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Abstract

The study of network centrality has many real-world applications (e.g.
targeted marketing strategy in business, identification of vital players in a
criminal network, identification of keystone proteins in bio-research.) Ac-
cording to Borgatti (2005), networks are differentiated by the flow mech-
anism (i.e. Parallel replication, Serial replication or Transfer) and the
flow trajectory (i.e. Geodesic, Paths, Trails or Walks). However, the clas-
sification of networks showed that Freemans centrality measures are not
applicable to various types of networks and flows. The aim of this research
is to determine centrality measures that are applicable to varying network
types and flows. An in-depth literature research was conducted to gain a
deep understanding of various networks in terms of structure and infor-
mation flow within the networks. In the process of deriving plausible cen-
trality measures to address networks other than geodesic transfer network,
betweenness-like (Flow centrality, Random-walk betweenness), diffusion,
key players set and closeness-like measures were considered. The derived
centrality approaches were validated using Entropy measures (Connec-
tivity and Centrality Entropy). A simulation study was conducted to
determine the impact of network properties (size, power-law/linkage pa-
rameter, clustering coefficient)(random vs. scale-free network) on all the
proposed centrality measures. The results of different experiments showed
that network cohesion is the main centrality factor. Network cohesion de-
termines whether a network has a single central node or a set of key
nodes. Furthermore, the network cohesion factor also proved that certain
networks are comparable to some of the proposed centrality measures un-
der certain network settings. However, the experiments also showed that
the randomness factor had some impact on the results. Future research
direction is aimed to address some of the limitations found in this research.
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1 Introduction

Network theory is the study of graphs as a representation of symmetric relations,
which provides explanations for a myriad of social phenomena, from individual
creativity to corporate profitability (Borgatti et al., 2009). In social science,
sociologists saw concrete relations between people love, hate, support, and so
on as the basis of community, and they used network analysis to represent
community structure. In business studies, network study is a popular focus. It
enables companies to develop targeted strategies that can be used in different
areas (such as: marketing or product development) (Landherr et al., 2010).

Network analysis consists of characterizing network structures (e.g., small-
worldness), node positions (e.g., centrality) and relating these to group and
node outcomes (Borgatti and Halgin, 2011). The most widely studied concept
is centrality, which entails the properties and characteristics at the node level
relating to the structural importance or prominence of a node in the network
(Borgatti et al., 2009). These properties and characteristics include the number
of nearest neighbors, the average distance among all other nodes, the number of
go-between between two other nodes, and more. The knowledge and technique
of determining the most central nodes of a network could be very beneficial
for the real world applications. The research by De Laat (2002) in finding
the central actors of a drug-related network was done so by using Freemans
degree (the number of nearest neighbors) and betweenness (the number of go-
between between two other nodes) centrality. Much research has been conducted
and posited that the more centralized structures (star structure), outperformed
decentralized structures (circle structure) in information flow, even though it
could be shown mathematically that the circle structure had, in principle, the
shorter time needed for information to transfer (Borgatti et al., 2009). In biology
and ecology, centrality measures become an important tool in identifying essen-
tial proteins, keystone species, information hubs and/or valuable infrastructures
(Enriquez, 2010).

1.1 Motivation

The development of centrality measure research by Freeman (1978) was ground-
breaking. The measures were developed according to three concepts: one abso-
lute, one relative of the centrality of positions in a network and, one reflecting
the degree of centralization of the entire network. The Freemans centrality has
led to the work by Borgatti (2005) in the attempt of mapping appropriate cen-
trality measures to the classification of network flow topologies. However, the
work started by Borgatti (2005) was never finished. This is simply because
Freemans centralities could not be applied to all types of network flow. One
possible explanation is that Freemans centralities are built on the premise that
information flows along the shortest path (Borgatti, 2005). This is however
not the case for all types of network. As result, Freemans centralities would
fail in those situations. Over the years, many researchers have tried to fill in
the blanks. For instance, the random-walk betweenness proposed by Newman
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(2005) was developed to account for non-geodesic flows, it was considered reli-
able in some cases, others have tried to consider multiple vital positions (key
player set) (Ortiz-Arroyo and Hussain, 2008), and random-walk betweenness
were derived to account for walks types of network flows. With that being said,
deriving appropriate centralities for various types of network is a vital part of
network research and may be contributive to various real-world applications.

1.2 Objectives

Freemans centralities (1979) were derived in the attempt of determining the
most central person in a social network analysis (SNA). A person is considered
the most central when he/she has the most contacts, well connected or a go-
between. However, there are other non-social networks that Freeman had not
accounted for. Few examples of these networks are E-mail broadcast network,
mitotic reproduction, Internet name-server network, and more. Since the work
started by Freeman, other centralities include eigenvector and Katz centrality
have been developed in the continuation of his work. Though the work of Bor-
gatti (2005) could not shed light on networks other than transfer networks that
follow the shortest path (Geodesic). With that being said, the main objective of
this research is to explore the possible centrality measures for the other types of
network. This will be achieved by means of utilizing centrality insights of var-
ious authors and data scientists. The derived centrality metrics will be closely
studied through a simulation study. The results obtained from the simulation
analysis will help to finish the work started by Freeman and Borgatti. In order
to arrive at this phase, it is important to have a deep understanding of how these
networks behave and what they have in common. Furthermore, it may also be
insightful to examine the types of network that are a mixture of multiple flow
types. With these objectives in mind, a list of research questions is formulated.

1.3 Research Questions

1. How does the flow process differ between different types of network or
network settings?

2. What possible approaches could be used to determine the centrality of
networks that are not geodesic?

3. How can simulation be used to determine centrality of various network
types?

4. How do network properties impact the outcomes of different centrality
measures?

1.4 Approach

In order to obtain information to address the above-mentioned areas of focus,
a systematic review of network centrality will be conducted as well as simula-
tion experiments. During the systematic review, different ideas, perspectives,
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approaches and findings from different authors will be taken into consideration.
The reason behind such a literature review is to gain a deep understanding of
the topic and knowledge of what researchers found that may have a deep con-
tribution to my research. Based on the found theories, test conditions will be
created. Finally, simulation algorithms will be developed to test those condi-
tions and validate the simulation findings by comparing them to the related
work.

2 Background of Network Theory

A network consists of nodes (also called vertices) and edges. Each node can be
interpreted as a person, organization or an individual component in a system.
Each edge can be interpreted as a relationship that connects one node with
another. An example of the edges in a family network would be love, each
family member possesses a certain degree of love towards each member in the
family. However, this love may not be mutual or balance. Wasserman and
Faust (1993) stated that social network can be classified as a one-sided or two-
sided relationship ((un)directed network), and/or if the relationship is with
different intensities ((un)weighted network). An example of undirected love
would be the love between the brother and sister, and an example of directed
love would be the love the family has for their family pet. A weighted family
network may refer to the different degree of love each member holds. The entire
network represents the workings real-life system. Travers and Milgram (1969)
argued that everyone is connected to everyone else on average of six contacts,
as it is called the small world phenomenon. Within a social network, there is
always a person or set of persons that play a significant role or have the most
influence on the network. The fact is social networks are mostly scale-free in
which the number of contacts per person is not evenly distributed (Barabási,
2009). Rather, social networks are made up of many interconnected individual
groups (i.e. family and friends) and only a few highly integrated members (i.e.
middleman). The existence of such person (i.e. middleman) is what makes
the network functional. Removing this person would drastically impact on the
coherence of the network communication, relation as well as the information
exchange. The study of the centrality of a network deals with identifying the
key players in a network. Such study plays a crucial part in our daily life,
knowing who or what plays a vital role in a network enables us to take a more
directed approach in addressing the issue, whether it is improving information
exchange within a network or the disruption of a terror cell network.

2.1 Classification of Network

Before delving into what the centrality measures are and how they work, it
is important to understand the characteristics of different networks. Borgatti
(2005) stated that the variations of networks are differentiated by three factors.
The concept of information mentioned in each factor refers to the object that is
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being circulated in a particular network. This information differs based on the
types of network.

2.1.1 Transfer Mechanism

The dyadic diffusion mechanism refers to how information moves from one node
to another. That is, whether diffusion occurs via replication mechanism or
transfer mechanism. An example of replication could be a virus spreading from
host to others by replicating the virus. In this example, the information that
flows within the network refers to the contagious virus. An example of transfer
could be trading of a used good where an object is passed from person to person
without replicating. In this case, the information being transferred within the
network refers to the used good.

2.1.2 Flow Mechanism

The rate of replication refers to the form in which information is being replicated.
This factor is only applicable to replication mechanism. That is, whether the
replication happens one at a time (Serial) or simultaneously (Parallel). An
example of a serial replication could be gossip that takes place between two
people, the information in such a network refers to the topic and content of
the gossip. An example of a simultaneous replication could be radio broadcast,
the information in such a network refers to the news or songs that is being
broadcast.

2.1.3 Graph Trajectory

According to graph theory, the flow of information in a network can follow a
path, a walk, a trail or geodesic. A path is a flow from node (s) to (t) via a
set of nodes without repeating any node. This implies that a path will also
not have any repeated edges. A path can be open (line segment) or closed
(polygon). That is, whether the end node of the path equals the start node. A
trail is a flow from node (s) to (t) via a set of nodes that may contain repeated
nodes but without having any edge repeated. A walk is a set of nodes that
may contain repeated nodes and edges. Lastly, geodesic refers to the shortest
path (geodesic). An example of geodesic flow could be traffic navigation that
determines a route based on earliest arrival time.

Borgatti (2005) combined and collapsed these factors and formed table 1
with two dimensions that describe all the networks. On one dimension, the re-
lationship of node-to-node transmission (Parallel, Serial, Transfer) is described.
As for the other dimension, the trajectory of the network flow (Geodesic, Paths,
Trails, Walks) is described.
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Table 1: The table was originally created by Borgatti (2005), which describes
the different network types with a real world example.

Parallel Duplication Serial Duplication Transfer
Geodesic <no process> Mitotic reproduction Package delivery
Paths Internet name-server Viral infection Mooch
Trails E-mail broadcast Gossip Used goods
Walks Attitude influence Emotional support Money exchange

3 Measures of Network

Centrality measure has been considered as an attribute of an actor’s position
in the network, measurable without regard to how it is connected to others and
who and, in turn, how these others are positioned in the network. According to
Freeman (1978): ”There is certainly no unanimity on exactly what centrality is
or on its conceptual foundations, and there is little agreement on the proper pro-
cedure for its measurement. Similarly, Borgatti and Everett (2006) also stated
that there is no uniform understanding of an actors central network. There is,
however, some very different context-specific interpretations of node centrality
which may be the result of the different objectives for the use of centrality mea-
sures. These authors posited that determining the centrality of a network is
not bounded to one specific measure. Instead, Centrality can be calculated in
numerous ways, which depends entirely on the objectives of the search. Further-
more, there is a major distinction between finding one central node and finding
a set of central nodes. Borgatti and Everett (2006) argued that the problem
of getting an optimal set of k-players is different from the problem of selecting
k individuals that are each, individually optimal. This insight originated from
the fact that a network may contain multiple nodes that in spite of not having
a high degree, have a greater impact in disrupting the network structure when
removed (Ortiz-Arroyo and Hussain, 2008).

3.1 Centrality measures for a key player

Freeman (1978) argued that the approaches to centrality are based on three ideas
about what being central means: (1) being active within the network, that is,
maintaining many ties, (2) being efficient, that is, closer to all other nodes in the
network, and (3) being an important go-between, that is, being part of many
paths between other nodes in the network. The Following centrality measures
have all been derived from an unweighted and undirected network. A distinction
was made by Borgatti and Everett (2006) between radial and medial measures.
Radial refers to metrics that start or end at a given node, whereas medial
refers to the amount of information passes through a node. Furthermore, these
mentioned measures only cover a portion of Borgattis network classification
matrix (Table 1).
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3.1.1 Degree

Degree Centrality (DC) is a type of radial centrality measure that counts the
number of edges a node is attached to. For comparison purposes, DC must be
standardized by dividing by the maximum possible value

(
n − 1

)
. The rule is,

the node with the highest DC value is the most central node.
DC is one of the easiest measures. It is also considered as a highly effective

measure. In many social settings, the people with more connections tend to
have more power and more visible. Moreover, the nodes with high degree hold
the network cluster together. It is an appropriate measure for the walk-based
transfer processes due to the fact that the proportion of times a node is visited
is degree dependent (Borgatti, 2005). Nieminen (1974) considered DC as an in-
dicator for determining the interconnectedness of a network member. Landherr
et al. (2010) had a different view of such matter. They argued that DC does not
sufficiently differentiate the interconnectedness of individual member as it only
considers the number of immediate contacts but does not consider their further
interconnectedness.

3.1.2 Closeness

Closeness centrality (CC) measures the average distance of a node to all other
nodes in the network. Scientifically, CC is denoted as:

closeness
(
v
)

=
1∑n

i=1,i6=v d
(
v, i
) (1)

The equation above sums up all the distances of node v, the d
(
v, i
)

refers to
the number of the distance of 1 from the node v to the node i. For comparison
purposes, CC must be standardized by dividing the maximum possible value of

1(
n−1
) . The rule is, the node with the highest CC value is on average closest to

all other nodes (central node). CC is considered as a measure of how long it takes
for information to spread from a source node. It can be applied to both parallel
and transfer flows, but it is more accurate when applied to processes that flow
along the shortest paths. Both CC and BC neglect network communications
that occur along reachable and non-geodesic pathways.

3.1.3 Betweenness

Betweenness centrality (BC) is a type of medial centrality that can be regarded
as a measure of the importance of a node as a controller of the information which
is flowing between the other nodes in the network. BC measures the number of
times a node acts as a bridge along the shortest path (geodesic) between two
other nodes. Scientifically, BC is denoted as:

betweenness(v) =
∑
s 6=t6=v

ds,t
(
v
)

ds,t
(2)
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The equation above sums up all the all the ratios of (v). (s, t, v) are distinct
nodes in the graph, ds,t

(
v
)

refers to the number of geodesic paths from the
node (s) to (t) that via the node v, and ds,t refers to the total number of
geodesic paths from the node (s) to (t). For comparison purposes, BC must be
standardized by dividing the number of pairs of nodes that does not include v,

that is, (

(
n−1
)
∗
(
n−2
)

2 ). The rule is, a node with the highest BC is considered
the most central node.

BC is considered as a measure of volume of traffic moving from each node
to every other node that would pass through a given node Borgatti (2005).
It is suitable for the transfer types of the process due to its indivisible path
that transfers from one node to another along the shortest (geodesic) paths.
However, a major downfall with BC and CC is that they do not take into
account of flows that are non-geodesic. Furthermore, another problem with BC
is in its calculation. De Meo et al. (2012) posited that computing the exact
value of BC for each node-edge is almost unfeasible as the graph size grows.
Decomposition of the network was considered in avoiding the computational
problem, though it will compromise the network infrastructure subtlety.

3.1.4 Other Variations of Betweenness

Due to the limitations of Freemans betweenness, numerous researchers have
been building on top of Freemans betweenness over the years and derived various
betweenness-like metrics.

3.1.4.1 Flow Betweenness

Flow betweenness (Freeman et al., 1991) is based on the idea of maximum flow
a node holds. Imagine the edges in the network are pipes that liquid flows
through, the maximum possible flow at a node (v) from source (s) to target
(t) is calculated to determine the importance of that node (v). Needless to say
that there are numerous paths in which the liquid could take, the ratio of the
maximum possible paths from (s) to (t) that via (v) is the flow betweenness of
node (v). One major advantage of flow betweenness is that it takes into account
all types of paths (geodesic and non-geodesic). However, just like Freemans be-
tweenness, flow betweenness also seems to be an unrealistic definition of many
practical situations (Newman, 2005). The properties of flow betweenness may
be valuable in formulating a plausible measure for networks with serial and/or
parallel replications that are not geodesic (paths, trails, and walks). The notion
of liquid flowing in pipes and forking into multiple pipes is similar to replication
of the virus. Furthermore, the notion of liquid that flows away from the source
due to flow pressure from source is similar to geodesic and paths flows trajecto-
ries. In addition to that, just like liquid, networks like virus do not spread via
an ideal path.
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3.1.4.2 Random-Walk Betweenness

Freemans betweenness measure has the condition that information flowing in
the network follows the shortest (or geodesic) paths. However, Estrada et al.
(2009) argued that most of the information is likely to flow along non-shortest
paths. In this case, the information flow may follow a walk, a trail or a path. In
the attempt of overcoming this flaw, Freeman et al. (1991) has introduced flow
betweenness centrality which supports both geodesic and non-geodesic paths.
However, Newmans finding showed that the flow betweenness was counterintu-
itive, which led him to his own alternative concept of random-walk betweenness
centrality.

To understand what random-walk betweenness is, it is necessary to under-
stand what the definition of random-walk is. Suppose a message that originates
at source (s), and it is intended to reach target (t), having no idea where (t)
is, simply get passed around until it reaches (t). This means, at each step, the
message moves from the current position in the network to one of its adjacent
nodes, chosen uniformly at random. Therefore, random-walk betweenness (Noh
and Rieger, 2004) is similar to flow betweenness, it measures the frequency of
node (v) in between a source node (s) and a target node(t).

The major distinction is that random-walk betweenness is the frequency of
node (v) occurring in a random-walk from (s) to (s), whereas flow betweenness
comparing the maximum possible paths with paths contain node (v). This
distinction provides crucial importance to networks that follow walks trajectory.
In the liquid flowing in pipes analogy, the liquid flows in the directions away
from the source, thus it is illogical to consider the flow current is in the direction
of the source. Unlike trails and paths, walks may contain repeated nodes and
edges. When dealing with randomness-walk, it is unlikely that a target node will
ever be visited as the size of the network increases. In this case, random-walk
betweenness and the betweenness of Freeman (1978) are at the opposite ends
of the spectrum (Newman, 2005), where one end represents information has no
idea where it is heading and the other end represents information know exactly
where it is going. There is one minor yet crucial remark regarding random-
walk betweenness. That is, to resolve the biased high betweenness score caused
by traversing the same nodes back and forth multiple times, those repeated
nodes will be canceled out. Estrada et al. (2009) conducted a simulation on the
Strozzi family and correlation analysis on the variety of betweenness measure
results. The analysis showed that the lower correlation are observed for the
flow betweenness and the shortest path betweenness, whereas the random-walk
betweenness exhibited higher correlation (Estrada et al., 2009).

3.1.5 Eigenvector Centrality

DC, CC, and BC measures were derived from the principle of the node to node
relationship. Unlike the rest, Eigenvector Centrality (EC) is considered as a
radial centrality measure that measures the prestige of a node in relation to its
neighbors. According to Borgatti et al. (2009), if two nodes have ties to the
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same others, they face the same environmental forces and are likely to adapt by
becoming increasingly similar. This means that a node is also considered central
if it is directly connected to other well-connected nodes. Bonacich (2007) stated
that the node that has a high eigenvector score is the one that is adjacent to
nodes that are themselves, high scorers. The EC is denoted as:

CE
(
v
)
∝
∑
iεN(v)

A
(
v, i
)
CE
(
i
)

(3)

The equation above sums up all the eigenvector centrality values of neighbors
of node v. CE

(
v
)

refers to the Eigenvector centrality of node v, iεN(v) refers to

node i being one of node v neighbors, and A
(
v, i
)
CE
(
i
)

refers to the eigenvector
centrality value of node i.

The mechanism of EC affects all nodes and their neighbors simultaneously, as
in a parallel duplication process (Borgatti, 2005). EC does have its limitations,
EC neglects multiple shared paths between points that CC and BC do not.

3.1.6 Comparison and Usage

Radial measures are concerned with the position of a node in the network. The
direct relationships of a node summarize a node’s connectedness with the rest of
the network (Borgatti and Everett, 2006). However, the radial centralities are
not suitable in network with multiple dense clusters. Radial centralities make
sense in the network which has, at most, one center. Relating to the multiple
cluster (two or more centers) networks, medial measures come to play. Unlike
radial measures, medial centrality assigns high centrality scores to nodes that
serve as a bridge between subgroups (clusters) (Borgatti and Everett, 2006).

When choosing between radial (e.g. DC, EC) and medial (e.g. BC, CC) cen-
trality measures, one must consider the conception and cohesion of the network.
For example, if one is studying the risk of receiving information flow through the
network, then logic dictates that the length measure (medial) would be more
suitable. However,if one is studying the package delivery certainty, then the vol-
ume measure would be a more obvious choice (Borgatti, 1995). This centrality
distinction helps to provide insight into the appropriate centrality measure given
the network properties (flow, graph, and transfer mechanism). The previously
mentioned centrality metrics from various researchers have been assigned to the
network classification developed by Borgatti (2005) according to his research.
This is shown in Table 2.

3.2 Diffusion

According to Valente (1996), network influence is captured by an exposure or
contagion model. The likelihood of each individual of adoption increase as
the number of individuals in his or her network increase (high degree) (Iribar-
ren and Moro, 2011). For example, a person with a high degree centrality in
his/her network may have a higher chance of being infected with a virus. The
exposure of an individual can be measured by social influence processes. The
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Table 2: The table describes the appropriate centrality metrics for the different
network types according to Borgatti (2005).

Parallel duplication Serial duplication Transfer

Geodesic Freeman Closeness
Freeman Betweenness
Freeman Closeness

Paths
Freeman Degree
Freeman Closeness

Trails
Freeman Degree
Freeman Closeness

Walks
Freeman Degree
Freeman Closeness
Bonacich Eigenvector

Table 3: The table describes the different factors that contribute toward social
influence. These factors are divided into three classes: relational, positional and
central)

Relational Positional Central

Direct ties
Indirect ties
Joint participation

Percent Positive matches:
(tie overlap)
Euclidean distance:
(distance between two nodes)
Regular equivalence:
(two nodes tie to same 3rd node)

Degree
Closeness
Betweenness
Flow
Information
Power

social influence processes refer to the number of direct contacts (degree) and
position (closeness) of the individual within the network (Burt, 1987). The so-
cial influence processes can be modeled with three different classes of network
weight matrices (relational, positional, and central) (Table 3). In addition to
that, the exposure is also influenced by the social distance and in-degree. For
undirected and unweighted networks, the positional and central matrices may
be useful in determining the social influence processes. According to Valente
(1996), an accelerated diffusion is dependent on the network structure. Diffu-
sion reaches pockets of interconnectivity (within the cluster) and spreads rapidly
within these pockets, but slow between network subgroups (between clusters).
Based on that remark, a starting node that yields the quickest diffusion may
be considered as a central source. With that being said, the centrality of the
replication processes can be determined by comparing the time needed to reach
full diffusion of all nodes.

3.3 Centrality measures for a set of key players

Borgatti (2006) defines the Key Player Problem Positive (KPP-Pos) as con-
sisting of identifying these k-players that could be used as seeds in diffusing
optimally some information on the network. The Key Player Problem Negative
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(KPP-Neg) goal consists of identifying those k-players that, if removed, will
disrupt or fragment the network. In tackling the Key player problem, Ortiz-
Arroyo and Hussain (2008) have developed a method that is based on the en-
tropy concept by Shannon (1948). Entropy is defined as a measure to quantify
the amount of information that could be transmitted in a noisy communication
channel. The basic idea is to find those nodes that produce the largest changes
in the connectivity and/or the centrality entropy when removed from the graph.

X
(
v
)

=
deg
(
vi
)

2N
(4)

The equation above measures the connectivity of node v, where deg
(
vi
)

refers
to the number of edges attached to node Vi, and N refers to the total number
of nodes in the network.

Y
(
v
)

=
paths

(
vi
)

paths
(
v1, v2, v3...vm

) (5)

The equation above measures the centrality probability of node v, where paths
(
vi
)

refers to the number of paths from node vi to all other nodes, and paths
(
v1, v2, v3...vm

)
refers to all the paths exist in the networks.

These two equations are used to obtain the different entropy measures (Hco

and Hce), by modifying the entropy equation of Shannon (1948). Connectivity
entropy measure (Hco):

Hco

(
G
)

= −
n∑
i=0

X
(
vi
)
∗ Log2X

(
vi
)

(6)

Centrality entropy measure (Hce):

Hce

(
G
)

= −
n∑
i=0

Y
(
vi
)
∗ Log2Y

(
vi
)

(7)

These two derived entropy equations (Hco

(
G
)

and Hce

(
G
)
) help to deter-

mine the impact of a node in the graph before and after the removal of that
node.

Connectivity entropy measure (Hco

(
G
)
) determines the degree of connect-

edness of a node within the network. In a fully connected graph, the removal
of a node will result in a decrease in the total entropy of the graph, in the same
proportion as if any other node is removed. However, in a less connected graph,
the removal of a node with many incident edges will have a greater impact on
the total connectivity entropy of the system, compared to a node with a smaller
connectivity degree.

Centrality entropy measure (Hce

(
G
)
) determines the degree of centrality of

a node within the network. The node that drastically reduces the number of
viable paths to reach other nodes when removed will have a greater impact on
the total centrality entropy of a graph.
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The simulation model based on the Algorithm 1 of Ortiz-Arroyo and Hussain
(2008) has proven to be a simple yet effective method. Furthermore, It also
revealed that the entropy method also identifies redundant nodes in the network.

Algorithm 1: The algorithm describes the machine code of calculating
the importance of each node and returns a set of nodes that exceed certain
significance level(d1, d2).

Calculate initial total entropy Hco0(G) and Hce0 (G);
for all nodes in graph G do:

Remove node vi, creating a modified graph G;
Recalculate Hcoi(G) and Hcei (G), store these results;
Restore original graph;

end for;
To solve the KPP-Pos problem select those nodes where Hco0 - Hcoi >d1;
To solve the KPP-Neg problem select those nodes where Hce0 - Hcei >d2;

4 Network

4.1 Information Flow

The centrality measures determine the central players in the network but do
not provide much insight regarding the information flow of the network. In the
research of Granovetter (1973), the strength of a relationship (tie) is dependent
on four components: the frequency of contact, the history of the relationship,
the contact duration, and the number of transactions. Granovetter (1973) ob-
served that as the frequency of interactions between two people increases, their
sentiment of the relationship becomes stronger. The history of the relationship
also determines which tie is selected. In a given context environment, a contact
with which a person has interacted over a longer period of time may be more
important than a newly formed contact. The contact duration and the num-
ber of transactions refer to the interaction recency. Granovetter (1973) believes
that recency may influence the intensity of the relationship between two people.
These indicators can be used for information flow to determine which contact
has the strongest social relationship from origin to destination. Tie strength
theory provides insight into how information flows in a socio-network. Daly and
Haahr (2009) hypothesized that tie strength is a good measure of whether a
tie will be chosen or not. Since strong ties are typically more readily available
and as result, more frequent interactions may occur. However, unlike strong
ties, connecting to a weak tie has its own benefit. The connection to a weak tie
enables the access of that circle (subgroup with their own strong ties).

The network analysis focuses on the structural properties of the system from
a topological point of view. That is, considering mainly on the connectivity
properties of the network and not the actual flow through it (Zio and Piccinelli,
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2010). There are three drawbacks associated with the measure of network per-
formance that is based on (Zio and Piccinelli, 2010):

1. Binary links (link or no link) in the network, which neglects the strength
of the connection. This has been pointed out as a limitation in both
social and engineering networks. Zio and Piccinelli (2010) believe that
the strength of the interpersonal relationship is relevant in path selection
decision.

2. The simplified representation of the social network assumes information
flow along the shortest path (geodesic). Based on the context of the in-
formation flow, it is very much possible that information will take a more
circuitous route.

3. The simplified representation of the network also neglects the possibility of
failure in the interconnection of linked nodes. This could be an associate
that is no longer available and it is not been informed to anyone. However,
this is particularly relevant for the engineering network that is made of
fallible hardware and software.

4.2 Network Structure Properties

Different networks come in different shapes and sizes, each has its unique fea-
tures that impacts the information flow. Guzman et al. (2014) have captured
three aspects of network structural properties: size, scale-free parameter and
clustering coefficient.

4.2.1 Size

Size refers to the number of nodes within a network; the size of a network is
context specific. The level of detail determines what actors should be included
in the network. The size of the network dictates what the centrality measure
is appropriate. For instance, as size increases, it is unwise to use Freemans
betweenness due to the scaling of the computational power required.

4.2.2 Scale-free Parameter

Scale-free networks are centralized structure networks with very few dominant
nodes. The degree of nodes in such a network follows a power law distribution
( 1
x2 ). A power law distribution does not have a peak, instead, it is described

by a continuously decreasing function. That is, there are a few core nodes with
many connections and a trailing tail of nodes with a very few connections. The
World Wide Web, semantic maps, and academic citations are typical examples
of a scale-free network.
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4.2.3 Clustering coefficient

Clustering refers to the grouping of nodes in a network. In a realistic environ-
ment, a social network is not centralized. In fact, they are formed by many
subgroups each with a significant actor in the middle that is bridged with other
subgroups in a larger network. As for this reason, various betweenness mea-
sures are more suitable in determining the central nodes in this type of network.
However, this is not the case for all types of network. For instance, Freemans
closeness centrality is more suitable for the networks that have one cohesive
cluster.

4.3 Network Structure

According to Daly and Haahr (2009), Freemans centrality metrics are based on
the analysis of a complete and bounded network, which is sometimes referred to
as a socio-centric network. However, these metrics become difficult to evaluate
when the network size scales up as they require a complete knowledge of the
network topology. Due to this reason, the Ego-Network were created. The
Ego-Network analysis can be performed locally without the need of complete
network knowledge. Alongside Ego-network, other types of network were also
introduced. These networks differ in the structural properties that consequently
affect information flow drastically.

4.3.1 Ego Network

In an Ego-network (Figure 1) setting by Burt (1987) with equal nodes (ties), dif-
ferent information flow outcomes were discovered. In his discovery, two premises
were established:

1. People connected by strong ties (by a specific criterion) are considered
similar and tend to overlap (e.g. personality, mentality, etc.) (McPherson
et al., 2001). Example, the idea generation of two people that are con-
nected by a strong tie are more comparable than the idea generation of
two people that are connected by a weak tie.

2. People that are connected by the bridge ties (weak ties) tend to spark
novel ideas. The benefit of the bridge ties enables the access of other
dense groups (groups with their own strong ties).

Two different structures (left and right) of Figure 1 were analyzed in terms
of information exchange efficiency and idea novelty. The structure on the right
have actors that are closely connected by the strong ties which induce faster
information flow and greater motivation to be of assistance. However, it is more
likely to have similar ideas (Premise 1). Granovetter (1973) argued that the
power of an actor is further affected by who their ”other-ties” are connected so
on and so forth. Oppositely, the structure on the left with fewer strong ties and
more weak ties (structural holes) but has the capability of better idea genera-
tion or being perceived as the source of new ideas due to more non-redundant
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Figure 1: Ego Network (Borgatti and Halgin, 2011): The figure consists of
two different network structure based on the same nodes (ties) and same tie
strengths. However, due to the difference in node-to-node structure, different
information flow effects are produced.
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Figure 2: Exchange Network (Borgatti and Halgin, 2011): The figure displays
two versions of the exchange network. The different between the two structures
has resulted in the power and centrality difference.

information received at any given time than the structure on the left. Weak ties
can be very useful in some settings, they provide bridge connections between
different network clusters, allowing subgroups to share access and capabilities
(Enriquez, 2010). Granovetter (1973) emphasized that the weak ties can lead
to information dissemination between groups. He stated that information can
reach a large number of people and traverse a greater social distance when passes
through weak ties rather than strong ties. In addition to that, weak ties also
provide people with access to information and resources beyond those available
in their own social cluster.

4.3.2 Exchange Network

Cook and Emerson (1978) pioneered the experimental study of power in ex-
change networks (Figure 2). They argued that the network structure and loca-
tion within that structure are fundamental for the network power and centrality.
Consider an exchange network structure (Top network) with three nodes, both
centrality and power phenomena suggest that (B) is the node, due to (B) is
positioned in the middle which has the possibility of making a better trade out
of the two (A and C). However in the network structure (Bottom network) set-
ting with five nodes, (C) is the most central node but node (B) and (D) have
the most power. This is because, (B) can choose who to make deal with (A
or C), similar case for (D) (choice between C and E), while (C) have to deal
with (B) and (D). Since (B and C) can choose (A and E), leaving (C) with no
trade partner. As Cook and Emerson (1978) theorized that in the centrality
phenomena, being connected to well-connected other implies greater centrality.
In power phenomena it can be the other way around, being connected to weak
others makes one powerful and being connected to powerful others makes one
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Figure 3: Unionization Network (Borgatti and Halgin, 2011): The figure displays
how similar nodes in a network can be interpreted as on unit.

weak (Willer, 1992).

4.3.3 Unionization Network

Consider a network setting (Figure 3) in which multiple of similar actors (A1,
A2, A3, and A4) in communication with one other actor (E). Like in a factory
with multiple low-level workers, who report to the same supervisor. Reporting
to the same supervisor individually can be time-consuming and difficult. The
principle of unionization is that if multiple actors have similar goals, then they
can be treated as one unit. The key point in a unionized network is that nodes
with the same interests and capabilities working together can accomplish more
than they could alone. This is the so-called ”network organization”, in which a
set of autonomous unit coordinate closely as if comprising a single, superordinate
entity (Powell, 2003). The bonding function between the actors is called bond
model which is the analog of the flow function in the flow model.

4.4 Random Network vs. Scale-free Network

The understanding of network structure properties helps to provide insights
to network cohesion and centralization. One of the three structural properties
briefly described in the previous chapter is the scale-free parameter. This prop-
erty describes how the nodes within the network are connected. According to
Barabási and Bonabeau (2003), a complex network can be classified as random
or scale-free (Figure 4). The characteristics of a random network are that de-
spite the random placement of links, most nodes have approximately the same
number of links. The links of nodes in the network follow a Poisson distribu-
tion with a bell shape. So, it is extremely rare to find nodes with higher and
and lower total links. A real-life example of a random network is the US high-
way system. The US highway network consists of intersections with a similar
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Figure 4: Random vs. Scale-free Network (Barabási and Bonabeau, 2003): The
simplified highway intersections of US is shown on the left. The simplified US
airline on the right. They correspond to the specific type of network shown in
the figure.

number of connections to neighbor states. In this example, it is indeed rare
to find interactions with fewer and/or many connections. As for the scale-free
network, the links of nodes in the network follow the power-law distribution,
which is the probability of a node connecting to k other nodes is proportional
to 1

kn . A scale-free network has an abundant of nodes with fewer links and few
nodes with high links. A node with many connections in a scale-free network is
called a hub. Networks with central hubs are robust against accidental failure,
but vulnerable to coordinated attack (fragility) (Grassi, 2010). Understanding
such characteristic is vital to the development of centrality metrics for parallel
and serial replication. Few life examples of a scale-free network are the Swedish
sexual relationship, while many people have few sexual partners, a few had
hundreds in their lifetime. Published scientific papers with citations, Internet
systems with routers and the World Wide Web with web pages are examples of
the power-law network.

Erdos and Renyi (Barabási and Bonabeau, 2003) revealed why random-
network theory fails in a social network environment and two reasons were
concluded. Firstly, growth, the number of actors in networks is growing. This
means that the older nodes in the network are more likely to establish more
connections than the newly joined nodes. Lastly, the preferential attachment
describes that a new node is more likely to establish a connection with the node
that has more ties than nodes with fewer ties. This can be seen in the web
search, people can choose from billion of the search result, but instead, only the
top web pages are selected. Likewise, the most cited articles in the scientific
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literature stimulate even more researchers to read and cite them, a phenomenon
that noted sociologist Robert K. Merton called the Matthew effect, after a pas-
sage in the New Testament: ”For unto every one that hath shall be given, and
he shall have abundance.” These two reason help to explain the existence of
hubs and help in the construction of networks.

4.5 Cohesion and Clustering

Since all the networks are not identically shaped. The question is, at what point
a network is considered as a cohesive group or a multiple cohesive subgroups
(clustering) network? One of the first intuitions in SNA concerns the tendency
of human beings to form cohesive subgroups. The main characteristic is that
the nodes in a subgroup are similar in attributes. People adjust their behavior
and attitudes, opinions, and beliefs to the behavior of other members of the
social system in which they participate. Over time, people decide on which ties
to establish, maintain, or terminate (social selection model). The key player
set theory (Ortiz-Arroyo and Hussain, 2008) suggests that some networks have
multiple vital players. These key players may hold some strong positions in
the network. In such case, how would one determine the cohesive subgroups in
a network? The clustering coefficient (CCoe) of the network determines how
cohesive the nodes in the network are. The measure of CCoe is based on the
triplet of nodes. A triplet is three nodes that are connected to each other forming
a triangle. The global clustering coefficient is the average of triplet ratios of all
the nodes. The end result is a value from a scale between 0 and 1. The networks
with low CCoe value are structured like a star shape (hub - like), whereas the
networks with high CCoe value are structured like a clique (close-knit group).

In the history of SNA, there are four ways of identifying cohesive subgroups
at the level of overall network structure have been formulated (Crowston et al.,
2010). The first and strictest approach, a cohesive subgroup is defined as a
set of nodes in which all the nodes are adjacent, that is, directly linked to one
another. The second approach is based on the notion of reachability and close-
ness of members within a subgroup. The shorter the geodesics between them,
the closer the nodes are in a graph, the more cohesive the network structure
subgroup is. However, this would not perform so well in a less dense network.
The third approach focuses on the minimum number of ties among subgroup
members. The number of neighbors within that sub-graph is called k-cores and
a maximal subgraph with respect to the maximum number of nodes in the sub-
graph that are not adjacent are known as k-plex (Seidman, 1983). And the final
approach is based on the relative frequency of ties among subgroup members in
comparison to non-members. The cohesive subgroups are relatively denser than
the sections outside of the subgroups. Ultimately, the cohesion of the network
determines which centrality measure (closeness-like, betweenness-like or other)
is most appropriate.
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5 Development of Centrality Metrics

The in-depth knowledge of the network structures and their unique character-
istics along with a variety of centrality measures from the previous chapters
provided a solid foundation in the formulation of suitable centrality approaches
for other network types. With that being said, this chapter is aimed at develop-
ing appropriate methods according to the network examples of Borgatti (2005)
(Figure 1).

5.1 Centrality

Centrality is an abstract property of a nodes position in a network (Enriquez,
2010). Centrality corresponds to the overall network property and it is defined
as the variation of centrality scores of all nodes. The variation of centrality
scores describes where the central nodes and/or peripheries are. The star and
ring networks are considered respectively the most and the least centralized
networks (Borgatti et al., 2009). The fundamental metrics (Degree, Closeness,
Betweenness, Eigenvector Centrality) are not applicable to all types of network
flow. Degree and Eigenvector metrics focus on the immediate relationships.
Both Betweenness and Closeness are based on the idea of information flow along
the shortest path (Freeman, 2004). There are other networks in which infor-
mation does not flow along the geodesic path (Stephenson and Zelen, 1989).
News, rumors or messages do not know the ideal route to take. They simply
moves from one place to another; more likely it wanders around more randomly
(Newman, 2005). The random-walk betweenness approach of Newman (2005)
and flow betweenness approach of Freeman et al. (1991) are promising solutions
in addressing such problem. Despite all that, there is another concern regard-
ing what centrality metrics are appropriate for the network with different flow
mechanisms (parallel, serial and/or transfer). In the example of a viral infec-
tion (Path - Serial duplication) that virus spreads around randomly, infecting
one person at a time. Determining the centrality of a single node in the net-
work using conventional metrics may not yield useful results. Instead, it may
be wise to inspect such phenomenon differently. The work of key player set by
Borgatti (2006) mentioned in the earlier chapter determines the centralization
of the network by weighing the importance of each node, neglecting the flow
mechanism. Furthermore, the key player set may also be used as a validation
tool in determining the reliability and validity of the proposed methods.

5.2 Formulation of Methods

According to the typology of flow processes (Figure 1) by Borgatti (2005), many
of the flow processes have not been assigned a set of proven centrality measures.
In the attempt of continuing the work started by Borgatti (2005), the following
subsections describe the workings of the proposed methods correspond to the
network examples given by Borgatti (2005). The key assumption of all the
following examples is that information is assumed to be immutable. That is, the
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state of the information does not vary under any circumstances. For instance,
the condition of the used good (example by Borgatti (2005) ) that is passing
around within the network does not change over time.

5.2.1 Serial and Parallel Replication

In the scenario of serial and parallel duplication, it would take some time to reach
full diffusion starting from source S and end at multiple targets Ts. Assuming
the information spread takes place in incremental steps, then the number of
reached nodes after each intermediate incremental step is an addition to the
current step. At some point in time, all the nodes will have a copy of the
information that was transmitted from the source S. Based on this premise, the
nodes require the least amount of time to reach full diffusion would be considered
as central (definition of centrality). This idea is based on Freemans closeness
centrality, flow betweenness and key player set (Borgatti et al., 2009; Ortiz-
Arroyo and Hussain, 2008). Freemans closeness was discovered to determine the
centrality of a geodesic transfer network. Instead of closeness based on geodesic
paths, all possible paths should be taken into account (flow betweenness). The
main objective is to find a suitable source position (central node), such that
the minimal time interval is needed to reach full diffusion (Iribarren and Moro,
2011; Valente, 1996; Burt, 1987).

5.2.1.1 Serial: Paths

In a serial duplication, only one copy of the information per node is replicated
per time. For path trajectories, each of the possible adjacent neighbors of a
node is a potential receiver of the replication which means that each selection
of a receiver leads to a completely different path. Let’s use the viral infection
example (Figure 1) by Borgatti (2005), a person (node) cannot infect someone
who has already been infected (already received a copy of the virus) or someone
who he received the virus from. At each time interval, the maximum number of
possible virus infections (number of copies) is equal to the number of infected
people. This virus spreads until all the people in the network are infected (all the
people received a copy of the virus). The proposed approach is a closeness-like
measure (Borgatti and Everett, 2006), which assesses the length of the walks
that a node is involved in.

Assuming the network (Figure 5) is a virus network (Serial-Paths) that
spreads via physical contacts, then average time intervals (TI) required to reach
full diffusion with person 1 as the original virus carrier of is TI = 3.5. Let’s
look at this in detail, at TI = 0, the maximum possible virus replication is 1,
so person 1 infects person 2 or person 3 at random. Assuming person 1 infects
person 2 (Table 4: Path 1), then the maximum people can be infected at TI = 2
is 2. So, person 1 and 2 infect their neighbors, person 3 and 5, respectively. At
TI = 3, only person 3 and person 5 can spread the virus to new hosts, since the
adjacent neighbors have already been infected (person 1 and person 2). Person
3 and 5 infect person 4 and person 6 respectively and reached full diffusion run
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Figure 5: Simple Network Example: The network consists of six nodes. The
node to node connection is shown. This network example is used in the following
sections. (Source: Stackoverflow Forum)
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Table 4: The table described the spread of the virus based on the Simple Net-
work Example (Figure 5). The table contains two of many possible diffusions
with person 1 as the source. During each time interval, newly infected people
are appended.
Time Interval Paths 1 Paths 2
0 [1] [1]
1 [1], [2] [1], [3]
2 [1], [2], [3, 5] [1], [3], [2, 5]
3 [1], [2], [3, 5], [4, 6] [1], [3], [2, 5], [4]
4 <Finished> [1], [3], [2, 5], [4], [6]

in 3-time intervals. However, if the virus replication had taken a different path
(Table 4: Path 2), at TI = 3, only person 3 and person 5 could have the possi-
bility to spread the virus. If person 5 infects person 4, then the last person in
this small network (person 6) can only be infected by person 5 in the next time
interval (TI = 4). In such case, the virus diffusion took 4-time intervals. Since
there are countless virus diffusion possibilities, the only way to obtain a plausi-
ble measure is by taking the average score of many runs. In this brief example,
2 runs (Path1 and Path 2) were mentioned, thus the average centrality value of
person 1 is 3.5 ((3 + 4)/2 = 3.5). This procedure is applied to all other nodes
in the network to determine which nodes are the most central. The workings of
the example above are translated into machine code (Algorithm 2).

Algorithm 2: The algorithm represents the machine code that is used to
determine the serial-paths centrality value of each node in the network.

Iterate over simulation runs:
Create an empty queue to to store all possible paths combinations;

Store the first node;
While queue is not empty:

Get first path sequence from the queue;
Iterate over the neighbors of each node in the path sequence:

Store one neighbor node if not been visited to a temporary list;
If the temporary list is not empty:

Create new possible path sequence and add it to queue;
Else:

Determine and add length of current path sequence;
Determine average time interval of a node;

5.2.1.2 Serial: Trails

Similar to serial paths, a trail trajectory also transmits a copy of the information
per time interval. The definition of trails trajectory states that the nodes can
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be repeated but the edges cannot. Lets use the example of gossip by Borgatti
(2005), a person (A) can tell a rumor to person (B) in a gossip, even though
person (B) has already heard it from person (D). But, person (B) cannot tell
that very same rumor back to person (D) or person (A). This unique property
may impact the course of gossip spread. Instead of picking a person who is
not aware of the rumor, picking someone who may have heard of the rumor
is entirely possible. This results in more node selection possibilities and thus
longer time needed to reach full diffusion.

Table 5: The table describes the spread of a rumor in a gossip based on the
Simple Network Example (Figure 5). The table describes two possible rumor
diffusions with person 1 as the source. During each time interval, the newly
gossip occurred between two people (a and b) are described in form of e(a,b).
Time Interval Trails 1
0 (1)
1 [e(1,2)]
2 [e(1,2)], [e(1,3),e(2-5)]
3 [e(1,2)], [e(1,3),e(2-5)],[e(3,5),e(5,6)]
4 [e(1,2)], [e(1,3),e(2-5)],[e(3,5),e(5,6)],[e(5,4),e(3,4)]
Time Interval Trails 2
0 (1)
1 [e(1,2)]
2 [e(1,2)], [e(1,3),e(2-5)]
3 [e(1,2)], [e(1,3),e(2-5)],[e(3,5),e(5,3)]
4 [e(1,2)], [e(1,3),e(2-5)],[e(3,5),e(5,3)],[e(3,4),e(5,4)]
5 [e(1,2)], [e(1,3),e(2-5)],[e(3,5),e(5,3)],[e(3,4),e(5,4)],[e(5,6)]

Assuming both gossip diffusions (Table 5: Trails 1 and Trails 2) occurred
the same prior TI = 3, the random gossip partner selection have led to different
outcomes. In Trails 1, assuming during TI = 3, person 3 and person 5 have
selected person 5 and person 6 respectively, then the remaining person (person
4) would have to be picked by either person 5 or 3 in the next time interval
(TI = 4). In comparison to Trails 2, the gossip partner selection from TI = 3
had led to a different diffusion outcome. Due to person 3 and person 5 had
selected each other in TI = 3, this resulted in an additional turn in completing
the rumor diffusion (TI = 5). Similar to serial paths, there are countless ways
in which how the diffusion could have progressed. Thus,it is a must to take the
average score of all the runs. In this particular example, the average centrality
score for person 1 is 4.5 ((4 + 5)/2 = 4.5). This procedure is applied to all
other nodes in the network to determine which nodes are the most central. The
workings of the example above are translated into machine code (Algorithm 3).

5.2.1.3 Serial: Geodesic
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Algorithm 3: The algorithm represents the machine code that is used to
determine the serial-trails centrality value of each node in the network.

For every node in th network:
Iterate over simulation runs:

Create an empty queue to to store all possible paths combinations;
Store the first node;
While queue is not empty:

Get first path sequence from the queue;
Iterate over the neighbors of each node in the path sequence:

Form new edge with node and its neighbors;
Store the neighbor node if newly formed edge is not in temporary list;

If the temporary list is not empty:
Create new possible path sequence and add it to queue;

Else:
Determine and add length of current path sequence;

Determine average time interval of a node;

Serial geodesic is uniquely different from paths and trails. A real-world example
of such network is a mitotic reproduction (Figure 6) thought by Borgatti (2005),
where a cell divides into two at each iteration (i.e. 1 becomes 2, 2 become 4,
so on and so forth). One would consider this manifestation behavior like a
tree structure with 2 children at each level. At the nth level, the number of
children is equal to 2n. Based on the analogy of mitotic reproduction, the total
number of cells that can reproduce at a time interval (TI) is the twice of a total
number of cells in the previous time interval (TI - 1). Using the network example
(Figure 5), each node represents a possible cell with its unique traits, and each
edge represents the potential of producing cells with a specific mutation. For
example, cell 5 (node 5) has the potential to produce cells 2, 3, 4 and 6. However,
cell 1 can only be produced by either cell 2 or 3. In this particular scenario,
a geodesic serial replication can be interpreted as the shortest time needed to
produce a full range of cells with different traits. This is only possible by possible
by maximizing the number of newly produced cells during each time interval.
such that the total number of replications is maximized. With that being said,
the starting cell that is able to produce a full range of cell with the least amount
of time is considered the most important cell (central node).

If the mitotic reproduction can be controlled, then the aim is to maximize
the number of distinct cell traits. Referring to the network example (Figure 5),
in the mitotic reproduction scenario (Table 6), at TI = 3, cell 5 has the potential
to produce cell with traits 4 (cell 4) and traits 6 (cell 6), but cell 3 only has the
potential to produce cell with traits 4 (cell 4). So, the ideal reproduction would
be for cell 5 to produce a cell with traits 6 (cell 6), such that cell 3 can produce
a cell with traits 4 (cell 4). This way, cell 5 does not hinder cell 3, which in
turn, speeds up the mitotic reproduction process. Obviously, it is not possible to
control how the mitotic reproduction progresses, but it is possible to determine
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Figure 6: The figure above describes how a cell that follows a mitotic mech-
anism divides. During each iteration, the number of cells doubles.(Source:
www.goldiesroom.org)
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Table 6: The table described the mitotic reproduction based on the network
(Figure 5), and with parent cell 1 (node 1). It maximizes the production of the
distinct cell during each iteration.
Time Interval Geodesic
0 [1]
1 [1], [2]
2 [1], [2], [3, 5]
3 [1], [2], [3, 5], [4, 6]
4 <Finished>

which parent cells are able to produce a large variety of cell traits in the least
amount of time. This is achieved by determining the cell with minimal time
interval needed to produce a wide range of distinct cells for each source cell.
The above-mentioned approach is translated into machine code (Algorithm 4).

Algorithm 4: The algorithm represents the machine code that is used to
determine the serial-geodesic centrality value of each node in the network.

For every node in the network:
Iterate over simulation runs:

Create an empty queue to store all possible path combinations;
Store first node;
While the queue is not empty:

Get first path sequence from queue;
Iterate over the neighbors of each node in the path sequence;

Store nodes that have not been visited in a temporary list;
Sort temporary list according to minimal remaining neighbors;
While temporary list is not empty:

Get first node from list, and add to addOn list;
Remove node from the temporary list;
Loop over every node in the temporary list is account for;

If addOn list is not empty:
Create new path sequence with nodes in addOn list;

Else:
Add up all the path sequences lengths;

Determine average time interval of a node;

5.2.1.4 Parallel: Paths and Trails

In a parallel replication process, multiple replications take place during each
time interval. The method of measuring centrality in a parallel replication is
similar to the proposed method for the serial replication. That is, measuring
the time interval needed to reach full diffusion for each source node. Although
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paths and trails of a parallel replication differs in the number of replications
of information a node receives, there is no difference in terms of time needed
to reach full diffusion. The nodes of trails may have multiple copies of the
information. In the example of Email broadcast, Email is sent from source (S)
and are received by multiple recipients (Rs) at each time interval. In the next
time interval, the recipients who have already gotten that email may receive
receive another copy from another sender. Borgatti (2005) proposed Freemans
degree and closeness to measure centrality for paths, trails, and walks. The
time step approach similar to Freemans closeness centrality, which determines
the network centrality by finding the node that is closest to all other nodes.

Table 7: The table describes the email broadcast based on the Simple Network
Example (Figure 5). The table describes 2 possible email broadcasts with dif-
ferent points of origin. During each time interval, the new recipients appended.
Time Interval Paths / Trails 1 Paths /Trails 2
0 [5] [1]
1 [5], [2, 3, 4, 6] [1], [2, 3]
2 [5], [2, 3, 4, 6], [1] [1], [2, 3], [4, 5]
3 <Finished> [1], [2, 3], [4, 5], [6]

The two parallel replication processes with different source nodes yielded
different results. The parallel replication example (Table 7) showed that the
broadcast with source sender 5 took 2-time intervals (TI = 2), while the broad-
cast with source sender 1 needed 3 (TI = 3). Since all the nodes simultaneously
received a copy of the replication, there is no need to conduct multiple runs.
The above-mentioned approach is translated into machine code (Algorithm 5).

Algorithm 5: The algorithm represents the machine code that is used to
determine the parallel - paths and/or trails centrality value of each node
in the network.

For every node in the network:
Create an empty queue to store all possible path combinations;

Store first node;
While the queue is not empty:

Get first path sequence from queue;
Iterate over the neighbors of each node in the path sequence;

Store the nodes that have not been visited in a temporary list;
While temporary list is not empty:

Create new path sequence with the nodes in temporary list;
Else:

Add up all the path sequences lengths;
Determine average time interval of a node;
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5.2.2 Transfer

As for the transfer mechanism, measuring centrality for geodesic, paths, trails,
and walks would not work with the approach designed for serial and/or par-
allel replication. Because the transfer mechanism states that the information
is passed onto the adjacent node without leaving a copy. Furthermore, the
concept of diffusion does not apply in the networks with transfer mechanism.
One possible way to determine centrality is by looking at how much each node
has contributed to the transfer flow. Of course, there are four types of trans-
fer mechanisms: geodesic, trails, paths, and walks. Each of them is uniquely
different and thus a custom-made approach for each of them is a must. The
centrality metrics for the geodesic types already existed. Freemans between-
ness and closeness centrality are specifically designed for geodesic flows. With
that being said, the following proposed approaches are aimed at other types of
transfer process.

5.2.2.1 Transfer: Paths

Freemans closeness and betweenness are designed to measure geodesic (i.e. pack-
age delivery). With package delivery example, the assumption is that the short-
est route is known and chosen, while paths (i.e. mooch) takes a random path.
Based on that premise, an effective approach in measuring centrality is by deter-
mining the involvement of the nodes. The proposed approach is a betweenness-
like measure (Borgatti and Everett, 2006), which measures the number of walks
that passes through a given node. In a transfer paths flow, with starting node
(S) and target node (T ), the set of nodes that have been traversed would be
counted as nodes in between (S) and (T ). Since there are multiple nodes in
the network, picking a fixed starting point and ending point would produce bias
results. Therefore, every single combination of size 2 nodes (start and target)
must undergo the same process. The centrality measure of a node (I) is equal to
the number of different paths that node (I) is involved in. Since a node is chosen
at random during each traverse and not possible for a node to be visited twice, it
is unlikely that all the possible information flow combinations can be achieved.
Therefore, the in-between nodes of the incomplete paths (unable to each target
node from start) are excluded. At the end of all information flow combinations,
the centrality measure node (I) is the ratio of node occurrence and flow combi-
nation size. The node that has the highest proposed betweenness-like value is
considered as the most central node.

The mooch example by Borgatti (2005) in shown in Figure 8. In the flow
combination [1, 2], person (1) will not ask person (3) for favor ever again once
person (1) has mooch off person (3). Thus, person (1) may attempt to mooch
off one of person (3)’s closest contacts. The mooch continues until person (1)
has exhausted all the possible options. The proposed method should take into
account of all the possible mooch flow combinations. Since the selection of
mooch partner is at random, the results of some flow combinations may be
excluded. This can be seen in flow combination 2 and 3. Flow combination
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Table 8: The table describes the mooch between people based on the Simple
Network Example (Figure 5). The flow combination column represents the
starting and ending person of the mooch event. The transfer paths column
shows all the intermediate people that have been asked for favors. The between
nodes column displays all people who were in between the starting person and
ending person.
Flow Combination Transfer Paths Between Nodes
[1, 2] [1], [3], [5], [2] [3], [5]
[1, 3] [1], [3] -
[1, 4] [1], [2], [5], [6] -
...

2 [1, 3] is rejected due to no in-between node, and flow combination 3 [1, 4] is
rejected due to the requirement of ending at node 4 is not met. So, based on
this particular example, the transfer paths centrality measure for both person 3
and person 5 is 1

n (1 occurrence in n different flow combinations). The above-
mentioned approach is translated into machine code (Algorithm 6).

Algorithm 6: The algorithm represents the machine code that is used to
determine the transfer - paths centrality value of each node in the network.

Get all (start, end) tuples in a list;
Iterate over simulations runs:
Iterate over all (start, end) tuples:

Create an empty list to store nodes;
Add the start node in the list;
While:

Get last node from the list;
Pick a neighbor that has not been visited randomly;
If last node is end node:

Terminate;
If last of the list is end node:

Count each in-between node;
Iterate over all the nodes in the network:

Determine average result of a node;

5.2.2.2 Transfer: Trails

Similar to transfer paths, determining the centrality of a node in trails also
adopt the betweenness-like measure (Borgatti and Everett, 2006). Just like
paths, node selection in trails (passing of a used good) is also at random, as
long as the selected node forms a new edge. The proposed approach also analyze
the node involvement but focusing on the edges instead. Since a node can be

31



repeated, reaching the target node from the starting node is more feasible. On
the other hand, the repeated nodes property also increases the node selection
pool and thus, it is highly likely that the size of in-between nodes of trails is
much larger than the size of in-between nodes of paths. The centrality measure
of a node is the ratio of the node occurrence and the flow combinations.

Table 9: The table describes the transfer of a used good between people based
on the Simple Network Example (Figure 5). The flow combination column
represents the starting person and the ending person of the used good transfer.
The transfer trails column shows all the transfers between two people in the form
of e(a, b). The between nodes column displays all people who were in-between
the starting person and the ending person.
Flow Combination Transfer Trails Between Nodes
[1, 6] [e(1,2), e(2,5), e(5,4), e(4,3), e(3,5), e(5,6)] [2, 5, 4,3, 5]
...

Consider the used goods example by Borgatti (2005). The passing of the used
good (Table 9) strictly showed that no edges can be repeated. Since once you
have passed the used good onto another person, it is unlikely that you want it
back. Though, you may accept the used good if it was originating from another
person. The above example (Table 9) showed that person 5 is has accepted the
same used good twice, but by from two different people (person 2 and person
3), thus it is completely acceptable. The occurrence of each in-between person
is stored. In this case, the occurrence of person 5 is counted twice. Once all
the different flow combinations have been processed, the average occurrence is
the total occurrence (Ot) of each person divided by the total number of flow
combinations (Ot

n ). The above-mentioned approach is translated into machine
code (Algorithm 7).

5.2.2.3 Transfer: Walks

Unlike geodesic, paths and trails, walks (i.e. money exchange) has no traverse
restrictions which means that a person can exchange money with anyone as
long as that person it is reachable. It is also possible that the money exchange
happens between two people multiple times. Because of that, all the centrality
metrics of Freeman (1978) and proposed metrics in the previous sections are not
suited for such case. Instead, the random-walk betweenness by Newman (2005)
is used. Newmans random-walk betweenness (2005) is a concept of betweenness-
like (Borgatti and Everett, 2006), which is similar to the approach of paths
and trails but with one significant difference. In walks, it is highly possible
for a node to get high betweenness score simply random-walk ’back and forth’
between two nodes. In such case, these two nodes will get ridiculously high
betweenness score and not actually go anywhere. Such phenomena do not exist
in any other transfers processes. Newmans approach of addressing such issue is
by canceling out the going and coming edges, so that nodes traverse back and
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Algorithm 7: The algorithm represents the machine code that is used to
determine the transfer - trails centrality value of each node in the network.

Get all (start, end) tuples in a list;
Iterate over simulations runs:
Iterate over all (start, end) tuples:

Create an empty list to store nodes;
Add the start node in the list;
While:

Get last node from the list;
Create new edge with last node and one random neighbor node;
Add node, if new edge not yet visited;
If last node is end node:

Terminate;
If last of the list is end node:

Count each in-between node;
Iterate over all the nodes in the network:

Determine average result of a node;

forth are neglected.

Table 10: The table describes the money exchange between people based on the
Simple Network Example (Figure 5). The flow combination column represents
the starting and ending person of the money exchange. The walks sequence
before shows all the intermediate people involved in the money exchange. The
walks sequence after removes any ’back and forth exchanges’ between two peo-
ple.
Case Flow Combination Walks Sequence Before Walks Sequence After
1 [1, 6] [1, 2, 5, 4, 5, 6] [1, 2, 5, 6]
2 [1, 6] [1, 2, 5, 4, 3, 5, 6] [1, 2, 5, 4, 3, 5, 6]
...

The money exchange example (Table 10) describes two money exchange sce-
narios from person 1 to person 6. Case 1, every intermediate exchange partner
is shown in Walks Sequence Before. Person 4 and person 5 in that sequence are
excluded as it is a type of ’back and forth’ walk (the same edge between person
4 and person 5 occurred directly after each other), that must be corrected. The
corrected result is shown in ”Walks Sequence After”. Based on that, person
2 and 5 are the in-between nodes in this particular money exchange example.
However, Case 2 has somewhat similar (from the edge(5,4) to the edge(4,3),
then to the edge(3,5)), such example does not count as a type of ’back and
forth’ walk, and thus no need to apply the edge cancellation procedure. New-
man (2005) strictly stated that the cancellation only applies to the nodes of
the same edge. This means that node 2, 5, 4, 3, 5 are all accepted as in be-
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tween node. Once all the flow combinations have been processed, the node with
the highest ratio is considered as the most central node. The above-mentioned
approach is translated into machine code (Algorithm 8).

Algorithm 8: The algorithm represents the machine code that is used to
determine the transfer - walks centrality value of each node in the network.

Get all (start, end) tuples in a list;
Iterate over simulations runs:
Iterate over all (start, end) tuples:

Create an empty list to store nodes;
Add the start node in the list;
While:

Get last node from the list;
Randomly pick a neighbor node of the last node;
If picked node is the same as second last node:

Remove last two nodes
Else:

Add node to list;
If last node is end node:

Terminate;
If last of the list is end node:

Count each in-between node;
Iterate over all the nodes in the network:

Determine average result of a node;

6 Realization

In order to determine the validity and reliability of the proposed methods for
measuring different types of network process, a stable simulation environment
is needed. The simulation environment includes the basis of the network with
dynamic network property input (size, power-coefficient, cluster, etc), and the
different measures that were mentioned in the previous chapter. The construc-
tion of the simulation is based on Python programming language on Spyder
IDE with few imported libraries which will be mentioned later in this chap-
ter. Python is chosen due to the capability of processing large data set, and
the marvelous built-in functions, all of which may contribute greatly to this
research.

6.1 Construction of Network

Before the proposed measures can be tested, a proper network foundation must
be constructed. The network is constructed using user-defined class Node with
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user-defined attributes (Table 11). Object-oriented programming (OO) is se-
lected over the adjacency matrix, simply because OO is more flexible with the
future modifications and scaling. The different variables within the Node class
store the centrality measures and other relevant data. Once the class is con-
structed, the next step is to create nodes and forming edges that comply with
different network types (random or scale-free) and different network properties
(size, power-parameter, clustering coefficient).

Table 11: The tables describes all the relevant attributes of each node object.
The attributes include a set of neighboring nodes, variables to store different
centrality measures and node identifier.
Class: Node
Variable Data Type
id string
links Integer
neighbors list
degree float
closeness float
betweenness float
eigenvector float
Transfer Paths float
Transfer Trails float
Transfer Walks float
closeness Serial Geodesic float
closeness Serial Paths float
closeness Serial Trails float
closeness Parallel Paths float

6.1.1 Creation of Nodes and Formation of Edges

Barabási and Bonabeau (2003) explained the difference between random net-
work and scale-free network. The machine code (Algorithm 9) and (Algo-
rithm 10) describe how the node objects are created and formed. The dis-
tribution of the nodal links in a random network can be characterized by a bell
curve, meaning that most of the nodes will have links equal to the mean and
few with on the either opposite sides of the bell curve. On the other hand, the
distribution of the nodal links in a free-scale network can be characterized by
the power-law, where there are few nodes with high linkages but the majority of
the nodes have low linkages. Once the number of expected links of the nodes is
defined, they are then instantiated one by one and forming one connection with
the existing nodes at each iteration, such that all the nodes are reachable within
the network. Given the specific type of network, the formation of edges differs
greatly. In a random network, the remaining expected linkages are randomly
selected from the rest of the nodes in the network. The selection is at random,
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the chosen node must have free links and it is not linked with the node. With
scale-free, the selection of node is not random, instead, it follows the concept of
preferential selection or ’The Rich gets Richer’ analogy. The preferential selec-
tion states that a node is more likely to form a connection with nodes that have
a higher connection. This phenomenon is why Barabási and Bonabeau (2003)
referred to it as The Rich gets Richer. Similar to random, the chosen node must
not violate the conditions.

Algorithm 9: The algorithm represents the machine code that is used to
construct node according to random and/or scale-free network.

If random network:
Get random linkage distribution and store them in a linkage list;
Iterate over network size:

Create new node with specific amount of links;
Pick a random node from the existing network;
If chosen node neighbor is not full:

Form connection with chosen node;
Add this new node to the network;

Else if scale free network:
Get power law linkage distribution and store them in a linkage list;

Sort linkage list, descending order;
Iterate over network size:

Create new node with specific amount of links;
Choose a random node based on links of the node;
If chosen node neighbor not full:

Form connection with the chosen node;
Add this new node to the network;

The machine code (Algorithm 9) (Algorithm 10) are capable of specifying
network property parameters (size and power-law parameter). However, it is
not possible to specify the cluster, but it is possible to determine the clustering
coefficient of the network. All of which will come in handy when conducting the
simulation studies. The clustering coefficient is built based on the working prin-
ciple of triangle formations in the A Clustering Coefficient Network Formation
Game by Brautbar and Kearns (2011). It is determined by taking the average
of the triangle-degree ratio of all the nodes (See Algorithm 11).

6.2 Construction of Centrality Metrics

The construction of each centrality measure is based on the proposed approaches
in the previous chapter. Few libraries were used during the realization. The
Itertools library is used specifically for returning a combination list of size 2
(starting and ending node), which is used for determining the geodesic and non-
geodesic flows. The random library is used specifically for choosing the random
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Algorithm 10: The algorithm represents the machine code that is used
to establish connections among nodes.

Iterate over every node in the network:
Store nodes that need neighbors in the possible list;
While current node has free neighbor slot:

If possible list is not empty:
Choose a random node from the possible list;
If chosen node and current node are not neighbor:

Form connection between the two nodes;
Else:

Remove chosen node from possible list;
Else:

Choose a random node from the entire network;
If chosen node and current node are not neighbors:

Form connection between the two nodes;

node object, which was vital to the non-geodesic simulation scenarios. For each
specific Python code, see Appendix: Python Core Code.

7 Simulation Study

A simulation study is an experiment that is conducted on a small representation
of the real world setting. A simulation study is often applied in practice as
the main benefit of the simulation study is cost saving. Depending on the
type of experiment, live testing can be expensive and maybe not feasible. The
simulation study is capable of producing a high volume of reliable results that
may be difficult to achieve in real-world testing. These difficulties stem from
time, ethics and other practical reasons (Bandini et al., 2009). Generally, a
simulation study serves two areas: predictive research and explanatory research
(Figure 7). However, there is a crucial factor of a simulation study, that is,
how representative is the simulation model? If results are obtained from an
unreliable simulation model, then the produced results are rendered useless.
Therefore, a validation procedure must be conducted before the simulation can
be begin.

7.1 Validation

The purpose of the validation process in a simulation study is to determine
whether a simulation model is an accurate representation of the system, for the
particular objective of the study (Law, 2003). Experimentation of different test
scenarios can only begin once the simulation model is said to have face validity.
If the simulation model produces inconsistent results, then the model must be
revised. The validation process is based on the entropy measure of Ortiz-Arroyo
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Algorithm 11: The algorithm represents the machine code that is used
to determine the cluster coefficient of the network. CCgraph refers to the
cluster coefficient of the entire network, while CCnode refers triangle ratio
of particular node.

CC graph counter set to 0;
Iterate over all the nodes in the network:

CC node counter set to 0;
If node has at least two neighbor nodes:

Triangle counter set to 0;
If any node with two other neighbors forms a triangle:

Add one to triangle counter;
CC node = triangle/(node neighbors size*(node neighbors size -1));
CC graph += CC node;

CC graph = CC graph/network size;

and Hussain (2008). Ortiz-Arroyo and Hussain (2008) determine the importance
of nodes in a network by analyzing the degree of connectivity and centrality of
each node in the network. Despite the lack of existing models to compare with,
it is possible to validate the proposed measures by comparing their results. If the
central nodes produced from the proposed methods are aligned with the results
of key players set, then the proposed measures are considered valid. Before
applying Ortiz-Arroyo and Hussain (2008) entropy validator on the proposed
measures, the validator model should also be validated. The entropy validator
will be applied to the proposed centrality measures on the ”Florentine Family”
network, once it has been validated.

7.1.1 Validation of the Entropy Validator

To validate the entropy validator, a simple fully connected network of size 5
is constructed. Ortiz-Arroyo and Hussain (2008) state that the removal of any
node in a fully connected network will have the same impact (Figure 8).

The graph (Figure 9) refers to the difference of impact each node has on the
entire network. The ID of each node is displayed by integers on the x-axis (i.e. 0
on the x-axis is referred to node 0, so on and so forth.) and level of node removal
impact is represented by the y-values. It can be seen that the removal of each
has an equal amount of influence on the entire network. This finding is in line
with the characteristics of a fully connected network. This result indicates that
the entropy validator is valid in itself and can thus be used in this research.

7.1.2 Validation of the Proposed Measures

In this validation process, the Florentine Family network has been chosen for
the sake of easy hands-on comparison and analysis. This model is widely used
in social network analysis (SNA). The objective of this validation procedure
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Figure 7: The figure describes the different phases of a traditional simulation
study. (Image Source: Bandini et al. (2009))

Figure 8: This is an example of a fully connected network of size 5.
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Figure 9: The graph describes the impact of node removal has on the entire
network. The node IDs are represented on the x-axis, while their connectivity
and centrality entropy values are displayed on the y-axis.
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Figure 10: The graph presents the importance of each node of the Florentine
family. The individual family represented on the x-axis while y-axis measures
the connectivity and centrality entropy.

is to compare and analyze the results of entropy measures with the results of
the proposed methods. The main focus is to determine whether each proposed
methods is considered valid. Keep in mind that, the connectivity entropy is
based on the degree of individual nodes, and this may not lead to higher values
of measures that are closeness-like or betweenness-like (i.e. Serial-Paths, Serial-
Trails, Serial-Geodesic). That said, it is not meaningful to simply match the
node output between models.
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Table 12 shows the result of all the proposed centrality approaches based
on 100 simulation runs. The general finding regarding the top results of each
approach is that Medici is the most central node. The parallel and serial du-
plication methods incorporates Freemans closeness-like and flow-betweenness
principles. As result, Medici, Ridolfi and Tornabuon are the top 3 candidates
in the serial and parallel replication rankings. A plausible explanation as to
why Ridolfi and Tornabuon do not produce a significant impact in the central-
ity entropy and connectivity entropy measures, is that the positions of Ridolfi,
Tornabuon and even Medici are situated closest to all other nodes. This effect
is shown in Figure 10 as the removal of Ridolfi or Tornabuon do not produce
a significant impact in reducing the number of viable paths for other nodes.
This implies that the absence of one of those nodes will not influence the diffu-
sion rate. Furthermore, since Ridolfi and Tornabuon do not have high degree
centrality, they do not stand out in the connectivity entropy measure.

The proposed transfer methods are based on the random-walk betweenness,
which also produced similar results. The top results of all the transfer ap-
proaches are supported by the connectivity entropy measure. Since the infor-
mation is immutable and cunreplicated, it exists in one place at any point in
time. This means that the nodes that are well connected in the network are
more likely to be chosen. Strozzi is the balance between high connectivity and
centeredness, he is positioned on the paths of many nodes and the fact that he
has high degree centrality makes Strozzi a strong candidate for random node
selection. Meanwhile, both Guadagni and Albizzi have high connectivity mea-
sure, but they are not considered in the proposed transfer measures. As they
are located outside of the core center, making them less accessible.

Based on the findings and analysis above, it is conclusive to say that the
proposed methods are well constructed and produced consistent results. This
implies that the proposed methods can be used to test the different network
property settings.

7.2 Experimentation

In the experimentation phase different centrality measures including the pro-
posed ones will be tested on a variety of networks. Guzman et al. (2014) clas-
sified network properties into three types: size, power-law parameter, and clus-
tering coefficient. Barabási and Bonabeau (2003) made a significant distinction
between random and scale-free network. Once all the factors have been tested,
data analysis will be conducted in the attempt to answer the proposed research
questions. The aim of the simulation study is not to produce a predictive result,
but rather examine how the centrality measures are influenced by the network
properties.

7.2.1 Experiment settings

To obtain a clear understanding of the network properties effects, one property
will be focused at any given time, while keeping others fixed. With that being
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said, the independent variable is one of the factors mentioned by Guzman et al.
(2014) and Barabási and Bonabeau (2003), the dependent variable is the cen-
trality scores of each node in the network (rankings), and control variables are
all other factors of Guzman et al. (2014). Confounding variables such as the
state of the information is assumed to be immutable (e.g. The state of the used
good in a transfer simulation does not change over time.), and simulation time
is not the focus in this research and therefore is not included in the simulation
analysis.

Furthermore, the insights of the increase in process complexity due to the
increase in network size found during the realization phase was taken into consid-
eration. When simulating other independent variables, the size of the network is
set to 100. This decision is made due to the performance issues of the computer
equipments.

7.3 Results

7.4 Data Analysis

To determine what effect each network property has on the outcomes of the
centrality measures (rankings), data analysis will be conducted. The data anal-
ysis checks which network centrality measures are alike or different under the
different network settings. The analysis will not be conducting a direct cross
comparison between experiments (i.e. The value of node A in Exp 1 and the
value of node A in Exp: 2 should not be compared.). The reason for this is
that each experimental setup involves an entirely different network and it would
be invalid to assume node A is the same node in both experiments (e.g. Exp:
1 and 2). Instead, the data analysis will be conducted on the rankings of the
different centrality measures within the same experimental setup. The corre-
lation analysis (Figure: 11, 12, 13, 14) is based on the number of similar
nodes between two different centrality measures. For example, if there are 5
similar nodes between the T Degree rankings and the T Closeness, then the
correlation value between T Degree and T Closeness is 5. If both T Degree and
T Closeness rankings are identical, then the correlation values is 10. Oppositely,
the correlation value is 0 when there is no similar nodes.

For the experiments where the network size is large, finding the same nodes
in different centrality measures is less about coincidence and more about the
connectivity and the position of the node. Of course, this does not mean that
the factor of randomness should be ignored. The data analysis is divided into
two parts: Scale-Free networks and Random networks. For the sake of con-
venience, the different centrality measures on the result tables (Table 14) have
been re-coded. T Degree refers to Degree Centrality, T Walks refers to Transfer-
Walks Centrality, T Trails refers to Transfer-Trails Centrality, T Paths refers
to Transfer-Paths Centrality, T Betweenness refers to Betweenness Centrality,
T Closeness refers to Closeness Centrality, T Eigen refers to Eigenvector Cen-
trality, S Trails refers to Serial-Trails Centrality, S Paths refers to Serial-Paths
Centrality, S Geodesic refers to Serial-Geodesic Centrality, and P P&T refers
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Table 13: The overview of the simulation experiments. Each experiment setup
consists of distinctive network properties and is coupled with a unique exper-
iment ID. Each table describes the top 10 rankings and simulation scores of
different centrality measures. The distinctions among the tables are the ex-
perimental factors (i.e. network size, power-law parameter, random, and/or
scale-free))
Simulation Exp Settings

ID Type Size
Power /
Linkage

Clustering
Coefficient

1 Random 10 10 1
2 Random 20 10 0.4652
3 Random 50 10 0.1599
4 Random 100 10 0.0777
5 Random 150 10 0.0551
6 Random 100 3 0.0167
7 Random 100 5 0.0347
8 Random 100 15 0.1243
9 Random 100 25 0.233
10 Random 100 35 0.3398
11 Scale-Free 10 5 0.3933
12 Scale-Free 20 5 0.01
13 Scale-Free 50 5 0.001
14 Scale-Free 100 5 0.0001
15 Scale-Free 150 5 <0.0001
16 Scale-Free 100 5 0.0001
17 Scale-Free 100 10 0.026
18 Scale-Free 100 15 0.0927
19 Scale-Free 100 20 0.1357
20 Scale-Free 100 25 0.1697

to Parallel Centrality that is used for both Parallel-Paths and Parallel-Trails.

7.4.1 Scale-Free Network

The results of Exp: 11 to 20 revealed that both network size and power-law pa-
rameter have huge impacts on the cohesion of the network. The results of Exp:
11 to 15 revealed that cohesion and network size are negatively correlated. That
is, as the network size increases (while keeping power-law parameter fixed), the
network cohesion drastically decreases (Table 13). As for the power-law param-
eter (Exp: 16 to 20), the network cohesion and network power-law parameter

Table 14:
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are positively correlated. That is, as the network power-law parameter increase
(while keeping network size fixed), the network cohesion increases. The network
cohesion determines how the nodes are ranked for each centrality measure. In
scale-free network, the most favorable node tend to be the ones with high de-
gree or closeness. This observation can be seen in both scale-free and random
network. The following sub-sections provide an in-depth discussion as to how
network cohesion influences the various centrality measures.

7.4.1.1 Factor: Network Size
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The results (Table 15) showed that the most central nodes of different cen-
trality measures appeared to be the same in networks with higher cohesion. This
can be seen in Exp: 11 where node 1 is ranked number one for each centrality
measure. As the network cohesion decreases, the general pattern showed that
the rankings of these centrality measures tend to diverge in ways that specifically
match their flow characteristics.

All the transfer centrality measures rankings tend to lean toward degree and
betweenness, while the rankings of all the replication centrality measures tend to
lean toward closeness and eigenvector. This phenomenon can be seen in several
areas. As the network size increases, T walks is correlated (Figure 11) with
T Degree, T Betweenness and T Eigen (Exp: 12, 13, 14, 15), while T Paths and
T Trails exhibited a positive correlation with T Betweenness and T Eigen (Exp:
13, 14, 15). The findings support of Borgatti (2005) theory where Freemans
Degree centrality is used to determine the Transfer-Walks centrality. Logically
speaking, a well-connected node is also a most randomly picked node. And
therefore, a node with higher Eigenvector Centrality value has a higher chance
of being selected.

As for the serial replication flows, S Trails, S Paths and S geodesic show a
strong correlation (Figure 11) with T Closeness (Exp: 12, 13, 14, 15). The
strong correlation to Freemans Closeness stems from the fact that S Trails,
S paths and S geodesic are derived from the Freemans Closeness centrality. Sim-
ilarly, P P&T showed a positive correlation (Figure 11) with T Closeness (Exp:
12, 13, 14, 15). The positive correlation to the Freemans Closeness stems from
the number of parallel replications at any point in time is maximized. Because
the high T Eigen rank nodes are connected to other well-connected nodes, this
feature maximizes the number of possible replications during each iteration.

Furthermore, given the power-law parameter of Exp: 11 to 15 is fixed, the
network of larger size (e.g. Exp: 15) produces ranking results more reliable than
the network of smaller size (e.g. Exp: 11). This is shown in Exp: 15 (Table 15),
the likelihood of selecting node 0, 1, 2, 5, 7 out of a 150 node network is highly
improbable in comparison to selecting nodes 0, 1, 2 from a 10 node network.
Because, the placements of edges in larger network have greater impacts in the
overall routing. In low cohesion network, the existence of an edge determines
how big of a detour it causes for all nodes. A detour is defined as the rerouted
path between two points due to the absence of an edge between those tow points.
The detour is considerably smaller in a denser (higher cohesion) network.

7.4.1.2 Factor: Power-law Parameter
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Figure 11: This table describes the correlation values between two centrality
rankings based on the results of Exp: 11 to 15. The number represents the total
number of nodes that exists within the two rankings. Note: Value 10 means all
the notes are exist in both rankings, while 0 means two rankings have no node
in common.
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Based on the results (Table 16), the power-law parameter is also a significant
factor for the network cohesion. As the power-law parameter increases, the
average linkage per node is increased. This implies that a free-scale network
is slowly transforming into a random network. From the networks with fixed
network size and low power-law parameter, all the transfer centrality measures
(T Walks, T Trails, T Paths) showed a positive correlation (Figure 12) with
Freemans Degree (Exp: 17, 18, 19, 20) and Eigenvector Centrality (Exp: 17,
18, 19).

The serial centrality measures do not show any significant correlation (Fig-
ure 12) with the transfer centrality measures (The correlation of the serial cen-
trality measures and Freemans Closeness is only significant in Exp: 18. In-
stead, the correlation among the different serial centrality measures (S Geodesic,
S Paths, S Trails) is observed (Exp: 16, 17, 19, 20). P P&T is positively corre-
lated with Freemans Closeness and Eigenvector Centrality (Exp: 16, 17, 18).

Due to the increase of power-law parameter, the correlations (Figure 12)
described above became weaker (Exp: 18, 19, 20). As a result, the selection of
nodes during the simulation is effected. Instead of choosing the same nodes from
a small-sized neighbor pool, it is more likely that a range of different nodes will
be chosen from a larger neighbor pool. This is caused by the increase of edges
between the nodes in the network. This means that the rankings will return
multiple moderately central nodes (Key Player Set) instead of one significant
central node. This phenomenon is as predicted, as the power-law parameter
increases, the network flow has more traversal opportunities than the network
with lower power-law parameter. Conversely, if the network were to decrease
in size (while maintaining the same power-law parameter), the network would
also become denser.

7.4.2 Random Network

Since the node linkage of random networks does not follow a power-law distri-
bution, therefore, the term ”linkage parameter” is referred. Similar to scale-free
networks, the results of the experiments (Exp: 1 to 10) revealed that both the
network size and the linkage parameter have a huge impact on the network co-
hesion. The first five experiments (Exp: 1 to 5) (Table 13) relate to the changes
in the network size, whereas the following five experiments (Exp: 6 to 10) relate
to the changes in the linkage parameter.

7.4.2.1 Factor: Network Size
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Figure 12: This table describes the correlation values between two centrality
rankings based on the results of Exp: 16 to 20. The number represents the total
number of nodes that exists within the two rankings. Note: Value 10 means all
the notes are exist in both rankings, while 0 means two rankings have no node
in common.
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Different network cohesions ranging from fully connected network (cohesion
= 1) to less connected network (cohesion <0.1) were tested. In a fully connected
network (Exp: 1), the concept of one unique central node does not exist, rather
the concept of key player set is adopted. This is shown in Exp: 1 (Table 17), as
none of the nodes is significantly different in comparison to others. As the net-
work size increases, the one unique central node theory becomes more apparent
(lower network cohesion). Similar to the scale-network, the traversal opportu-
nity is drastically reduced in the low cohesion network, which implies that even
a minor centrality difference between two nodes will stand out.

The transfer centrality measures (T Walks, T Trails and T Paths) showed
a positive correlation (Figure 13) with Freemans Betweenness and Degree, and
Bonacichs Eigenvector Centrality (Exp: 2, 3, 4, 5). Furthermore, similar to the
scale-free network findings, centrality rankings of the transfer walks, paths and
trails tend to favor the nodes with high T Degree and T Eigen.

Regarding the result of the serial centrality measures, no significant result
is produced. In the small size networks, S Paths, S Geodesic and P P&T do
not produce distinctive (useful) results. This is because the diffusion points
of origin within these highly connected networks are not significantly different
from each other (Exp: 1 to 5). However, the centrality rankings of S Trails show
signs of correlation (Figure 13) with T Eigen, T Closeness and T Betweenness,
but the correlation weakens as the network size increases. This can be seen
in Exp: 3 and Exp: 4, the correlation value is decreased drastically. This can
be explained partly by the randomness factor, but it is mainly caused by the
influence of the network cohesion. In higher cohesion network, the positional
and degree differences among the nodes impact the rankings in a smaller way.
However, the positional and degree differences among nodes are more apparent
in a lower cohesion network.

7.4.2.2 Factor: Linkage Parameter
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Figure 13: This table describes the correlation values between two centrality
rankings based on the results of Exp: 1 to 5. The number represents the total
number of nodes that exists within the two rankings. Note: Value 10 means all
the notes are exist in both rankings, while 0 means two rankings have no node
in common.
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The centrality rankings (Table 18) show that influence of the linkage pa-
rameter is similar to the power-law parameter of the scale-free networks. From
Exp: 6 (linkage parameter = 3), the rankings of P P&T, S Geodesic, S Paths
and S Trails showed a strong correlation (Table: 14) with T Closeness and
T Eigenvector (Exp: 6, 7).

The transfer centrality measures (T Walks, T Trails and T Paths), they
are strongly correlated (Figure 14) with Freemans Degree, Betweenness and
Closeness (Exp: 6, 7, 9, 10). Furthermore, the concept of key player set is
adopted due the increase of linkages. This can be seen from the results of Exp:
6 to Exp: 10, where the correlation values are significantly higher in Exp: 10
than the correlation values in Exp: 6.

However, Exp: 8, Exp 9 and Exp 10 result in high network cohesion, Which
cause the serial and parallel centrality measures (S Geodesic, S Paths, S Trails
and P P&T) failed to produce any useful result. This finding is similar to the
Exp 1 findings. This is because the diffusion points of origin within these highly
connected networks are not significantly different from each other.

7.4.3 Summation of Findings

The random node selection during each simulation run, and as a result, the
produced data should not be taken at face value. The random factor did indeed
produce some uncorrelated results. However, there are clearly numerous cor-
relations between the size, linkage parameter, and cohesion in both scale-free
and random networks. The correlation of network size and network cohesion
must also take into account the linkage parameter. If the linkage parameter
increases or the network size decreases (high network cohesion), then a set of
central nodes can be expected.

Alternatively, fewer central nodes are expected in a network with lower cohe-
sion. This is because a network with low cohesion has fewer direct connections,
which means that each relationship (link) is valued more. Between two points
A and B, lower cohesion network has fewer paths between the two than in a
network with higher cohesion. Thus, the result of one central node is more
apparent.

However, these findings are highly volatile. The differences among the top
10 centrality values are so small that the inconsistent rankings is considered
insignificant. The differences between the top 10 rankings can be explained
by the randomness factor. Despite the inconsistency in the node centrality
rankings, the overall patterns cannot be ignored. In both types of network
(Random and Scale-Free), the most central nodes of Transfer-Walks, Transfer-
Trails and Transfer-Paths tend to be the ones with high Degree, Betweenness
and Closeness for the transfer centrality measures.

Regarding the serial and parallel centrality measures, the most central nodes
tend to the ones with high Closeness and Eigenvector. Based on the simulation
and correlation analysis showed that the Eigenvector Centrality can also be
used for serial and parallel replication network flows. Furthermore, the Flow
Betweenness and Random-Walks Betweenness are also applicable to transfer
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network flows (Transfer-Walks, Transfer-Trails and Transfer-Paths).
The proposed transfer measures are derived from Freemans Betweenness

Centrality, while the variation of replication measures are derived from Freemans
Closeness Centrality. The serial and parallel replication findings matched the
social influence process of the diffusion model by (Burt, 1987; Valente, 1996).
The central nodes of the serial and the parallel replication flow favored those
nodes that are well-positioned and Eigenvector. A well-positioned node is the
one where the distance among all other nodes is the shortest, like Freemans
Closeness Centrality. Though only the parallel replication type of network may
be significantly influenced by Eigenvector Centrality. This is because being
connected to other high Eigenvector centrality enables that node to propagate
rapidly. The high Eigenvector Centrality nodes have high Degree which provide
a great assistance in parallel diffusion.

7.4.4 Experiment Limitations

Due to the shortcomings of the hardware, the experiment environment could not
handle large variables. That is, larger network size, higher power-law parame-
ter, and higher linkage parameter, all of which contribute toward the network
cohesion. As a result, the range of network cohesions produced by the specified
variables were not even (Table 13 Exp: 11 to 20: Clustering Coefficient). Fur-
thermore, to handle an increase in network size, it may be necessary to increase
the simulation runs. In a large network, there are many more flow possibilities
having an insufficient number of runs could produce results favoring a subset of
nodes. Consider the example of throwing a die 3 times with results: 3, 5, 3. The
result based on 3 throws is not enough to truly represent the even probability of
a die. Furthermore, there are other centralities (e.g. Katz Centrality) that were
not considered in the simulation experiment. Perhaps, those centrality measures
might have a better description of the network. Unlike the typical centrality
measures, Katz Centrality considers a total number of walks between a pair of
nodes. This is similar to random-walks based measure without the randomness
factor.

8 Conclusion

This chapter concludes the research by anwsering the research questions as
defined in chapter 1. Furthermore, suggestions for the future research directions
will be described in this chapter.

8.1 Research Questions

1. How does the flow process differ between different types of network or
network settings?

The flow process of a network behaves according to the specific network
type. According to Borgatti (2005), networks are differentiated by the
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node to node transmission (i.e. serial and parallel replication and trans-
fer) and flow trajectory (i.e. Geodesic, Paths, Trails and Walks) (See:
Table 1). Each type of network is uniquely different from the other. The
transfer types of network are commonly applied to the passing of an ob-
ject, while the different flow trajectories dictate how the flowing object
should behave. In geodesic flow, the knowledge of the shortest path be-
tween nodes is assumed. While the flows along paths, trails, and walks
behave randomly. Serial and parallel replication types of network are com-
monly applied to a duplication of data. The distinction between serial and
parallel replication is that parallel replication produces duplicates for all
adjacent nodes, whereas serial replication merely duplicates the informa-
tion one node at a time. Similar to transfer networks, the geodesic, paths,
trails, and walks of serial and parallel networks dictate how the replication
processes behave.

The flow process of a network also depends on the weight of each rela-
tionship (edge). In a social network, this is referred to as tie strength.
According to the work of Daly and Haahr (2009), the selection of people
whom to transfer information to is not purely random. People are chosen
according to the strength of the relationship (Tie strength). Tie strength
is determined by the frequency of contact, relationship history, contact
duration and the number of transactions. While the flow process of other
types network may depend on other types of drivers (specific to the par-
ticular network). Based on the network structural analysis by Zio and
Piccinelli (2010), flow process may follow a circuitous route regardless of
the strong relationship strength.

Furthermore, the flow process is also influenced by the structural proper-
ties. Guzman et al. (2014) have captured size, scale-free parameter and
clustering coefficient as the key properties of a network. Barabási and
Bonabeau (2003) emphasized the distinctions between random and scale-
free network, and how random network-theory cannot be implemented in
a social network environment. The ego network from Burt (1987) is an
example of how different power-law/linkage parameter can have a different
impact on the flow process. High cohesion networks that have strong ties
enables faster information flow and greater motivation, while clustered
networks that have weak ties tend to spark novel ideas.

2. What possible approaches could be used to determine the centrality of
networks that are not geodesic?

The Freemans centralities (betweenness, closeness, and degree) (Freeman,
1978) and Bonacichs Eigenvector Centrality (Bonacich, 2007) were de-
rived from a social network based on the premise that information flows
along the shortest (geodesic) paths. However, according to the network
classification of Borgatti (2005) and Newman (2005), there exists a vari-
ety of network that does feature flows along geodesic paths. Therefore,
the above-mentioned centralities may not be suitable in determining the
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centrality of networks that are non-geodesic.

The flow betweenness (Freeman et al., 1991) type of betweenness-like cen-
trality specifically derived for the purpose of determining the centrality of
both geodesic and non-geodesic paths. The concept of flow betweenness
is based on the idea of maximum liquid flow a node can hold. Assuming
the liquid flows freely in a piping system network, the amount of liquid
flows via a junction (node) determines its importance. In such an exam-
ple, the forking of liquid in the piping system is similar to the replication
mechanisms. That being said, it may contribute to formulating centrality
for replication networks and networks which follow paths and trails. Sim-
ilarly, the random-walk betweenness (Noh and Rieger, 2004) is also for
non-geodesic paths and specifically for walks. In random-walk between-
ness, the major drawback of back and forth traversal is eliminated by
counting multiple back and forth traversal as 1, to avoid biased results.
Furthermore, the network influence can be captured by exposure or con-
tagion diffusion model. The social influence of a node can be determined
by three factors: relational, positional and central. The quickest influence
diffusion is based on the network structure and the position of a node
within the network.

3. How can simulation be used to determine the centrality of various network
types?

Simulation experimentation is able to simulate the various unique flow
processes that other methods can not. The connectivity entropy and cen-
trality entropy methods may be useful in validating the simulation models,
but it lacks various test scenarios. The entropy method is designed based
on the degree and closeness of the nodes, but it does not take into ac-
count the different flow types. The conventional mathematical solution
is prone to mistake, hard to visualize and difficult to validate. Based on
the finding of the research, it has been found that the conventional math-
ematical solution is difficult to picture the random node selection. And
two, if problem arises, it would be a difficult process to determine where
the problem lies.

Furthermore, the use of simulation allows the flexibility to change in in-
put parameters and quick output. The key point with every simulation
model is the validity and reliability. The validation process involved a
simulation run on the Florentine Families network. It showed that the re-
sults of the proposed centrality methods are in-line with the results of the
entropy results. In terms of reliability, the overall patterns of the exper-
imental results show that the central nodes of the transfer processes are
correlated with high degree, betweenness, and closeness, while the central
nodes of the replication processes are correlated with high closeness and
eigenvector. The few inconsistencies throughout the different experiments
can be explained by the factor of randomness. However, the randomness
may also be caused by the trade-off made. The experimental runs were
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set out to test different levels of network properties. First, certain actions
(i.e. setting a smaller network size, low number of simulation runs, etc)
were taken to ensure the obtained results are obtained within a reasonable
amount of time. Second, in order to see the extreme effects, input settings
may have been set beyond reasonable bounds, as a result, some of the pro-
duced data are not very fruitful. Additionally, the number of simulation
runs should also increase in situations where the network size is large. All
these factors may have affected with the reliability of the simulation.

4. How do network properties impact the outcomes of different centrality
measures?

The results of the different simulation experiments have posited that the
network type and the existence of network cohesion has a high impact
on the centrality outcomes. In both random and scale-free networks, the
increase in the number of nodes (network size) directly reduces the total
network cohesion. Conversely, the increase in the number of edges (power-
law/linkage parameter) directly increases the total network cohesion. In a
highly cohesive network, there are numerous paths to get from source S to
target T . As result, each node is less significant in terms of connectivity
and centrality, which implies that the centrality values of the top central
nodes are the same. Therefore, a large set of key nodes is expected. Con-
versely, a low cohesive network consists of few edges, as such, each edge
has a great impact on centrality and connectivity. As a result, one spe-
cific central node is expected. The randomness factor of the simulation
experiments has produced results that do not show a strong correlation.
Nevertheless, it is undeniable that the centrality measures are correlated in
some ways. Based on all the simulation results, the random transfer types
(T Walks, T Trails, T Paths) produced central nodes that correlate with
high degree, high betweenness and/or high closeness, while the replication
types (S Paths, S Geodesic, S Trails and P Paths&Trails) of network are
correlated with high closeness and eigenvector. These findings are in line
with the findings of Borgatti (2005). Furthermore, the replication central-
ity findings reflect the diffusion by contagion model (Burt, 1987; Valente,
1996). Indeed, a rapid diffusion depends on the selection of the starting
node, which is determined by the node position and direct contacts.

8.2 Future work

This research set out to explore the impact of different network properties on the
various network centrality measures. Based on the related work findings, various
sources indicate that network centrality and network flow are far more important
than where the node is located in the network (position), how many links it has
(links), or how in-between it is (hub). In the area of social network analysis
(SNA), the network flow of such a network is heavily dependent on strong and
weak ties, which others refer to as tie strength. This tie strength corresponds
to the weighted network. In addition to this, directed and undirected networks
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determine the flow paths. These two aspects were not explored as they are
outside the scope of the research. Furthermore, the state of the information in
the network flow is assumed to be immutable, but how does it look like when
the state mutates over time or over each pass? Further, research could explore
the possible effect of the above-mentioned factors on network flow and network
centrality.

9 Appendix: Python Core Code

9.1 Script: Main Control

# This i s the main run f i l e , i n c l u d i n g c r e a t i o n o f network and s i m u l a t i o n run
# Created by : Zhipeng Luo
# Last Modify : 17−07−18

import c lassNode
import measuresTransfer
import measure sSe r i a l
import measur e sPara l l e l
import val idateMeasure
import plotGraph as pg

# d e c l a r e s i m u l a t i o n c o n f i g u r a t i o n s
simRuns = 100
topN = 10

# d e c l a r e p l o t t y p e s
plotType = [

” t d e g r e e ” ,
” t wa lks ” ,
” t t r a i l s ” ,
” t pa ths ” ,
” t betweenness ” ,
” t c l o s e n e s s ” ,
” t e i g e n v e c t o r ” ,

” s t r a i l s ” ,
” s paths ” ,
” s g e o d e s i c ” ,

” p p a t h s t r a i l s ”
]

# d e c l a r e connect ion t y p e s
networkType = [ ” Sca l eFree ” , ”Random” ]
testMode = False
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#i n i t i a l i z e network
i f not testMode :

net = classNode . network
print ( ” c r e a t e node o b j e c t s . . . ” )
c lassNode . createNetworkObjects ( networkType [ 0 ] )
print ( ” c r e a t e node l i n k s . . . ” )
c lassNode . se tConnect ions ( net )
print ( ”network gene ra t i on completed . . . ” )

else :
net = classNode . network
net . append ( c lassNode . node ( ”0 − Pazzi ” , 1 , ” semi ” ) )
net . append ( c lassNode . node ( ”1 − S a l v i a t i ” , 2 , ” semi ” ) )
net . append ( c lassNode . node ( ”2 − Acc i a iuo l ” , 1 , ” semi ” ) )
net . append ( c lassNode . node ( ”3 − Medici ” , 6 , ” semi ” ) )
net . append ( c lassNode . node ( ”4 − Barbadori ” , 2 , ” semi ” ) )
net . append ( c lassNode . node ( ”5 − Cas t e l l an ” , 3 , ” semi ” ) )
net . append ( c lassNode . node ( ”6 − Peruzz i ” , 3 , ” semi ” ) )
net . append ( c lassNode . node ( ”7 − S t r o z z i ” , 4 , ” semi ” ) )
net . append ( c lassNode . node ( ”8 − R i d o l f i ” , 3 , ” semi ” ) )
net . append ( c lassNode . node ( ”9 − B i s c h e r i ” , 3 , ” semi ” ) )
net . append ( c lassNode . node ( ”10 − Tornabuon” , 3 , ” semi ” ) )
net . append ( c lassNode . node ( ”11 − Guadagni” , 4 , ” semi ” ) )
net . append ( c lassNode . node ( ”12 − Lambertes” , 1 , ” semi ” ) )
net . append ( c lassNode . node ( ”13 − A l b i z z i ” , 3 , ” semi ” ) )
net . append ( c lassNode . node ( ”14 − Ginor i ” , 1 , ” semi ” ) )

net [ 0 ] . ne ighbores = [ net [ 1 ] ]
net [ 1 ] . ne ighbores = [ net [ 0 ] , net [ 3 ] ]
net [ 2 ] . ne ighbores = [ net [ 3 ] ]
net [ 3 ] . ne ighbores = [ net [ 1 ] , net [ 2 ] , net [ 4 ] , net [ 8 ] , net [ 1 0 ] , net [ 1 3 ] ]
net [ 4 ] . ne ighbores = [ net [ 3 ] , net [ 5 ] ]
net [ 5 ] . ne ighbores = [ net [ 4 ] , net [ 6 ] , net [ 7 ] ]
net [ 6 ] . ne ighbores = [ net [ 5 ] , net [ 7 ] , net [ 9 ] ]
net [ 7 ] . ne ighbores = [ net [ 5 ] , net [ 6 ] , net [ 9 ] , net [ 8 ] ]
net [ 8 ] . ne ighbores = [ net [ 3 ] , net [ 7 ] , net [ 1 0 ] ]
net [ 9 ] . ne ighbores = [ net [ 6 ] , net [ 7 ] , net [ 1 1 ] ]
net [ 1 0 ] . ne ighbores = [ net [ 3 ] , net [ 8 ] , net [ 1 1 ] ]
net [ 1 1 ] . ne ighbores = [ net [ 1 0 ] , net [ 1 3 ] , net [ 9 ] , net [ 1 2 ] ]
net [ 1 2 ] . ne ighbores = [ net [ 1 1 ] ]
net [ 1 3 ] . ne ighbores = [ net [ 3 ] , net [ 1 4 ] , net [ 1 1 ] ]
net [ 1 4 ] . ne ighbores = [ net [ 1 3 ] ]

# determine network p r o p e r t i e s
print ( c lassNode . networkProperty ( net , testMode ) )
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# g e t a l l s i m u l a t i o n data
def simRun (n ) :

for typ in plotType :
data = [ ]
print ( typ + ” . . . . . . . . . . . . . . . . . . . . . . . . . . ” )
i f typ i s ” t d e g r e e ” :

measuresTransfer . degree ( net )
for node in net :

data . append ( [ node . id , node . degree ] )
e l i f typ i s ” t wa lks ” :

measuresTransfer . walks ( net , simRuns )
for node in net :

data . append ( [ node . id , node . Transfer Walks ] )
e l i f typ i s ” t t r a i l s ” :

measuresTransfer . t r a i l s ( net , simRuns )
for node in net :

data . append ( [ node . id , node . T r a n s f e r T r a i l s ] )
e l i f typ i s ” t paths ” :

measuresTransfer . paths ( net , simRuns )
for node in net :

data . append ( [ node . id , node . Trans fe r Paths ] )
e l i f typ i s ” t betweenness ” :

measuresTransfer . betweenness ( net )
for node in net :

data . append ( [ node . id , node . betweenness ] )
e l i f typ i s ” t c l o s e n e s s ” :

measuresTransfer . c l o s e n e s s ( net )
for node in net :

data . append ( [ node . id , node . c l o s e n e s s ] )
e l i f typ i s ” t e i g e n v e c t o r ” :

measuresTransfer . e i g e n v e c t o r ( net )
for node in net :

data . append ( [ node . id , node . e i g e n v e c t o r ] )
e l i f typ i s ” s g e o d e s i c ” :

measure sSe r i a l . g eode s i c ( net , simRuns )
for node in net :

data . append ( [ node . id , node . c l o s e n e s s S e r i a l G e o d e s i c ] )
e l i f typ i s ” s paths ” :

measure sSe r i a l . paths ( net , simRuns )
for node in net :

data . append ( [ node . id , node . c l o s e n e s s S e r i a l P a t h s ] )
e l i f typ i s ” s t r a i l s ” :

measure sSe r i a l . t r a i l s ( net , simRuns )
for node in net :

data . append ( [ node . id , node . c l o s e n e s s S e r i a l T r a i l s ] )
e l i f typ i s ” p p a t h s t r a i l s ” :
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measur e sPara l l e l . p a t h s t r a i l s ( net )
for node in net :

data . append ( [ node . id , node . c l o s e n e s s P a r a l l e l P a t h s ] )
else :

None

# s e l e c t top n r e s u l t s
r e s = classNode . getTopNodes ( data , n)
for d in range (n ) :

print ( r e s [ n−d−1 ] [ 0 ] )
for d in range (n ) :

print ( r e s [ n−d−1 ] [ 1 ] )

# p l o t the graph
pg . plotGraph ( net , plotType [ 6 ] )
pg . p l o tVa l i da t e ( va l idateMeasure . v a l i d a t e ( net ) )

# e x e c u t e s i m u l a t i o n exper iements
simRun ( topN )

9.2 Script: Class Node

# This i s the network f i l e , i n c l u d i n g c r e a t i o n o f node , formation o f edges , determine network p r o p e r t i e s
# Created by : Zhipeng Luo
# Last Modify : 17−07−18

import random as r
import numpy as np
import math as ma
from operator import i t emge t t e r

# s e t network p r o p e r t i e s
#t o t a l network s i z e
s i z e = 100

#random
meanLinks = 35
stdLinks = 0 .7
#s c a l e f r e e
k = 5
kn = f loat ( 2 . 0 )

# d e c l a r e network o b j e c t
network = [ ]

# c l a s s node
class node :
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def i n i t ( s e l f , ∗ args ) :
i f args [ 2 ] i s ” auto ” :

s e l f . id = args [ 0 ]
s e l f . l i n k s = args [ 1 ]

e l i f args [ 2 ] i s ” semi ” :
s e l f . id = args [ 0 ]
s e l f . l i n k s = args [ 1 ]

s e l f . ne ighbores = [ ]
#Transfer
s e l f . degree = f loat (0 )
s e l f . c l o s e n e s s = f loat (0 )
s e l f . betweenness = f loat (0 )
s e l f . e i g e n v e c t o r = f loat (0 )

s e l f . Trans fe r Paths = f loat (0 )
s e l f . T r a n s f e r T r a i l s = f loat (0 )
s e l f . Transfer Walks = f loat (0 )

#S e r i a l R e p l i c a t i o n
s e l f . c l o s e n e s s S e r i a l G e o d e s i c = f loat (0 )
s e l f . c l o s e n e s s S e r i a l P a t h s = f loat (0 )
s e l f . c l o s e n e s s S e r i a l T r a i l s = f loat (0 )

#P a r a l l e l R e p l i c a t i o n
s e l f . c l o s e n e s s P a r a l l e l P a t h s = f loat (0 )

# c r e a t e node o b j e c t s
def createNetworkObjects ( netType ) :

i f netType i s ”Random” :
# return number o f l i n k s f o r each node
r e s = np . random . normal ( meanLinks , stdLinks , s i z e )
r e s = sorted ( res , key=f loat , r e v e r s e=True )
for i in range ( s i z e ) :

lnk = r e s [ i ]
i f lnk < 1 :

lnk = 1
e l i f lnk >= s i z e −1:

lnk = s i z e −1
else :

lnk = int ( lnk )
# c r e a t e new node and form one edge wi th o the r node
newNode = node ( str ( i ) , lnk , ” auto ” )
i f len ( network ) > 0 :

while len (newNode . ne ighbores ) i s 0 :
rand = r . rand int (0 , len ( network )−1)
i f len ( network [ rand ] . ne ighbores ) < network [ rand ] . l i n k s :

newNode . ne ighbores . append ( network [ rand ] )
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network [ rand ] . ne ighbores . append (newNode)
network . append (newNode)

e l i f netType i s ” Sca leFree ” :
# return number o f l i n k s f o r each node
bunch = [ ]
for k i in range ( k ) :

l i n k s = ma. c e i l ( 1 / ( ( k i +1)∗∗kn )∗ s i z e )
#p r i n t ( l i n k s )
for l in range ( l i n k s ) :

bunch . append ( k i +1);
bunch . r e v e r s e ( )
# c r e a t e new node and form one edge wi th o the r node
for i in range ( s i z e ) :

newNode = node ( str ( i ) , bunch [ i ] , ” auto ” )
i f len ( network ) > 0 :

while len (newNode . ne ighbores ) i s 0 :
v i a b l e = [ ]
for nod in network :

i f len ( nod . ne ighbores ) < nod . l i n k s :
v i a b l e . append ( nod )

i f len ( v i a b l e ) > 0 :
s e l e c t = r . cho i c e ( v i a b l e )
newNode . ne ighbores . append ( s e l e c t )
s e l e c t . ne ighbores . append (newNode)

else :
pool = [ ]
for nod in network :

for l k in range ( nod . l i n k s ) :
pool . append ( nod )

s e l = r . cho i c e ( pool )
newNode . ne ighbores . append ( s e l )
s e l . ne ighbores . append (newNode)
s e l . l i n k s = len ( s e l . ne ighbores )

network . append (newNode)

# setup l i n k s f o r nodes
def se tConnect ions ( net ) :

for node in net :
v i a b l e = [ ]
# g e t a l l p o s s i b l e node t h a t can make connects
i f node . l i n k s > len ( node . ne ighbores ) :

for v node in net :
i f v node i s not node :

v i a b l e . append ( v node )
# s e t connec t ions
while node . l i n k s > len ( node . ne ighbores ) :
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i f len ( v i a b l e ) > 0 :
rand = r . rand int (0 , len ( v i a b l e )−1)
i f v i a b l e [ rand ] not in node . ne ighbores and v i a b l e [ rand ] . l i n k s > len ( v i a b l e [ rand ] . ne ighbores ) :

node . ne ighbores . append ( v i a b l e [ rand ] )
v i a b l e [ rand ] . ne ighbores . append ( node )
v i a b l e . remove ( v i a b l e [ rand ] )

else :
v i a b l e . remove ( v i a b l e [ rand ] )

else :
rand = r . rand int (0 , len ( net )−1)
i f node i s not net [ rand ] :

i f net [ rand ] not in node . ne ighbores :
node . ne ighbores . append ( net [ rand ] )
net [ rand ] . ne ighbores . append ( node )
net [ rand ] . l i n k s += 1

# determine c l u s t e r c o e f f i c e n t , s i z e and power parameter
def networkProperty ( net , t e s t ) :

CC graph = f loat (0 )
for node in net :

CC node = f loat (0 )
i f len ( node . ne ighbores ) >= 2 :

Nv = 0
for neighNode in node . ne ighbores :

for neighNeigh in neighNode . ne ighbores :
i f neighNeigh in node . ne ighbores :

Nv += 1
CC node = Nv/( len ( node . ne ighbores )∗ ( len ( node . ne ighbores )−1))

CC graph += CC node
CC graph = CC graph/ len ( net )
i f t e s t :

return [ len ( net ) , 0 , CC graph ]
else :

return [ len ( net ) , k , CC graph ]

# return top n nodes
def getTopNodes ( data , s i z e ) :

return sorted ( data , key=i t emge t t e r (1)) [− s i z e : ]

9.3 Script: Transfer Measures

# This i s the main t r a n s f e r c e n t r a l i t y f i l e
# Created by : Zhipeng Luo
# Last Modify : 17−07−18
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import i t e r t o o l s as i t
import random as ra

# return l e n g t h o f g e o d e s i c path from s t a r t to end
def any geodes i c ( net , s t a r t , end ) :

queue = [ ]
queue . append ( [ s t a r t ] )
while len ( queue ) > 0 :

qCurrent = queue . pop (0 )
node = qCurrent [−1]
# r e t u r n s the f i r s t s h o r t e s t path found
i f node i s end :

return qCurrent
# check node n e i g h b o r e s and c r e a t e new paths
for neigh in node . ne ighbores :

i f neigh not in qCurrent :
newPath=l i s t ( qCurrent )
newPath . append ( neigh )
queue . append ( newPath )

# return a l l the g e d o e s i c paths from s t a r t to end
def m u l t i g e o d e s i c ( net , s t a r t , end ) :

queue = [ ]
t o t a l = [ ]
queue . append ( [ s t a r t ] )
while len ( queue ) > 0 :

qCurrent = queue . pop (0 )
node = qCurrent [−1]
for i in range ( len ( node . ne ighbores ) ) :

# add new path sequence in queue
i f node . ne ighbores [ i ] not in qCurrent :

newPath=l i s t ( qCurrent )
newPath . append ( node . ne ighbores [ i ] )
# end node o p e r a t i o n s
i f node . ne ighbores [ i ] i s end :

i f len ( t o t a l ) > 0 :
# c l e a r the t o t a l l i s t based on header l e n g t h
l en head = len ( t o t a l [ 0 ] )
i f l en head > len ( newPath ) :

t o t a l [ : ] = [ ]
t o t a l . append ( newPath )

# append when path wi th same l e n g t h s ( s h o r t e s t )
e l i f l en head == len ( newPath ) :

t o t a l . append ( newPath )
else :
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break
else :

t o t a l . append ( newPath )
else :

queue . append ( newPath )
# remove a l l imcomplete queuess where the l e n g t h exceeds t o t a l [ 0 ] l e n g t h
i f len ( t o t a l ) > 0 :

l e n t o t a l = len ( t o t a l [ 0 ] )
for q obj in queue :

i f len ( q ob j ) >= l e n t o t a l :
queue . remove ( q ob j )

# return the g e o d e s i c paths
i f len ( queue ) i s 0 :

return t o t a l

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# c a l c u l a t e e i g e n v e c t o r
def e i g e n v e c t o r ( net ) :

for node in net :
#p r i n t (” Eigenvec tor node s t a r t . . . ” + s t r ( node . id ) )
calcEC = 0
# add up a l l ne ighbore i n f l u e n c e s
for neigh in node . ne ighbores :

calcEC += neigh . l i n k s
node . e i g e n v e c t o r = calcEC

# c a l c u l a t e betweenness
def betweenness ( net ) :

# g e t a l l p o s s i b l e combinat ions from s t a r t to end
combinat ions = l i s t ( i t . combinat ions ( net , 2 ) )
a l l g c o m b i n a t i o n s =[ ]
for combo in combinat ions :

a l l g c o m b i n a t i o n s . append ( m u l t i g e o d e s i c ( net , combo [ 0 ] , combo [ 1 ] ) )
for node in net :

calcBC = f loat (0 )
# c a l c u l a t e c e n t r a l i t y o f node
for g group in a l l g c o m b i n a t i o n s :

g paths = 0
g path node = 0
g p a t h r a t i o = f loat (0 )
f i r s t = g group [ 0 ]
head = f i r s t [ 0 ]
t a i l = f i r s t [−1]
i f head i s not node and t a i l i s not node :

g paths = len ( g group )
# count the amount o f path con ta in s node x
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for one g in g group :
i f node in one g :

g path node += 1
i f g path node i s 0 :

g p a t h r a t i o = f loat (0 )
else :

g p a t h r a t i o = g path node / g paths
calcBC += g p a t h r a t i o

node . betweenness = calcBC /(( len ( net )−1)∗( len ( net )−2)/2)

# c a l c u l a t e c l o s e n e s s
def c l o s e n e s s ( net ) :

# g e t a l l p o s s i b l e combinat ions from s t a r t to end
combinat ions = l i s t ( i t . combinat ions ( net , 2 ) )

for node in net :
tota lNodeDistance = 0
# add up a l l pa ths d i s t a n c e s wi th node x
for group in combinat ions :

# g e t a o b j e c t wi th g e o d e s i c path
i f node in group :

tota lNodeDistance += ( len ( any geodes i c ( net , group [ 0 ] , group [1 ] ) ) −1)
# a s s i g n CC with no rma l i za t ion
node . c l o s e n e s s = f loat ( ( len ( net )−1)/ tota lNodeDistance )

# c a l c u l a t e degree
def degree ( net ) :

for node in net :
# a s s i g n DC with norm a l i z a t i on
node . degree = node . l i n k s /( len ( net )−1)

# c a l c u l a t e paths
def paths ( net , i t e r a t i o n s ) :

combinat ions = l i s t ( i t . combinat ions ( net , 2 ) )
for i in range ( i t e r a t i o n s ) :

for oneComb in combinat ions :
pool = [ oneComb [ 0 ] ]
while True :

l a s t = pool [−1]
p o s s i b l e = [ ]

# add 1 o f ne ighbor node to sequence
for neigh in l a s t . ne ighbores :

i f neigh not in pool :
p o s s i b l e . append ( neigh )

i f len ( p o s s i b l e ) > 0 :
s e l e c t = ra . cho i c e ( p o s s i b l e )
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pool . append ( s e l e c t )
else :

break
i f pool [−1] i s oneComb [ −1 ] :

break
# add count 1 to a l l between nodes
i f pool [−1] i s oneComb [ −1 ] :

for node in pool :
i f node i s not pool [ 0 ] and node i s not pool [ −1 ] :

node . Trans fe r Paths += 1
# normal ize
for node in net :

node . Trans fe r Paths = node . Trans fe r Paths / i t e r a t i o n s / len ( combinat ions )

#c a l c u l a t e t r a i l s
def t r a i l s ( net , i t e r a t i o n s ) :

combinat ions = l i s t ( i t . combinat ions ( net , 2 ) )
#combinat ions = [ [ net [ 0 ] , net [ 5 ] ] ]
for i in range ( i t e r a t i o n s ) :

#p r i n t (” s t a r t i n g . . . . . . ” + s t r ( i ) )
for oneComb in combinat ions :

#p r i n t ( [ x . i d f o r x in oneComb ] )
pool = [ [ oneComb [ 0 ] ] ]
while True :

l a s t = pool [−1] [−1]
p o s s i b l e = [ ]

#check f o r repea ted edges
for neigh in l a s t . ne ighbores :

newStep = [ l a s t , ne igh ]
r newStep = [ neigh , l a s t ]
i f newStep not in pool and r newStep not in pool :

p o s s i b l e . append ( newStep )
#add edge randomly
i f len ( p o s s i b l e ) > 0 :

s e l e c t = ra . cho i c e ( p o s s i b l e )
i f len ( pool [ 0 ] ) i s 1 :

pool = [ s e l e c t ]
else :

pool . append ( s e l e c t )
else :

break
i f pool [−1] [−1] i s oneComb [ −1 ] :

break
# c a l c u l a t e c e n t r a l i t y o f node
i f pool [−1] [−1] i s oneComb [ −1 ] :

for edge in pool :
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i f edge i s not pool [ −1 ] :
edge [ 1 ] . T r a n s f e r T r a i l s += 1

# normal ize
for node in net :

node . T r a n s f e r T r a i l s = node . T r a n s f e r T r a i l s / i t e r a t i o n s / len ( combinat ions )

# c a l c u l a t e walks
def walks ( net , i t e r a t i o n s ) :

combinat ions = l i s t ( i t . combinat ions ( net , 2 ) )
for i in range ( i t e r a t i o n s ) :

for oneComb in combinat ions :
walk = [ ]
walk . append (oneComb [ 0 ] )
while walk [−1] i s not oneComb [ 1 ] :

l a s t = walk [−1]
l a s t 2 = None
p o s s i b l e = [ ]

# add 1 o f ne ighbor node
for neigh in l a s t . ne ighbores :

p o s s i b l e . append ( neigh )
s e l e c t = ra . cho i c e ( p o s s i b l e )
# i f check back and f o r t h
i f len ( walk ) > 1 :

l a s t 2 = walk [−2]
i f s e l e c t i s l a s t 2 :

walk . remove ( l a s t )
else :

walk . append ( s e l e c t )
else :

walk . append ( s e l e c t )
# c a l c u l a t e c e n t r a l i t y o f node
for node in walk :

i f node i s not walk [ 0 ] and node i s not walk [ −1 ] :
node . Transfer Walks += 1

# normal ize
for node in net :

node . Transfer Walks = node . Transfer Walks / i t e r a t i o n s / len ( net )

9.4 Script: Serial Replication Measures

# This i s the main s e r i a l c e n t r a l i t y f i l e
# Created by : Zhipeng Luo
# Last Modify : 17−07−18

import random as ra
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# c a l c u l a t e g e o d e s i c
def geode s i c ( net , i t e r a t i o n s ) :

for node in net :
avgResult = f loat (0 )
for i in range ( i t e r a t i o n s ) :

# add f i r s t node to queue
pool = [ ]
pool . append ( [ [ node ] ] )
while len ( pool ) > 0 :

# g e t f i r s t node from the f i r s t sequence o b j e c t
cur rent = pool . pop (0 )
b a s e s e t = [ y for x in cur rent for y in x ]
cAddon = [ ]
a l l P o s s i b l e = [ ]
for cPack in cur rent :

for cNode in cPack :
nPos s ib l e = [ ]
for cNeigh in cNode . ne ighbores :

i f cNeigh not in b a s e s e t :
# add p o s s i b l e n e i g h b o r s
nPos s ib l e . append ( cNeigh )

i f len ( nPos s ib l e ) > 0 :
a l l P o s s i b l e . append ( nPos s ib l e )

# s o r t them by s i z e o f groups
a l l P o s s i b l e . s o r t ( key = lambda group : len ( group ) )
while len ( a l l P o s s i b l e ) > 0 :

pCurrent = a l l P o s s i b l e . pop (0 )
s e l e c t = ra . cho i c e ( pCurrent )
cAddon . append ( s e l e c t )
b a s e s e t . append ( s e l e c t )
for pGroup in a l l P o s s i b l e :

i f s e l e c t in pGroup :
i f len ( pGroup ) > 1 :

pGroup . remove ( s e l e c t )
else :

a l l P o s s i b l e . remove ( pGroup )
a l l P o s s i b l e . s o r t ( key = lambda group : len ( group ) )

# check i f f i n i s h e d
i f len ( cAddon ) > 0 :

newPath = l i s t ( cur r ent )
newPath . append ( cAddon )
pool . append ( newPath )

else :
avgResult += len ( cur r ent )
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# c a l c u l a t e c e n t r a l i t y f o r node
node . c l o s e n e s s S e r i a l G e o d e s i c = ( len ( net )−1)/( avgResult / i t e r a t i o n s )

# c a l c u l a t e Paths
def paths ( net , i t e r a t i o n s ) :

for node in net :
avgResult = f loat (0 )
for i in range ( i t e r a t i o n s ) :

# add f i r s t node to queue
pool = [ ]
pool . append ( [ [ node ] ] )
while len ( pool ) > 0 :

# g e t f i r s t sequence o b j e c t
cur rent = pool . pop (0 )
b a s e s e t = [ y for x in cur rent for y in x ]
cAddon = [ ]
for cPack in cur rent :

for cNode in cPack :
p o s s i b l e = [ ]

# add a l l p o s s i b l e ne ighbor nodes to p o s s i b l e queue
for cNeigh in cNode . ne ighbores :

i f cNeigh not in b a s e s e t :
p o s s i b l e . append ( cNeigh )

i f len ( p o s s i b l e ) > 0 :
s e l e c t = ra . cho i c e ( p o s s i b l e )
cAddon . append ( s e l e c t )
b a s e s e t . append ( s e l e c t )

# check i f f i n i s h e d
i f len ( cAddon ) > 0 :

newPath = l i s t ( cur r ent )
newPath . append ( cAddon )
pool . append ( newPath )

else :
avgResult += len ( cur r ent )

# c a l c u l a t e c e n t r a l i t y o f node
node . c l o s e n e s s S e r i a l P a t h s = ( len ( net )−1)/( avgResult / i t e r a t i o n s )

# c a l c u l a t e t r a i l s
def t r a i l s ( net , i t e r a t i o n s ) :

for node in net :
for i in range ( i t e r a t i o n s ) :

# add f i r s t node to queue
pool = [ ]
pool . append ( [ [ [ node ] ] ] )
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while len ( pool ) > 0 :
pCurrent = pool . pop (0 )
baseEdges = [ y for x in pCurrent for y in x ]
baseNodes = [ ]
# add p o s s i b l e n e i g h b o r s
for be in baseEdges :

for bn in be :
i f bn not in baseNodes :

baseNodes . append (bn)
al lAddons = [ ]
for bNode in baseNodes :

p o s s i b l e = [ ]
for neigh in bNode . ne ighbores :

newEdge = [ bNode , ne igh ]
r newEdge = [ neigh , bNode ]
i f newEdge not in baseEdges and r newEdge not in baseEdges :

p o s s i b l e . append ( newEdge )

i f len ( p o s s i b l e ) > 0 :
s e l e c t = ra . cho i c e ( p o s s i b l e )
al lAddons . append ( s e l e c t )

# check i f f i n i s h e d
i f len ( al lAddons ) > 0 :

i f len ( pCurrent [ 0 ] [ 0 ] ) i s 1 :
newSequence = [ ]
newSequence . append ( al lAddons )
pool . append ( newSequence )

else :
newPath = l i s t ( pCurrent )
newPath . append ( al lAddons )
pool . append ( newPath )

else :
node . c l o s e n e s s S e r i a l T r a i l s += len ( pCurrent )

# c a l c u l a t e c e n t r a l i t y o f node
node . c l o s e n e s s S e r i a l T r a i l s =(len ( net )−1)/( node . c l o s e n e s s S e r i a l T r a i l s / i t e r a t i o n s )

9.5 Script: Parallel Replication Measures

# This i s the g e o d e s i c c e n t r a l i t y measure f i l e
# Created by : Zhipeng Luo
# Last Modify : 17−07−18

# c a l c u l a t e g e o d e s i c path and t r a i l
def p a t h s t r a i l s ( net ) :

for node in net :
# add s t a r t i n g node to queue
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queue = [ ]
queue . append ( [ [ node ] ] )

while len ( queue ) > 0 :
# g e t f i r s t node o f the f i r s sequence o b j e c t
qCurrent = queue . pop (0 )
b a s e s e t = [ y for x in qCurrent for y in x ]
addon set = [ ]
# g e t a l l ne ighbor nodes
for qPack in qCurrent :

for qNode in qPack :
for neigh in qNode . ne ighbores :

i f neigh not in b a s e s e t :
addon set . append ( neigh )
b a s e s e t . append ( neigh )

# check i f f i n i s h e d
i f len ( addon set ) > 0 :

# add new sequences to queue
newQueueObj = l i s t ( qCurrent )
newQueueObj . append ( addon set )
queue . append ( newQueueObj )

else :
# c a l c u l a t e c e n t r a l i t y f o r node
node . c l o s e n e s s P a r a l l e l P a t h s = f loat ( ( len ( net )−1)/ len ( qCurrent ) )

9.6 Script: Plot Network

# This i s the p loy network f i l e
# Created by : Zhipeng Luo
# Last Modif ied : 17−07−18

from p l o t l y . o f f l i n e import download p lo t ly j s , in i t notebook mode , p lot , i p l o t
import i graph as i g
import p l o t l y . p l o t l y as py
from p l o t l y . g raph obj s import ∗
import p l o t l y . g raph obj s as go

def p lo tVa l i da t e ( r e s u l t ) :

names = [ str ( row [ 0 ] ) for row in r e s u l t ]
Hco = [ row [ 1 ] for row in r e s u l t ]
Hce = [ row [ 2 ] for row in r e s u l t ]
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t race1 = go . Sca t t e r (
x = names ,
y = Hco ,
mode = ’ l i n e s+markers ’ ,
name = ’Hco − ( c o n n e c t i v i t y ) ’
)

t r ace2 = go . Sca t t e r (
x = names ,
y = Hce ,
mode = ’ l i n e s+markers ’ ,
name = ’ Hce − ( c e n t r a l i t y ) ’
)

layout=Layout (
t i t l e = ” Va l idat i on by Entropy” ,
width =1000 ,
he ight =600 ,
showlegend=True ,
margin=Margin (

t=50
) ,

hovermode=’ c l o s e s t ’ ,
)

data = [ trace1 , t race2 ]
f i g=Figure ( data=data , layout=layout )
p l o t ( f i g , f i l ename=’ s c a t t e r−mode ’ )

def plotGraph ( net , measure ) :

# g e t edges and nodes and l a b e l s
group =[ ]
Edges =[ ]
l a b e l s =[ ]
for i in range ( len ( net ) ) :

va lue = f loat (0 )
i f measure i s ” t d e g r e e ” :

va lue = net [ i ] . degree
e l i f measure i s ” t betweenness ” :

va lue = net [ i ] . betweenness
e l i f measure i s ” t c l o s e n e s s ” :

va lue = net [ i ] . c l o s e n e s s
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e l i f measure i s ” t e i g e n v e c t o r ” :
va lue = net [ i ] . e i g e n v e c t o r

e l i f measure i s ” t paths ” :
va lue = net [ i ] . Trans fe r Paths

e l i f measure i s ” t t r a i l s ” :
va lue = net [ i ] . T r a n s f e r T r a i l s

e l i f measure i s ” t wa lks ” :
va lue = net [ i ] . Transfer Walks

e l i f measure i s ” s g e o d e s i c ” :
va lue = net [ i ] . c l o s e n e s s S e r i a l G e o d e s i c

e l i f measure i s ” s paths ” :
va lue = net [ i ] . c l o s e n e s s S e r i a l P a t h s

e l i f measure i s ” s t r a i l s ” :
va lue = net [ i ] . c l o s e n e s s S e r i a l T r a i l s

e l i f measure i s ” p p a t h s t r a i l s ” :
va lue = net [ i ] . c l o s e n e s s P a r a l l e l P a t h s

else :
None

l a b e l s . append (
”ID : ” + net [ i ] . id + ”<br>” +
” Score : ” + str ( va lue ) + ”<br>”
)

group . append ( value )
for j in range ( len ( net ) ) :

i f net [ i ] i s not net [ j ] :
i f net [ j ] in net [ i ] . ne ighbores :

Edges . append ( ( i , j ) )

G=i g . Graph ( Edges , d i r e c t e d=False )

# genera te node p o s i t i o n s
l a y t=G. layout ( ’ kk ’ , dim=3)
Xn=[ l a y t [ k ] [ 0 ] for k in range ( len ( l a y t ) ) ]# x−c o o r d i n a t e s o f nodes
Yn=[ l a y t [ k ] [ 1 ] for k in range ( len ( l a y t ) ) ]# y−c o o r d i n a t e s
Zn=[ l a y t [ k ] [ 2 ] for k in range ( len ( l a y t ) ) ]# z−c o o r d i n a t e s
Xe=[ ]
Ye=[ ]
Ze =[ ]

for e in Edges :
Xe+=[ l a y t [ e [ 0 ] ] [ 0 ] , l a y t [ e [ 1 ] ] [ 0 ] , None ]# x−c o o r d i n a t e s o f edge ends
Ye+=[ l a y t [ e [ 0 ] ] [ 1 ] , l a y t [ e [ 1 ] ] [ 1 ] , None ]
Ze+=[ l a y t [ e [ 0 ] ] [ 2 ] , l a y t [ e [ 1 ] ] [ 2 ] , None ]
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# draw edges
t race1=Scatter3d (

x=Xe ,
y=Ye ,
z=Ze ,
mode=’ l i n e s ’ ,
l i n e=Line ( c o l o r=’ rgb (125 ,125 ,125) ’ , width =1) ,
hove r in f o=’ none ’
)

# draw nodes
t race2=Scatter3d (

x=Xn,
y=Yn,
z=Zn ,
mode=’ markers ’ ,
name=’ a c t o r s ’ ,
marker=Marker (

symbol=’ dot ’ ,
s i z e =10,
c o l o r = group ,
c o l o r s c a l e=’ thermal ’ ,
l i n e=Line ( c o l o r=’ rgb (50 ,50 ,50) ’ , width =1.0)
) ,

t ex t=l a b e l s ,
hove r in f o=’ t ext ’
)

# setup l a y o u t
l ayout=Layout (

t i t l e = measure ,
width =1000 ,
he ight =600 ,
showlegend=False ,
margin=Margin (

t=50
) ,

hovermode=’ c l o s e s t ’ ,
)

# p l o t
data=Data ( [ t race1 , t race2 ] )
f i g=Figure ( data=data , layout=layout )
p l o t u r l = p lo t ( f i g , f i l ename=’ newGraph ’ )
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9.7 Script: Validate Measures

import i t e r t o o l s as i t
import math as ma
import copy

#c a l c u l a t e entrophy o f removal o f each node
def v a l i d a t e ( net ) :

a l lChanges = [ ]
base = getHcoHce ( net )
a l lChanges . append ( [ ”−1” , 0 , 0 ] )

for i in range ( len ( net ) ) :
newNet = copy . deepcopy ( net )

for neigh in newNet [ i ] . ne ighbores :
ne igh . ne ighbores . remove ( newNet [ i ] )

newNet . remove ( newNet [ i ] )

r e s = getHcoHce ( newNet )
a l lChanges . append ( [ net [ i ] . id , base [0]− r e s [ 0 ] , base [1]− r e s [ 1 ] ] )

#p r i n t ( [ x f o r x in a l lChanges ] )
return al lChanges

#given the r e s u l t o f paths , c a l c u l a t e Hco , Hce
def getHcoHce ( net ) :

combinat ions = l i s t ( i t . combinat ions ( net , 2 ) )
a l l P a t h s R e s u l t s = [ ]
tota lPathsCounts = 0

for node in net :
pathCount = getPathsFromNodeV ( net , node , combinat ions )
#pathCount = getPathsFromNodeV2 ( net , node , combinat ions )
a l l P a t h s R e s u l t s . append ( [ node , pathCount ] )
tota lPathsCounts += pathCount

Hco = f loat (0 )
Hce = f loat (0 )

for r e s in a l l P a t h s R e s u l t s :
i f len ( r e s [ 0 ] . ne ighbores ) > 0 :

Hco += ( len ( r e s [ 0 ] . ne ighbores )/(2∗ len ( net ) ) ) ∗ (ma. log2 ( len ( r e s [ 0 ] . ne ighbores )/(2∗ len ( net ) ) ) )
Hce += ( r e s [−1]/ tota lPathsCounts )∗ (ma. log2 ( r e s [−1]/ tota lPathsCounts ) )
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else :
Hco += 0
Hce += 0

return [ Hco∗−1, Hce∗−1]

# g e t a l l the d i f f e r e n t p o s s i b l e paths from node v
def getPathsFromNodeV ( net , node , startEnd ) :

nodeVCount = 0
nodeCombo = [ ]
for combo in startEnd :

i f node in combo :
i f node i s combo [ 0 ] :

nodeCombo . append (combo)
else :

nodeCombo . append ( [ combo [−1] , combo [ 0 ] ] )
for combo in nodeCombo :

pool = [ [ combo [ 0 ] ] ]
while len ( pool ) > 0 :

cur r ent = pool . pop (0 )
l a s t = current [−1]
for neigh in l a s t . ne ighbores :

i f neigh not in cur rent :
newPath = l i s t ( cur r ent )
newPath . append ( neigh )
pool . append ( newPath )

i f l a s t i s combo [ 1 ] :
nodeVCount += 1

return nodeVCount

# g e t a l l the g e o d e s i c paths from node v
def getPathsFromNodeV2 ( net , node , startEnd ) :

nodeVCount = 0
nodeCombo = [ ]
for combo in startEnd :

i f node in combo :
i f node i s combo [ 0 ] :

nodeCombo . append (combo)
else :

nodeCombo . append ( [ combo [−1] , combo [ 0 ] ] )
for combo in nodeCombo :

be s t s = [ ]
pool = [ [ combo [ 0 ] ] ]
while len ( pool ) > 0 :

cur r ent = pool . pop (0 )
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l a s t = current [−1]

i f l a s t i s combo [ 1 ] :
i f len ( be s t s ) > 0 :

i f len ( cur r ent ) < len ( be s t s [ 0 ] ) :
b e s t s [ : ] = [ ]
b e s t s . append ( cur rent )

e l i f len ( cur r ent ) i s len ( be s t s [ 0 ] ) :
b e s t s . append ( cur rent )

else :
b e s t s . append ( cur rent )

else :
for neigh in l a s t . ne ighbores :

i f neigh not in cur rent :
newPath = l i s t ( cur r ent )
newPath . append ( neigh )
pool . append ( newPath )

nodeVCount += len ( be s t s )
return nodeVCount
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Figure 14: This table describes the correlation values between two centrality
rankings based on the results of Exp: 6 to 10. The number represents the total
number of nodes that exists within the two rankings. Note: Value 10 means all
the notes are exist in both rankings, while 0 means two rankings have no node
in common.
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