
Dr. L. (Luís)Ferreira Pires

2018

NOV
22Dr. ir.

M.

(Maurice)

 van Keulen

Examination
committee

USING USER WORKFLOW ANALYSIS
 TO CREATE INSIGHTS IN

CONTENT-INTENSIVE APPLICATIONS

UNIVERSITY
OF TWENTE.

Computer Science
M.C. (Marlène) Hol

s1317210

Combining Process Mining and Model-Driven Engineering
to create a reusable, scalable and user-friendly solution

Cover illustration created with a vector by Freepik

3

Preface

This thesis completes my exciting time at the University of Twente. It has been an amazing
journey from starting here as a freshman in 2012, to becoming an alumnus now. For me, the
University of Twente will always be a special place. It is the place where I learnt so many
interesting things, developed so many different skills, where I founded my company Mobina,
where I found love, made great friends and so much more. But all good things come to an
end. However, this I not a sad ending. I’m looking forward to putting all my time and energy
in Mobina, and hopefully to make it the company we all believe it can be.

I would like to take this opportunity to thank several people. First, I would like to thank my
supervisors Maurice van Keulen and Luís Ferreira Pires for their valuable feedback on my
thesis. I would like to thank Maurice for always giving me the opportunity to explore the
topics I was really interested in and making it possible to combine this with Mobina. I would
like to thank Luís for always being critical, not only at my design and implementation, but
also by giving me valuable textual feedback.

Next, I would like to thank everybody at Mobina, with a special thanks to some of them. First,
I would like to thank Jasper Boot, René Hol, Valerija Olsevska, Jochem Verburg, and Hans
Wortmann for participating in the data collection. I would also like to thank René, Valerija,
and Jochem for using their expertise in the Mobina content in the validation. Additionally, I
want to thank Jasper for his technical support when we developed the logging framework
necessary to perform this project. Because of his background in Business Information
Technology, Jochem also proved himself valuable as company supervisor. I would like to
thank him for all his feedback on my project, both content-wise and textual. Finally, I would
like to thank René and Jochem for giving me all the freedom to perform this project and
giving me the opportunity to steer this project in a direction that I deemed not only useful for
Mobina, but that is also aligned with my personal interest and study background. Their
unconditional trust in the project and the road I was taking greatly motivated me.

Finally, I would like to thank my friends and family for their (moral) support during my thesis.
I could not have done it without them. I would like to thank Meike Nauta and Caspar
Schutijser for taking the time to review my report. I would like to thank Mart Oude Weernink
for his creativity that led to the cover of my thesis. A very special thanks to my parents, not
only for their support during my thesis, but also for the support they have given me my entire
life. I would like to especially thank my father for always giving me career advice, leading to
me graduating in Computer Science and us building an amazing company together with the
rest of the Mobina team. I would like to thank my mother for always having my best interests
at heart, making it possible for me to achieve everything I am proud of. Finally, I would like to
thank Jochem for his support over the past few months, for always encouraging me to be the
best version of myself, and for always looking out for me, especially when I was not able to
do so myself.

5

Abstract

Traditional methods for evaluating software are often less suitable for content-intensive
applications because they are not always able to track the steps of a user across the entire
application, because they are less suitable for continuous improvement due to their lack of
scalability, and because the observed behavior might be different from reality. We introduce
user workflow analysis as a solution to help content and software developers (user workflow
analyzers) of content-intensive applications (referred to as System Under Analysis or SUA)
to gain additional insights in the usage of the application that can’t be acquired through
traditional methods.

We present a design and prototype implementation of the User Workflow Analysis Tool
(UWAT). This tool successfully implements user workflow analysis by combining the strength
of Process Mining (PM) in extracting patterns from event log data and the strength of Model-
Driven Engineering (MDE) in standardized and automatic transformations. This research
shows that MDE, due to its standardization power, can mitigate the shortcoming of PM that it
is often left up to user to configure the plugins and interpret the results. In this design, only
the implementer of the UWAT needs to understand the PM configuration and results, and all
other user workflow analyzers can benefit from this in a standardized, automated and user-
friendly way. No references were found that this combination was used for this purpose
before.

The UWAT itself consists of five metamodels: SUA metamodel, plugin specification
metamodel, user specification metamodel, Process Mining metamodel, and result
metamodel. All metamodels are set-up as generic as possible, so they can easily be used
for multiple SUAs. Four transformations are introduced: to create the SUA model instance, to
translate the input of the user workflow analyzer to a user specification model instance and
the instructions for PM, to process the result of PM to useful results for the user workflow
analyzers based on the user specification, and finally to translate the result model instance
to the output data that can be used for visualization of the results. The PM execution
happens externally, but the UWAT handles the call to these external plugins. In this way,
users of the UWAT can benefit from external knowledge in an area that is rapidly evolving.
The visualization for the user workflow analyzers is separated from the UWAT, so the SUA
implementer has a lot of flexibility in how to present the results.

For the prototype implementation and validation, a case study is done for a content-intensive
application, Mobina. The Mobina team created their own modelling technique for the
complex content. They are expected to benefit from user workflow analysis to validate the
modelling technique and the interface supporting this. The design was validated using two
types of expert opinion: user validation and technical review. Potential user workflow
analyzers were interviewed to identify the added value of user workflow analysis and to
assess the requirements relevant for user workflow analyzers. The technical review is a
critical review of this design, and where necessary its implementation, to validate to what
extent the requirements of the architecture were fulfilled.

This thesis shows that using user workflow analysis can provide a lot of added value to
SUAs. By using the UWAT, the user workflow analyzers get more insights in the behavior of
the users in the SUA and the effects of their work on their users. Eventually, this will lead to
a better user experience and satisfied customers. Simple examples already have added
value, but this could be even more with analyses that focus on the structure of the content
and the software.

6

This research successfully showed how by combining PM and MDE, different user workflow
analyzers can benefit from analyses in a reusable, scalable and user-friendly way. This
combination of PM and MDE led to a user-friendly solution where the user workflow
analyzers are not bothered with the implementation details. New functionality and analyses
can easily be added which makes the solution flexible and scalable. Due to the generic
setup of the metamodels, most of the metamodels can be reused for different SUAs. Some
parts of the transformations need to be implemented for each SUA separately, so the SUA
implementer has a lot of flexibility and can implement all desired analyses. As soon as the
necessary PM support is there, this solution can also be fully automated.

User workflow analysis as presented shows a lot of potential, but we expect this can be even
more. It will be interesting to see whether other techniques, e.g., machine learning, can
improve or extend the user workflow analyses. Other types of applications than content-
intensive applications could also benefit from user workflow analysis and this design, so it is
useful to research this further. Finally, it will be very interesting to bring this to the next step
of the design cycle. The design presented here contains all the core aspects, but there are
also several remaining opportunities. There are possibilities to standardization and share
one UWAT implementation amongst SUAs. When researching these possibilities more in-
depth, an even better support for user workflow analysis can be established.

7

Table of Contents

Preface ... 3

Abstract... 5

Table of Contents .. 7

Glossary.. 10

1 Introduction .. 11

1.1 Problem statement .. 11

1.2 Research questions .. 12

1.3 Research design ... 13

1.3.1 Scope .. 13

1.3.2 Approach ... 14

1.4 Report structure .. 14

2 Background and related work... 15

2.1 Model-Driven Engineering (MDE) ... 15

2.1.1 Concepts ... 15

2.1.2 Use cases .. 17

2.1.3 MDE in practice ... 17

2.2 Process Mining (PM) ... 18

2.2.1 Techniques .. 18

2.2.2 PM in software engineering .. 18

2.3 Combining PM and MDE... 19

3 Case study: Mobina ... 20

3.1 Mobina application .. 20

3.2 Relevance ... 20

3.3 Mobina components .. 21

4 Solution .. 24

4.1 Requirements ... 24

4.1.1 Functional requirements .. 24

4.1.2 Non-functional requirements .. 24

4.1.3 Domain requirements ... 25

4.2 High-level architecture .. 25

4.3 Techniques ... 26

5 (Meta)models and transformations ... 27

5.1 Overview ... 27

5.2 Metamodels .. 27

5.2.1 SUA metamodel ... 27

5.2.2 Plugin specification metamodel .. 29

5.2.3 User specification metamodel .. 30

5.2.4 Process Mining metamodel .. 31

8

5.2.5 Result metamodel .. 33

5.3 Transformations .. 35

5.3.1 Data-to-SUA transformation ... 35

5.3.2 Preparation-to-specification transformation .. 35

5.3.3 Process-to-result transformation .. 36

5.3.4 Result-to-dashboard transformation ... 36

6 Implementation prototype ... 38

6.1 Scope ... 38

6.2 Tools ... 38

6.3 Preparation ... 39

6.3.1 Preparing the event log .. 39

6.3.2 Data-to-SUA .. 40

6.4 User preparation ... 41

6.5 UWAT and PM implementation ... 42

6.5.1 Preparation-to-specification ... 43

6.5.2 Process input ... 45

6.5.3 Process output ... 45

6.5.4 Process-to-result .. 47

6.5.5 Result-to-dashboard .. 48

6.6 Result dashboard .. 49

7 SUA guidelines .. 51

7.1 Business objectives .. 51

7.1.1 Determining the business objectives .. 51

7.1.2 Case study ... 51

7.2 Logging of the software ... 52

7.2.1 Logging data .. 52

7.2.2 Logging framework .. 52

7.2.3 Case study ... 53

7.3 Data generation .. 55

7.3.1 Experiment scoping ... 56

7.3.2 Experiment planning .. 56

7.3.3 Experiment operation ... 57

7.3.4 Presentation & package ... 58

7.3.5 Case study ... 58

8 Validation ... 60

8.1 Approach .. 60

8.1.1 User validation ... 60

8.1.2 Technical review .. 61

8.2 Validation results .. 61

9

8.2.1 Functional requirements .. 61

8.2.2 Non-functional requirements .. 63

8.2.3 Domain requirements ... 66

8.2.4 Usefulness of user workflow analysis ... 66

8.3 Summary .. 66

9 Discussion ... 68

9.1 Added value user workflow analysis ... 68

9.2 Setup of the UWAT ... 68

9.2.1 Combination of PM and MDE ... 68

9.2.2 Reusability ... 69

9.2.3 Separation visualization and UWAT ... 70

9.2.4 User friendliness .. 71

9.2.5 Scalability .. 71

9.3 Implications of proof of concept... 72

9.4 Validity .. 72

10 Conclusion ... 74

10.1 Summary .. 74

10.2 Implications and recommendations for content-intensive applications 75

10.3 Scientific contributions and future research ... 76

References ... 78

Appendix A. Business objectives Mobina .. 80

Appendix B. Data collection document for the participants .. 82

10

Glossary

Data-to-SUA transformation Transformation that translates the SUA data to an
instance of the SUA metamodel.

Mobina The content-intensive application user for the case
study.

Model-Driven Engineering
(MDE)

Methodology that is used to implement the UWAT.

Plugin specification
(meta)model

(Meta)model that contains the specification of a PM
plugin.

Preparation-to-specification
transformation

Transformation to translate the specification of the
user in a preparation interface to an instance of the
user specification metamodel.

Process Mining (PM) Technique that is used to extract the patterns from the
event log data of the SUA.

Process Mining (meta)model (Meta)model that contains the outcomes of the PM
plugins of the user specification.

Process-to-result
transformation

Transformation that translates a PM model, a user
specification model, and a SUA model to an instance
of the result metamodel.

Reference model Content element of the case study Mobina.

Result (meta)model (Meta)models that contains the results of the analyses.

Result-to-dashboard
transformation

Transformation that translates a result model to a
textual representation that can be used for
visualization.

SUA data Data about the SUA that is relevant for the user
workflow analysis.

SUA (meta)model (Meta)model that contains all the specifics of the SUA

SUA owner The person responsible for implementing the UWAT in
the SUA development process.

System Under Analysis (SUA) The content-intensive application that is being
analyzed.

User specification
(meta)model

(Meta)model that contains the specification of the user
workflow analyzer on what to analyze.

User workflow The sequence of interactions the user has with the
entire artifact.

User workflow analyzer The user of the UWAT. This includes the content and
software developers of the SUA.

User Workflow Analysis Tool
(UWAT)

The artifact of this research. The UWAT is a tool that
can be used by user workflow analyzers to analyze the
user workflow of the SUA.

11

1 Introduction
This chapter introduces this thesis. Firstly, the problem statement is introduced with a strong
focus on content-intensive applications. This is followed up by the introduction of the
research questions. Then, the research design is presented including the scope of this
thesis. Finally, the rest of the report is introduced.

1.1 Problem statement
Anyone who develops a software product has the goal to develop a product that optimally
supports the user. If the user has the feeling that he/she can use the software effectively,
this will lead to higher user satisfaction. It is therefore widely accepted that the user should
play an important role in software development processes to make sure the user can get the
most out of the developed software [1]–[3].

This is especially the case for content-intensive applications, which are applications
containing (complex) content and where the software is designed and developed to support
this content. In this case, the structure of the software and its content, i.e., the way the
software and its content are designed and modelled, determines a large part of the user
satisfaction. The content needs to be modelled and structured so that the user can always
understand the software and find its way through it.

Currently, off-the-shelf software is often developed based on the experience and
expectations of the company who develops the software. The user often does not
(systematically) participate in the software development process, and when the user is
involved, often more traditional methods focusing on the graphical user interface (e.g.,
whether the user can easily save the progress on the screen) or using statistical facts about
the software (e.g., the number of errors) are used to test software usability [4], [5]. Involving
the user through these traditional methods already improves the quality of software
significantly and will improve system usage [6], [7]. However, these methods are often less
usable nor enough for content-intensive applications for three reasons:

1. These methods are often more focused on details and the graphical user interface.
This makes them unsuitable for determining whether the software and its content are
structured correctly and, more importantly, it makes them unsuitable to discover the
different steps or tasks the user is taking across the entire application. Especially in
content-intensive applications, the actions that are not directly related to the user
interface and are not necessarily in the same view are crucial to determine the next
steps and improvements in the software and its content.

2. These traditional methods are often used for the initial design, and not for
continuously improving the software. Involving the users in the entire development
process is often not scalable, especially in the case of user testing where the actual
person and its actions must be tracked. Every time the user is involved leads to
additional expenses, which adds a lot of extra costs to the software development
process [8], [9]. Consequently, this also often means that only a small part of the
(potential) users are involved instead of the entire target population. Due to this poor
scalability, these methods are less suitable for continuously improving applications.

3. In the case of content-intensive applications, learning from the actual behavior is
crucial, since the users then really start to use the (often complex) content. Some
time is necessary to grasp the content, and this cannot easily be staged in a short
time period to keep user testing affordable. Also, the setting of user testing is often
artificial, which can influence the actual interactions with the content. Therefore, a
solution where one can learn from actual behavior is crucial when looking into
content-intensive applications.

12

In the past few years, a new approach for evaluating software has been developed, namely
user workflow analysis. In user workflow analysis the log data is evaluated which includes all
the different interactions the user has with the entire artifact, in this case the software
application. These interactions can be to achieve a specific goal, e.g., to reach a certain
state or perform a specific action, or simply a sequence of steps with no immediate goal.
User workflow analysis provides the opportunity to capture the actual process automatically
and to see how this process relates to the expected or desired process. Emerging
techniques like data mining, machine learning, and process mining enable and improve this
approach to analysis.

User workflow analysis can therefore be very useful for content-intensive applications,
especially since it seems to fill the gaps left by more traditional methods. Firstly, it does not
focus on the details but on how the user interacts with the application. Secondly, it is capable
of capturing behavior across the entire application and not just a small part of the
application. Therefore, it is also suitable for analyzing not only functionality, but also the
content that could highly influence each interaction. Additionally, since it tracks actual
behavior the results are not influenced and there is no artificial setting. Finally, it has the
potential to become fully automated which would make it scalable. Because of these
reasons, user workflow analysis is expected to help identify where the predicted workflow
differs from the discovered workflow and whether the content and the software are properly
structured.

Several techniques are available that can (partially) implement user workflow analysis.
Based on the goals of the analysis, and the interest and experience of the developer,
everyone should decide for themselves which techniques to use. In this research, a
combination of two techniques is chosen to implement user workflow analysis: Process
Mining (PM) and Model-Driven Engineering (MDE). These techniques have the potential to
create a solution which can be applied to all content-intensive applications in a generic way.
Additionally, we expect these techniques can be fully automated, which makes them
scalable and suitable for continuously improving software. Finally, we expect that these
techniques help present the results in ways that anyone can analyze the results, not only the
software developers. Due to these reasons and previous experience of the researchers,
these techniques are selected for this research.

1.2 Research questions
In this research, we investigate whether user workflow analysis can indeed give additional
insights in content-intensive applications that are not possible with traditional methods. This
leads to our first main research question:

1. How can user workflow analysis help content and software developers of content-
intensive applications gain additional insights in the content and the software?

As mentioned before, user workflow analysis can be implemented in many ways. In this
research, we inspect the implementation with PM and MDE. The combination of these two
techniques has not been extensively researched yet. This leads to our second main
research question:

2. How can Process Mining and Model-Driven Engineering be used in combination to
implement user workflow analysis?

The expected potential of these techniques described above lead to three sub questions of
the second research question:

13

a. To what degree can this combination be used to implement user workflow analysis in
a generic way to make it usable for all content-intensive applications?

b. To what degree can this combination be used to implement user workflow analysis in
a scalable way?

c. To what degree can this combination be used to implement user workflow analysis in
a way that content and software developers can use the results without needing to
know the details of the implementation?

1.3 Research design
In this research, an architecture to perform user workflow analysis with PM and MDE has
been designed. A prototype of the tool has been implemented and validated with a case
study.

1.3.1 Scope
Figure 1 shows how the tool designed in this research is integrated in the development of
content-intensive applications. The research artifact is the User Workflow Analysis Tool
(UWAT). Content and software developers of content-intensive applications will use this tool
to analyze the user workflow of content-intensive applications: user workflow analyzers. The
content-intensive application is the System Under Analysis (SUA). The SUA is not part of the
UWAT, merely the object that is being analyzed. The SUA owner is responsible for
implementing the architecture in the SUA development process.

The SUA user interacts with the SUA. These interactions are logged in the log data and are
the input for the UWAT, together with other relevant information of the SUA, namely the SUA
data. Based on these data, the UWAT can generate relevant results for the user workflow
analyzer, which can then use these results to decide whether to improve the SUA.

Figure 1 Role of the UWAT

This research focuses on designing and analyzing an UWAT and did not aim to create useful
analyses for the SUA. This research discusses which collected data is necessary for user
workflow analysis, and this is applied to a case study. However, the architecture designed
and implemented assumes that these data are available.

14

1.3.2 Approach
The research consists of the following three phases:

1. Design. In this phase, the requirements of the architecture have been defined, which
have been used to design the architecture. The design includes the definition of the
(meta)models and transformations as well as the integration of PM and MDE.

2. Implementation. In this phase, the architecture has been implemented. This
implementation has been used for the validation. The implementation is based on a
case study using a content-intensive application.

3. Validation. In this phase, the architecture has been validated, and the research
questions have been answered. The user workflow analyzers of the case study were
involved in the validation.

As mentioned before, the architecture needs log data and actual information about the SUA.
Furthermore, the user workflow analyzers should know beforehand what they want to
analyze, since this defines what the results should be. Therefore, before implementing the
UWAT the business objectives should be clear and data collection should be aligned to
support these business objectives. Although they are not important for the UWAT
architecture, these are important aspects for the case study and are therefore described in
this thesis.

1.4 Report structure
The thesis is further structured as follows. Chapter 2 presents background on the selected
techniques and the related work. Chapter 3 presents the case study that is used as an
example and for validation. The SUA in this case study is the content-intensive application
Mobina.

Chapter 4 gives the requirements and the UWAT high-level architecture. The UWAT is
mainly implemented using MDE. Chapter 5 presents the metamodels and transformations of
the MDE implementation. Chapter 6 describes the implementation of the prototype. The
prototype is implemented for the case study and was used for the validation of the design.
Chapter 7 discusses the preparations each SUA owner should do. The implementation for
the case study is also discussed.

Chapter 8 describes the validation set-up and results. Chapter 9 discusses the results.
Chapter 10 summarizes the results and answers the research questions. It also presents
implications and recommendations for the content-intensive applications considering using
user workflow analysis and the UWAT. Finally, it presents the scientific contributions and
interesting topics for future research.

15

2 Background and related work
This chapter presents background information on MDE and PM. This chapter also
investigates and discusses the application of MDE in practice and PM for extracting the user
workflow. Additionally, existing research about the combination of both techniques is
discussed.

2.1 Model-Driven Engineering (MDE)
This section explains what MDE is and the concepts behind it. It also describes the cases in
which MDE is useful. Last, it presents the strengths and risks of using MDE in practice.

2.1.1 Concepts
The foundation of the Model-Driven Engineering (MDE) methodology is the Model-Driven
Architecture (MDA) initiative of the OMG group1. The motivation of this initiative has been to
separate the specification of system functionality from the implementation of that
functionality on a specific technology platform [10], [11]. This led to the distinction of Platform
Independent Models (PIMs) and Platform Specific Models (PSM). MDA presents three levels
of modeling abstraction: PSM, PIM, and Computation Independent Models (CIM) [12], [13].
Figure 2 depicts these levels.

Figure 2 Three levels of modelling abstraction

There are several reasons to separate these levels. Firstly, by abstracting from a specific
platform, the correctness of the model can be validated more easily. Secondly, it is easier to
produce implementations on different platforms, while having the same structure and
behavior. This also means technology can be changed without having to redevelop and
redesign the entire application. Finally, it improves the integration and interoperability across
systems because they can be defined in platform-independent terms [10].

MDA is just a framework, so it does not incorporate a specific development process or
methodology. The broader term Model-Driven Engineering (MDE) embodies a lot of the
MDA technologies but combines this with a software development process. MDE employs
the general concepts of modelling, independent of a particular standard.

Models are the foundation of MDE. In MDE a metamodel defines the abstract syntax of a
language that allows models to be defined. This could lead to an unlimited level of models.
Figure 3 shows the four layers of metamodeling that are often used with MDE [12].

1 http://www.omg.org/mda/

CIM

•Business view of the solution

•Context and requirements independent from how they
are implemented

PIM

•Description of the system

•Information and algorithms, independent from the
implementation technology

PSM

•Technology-aware detailed specification of the system

•Dependent on the technical implementation platform

16

Figure 3 Four layers of metamodeling often used in MDE

Model transformations are an important technique in MDE. The idea is that one can
automatically generate other models or text based on an input model and the metamodel
definitions. A developer can manually write these transformations, but they can also be
produced automatically using some higher-level mapping rules between models. When
using the latter approach, the transformations are actually models.

Figure 4 shows how transformations work in MDE, and how this relates to models and
metamodels. A source model is translated to a target model, which can be, for example, a
PIM that is transformed to a PSM. The transformation uses as input the source model and
the transformation definition. The transformation definition is based on the metamodel of the
source and the target model. This transformation therefore knows which elements are in
both models. The transformation definition describes how an element in the source model
should be transformed to an element of the target model. This transformation definition, the
source metamodel, and the target metamodel are all instances of a metametamodel.

Figure 4 Transformation in MDE

Metamodeling allows the definition of Domain-Specific Languages (DSLs). The purpose of
DSLs is to offer a language that domain experts understand. This allows domain experts to
participate in the modelling and software development process, since the DSL abstracts
from the technical details.

17

2.1.2 Use cases
Since OMG launched MDA in 2001, many usages of MDA and MDE have been presented
both in research and in practice. Three main application scenarios can be identified: (1)
automating software development, (2) system interoperability, and (3) reverse engineering
[12].

In the first scenario, software code can be generated automatically from the models.
Because metamodels are available, the (software) developer exactly knows what information
can be in the models. Model-to-model transformations and model-to-text transformations can
be created based on these possible model elements. To create a new piece of code, one
creates a new instance of the metamodel (a model) that contains the specific information,
and code can automatically be generated for this model. This technique is especially useful
in case code needs to be generated often. For one-off tasks the overhead of modelling and
writing the transformations is too much, but for repetitive tasks this can be very beneficial.
Another advantage is that everybody can create such a model, and software developers are
in theory not necessary anymore to create the whole software, only for writing and updating
the transformations.

In the second scenario, there are different systems with a similar purpose which each have
their own metamodel. In this scenario, also a pivot metamodel is created which is a
metamodel that covers all the different systems. Then, transformations can be written and
executed from the metamodel of the different systems to the pivot metamodel and vice
versa. In this way, a model of each system can be translated to a model of another system
via the pivot metamodel. The alternative is to write a transformation between all metamodels
of the different systems directly. However, using n systems, one needs to write n*(n-1)
transformations. When a new system is introduced, again n transformations need to be
written. This quickly explodes. By using a pivot metamodel, only two transformations need to
be added for a new system (from and to the pivot metamodel) and the new system can
directly be transformed to any of the other systems.

In the third scenario, MDE is used to extract the models of already existing systems, often
legacy systems. One starts with some low-level models and based on these models one can
extract higher level models. From the discovered higher-level models, a new system can be
generated using the first scenario. In this way, a legacy system can be modernized.

2.1.3 MDE in practice
There are many different reasons to apply MDE in a project or organization. In different
studies about MDE in practice, the most named benefits are: a clear (well-documented)
software architecture, conceptual simplicity, efficient implementation, high scalability,
flexibility, higher productivity, and improved communication within development teams and
with external stakeholders [14]–[16]. Especially for labor-intensive and error-prone
development tasks, MDE is deemed useful [16], [17].

However, research has also shown limitations when using MDE in practice. A limitation that
is very prominent in other research is the scaling-up of MDE. Most success stories had a
small DSL, i.e., it is implemented in a narrow domain [14], [18]. The tools and techniques are
often also not suitable for usage across platforms. Most tools are bound to specific platforms
[16]. Besides this, version control and change management in MDE seems to be under-
developed [17], [18]. There is often a tradeoff between flexibility and automation. For each
situation, the potential benefits should outweigh the potential risks, and the project and
organization must fit the current MDE practices.

18

2.2 Process Mining (PM)
PM is a research discipline that aims to discover, monitor and improve actual processes by
extracting knowledge from event logs readily available in today’s information systems. The
IEEE Task Force on PM has written a manifesto, which presents guiding principles and
challenges for PM [19]. A lot of the research about PM and the principles outlined in this
research are based on this manifesto. An overview of PM based on the manifesto is also has
been published in [20].

2.2.1 Techniques
PM is a technique that is currently rapidly developing. More applications and extensions are
discovered on a regular basis. Three main techniques form the foundation of PM: process
discovery, conformance checking and enhancement [21], [22].

Process discovery uses an event log as input and automatically constructs a process model
from this event log without any a priori information. The resulting process model can be
presented in different formats and depends on the algorithm used to discover the process
model. The most basic process discovery algorithm is the alpha algorithm, which produces a
Petri Net. This is a simple algorithm, which has several limitations like its inability to discover
concurrent processes. There are also other (more advanced) algorithms like the region-
based approaches, which can discover more complex model structures, and the heuristics
miner, which focuses on noise and incompleteness.

Conformance checking uses as input both a process model and an event log. Both are then
compared to see if the reality matches the expected or desired behavior. The input model
can be a handmade model. Typically, four quality dimensions for comparing models and logs
are considered:

- Fitness. The more logs can be replayed on the model, the higher the fitness.
- Simplicity. The simplicity of the model. A principle called Occam’s Razor is often

important here. The simplest model that can explain the behavior seen in the log is
considered as the best model.

- Precision. Whether the model does not allow for too much behavior. If the model is
not precise, the model is underfitting; the model over-generalizes the example
behavior of the log.

- Generalization. If the model does not restrict the behavior too much to the examples
of the log. If the model is not general, the model is overfitting; the model is too
specific for the example data in the event log.

Conformance checking results can be viewed from two angles: the model does not capture
the real behavior (the model is wrong) or reality deviates from the desired model (the actual
behavior is not as it should be). In the former viewpoint the model is a descriptive model, in
the latter a normative model.

Enhancement can extend or improve the existing process model using the event log. This
can be done in several ways. Non-fitting process models can be corrected using diagnostics
provided by alignment. Event logs can also contain additional information about, for
example, resources, timestamps, and case data. This extra information can be used, for
example, in the discovery of roles, construction of social networks, analyzing resource
performance, and creating decision trees.

2.2.2 PM in software engineering
Keith et al. [23] observed that PM is an area with great potential for application in the field of
software engineering. Thanks to its capacity to discover actual processes, assess their
conformity with respect to the official model, and find improvement opportunities, PM has
high potential for many applications.

19

The research on PM in software engineering can roughly be separated in two categories:
PM used for the software development process and PM used in the software process, i.e.,
the process within the product. Since the research in this project focuses on evaluating the
software and its content, the latter category is of interest for us.

Van der Aalst et al. [24] present a technique to compare the actual behavior in an
information system with the intended or expected behavior. In this approach, delta testing is
used to compare the discovered process model with the predefined model, and conformance
testing is used to quantify the fit between the actual and predefined model. Poncin et al. [25]
present FRASR (Framework for Analyzing Software Repositories), a framework that enables
the use of PM techniques on combined data of multiple repositories, like code repositories,
the bug tracking system, mail, etc. Using the combined view, more valuable information can
be extracted. Van der Aalst et al. [26] present a technique to analyze software in vivo, in
other words in their natural habitat. By observing running systems, and collecting and
analyzing data of these systems, descriptive models can be generated, and these can be
used to respond to failures. Rubin et al. [27] present the results of applying PM techniques
on several systems used in the touristic domain. In this case, user interaction is recorded in
event logs. Based on these logs, process and user interface flow models are automatically
derived.

We also investigated which PM techniques are most useful for evaluating software products.
Ailenei et al. [28] developed a set of use cases and validated these use cases by means of
expert interviews and a survey. In this thesis, the role of PM can be compared with the role
of the process analyst from [28]. The paper shows that especially the use cases related to
process discovery and the time perspective are relevant for this kind of research.
Organizational aspects and compliance are deemed less useful.

Most of the PM research ends with the results of the techniques and does not mention what
happens further with these results. Work has been presented to visualize the results in
charts or through simulation [29], [30]. However, one still needs to interpret the results
himself.

2.3 Combining PM and MDE
In the literature research so far, PM and MDE are described extensively. However, the
combination of both techniques has not been extensively discussed. We found no
references that uses MDE to analyze or predefine the PM results. Even though this exact
topic has not been studied yet, there is some research that is worth mentioning.

Some research is about using the MDE models for conformance checking. Simonin et al.
[31] presents a research where models are automatically designed by using MDE. These
models are then used by certain people, e.g., the supervisor, to detect anomalies in the
processes discovered by using PM techniques. Bernardi et al. [32] also uses the models
created by using MDE as a normative model for the results of PM, in this case to improve
the security of web information systems. The normative model is generated based on the
specification of the system.

Mazak et al. present a combination of PM and MDE to tackle the MDE limitation that it is
now mainly used for prescriptive models. However, to make them beneficial, the models
should be updated at runtime. Execution-based model profiling is proposed to tackle this
problem [33], [34]. In this case, the runtime character of PM is combined with the
(prescriptive) modelling techniques of MDE, to assess whether practice and expectations are
really aligned.

20

3 Case study: Mobina
This chapter introduces the case study of this thesis, the content-intensive application
Mobina. First, Mobina is introduced. Then, we motivate why Mobina is a relevant case study
as well as how Mobina can benefit from the UWAT. Finally, the different components of
Mobina are introduced.

3.1 Mobina application
To validate the architecture designed in this research, a case study is used to create an
implementation of the UWAT and to validate the design. The SUA used in this case study is
Mobina. Mobina is a content-intensive application which helps SME manufacturing
companies identify what changes with a high impact on the way they work mean for their
organization, processes and information landscape. Mobina positions itself as a Knowledge-
as-a-Service (KaaS): their web application gives access to scarce but crucial knowledge to
start implementing a high-impact change.

The content in the application is provided by the team behind Mobina consisting of
experienced consultants, leadings scientists and young talent. They have a lot of knowledge
on the edge of business and IT, which is scarce and therefore often expensive. By
standardizing and automating this knowledge, Mobina wants to make this knowledge
accessible to all manufacturing companies, including SMEs which do not often have the
resources or culture to hire the alternative, namely a consultant.

To make the knowledge understandable and approachable for the manufacturing companies
without human intervention, Mobina developed their own modelling technique, which led to
an industry reference model. Around this knowledge in Mobina, there is an extensive
collaboration environment such that employees throughout the entire manufacturing
company can discuss what a (possible) change means for their processes and information
landscape. By involving the people within the organization, Mobina also contributes to
mobilizing the organization for the change to come.

3.2 Relevance
Mobina contains a lot of complex content and concepts. Besides that, Mobina aims at
making this knowledge accessible to a whole range of people in the company, all with
different background and education. To ensure everybody can grasp the content and
actively participate in the process, the team behind Mobina has discussed internally, but also
with potential customers, partners, and key opinion leaders, about how to structure and
present the content and the software. This has led to a unique way of modelling the content,
which are called reference models in Mobina, and a user interface that supports this way of
modelling.

However, until now there has not been an objective measure to determine whether the
content is understandable and whether the interface is practical for the end-user. User
workflow analysis can potentially give the content and software developers of Mobina
insights in how the user interacts with the application and which steps the user takes. This
can lead to (additional) insights on how the application is used. Because the team behind
Mobina already has a vision on how they believe the software is used, hence the own
modelling technique, this expected behavior can be compared with the actual behavior to
validate if the UWAT has an added value.

21

3.3 Mobina components
The content and the software of Mobina is constantly under development. This has led to a
difference in functionality between when the research was started, and these data were
collected, and the functionality the software has currently. This section discusses the
software as when the data were collected.

Figure 5 shows the major software and knowledge components of the Mobina software. This
model does not represent the actual definition in code but only helps describing the
components of the Mobina software. The blue components are data that are entered by the
customers of Mobina, whereas the red components represent content delivered by Mobina.

Figure 5 Software and content components of Mobina

Mobina contains three different kinds of content objects: the reference model, the critical
aspects and the innovations. The reference model is the part of the software that is most
used by the customers. It consists of model elements, which can be processes or
documents. Mobina defines processes as actions and documents as information exchanges.
Both processes and documents have a hierarchy, where each layer represents more detail.
This can go up to five layers deep. Processes and documents are linked to each other.
Processes of different parts of the reference model (each part represents different parts of
the manufacturing company) are linked together through the documents. The assumption is
that people from different parts of the organization are brought together in these documents.
Figure 6 shows a screenshot of a process in the Mobina reference model.

22

Figure 6 A process in the Mobina reference model

A collaboration environment is offered for all model elements. This consists of three major
parts: discussion, keep/improve and ratings. All three parts are always linked to one model
element, i.e., to one topic. In the discussion the users can place free-format comments and
have an interactive discussion with each other. Figure 7 shows an example discussion. Each
comment can have one or more tags. All enterprises can add for their company which
applications they use, in free-format. These applications can then be tagged in comments,
but are also the foundation of the keeps, improves and ratings. Using ratings, a user can
give a rating between 1 and 7 and an explanation for an application. The users can also
collaborate on a list of things they want to keep or improve in their applications. Since the
discussion and the keeps and improves are collaborative elements, other users can give
their opinion easily by saying whether they agree or disagree (similarly to thumbs up/down).

Figure 7 Example discussion in Mobina

23

The second type of content objects is critical aspects. These are complex business aspects
that have a deep impact on the IT landscape of a company. It is often hard for a company to
oversee the impact of these aspects on IT applications, which is why Mobina defined them
from a business perspective. For each of these aspects there is again a discussion
functionality, which is similar to the discussion of the model elements. The critical aspects
are also linked to the relevant model elements to enable the discussion in a broader
perspective. For each of these aspects, the users can also determine the priority of the
critical aspect now and in the future, and the impact on their IT landscape. In this way, their
impact is discussed, and the company establishes an agenda for a futureproof IT landscape.
Figure 8 shows an example of the priority and impact given for a critical aspect.

Figure 8 Priority and impact for a critical aspect in Mobina

The last type of content object is innovation. Innovations in Mobina are the well-known
innovations in the manufacturing industry like Internet of Things, Smart Manufacturing etc.
The role of innovations in Mobina is to include them in the entire discussion and assess the
impact of the innovations on the processes and information landscape of the company. The
innovations are therefore linked to model elements. For each innovation, there is again a
discussion space, which is the same as for the model elements and the critical aspects.

Before the company starts using the software, Mobina asks the contact person some
questions to configure the software. Based on these questions the typology of the company
can be made and the relevant parts of the reference model, as well as the relevant critical
aspects and innovations can be determined. The company also has possibilities to restrict
the user’s permissions. Figure 5 shows that user access to model elements, aspects and
innovations can be restricted. The configuration of the content and the permission system
can be relevant for the user workflow analysis, since not all functionality and content will be
available for all users.

24

4 Solution
This chapter presents our solution. The chapter starts with the functional, non-functional and
domain requirements for the UWAT architecture. Then the high-level architecture and its
external interfaces are discussed. Finally, we discuss the different techniques selected to
implement the UWAT and their combination.

4.1 Requirements
The requirements for the UWAT architecture, referred to as system in the requirements, are
divided into three categories (according to the division of Sommerville [35]): the functional
requirements, non-functional requirements, and domain requirements.

These requirements reflect what is needed to perform user workflow analysis on content-
intensive applications and make an architecture that enables all different SUA owners to
achieve their objectives. They do not represent what the SUA owner would want to achieve
with this architecture.

4.1.1 Functional requirements
Functional requirements are defined by Sommerville as follows: “statements of services the
system should provide, how the system should react to particular inputs and how the system
should behave in particular situations”. For this research, the following functional
requirements are defined:

1. The system should be able to extract the specified patterns from the input data of the

system.
2. The system should be able to give users insights in the data that cannot be directly

obtained from the data.
3. The system should be able to process the data in a deterministic way.
4. The system should be able to handle different versions of the input data.
5. The system should be able to provide the results specified by the users.
6. The system should be able to use the information about the content-intensive application

in its analysis.
7. The system should return a data set with the outcomes of the analyses.

4.1.2 Non-functional requirements
In this report, the definition by Kotonya and Sommerville is used for non-functional
requirements: “Requirements which are not specifically concerned with the functionality of a
system. They place restrictions on the product being developed and the development
process, and they specify external constraints that the product must meet” [36]. For this
research, the following non-functional requirements are defined:

8. The system should need no user interaction after the specification of the analysis.
9. The system should have as much as possible generic analyses that are applicable to all

content-intensive applications.
10. The system should be flexible.

10.1. The system should be easily extendable with new analyses.
10.2. The system should be easily made applicable to new functionality of the product

that is analyzed.
11. The system needs to be presented to and used by the user as one system even if it is an

implementation containing multiple tools and techniques.
12. The data integrity should remain when data needs to be converted to another format

within the system.
13. The user should be able to use the system and understand its interfaces without needing

to know how, and with what techniques, the system is implemented.

25

14. The system should be able to perform the analysis within reasonable time2.

4.1.3 Domain requirements
Domain requirements are defined by Sommerville as follows: “Requirements that come from
the application domain of the system and that reflect characteristics of that domain". In this
research, the requirements related to the input and output data of the architecture to be
developed are part of the domain requirements.

15. The input data should have timestamps.
16. The output data of the system should be a standardized format that can be used by

different visualization tools.

4.2 High-level architecture
Figure 9 shows a component diagram which represents the UWAT and its interfaces to the
external environment. The UWAT implements the user workflow analysis. It processes input
data that it receives from the user preparation interface and has as an output the information
for the result dashboard. This component is implemented using MDE. The next chapter
discusses the different models and transformations.

Figure 9 High-level architecture

The user preparation interface is the interface in which the user workflow analyzer can
decide what they want to analyze, as well as setting some possible parameters for this
analysis. The options, parameters and data sets are defined by the SUA owner and are
predefined and implemented before a user workflow analyzer starts analyzing the SUA. The
selected data set and options are passed to the UWAT. The result dashboard is the interface
to the user workflow analyzer to present the outcomes of the analysis. These outcomes are
passed from the UWAT to the dashboard. For the user workflow analyzer these two
interfaces may be the same, but they represent completely different views and are therefore
modelled separately here.

2 Reasonable time depends on the requirements of the SUA and how the UWAT is used. There is no
standard answer here.

26

The user preparation interface and result dashboard are intentionally separated from the
implementation of the UWAT. The implementation is the responsibility of the SUA owner. In
this way, the SUA owner has the flexibility to determine how to visualize the options and
results. It also gives the options for extra pre- and post-processing.

There are three other external interfaces to the UWAT. Two of them are with one or multiple
PM tools. The implementation of PM is not part of the UWAT. There are many (open source)
tools available which can deliver the requested PM results. By keeping PM separate, the
user can benefit from research and developments in these tools. The implementation of PM
is treated as a black box here. There are only two interfaces: one to specify the results and
one to extract the outcome of the PM plugins.

The final interface is with the SUA. This interface represents the information that is extracted
from the SUA and is used in the user workflow analysis. As discussed in Chapter 1, there is
no direct link between them. However, there is an information exchange which is
represented by the interface in Figure 9. This information exchange includes the SUA data
and the log data. We assume the log data will be passed to the PM tools via the UWAT.

4.3 Techniques
In this architecture, the techniques PM and MDE are used. PM is used to extract the user
workflow from the event log data. As discussed in Section 2.2.2, for this type of analysis the
strength of PM is discovering processes and analyzing time series. However, there is no
standardized way yet to analyze the results of the PM plugins, i.e., the different PM
algorithms and techniques; this is left up to the user.

MDE is introduced in this project to bridge the gap from the PM results to results of interest
for the user workflow analyzers, because of its characteristics described in Section 2.1.3.
MDE is used to configure the PM and interpret the results in a standardized way. Since MDE
abstracts certain concepts, it has the potential advantage to implement (part of) this design
for multiple SUAs, i.e., not specific solutions for every single SUA. Its main drawback is that
it mainly works if there is a small DSL. This will probably not impose any limitations, since
the design only focuses on the user workflow analysis of content-intensive applications,
which is already a narrow domain. Another drawback is that the tools are often limited to one
platform. Since this design presents a stand-alone tool this is also not expected to impose a
limitation.

In this project, PM is embedded in an MDE approach to provide a flexible, automated and
standardized way of executing PM and interpreting the results. The potential user workflow
analyzer does not need to understand the PM plugins and results and analyze what the
results mean for themselves. The user workflow analyzers also do not need to know any
implementation details of PM. No references have been found that MDE is used to abstract
from the PM execution before this research.

27

5 (Meta)models and transformations
This chapter presents the different metamodels and transformations used to implement the
UWAT. Firstly, the transformation chain is presented to give an overview of the
implementation. Next, the five metamodels are introduced, including an illustrative example
of the case study. Finally, the four transformations are discussed. For the applicable
transformations, also the format of the input and output data of the UWAT is introduced.

5.1 Overview
Figure 10 shows an overview of the transformation chain used in our solution. This figure
only contains the design details related to MDE (i.e., the models, metamodels and
transformations). The blue elements represent external information or tools. The orange
elements represent the data exchanged through the interfaces with the user workflow
analyzer.

Figure 10 Transformation chain

5.2 Metamodels
To implement the transformation chain, we defined the following five metamodels: SUA
metamodel, plugin specification metamodel, user specification metamodel, Process Mining
metamodel, and result metamodel. We defined all metamodels as generic as possible, so it
could easily be applied to different SUAs. For each metamodel, a simple example from the
case study is presented to illustrate the models that instantiate the metamodel.

5.2.1 SUA metamodel
The SUA metamodel represents the information of the SUA that is relevant for the user
workflow analysis. The architecture is developed in such a way that as little as possible
information about the SUA is needed. This makes it easier to apply the same architecture to
different SUAs. Therefore, we decided to put all information about the application in a
separate metamodel. When the architecture is used for a different SUA, a different SUA
metamodel must be defined.

28

We illustrate the SUA metamodel with the metamodel created for the case study in Figure
11. The main content class represents two attributes that are relevant for every SUA: the
name of the application and the version. The name of the application specifies the SUA and
can be an ID or another discriminating attribute that the SUA owner uses. The version is
added to differentiate between different version of the SUA (or content versions if
applicable). The other classes are SUA specific. For the case study, the content elements
were needed to include the structure and the names in the result dashboard.

Figure 11 Mobina SUA metamodel

Example case study

In the case study, the SUA metamodel is used to store the names and hierarchy of the
reference model in the Mobina software. The model instance of this metamodel
containing one process and one document looks like:

Figure 12 SUA model example

29

5.2.2 Plugin specification metamodel
The PM execution is treated as a black box in the architecture. External tools are used to
execute the PM algorithms. However, to establish what analyses are possible, one must
know what algorithms are available and the input and output of these algorithms. Therefore,
we introduced the plugin specification metamodel. An instance of this metamodel represents
a plugin of a PM tool.

Figure 13 shows the plugin specification metamodel. The metamodel defines a generic way
to model plugins. An advantage of this generic setup is that it can be applied to different
tools and plugins. This also raises the opportunity to share the specification among different
SUA owners. In the plugin the tool and the name of the plugin are specified. The plugin has
zero or more parameters, which are also generically defined to make them tool and plugin
independent.

Figure 13 Plugin specification metamodel

Each plugin can also have zero or more input objects and zero or more output objects. This
represents the information that must go into the plugin, and the different outputs. The
outputs of one plugin can then be the input of another plugin. These can be from different
tools, so next to the name of the objects also the tool is defined. The last attribute is
save_as. In this attribute one can find the name of the file, which can be used to find the
correct result file for the rest of the execution.

Example case study

In the case study, three plugins are defined in compliance with the plugin specification
metamodel. One of the plugins is the plugin ‘Add time between events (Duration) as Attribute to
all Events’ of the tool ProM. The input is the log data and the output a transformed log file. There
is one parameter, which represents a new attribute name. For this plugin the plugin model
instance looks like:

Figure 14 Plugin specification model example

30

5.2.3 User specification metamodel
The user specifies what he/she wants to analyze through an interface. This specification is
then passed to the UWAT, which processes and prepares these data, so it can be used for
PM and the rest of the analysis. What the user wants to analyze is defined in the user
specification metamodel.
Figure 15 shows the user specification metamodel. All classes are generic except for the
definition of the datatypes, which is an enumeration. The architecture assumes that every
analysis analyzes one data set at the time. This was decided to create a clear result for the
end user. However, the model can easily be adapted to support multiple data sets in one
analysis, when this is deemed beneficial. When the architecture is applied to a different
SUA, the SUA owner defines the types of data sets available. In the case study, we could
evaluate the model elements (i.e., the processes and documents) or the different tabs (i.e.,
different functionalities at a model element).

Figure 15 User specification metamodel

For each dataset options are available. These options are predefined by the SUA owner
when the architecture is implemented. In other words, the SUA owner must determine what
could be analyzed by the user workflow analyzer. This should be based on the business
objectives of the SUA. For each option, the SUA owner can also define a set of parameters
(e.g., how many results should be returned). For each option, a set of plugins should be
selected. The plugins are instances of the plugin specification model. To each selected
plugin an order number is added. Based on the order numbers and the information from the
plugin specification models, the PM instructions can be defined for the tool to execute them.
The implementation of these instructions depends on the external PM tool. It is up to the
implementation of the PM to ensure these plugins can work together.
Due to the split in the plugin specification and the linking of these plugins to specific
analyses, this design raises the opportunity to define the plugins already with no particular
analysis in mind or to easily reuse the plugin specification for multiple analyses.

31

This metamodel contains a lot of flexibility, because we want the architecture to be flexible.
This way different kind of requirements and analyses that SUA owners might have are
supported. However, this also means that this model and its implementation need to be
discussed carefully when the architecture is implemented, to make sure the user workflow
analyzer can effectively execute his task.

5.2.4 Process Mining metamodel
The PM metamodel is designed in a way that it captures the relevant results of the PM
techniques and algorithms, but also generic enough to contain no implementation details of
specific plugins. The PM metamodel presented in Figure 17 models two important result
concepts of PM: analyzing the event log data and discovering a process model. This model
can be extended with other PM concepts (d, conformance checking). The PM metamodel
contains the combined results of all PM executions and is not limited to one plugin
execution.

Example case study

In the case study there is a data set with the data type ‘Model_elements’. For this data set
three options are defined. For the first option, there are two parameters, which are
identified by their parameter id. One PM plugin is specified for this option, the example of
the previous metamodel. The model instance for this option is:

Figure 16 User specification model example

32

Figure 17 Process Mining metamodel

The two basic elements of PM results are nodes and transitions. Nodes are the different
places visited, for example, the different processes and documents in the case study. The
transitions are the movements from one node to another. Nodes and transitions both have a
label to represent them in a generic way. Based on the context this can be processed later in
the process-to-result transformation. All other attributes for nodes and transitions (e.g.,
frequency) are modelled in the same flexible way as the parameters in the user specification
metamodel.

In the metamodel, two potential outcomes of PM are modelled. First, the process class in the
metamodels represents a discovered process by a PM plugin. This is set of nodes and
transitions, which are linked to the process instance. Each option can have a discovered
process; they are differentiated by the option id. One can argue that the nodes are linked to
the process through the transitions with a discovered process. However, some discovered
processes have isolated nodes. Therefore, the nodes are also linked directly to the
discovered processes.

The second potential outcome is the enhancement of the event log or complete set of nodes
and/or transitions. In this case, the nodes and transitions are enhanced with extra attributes.
Because these enhanced nodes or transitions are not part of a (discovered) process, they
are directly linked to the result instance via the place visited or transition made relationship.

Process has an attribute option id, which is the same id used in the user specification model.
Because of this shared option id, the correct outcome can be linked to the corresponding
analysis. This is not necessary with directly linked nodes and transitions to the result, since
these contain option results that create no different visualization or representation but are
merely attributes added to these data. The option can be identified based on the attribute
being available and therefore the option ids do not need to be stored separately in the PM
model.

33

5.2.5 Result metamodel
The result metamodel is a direct representation of the results for the user workflow analyzer.
In other words, the user specification and the PM outcomes are already translated here to
the results the user workflow analyzer specified. The result-to-dashboard transformation only
needs to print these results. A great advantage of this set-up is that only once a visualization
needs to be created for each result type. When a new option has the same result type as
previously defined options, the same visualization can be used.

Figure 19 shows the result metamodel. The result is for the data set as defined in the user
specification. Since this is only used here for printing it in the result, the data set is now a
String instead of a value from the enumeration. The result can be two types: a list or trace
collection. The list is simply a set of elements. A trace collection is a set of traces. A trace is
a source with zero or more targets. In other words, a list only shows the elements whereas
trace collections also show relations between these elements.

Example case study

The PM executions for the case study created one process discovered by a process
discovery plugin. For all other options the nodes added via the place_visited relation are
used. For the option used in the example of the user specification metamodel, the
place_visited instances are used with the attribute frequency. The PM model instance for
one node and transition in the discovered process, and one place visited looks like:

Figure 18 PM model example

34

Figure 19 Result metamodel

Both lists and traces use result elements. Each result element has a name and an order
number if the ordering of the result elements is relevant. To keep the result as generic as
possible, the attributes are again shown as a separate class, where each attribute has a key
and a value.

This model represents generic result types, i.e., list or trace collection. This can be easily
extended with other result types. In this case, the generic class result element is still useful
since all kind of elements can be represented like this. The metamodel contains no details
anymore about the data set and the different options or parameters. This is only represented
by the strings data set and description, so it can be visualized. However, this metamodel is
completely separated from any knowledge about the system and the specification.

35

5.3 Transformations
The following transformations need to be implemented in the transformation chain.

5.3.1 Data-to-SUA transformation
This text-to-model transformation transforms the data of the SUA to a model instance of the
SUA metamodel. Since the metamodel is specifically made for the SUA, also this
transformation needs to be developed specifically for each SUA. What should be in this
transformation and how this input is delivered is up to the SUA owner and there are no
specific constraints on this.

5.3.2 Preparation-to-specification transformation
The input for this text-to-model-transformation is the input of the user workflow analyzer in
the user preparation interface. The input needs to be a JSON dictionary object according to
the following format:

Example case study

In the case study there are two lists and one trace collection as a result when all options
are selected. The result model for one trace in the trace collection and one list item for the
options used in previous examples looks like:

Figure 20 result model example

36

{

 'option_id': string,

 'parameters': [

 {

 'parameter_id': string,

 'parameter_value': string
 }

]
}

In the JSON dictionary object, for each key the value type is defined. In the case of a list, the
type of the list items is within the list. There can be zero or more items in the list; only the
type is defined here.

This transformation translates the input of the user workflow analyzer to an instance of the
user specification metamodel. The different data sets available and the different options and
related parameters available are already defined by the SUA owner upfront; the user only
has these options. In the implementation of the user preparation interface, only the selected
options must be added to the JSON object, i.e., if an option is in the input dictionary, this
transformation knows that analysis must be performed.

Because the user specification model contains the plugin specification models, this
transformation should also know which options relate to which plugins. This transformation
can translate the selected option and data set combination to a set of PM plugins.

This transformation is standard for different SUAs in a sense that the input data format can
be standardized and therefore the options and parameters can be extracted from the input
automatically. However, the SUA owner must extend this transformation with the relevant
plugin specification models, i.e., link the different options to the plugin specification models.

5.3.3 Process-to-result transformation
This model-to-model transformation contains all the logic of the user workflow analysis and
therefore there are a lot of specifics for the SUA. The input for this transformation is a PM
model, a SUA model, and a user specification model. The output is a result model. This
means that this transformation must know which options and parameters give which PM
results and what the PM results mean. Besides the definition of the inputs and outputs, this
transformation can therefore not be generic for multiple SUAs.

This has the disadvantage that the implementer of the architecture still needs a lot of
knowledge about MDE and needs to understand the models. However, except for the SUA
information and the data set and option definitions, all changes per SUA are confined to this
transformation. All other metamodels and transformations could therefore be made generic
and easily extendable to other SUAs. Due to the metamodels definition, the implementer
knows what to do here. It only needs the SUA specific knowledge to implement it.

5.3.4 Result-to-dashboard transformation
This model-to-text transformation has as a sole purpose to print the results of the analysis.
Because the result types are already defined in the metamodel and because these are
generic, this transformation is the same for each SUA. Of course, each SUA could use the
result of this transformation in their own environment to give it their look and feel, but that
does not change the data output of the analysis, i.e., this transformation.

The output of this transformation is again a JSON dictionary object. This output object is very
similar to the result metamodel. It has the following structure (the same notation is used as
with the input JSON object):

37

{

 'data_set': string,
 'lists': [

 {

 'description': string,
 'ordered_by': string,

 'elements': [
 {

 'name': string,
 'order_number': int,

 'attributes': [

 {

 'key': string,

 'value': string
 }

]

 }
]

 }
],

 'trace_collections': [

 {
 'description': string,

 'traces': [
 {
 'source': string,

 'targets': [string]

 }

]
 }
]

}

38

6 Implementation prototype
To validate the architecture, a prototype was implemented for the case study. This chapter
discusses the implementation of the prototype. First, the scope is set, and we present the
options and parameters that are implemented. Then, the different tools and techniques are
introduced. This is followed up by the actual implementation, which is split up in four parts.
First, the preparation that should be done upfront is discussed. Next, the user preparation
interface and the generation of the input data is showed. Then, the implementation of the
UWAT and PM is presented. Finally, the presentation of the results in the result dashboard
are presented for this prototype. Where useful, the implementation is illustrated with
(pseudo)code or screenshots.

6.1 Scope
Before an SUA owner starts implementing a UWAT, first a list of business objectives should
be defined, to determine what the SUA owner wants to achieve with the UWAT. The
complete list for Mobina can be found in Appendix A. The list does not need to be
implemented completely to validate the design. Three business objectives have been
implemented in the prototype. To limit the scope, these are limited to questions about the
content (not the software) and to the reference model (not the critical aspects and
innovations). These objectives are selected based on their added value for Mobina and the
expected benefit from user workflow analysis. The three selected objectives are3:

1. Do they come back to the same place? (1d)
2. How long do they stay at the same process or document? (1c)
3. What subprocesses or subdocuments are used? (5c)

The next step is to translate these business objectives to options and useful parameters for
the user workflow analyzers. We selected the following three options and parameters:

1. Most used processes and documents
a. Minimum times used
b. Limit result to top x results

2. Most time spent at processes and documents
a. Minimum time spent (time in seconds)
b. Limit result to top x results

3. Subelements used
a. Only direct relations (boolean)

The first option can answer the first objective, the second option the second objective and
the third option the third objective. For objective 1 and 2, the parameters are a threshold and
the number of results to be returned. These parameters are added to give the user workflow
analyzer some flexibility in what they interpret as useful results. In a complete
implementation this may be extended with more options; these options are only included to
illustrate the purpose and role of the parameters. For the last objective, the parameter
illustrates a typical parameter specific for Mobina. The reference model is a complex
structure, which is often difficult to understand. Parameters like this illustrate how this
analysis may give added value for an SUA. For now, only direct relations are implemented.

6.2 Tools
To implement the complete prototype, different tools and libraries are used. For the entire
development, the Mobina environment is used. In the backend, Mobina uses Django, which
is a Python framework. The call to the different transformations for example, happens within
this backend. For the frontend, Mobina uses VueJS as a JavaScript framework and

3 Between parentheses the number in the original list of business objectives is given

39

MaterializeCSS as a CSS framework. The user preparation interface and result dashboard
were developed in this environment with these frontend frameworks.

The UWAT itself is implemented using MDE. Eclipse Modeling Framework (EMF) is the most
popular open source MDE framework. EMF is a modelling framework and code generation
facility that enables building applications based on a structured data model4. EMF is
developed in Java, and the output files are also in Java. The core (meta)model of EMF is
Ecore, which functions as a metametamodel.

In this research, PyEcore is used. PyEcore5 is an open source Python EMF implementation.
It has almost the same functionality as the Java implementation. PyEcore is used because
we are more familiar with Python and this also enables the implementation of the UWAT to
be embedded in the development environment of Mobina. For the metamodels, the Ecore
definition of the EMF framework is used. The different models are XMI models compliant
with the Ecore metamodel. The transformations are implemented as Python scripts. The
PyEcore library can load and register the different metamodels and load the different XMI
models which makes it possible to use them in the different transformations. When
applicable, the PyEcore library can also serialize the objects from the transformations to XMI
models so they can be loaded in another transformation.

For PM, the external tool ProM is used. ProM, short for Process Mining Framework, is an
Open Source framework for PM algorithms, developed by the Eindhoven University of
Technology. Their vision is to actively advance the state-of-the-art of PM technology by
developing methods that really work, by creating an open community, and by providing a
stable and easily extensible platform, which optimally supports PM [37]. We used ProM in
this research for two reasons. Firstly, because it is open source we can use all functionality
for this research and if the research has a positive outcome the implementation can also be
used commercially. Secondly, ProM is continuously extended with new functionality and
improved algorithms. In this way, the newest and most up-to-date functionality and
algorithms available can be used.

6.3 Preparation
The SUA owner needs to prepare two things before the UWAT can be used: the event log
data must be prepared so it can be used for PM and the application model must be created.
This section discusses how these two actions have been executed for the case study.

6.3.1 Preparing the event log
For the case study, the log data is available as a JSON export from the database. ProM
however expects an event log in the XES format6. Besides that, the event log does not
necessarily need to include all activities. Therefore, an extra Python script was written to
convert this JSON export to a XES event log which only contains the relevant events.

When creating an event log, one needs to think about what a trace should be and what
event information is needed. In our prototype, we use the data set processes and
documents, where each event is a switch to a new process or document, together called
model elements. A trace in our data set is a session of a user, i.e., all the actions a user
performs from login to logout or closing the tab.

4 http://www.eclipse.org/modeling/emf/
5 https://pyecore.readthedocs.io
6 http://xes-standard.org/

40

In XES, the structure of the event data (and potentially the traces) is defined upfront in an
XML format using a global. This can contain the standard attributes of XES but also self-
defined classifiers. Classifiers are attributes that can later be used to filter result models, or
these can be used as parameters for some plugins. Figure 21 shows the global event
definition and classifiers for the used event log. For each event, we used the standard
attributes name, resource and time. Resource, who or what executed the action, was added
for future reference but is not used currently. The name is in the format TYPE:ID where type
is process or document and id is the id of the model element. Since this combination of type
and id is unique, the element can be unambiguously identified in the rest of the analysis. The
timestamp is the moment the switch to that model element happened.

The other four attributes are classifiers. Source is how they got to this element (i.e., via the
directory, via a process card, etc.). Type is whether it is a process or document. Id is the id
of the model element. Sub is whether at the point of action the user viewed the sub elements
or the siblings. Type and Id are already in the model element name but adding these as
classifiers separately allows filtering on only one of these attributes. The final two classifiers
are combinations of the other classifiers.

The event log contains more information that is needed for these three analyses. In this way,
all other relevant analyses as defined in the business objectives can also reuse the same log
data.

Figure 21 XES global and classifiers

6.3.2 Data-to-SUA
Creating the SUA model is about creating an XMI model which contains all relevant
information of the SUA that is needed for the analysis. The SUA metamodel for this case
study is already included in Section 5.2.1. In this implementation, this is about converting
some of the data about the reference models from the Mobina database to an XMI model.

To implement this, we make an export of the Mobina database in JSON, just as for the event
log data. We only needed the processes and documents here, and not all the other content
elements from the Mobina database. The script loops through all the exported content
elements. When an entry is a process or document, a content element as defined in the SUA
metamodel is created with the id, the name and the super element. Special entries were
created for the process and document overview, since these are relevant elements that
show up in the analysis but are not elements in the Mobina database. The overviews have
null as id.

41

Finally, a content object is created, where the version is the date since Mobina does not
define versions yet. The name of the application is Mobina. All the content elements are
added to this content object. At the end, these content objects are serialized to an XMI
model and can be used in the process-to-result transformation.

In this case study, no new reference model is uploaded during the time of data collection, so
creating the model once is enough. However, in the case of a continuous data collection
over different content versions, new versions of the reference model must be constantly
updated, and the version of the log data must be aligned with the version of the content. This
was out of scope for the case study.

6.4 User preparation
The UWAT expects as an input a JSON object which contains the specification of the user
workflow analyzer. How this JSON object is created is left up to the SUA owner. In this
prototype, as would be expected in many of the implementations, the user workflow analyzer
specifies the results in the environment of the SUA. This environment is familiar for the user
workflow analyzer and the content that is analyzed is easily available, which is expected to
lead to a more user-friendly solution for the user workflow analyzer. Another added value is
that the implementer can use the development environment and frameworks he is familiar
with, which is expected to lead to a faster implementation.

In the implementation of the prototype, the user workflow analyzer is first asked to select a
data set. After a data set is selected, the user can select the options. These are the specific
options for that data set. Figure 22 shows the data set and options for this prototype.

Figure 22 User specification interface after the data set is selected

When an option is selected, the parameters for the options show up. Figure 23 shows the
interface after all the options are selected and the parameters are entered.

Figure 23 User specification interface after the options are selected

42

Using the VueJS implementation one can define a dictionary which can contain the
information about the fields, as well as contain the actual values that are currently in the
input fields. These attributes can then be easily used and changed within the visual frontend
for the user workflow analyzer. As an example, the definition of option 1 can be found in
Figure 24.

The option id and parameter id correspond to the option and parameter ids used in the
UWAT. This creates consistency through all implementations. The label for the option and
the parameters is the text shown to the user workflow analyzer to describe the
option/parameter. For parameters, the type is used for the validation.

The value for the parameters is the current value of the parameter. The amount shown in the
figure is the default value. When a new value is entered, this field will contain the current
value. This is the same for the attribute checked, which contains whether the option is
selected or not. For the thresholds, the default value is set to 0 since the results should not
be unnecessarily influenced. For the limitations, the default value is set to 10 since this is a
convenient number. The checkbox for only direct relations is set to true by default, since this
is expected to be most used. These default values are only guidelines and every SUA owner
can decide for themselves which values to use.

Figure 24 Dictionary to define options and parameters

After the analysis is started, the data from this dictionary is translated to a JSON dictionary
object containing only the relevant attributes and the selected options. Since the analysis
now runs within seconds, the interface works synchronously and gives a loading sign until
the results are back. Within this method, an AJAX call is done to start the analysis. With this
AJAX call, the JSON dictionary object is sent to the backend.

6.5 UWAT and PM implementation
In the design, the user does a call to the UWAT which is responsible for handling the user
workflow analysis. In the implementation of the prototype, this automated workflow is
implemented using an AJAX call that sends a POST request. The back-end then calls the
different MDE transformations and methods relevant for the PM execution. Usually the PM
implementation will be external. However, this was not yet available and therefore this
prototype also contains part of the PM implementation.

43

Figure 25 shows the POST method. The POST method results in the sequential execution of
five different methods. Three of these methods are MDE transformations. The five methods
are:

• Create_user_specification_model is the preparation-to-specification transformation
implementation.

• Process_input is the method that creates the input for the PM execution

• Create_result_model is the process-to-result transformation implementation.

• Create_result is the implementation of the result-to-dashboard transformation.

• Process_output processes the output of the PM to a PM model instance.

Each method will be discussed separately. For some complex parts of the code pseudocode
is added in separate boxes.

Figure 25 POST method which implements the user workflow analysis

6.5.1 Preparation-to-specification
The input for this transformation is the JSON object with the user specification data and the
output is an XMI model instance of the user specification metamodel (and inherited the
instances of the plugin specification metamodel). This method contains all the information
about the selected options and the parameters and what this means for the PM execution.
All the option and parameter ids are saved as variables to reduce the risk of using the wrong
id.

The transformation can extract from the input JSON object which data set is selected. Based
on the data set, the transformation knows what options to expect, since this is
preprogrammed. The options and parameters used in this transformation are the same
(including their ids) as in the user specification interface. For now, these data and ids of the
options and parameters are duplicated which brings a large risk. The sharing of these data
sets, options, and parameters must be carefully considered in an operational
implementation.

When an option is selected in the user preparation interface, this option id is included in the
JSON object. The implementation loops through all options in this JSON object and knows
that an option is selected when the id is in the object. The implementation knows what code
to execute based on this option id. For each option, three steps are executed.

44

Figure 26 shows an example of this implementation for option 1. The steps are separated
with a new line and a comment.

First, the parameter values are extracted from the JSON object. Since the user specification
metamodel also recognizes options and parameters in the same construct as the JSON
object, these data can directly be used to create the model instances of these options with
respect to the user specification metamodel.

Figure 26 Preparation-to-Specification transformation for most used processes and documents

Next, the PM intelligence is added. In the design the plugins can be defined separately from
the user specification. In this prototype implementation, the plugin definition happens for
each option while processing the specification, but the design does not force this.

Based on the option id, the implementation knows what plugins, inputs, outputs and
parameters must be defined according to the plugin specification metamodel. In the
example, one plugin is needed: ‘Add time between events (Duration) as Attribute to all
Events’ in the ProM tool. The input is the log data from the SUA and the output is a
transformed log. The save_as attribute for the output definition tells us how the exported file
is called, so we can use it in the other methods. In this implementation, this specification only
leads to instructions for the PM execution. Therefore, the names and attributes can be very
descriptive. When the PM execution is completely automated this may need more
standardization and formal notations.

Finally, the plugin specifications are added for this option in the user specification model. All
three options only have one plugin, so the order number is not relevant in this prototype
implementation.

All options from the input JSON object are processed in a similar way and added to a data
set instance, which itself is added to an instance of the analysis class. The analysis instance
is serialized to an XMI resource.

For each option, this implementation contains the PM plugin that needs to be used. Which
plugin to use is up to the SUA owner. In this prototype, we researched the different plugins
available. The plugins which seem to have the most added value, and which had an
exportable result (which is often not the case) were chosen.

45

6.5.2 Process input
Within this method, the step to PM execution is made. Eventually, the user specification
model should automatically trigger the correct plugins in the PM tools. However, this is not
(yet) implemented and it is therefore a manual intervention for now. To illustrate how it
should work and to give the opportunity also for other people than the researcher to execute
the PM plugins, the user specification is now translated to textual instructions printed on the
terminal.
Figure 27 shows how the instructions look like for the three options of the prototype.

Figure 27 PM instructions

For these three options, the parameter values of the user specification only influence the
process-to-result transformation, not the execution of the PM plugins. Also, in this prototype
a manually collected data set is used and not a continuous stream of new log data. We
highly preferred that in this prototype the execution of the UWAT does not have to wait for
the PM execution, and since the execution will not change with different settings or over
time, we decided to already execute all the PM plugins according to the instructions upfront.
The output files were added to the environment and the UWAT could continue without
waiting for human intervention. Of course, when the parameters influence the execution, or
when an up-to-date data stream is used caching the PM results is not possible.

In all cases, the input is the log data from the SUA. This will in all cases be the input data for
this first plugin, since this is the oil for the PM engine. The UWAT assumes these data is
already available. Guidelines for the preparation of these data and the implementation for
the case study are discussed in Section 7.2.

6.5.3 Process output
This method is a Python script to convert the output files of the PM tool, in this case ProM, to
a PM model compliant with the PM metamodel. This method is implemented as a sort of
text-to-model transformation. However, creating the PM model is usually not part of the
UWAT and is the responsibility of the external call to the PM tools. Therefore, this
transformation is not part of the UWAT transformation chain and only implemented for the
prototype.

If a file exists with the name of the save_as attribute in the user specification model, the
script knows that the option is selected. For this option, the script also knows what
information to extract. In this case, if elapsed_time.xes exists the script checks the frequency
and duration. If result_option_sub.cnet exists, the script extracts the discovered process for
the sub elements. The results of all options are eventually collected in one PM model
instance of the PM metamodel.

46

In the case of option 1 or 2, we want to add a node, representing the place visited relation in
the PM metamodel, to the result. For each node, there are two attributes: frequency and
duration. These names are the keys, the values are the amount of times that element is
visited in the event log and the total duration of users visiting. The duration is saved in the
elapsed_time attribute in the input event log.

In the case of option 3, we want to create a process as defined in the PM metamodel. This is
a discovered process, as is described in the PM techniques. For each visited model element,
we want to create a single node, also when it is visited more than once. For all transitions,
also a transition needs to be added in the resulting PM model. For nodes and transitions no
attributes are needed for this option. This discovered process contains the option id, so the
process-to-result transformation knows that this is the discovered process of option 3.

After both files are checked, the created objects are added to the result and the PM model is
ready. The result model can then be serialized for the process-to-result transformation to
use.

Pseudocode option 1 and 2

create new list places_visited

if file exists:

 for trace in traces:

 for event in events:

 duration = event.elapsed_time

 if node exists in places_visited where node.label is event.name:

 attribute_frequency = attribute_frequency + 1

 attribute_duration = attribute_duration + duration

 else:

 create new_node

 new_node.label = event.name

 new_node.attribute_frequency = 1

 new_node.attribute_duration = duration

 add new_node to places_visited

Pseudocode option 3
The input file is a causal net file. This causal net contains amongst other nodes, which
represent the model elements, and arcs, which represent the transitions.

if file exists:

 create new_process

 new_process.option_id = 3

 create dictionary_nodes

 for causal_node in causal_net_nodes:

 create new_node

 new_node.label = causal_node.name

 add new_node to new_process.nodes

 add new_node to dictionary_nodes

 for causal_arc in causal_net_arcs:

 source = find causal_arc.source in dictionary_nodes

 target = find causal_arc.target in dictionary_nodes

 create new_transition

 new_transition.source = source
 new_transition.target = target

 add new_transition to new_process.transitions

47

6.5.4 Process-to-result
This method is the model-to-model process-to-result transformation that processes all these
data and adds this to the result model. The result model is only a textual representation.

The implementation contains two helper methods. The helper methods are specifically
implemented for the SUA of the case study. In the first helper method, the labels of the PM
model nodes are parsed to a nice visual representation for the results. The second helper
method identifies whether two nodes are parent and child in the SUA. For now, this is only
implemented for direct relations. In both helper methods the input is the label of the PM
model instance. These are in the form TYPE:ID where type is the type of the model element
and id the id of the model element. This combination is unique. By this combination the
content element can be found in the SUA model instance.

This transformation matches the data set of the user specification with the data types of the
result model. Based on this match, the scripts know what options to expect. The
implementation loops through all options that are part of the user specification.

Pseudocode helper methods
The content elements are the content elements from the SUA model.

helper_1(label):

 for content_element in content_elements:

 if content_element.type is label.type and content_element.id is label.id:

 return label.type + '(' + label.id + '): ' + content_element.name

helper_2(sub_label, parent_label):

 if sub_label.type is parent_label.type:

 for content_element in content_elements:

 if content_element.type is sub_label.type and content_element.id is

sub_label.id:

 if content_element.super_element is parent_label.id:

 return true

 return false

Pseudocode option 1
The first and second option are implemented the same. The only difference is whether
frequency or duration is used.

if option_id is option_frequency:

 create new_result_list

 new_result_list.description = 'Most used processes and documents'

 new_result_list.ordered_by = 'Frequency'

 create dictionary_nodes_threshold
 for node in process_mining.places_visited:

 if node.frequency >= param_threshold:

 add node to dictionary_nodes_threshold

 sort dictionary_nodes_threshold on frequency

 limit dictionary_nodes_threshold to param_limit_to

 order_number = 1

 for node in dictionary_nodes_threshold:

 create new_result_element

 new_result_element.name = helper_1(node.label)

 new_result_element.order_number = order_number

 create new_result_element_attribute

 new_result_element_attribute.key = 'frequency'

 new_result_element_attribute.value = node.frequency

 add new_result_element_attribute to new_result_element.attributes

 add new_result_element to new_result_list

 increment order_number with 1

48

For option 1 and 2, the outcome is a result list. They are implemented very similarly. The
threshold for the frequency or duration respectively can be retrieved from the parameter of
the user specification model. For all places visited in the PM model, the nodes with the
respective parameter above the threshold are saved. After all nodes are processed, the list
is sorted on the frequency or duration respectively and limited to the amount specified in the
user specification. For each node in the limited list a result element is created and added to
the result list. This result list is then added to the total result.

For option 3, the outcome is a trace collection. Based on the option id, the correct process in
the PM model can be found. The implementation loops through all the transitions in the
process. The second helper method checks whether this is a parent-child transition. Then,
for every source, the parent, all the targets, the children, are saved. For all different sources,
a result trace is created where the source is the parent and the targets are the children,
which are added to the trace collection. This trace collection is then added to the total result.

At the end, the result is serialized to an XMI model with the PyEcore library and the result
model is ready.

6.5.5 Result-to-dashboard
The final method is the model-to-text result-to-dashboard transformation. The only purpose
of this transformation is to translate the result model to a JSON object that could be used for
visualization. A JSON dictionary object is created as defined in Section 5.3.4.

Since this dictionary has the same structure as the result metamodel, this transformation is
easy to implement. The implementation first loops through all lists in the result model. For
each list, the description, the ordering and the elements, with their information and attributes,
are saved. Then the implementation loops through all trace collections. For the trace
collections there is a similar approach. For each trace collection, the description and the
traces, with their elements and attributes, are saved. All lists and trace collections are added
to the result instance.

Pseudocode option 3

if option_id is option_sub_elements:

 create dictionary_source_targets

 process = process_mining.sub_elements_process

 create new_result_trace_collection

 new_result_trace_collection.description = 'Used subelements'

 for transition in process.transitions:

 if helper_2(transition.target.label, transition.source.label)

 if source in dictionary_source_targets:

 targets = dictionary_source_targets[source]

 if target not in targets:

 add target to targets

 else:

 targets = new list with target as first element

 add (source, targets) to dictionary_source_targets

 for (source, targets) in dictionary_source_targets:

 create new_result_element_source
 new_result_element_source.name = helper_1(source.label)

 create new_result_trace

 new_result_trace.source = new_result_element_source

 for target in targets:

 create new_result_element_target

 new_result_element_target.name = helper_1(target.label)

 add new_result_element_target to new_result_trace.targets

 add new_result_trace to new_result_trace_collection.traces

49

This implementation returns this result dictionary, which is the outcome of the UWAT.
Remember that in this transformation no processing of the data happens; it is only saving
the data in a dictionary, so it could be parsed in the result dashboard.

6.6 Result dashboard
In this implementation, the result dashboard is, just as the user preparation interface, part of
the Mobina environment. It is also included in the same view as the user preparation. The
POST method, called by the user specification interface, returns a JSON object with the
results from the result-to-dashboard transformation to the frontend as soon as it is done.
This is detected by the AJAX call. Then, the result data is loaded in the VueJS component
and for the user workflow analyzer the results for the data set, in this case ‘Processes &
Documents’, shows up.

In the expandable body of this result, first all the lists in the result are printed. Figure 28
shows the result for option 1, the most used processes and documents, in the lay-out used
in the prototype. The lay-out is the same for every result list. In this result, you only see one
relevant attribute, the frequency. From the metamodel definition this can be unlimited.

Figure 28 Result dashboard list

The trace collections are underneath. All lists and trace collections are separated using a
horizontal line. Figure 29 shows an example of how the trace collection looks like in the
result dashboard, in this case the results of the option used subelements. For the trace
collections the description is printed as the title. Next, all the sources are shown as an
unordered list, since the trace collection does not recognize order. Below each source, all
the targets can be found. In this example, these are the used sub elements.

50

Figure 29 Result dashboard trace collection

In this result dashboard, all text comes directly from the result model. In this way, this result
dashboard can be used for all different kinds of data or SUAs without having to create a
tailormade view for each analysis. Each type of result in the result metamodel has a visual
representation. Therefore, if the result metamodel is extended with another type, one only
has to define the visual representation once and it can be reused for all analyses of that
type.

In this case all the results are pasted below each other. This is possible since there are only
three options and because the data sets are small. However, if this keeps growing, this way
of representation may not work anymore. Then, there will be a need for filtering, clustering
and/or hiding. Since the result dashboard is only part of the implementation to be able to
validate the prototype, no attention is given to this aspect. However, for the SUA owner the
representation is an important attention point when implementing a UWAT.

51

7 SUA guidelines
In previous chapters we discussed what SUA owners need to implement in the UWAT
architecture specifically for their SUA. But before the UWAT can be used, the SUA owners
need to prepare several other things. These are discussed in this chapter. This chapter first
discusses the business objectives of the SUA which eventually lead to the options for the
user workflow analyzer. Next, it discusses how the software of the SUA should be logged.
Finally, it discusses how an artificial data set can be collected in case of testing or when no
real data is available. For all three preparation tasks, general guidelines are presented for
SUA owners. This is illustrated by how this is done in the case study.

7.1 Business objectives
The SUA owner must determine which analyses to implement in the UWAT. This has
consequences for which data to log, which PM plugins to use and most importantly which
options the user workflow analyzers have. Before implementing these options, the SUA
owner should know what to achieve using the UWAT. For this purpose, the business
objectives are introduced. The business objectives represent the questions of content and
software developers of the SUA that could be (partially) answered with user workflow
analysis.

7.1.1 Determining the business objectives
To determine the business objectives of the SUA, the SUA owner needs to know which
questions in the company can be answered by user workflow analysis. These questions
should be agreed upon with a wider range of people. We recommend discussing this with a
subset of user workflow analyzers who have the conceptual level to understand what user
workflow analysis consists of and which questions it can answer.

The UWAT target group are the content and software developers of the SUA. Both groups
can have different questions that need to be answered, but questions can also be relevant
for both groups. For scheduling reasons, it is sometimes hard to have an integrated
discussion of both teams. However, we recommend having at least one person involved who
has a cross-disciplinary role and can oversee the impact on both.

One should be careful that the discussion is not about details or the options of the UWAT.
The discussion should be about higher-level questions that need to be answered, which can
then be translated to options in the implementation phase. When discussing the options, the
scope will soon be too limited and the higher goal of the UWAT, improving the content and
the software of the SUA, is overseen.

The amount of (sub)questions should not be limited. However, this does not mean that
everything should be implemented, in the short term or ever. A broad scope leaves space for
questions relevant for the long term. When using the UWAT in practice, the business
objectives should probably also be revisited regularly. However, using the UWAT in practice
is out of scope for this research.

7.1.2 Case study
For the case study, a list of 14 main questions has been defined, most of them including sub
questions. The complete list can be found in Appendix A. Questions for content developers,
for software developers, and for the combination have been separated. The sub questions
sometimes already hint to which analysis to implement. This shows the risk of already
defining options in the discussion. This is not necessarily a problem, but one should be
aware of this.

52

In the case study, the business objectives were discussed with the people who were actively
involved in the content or software development. People who only have a reviewing role
were not included. The discussion was held for the content and software developers
separately. Since the researcher, who was also the SUA owner for the case study, is familiar
with both sides, she played a cross-disciplinary role.

7.2 Logging of the software
Input for the UWAT, more specifically the PM, is the event log data. To generate these event
logs, the different actions the user takes in the SUA must be logged. Many user actions on
the user interface do not lead to separate calls to the server. To get good insight into the
usage, it is then important to log the actions at the client-side.

7.2.1 Logging data
Part of the data that needs to be logged is generic and predefined, while another part is
specific for each SUA. Which data need to be logged specifically for the application,
depends on the business objectives. The necessary information about the content and
software components to answer the questions posed should be logged. The standard data
that need to be logged is:

• Timestamp, preferably including milliseconds.

• Page/view where the action happens.

• Type of action (e.g., a click on a button).

• Identifier to separate the views, when the user is working in different views at the
same time (e.g., different tabs in the case of a web application).

Besides that, other fields are applicable to all potential SUAs and can be interesting for user
workflow analysis:

• Anonymous identifier or additional demographic information of the user.

• Session number.

• Type of application (e.g., browser).

• Version numbers of content and software.

A good practice is to log all the loads of a page/view and all clicks that happen in the
application. This not only means button clicks, but, for example, also the selection of a text
field. One can best log all possible relevant information of the loads and clicks. It’s better to
have too much information and filter it out later if it is not useful, then missing parts at the
end. This also gives the possibility to adapt to future business objectives.

There are two important requirements for the logs of the software: the log should be
complete, and the log should contain all information to answer the business questions. There
are two useful guidelines to achieve this. Firstly, let another developer or someone in the
business check if everything is indeed logged and no relevant information is missed.
Secondly, use an iterative process by starting with small data sets. Since quite some data
needs to be collected to get useful insights, restart logging every time is not possible. By
having test runs with small data sets, possibly created for this purpose only, one can see if
the right data has been collected and completeness in production is ensured.

7.2.2 Logging framework
Depending on the nature of the application, an appropriate logging framework must be
selected or created. This framework should fit the technology choices of the SUA. One can
use an existing logging framework, build a new logging framework or use a hybrid form. Both
in business [38], [39] as well as in science [40]–[43] there is a lot of discussion about when
to use an off-the-shelf product or to build custom software.

53

Off-the-shelf products have the advantage that they often have nice features and that these
products carry the risk. However, a custom-built framework gives flexibility, scalability,
ensures that is has all needed features and there is no overhead of learning the details and
structure of the existing framework. Therefore, the biggest consideration is whether off-the-
shelf products fulfill all the requirements for the logging framework.

The data logging framework has the following requirements, based also on the data that
needs to be logged as described above:

Functional requirements

1. The logging framework should be able to collect a timestamp
2. The logging framework should be able to store the page/view where the action has

happened
3. The logging framework should be able to store the type of action that is logged
4. The logging framework should be able to extract and store an anonymous identifier

of the user to analyze behavior over sessions
5. The logging framework should be able to extract and store the session number
6. The logging framework should be able to handle the user working in different

windows at the same time
7. The logging framework should be able to extract and store the type of application that

is used by the user
8. The logging framework should have the possibility to add fields specifically for each

application
9. The logging framework should be able to handle freely defined data fields
10. The logging framework should be able to handle different software and content

versions
11. The logging framework should have the possibility to extract the log data

Non-functional requirements

12. The logging framework should work with the programming language and
environment that is used for the content-intensive application

13. The logging framework should have very little data loss since this gives wrong traces
14. The logging framework should be able to handle the amount of data needed for the

content-intensive application
15. The logging framework should make it easy to collect all necessary data
16. The logging framework should collect and store the data in a standardized way to

make it usable for analysis

An off-the-shelf product that fulfills these requirements would be recommended. If there is no
product that fulfills all requirements sufficiently, letting the in-house software development
team build such a logging framework is the best option.

7.2.3 Case study
For Mobina, a JavaScript logging framework was implemented. Some research was done on
existing JavaScript frameworks, both commercially and open source. However, since this
case study was used as a validation for the architecture, the main focus is that there is no
compromise on what can be logged with the software, as well as how it should be stored and
exported. Besides that, the requirements could also change in time, so there is a large need
for flexibility. No existing framework fulfilling all requirements was found, and therefore a
custom logging framework was built directly in the Mobina application.

54

The actions were logged in JavaScript with support of jQuery and the backend was built in
Django7 and Python. The Django model specified all the data that should be logged. The
database could easily be exported to a JSON object. To support standardization, a standard
JavaScript function was defined which was used to log all relevant actions and which
ensured all the necessary data was logged. All data that can be collected automatically and
which contains no specifics for the actions logged, e.g., the datetime, the browser type, etc.,
is added to the request and does not need to be implemented specifically for each log
action. Every 30 seconds or when a session is started, the log is sent with an API call to the
centralized Django server. Then, the Django server adds all the standard information and
stores the log actions in the database. By using this short time frame, in combination with
Mobina’s scalable framework, all non-functional requirements are satisfied.

All functional requirements are satisfied, but this depends mainly on the definition of the data
model. Figure 30 shows the data model as defined in Django. This is a combination of
generic fields as defined in Section 7.2.1 and Mobina-specific fields. This model does not
contain all generic fields, e.g., software and content versions are missing. The content and
software versions were not defined yet on the moment of logging, so therefore they are not
yet included in the implementation. This does not limit the research, since it is only a proof of
concept.

Figure 30 Data model logging framework

For the understanding of the case study, some fields are discussed shortly. The field server
shows which Mobina server is used (e.g., production or development server. Type and
element represent the type and id of the content element, e.g., a process. This combination
is always unique. This is always relevant and thus stored for every log item. User_hash is
the hash for every user. This can in no way be tracked back to any user but gives the
opportunity to track a user’s actions throughout multiple sessions. Pageload_identifier gives
the possibility to handle a user working in multiple tabs. Additionally, some technical details
are saved like operating system, type of device, and type of browser. This is both to
differentiate between behavior, but also to be able to filter out data if something, for example,
only works in one browser. Finally, the data field stores information in a JSON format that is
specific for the action that is logged. This can be different per action or item and is therefore
free-format.

7 https://www.djangoproject.com/

55

In this implementation all page loads and all clicks in the web application are logged.
Besides this, the occurrence of the focus and blur events are also registered so one can see
when they start and stop working on, for example, a comment. For all relevant pages, all
possibilities on that page are logged, even though not all information is necessary to answer
the business objectives. The logging can be tested through a specific page in development
mode.

Figure 31 shows an example of the logging in JavaScript. In this case, a click on the process
in the reference model is logged. The method Mobina.jslog.log is the standard method for
logging in JavaScript. The first attribute shows the type, i.e., this is a click, the second
attribute is the action, i.e., a click on a process, the third attribute is the id of the element
where the click happens, and the fourth attribute is the freely defined data. These data is
thus specific for the click on a process but can be used in the rest of the analysis.

Figure 31 Example JavaScript log

7.3 Data generation
Sometimes no real data is yet available. There might be a company-specific reason like
waiting for a new release, or the UWAT needs testing before moving into production. In that
case, a data set needs to be artificially collected. This has been done in our case study. The
purpose is to create a representative data set, while keeping the effort to create the data
sets as low as possible. This section assumes the data set is for testing the quality of the
analysis. When it comes to testing, for example, the performance of the UWAT, different
experimentation variables should be used.

The data generation is discussed based on the experiment process as proposed by Wohlin
et al. [44], which is shown in Figure 32. The experiment is the data generation. When using
this for the UWAT architecture, the analysis and interpretation step is done implicitly by using
it in the architecture. Therefore, this is not discussed anymore in this section.

56

Figure 32 Experiment process

7.3.1 Experiment scoping
The experiment scoping has as output the goal definition. This consists of five parts [44]:

1. Object of study. In this case the SUA.
2. Purpose. To collect a representative event data set as input for the UWAT.
3. Quality focus. The data set needs to fulfill five requirements to ensure the quality:

a. The data set needs to be representative
b. The set must be large enough to draw actual conclusions
c. The data set must also contain edge cases to ensure all behavior is included
d. The number of steps per session should be sufficient
e. A session is from the moment a user logged in until the moment the user logs

out or otherwise quits working on the SUA (e.g., closing the application)
4. Perspective. The perspective is the user workflow analyzer
5. Context. The context is the SUA that is used by actual users of the application.

7.3.2 Experiment planning
The experiment planning has as output the experiment design. It consists of several steps
[44], but since this data generation is a smaller research than is often used for this
framework and since this experiment is not empirical, only the four relevant steps are
selected here.

First is context selection. Since it is important that the data set is representable, the data
collection should happen by people that are actual SUA users or are representative for SUA
users. Besides that, also the setting should be as if it was actual use. This means that own
devices should be used, the SUA is used as it is intended (i.e., through a web browser if it is
a web application), no extra support from the person who collects the data is given, and it
needs to be done in the environment where the SUA would be used (i.e., in their own office).

Secondly, the variable selection. Next to requirements for the space as discussed with
context selection, the most import variable is the amount of data to be collected. As
described in requirement 2 and 4 the amount of data must be large enough to draw actual
conclusions. The amount of data depends on the number of sessions and the number of
steps taken per session. Because these factors depend heavily on the nature of the SUA, it

57

is recommended to look at the total time of data that needs to be collected. On the one hand
a large data set is preferred, on the other hand the investment for collecting the data set
should be low. For this kind of data collection, a recommendation would be to collect
between 5 and 10 hours of data.

Third is the selection of subjects. As mentioned before, the participants should reflect actual
users. Most preferable are actual users, but another possibility is to use people with the
insights of real users and/or who can think like an actual SUA user. Important is that the
subjects have a feeling with the content of the SUA. To ensure that the data also contains
different traces and edge cases, it is also recommended to use people with different
backgrounds that represent the whole population of end users.

Finally, the experiment must be designed. To ensure the data contains enough differences,
but at the same time enough similarities to draw conclusions, some participants should
perform the same assignments. In this way, there is a high probability that there are some
similarities. However, the assignments should be freely defined, so that participants can use
their own approach to create differentiation. A recommendation is to use scenarios, where
the participants are a type of user and are nudged into the right direction. Important is that
the scenario is representative for what the SUA users would use the application for. Every
assignment should be a session. Also, the assignments do not need to be of the same
length, since this will also differ in real use.

Important in the experiment is that the participants should clearly understand upfront what
the data generation is for and what is expected from them. A part of this explanation is also
that there are no wrong ways and that different or unexpected behavior is part of the
assignments and the data collection. Finally, the participants should understand the SUA
and know what the scope of the experiment is, e.g., when only one part of the SUA should
be used, this should be communicated upfront.

7.3.3 Experiment operation
Experiment operation consists of three parts: preparation, execution, and data validation
[44]. However, since the data has as purpose to test the application, data validation is not
done and discussed as part of the experiment but is part of the bigger research.

In this case, the preparation consists of three parts: the technical preparation, the
environment preparation, and the preparation of the participants. The technical preparation
is about making sure the software is logging properly. On the one hand, the environment
preparation is about creating the technical environment and accounts for the participants. To
make sure the behavior is not influenced and leads to too many similar traces, we
recommend having a separate environment for each participant. If different types of users
are used for the assignments and one wants to find some relations to that, separate
accounts should be made for each participant for each assignment. On the other hand,
environment preparation is about putting default data in the application. For example, if
someone should collaborate with another fictional user, some data of this user may also be
interesting to store in the database. The need for this depends on the business objectives of
the analysis and the nature of the application.

Finally, the preparation of the participants. Before the participants start the assignments,
they should have the relevant information. This consists of three parts:

• Description of the data collection including the goal, what data is collected and what
the collected data is used for.

• Relevant information about the application. This may contain some sort of manual,
links to support or the scope of the experiment.

58

• The assignments. The assignments should be described for the participant. If
information is needed about the environment, the type of user or data that is already
in the server, this should be included in the description of the assignments. A rough
time estimation for the assignments in total or per assignment can help ensure the
participant he/she is doing the right thing. However, emphasize that if they believe
shorter or longer is more appropriate, this should be done since this reflects actual
behavior.

The execution phase starts by presenting all the information to the end user, if this was not
done yet, and assuring there are no questions left. After everything is clear, the credentials
to log into the SUA can be delivered. From this point on, the data collector should only be
there for technical support. Questions about the assignment or the application should not be
answered, so the participant is not influenced. The rest of the data collection depends on the
user.

7.3.4 Presentation & package
The presentation & package section is part of the overall research. However, it is important
to mention here that the data should be delivered in a format that can be used by the rest of
the architecture. Otherwise, an extra conversion script needs to be developed to prepare the
data in the correct format.

7.3.5 Case study
Since the Mobina application was not yet used by customers when the research was in the
generation phase, the decision was made to collect data artificially. Five scenarios were
developed in which each participant was asked to play the role of a certain person in a
fictional company that uses Mobina for a certain purpose. All scenarios were for the same
company, a crane company, but all had different perspectives. The assignments can be
found in the manual for the participant, which can be found in Appendix B.

For the data collection, five participants are selected. Since some of the content is
confidential and since some basic knowledge of the content of Mobina was required, the
people selected were all from the Mobina team. Without the basic knowledge, the startup
curve would be too high, which could lead to unreliable data. Because of the complex
content and software, the decision was made to use fewer people who could do multiple
scenarios. Each participant got the exact same five assignments, which were estimated to
take about 1.5 hour in total, leading to approximately 7.5 hours of data collection. No time
division was made between the scenarios, because this will also differ in real use. The five
participants were selected to reflect different backgrounds and characteristics, which was
expected to give differences in the collected data even though they got the same
assignments. The five participants can be found in Table 1. The five participants had several
differentiating aspects: age, role in Mobina, experience with the target group, and
background next to Mobina.

Table 1 Participants data collection

Jasper Boot BSc Jasper Boot is 22 years old and is software developer at Mobina.
Next to his work at Mobina he is a Master student Computer
Science at the University of Twente.

Ir. René Hol René Hol is 58 and is co-founder and CEO at Mobina. He has a
lot of experience in management consultancy for industrial
companies, both in business and IT.

Valerija Olsevska MSc Valerija Olsevska is 24 years old and is knowledge modeler at
Mobina. She graduated in the summer of 2017 for the master
Technology and Operations Management at the University of
Groningen.

59

Jochem Verburg MSc Jochem Verburg is 25 years old and is co-founder and advisor of
Mobina. He finished his master Business Information Technology
at the University of Twente in February 2018 and is currently
working as product manager at Voortman Steel Machinery.

Prof. dr. ir. Hans
Wortmann

Hans Wortmann is 67 years old and is knowledge contributor at
Mobina. Besides his work at Mobina, he is chair professor
Information Management at the University of Groningen. He has
years of experience in both practice and science in the
manufacturing industry.

A meeting of 2 hours was scheduled with all participants. They did not receive any
information before the meeting. At the start of the meeting they received a document (see
Appendix B) which gave them more information about the research, the application and the
assignments. The information about the research was also explained verbally. The
information about the software was more background information for the participants who
were not yet that familiar with the software. This also presented the scope of the research.
Next, the scenarios and the fictional company were introduced, as well as a list of other
people that worked in the company and the information systems that were used in the
company (all fictional data). This information could be used in the scenarios.

Nothing extra was explained and no questions were answered about the scenarios and what
they should do with the software. It was strongly emphasized at the beginning of the
assignments that they should imagine they were the people in the scenarios and should use
the software as they thought the person in the scenario would. It was also emphasized that
different behavior did not matter.

For this data generation, a separate server was set up. All participants could access the
server through the Google Chrome browser on their own laptop. Before the meeting a
separate demo company was created for all the participants, as well as different login
credentials for each scenario and each participant. The credentials were available on paper
at each meeting. At the beginning of each assignment they were asked to login with the
credentials for that scenario, and then log out after they were finished with the assignment.
To also collect some collaboration data, some demo data was entered before the meeting at
pages the participants were expected to visit. The participants could interact with these data
of other fictional employees of the demo company.

At the end, all the data was collected successfully and stored in the database of the logging
server. After each meeting, a back-up was made by exporting the data as a JSON file. After
all meetings, the final JSON file could be exported.

60

8 Validation
This chapter discusses the validation of the design presented in this thesis. Firstly, the two
approaches used for validation are introduced: user validation and technical review. Next,
the validation is discussed per requirement, as introduced in Section 4.1. Finally, the
validation results are summarized.

8.1 Approach
In this research the design of the UWAT is presented, and an initial prototype is
implemented. This is an early stage in the design cycle presented by Wieringa [45]. Wieringa
presented different validation methods for design studies [45].

The added value of this design can only be achieved when its users are able to grasp the
added value of the UWAT, so it should be presented to potential user workflow analyzers. In
this phase in the design cycle, it is important to analyze the potential of the design without
needing to implement a perfect, fully operational application. Therefore, it’s useful to present
it to users who can look past its potential flaws. Based on the presented validation methods,
we believe expert opinion is the most appropriate option. We use a representative group of
users as experts in a user validation to assess the design and prototype.

Additionally, some requirements are about the potential the design offers for a good
implementation. Since only a prototype is implemented, this will not in itself be
representative to validate all requirements. The prototype might also fulfill certain
requirements which does not necessarily mean the design supports these requirements.
Therefore, a careful technical review of the design, including the used techniques, and its
impact on implementations is needed to draw conclusions. This technical review is also done
through expert opinion.

8.1.1 User validation
In the user validation, the design of the artifact is the prototype that was developed. The
experts of the user validation, called user experts in the rest of the validation, are the
potential user workflow analyzers. In this case, the user experts are the content developers
of Mobina.

The first research question is to discover how user workflow analysis can help content and
software developers of content-intensive applications to gain additional insights in the
application and its content. The added-value of this type of analysis can only be determined
by people who know the relevant parts of the application very well, in the case of the
prototype the reference model. This makes the role of experts in the validation crucial, since
they are the ones that can give insights in the added value.

Besides that, the combination of PM and MDE are expected to allow the creation of a user-
friendly solution. User-friendliness does not relate to the interface design (since this is not
part of the UWAT) but is about whether it can be used without knowledge about the
implementation or the techniques used and whether this way of analyzing and specifying the
analysis gives the user workflow analyzers the feeling they can get the expected and desired
results. To objectively evaluate this, the perspective of an actual user workflow analyzer is
needed. User validation can provide these insights for the validation.

The three experts involved in this validation are René Hol, Jochem Verburg and Valerija
Olsevska (see Section 7.3.5). They were involved in the determination of the business
objectives for Mobina. They are potential user workflow analyzers since they co-develop the
content of Mobina. There were no other potential experts available in Mobina. To assess the
added value of the results, in-depth knowledge about the content is necessary and they are
the only people with enough knowledge about this.

61

All three user experts are interviewed separately in a semi-structured interview. In a semi-
structured interview there are no strict questions, but instead there is an open discussion
within a framework. At the beginning, they first get a recap of the research and what we want
to achieve. The business objectives within scope are introduced as well as the analyses
implemented to achieve these business objectives. The user experts should now know what
to expect. Then we walk through the prototype one step at a time. Since only a few options
are implemented, these are predefined, and the user experts have a limited choice. Notes
are made during this walk-through about relevant statements of the user experts. We then
discussed the prototype, where the relevant topics have been brought up. Thanks to the
nature of a semi-structured interview, a lot of different opinions could be gathered this way.

8.1.2 Technical review
The second part of the validation is done using a technical review. The expert in the
technical review is the researcher of this report, since a complete view on the design choices
and what impact these choices have is necessary to evaluate the design and its
implementation.

The technical review is a critical review of this design, and where necessary its
implementation, to validate to what extent the requirements of the architecture are fulfilled.
The technical review is also an important part of the validation, since this validates the
combination of PM and MDE and the desired effects of their combination on aspects like
reusability, scalability and user-friendliness.

8.2 Validation results
The validation is discussed per requirement. The different types of validation are used for the
following requirements (can be both):

Validation type Requirements (see Section 4.1)

User validation 2, 5, 6, 7, 13, 14
Technical review 1, 3, 4, 5 -12, 15, 16

8.2.1 Functional requirements
1. The system should be able to extract the specified patterns from the input data of the

system.
The MDE metamodels and proposed transformations are capable of processing and
modelling all kinds of complex relations due to the generic setup of all metamodels. All
possible patterns are theoretically processable by the UWAT, but practically it does
depend on the implementation by the SUA owner.

An important limitation is the external PM plugins. Not every possible relation can be
extracted yet by these PM plugins, and not everything can be exported and transformed
to a PM model yet. Therefore, maybe not all desired analyses can be implemented by
this architecture. However, PM is quickly evolving in both implementation and research,
so this limitation is expected to become less of a problem in the future.

2. The system should be able to give the end users insights in the data that cannot be
directly obtained from the data.
All three user experts had a similar conclusion: the analyses presented here are still very
simple, but they already show an added value; i.e., it can help them improve the content
of Mobina. An example of the added value was that the results of the analysis ‘most time
spent at processes and documents’ showed that a lot of time was spent on the process
and document overview. For the process overview this was expected, since this is the
opening screen. However, with the document overview this was surprising. A possible
explanation here was that the document overview was maybe not clear. The results of

62

the analysis ‘Subelements used’ showed that only some of the subprocesses were used.
A potential conclusion for this was that there was maybe too much detail in the
subprocesses already. More analyses and data are necessary to confirm this, but for the
user experts this already gave interesting additional insights.

All user experts mentioned that adding more advanced relationship analyses could
provide even more added value. In the prototype, only direct relations to the
subelements were explored. The user experts however mentioned that it would be
interesting to see if there is a connection between different parts of the reference model.
All three also mentioned that the added value depends on what options are available and
how they are implemented.

Some of the basic analysis, like how often a process is visited, can also be requested in
different manners. However, when looking at the relations between different elements,
like at the third option, no one could think of a proper alternative way how to achieve this.

There were also several remarks on the results. Currently, the analyses are presented
separately. However, the user experts mentioned that the crosslinks, i.e., combining the
results, are more interesting. If this technique can make this possible, then this adds
more value. One of them mentioned that the most added value is that own expectations
about the behavior can be compared with the actual behavior which is shown in the
results. The results trigger this comparison. Finally, interactive behavior with the results
adds more value. It could lead to more insights if one can filter the results, compare them
over time, etc.

3. The system should be able to process the data in a deterministic way.

Whether this is guaranteed depends on two things: whether the PM plugins used are
deterministic and whether the implementation of the UWAT is deterministic.

The PM plugins are not implemented by the UWAT implementer and their
implementation is not influenced by the input of the UWAT. It is therefore crucial when
selecting the PM plugins for the different options to check whether the plugin satisfies all
requirements and thus also whether the plugin handles the data deterministically.

As for the rest of the design, the UWAT is implemented deterministically for the part that
is standardized. The metamodels enable deterministic behavior and the transformations
are intended to handle these models in a deterministic way. However, the
implementation of the transformations could still lead to nondeterministic behavior.

4. The system should be able to handle different versions of the input data.
Versioning is about filtering the data and matching versions; something that can be
added on top of the current design. It has no principal influence on the research and
design and is therefore left out of scope. A small step towards versioning is already
made when adding the version of the data to the SUA metamodel. To implement
versioning completely, the version of the log data must be linked with the version of the
SUA model instance and handled by the transformations.

5. The system should be able to provide the results specified by the users.
The specification by the user workflow analyzers of the required analyses and parameter
values is passed to the UWAT via a JSON object. Via a transformation, this can be
stored in a user specification model instance. Thanks to the central role of the user
specification (meta)model in the different transformations and the PM execution, the user
specification is embedded in all parts of the implementation and the specified results are
eventually returned.

63

More extensively, the system is only doing the analyses that are specified by the users
and nothing else. The design limits the PM execution only to the plugins that are
necessary for the selected options. In the transformations, only if an option is selected,
the related code is executed.

With the user experts, the role and the flexibility of the specification was discussed. All
three agreed that restricted options were necessary to draw useful conclusions about the
data. User workflow analysis is too complex to give the user workflow analyzers more
freedom to define analysis (e.g., for example selecting the PM plugin). One mentioned
that the conceptual level of the user workflow analyzers probably determines the level of
flexibility that is desired by them.

Again, the user experts emphasized that the satisfaction depends on which options and
parameters can be used. Basic parameters like the limits and threshold are always
useful, but the parameter which gave to possibility to influence what relations in the
reference model are considered, gave more in-depth control over the analysis which
increased the satisfaction for one of the three user experts.

6. The system should be able to use the information about the content-intensive application
in its analysis.
The SUA is embedded in this design through the SUA (meta)model. This model is
created specifically for each SUA. The entries can then be used in the process-to-result
transformation to use the information in the result dashboard. The process-to-result
transformation needs to be specifically implemented for each SUA. However, we found a
way to standardize part of the transformation. The application model is only used in the
helper method. Therefore, only the helper methods need to be implemented separately
for each SUA, not the parts that process the PM outcome.

With the user experts, we discussed whether they feel like there is enough SUA specifics
in the analysis and the outcomes. They all immediately confirmed that they did not feel
like (part of) the analyses were standardized. In the results, it is also clear that it is about
Mobina. They added that parameters like those for option 3 strengthens this feeling,
since this is clearly specific for the content structure of Mobina.

7. The system should return a data set with the outcomes of the analyses.
At the end of the UWAT transformation chain, the result model is translated to a JSON
object in the result-to-dashboard transformation. This JSON object contains the results of
the selected options by the user workflow analyzer. As mentioned in the previous
requirements, this returned data set only contains the results of the selected options. In
the result model, the result per option is saved, so a clear distinction is made between
the results of the different options.

With the user experts, it is discussed whether the returned data is what they would
expect and want. They all expected the results as presented. There were some ideas
about the visualization, but this is out of scope for this project. Even though they liked
that they could see the results per option, they would also prefer to see the results of the
combined options.

8.2.2 Non-functional requirements
8. The system should need no user interaction after the specification of the analysis.

The design of the UWAT is set up in a way that no user interaction is needed. The calls
to external tools are handled by the UWAT and all the information the UWAT needs
comes from the initial user specification.

64

In the implementation of the prototype however, no automatic calls to the PM plugins
were possible yet. Therefore, someone needed to manually execute the plugins. This is
a limitation of the implementation, not the design. This was done by the researcher and
not the user workflow analyzer, as for whom this requirement was intended.

To exclude all manual intervention, the UWAT must be able to call the PM plugins
directly and the results should be processed to a PM model instance. This could be
handled by the PM tools or by some sort of middleware which handles all PM specifics.
Such an API or middleware was not available at the time of research. The UWAT is
designed in a way that PM is executed is an external tool and not part of the UWAT
implementation itself. Therefore, the design fulfills the requirement. However, if one
wants to automate it completely at this moment, one should develop this himself. We
would recommend developing some sort of middleware since then you are independent
of a specific PM tool and you can immediately develop the correct PM model instance
without needing to adapt the PM tools or plugins.

9. The system should have as much as possible generic analyses that are applicable to all
content-intensive applications.
The aim of the design was to limit the role of the SUA in the UWAT. An important step is
that the SUA specifics are only limited to the SUA (meta)model in the UWAT. The other
metamodels include no elements that are specific for Mobina, which makes them
applicable to all different SUAs.

The complete standardization is however limited by the definition of the options and
parameters. Even though the (meta)models are generic, the (implemented) options are
specific for each SUA. Especially the process-to-result transformation is SUA specific,
since the SUA details and the options with their PM execution should be known. The
preparation-to-specification transformation can be standardized partly because the
plugins can be defined separately from the user specification and because the input
JSON object has a standard format. However, the translation of the different options to
the PM execution depends on the defined options, which are SUA specific. The result-to-
dashboard transformation is completely standardized, since the result model is set up in
a generic way, as well as the output JSON object. To conclude, still a significant part of
the UWAT is not standardized.

10. The system should be flexible.

10.1. The system should be easily extendable with new analyses.
Due to the flexible definition of options and parameters in the user specification and
transformations in the design, new analyses can easily be added from a technical
perspective. The complexity of adding new analyses is the conceptual discussion
on what to achieve and what this means for the PM. In this design, this is the
responsibility of the SUA owner. This is however not limited by the design and
implementation of the UWAT, which is what the requirement focuses on.

10.2. The system should be easily made applicable to new functionality of the product

that is analyzed.
Due to the separation of the SUA specifics from the rest of the UWAT in the SUA
(meta)model, new functionality could be added well. This needs to be defined in the
SUA metamodel and the SUA model needs to be updated. However, this does not
mean that there are already analyses available. If new functionality should be used
in the analyses, the transformation must be updated, or new analyses must be
defined. This is related to the previous sub requirement.

65

11. The system needs to be presented to and used by the user as one system even if it is an
implementation containing multiple tools and techniques.
In this design, the user is not exposed to the implementation and the different tools used,
if the preparation interface is implemented correctly and automatically passes the data to
the UWAT. Due to the design of the UWAT and the metamodels presented, the design
can do the calls to external systems, translate the options and input to what external
information is needed, and process this information to useful results. In other words, the
UWAT can handle the different systems involved and no manual intervention from the
user workflow analyzer is needed here.

12. The data integrity should remain when data needs to be converted to another format
within the system.
Several data conversions are done within the UWAT implementation. First, the
translation of the input JSON object to the user specification model. Here, the user
specification data can be compromised. Next, the PM tools start working with the log
data and give output. This output data is again translated to the PM model, which can be
seen as the translation of the log data to the UWAT. This is then all processed to the
result model and finally, this is transformed to the output JSON object.

Whether the data is compromised depends heavily on the implementation of all the
different translations. There are two large risks. First, the SUA owner implements some
(parts) of the transformations itself, which can lead to the data integrity being violated.
Second, an external call is done to the PM tools on which the UWAT has no control. If
this part is implemented wrongly, this can also lead to a violation of the data integrity. To
satisfy this requirement, it is therefore crucial when implementing the UWAT that this is
always tested carefully. Only when all parts of the implementation ensure data integrity,
this requirement is fulfilled. This requirement cannot be solely satisfied by the design.

13. The user should be able to use the system and understand its interfaces without needing

to know how, and with what techniques, the system is implemented.
None of the user experts noticed any implementation details or had any notion of how
the analysis was executed. The only aspect that was noticed were the types of analysis
done, i.e., looking at the steps the user takes. This is typical for user workflow analysis.
The decision to use user workflow analysis was a separate choice from the techniques,
which makes this notion irrelevant for the requirement. In other words, they noticed user
workflow analysis was used, but not how this was implemented.

14. The system should be able to perform the analysis within reasonable time.
The time the analyses take depends on a lot of things: the PM plugins which have highly
differing execution times, the size of the data set, the amount of processing needed, etc.
In this research it only took about 5 seconds on a local computer. However, we only
developed a small prototype with a small data set, so no real conclusions can be drawn
from this. Therefore, we discussed the preferred time range with the user experts.

Two of the user experts immediately mentioned that it was no time-critical application
and that it would not be used on a daily basis, so the time it takes does not matter. If it
takes too long, they will start it and come back later. The third user expert said that the
way of use will be different depending on how long it takes. If it goes very quickly, one
will play with it and the different parameters to get to better conclusions. If not, one just
wants to specify a lot at the same time, also the same option with different parameters,
and come back to it later. However, the third user expert also mentioned that the
analysis itself does not need to be real-time, so if the analysis is prepared earlier, for
example, a day, that will not invalidate the analysis.

66

The discussion with the user experts focusses on the production phase, i.e., when the
UWAT is used with actual data sets and complete analyses. However, before the UWAT
is used, the user workflow analyzers will need to experiment with the analyses to test the
analyses and to get a feeling with the options and parameters. In this phase, interaction
will probably be needed with the UWAT and the time the UWAT takes should be short. If
this is desired, a representative UWAT data set should be prepared which is small
enough for the analyses to be performed quickly. In this way, the UWAT and the user
workflow analyzers can be prepared for the actual use.

8.2.3 Domain requirements
15. The input data should have timestamps.

This statement is about the log data and is out of scope for the UWAT. It is the
responsibility of the SUA. The PM analysis can’t happen without this timestamp, so this
is a hard requirement for the log data. In the logging strategy proposed in this report, this
was included. This requirement was fulfilled for the log data used in the prototype.

16. The output data of the system should be a standardized format that can be used by
different visualization tools.
The output data of the UWAT is a JSON object with the model of the result data set.
JSON is a standardized format which could easily be used in different tools. In other
words, this requirement is fulfilled.

8.2.4 Usefulness of user workflow analysis
With the user experts, possible alternatives for user workflow analysis were also discussed.
An alternative approach for the entire type of analysis that was mentioned often, is standing
behind a person and observing what happens or having a conversation or interview with
(potential) users. The related risk mentioned for these methods is that the observer can
influence the results, especially if they start talking together which is tempting for this
complex knowledge. A lack of scalability in these methods is also mentioned. With user
workflow analysis, as used in this design, all data can be analyzed instead of just a small
subset. It also creates the opportunity to get better and quicker feedback, for example, for
new versions of the software.

8.3 Summary
The most important user validation result is that user workflow analysis has added value
already for the simple examples implemented in the prototype, and this is expected to
become even more when more complex options are implemented. The results were as
expected for the specifications by the user experts. The success will mainly depend on the
options and parameters available. The user experts also did not feel that the options and
parameters restrict them too much. What the user experts can do with the results will also
influence the satisfaction. In the validation, the user experts did not notice the
implementation details or that the implementation used different tools or techniques.

The system presented was able to use PM and MDE to process a user specification input as
a JSON object to an output JSON object which contains the desired results, and which can
be used by different visualization tools. The UWAT is capable of processing all the specified
patterns to a result that is logical for the user workflow analyzers. The UWAT design fulfills
all requirements within its control. However, there are dependencies on external plugins and
part of the transformations must be implemented by the SUA owners for each SUA
specifically. This can highly influence the fulfillment of requirements in specific
implementations.

67

Due to the generic setup of the metamodels, all kinds of patterns can be extracted and new
analyses and functionality of the SUA can easily be added. However, the SUA owner must
oversee what these changes mean for the models, transformation and PM execution. In the
metamodels, all SUA specifics are limited to the SUA metamodel. In this way, the rest of the
metamodels are applicable to all SUAs. Part of the transformations needs to be implemented
specifically for each SUA in this design, mainly because the, often SUA-specific, options and
parameters play an important role in the transformations. This central role of the user
specification makes sure that the specified results, and only these results, are eventually
returned to the user workflow analyzer.

68

9 Discussion
This research presents a design to combine PM and MDE for user workflow analysis of
content-intensive applications. A prototype served as a proof of concept to study the added
value of user workflow analysis and the combination of PM and MDE. This section discusses
the design and validation results. The discussion points are combined into different relevant
topics. At the end, the validity is discussed.

9.1 Added value user workflow analysis
In the prototype, some simple examples of user workflow analysis were implemented. These
were already experienced as added value, since seeing the results delivered the user
experts new insights. An example is the large amount of time spent on the document
overview in the Mobina software, while none of the documents of this overview are in the top
10 ‘Most used processes and documents’. Possible explanations for this are that the
document overview is not designed properly or that the content is not clear. Another
interesting insight was that only a small part of the subprocesses were used for most
processes. This could be caused by some bias due to the small data set, but according to
the user experts this could also mean the subprocesses already have too much detail or
parts of the reference model are not relevant.

These insights were new for the user experts and therefore clearly show the potential.
However, we recommend implementing more examples and discussing these with the user
experts to see the added value more complex examples can deliver, to discover what type of
analyses offer the most added value, and to give them the ability to discover the real
underlying cause for these results.

Based on the initial results, adding user workflow analysis to the toolset of content and
software developers seems very useful to get additional insights and eventually improve
user experience. However, the added value of the UWAT is strongly correlated with the
options that are implemented. Therefore, we recommend that the SUA owner, who is
responsible for defining and implementing the options, carefully determines the options that
lead to the most added value.

The visualization of the results is not part of the design but is relevant for the perceived
usefulness of the analyses for the user workflow analyzers. Possibilities like creating cross-
links or interaction with the results are expected to improve the user experience significantly.
More about the visualization is discussed in Section 9.2.3.

9.2 Setup of the UWAT
The discussion about the UWAT and its implementation is divided into different subtopics:
the combination of PM and MDE, reusability, the separation of visualization and UWAT, user
friendliness, and scalability.

9.2.1 Combination of PM and MDE
Our design allows for flexibility in the balance between PM and MDE, supporting a large
range of implementations. It allows the implementation to effectively use the strengths of
PM, MDE and the implementer to achieve the needs for each option. On the one hand, PM
tools can be used only as summarizing tools and the analysis is done through MDE. In this
case, the implementer of the UWAT has a lot of control and less dependency on external
tools, but the advantages of using PM are not completely utilized and the results depend on
the implementation quality. The other extreme is to perform a lot of complex analyses with
PM and only use MDE for the visualization. In this case, one can get advanced insights by
using the strength of PM and there is less effort for the implementer. However, the
implementer also has little control over the outcomes and puts the responsibility in the hands

69

of external tools. The flexibility to use the entire spectrum between both extremes is provided
by the flexible plugin specification and by letting the SUA owner implement the process-to-
result transformation.

PM is implemented in this design by external PM plugins. This is a strength of the design
since now external knowledge and experience can be used in the tool, something which
could never be expected from someone implementing the UWAT. Information from an area
that is rapidly evolving now becomes available to a whole (new) range of people. There are
also some attention points when using an external tool and, in this case PM. Firstly, the call
to the external tool can lead to limitations like the plugin execution taking too long, results
that can’t be exported, and algorithms that are not implemented yet. The calls to PM can
also not (always) be automated yet due to missing APIs. Besides that, one should be aware
that one has limited control over the behavior of the plugins. In this case, this may have
consequences for data integrity and deterministic behavior, but it can also, for example,
have undesired behavior related to privacy and security. Finally, the design expects the
external call to PM to deliver a model compliant to the PM metamodel. This may not be
possible yet.

However, these remarks do not mean that PM should not be used. PM has a lot of added
value and contains advanced techniques, which are now accessible to every SUA owner.
PM is an area that is rapidly evolving, so many of the limitations are expected to become
less in the future. Additionally, the SUA owner also has a lot of flexibility because you can
easily swap one plugin with another one (e.g., because another, newer, plugin has more
benefits). We strongly recommend using PM, and only present these attention points so one
can create the best solution and has no surprises when implementing PM.

Due to the standardization using MDE, it becomes easier to benefit from PM. The PM
plugins only need to be researched and implemented once, and then all potential user
workflow analyzers can use it.

9.2.2 Reusability
One of the goals in the design was to create a reusable application, i.e., to create an UWAT
which can be used by other SUAs as much as possible. This was achieved to a high extent.
All (meta)models are setup generically, which means that their design is independent of
which SUA is implemented, except for the SUA metamodel. The SUA metamodel is
developed specifically for each SUA and gives SUA owners the possibility to add SUA
specifics to the analyses. Due to this setup, the SUA owner only has to develop this
metamodel, and is not burdened with the other metamodels. After the initial set-up, it only
needs to be adapted if extra SUA functionality needs to be analyzed. The effort is therefore
very low and is not expected to create a problem. An interesting future research direction
would be to develop a metametamodel for the SUA metamodel. Certain concepts may be
applicable to all SUAs, which can be represented in the metametamodel. This could be a
nice guideline for SUA owners on what to put in their SUA metamodel, but it is also a first
step towards a standardized UWAT leading to even less development effort for the SUA.

In this design, we give the SUA owners a lot of flexibility in which analyses to implement
instead of limiting it to a predefined set. The core of the implementation of the UWAT are the
options which the user workflow analyzers can select. Because these options are often SUA-
specific and will be defined by the SUA owner, the preparation-to-specification
transformation and the process-to-result transformation need to be implemented by the SUA
owner to a large extent. The latter transformation also provides the opportunity to include the
SUA specifics in the result. The result-to-dashboard transformation is generic and has no
SUA specifics, thanks to the usage of generic result types and the standardized format of the
output JSON object.

70

Even though the flexibility in option and parameter definition makes the preparation-to-
specification and process-to-result transformation not completely standardized, this research
shows that some parts can be standardized in the transformation definition and
implementation. For example, all relations to the SUA model in the process-to-result
transformation of the prototype are implemented in helper methods. Additionally, the plugin
definition is separated from the user specification which improves reusability, since the same
plugin definition can be shared amongst a lot of specifications. Also, the preparation-to-
specification transformation contains some reusable parts, because the input JSON object
has a standardized format. These are already first steps towards standardization. In future
research, it will be very interesting to explore this with more complex options. An interesting
topic would also be to standardize frequently asked analyses, e.g., frequency, since it can be
applied to many different objects.

To offer the desired flexibility, the SUA owner has a lot of responsibility in this design. The
SUA owner should make a final selection of options and parameters, based on the business
objectives. Next to that, he/she is also responsible for implementing these options and
determining what they mean for PM. This demands a high conceptual level and knowledge
of PM, something that may not be available at each SUA owner. However, since the SUA is
also developed in a software company a certain level of expertise is probably available.
Additionally, only the UWAT implementer needs to have this expertise, while a whole range
of other people can benefit from it. In the future, more advanced options can be researched
like using a library of PM plugins and implementation examples, or standardizing options
which can be shared amongst SUAs. A SUA metametamodel can also help in this. In this
way, less responsibility is put on the SUA owner, making the UWAT more accessible to all
SUAs. For this research, it was out of scope.

9.2.3 Separation visualization and UWAT
A clear decision was made to separate visualization from the implementation in the
architecture to allow for flexibility in visualization. The UWAT only takes a JSON object as
input and also provides a JSON object as output. The way these data is created or
visualized respectively, is left up to the SUA owner. The greatest advantage of this decision
is that it gives great flexibility to the SUA owner. He/she can now visualize the result in the
preferred way for their SUA. If the SUA owner would like to do post-processing or use the
data in their own dashboard, this is possible. The result model is set up in a way that it can
directly be used for visualization, hence the structured formats and the naming possibilities.
However, this makes it less suitable for post-processing at some points. For example, all
attributes of the content names are already transformed into a combined string for
visualization. To extract the attributes, you need to parse this string. This was a design
choice, to put as little as possible burden on the SUA owner. However, if post-processing by
other tools, e.g., BI tools or other visualization tools, is preferred, this should be
reconsidered.

The user expert feedback also brought up that users would like to interact with the results.
This gives the user workflow analyzers the flexibility to test hypotheses and get additional
insights. To implement interactive behavior, this has impact on either the UWAT or the
visualization. If this is added to the visualization, this means that the SUA owner has all the
flexibility to do it his way. However, this contradicts the philosophy behind the design to put
all the intelligence in the process-to-result transformation. This might also need adjustments
to the result metamodel, since additional semantic information is possibly needed to offer
this interactivity. On the other hand, the result model can include results for multiple options
at once allowing the user to switch between these results in an interactive way. This enables
interactivity, but also means that the interactive options have to be defined and implemented
upfront. This kind of behavior may also put additional requirements on the responsiveness of
the UWAT. We recommend experimenting with the need for this with some (complex) use

71

cases in the next design cycle, to see how the user workflow analyzers and the SUA owner
can best be served.

9.2.4 User friendliness
An important objective of the design was the user friendliness, i.e., that the user workflow
analyzers should not be bothered with the techniques and implementation of the UWAT. The
design presented here successfully implements this objective. In the validation, the user
experts did not notice anything of the implementation. The system is presented, and
experienced by the user experts, as one system, even though multiple external calls are
necessary. The design is built in a way that the UWAT handles all external calls, and the
user workflow analyzers are not bothered with this, i.e., whether this is implemented using
PM, MDE, or other technologies makes no difference. Therefore, also no user involvement is
necessary after the user specification.

This design has as a foundation that options and its parameters are predefined and that the
user workflow analyzer can only select these options. This is because every option has deep
impact on what to do using PM and how to process this using MDE; the user cannot freely
define options. The SUA owner predefines the options based on business objectives, to
ensure that the options deliver added value to the user workflow analyzers. However, the
options could potentially be experienced as limiting by the user workflow analyzer. This was
discussed with the user experts, but this was not seen as a limitation, as the options and
parameters are experienced as useful. All three believe that these options are necessary
due to the complex analysis happening within the UWAT. In conclusion, as long as the SUA
owner defines interesting and useful options, the options and parameter definitions are a
solid way of implementing potential analyses.

We assumed that the role of the SUA is important to create a user-friendly solution. In other
words, they should feel like the analysis is about the SUA. In our design, the SUA
metamodel brings the opportunity to add SUA specifics, which are embedded in the result in
the process-to-result transformation. In the implementation of the prototype we used the
names of the content elements in the process-to-result transformations. This gave the user
experts the feeling that the analyses were about Mobina. The options and parameters also
gave this feeling, especially since one of the parameters was about a core data structure of
the Mobina content. Thus, this case study showed that involving the SUA does indeed
improve the experience of the user workflow analyzers and should be included by the SUA
owners when implementing the UWAT.

9.2.5 Scalability
An important reason to use user workflow analysis is its potential to become scalable.
Compared to other methods, this method stays useful when new data or functionality arrives,
and little extra costs must be made. The design is set up in such a way that it is flexible. New
functionality of the SUA can easily be added to the SUA (meta)model. To use this
functionality, new options must be introduced, or older options must be updated. These
changes must be implemented but can easily be built on top of the other analyses without
influencing them. This also brings the flexibility to adapt to newly requested analyses or
changes from the user workflow analyzer. New data, keeping versioning in mind, can also
easily be added and just as well be processed by PM. In this way, the solution is scalable,
which was also recognized by the user experts. They were asked about other methods to
achieve similar results, but only different forms of user testing were mentioned. They
mentioned these scaled badly. Besides that, another disadvantage was mentioned for other
methods: the risk of influencing these results. This solution also diminishes that risk.

72

In this research, we looked at scalability from the perspective of being flexible when new
data, functionality or analyses arrive. However, scalability is also about handling large
amounts of data and complex implementations. This design was only implemented for very
simple analyses and on a small data set. For this proof of concept, testing additional
scalability aspects was out of scope. We however recommend larger scale tests in the next
stage of the design to test this aspect of scalability.

9.3 Implications of proof of concept
We presented a basic design since it is still in the first stage of the design cycle. It contains
all the important core concepts, but it does not take into account all details and practical
implications. Versioning, and SUA specifics that could influence the log data and the results,
like permissions or configuration of the content, are for example not yet accounted for.
However, thanks to the setup of our metamodels and transformation, all these
characteristics can be built on top of the current design; it does not influence the core of the
design. Therefore, this was out of scope for this first stage of the design cycle. It is very
interesting to explore these aspects in the next stage.

In this research, a prototype of the design is implemented. This already showed some nice
possibilities for the actual implementation, as well as research possibilities. Firstly, the
implementation was made efficiently because only the selected options were analyzed. No
unnecessary processing was done. This could have positive consequences for the scalability
in the actual implementation. Secondly, the prototype was not yet fully automated due to the
manual intervention. This is undesired behavior for the real application. However, preparing
the PM also led to a nice opportunity. If the most recent data is not crucial, part of the results
can be cached to make the total implementation faster. Most time reduction can be gained at
PM since some of the plugins take very long, but caching can also prove useful for the
UWAT itself when using large data sets.

One should be aware of the data integrity risks in this design due to the many data
conversions that take place. For the small examples implemented in the prototype, we could
ensure data integrity by carefully looking at the implementation and validating the result of
the test data set. However, this can be compromised in larger and more complex
transformations, as well as by bad code quality or external implementation flaws. We
therefore recommend using additional checks and tests on this aspect when implementing
the UWAT to ensure no undesired behavior happens.

Since this was only a prototype implementation, some aspects were out of scope. However,
these might still be important when implementing the SUA commercially. Firstly, this was
only tested for a very small data set (25 sessions of in total app. 7,5 hours). Performance of
both the UWAT and PM plugins could reduce with larger data sets. Secondly, there are
several organizational aspects like how to handle the privacy of people in the data. It should
be communicated upfront that these data are collected and how this is going to be used in
analyses. Finally, the PM implementation limits full automation now. If PM can still not be
automated in the nearby future, a real solution must be found for this. Implementing some
sort of middleware to handle the PM execution and to process the results is an interesting
topic when looking into possibilities to fill this gap.

9.4 Validity
This research was set up as a proof of concept. Since it was the first stage of the design
cycle, the validation was setup in a way that it gave a good first indication of the possibilities
of the UWAT and its design and that it explores the strengths and weaknesses. However,
this also causes some threats to the validity of the conclusions. This subsection discusses
these aspects that need to be validated more thoroughly.

73

Firstly, the UWAT is now only implemented for very simple examples. A few examples were
selected of which was known that PM could support them well and that could be analyzed
with the current data set. This gave a good first indication about the added value of user
workflow analysis implemented using PM and MDE. However, for other type of analyses the
approach may not be as useful. Additionally, the architecture may not handle more complex
examples properly. For now, the added value of the UWAT in complex analyses is based on
a thought experiment with the user experts. However, the actual results can maybe not be
overseen. We recommend implementing and validating the UWAT with more complex
examples and a complete question set for a potential SUA to validate which types of
analyses it supports.

The UWAT is now only implemented and validated for one case study. Different case studies
may have different questions and different requirements. Therefore, standardization is now
only discussed from a theoretical perspective. To have a quantitative analysis on how
reusable the architecture is, the UWAT should be tested for multiple applications.

Additionally, only a small set of potential user workflow analyzers were used in this
validation: the content developers. These user experts were the only ones suitable to draw
conclusions about the results in this case study. Software developers or potential other types
of users may look different at what they want to achieve and what the desired outcomes are.
All content developers also had an academic background, which in general leads to a more
conceptual level of thinking, and they are used to working on the edge of business and IT,
which means that they are familiar with systems like the UWAT. Furthermore, all user
experts were from the same organization. All these characteristics could however lead to a
bias in the validation results.

Fourthly, only a prototype was implemented. Manual intervention for PM was allowed and
simplified views were used like only looking at the entire data set. However, when the SUA
evolves, different requirements can arise, and unexpected problems can come up. For
example, how to handle functionality that is removed. This was out of scope for this research
but should be validated in next stages of the design cycle.

The technical review can also be a potential threat to validity. Several aspects were tested
by reasoning about the design and the implementation. However, no experiments or tests
were executed yet, because only very simple examples and a prototype implementation
were available. Certain aspects like scalability and performance can only be tested properly
by running experiments. These are important additions to properly validate the design.

The technical review was performed by the researcher. The researcher can be biased
because of her enthusiasm or pessimism about the design. The researcher is also
completely familiar with the design and the design choices. In this stage, these insights were
necessary for the validation, because many concepts were still abstract. However, the
researcher can have blind spots. To exclude this potential bias or blind spots, technical
experts which were not involved in the design phase should be asked to validate the design.

Finally, the researcher was in this case very familiar with the SUA and therefore also had the
role of SUA owner. This was convenient to make quick progress. However, this also means
the researcher may not always have been completely objective about the outcomes and/or
the validation. Additionally, the researcher also knew the user experts. Therefore, the user
experts might have given desired answers rather than critical answers, influencing the
interview results.

74

10 Conclusion
This study shows that user workflow analysis can successfully be implemented by combining
the strength of Process Mining (PM) in extracting patterns from event log data and the
strength of Model-Driven Engineering (MDE) in standardized and automatic transformations.
We presented a User Workflow Analysis Tool (UWAT) which user workflow analyzers (i.e.,
content and software developers) can use to get additional insights in their content-intensive
application, referred to as System Under Analysis (SUA), in a standardized, flexible, and
user-friendly way.

This chapter first presents a summary of the report and the answers on the research
questions. Then, we present the implications and recommendations for content-intensive
applications. Finally, we present our contribution to science. In this chapter, also interesting
topics to explore in future work are mentioned.

10.1 Summary
Traditional methods to evaluate software are often not suitable for content-intensive
applications due to their inability to evaluate the behavior of users across the entire
application, because they are not scalable and because the people used in the test often do
not have the time to grasp the often complex content. In this research, we presented user
workflow analysis as a solution for these shortcomings. User workflow analysis helps content
and software developers of content-intensive applications to gain (additional) insights in the
behavior of the users and the effects of their work because of its ability to track the actual
steps of the user. Because it looks at the objective log data that includes all the different
steps the user takes, user workflow analysis has a broader scope than the details of an
interface, tracks behavior across the entire application and enables to draw conclusions
without interference of the researcher or the artificial setting. Due to these advantages new
insights can be gathered which is not possible in traditional methods like user testing. This
research shows that user workflow analysis has a lot of potential added value for improving
content-intensive applications.

We presented a design which uses PM and MDE to implement user workflow analysis. This
design presents a solution which can be fully automated, as soon as the necessary PM
support is there. A flexible solution is created where new functionality and analyses can
easily be added. Therefore, this design mitigates the shortcoming of traditional methods by
being more scalable and thus suitable for continuously improving the software, for example
easily observing how new versions of the content and/or software changes the experience of
the user.

PM is used to extract patterns from the event log data that are useful for the user workflow
analysis in this design. External tools can be used so the organization can benefit from the
experience of others. Thanks to the separation of the plugin specification from the analyses
defined for each SUA, other PM plugins can be easily selected when a better plugin
becomes available. PM tools however often have the disadvantage that it is left up to the
users to interpret the results and do potential post-processing on the results. This expects a
lot of knowledge about PM from the user of the tool. Every time manual intervention is
needed to perform the necessary actions. These shortcomings of many PM implementations
make PM less usable in many cases.

In this research, MDE is introduced to mitigate these shortcomings. MDE is a powerful
technique to standardize information and translate and model the information on an abstract
and more generic level. Before this research, this combination had not been extensively
researched and no references were found where it was used for configuring PM and
analyzing the results. In this research, we presented a design which can not only
automatically include PM in the analysis, it also offers the opportunity to standardize

75

analyses. In this way, only the implementer needs to specify the PM plugins needed for the
different analyses and implement the processing of their outcomes. All other potential user
workflow analyzers can benefit from these analyses in a user-friendly way without being
bothered with the technical implementation. Next to this, the MDE adaptation makes, as
soon as the PM execution can be called automatically, the solution fully automatable so no
human intervention is needed anymore after the initial implementation.

The presented design is to a high extent reusable for different content-intensive applications.
All metamodels are generic for each SUA, except for the SUA metamodel. Each SUA must
implement a part of the transformations, giving the SUA owner flexibility and the ability to
define their own options. The other parts of the transformations are generic and can easily
be reused. Besides that, the PM plugin specification is separated from the specification of
the user workflow analyzer, so not every SUA owner needs to reinvent the wheel when it
comes to PM. This generalization creates a balance between giving the SUA enough
flexibility to implement their own analyses on the one hand, and on the other hand giving
them the benefits of reusing proven concepts.

10.2 Implications and recommendations for content-intensive applications
User workflow analysis has a lot of added value for content and software developers of
content-intensive applications. Content and software developers gain additional insights in
how the content and software is used. They can use these insights to improve the software
and its content which can lead to a better user experience. We would recommend to
content-intensive applications like Mobina to extend their toolset with user workflow analysis
to improve the experience of their users and to let content and software developers get a
grip on their work and the effects on the users.

During the validation, the most positive aspects mentioned by potential user workflow
analyzers are the scalability and the objectivity of the approach. The analyses and settings
available in the UWAT are important for the satisfaction and the experienced added value.
Simple examples, as implemented in the prototype, already have added value. Options that
are more related to the (structure of) the software and content provide even more added
value. By selecting the correct options, content and software developers are expected to
greatly benefit from the UWAT.

The set-up of the design has some great advantages for the implementer of the UWAT in the
organization. Due to the generic set-up, many parts of the UWAT can easily be reused for
each SUA. The approach also provides a lot of flexibility. SUA owners have to implement
part of the transformations themselves, allowing them to control which analyses can be
executed and giving the flexibility to define their own options instead of being limited to a
predefined set. Additionally, new functionality and analyses can easily be added. One is also
flexible in the amount of PM and MDE to use in the implementation, i.e., for what to use
external expertise with PM and what to implement themselves with MDE. The preferences
and capacities of the implementer can be taken into account for this.

The solution presented gives organizations the opportunity to use external knowledge and
expertise thanks to the abstraction through MDE. There is a lot of research happening in the
area of PM and techniques and implementation are rapidly evolving. Using this design, this
knowledge and development can easily be used. When better algorithms and techniques
become available, these can also be easily integrated in the analysis, making the solution
future-proof.

76

The visualization is separated from the implementation in the design, so one can use a tool
that is familiar to the user workflow analyzers or that is integrated in the development
environment of the SUA to visualize the result and the set-up of the analyses. A request that
came up during the validation with potential user workflow analyzers was that interaction
with the results would be very interesting. This is a nice opportunity that should be explored
in future work.

Finally, most people that benefit from the UWAT are not involved with the technical
implementation or the characteristics of the design and its implementation. Only the
implementer needs to put the effort in implementing the analyses and selecting the correct
PM plugins, and afterwards all user workflow analyzers can benefit from user workflow
analysis in an approachable way. It makes this way of analyzing the software use available
to a whole new range of people including the people who have no experience in developing
and evaluating software.

10.3 Scientific contributions and future research
This research successfully shows how two techniques can be combined and how the
strength of one technique can mitigate the shortcomings of another technique. The strength
of standardization and generalization of MDE could perfectly fill the gap left by PM, namely
the configuration of the plugins and the interpretation and post-processing of the outcomes.
This shows that two powerful techniques can lead to an even more powerful combination.

For every combination of techniques, you need to consider to what extent to use each
technique. These techniques have an overlap in analyses they can both perform. It leads to
a discussion about what to build yourself, i.e., in the UWAT using MDE, and for what to rely
on external knowledge, i.e., using PM plugins. The design of this research has its strength in
enabling both possibilities and giving all the flexibility to the implementer. When selecting
techniques to combine, one should be aware that there could be a tradeoff between both
techniques.

We learnt several things about the techniques selected in this research. First, MDE is known
for its standardization and abstraction. This strength clearly came forward in this research,
due to our setup of the metamodels and transformations. MDE greatly empowered us to
create a flexible and reusable solution. Especially in use cases where this is desired, we
recommend using MDE. As an addition to this, we noticed that the selection of techniques
affects your solution. This is often in a positive way as with MDE, but it can also introduce a
bias in the selection of use cases. For example, because we used PM, analyses that benefit
from these techniques were selected. These are clearly experienced as added value, so this
is a good starting point for user workflow analysis. In future work, it might be very interesting
to also explore other techniques, e.g., machine learning, to enrich the analyses and compare
the strengths of even more techniques.

Independently of the design and the implementation, this study shows that user workflow
analysis is a promising area. Only the simple examples implemented already provided
added value. We therefore recommend to keep exploring this topic, since it can help a lot of
people to gather insights in the application. In this research we only considered content-
intensive applications. It would be very interesting to explore other areas of applications in
future work to see whether and how they can benefit from user workflow analysis and the
design presented in this thesis.

77

The design presented in this thesis is a basic design. The strength of the design is that it
embodies every core aspect that is hard to adapt later, like reusability and flexibility. On top
of this stable design, people can build extra aspects like versioning. We successfully
distinguished in this study core aspects, which were crucial in the design, from details which
can be added later when the first design is validated positively and is ready for the next
design cycle. In future work it is interesting to see how this basic design can be enriched with
other aspects that are more detailed or application-specific like versioning or content
configuration.

Since this was only an early design phase, the design and implementation were only
validated with a small data set and for one SUA. It will be very interesting to explore how the
design handles actual data sets which are evolving, and which are of a larger size, to
properly test the scalability and to see how the UWAT will work when completely
implemented. Additionally, it would also be interesting to implement it for multiple SUAs to
get a feeling to what extent the design is reusable, but also to get an initial idea on how
many similarities there are in what to analyze and which business objectives to answer. This
could shine a light on a lot of interesting analyses for the future.

Unfortunately, there is still a gap between design and implementation. For example, our
design proposes a fully automated solution where the UWAT can call the PM execution
without being bothered with the specifics of the PM implementation and outcomes. In
practice, not all PM executions can be called automatically. It is important to be aware of this
gap and when moving to the next step in the design cycle, to consider these aspects and
propose a way to fill this gap. We strongly recommend keeping the design as is and not
removing the external call to PM, since then you have the best solution when all
implementation parts are available. Therefore, in this case we would recommend in future
work to explore some sort of middleware which can be called by the UWAT and which can
execute the PM plugins and process the result in the correct way. This could also bring great
benefits to the PM research area, independently of their added value to the UWAT, since it
will allow for combinations of techniques, integration of tools and automatic and standardized
processing of the results.

We learned that it is not possible to validate all requirements based on design. Several of the
requirements depend on the implementation, i.e., the implementation determined whether
the requirement was fulfilled. Since the implementation can be different for each SUA, we
cannot establish that an UWAT based on this design will automatically fulfill all requirements.
This is not necessarily a problem, but one should be aware of this.

Finally, it would be very interesting to explore ways to let different SUAs reuse parts. This
can be on many different levels. A first step is to share parts of the implementation. Good
starting points for this are to share the PM plugin specifications with all the SUAs, or to
create a metametamodel for the SUA metamodel as a starting point for the SUA owner and
to standardize more of the transformations. A next step could be that entire analyses are
shared. Then, only the custom data set and SUA specifics must be added and for the rest a
standard analysis can be used. Eventually this could even lead to a party having an UWAT-
as-a-Service, where a third party implements the analyses and all SUAs can use these
analyses. In this way, the effort and complexity are limited to one party, and all different
SUAs can benefit from this.

78

References

[1] International Standards Organization, “ISO 9241-210:2010 Ergonomics of human-

system interaction -- Part 210: Human-centred design for interactive systems.”
International Standards Organization, 2010.

[2] K. Hornbæk, “Current practice in measuring usability: Challenges to usability studies
and research,” Int. J. Hum. Comput. Stud., vol. 64, no. 2, 2006.

[3] M. Maguire, “Methods to support human-centred design,” Int. J. Hum. Comput. Stud.,
vol. 55, no. 4, 2001.

[4] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability meanings and interpretations
in ISO standards,” Softw. Qual. J., vol. 11, no. 4, pp. 325–338, 2003.

[5] H. X. Lin, Y.-Y. Choong, and G. Salvendy, “A proposed index of usability: A method
for comparing the relative usability of different software systems,” Behav. Inf.
Technol., vol. 16, no. 4–5, 1997.

[6] S. Kujala, “Effective user involvement in product development by improving the
analysis of user needs,” Behav. Inf. Technol., 2008.

[7] J. J. Baroudi, M. H. Olson, and B. Ives, “An Empirical Study of the Impact of User
Involvement on System Usage and Information Satisfaction,” Commun. ACM - MIT
Press Sci. Comput. Ser., 1986.

[8] F. D. Davis and V. Venkatesh, “Toward preprototype user acceptance testing of new
information systems: implications for software project management,” Eng. Manag.
IEEE Trans., 2004.

[9] W. Hwang and G. Salvendy, “Number of people required for usability evaluation,”
Commun. ACM, 2010.

[10] S. Kent, Model driven engineering, vol. 2335. 2002.
[11] Object Management Group, “MDA Guide rev. 2.0,” 2014.
[12] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in

Practice, 2nd ed. Morgan & Claypool, 2012.
[13] A. M. Elsawi, S. Sahibuddin, and R. Ibrahim, “Model driven architecture a review of

current literature,” J. Theor. Appl. Inf. Technol., vol. 79, no. 1, pp. 122–127, 2015.
[14] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in model-driven

engineering,” IEEE Softw., vol. 31, no. 3, pp. 79–85, 2014.
[15] J. Bézivin, “On the unification power of models,” Softw. Syst. Model., vol. 4, no. 2, pp.

171–188, 2005.
[16] P. Mohagheghi and V. Dehlen, Where ss the proof? - A review of experiences from

applying MDE in industry, vol. 5095 LNCS. 2008.
[17] R. F. Paige, N. Matragkas, and L. M. Rose, “Evolving models in Model-Driven

Engineering: State-of-the-art and future challenges,” J. Syst. Softw., vol. 111, pp.
272–280, 2016.

[18] D. S. Kolovos et al., “A research roadmap towards achieving scalability in model
driven engineering,” in ACM International Conference Proceeding Series, 2013.

[19] W. Van Der Aalst et al., Process mining manifesto, vol. 99 LNBIP, no. PART 1. 2012.
[20] W. M. P. Van Der Aalst and S. Dustdar, “Process mining put into context,” IEEE

Internet Comput., vol. 16, no. 1, 2012.
[21] W. van der Aalst, Process Mining, Data Science in Action, Second edi. Berlin:

Springer, 2016.
[22] W. Van Der Aalst, “Process mining: Overview and opportunities,” ACM Trans. Manag.

Inf. Syst., vol. 3, no. 2, 2012.
[23] B. Keith and V. Vega, Process mining applications in software engineering, vol. 537.

2017.
[24] W. M. P. van der Aalst, “Business alignment: Using process mining as a tool for Delta

analysis and conformance testing,” Requir. Eng., vol. 10, no. 3, 2005.
[25] W. Poncin, A. Serebrenik, and M. Van Den Brand, “Process mining software

repositories,” in Proceedings of the European Conference on Software Maintenance

79

and Reengineering, CSMR, 2011.
[26] W. Van Der Aalst, “Big software on the run: In vivo software analytics based on

process mining (Keynote),” in ACM International Conference Proceeding Series,
2015, vol. 24–26–Augu.

[27] V. A. Rubin, A. A. Mitsyuk, I. A. Lomazova, and W. M. P. Van Der Aalst, “Process
mining can be applied to software too!,” in International Symposium on Empirical
Software Engineering and Measurement, 2014.

[28] I. Ailenei, A. Rozinat, A. Eckert, and W. M. P. Van Der Aalst, Definition and validation
of process mining use cases, vol. 99 LNBIP, no. PART 1. 2012.

[29] W. M. P. Van Der Aalst, Business process simulation revisited, vol. 63 LNBIP. 2010.
[30] M. Song and W. M. P. Van Der Aalst, “Supporting process mining by showing events

at a glance,” in WITS 2007 - Proceedings, 17th Annual Workshop on Information
Technologies and Systems, 2007, pp. 140–145.

[31] J. Simonin, J. Soulas, and P. Lenca, “Activity Monitoring Process based on Model-
Driven Engineering-Application to Ambient Assisted Living,” J. Intell. Syst., vol. 24, no.
3, pp. 371–382, 2015.

[32] S. Bernardi, R. P. Alastuéy, and R. Trillo-Lado, “Using process mining and model-
driven engineering to enhance security of web information systems,” in Proceedings -
2nd IEEE European Symposium on Security and Privacy Workshops, EuroS and PW
2017, 2017, pp. 160–166.

[33] A. Mazak and M. Wimmer, “On marrying model-driven engineering and process
mining: A case study in execution-based model profiling,” in CEUR Workshop
Proceedings, 2016, vol. 1757, pp. 78–88.

[34] A. Mazak, M. Wimmer, and P. Patsuk-Bösch, Execution-based model profiling, vol.
307. 2018.

[35] I. Sommerville, Software engineering, 7th ed. Addison-Wesley, 2004.
[36] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and

Techniques, 1st ed. Wiley Publishing, 1998.
[37] TUe, “ProM.” [Online]. Available: www.promtools.org. [Accessed: 08-Jan-2018].
[38] Fingent, “Off-the-shelf vs. Custom Software : Making the Right Choice for Your

Business.” [Online]. Available: https://www.fingent.com/blog/off-shelf-vs-custom-
software-making-right-choice-business. [Accessed: 12-Jul-2018].

[39] PCD, “The Pros and Cons of Custom Software vs. Off-the-Shelf Solutions.” [Online].
Available: http://pcdgroup.com/the-pros-and-cons-of-custom-software-vs-off-the-shelf-
solutions/. [Accessed: 12-Jul-2018].

[40] I. Sommerville, Software Engineering. 2010.
[41] E. S. De Almeida et al., The domain analysis concept revisited: A practical approach,

vol. 4039 LNCS. 2006.
[42] J. Li, M. Torchiano, R. Conradi, O. P. N. Slyngstad, and C. Bunse, A state-of-the-

practice survey of off-the-shelf component-based development processes, vol. 4039
LNCS. 2006.

[43] X. Zhang and H. Pham, “Software field failure rate prediction before software
deployment,” J. Syst. Softw., vol. 79, no. 3, pp. 291–300, 2006.

[44] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering. 2012.

[45] R. Wieringa, Design Science Methodology for Information Systems and Software
Engineering. 2014.

80

Appendix A. Business objectives Mobina

Main objectives for content developers:

1. Is it clear what we mean?
a. Do they read the description?
b. Do they open the information tab?
c. How long do they stay at the same model element?
d. Do they come back to the same place?

2. Can the user find what he/she is looking for?
a. What is the path the user follows?
b. How do they come to a certain place?

3. Does it trigger action?
4. Is it converging?
5. Completeness of the model?

a. Is there too much in the model?
b. Is there too little in the model?
c. What subprocesses or documents are used?
d. What process-document relations are used most often?

6. Who uses what?
a. What roles go to what processes/documents?

Main objectives for software developers:

7. Is the reference model functionality correctly structured?
a. Are the tabs in the correct order?
b. Is the description on top useful?
c. Is the information correctly structured and separated?
d. How often are certain functionalities/buttons used?
e. How do they go through a reference model?
f. What is the entry point of the model element?
g. Do they go directly to sub processes or first click the process itself?
h. What are the number of steps/clicks necessary to reach the destination?

8. What leads to action with the user?
a. What do people do before they place a comment?
b. What do people do before they give a rating?
c. What do people do before they enter a keep or improve?
d. What do people do when they get tagged?
e. What kind of users react to each other?

9. How performs the help functionality within the software?
a. What is the usage of help buttons and hovers?
b. How much help is needed for functionalities/per tab?
c. Where is the most help needed?
d. What are the actions after the use of the help button?

10. What leads to a decision for the critical aspects?
a. How long does the decision take?
b. What actions does the user do before making a decision?

11. What is the added value of the supporting functionality in the collaboration
environment?

a. What tags are used?
b. What types of tags are used?
c. Are more ‘I agree’ or ‘I disagrees’ given?

12. Is the separation between Keep-Improve and Ratings clear?
a. Do people use both?
b. Do people collaborate within the keep and improves?
c. Do people often switch between those?

81

13. How we can support the user after login?
a. What are the first actions after login?
b. Do people often go the same model elements in different sessions?
c. What menu items are used?

Main objectives for both content and software developers:

14. Is the reference model correctly structured (in the software)?
a. Do people use the directory often?
b. Do people use both processes and documents?
c. Do people go the processes in earlier sessions and then to documents in later

sessions?
d. Do people come together in the documents?
e. Do people jump more over levels or more over documents?
f. Do people go back and forth between model elements/in the directory?
g. Do they look at the related processes of the documents?
h. Do people go directly to the document overview from the menu?

82

Appendix B. Data collection document for the participants

83

84

85

86

87

