrives at position qramp, which marks the end of the
entrance ramp and the beginning of the acceleration lane. From this point onwards, the merging
vehicle is allowed to move onto the highway, provided that there is enough space. The platoon
has formed a gap between the chosen vehicles m and m− 1, and the gap is roughly at the same
position as the merging vehicle.

3. Most likely, the merging vehicle is not yet able to merge at time tramp, possibly because the gap
is not large enough or because the vehicle is not properly aligned with the gap. It then takes until
time tmerge before the vehicle is able to merge (though it is also possible that tramp = tmerge).

4. Finally, at time tmerge the vehicle merges into the platoon before it reaches the end of the acceler-
ation lane, which is denoted by qend, and continues on the highway as part of the platoon.

Note that the positions qstart, qramp, and qend are fixed, but that the times tstart, tramp, and tend are not.
These times are defined as the moment that the merging vehicle reaches qstart, qramp, or qend, and
therefore depend on the way the vehicles are controlled. The same holds for tmerge, which is defined as
the time that the merging vehicle detects enough space in the platoon in order to merge. The goal for
the remainder of this chapter is to model the merging process as described above starting at time tstart

and to control both the platoon and the merging car such that the merge can be safely executed.

Before continuing with developing the models for merging onto the highway, some notation is introduced
and illustrated by figure 3.2. Most of the variables were also used in chapter 2. The platoon, given by
the set V = {1, . . . , n}, consists of n vehicles. A virtual reference vehicle is indicated by index i = 0.
The merging vehicle, marked by the ’merging’ label in figure 3.2, chooses to merge in front of vehicle
m, which means that a gap is created between vehicles m and m − 1 of the platoon. The subscript of
a variable indicates to which vehicle the variable relates. Figure 3.2 shows for vehicle m, the merging
vehicle, and vehicle m−1 the position q(t), the velocity v(t), the distance d(t) to the (virtual) car in front,
and the length L of the vehicle. The virtual car that drives in front of the merging vehicle is a copy of
vehicle m − 1, hence v0,merging(t) = vm−1(t), and will be used in the models of sections 3.2 and 3.3.
The platoon velocity is defined to be the velocity of the virtual car that is driving in front of the platoon
(which is not shown in figure 3.2):

vplatoon(t) := v0(t).

In addition, also the desired distance dd(t) between a vehicle and its neighbors, the acceleration a(t)
and the desired acceleration u(t) will be used. The desired distance of vehicle i was defined in (2.4.1)
as

ddi (t) := r + hvi(t)

with standstill distance r and time gap h. The drive-line dynamics time constant is given by τ and the
drive-line dynamics time delay φ is still assumed to be zero. The distance from a vehicle to the beginning
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Figure 3.1: A vehicle merges into a platoon on the highway. From top to bottom: (1) at time tstart,
a vehicle enters the entrance ramp, which is marked by qstart, (2) at time tramp, the car reaches the
beginning of the acceleration lane at qramp, where the platoon has made a gap, (3) the merging car
aligns itself with the gap and the platoon adjusts the gap to the merging car, such that the car is able to
merge at time tmerge, (4) the car merges before it reaches the end of the acceleration lane at position
qend and continues on the highway as part of the platoon.

of the acceleration lane is given by

δi(t) := qramp − qi(t)

for the platoon and by

δmerging(t) := qramp − qmerging(t)

for the merging vehicle. The distance δend(t) from the merging vehicle to the end of the acceleration
lane is defined as

δend(t) := qend − qmerging(t).

Note, however, that it was assumed in section 2.2 that the positions qi(t) of the vehicles in the pla-
toon and the position qmerging(t) of the merging car are not known due to inaccurate GPS data. The
distances δi(t), δmerging(t), and δend(t) should therefore be obtained directly from, for example, radar
measurements of the distances between vehicles and qramp or qend.

Sections 3.2 and 3.3 will both describe a model for the platoon and the merging vehicle during the
time interval [tstart, tmerge]. Outside of this interval, assuming that no other vehicles will merge with the
platoon, the platoon can be modeled by the closed-loop dynamics of section 2.8. Since the methods
and notations used in sections 3.2 and 3.3 are similar to those of section 2.8, this model is repeated
below. In the model for merging onto the highway, it is also used to model the platoon until time tstart.
For t > tmerge, a similar model is used but then the platoon consists of n + 1 vehicles instead of n
vehicles since the merging vehicle is then part of the platoon. Dropping the time arguments to improve
readability, recall that the platoon can be modeled by the dynamics that were given in (2.8.7) as

(closed-loop platoon dynamics)(
Ẋ

U̇

)
=

(
In ⊗A− L̂ ⊗BkT O3n×n

L̂ ⊗ 1
hk

T Au

)(
X
U

)
+

(
O3n×1

βBu

)
u0 (3.1.1)

with lumped states XT :=
[
xT1 , . . . , x

T
n

]
and U := [u1, . . . , un]T , controller gain vector kT := [k1, k2, k3],

weights α ∈ [0, 1] and β ∈ [0, 1], and the matrices

A :=

0 1 0
0 0 1
0 0 − 1

τ

 ,
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Figure 3.2: Schematic drawing of a vehicle (with label ’merging’) merging between vehicles m and m−1
of the platoon. The position q, velocity v, distance d to its (virtual) predecessor, and length L of each
vehicle are depicted by the arrows. The subscripts of the variables indicate to which vehicle an arrow
applies. A virtual copy of vehicle m − 1 with velocity v0,merging = vm−1 drives in front of the merging
vehicle.

Au := − 1

h



2β − 1 1− β 0 . . . . . . 0

−β
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1− β 0

...
. . . −β 2β − 1 1− β

0 . . . . . . 0 −1 1


, (3.1.2)

B :=
[
0, 0, 1

τ

]T , and Bu :=
[

1
h , 0, . . . , 0

]T . These dynamics were based on the error

ei = β [di − r − hvi] + (1− β) [di+1 − r − hvi] ,

the error state

xi :=

eiėi
ëi

 ,

and controller

ūi = −
∑
j∈V

[
aijk

T (xi − xj)
]
− pikTxi, (3.1.3)

where aij are the entries of the adjacency matrix

A =



0 1− α 0 . . . 0

α 0 1− α
. . .

...

0
. . .

. . .
. . . 0

...
. . . α 0 1− α

0 . . . 0 1 0


.
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The communication topology of the platoon is described by the matrix L̂ = L+ P with Laplacian matrix

L =



1− α −(1− α) 0 . . . 0

−α 1 −(1− α)
. . .

...

0
. . .

. . .
. . . 0

...
. . . −α 1 −(1− α)

0 . . . 0 −1 1


and pinning matrix

P =


α 0 . . . 0

0 0
. . .

...
...

. . .
. . . 0

0 . . . 0 0

 .

It is assumed that the platoon drives with constant velocity v̄platoon, that is, all vehicles of the platoon
follow a virtual reference vehicle that has constant velocity v̄platoon. The velocity of each vehicle might
vary somewhat, but when the distances between vehicles are equal to the desired distances, all vehicles
will be driving with velocity v̄platoon.

3.2 Merging at a fixed time

The model given in (3.1.1) for the behavior of a platoon forms the starting point for modeling the merge of
a vehicle into a platoon on the highway. As mentioned before, in this section we consider the situation
where the merging vehicle aims to merge into the platoon at a fixed time and design a model that
describes both the platoon and the merging vehicle during the time interval [tstart, tmerge]. Outside of
this interval both the platoon and the merging vehicle, which can be considered as a platoon consisting
of one vehicle, are modeled by the dynamics given in (3.1.1). The platoon and the merging vehicle start
preparing for the merge when the merging vehicle enters the entrance ramp to the highway at time tstart

and aim to execute the merge as soon as the merging vehicle reaches the acceleration lane at time
tramp. More details of the situation that is considered are given in section 3.1.

The model is designed as follows:

1. At time tstart an estimate t̃ramp of time tramp is computed, which will be the desired time for the
merge, and the vehicle m is selected.

2. Next, the platoon is controlled during the time interval [tstart, t̃ramp] such that it creates a gap
between vehicles m and m− 1 of the platoon.

3. The merging vehicle is controlled during the time interval [tstart, t̃ramp] such that it aligns itself with
the gap in the platoon.

4. Finally, both the merging vehicle and the platoon are controlled during the time interval [t̃ramp, tmerge]
until the merging vehicle is able to merge into the platoon between vehicles m and m − 1 at time
tmerge.

Due to delays, noise in signals, or any other disturbances, it is not guaranteed that the merging vehicle
is able to merge into the platoon at time t̃ramp. Even if there is enough distance between the two chosen
vehicles and the merging vehicle is at the right position relative to the platoon, the merging vehicle might
not be driving in the acceleration lane at time t̃ramp. Therefore, we also need to consider how to control
the platoon and the merging vehicle after this time and how to decide that the merging vehicle is able to
merge into the platoon.

The outline of this section is as follows. First, section 3.2.1 describes how to choose the vehicle m.
Next, sections 3.2.2 and 3.2.3 describe how the platoon can be controlled such that it creates a gap
between vehicles m and m − 1. The merging car is controlled in section 3.2.4 such that it aligns itself
with the formed gap in the platoon. In section 3.2.5 the control strategy of the platoon is slightly changed
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such that it takes into account the position of the merging vehicle relative to the platoon when creating
a gap in the platoon. Finally, section 3.2.6 discusses the control of the merging vehicle and the platoon
after time t̃ramp until they merge at time tmerge.

3.2.1 Choosing a merge location

At a certain moment in time, it needs to be decided where the merging vehicle will merge into the
platoon. As it takes the platoon some time to create the gap, it is desirable that this is done carefully
and as soon as possible. If either the merging car is not able to reach the gap or the platoon does
not make a gap, the car will not be able to merge, which, depending on the length of the acceleration
lane, might end badly. Therefore, it is assumed that the merging car will choose where to merge when
it enters the entrance ramp to the highway at time tstart and that the platoon will start forming a gap at
the same time. Ideally, when the merging vehicle enters the acceleration lane at time tramp, the gap is
fully formed and positioned exactly next to the merging vehicle such that it can merge at this time, i.e.,
such that tmerge = tramp. This also leaves some space to resolve any problems that might arise: during
the complete length of the acceleration lane, both the merging vehicle and the platoon are able to make
any adjustments in order to ensure a successful merge.

To choose a merge location, the merging vehicle estimates the time it takes to drive from the beginning
of the entrance ramp qstart to the beginning of the acceleration lane qramp in case it uses a constant
acceleration until it reaches the same speed as the platoon. The merging car also computes where
each vehicle in the platoon will approximately be relative to qramp at the estimated time assuming that the
platoon maintains a constant velocity. This assumes that the distances of all vehicles to the beginning
of the acceleration lane are known. With these approximations, the merging car chooses to merge in
front of the car that is expected to be the last car of the platoon that will have passed the beginning of
the acceleration lane before arriving there itself.

The platoon is cruising at constant velocity v̄platoon. At time tstart, a vehicle enters the entrance ramp
at qstart with velocity vmerging(tstart). The end of the entrance ramp and beginning of the accelera-
tion lane is marked by qramp. The distance between the back of a vehicle and qramp at that time is
given by δi(tstart) := qramp − qi(tstart) for each vehicle i in the platoon and δmerging(tstart) := qramp −
qmerging(tstart) = qramp − qstart for the merging vehicle. These distances δi(tstart) and δmerging(tstart) are
assumed to be known. At the same time, the merging vehicle estimates the time it takes to reach qramp

assuming it will first accelerate with a constant acceleration aramp until it reaches the velocity v̄platoon of
the platoon and then continues to drive with constant velocity.

The time taccelerate it takes to accelerate from velocity vmerging(tstart) to v̄platoon with acceleration aramp

can be estimated as

taccelerate =
v̄platoon − vmerging(tstart)

aramp
. (3.2.1)

During that time, the merging vehicle will travel approximately a distance of

vmerging(tstart) taccelerate + 0.5 aramp t
2
accelerate.

For the remaining distance it then needs to travel before reaching qramp,

qramp − qstart − vmerging(tstart) taccelerate − 0.5 aramp t
2
accelerate,

the merging vehicle will travel with velocity v̄platoon and hence the time tramp at which the merging vehicle
arrives at qramp can be estimated as

tramp ≈ t̃ramp = tstart + taccelerate +
qramp − qstart − vmerging(tstart) taccelerate − 0.5 aramp t

2
accelerate

v̄platoon
.

(3.2.2)

Given this estimation t̃ramp, the platoon will travel a distance of approximately v̄platoon · (t̃ramp − tstart)
until the merging vehicle reaches qramp at time tramp. Assuming that it is preferred that the gap in the
platoon is slightly in front of the merging car such that the merging car can accelerate into the gap, the
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merging vehicle will merge in front of the last car that will most likely have passed qramp at time tramp,
i.e., the vehicle with the largest index i for which v̄platoon · (t̃ramp− tstart) > δi(tstart). This vehicle is then
defined to be the vehicle m, in front of which the merging vehicle will merge into the platoon.

Note that this, however, does create some problems. For example, if the entire platoon is expected to
have passed qramp at time tramp, then the merging vehicle tries to merge in front of vehicle n, while in
that case it is easier to slow down a bit and enter the highway behind the platoon. Similarly, when none
of the vehicles or just the first vehicle of the platoon is expected to have passed qramp at time tramp,
the platoon should be able to accelerate and enter the highway in front of the platoon. Therefore, it is
assumed that, when the merging vehicle enters the acceleration lane at time tramp, it will be driving next
to the platoon, or more specifically, between the second and last vehicle of the platoon. That is, at time
tramp it should hold that q2(tramp) > qmerging(tramp) = qramp > qn(tramp). To move onto the highway,
the vehicle has to merge into the platoon in front of a vehicle m for which 2 ≤ m ≤ n − 1. In all other
cases, the merging vehicle does not need to merge into the platoon, but will be able to either accelerate
and enter the highway in front of the platoon or decelerate and enter the highway behind the platoon.
Possibly, the merging vehicle could in that case join the platoon in front of the first vehicle or behind the
last vehicle, but this is also not included in the model.

To summarize, the merging vehicle chooses to merge in front of the vehicle m, which is defined as

(choosing a vehicle m)

m = max
i=2, ...,n−1

{i} subject to v̄platoon · (t̃ramp − tstart) > δi(tstart), (3.2.3)

where t̃ramp is the estimate of the time tramp where the merging vehicle reaches the acceleration ramp
and is given in (3.2.2). The estimated t̃ramp is also the time at which the merging vehicle aims to merge
into the platoon.

3.2.2 Creating a gap

In the previous section, it was described how, at time tstart, the estimate t̃ramp is computed and the
vehicle m is selected. Next, during [tstart, t̃ramp], the platoon should create a gap between vehicles m
and m−1 such the merging vehicle will be able to merge into the platoon between vehicles m and m−1.
The gap between vehicles m and m− 1 is created by increasing the standstill distance rm of vehicle m.
This can be done directly (as in this section) or by letting the standstill distance depend on the position
of the merging vehicle (see section 3.2.5).

A gap is created when the distance between two vehicles is increased such that a different vehicle can
merge into the platoon. This can be done in several ways, such as changing the value of the desired
distance between two cars or inserting a virtual car into the platoon. However, it is desirable to find a
method that will slowly increase the distance between cars to avoid any sudden braking or acceleration.
To make the gap, the standstill distance rm of vehicle m is slowly increased over the time interval
[tstart, t̃ramp], which means that standstill distance rm becomes a function of time. In section 3.2.3 it
will be discussed how to choose the function rm(t). Based on the derivations in the remainder of this
section some constraints for rm(t) and its derivatives will be formulated in section 3.2.3, which will be
used to find a suitable function rm(t).

The desired distance ddm between vehicles m and m− 1 is therefore now given by

ddm(t) = rm(t) + hvm(t)

and the errors em and em−1 of vehicles m and m− 1 then become

em(t) = β [dm(t)− rm(t)− hvm(t)] + (1− β) [dm+1(t)− r − hvm(t)]

and

em−1(t) = β [dm−1(t)− r − hvm−1(t)] + (1− β) [dm(t)− rm(t)− hvm−1(t)] ,

where weight β ∈ [0, 1]. Note that the second term of error em and the first term of error em−1 still
contain the constant standstill distance r, whereas the first term of em and the second term of em−1
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now include the time-dependent standstill distance rm(t). The reason for this is that both vehicle m and
vehicle m − 1 now try to maintain a different distance to each of its neighbors. The constant standstill
distance r still applies to distances dm+1 and dm−1, while only the distance dm between vehicles m and
m− 1 needs to be increased.

Now, the error ei(t) of each vehicle i in the platoon, including vehicles m and m− 1, can be given by

ei(t) = β [di(t)− ri(t)− hvi(t)] + (1− β) [di+1(t)− ri+1(t)− hvi(t)] , (3.2.4)

where ri is the standstill distance of vehicle i and it holds that

ri(t) = r ∀i ∈ V \ {m}.

With this error, the closed-loop platoon dynamics can be derived in the same way as was done in
section 2.8. Leaving out the time arguments to improve readability, the time derivatives of error (3.2.4)
are given by

ėi = β [vi−1 − vi − ṙi − hai] + (1− β) [vi − vi+1 − ṙi+1 − hai] ,

ëi = β

[
ai−1 +

h− τ
τ

ai −
h

τ
ui − r̈i

]
+ (1− β)

[
h+ τ

τ
ai − ai+1 −

h

τ
ui − r̈i+1

]
,

...
ei = −1

τ
ëi +

1

τ
ūi + β

[
−1

τ
r̈i −

...
ri

]
+ (1− β)

[
−1

τ
r̈i+1 −

...
ri+1

]
, (3.2.5)

where input ūi is defined as

ūi := β [ui−1 − ui − hu̇i] + (1− β) [ui − ui+1 − hu̇i] .

Define the error state xi of vehicle i as

xi :=

eiėi
ëi

 .

This leads to error dynamics

ẋi =

0 1 0
0 0 1
0 0 − 1

τ


︸ ︷︷ ︸

A

xi +

0
0
1
τ


︸ ︷︷ ︸
B

ūi + β

 0 0
0 0
− 1
τ −1


︸ ︷︷ ︸

Br

(
r̈i
...
ri

)
+ (1− β)

 0 0
0 0
− 1
τ −1


︸ ︷︷ ︸

Br

(
r̈i+1
...
ri+1

)
. (3.2.6)

The input ūi can again be rewritten as the filter

u̇i = −2β − 1

h
ui +

1

h
(βui−1 − (1− β)ui+1 − ūi) . (3.2.7)

The dynamics of the complete platoon are thus given by(
ẋi
u̇i

)
=

(
A O3×1

O1×3 − 2β−1
h

)(
xi
ui

)
+

(
B
− 1
h

)
ūi +

(
O3×1
β
h

)
ui−1 +

(
O3×1

− 1−β
h

)
ui+1

+

(
βBr
O3×2

)(
r̈i
...
ri

)
+

(
(1− β)Br

O3×2

)(
r̈i+1
...
ri+1

) (3.2.8)

for all i ∈ V except that for i = n we set β = 1.

Note that when ri is constant in time for all i ∈ V, its derivatives are equal to zero and then these
dynamics in (3.2.8) are the same as (2.8.6). This allows us to use (3.2.8) for all vehicles in the platoon.
In addition, with the introduction of a virtual reference vehicle as was done in section 2.3, the error in
(3.2.4), and hence (3.2.8), is also defined for the first vehicle of the platoon.

By using the lumped states XT :=
[
xT1 , . . . , x

T
n

]
and U := [u1, . . . , un]T and the same controller as

before, given in (3.1.3) as

ūi = −
∑
j∈V

[
aijk

T (xi − xj)
]
− pikTxi,
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and by defining the vector R := [r̈1,
...
r1, . . . , r̈n,

...
rn]T , the closed-loop platoon dynamics become(

Ẋ

U̇

)
=

(
In ⊗A− L̂ ⊗BkT O3n×n

L̂ ⊗ 1
hk

T Au

)(
X
U

)
+

(
O3n×1 J ⊗Br
βBu On×2n

)(
u0

R

)
, (3.2.9)

where again kT := [k1, k2, k3], L̂ := L + P, Bu := [ 1
h , 0, . . . , 0]T , Br is defined in (3.2.6), Au is given by

(3.1.2), In is the n× n identity matrix, and

J =



β 1− β 0 . . . 0

0 β 1− β
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 β 1− β

0 . . . 0 0 1


.

Note that when ri(t) = r for all i ∈ V and hence all derivatives equal zero, that then (3.2.9) equals
(3.1.1).

It is, however, not necessary to include the second and third derivatives of ri for all vehicles i 6= m,
i ∈ V, since ri(t) = r for all i 6= m and all these derivatives are equal to zero. Furthermore, since
the second derivative cannot be chosen independently of the third derivative, we define the vector
Rm := [rm, ṙm, r̈m]T and add Rm to the state. This way the model requires only u0 and ...

rm as external
inputs and the values of rm can be obtained from the state. The closed-loop platoon dynamics are now
given by

(closed-loop platoon dynamics with time-dependent standstill distance) Ẋ

U̇

Ṙm

 =

In ⊗A− L̂ ⊗BkT O3n×n J(:,m)⊗ [O3×2 Br(:, 1)]

L̂ ⊗ 1
hk

T Au On×3

O3×3n O3×n I(1),3

 X
U
Rm


+

O3n×1 J(:,m)⊗Br(:, 2)
βBu On×1

O3×1 I3(:, 3)

(u0
...
rm

)
,

(3.2.10)

where J(:,m) denotes the m-th column of matrix J and

I(1),3 :=

0 1 0
0 0 1
0 0 0

 .

To let multiple vehicles create a gap, either standstill distance ri and its derivatives can be added to
(3.2.10) for more vehicles or (3.2.9) can be used.

To convert the state variables of (3.2.10) back to vehicle state variables d, v, and a, one needs to solve
βai−1 +

(
β h−ττ + (1− β)h+τ

τ

)
ai − (1− β)ai+1 = ëi + h

τ ui + βr̈i + (1− β)r̈i+1

βvi−1 − (2β − 1)vi − (1− β)vi+1 = ėi + hai + βṙi + (1− β)ṙi+1

βdi + (1− β)di+1 = ei + hvi + βri + (1− β)ri+1

for i = 1, . . . , n− 1 while using β = 1 when i = n.

3.2.3 Defining the standstill distance function

With the new closed-loop platoon dynamics in (3.2.10) it becomes possible to define the standstill
distance rm for vehicle m as a function of time. Since the platoon should make a gap between vehicles
m and m − 1 during the time interval [tstart, t̃ramp], the standstill distance rm(t) is increased from the
initial value r at tstart to r + Lgap at t̃ramp. Here, r is the fixed default standstill distance for all vehicles
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and Lgap is the additional distance needed to create the gap. Outside the interval, rm(t) is constant:
rm(t) = r for t < tstart and rm(t) = r + Lgap for t > t̃ramp. This means that rm(t) should satisfy

rm(tstart) = r (3.2.11)

and

rm(t̃ramp) = r + Lgap. (3.2.12)

In addition, according to (3.2.10), ...
rm should exist, so we know that at least rm, ṙm, and r̈m should be

continuous. This means that, since rm(t) is constant outside of the interval [tstart, t̃ramp], the following
should hold for the time derivatives:

ṙm(tstart) = 0, ṙm(t̃ramp) = 0, (3.2.13)

r̈m(tstart) = 0, r̈m(t̃ramp) = 0. (3.2.14)

A good choice would be to define rm(t) on the interval [tstart, t̃ramp] as a 5th-degree polynomial,

rm(t) = c5t
5 + c4t

4 + c3t
3 + c2t

2 + c1t+ c0,

that satisfies the constraints given in (3.2.11) to (3.2.14). Then rm, ṙm, and r̈m are continuous, whereas
...
rm might be discontinuous at times tstart and t̃ramp. A 5th-degree polynomial is used since there are
six constraints and, unless tstart = t̃ramp, it is always possible to find such a polynomial that satisfies
all constraints. The coefficients of the polynomial can be determined by solving a constrained least
squares problem.

3.2.4 The merging car

As mentioned in section 3.2.1, the merging vehicle decides at time tstart where it will merge into the
platoon such that the platoon can start forming a gap as soon as possible. This decision is based on
the estimated t̃ramp and constant platoon velocity v̄platoon. Sections 3.2.2 and 3.2.3 provide a way to let
the platoon create the gap between vehicles m and m−1 during the time interval [tstart, t̃ramp]. The next
step is to model and control the merging vehicle. Assuming that the merging car has the same vehicle
dynamics as the vehicles of the platoon, uses the same controller, and also follows a virtual reference
vehicle, the merging vehicle can be considered as a platoon of size n = 1. Therefore, all previous
models could also be applied to the merging vehicle. During [tstart, t̃ramp] the merging vehicle should
be controlled such that it will arrive at the beginning of the acceleration lane qramp at approximately time
t̃ramp. Since the model aims to merge at time t̃ramp, the merging vehicle should also be driving next to
the gap in the platoon at this time. The actual time tramp at which the merging vehicle reaches qramp

should be as close to estimation t̃ramp as possible, since the vehicle m in front of which the merging
vehicle will merge was chosen based on this estimation and the platoon will not have formed the gap
before t̃ramp.

Both the time taccelerate that the merging vehicle needs to accelerate from its initial velocity at tstart to the
platoon velocity given in (3.2.1) and the estimated t̃ramp given in (3.2.2) were derived using a constant
acceleration aramp for the merging vehicle. One possibility for controlling the merging vehicle would
hence be to use the input function

u0,merging(t) =

{
aramp tstart ≤ t ≤ tstart + taccelerate

0 t > tstart + taccelerate

(3.2.15)

in the closed-loop platoon dynamics of (3.1.1), which simplify to(
ẋmerging

u̇merging

)
=

(
A−BkT O3×1

1
hk

T − 1
h

)(
xmerging

umerging

)
+

(
O3×1

1
h

)
u0,merging (3.2.16)

for the merging vehicle. Since u0,merging is the desired acceleration of the virtual reference vehicle that is
followed by the merging vehicle, the virtual car and hence also the merging vehicle will then accelerate
with approximately the constant acceleration aramp until time tstart + taccelerate and then continue with a
constant velocity.
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This, however, is not a very robust method. After time tstart, both the vehiclem and the function u0,merging

are fixed and the merging vehicle drives independently of the platoon to qramp. This can lead to problems
when one of the vehicles does not drive as expected. If, for example, the platoon is not able to drive with
constant velocity v̄platoon, while the merging vehicle arrives at qramp at time t̃ramp, the merging vehicle
could be too far from the gap in the platoon, since m was chosen based on a constant platoon velocity
v̄platoon. And the same problem might arise if the platoon does continue with constant velocity v̄platoon,
but the merging vehicle is not able to reach qramp at time t̃ramp, since m also depends on the estimated
t̃ramp. In addition, the input function u0,merging in (3.2.16) is not continuous, while the actual acceleration
amerging of the merging vehicle will be continuous. Even if u0,merging was chosen to be continuous, it
is not guaranteed that amerging = u0,merging. As a consequence, the merging vehicle might not reach
the desired platoon velocity or arrive at qramp at time t̃ramp, since taccelerate and t̃ramp were based on
amerging = u0,merging.

Instead, we will use a different method that takes into account the position of the platoon. The merging
vehicle is modeled as a platoon of size 1 by the closed-loop dynamics of (3.2.10), which simplify to

(closed-loop dynamics for the merging vehicle) ẋmerging

u̇merging

Ṙmerging

 =

A−BkT O3×1 [O3×2 Br(:, 1)]
1
hk

T − 1
h O1×3

O3×3 O3×1 I(1),3

xmerging

umerging

Rmerging


+

O3×1 Br(:, 2)
1
h O1×1

O3×1 I3(:, 3)

(u0,merging
...
rmerging

) (3.2.17)

for the merging vehicle, where u0,merging is the desired acceleration of the virtual reference vehicle
driving in front of the merging vehicle and Rmerging := [rmerging, ṙmerging, r̈merging]T . Whereas the virtual
vehicle of the platoon was assumed to be uncontrolled and driving at a constant velocity, the virtual
vehicle for the merging car can be used to align the merging car with the gap in the platoon. This is
done by defining the virtual car such that it is driving next to vehicle m− 1 with exactly the same speed
and acceleration. The virtual reference vehicle of the merging car will then be a virtual copy of vehicle
m− 1. This virtual car was also shown in figure 3.2. The merging vehicle will then be driving next to the
gap in the platoon with the same velocity as vehicle m − 1 when the error state of the merging vehicle
goes to zero. In (3.2.17) the input u0,merging is therefore defined as

u0,merging := um−1.

The standstill distance of the merging car can be defined as a function of time, similar to the process of
creating a gap in the platoon, such that the merging car does not accelerate too fast but steadily moves
towards the gap. Since the merging car should reach the gap at the end of the interval

[
tstart, t̃ramp

]
,

the standstill distance rmerging of the merging vehicle is increased from initial value qm−1(tstart)−qstart−
Lmerging − hvmerging(tstart) at time tstart to the default value r at time t̃ramp. The initial value is defined
such that the error of the merging vehicle equals zero at time tstart. A 5-th degree polynomial that
satisfies the constraints

rmerging(tstart) = qm−1(tstart)− qstart − Lmerging − hvmerging(tstart)

and
rmerging(t̃ramp) = r,

and whose first two derivatives equal zero at the boundary according to the constraints

ṙmerging(tstart) = 0, ṙmerging(t̃ramp) = 0,

r̈merging(tstart) = 0, r̈merging(t̃ramp) = 0,

can be derived in the same way as is described in section 3.2.3 for rm.

Note that, since the initial velocity of the merging vehicle is usually lower than the velocity of the platoon,
the merging vehicle will start in front of the platoon, and hence the initial value of the standstill distance
between the merging vehicle and vehicle m − 1 is negative. Also note that t̃ramp was estimated based
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on a constant acceleration for the merging vehicle, but that the merging vehicle is not actually controlled
to use this constant acceleration. The estimate t̃ramp represents a realistic time at which the merging
vehicle can reach qramp without accelerating too fast or having to slow down. This time is used as the
desired time of the merge because it is known that the merging vehicle is able to arrive at qramp at this
time.

3.2.5 Taking into account the position of the merging car

Thus far, in controlling the platoon as described in section 3.2.2, it was assumed that the standstill
distance rm(t) and its derivatives are known. To create a gap in the platoon between vehicles m and
m − 1, standstill distance rm(t) can be chosen as described in section 3.2.3 such that it will increase
from the default value r to r + Lgap in the time interval [tstart, t̃ramp]. At the same time, the standstill
distance of the merging car is increased such that it will drive next to the gap at time t̃ramp as described
in section 3.2.4. In practice, however, it is not guaranteed that the merging car will arrive at the gap within
the given time interval, hence it might be desirable to let rm depend on the distance of the merging car
to vehicle m− 1.

Consider again the situation that the merging vehicle will merge in front of vehicle m, that the platoon is
driving at a constant velocity v̄platoon, and that the merging vehicle follows a virtual copy of vehicle m−1
as described in section 3.2.4. Furthermore, since the platoon usually has a higher initial velocity than
the merging vehicle, we assume that the merging vehicle starts in front of the platoon.

To define rm as a function of the distance between the merging vehicle and vehicle m − 1, the desired
distance of the merging vehicle can be defined as ddmerging = r + hv̄platoon. The desired velocity of the
merging vehicle equals the platoon velocity v̄platoon, which is why v̄platoon is used instead of vmerging.
When dmerging(t) = ddmerging, the merging vehicle is driving at the place where it can merge into the
platoon, so the standstill distance rm should then be equal to r+Lgap. The same holds for dmerging(t) >
ddmerging, since then the merging vehicle has already passed the gap.

Suppose that there is some distance Lcom � ddmerging that represents the maximum distance between
the merging vehicle and any vehicle of the platoon where they are still able to communicate. If the
distance between the merging vehicle and vehicle m − 1 is larger than Lcom, i.e., dmerging(t) ≤ −Lcom,
they are not yet able to communicate with each other and hence vehicle m does not need to make a
gap. The standstill distance should then be equal to the default value r. These requirements for rm can
be written as

rm(dmerging ≥ r + hv̄platoon) = r + Lgap,

rm(dmerging ≤ −Lcom) = r.

For −Lcom < dmerging < r + hv̄platoon a linear function can be used:

rm(dmerging) = r +
Lgap

r + hv̄platoon + Lcom
(dmerging + Lcom) .

Since dmerging = qm−1 − qmerging − Lmerging, the time derivatives of this function are given by

ṙm =
Lgap

r + hv̄platoon + Lcom
(vm−1 − vmerging) ,

r̈m =
Lgap

r + hv̄platoon + Lcom
(am−1 − amerging) ,

and

...
rm =

Lgap

r + hv̄platoon + Lcom

(
−1

τ
am−1 +

1

τ
um−1 +

1

τ
amerging −

1

τ
umerging

)
= −1

τ
r̈m +

1

τ

(
Lgap

r + hv̄platoon + Lcom

)
(um−1 − umerging) , (3.2.18)

where derivative ṙm is defined as ṙm := drm
ddmerging

ḋmerging as rm is now a function of dmerging and dmerging

depends on time. Similarly, r̈m := dṙm
dvm−1

v̇m−1+ dṙm
dvmerging

v̇merging and ...
rm := dr̈m

dam−1
ȧm−1+ dr̈m

damerging
ȧmerging.

42



3.2. MERGING AT A FIXED TIME

These derivatives contain vm−1, am−1, and um−1 since the virtual reference car of the merging car is a
copy of vehicle m− 1.

By substituting (3.2.18) into (3.2.5), since only r̈m and ...
rm are nonzero, for vehicle m

...
em = −1

τ
ëm +

1

τ
ūm − β

(
1

τ

)(
Lgap

r + hv̄platoon + Lcom

)
(um−1 − umerging)

and for vehicle m− 1

...
em−1 = −1

τ
ëm−1 +

1

τ
ūm−1 − (1− β)

(
1

τ

)(
Lgap

r + hv̄platoon + Lcom

)
(um−1 − umerging).

This then leads to the error dynamics for vehicles m and m− 1 given by

ėmëm
...
em

 =

0 1 0
0 0 1
0 0 − 1

τ

emėm
ëm

+

0
0
1
τ

 ūm

− β

0
0
1
τ

( Lgap

r + hv̄platoon + Lcom

)
(um−1 − umerging),

ėm−1

ëm−1
...
em−1

 =

0 1 0
0 0 1
0 0 − 1

τ

em−1

ėm−1

ëm−1

+

0
0
1
τ

 ūm−1

− (1− β)

0
0
1
τ

( Lgap

r + hv̄platoon + Lcom

)
(um−1 − umerging),

or, when using xm = [em, ėm, ëm]
T and matrices A and B, by

ẋm = Axm +Būm − βB
(

Lgap

r + hv̄platoon + Lcom

)
(um−1 − umerging), (3.2.19)

ẋm−1 = Axm−1 +Būm−1 − (1− β)B

(
Lgap

r + hv̄platoon + Lcom

)
(um−1 − umerging). (3.2.20)

The error dynamics of (3.2.6) still apply to all remaining vehicles. The filter of (3.2.7) applies to all
vehicles of the platoon including vehicles m and m− 1. The derivative in (3.2.18) can be rewritten to

Ṙm = ARm +B

(
Lgap

r + hv̄platoon + Lcom

)
(um−1 − umerging) (3.2.21)

by using Rm = [rm, ṙm, r̈m]
T . Consider now the lumped states

X = [e1, ė1, ë1, . . . , en, ėn, ën]
T
,

U = [u1, . . . , un]
T
,

and

Rm = [rm, ṙm, r̈m]
T
.

By using these lumped states, the dynamics in (3.2.6), (3.2.7) and (3.2.19) to (3.2.21), and the controller
defined in (3.1.3), the closed-loop platoon dynamics become
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(closed-loop platoon dynamics with standstill distance dependent on merging vehicle) Ẋ

U̇

Ṙm

 =

In ⊗A− L̂ ⊗Bk
T −Jm ⊗ Lgap

r+hv̄platoon+Lcom
B O3n×3

L̂ ⊗ 1
hk

T Au On×3

O3×3n In(m− 1, :)⊗ Lgap

r+hv̄platoon+Lcom
B A


 X
U
Rm



+

O3n×1 Jm(:, m− 1)⊗ Lgap

r+hv̄platoon+Lcom
B

βBu On×1

O3×1 − Lgap

r+hv̄platoon+Lcom
B

( u0

umerging

)
,

(3.2.22)

where Jm is an n×n zero matrix with the exception that Jm(m, m−1) = β and Jm(m−1, m−1) = 1−β.
Note that substituting the expression for ...

rm in (3.2.18) into (3.2.10) gives the same result.

In this case, the merging car is still assumed to arrive at the gap in the platoon at time t̃ramp and is
hence modeled by the dynamics in (3.2.17) with u0,merging = um−1 as is described in section 3.2.4.

3.2.6 The merge

The dynamics given in (3.2.17) and in (3.2.22) model respectively the merging car and the platoon from
time tstart until time t̃ramp. At time t̃ramp, the standstill distance rmerging of the merging vehicle equals the
default value r, but the actual distance between the merging vehicle and vehicle m−1 is not necessarily
equal to the desired distance. In addition, at t̃ramp the merging vehicle might still be driving on the
entrance ramp. Therefore, after time t̃ramp the dynamics in (3.2.22) continue to describe the platoon
and (3.2.17) with rmerging(t) = r is used to model the merging vehicle.

At some point, however, all vehicles should be modeled by (3.1.1). There are two possible moments to
switch to this model. When dmerging = r + hv̄platoon, the merging vehicle drives at the desired distance
behind vehiclem−1. The standstill distance rm of vehiclem then equals the desired value of r+Lgap, but
the distance between vehicle m and the merging vehicle might not yet be large enough. Nevertheless,
at this moment it is possible to model all vehicles by (3.1.1). The merging vehicle is virtually inserted into
the platoon, but does not yet merge and continues driving in a separate lane until it is able to merge. It is
also possible that the merging vehicle is able to merge while dmerging < r + hv̄platoon. This is caused by
how the model checks whether the merging vehicle is able to merge, which will be discussed below. In
this case, the merging vehicle merges into the platoon, and the new platoon consisting of n+ 1 vehicles
is modeled by (3.1.1). It might happen that dmerging > r + hv̄platoon, but then the first scenario applies
since at some time dmerging must have been equal to r + hv̄platoon.

The actual merging takes place at time tmerge, the moment the merging car detects enough distance in
front and behind. This distance is now denoted by dmerge and could, for example, be chosen to be the
standstill distance r of the merging vehicle or the desired distance ddmerging(t) = r+hvmerging(t) between
the merging vehicle and its neighbors, which consists of a constant term with the standstill distance r
and a term for the time gap h that depends on the velocity vmerging(t). The safest option would be to
use at least the desired distance or an even larger distance, but then it might take too long before the
vehicle can merge. On the other hand, using the standstill distance when vehicles are driving at a high
velocity is risky. The solution is to let dmerge depend on how far the merging vehicle is from the end of
the acceleration lane qend. This distance can be defined as

δend(t) := qend − qmerging(t)

and is assumed to be known in order to ensure that the vehicle merges before it reaches qend.

When the merging vehicle is at qramp, the distance dmerge should be equal to the desired distance
ddmerging(t) = rmerging + hvmerging(t) of the merging vehicle and when the merging vehicle is at qend, it
should be equal to the standstill distance r. By using a linear function, dmerge can be defined as

dmerge(δend) =
hvmerging

qend − qramp
(δend − qend + qramp) + r + hvmerging

for tramp < t < tmerge, and hence time tmerge can be defined as the time t > tramp where

dmerging := qm−1 − qmerging − Lmerging ≥ dmerge(δend)
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and

dm := qmerging − qm − Lm ≥ dmerge(δend)

first hold. The merging vehicle merges into the platoon at time tmerge and continues driving on the
highway as part of the platoon. Note that the actual lane change that is part of the merge is not explicitly
modeled. Instead it is assumed that if the merging vehicle is ready to merge before it reaches qend, the
merge will be successful.

3.3 Merging at a fixed location

Section 3.2 provides a way to model the merge of a vehicle into a platoon on the highway: a vehicle m
is selected, the platoon creates a gap between vehicles m and m − 1, the merging vehicle aligns itself
with the gap, and the vehicle merges into the platoon. This model, however, is based on the estimation
t̃ramp of the time where the merging vehicle reaches the beginning of the acceleration lane qramp and
should merge into the platoon. It is not guaranteed that the merging vehicle is actually able to merge
at this time or that the merging vehicle is even driving in the acceleration lane. Any disturbances could
cause the actual time of the merge or the time that the merging vehicle arrives at qramp to deviate from
the estimated time t̃ramp with the possible result that the vehicle cannot merge into the platoon at all.

In this section, the model of section 3.2 for merging at a fixed time is adapted in order to obtain a model
that takes into account that a vehicle is only able to merge while it is driving on the acceleration lane
and hence should provide a more robust way to model the merge of a vehicle onto the highway. The
new model will be largely the same as the model of section 3.2, but is designed such that the merging
vehicle and the platoon both aim to complete the merge at a fixed location. As mentioned before, the
merging vehicle aims to merge as soon as possible and hence the beginning of the acceleration lane
qramp is chosen as the fixed merge location. If any problems arise that result in the merging vehicle not
being able to merge at this time, the entire length of the acceleration lane can be used to resolve these
issues.

The merge of an automated vehicle into a platoon that is driving on the highway is modeled as follows:

1. At time tstart, the estimate t̃ramp is computed as given in (3.2.2) and a vehicle m is selected
according to (3.2.3).

2. During the time interval [tstart, tramp] the platoon is controlled as will be discussed below in sec-
tion 3.3.1 such that it creates a gap between vehicles m and m− 1 of the platoon. The platoon is
modeled by (3.3.5) during this time.

3. During the time interval [tstart, tramp] the merging vehicle is controlled such that it aligns itself with
the gap in the platoon. This is done as is described in section 3.2.4 and hence the merging vehicle
is modeled by (3.2.17) during this time.

4. At time tramp the merging vehicle is virtually inserted into the platoon, and hence during the time
interval [tramp, tmerge] the platoon, including the merging vehicle, is modeled by (3.2.10).

5. At time tmerge the merging vehicle merges into the platoon when it detects that there enough
distance between itself and vehicles m and m− 1. Whether the merging vehicle is able to merge
is checked in the same way as in section 3.2.6.

6. After time tmerge, the new platoon that now consists of n+ 1 vehicles is modeled by (3.1.1).

To be complete, section 3.3.1 states all models used during the time interval [tstart, tramp] and sec-
tion 3.3.2 describes the model used during [tramp, tmerge].

3.3.1 Arriving at the acceleration lane

As mentioned in the previous section, during the time interval [tstart, tramp], the merging vehicle is
modeled by the closed-loop dynamics of (3.2.17):
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(closed-loop dynamics for the merging vehicle for tstart ≤ t ≤ tramp) ẋmerging

u̇merging

Ṙmerging

 =

A−BkT O3×1 [O3×2 Br(:, 1)]
1
hk

T − 1
h O1×3

O3×3 O3×1 I(1),3

xmerging

umerging

Rmerging


+

O3×1 Br(:, 2)
1
h O1×1

O3×1 I3(:, 3)

(u0,merging
...
rmerging

)
,

(3.3.1)

where the input u0,merging is defined as

u0,merging := um−1,

since a copy of vehicle m− 1 is used as the virtual reference vehicle of the merging car. The standstill
distance rmerging of the merging vehicle is defined as is described in section 3.2.3 as a polynomial that
satisfies the constraints

rmerging(tstart) = qm−1(tstart)− qstart − Lmerging − hvmerging(tstart)

and
rmerging(t̃ramp) = r,

and whose first two derivatives equal zero at tstart and t̃ramp.

Next, the platoon should be controlled during [tstart, tramp] such that it creates a gap. When the merging
vehicle arrives at the beginning of the acceleration lane, the platoon should have created a gap between
vehicles m and m− 1, which were chosen at time tstart. As the merging vehicle cannot merge before it
reaches qramp at time tramp, the platoon can gradually increase the standstill distance between vehicles
m and m− 1 during the interval [tstart, tramp]. This could be modeled by (3.2.10) using a fixed standstill
distance function rm(t) defined at time tstart according to section 3.2.3, but it is also possible to let the
standstill distance of vehicle m depend on the position of the merging vehicle using a linear function,
similar to what was done in section 3.2.5.

When the merging vehicle enters the entrance ramp, all standstill distances ri, i ∈ V, should still be
equal to the default value r, but when the vehicle reaches the beginning of the acceleration lane, the
standstill distance rm of the chosen vehicle m should have been increased by an additional distance
Lgap, such that the merging vehicle will be able to merge into the platoon between vehicles m and m−1.
Ideally, Lgap would equal r + hvmerging + Lmerging such that when the distance between vehicles m and
m − 1 is increased by Lgap and the merging vehicle merges into the gap, it immediately drives at the
correct distance from vehicle m and from vehicle m − 1. To avoid complicated derivatives, however, it
might be convenient to choose Lgap = r+ hv̄platoon +Lmerging instead, which uses the constant platoon
velocity v̄platoon. Since v̄platoon is the desired velocity of all vehicles, in steady state all velocities will be
equal to v̄platoon.

As it was assumed that for all vehicles the distance δ to the beginning of the acceleration lane qramp

is known, when vehicle m is making a gap, the standstill distance rm can be defined as a function
of δmerging. When the distance δmerging is equal to the initial value δmerging(tstart) = qramp − qstart, the
standstill distance rm should be equal to the default distance r. When the distance δmerging is zero, then
qmerging = qramp and hence rm should be equal to r + Lgap. Standstill distance rm should therefore
satisfy

rm(δmerging = qramp − qstart) = r

and
rm(δmerging = 0) = r + Lgap.

This results in the following linear function:

rm(δmerging) =

(
−Lgap

qramp − qstart

)
δmerging + r + Lgap, (3.3.2)

defined for qramp − qstart > δmerging > 0 or for tstart < t < tramp, as tramp was defined as the time where
the merging vehicle reaches qramp and δmerging(tramp) = 0.
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Since the distance δmerging was defined as δmerging(t) := qramp−qmerging(t) and qramp is fixed, the vehicle
dynamics of the merging vehicle (see also (2.3.1)),q̇merging

v̇merging

ȧmerging

 =

 vmerging

amerging

− 1
τ amerging + 1

τ umerging

 , (3.3.3)

can be used to find the derivatives of (3.3.2). As r and Lgap are constants, the first time derivative of
(3.3.2) becomes

ṙm =

(
−Lgap

qramp − qstart

)
(−vmerging) ,

where derivative ṙm is defined as ṙm := drm
dδmerging

δ̇merging as rm is now a function of δmerging and δmerging

depends on time. The second and third time derivatives are then given by

r̈m =

(
−Lgap

qramp − qstart

)
(−amerging)

and

...
rm =

(
−Lgap

qramp − qstart

)(
1

τ
amerging −

1

τ
umerging

)
= −1

τ
r̈m +

1

τ

(
Lgap

qramp − qstart

)
umerging. (3.3.4)

Substituting (3.3.4) into the closed-loop platoon dynamics of (3.2.10) results in

(closed-loop platoon dynamics for tstart ≤ t ≤ tramp) Ẋ

U̇

Ṙm

 =

In ⊗A− L̂ ⊗BkT O3n×n O3n×3

L̂ ⊗ 1
hk

T Au On×3

O3×3n O3×n A

 X
U
Rm


+

O3n×1 J(:,m)⊗ −Lgap

qramp−qstartB

βBu On×1

O3×1
Lgap

qramp−qstartB

( u0

umerging

)
.

(3.3.5)

In addition to u0, also the desired acceleration of the merging vehicle umerging is now required as an
external input.

Note that, in (3.3.5), X and U do no longer depend on Rm. This can be seen easily by considering the
error dynamics of (3.2.5) for vehicle m:

...
em = −1

τ
ëm +

1

τ
ūm + β

[
−1

τ
r̈m −

...
rm

]
. (3.3.6)

If ...
rm is replaced by (3.3.4) in these error dynamics, the first term of (3.3.4) cancels against the r̈m in

the last term of (3.3.6).

3.3.2 The merge

From time tstart until tramp, the merging vehicle is modeled by (3.3.1) and the platoon by (3.3.5) such
that, ideally, the merging vehicle will be able to merge with the platoon at time tramp. However, most
likely, the merging vehicle will not exactly be aligned with the gap at time tramp. Therefore, finally, the
merging vehicle should be controlled such that it will be aligned with the gap and it should be checked
whether it is safe to merge before the actual merge can take place at time tmerge.

While the merging vehicle might not yet be exactly aligned with the gap in the platoon at time tramp,
it will be close enough to the gap that the merging vehicle can communicate to and act as part of the
platoon. Therefore, the merging vehicle is added to the platoon, though they are still driving in separate
lanes, and the dynamics in (3.2.10), which are
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(closed-loop platoon dynamics for tramp ≤ t ≤ tmerge) Ẋ

U̇

Ṙm

 =

In ⊗A− L̂ ⊗BkT O3n×n J(:,m)⊗ [O3×2 Br(:, 1)]

L̂ ⊗ 1
hk

T Au On×3

O3×3n O3×n I(1),3

 X
U
Rm


+

O3n×1 J(:,m)⊗Br(:, 2)
βBu On×1

O3×1 I3(:, 3)

(u0
...
rm

)
,

(3.3.7)

now cover both the merging vehicle and the platoon. This ensures that the merging vehicle will be
exactly aligned with the gap.

While the standstill distance between the merging vehicle and vehicle m − 1 is already equal to the
default value r at time tramp (see section 3.3.1), this is not necessarily true for the standstill distance
between vehicle m and the merging vehicle. Therefore, the standstill distance rm is increased or de-
creased from the initial value dm(tramp) − hvm(tramp) at tramp to the default value r, where dm is the
distance between the merging vehicle and vehicle m and hence dm(tramp) = qramp − qm(tramp) − Lm.
This is done, again as in section 3.2.3, by finding a 5th-degree polynomial rm(t) that satisfies the con-
straints

rm(tramp) = qramp − qm(tramp)− Lm − hvm(tramp)

and
rm(tramp + talign) = r,

and for which the first two derivatives equal zero at tramp + talign and are continuous at tramp. Here, talign

is the amount of time given for the final adjustments. Its value can be small as talign is mainly used to
avoid discontinuities in rm(t) and abrupt changes in velocity for the vehicles.

The actual merging can then take place at time tmerge, the moment the merging car detects enough
distance in front and behind. This distance is again denoted by dmerge and is again defined as the linear
function

dmerge(δend) =
hvmerging

qend − qramp
(δend − qend + qramp) + r + hvmerging

for tramp < t < tmerge, and hence time tmerge can be defined as the time t > tramp where

dmerging := qm−1 − qmerging − Lmerging ≥ dmerge(δend)

and

dm := qmerging − qm − Lm ≥ dmerge(δend)

first hold. The merging vehicle merges into the platoon at time tmerge and continues driving on the
highway as part of the platoon.
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4. Methods

Both the models of section 3.2 and section 3.3 are implemented in MATLAB in order to run some simula-
tions of a vehicle merging into a platoon on the highway. Each model is applied to the situation described
by figure 3.1. At first, a platoon is driving on the highway with a constant velocity. Then at time tstart

a vehicle enters the entrance ramp to the highway at qstart. The platoon and the merging vehicle are
controlled such that the merge can take place at time tmerge before the merging vehicle reaches the end
of the acceleration lane. The vehicle m in front of which the merging vehicle merges into the platoon is
chosen as is described in (3.2.3). The merging vehicle merges at time tmerge when it detects enough
distance between vehicles m and m − 1. The model of section 3.3, which we will call the closed-loop
model from now on, is given by (3.1.1), (3.3.1), (3.3.5), and (3.3.7). This model aims to let the merging
vehicle merge into the platoon when it enters the acceleration lane at qramp. It was designed this way
such that final adjustments can be made while driving the entire length of the acceleration lane. In the
open-loop model, which is given in section 3.2, the merging vehicle was to merge at time t̃ramp, which is
the estimation of tramp given in (3.2.2). The dynamics in (3.2.17) and (3.2.22), however, only describe
the situation during the time interval [tstart, t̃ramp]. Outside of this interval the merging vehicle is part
of the platoon, and hence (3.1.1) can be used. Since it is not guaranteed that the merging vehicle is
driving in the acceleration lane at t̃ramp, this model is called the open-loop model, even though it does
contain some feedback elements.

For the simulations, we consider the merge of a vehicle onto a Dutch highway where the maximum
speed is 120km/h. According to the guidelines for the design of Dutch highways, the acceleration lane
should in this case have a length of 350m, and the minimum distance needed to accelerate is 125m
based on an acceleration of 1m/s2 and an initial velocity of 70km/m2 [14, chapter 6]. Therefore, we
choose v̄platoon = 120km/h = 33.33m/s, vmerging(tstart) = 70km/h = 19.44m/s, aramp = 1m/s2, and a
length of 450m for the entrance ramp and 350m for the acceleration lane. Starting the simulation at time
tstart = 0s with qstart = 0m gives qramp = 450m and qend = 800m. It is assumed that the platoon consists
of 10 vehicles and is homogeneous, which means that all vehicles use the same values for the length,
the drive-line dynamics time constant τ , and the time gap h. Also the default standstill distance r is the
same for all vehicles. For the vehicle lengths, we use Li = 5m, i = 1, . . . , n, and Lmerging = 5m. In
[21], values of τ = 0.1s, r = 2m, and h = 0.6s are used. For creating a gap in the platoon, we use
Lgap = Lmerging + r + hv̄platoon. In the open-loop model, Lcom is implemented as the distance between
the merging vehicle and vehicle m − 1 at time tstart: Lcom = −(qm−1(tstart) − qstart − Lmerging). In the
closed-loop model, we use talign = 5s. The virtual reference vehicle of the platoon was assumed to be
uncontrolled, so u0(t) = 0m/s2, and for the merging vehicle we use u0,merging(t) = um−1(t). The values
of α, β, and the controller gain vector k = [k1, k2, k3]T are chosen according to section 2.9 such that
α ∈ (0, 1], β ∈

(
1
2 , 1

]
, and 

k1 > 0

k2 >
k1τ

mini{λik3+1}
k3 > − 1

maxi{λi}

For k we use the same values as in [21], kT = [0.2, 1, 0], and we choose α = 0.8 and β = 0.8. As
mentioned before in section 2.6, we use k3 = 0 for all results. This is possible since all eigenvalues
λi of the matrix L̂ defined in (2.1.10) and (2.1.11) are positive and hence − 1

maxi{λi} is negative. Using
k3 = 0 also simplifies the constraints for k1 and k2 to k1 > 0 and k2 > k1τ .

The values mentioned above are summarized in table 4.1 and are used in all results of chapter 5 unless
it is mentioned otherwise.
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Table 4.1: Default values of parameters.

parameters

description symbol value unit

platoon size n 10 -
velocity v̄platoon 120 km/h

vehicle

length Li /Lmerging 5 m
drive-line dynamics constant τ 0.1 s
standstill distance r 2 m
time gap h 0.6 s

merging

initial velocity vmerging(tstart) 70 km/h
acceleration aramp 1 m/s2

gap size Lgap Lmerging + r + hv̄platoon m
communication distance Lcom −(qm−1(tstart)− qstart − Lmerging) m

weights communication topology α 0.8 -
error β 0.8 -

controller

gain vector k [k1, k2, k3]T -

gain values
k1 0.2 -
k2 1 -
k3 0 -

highway beginning of entrance ramp qstart 0 m
beginning of acceleration lane qramp 450 m
end of acceleration lane qend 800 m

simulation start time tstart 0 s
talign 5 s

input platoon u0(t) 0 m/s2

merging vehicle u0,merging(t) um−1(t) m/s2
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5. Results and discussion

In this chapter, the models that were designed in chapter 3 are simulated and the results are reported
and discussed. The open-loop and closed-loop models are implemented as described in chapter 4.
The first simulations are performed with the default settings as given in chapter 4. These values are
summarized in table 4.1. After that some of the parameters are changed and more simulations are
done.

First of all, we consider the closed-loop model with the default parameters given in table 4.1. Some plots
are given in figure 5.1 showing the error ei(t), the distance di(t), the velocity vi(t), and the acceleration
ai(t) of several vehicles. Recall that the distance of a vehicle i was defined as the distance between
vehicle i and vehicle i− 1 and the error as

ei(t) = β [di(t)− r − hvi(t)] + (1− β) [di+1(t)− r − hvi(t)] .

A platoon of size n = 10 was simulated, but figure 5.1 only shows the merging vehicle and vehicles
m−2, m−1, m, and m+ 1 of the platoon. In this case, the merging vehicle chooses to merge in front of
vehicle m = 3 and hence figure 5.1 only shows the first four vehicles of the platoon. In this simulation,
the merging vehicle reaches the beginning of the acceleration lane qramp at time tramp = 16.06s, merges
into the platoon at time tmerge = 17.62s, and reaches the end of the acceleration lane qend at time
tend = 26.45s. The plots in figure 5.1 show that the model is working as expected. The errors converge
to zero for all vehicles, the distances all converge to the same value of r+hv̄platoon = 22m, the velocities
all converge to the platoon velocity v̄platoon = 33.33m/s, and also the accelerations converge to zero.
The distance of the merging vehicle to vehicle m − 1 is initially negative because the merging vehicle
starts in front of the platoon. A negative distance between two vehicles would normally mean that these
vehicles crashed, but there are some exceptions. The distance of the merging vehicle is defined with
respect to vehicle m − 1 of the platoon and is allowed to be negative until time tmerge when it merges
into the platoon. Also the distance of the first vehicle is allowed to be negative, since it drives behind a
virtual car, and, between time tramp and tmerge, the distance of vehicle m to the merging vehicle could be
negative. Note that during this time, figure 5.1 would not clearly show a crash between vehicles m and
m − 1 because the distance of vehicle m is here defined with respect to the merging vehicle which is
still driving in the acceleration lane. For this reason, additional checks were implemented in MATLAB to
detect any crashes. The distance of the merging car in figure 5.1 shows some overshoot at time tmerge.
This means that when the merging vehicle merges into the platoon it drives closer to vehicle m than to
vehicle m − 1 and that its velocity is slightly higher than the platoon velocity. Large overshoots should
be avoided, since this could cause vehicles to crash. This overshoot could be reduced by increasing
the value of the controller gain vector k, but this would increase the peak in acceleration for the merging
vehicle, and hence might not be desirable. Figure 5.1 also shows that the error of vehicle 2, 3, and the
merging vehicle and the distance of vehicle 3 is discontinuous at time t = 16.06s. This is as expected,
since the merging vehicle reaches qramp at this time. The merging vehicle is then virtually inserted into
the platoon, meaning that it acts as part of the platoon but is still driving in the acceleration lane, and
hence the error state of vehicle m−1 = 2, the merging vehicle, and vehicle m = 3 are redefined and are
discontinuous at this point. Since the error of a vehicle i is defined based on the vehicle directly in front
of and the vehicle directly behind vehicle i, nothing changes for the remaining vehicles in the platoon.
The distance of vehicle m is discontinuous at time tramp for the same reason.

For the same simulation, the standstill distance ri and its first two derivatives are given in figure 5.2 for
the first four vehicles of the platoon and the merging vehicle. For vehicle m = 3, the standstill distance
increases until time tramp = 16.06s, where it is discontinuous since at that time the merging vehicle
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(a) error (b) distance

(c) velocity (d) acceleration

Figure 5.1: The error ei(t), distance di(t), velocity vi(t), and acceleration ai(t) of the merging vehicle
and vehicles 1, 2, m = 3, and 4 of the platoon for a simulation of the closed-loop model with the default
settings. In this case, tramp = 16.06s, tmerge = 17.62s, and tend = 26.45s.
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starts acting as a part of the platoon, and then converges to the default value r = 2m. Its derivatives
are continuous, which is consistent to how rm was designed. For the merging vehicle, the standstill
distance increases gradually to the default value r = 2m as expected. It is, however, discontinuous at
tramp, though it is hard to see in figure 5.2, and also its derivatives are discontinuous. This is caused
by the fact that rmerging(t) was designed based on an estimation of tramp and in this case the merging
vehicle reaches qramp slightly earlier than was estimated. This could easily be fixed by designing a new
function rmerging(t) at tramp and by adding ...

rmerging(t) as an input to the dynamics in (3.3.7), but this is
not necessary since these discontinuities do not cause any problems and the dynamics in (3.3.7) do not
contain rmerging(t) at all. For the remaining vehicles, the standstill distance is constant and hence the
derivatives equal zero.

Similarly, the plots of figure 5.3 show that the open-loop model is working as expected. Here, the
merging vehicle arrives at qramp at time tramp = 16.06s, merges in front of vehicle m = 3 at time
tmerge = 16.96s, and arrives at qend at time tend = 26.45s. Comparing these plots to those of the closed-
loop model, we see that the merging vehicle acts very similar in the open-loop model, which is as
expected since both models use the same dynamics for the merging vehicle until tramp. Similar to the
closed-loop model, figure 5.3 shows discontinuities in the error and distance plots, but now at time tmerge

instead of at time tramp since in the open-loop model the merging vehicle is not inserted into the platoon
before it is able to merge. The merging vehicle is able to merge into the platoon closer to the beginning
of the acceleration ramp qramp. With the closed-loop model, there was slightly more time between tramp

and tmerge, but this was part of the model. By decreasing the value of talign in the closed-loop model, the
merging vehicle would merge into the platoon closer to qramp. A noticeable difference between the two
models is also that the vehicles that will eventually be driving behind the merging vehicle in the platoon,
so all vehicles i ≥ m = 3, accelerate more aggressively in the open-loop model than in the closed-loop
model. Figure 5.4 shows the acceleration of these vehicle and the merging vehicle for both models.

In designing the model, it was assumed that the platoon maintained a constant velocity. In reality,
however, this is not guaranteed. The platoon could be accelerating or decelerating, and it is very
likely that the platoon velocity fluctuates. Such disturbances in the platoon can be modeled by using
a nonzero input signal u0(t) such that the virtual reference vehicle and therefore also the platoon will
either accelerate or decelerate. We consider two cases: the virtual reference vehicle accelerates based
on the input signal

u0(t) =

{
1 5 ≤ t ≤ 10

0 otherwise
(5.1)

or it decelerates based on

u0(t) =

{
−1 5 ≤ t ≤ 10

0 otherwise
. (5.2)

This means that during a period of five seconds the desired acceleration of the virtual reference vehicle
equals plus or minus 1m/s2 such that, in theory, its velocity increases to 38.33m/s or decreases to
28.33m/s. Some results of the closed-loop and the open-loop models are shown in figure 5.5 and
figure 5.6. Apart from u0(t), no parameters were changed compared to the default settings (table 4.1).

These results show that the merging vehicles of both the open-loop and closed-loop model are able
to successfully merge into the platoon despite the fact that the platoon does not maintain a constant
velocity. The errors in figures 5.5 and 5.6 converge to zero, all distances converge to the same value, all
velocities converge to the same value, and the accelerations converge to zero. As expected, when using
the input function of (5.1), the vehicles accelerate to a velocity of approximately 38.33m/s2 (figure 5.5),
while for the input of (5.2), the vehicles decelerate to a velocity of approximately 28.33m/s2 (figure 5.6).
And, since the desired distance between vehicles depends on their velocities, the distance between
vehicles therefore increases in figure 5.5 and decreases in figure 5.6. Since the input u0(t) represents
the desired acceleration of the virtual reference vehicle, and we use α = β = 0.8 so that vehicles
primarily react to the vehicle in front, the acceleration of the first vehicle in the platoon is expected to
be able to follow the input function the best. Figures 5.5 and 5.6 indeed show that this is the case. As
with the previous simulations with constant platoon velocity, the merging vehicles of the open-loop and
closed-loop models again act very similar, and the error and distance plots show discontinuities at tmerge

(open-loop) and at tramp (closed-loop).
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(a) standstill distance

(b) first derivative

(c) second derivative

Figure 5.2: The standstill distance ri(t), the first derivative ṙi(t), and the second derivative r̈i(t) of the
merging vehicle and vehicles 1, 2, m = 3, and 4 of the platoon for a simulation of the closed-loop model
with the default settings. In this case, tramp = 16.06s, tmerge = 17.62s, and tend = 26.45s.

54



(a) error (b) distance

(c) velocity (d) acceleration

Figure 5.3: The error ei(t), distance di(t), velocity vi(t), and acceleration ai(t) of the merging vehicle
and vehicles 1, 2, m = 3, and 4 of the platoon for a simulation of the open-loop model with the default
settings. In this case, tramp = 16.06s, tmerge = 16.96s, and tend = 26.45s.

(a) open-loop (b) closed-loop

Figure 5.4: The acceleration ai(t) of the merging vehicle and vehicles (m =) 3, 4, . . . , 10 of the platoon
for simulations of the open-loop and closed-loop models with the default settings.

55



CHAPTER 5. RESULTS AND DISCUSSION

While the closed-loop model was designed to be able to handle such disturbances in the platoon velocity
by taking into account the beginning and the end of the acceleration lane, this was not necessarily
expected of the open-loop model. The model that we call the open-loop, however, is not fully open-
loop but instead includes some feedback elements: the virtual reference vehicle of the merging vehicle
is defined to be a copy of vehicle m − 1, the distance between vehicles m and m − 1 depends on
the position of the merging vehicle relative to vehicle m − 1, and when checking whether it is safe to
merge the distance to the end of the acceleration lane is taken into account. A fully open-loop model
would have more trouble dealing with these disturbances. This is demonstrated in figure 5.7. For
this simulation, a simple model was implemented, where (3.2.10) was used for the platoon and rm was
defined as a 5th-degree polynomial with constraints (3.2.11) to (3.2.14) in order to increase the distance
between vehicles m and m−1 from the default value r to r+Lgap. The merging vehicle was modeled by
(3.2.17) with rmerging(t) = r and u0,merging(t) given by (3.2.15). Figure 5.7 shows that when the platoon
continues with constant velocity the merging vehicle accelerates to approximately the same velocity and
drives close to vehiclesm andm−1 at the estimated time of merge t̃ramp. When the platoon accelerates,
however, the velocity of the merging vehicle is too low compared to the platoon and hence it drives too
far behind vehicle m − 1 at time t̃ramp. Conversely, when the platoon decelerates, the velocity of the
merging vehicle is too high and at time t̃ramp it drives too close to vehicle m−1. Figure 5.7 was included
mainly to demonstrate the problems caused by an open-loop model. Even though the open-loop model
as it was designed in section 3.2 contains some feedback elements, compared to the closed-loop model
of section 3.3 it is still an open-loop model. And while it does not clearly show in the plots of figures 5.5
and 5.6, for modeling the merge of a vehicle into a platoon on the highway using the closed-loop model
seems to be the best choice out of the options that were considered and hence this model will be used
in all remaining simulations. Moreover, figure 5.4 showed that the vehicles in the platoon accelerate
more aggressively in the open-loop model than the vehicles in the closed-model. In practice, some
vehicles might not be able to accelerate in this way plus a more gentle acceleration will most likely be
preferred by the users.

Looking at the values of tramp, tmerge, and tend for all previous simulations in table 5.1, we see that for
both the open-loop and the closed-loop model the amount of time between tramp and tmerge increases
when the platoon accelerates and decreases when the platoon decelerates. This can be explained by
the fact that when the platoon accelerates it will reach qramp earlier than expected and hence has less
time to form the gap, while it has more time when the platoon decelerates and reaches qramp later than
expected. Also note that the value of Lgap was fixed based on the initial platoon velocity. When the
platoon decelerates, distances between vehicles get smaller and hence also the distance needed to
merge decreases, but since Lgap does not change, vehicles m and m − 1 increase the distance more
than is necessary and it becomes easier for the merging vehicle to merge. On the other hand, when
the platoon accelerates, distances between the vehicles will get larger, which then means that there is
more distance needed before the merging vehicle is able to merge. The value of Lgap remains the same
and hence it will be more difficult for the merging vehicle to merge and the merge will take place further
on the acceleration lane.

Table 5.1: Values of tramp, tmerge, and tend for several simulations.

platoon velocity model tramp (s) tmerge (s) tend (s)

constant open-loop 16.06 16.96 26.45
closed-loop 16.06 17.62 26.45

increasing open-loop 15.16 16.61 24.24
closed-loop 15.17 17.16 24.25

decreasing open-loop 17.25 17.26 29.45
closed-loop 17.27 18.29 29.45

As can be seen in the previous plots, especially in figure 5.4, there is a slight delay between two
consecutive vehicles. At time tstart = 0, vehicle m = 3 decelerates in order to increase the distance
to vehicle 2. Vehicle 4 reacts quickly but it takes about a second before it starts decelerating. The
response of vehicle 5 is also delayed compared to its predecessor, and this continues for all vehicles
further towards the back of the platoon. In addition, the last vehicle of the platoon, vehicle 10, needs to
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(a) error, open-loop (b) error, closed-loop

(c) distance, open-loop (d) distance, closed-loop

Figure 5.5: Results of simulations with an accelerating platoon. Plotted are the error ei(t), distance
di(t), velocity vi(t), and acceleration ai(t) of the merging vehicle and vehicles 1, 2, m = 3, and 4 of the
platoon for a simulation of the open-loop model and a simulation of the closed-loop model. For both
models the default settings were used except for the desired acceleration of the virtual reference vehicle
u0(t), which is given by (5.1). In this case, for the open-loop model tramp = 15.16s, tmerge = 16.61s, and
tend = 24.24s, while for the closed-loop model tramp = 15.17s, tmerge = 17.16s, and tend = 24.25s.
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(e) velocity, open-loop (f) velocity, closed-loop

(g) acceleration, open-loop (h) acceleration, closed-loop

Figure 5.5 (continued): Results of simulations with an accelerating platoon. Plotted are the error ei(t),
distance di(t), velocity vi(t), and acceleration ai(t) of the merging vehicle and vehicles 1, 2, m =
3, and 4 of the platoon for a simulation of the open-loop model and a simulation of the closed-loop
model. For both models the default settings were used except for the desired acceleration of the virtual
reference vehicle u0(t), which is given by (5.1). In this case, for the open-loop model tramp = 15.16s,
tmerge = 16.61s, and tend = 24.24s, while for the closed-loop model tramp = 15.17s, tmerge = 17.16s, and
tend = 24.25s.
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(a) error, open-loop (b) error, closed-loop

(c) distance, open-loop (d) distance, closed-loop

Figure 5.6: Results of simulations with a decelerating platoon. Plotted are the error ei(t), distance
di(t), velocity vi(t), and acceleration ai(t) of the merging vehicle and vehicles 1, 2, m = 3, and 4 of the
platoon for a simulation of the open-loop model and a simulation of the closed-loop model. For both
models the default settings were used except for the desired acceleration of the virtual reference vehicle
u0(t), which is given by (5.2). In this case, for the open-loop model tramp = 17.25s, tmerge = 17.26s, and
tend = 29.45s, while for the closed-loop model tramp = 17.27s, tmerge = 18.29s, and tend = 29.45s.
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(e) velocity, open-loop (f) velocity, closed-loop

(g) acceleration, open-loop (h) acceleration, closed-loop

Figure 5.6 (continued): Results of simulations with a decelerating platoon. Plotted are the error ei(t),
distance di(t), velocity vi(t), and acceleration ai(t) of the merging vehicle and vehicles 1, 2, m =
3, and 4 of the platoon for a simulation of the open-loop model and a simulation of the closed-loop
model. For both models the default settings were used except for the desired acceleration of the virtual
reference vehicle u0(t), which is given by (5.2). In this case, for the open-loop model tramp = 17.25s,
tmerge = 17.26s, and tend = 29.45s, while for the closed-loop model tramp = 17.27s, tmerge = 18.29s, and
tend = 29.45s.
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(a) constant platoon velocity, distance (b) constant platoon velocity, velocity

(c) platoon accelerates, distance (d) platoon accelerates, velocity

(e) platoon decelerates, distance (f) platoon decelerates, velocity

Figure 5.7: Results of simulations of a model that is fully open-loop. Simulations are performed for
a platoon with constant velocity, an accelerating platoon, and a decelerating platoon. Plotted are the
distance di(t), and velocity vi(t) of the merging vehicle and vehicles 1, 2, m = 3, and 4 of the platoon
until time t̃ramp = 16.39s . For each simulation the default settings were used except for the desired
acceleration of the virtual reference vehicle u0(t), which is given by u0(t) = 0, by (5.1), or by (5.2).
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accelerate and decelerate more than vehicles that are closer to the front of the platoon. In this case,
because the platoon only consists of 10 vehicles, the total delay for the last vehicle of the platoon is still
relatively small, its acceleration is small compared to the merging vehicle, and hence the platoon does
not have any problems in reaching steady state. For larger platoons, however, the vehicles in the back
of the platoon might react too late or require accelerations that are too extreme. Consider for example a
platoon consisting of 20 vehicles and a platoon consisting of 25 vehicles, which are both modeled by the
closed-loop model. Figure 5.8 shows the distance, velocity, and acceleration of the last five vehicles of
each platoon. For the platoon of 20 vehicles, the distances, velocities, and accelerations of the last five
vehicles oscillate, but remain close enough to the steady-state values in order to eventually converge.
When the platoon consists of 25 vehicles, however, the last vehicles need such a high acceleration
that the distance between some vehicles becomes negative, meaning that in reality these vehicles
would have crashed. For the closed-loop models with the default settings of table 4.1 platoons have a
maximum size of 23 vehicles, though in practice smaller platoons would be used since with 23 vehicles
the distances between vehicles can become very small or the required accelerations might be too large.

In section 2.9, it was proven that the model used for a steady-state platoon is asymptotically stable for
α > 0, β > 1

2 , and 
k1 > 0

k2 >
k1τ

mini{λik3+1}
k3 > − 1

maxi{λi}

Changing these values leads to some interesting results of which some are plotted in figures 5.9 to 5.11.
If, for example, k1 is set to zero, as is done in figures 5.9a and 5.9b, the distances still converge but not
to the same value, while the velocities do converge to the platoon velocity. Since k1 is associated to the
errors ei(t) and hence to the distances di(t), while k2 applies to ėi(t) and hence to the velocities vi(t),
only the velocities are controlled and not the distances between vehicles. Figures 5.9a and 5.9b show
exactly this. In practice, it might be useful to set k1 = 0 for the first vehicle of the platoon, since this
vehicle follows a virtual reference vehicle and hence the distance does not need to equal the desired
distance. Using a different value for k1, k2, or k3 that does not satisfy the corresponding constraint
results in an unstable system. Figures 5.9c and 5.9d show the distances and velocities when k2 = 0.
Increasing the values of k1 or k2 mostly results in a larger acceleration for the merging vehicle as is
shown in figure 5.10. For α = β = 1, it is expected that only vehicle m and the vehicles that drive behind
vehicle m decelerate in order to create space for the merging vehicle and that vehicles that drive in front
of vehicle m do not react at all. This is exactly what happens for the closed-loop model with α = β = 1
in figure 5.11.
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(a) distance, 20 vehicles (b) distance, 25 vehicles

(c) velocity, 20 vehicles (d) velocity, 25 vehicles

(e) acceleration, 20 vehicles (f) acceleration, 25 vehicles

Figure 5.8: Results of simulations of platoons consisting of 20 and 25 vehicles. The plots show the
distance di(t), velocity vi(t), and acceleration ai(t) of the last 5 vehicles of the platoons for simulations
of the closed-loop models with the default settings.
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(a) distance, k1 = 0 (b) velocity, k1 = 0

(c) distance, k2 = 0 (d) velocity, k2 = 0

Figure 5.9: Results of simulations where either k1 = 0 or k2 = 0. The plots show the distance di(t) and
velocity vi(t) of the merging vehicle and vehicles 1, 2, m = 3, and 4 of the platoon for simulations of the
closed-loop model with the default settings.
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(a) default: k1 = 0.2 and k2 = 1

(b) k1 = 0.4 and k2 = 1

(c) k1 = 0.2 and k2 = 2

Figure 5.10: Results of simulations where either k1 or k2 is increased. The plots show the acceleration
ai(t) of the merging vehicle and vehicles 1, 2, m = 3, and 4 of the platoon for simulations of the closed-
loop model with the default settings.
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(a) distance

(b) velocity

(c) acceleration

Figure 5.11: Results of a simulation where α = β = 1. The plots show distance di(t), velocity vi(t), and
acceleration ai(t) of the merging vehicle and vehicles 1, 2, m = 3, and 4 of the platoon for a simulation
of the closed-loop model with the default settings.
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6. Conclusions

Overall, the results in chapter 5 show that with the methods proposed in chapter 3 we are able to model
a platoon of automated vehicles and to control the vehicles such that a separate automated vehicle
entering the highway merges into the platoon that is already driving on the highway.

Nevertheless, the models could be further improved in future research. The results showed that the
difference between the open-loop model from section 3.2 and the closed-loop model from section 3.3 is
small. The closed-loop model was expected to have better performance than the open-loop model since
it takes into account the beginning and end of the acceleration lane. The closed-loop model, however,
still lets the merging vehicle position itself behind vehicle m − 1 of the platoon based on the estimated
time of merge. Instead, this could also be done based on the distance between the platoon and the
beginning of the acceleration lane.

Furthermore, the model might be improved by designing a controller for virtual reference vehicle of
the platoon. In that case, the platoon would be able to accelerate or decelerate slightly in order to
let a vehicle merge into the platoon. It would also be possible to control only the velocity of the first
car of the platoon, since it is not necessary that this vehicle drives at the desired distance behind the
virtual reference vehicle. A different strategy for selecting the vehicle m could improve the model. If, for
example, the merging vehicle is not able to accelerate fast enough, it might be desirable to let vehicle
m accelerate such that it closes the gap to vehicle m − 1 and the merging vehicle can instead merge
between vehicles m+ 1 and m.

For a more realistic model, the methods used could be applied to a heterogeneous platoon that takes
into account the differences between vehicles. The velocities and accelerations of vehicles could be
restricted. Right now, because the vehicles can achieve any required acceleration, the merge can
almost always be completed successfully. The models could be extended such that multiple vehicles
are able to merge into the platoon. Some delays or noise could be added to the used signals, for
example, by using a nonzero value for the drive-line dynamics time delay φ.
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A. Proof of closed-loop stability

In this appendix, the stability of the closed-loop system in (2.8.7) with L̂ = L + P defined by (2.1.10)
and (2.1.11) is proven as was mentioned in section 2.9. The main results are given in theorems A.5
to A.7 and come together in corollary A.8, for which we will need the following definitions and lemma’s.

Definition A.1 The matrix M = [mij ] ∈ Rn×n is diagonally dominant if

|mii| ≥
∑
j 6=i

|mij | ∀i = 1, . . . , n.

Lemma A.2 [4, page 174] Let M = [mij ] ∈ Rn×n be a tridiagonal matrix. If mi,i+1mi+1,i ≥ 0 for all
i = 1, . . . , n− 1, then all eigenvalues of M are real.

Lemma A.3 (Gershgorin disc theorem) [4, theorem 6.1.1]. Let M = [mij ] ∈ Rn×n. The eigenvalues
of M are located in the union of the n Gershgorin discs

n⋃
i=1

λ ∈ C
∣∣∣∣∣∣ |λ−mii| ≤

∑
j 6=i

|mij |

 .

Lemma A.4 (Lyapunov equation) [20, section 7.4] Let M ∈ Rn×n. The system Ẋ = MẊ is asymptot-
ically stable if and only if there are positive definite matrices P and Q that satisfy the Lyapunov equation

MTP + PM = −Q.

Now we can continue with the main theorems. First of all, theorem A.5 provides bounds for the controller
gain values kT := [k1, k2, k3] such that the system Ẋ = (In ⊗ A − L̂ ⊗ BkT )X is asymptotically stable
given that L̂ has positive real eigenvalues. Theorem A.6 then shows that the matrix L̂ defined by (2.1.10)
and (2.1.11) does indeed have positive real eigenvalues provided that α ∈ (0, 1]. Next, it is proven in
theorem A.7 that the matrix Au is stable for β ∈

(
1
2 , 1
]
. And, finally, corollary A.8 combines these results

into one statement that describes the stability of the closed-loop dynamics of (2.8.7).

Theorem A.5 [21, 24] Consider the system Ẋ = (In ⊗ A − L̂ ⊗ BkT )X, where the communication
topology is given by L̂ = L + P. Let λi, i = 1, . . . , n, be the eigenvalues of L̂. If all eigenvalues λi are
positive and real, the system is asymptotically stable if and only if the values of kT := [k1, k2, k3] satisfy

k1 > 0

k2 >
k1τ

mini{λik3+1}
k3 > − 1

maxi{λi}

Theorem A.6 The communication topology given by L̂ = L+P, where the Laplacian matrix L is defined
in (2.1.10) and the pinning matrix P in (2.1.11), has positive real eigenvalues for α ∈ (0, 1].

Proof.
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Using the Laplacian matrix L in (2.1.10) and the pinning matrix P in (2.1.11) results in

L̂ = L+ P =



1 −(1− α) 0 . . . 0

−α 1 −(1− α)
. . .

...

0
. . .

. . .
. . . 0

...
. . . −α 1 −(1− α)

0 . . . 0 −1 1


.

Consider the following cases.

• For α = 1, matrix L̂ is lower triangular and hence the eigenvalues of L̂ are on the diagonal and
are all equal to one.

• For α ∈ (0, 1), all non-zero off-diagonal elements are negative, which means that lemma A.2
applies and all eigenvalues of L̂ are real. Since L̂ is diagonally dominant, it follows from the
Gershgorin disc theorem (lemma A.3) that the eigenvalues are nonnegative. To show that zero is
not an eigenvalue of L̂, we try to find a nonzero vector x = [x1, . . . , xn]

T ∈ Rn such that L̂x = 0.
Let L̂(i, :) denote the i-th row of matrix L̂. For the last row of L̂ we have that L̂(n, :)x = −xn−1+xn
and hence xn−1 should be equal to xn. And for row n − 1 we then have that L̂(n − 1, :)x =
−αxn−2 + xn−1 − (1− α)xn = −αxn−2 + αxn, which only equals zero when xn−2 = xn. Similarly,
from rows n − 2, . . . , 2 it follows that xn−3, . . . , x1 should all be equal to xn. The eigenvector x
should thus be of the form x = xn · [1, . . . , 1]

T for some xn ∈ R, but then L̂x = [αxn, 0, . . . , 0]
T

and this only equals zero when xn = 0. Therefore, zero cannot be an eigenvalue of L̂, so all
eigenvalues of L̂ are positive and real.

Theorem A.7 All eigenvalues of the matrix

Au := − 1

h



2β − 1 1− β 0 . . . . . . 0

−β
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1− β 0

...
. . . −β 2β − 1 1− β

0 . . . . . . 0 −1 1


∈ Rn×n

are located in the open left half-plane for β ∈
(

1
2 , 1
]
.

Proof.

Let P ∈ Rn×n be a positive matrix defined as

P :=


1 0 . . . 0

0
. . .

. . .
...

...
. . . 1 0

0 . . . 0 β


which yields

PAu = − 1

h



2β − 1 1− β 0 . . . . . . 0

−β
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1− β 0

...
. . . −β 2β − 1 1− β

0 . . . . . . 0 −β β


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and consider the matrix Q = [qij ] ∈ Rn×n, which is given by

Q := −
(
ATuP + PAu

)
=

1

h



4β − 2 1− 2β 0 . . . . . . 0

1− 2β
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1− 2β 0

...
. . . 1− 2β 4β − 2 1− 2β

0 . . . . . . 0 1− 2β 2β


.

Clearly, this matrix Q has positive diagonal entries for β > 1
2 , and for the rows then holds that

|q11| =
|4β − 2|

h
=

4β − 2

h
=

2(2β − 1)

h
>

2β − 1

h
=
|1− 2β|

h
=
∑
j 6=1

|q1j |

|qii| =
|4β − 2|

h
=

4β − 2

h
=

2(2β − 1)

h
=

2(2β − 1)

h
=

2|1− 2β|
h

=
∑
j 6=i

|qij | for i = 2, . . . , n− 1

|qnn| =
|2β|
h

=
2β

h
>

2β − 1

h
=
|1− 2β|

h
=
∑
j 6=n

|qnj |

and hence, by definition A.1, the matrix Q is diagonally dominant for β > 1
2 . Furthermore, since matrix

Q is symmetric, all its eigenvalues are real. From lemma A.3, the Gershgorin disc theorem, it follows
that for β > 1

2 all eigenvalues of Q are nonnegative. To prove that all eigenvalues are positive, we will
show that zero cannot be an eigenvalue of Q. Let Q(i, :) denote the i-th row of matrix Q. Suppose
that zero is an eigenvalue of matrix Q, then there is a nonzero vector x = [x1, . . . , xn]T ∈ Rn such that
Qx = 0. Looking at the first row of Q, the product

Q(1, :)x = (4β − 2)x1 + (1− 2β)x2

equals zero only when x2 = 2x1. For the second row, since now x2 = 2x1, we have that

Q(2, :)x = (1− 2β)x1 + (4β − 2)x2 + (1− 2β)x3

= −(2β − 1)x1 + 4(2β − 1)x1 − (2β − 1)x3

= 3(2β − 1)x1 − (2β − 1)x3,

which equals zero only when x3 = 3x1. In general, for i = 2, . . . , n − 1, Q(i, :)x = 0 holds only when
xi = ix1, since

Q(i, :)x = (1− 2β)xi−1 + (4β − 2)xi + (1− 2β)xi+1

= −(2β − 1)(i− 1)x1 + 2(2β − 1)(i)x1 − (2β − 1)(i+ 1)x1

= −[(i− 1)− 2i+ (i+ 1)](2β − 1)x1

= 0.

The vector x thus becomes x = [x1, 2x2, 3x3, . . . , nxn]T . For the last row, however, we have

Q(n, :)x = (1− 2β)xn−1 + (2β)xn

= (1− 2β)(n− 1)x1 + (2β)(n)x1

= [n− 2βn+ 2β − 1 + 2βn]x1

= [n+ 2β − 1]x1,

which, since n > 0 and 2β − 1 > 0, only equals zero when x1 = 0. The only solution of Qx = 0 is
thus x = 0, which contradicts that x is nonzero. Therefore, matrix Q is nonsingular and zero is not an
eigenvalue of Q. All eigenvalues of Q are positive and real.

Finally, since ATuP +PAu = −Q and both P and Q are positive matrices, it follows from lemma A.4 that
the matrix Au is stable.
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Corollary A.8 The closed-loop dynamics of (2.8.7) with L̂ = L + P defined by the Laplacian matrix L
in (2.1.10) and the pinning matrix P in (2.1.11) are asymptotically stable if α ∈ (0, 1], β ∈

(
1
2 , 1
]
, and the

values of kT := [k1, k2, k3] satisfy 
k1 > 0

k2 >
k1τ

mini{λik3+1}
k3 > − 1

maxi{λi}

Proof.

Since the system matrix of the closed-loop dynamics of (2.8.7) is lower block triangular, we only need
to consider the diagonal blocks. The complete system is asymptotically stable when the eigenvalues
of the diagonal blocks, (In ⊗ A − L̂ ⊗ BkT ) and Au, are located in the left open half-plane. From
theorem A.7 it follows that the matrix Au is stable for β ∈

(
1
2 , 1
]
. Theorem A.6 shows that L̂ has positive

real eigenvalues for α ∈ (0, 1]. Therefore, theorem A.5 applies and the eigenvalues of (In⊗A−L̂⊗BkT )
have negative real parts for α ∈ (0, 1] and

k1 > 0

k2 >
k1τ

mini{λik3+1}
k3 > − 1

maxi{λi}

Remark A.9 Note that corollary A.8 specifically uses the communication topology L̂ that is defined by
the Laplacian matrix L in (2.1.10) and the pinning matrix P in (2.1.11). Theorem A.5, however, only
requires that all eigenvalues of L̂ are positive and real. This means that when α, β, and k are defined
according to the constraints in corollary A.8, the dynamics of (2.8.7) are stable for any Laplacian matrix
L and any pinning matrix P such that L̂ = L+ P has positive real eigenvalues.

By definition, the Laplacian matrix L, and therefore also L̂, is diagonally dominant and has positive
diagonal entries. From the Gershgorin disc theorem (lemma A.3) it follows that all eigenvalues of L̂
have nonnegative real parts. For all eigenvalues to be located in the open right half-plane the matrix
L̂ has to be nonsingular. In [24] it is shown that L̂ is nonsingular when the graph corresponding to the
communication topology defined by L̂ contains a directed spanning tree rooted at the virtual reference
vehicle, which means that there exists a directed path between the virtual reference vehicle and every
vehicle in the platoon. If the matrix L̂ is also triangular or symmetric, or if lemma A.2 applies, the
eigenvalues are guaranteed to be real. Clearly, the graph that corresponds to the matrix L̂ = L + P
defined in (2.1.10) and (2.1.11) contains a directed spanning tree whenever α > 0 as is demonstrated
by figure 2.3.

76


	Summary
	Contents
	Nomenclature
	Introduction
	The platoon
	Structure of a platoon
	Measurements
	Vehicle dynamics
	Desired distance between vehicles
	Error dynamics
	Closed-loop platoon dynamics
	Communication
	General closed-loop platoon dynamics
	Stability

	Merging onto the highway
	Problem description
	Merging at a fixed time
	Choosing a merge location
	Creating a gap
	Defining the standstill distance function
	The merging car
	Taking into account the position of the merging car
	The merge

	Merging at a fixed location
	Arriving at the acceleration lane
	The merge


	Methods
	Results and discussion
	Conclusions
	Bibliography
	Appendices
	Proof of closed-loop stability

