
Caching in 5g networks

June 30, 2017

Ruben de Baaij
supervised by
Jasper Goseling, Berksan Serbetci
University of Twente

Abstract

Efficient ways of caching, saving files in local devices, is becoming more important. Especially with the
upcoming 5g network. In this paper a way of distributing files over networks of caches is modeled and
analyzed.

1. Introduction

Internet traffic becomes more and more busy
every year. More files are being requested and
shared constantly. The existing digital infras-
tructure is struggling to keep up, and with the
upcoming 5g network the demand of files in-
creases even more. This is why a lot of research
is going on to find new ways of transferring
files. One of the methods to deal with the huge
amount of file requests is the use of caches.

Caching is temporarily storing much re-
quested data inside a memory devices called
caches. When a file is requested it will be an-
swered by a cache in which the file is stored,
it will send the file to the user that requested
it. This is faster than getting the file from the
original server. Saving files in caches is a way
to cut out a lot of internet traffic and more file
requests can be answered.

Caches, also called base stations (BS), can
be located anywhere around a user. Often a
user is able to connect to multiple caches in
the area. By an efficient distribution of files
over the caches these multiple caches in range
can be taken advantage of. There is no need
to store the same file in every cache a user can
connect to. It is enough to answer the request
when a file is stored in just one of the caches
in the area.

To find such a distribution of files a lot of
questions come up. Which files have to be
stored in which cache? In this paper the prob-
ability that a request cannot be answered will
be minimized. So the probability a user will
recieve the file he requests will be optimized.

2. The Model

To find the optimal distribution of J files over
N caches the following function f (B) is used
as an objective function in a mixed integer opti-
mization system. The function gives the proba-
bility a users’ file request is not answered using
the file distribution matrix B.

The vector a represents the probabilities a
file is requested. These probabilities are gener-
ated using a zipf distribution (1) with parame-
ter γ.

aj =
j−γ

J
∑

j=1
j−γ

(1)

This is possible because a lot of internet
traffic is caused by a relative small subsection
of all the files available. This zipf distribution
can been seen as some sort of popularity distri-
bution. The more popular the file, the higher
the probability it will be requested.

1

The vector p represents the probabilities of
a user being in an area where he can connect
to the caches in s. Θ is the set of all the combi-
nations of caches a user can be in range of at
once.

Furthermore b(m)
j indicates if file j is stored

in cache m. It equals 1 if the file is saved, and 0
if it is not saved. These indicators are stored in
the N − by− J distribution matrix B. In table
1 of the appendix an overview of the defined
variables is given.

f (B)=
J

∑
j=1

aj ∑
s∈Θ

ps ∏
m∈s

(1− b(m)
j) (2)

Minimizing this function will give the op-
timal distribution matrix B. This optimization
system is mixed integer because of the product

∏
m∈s

(1− b(m)
j) which can be either zero or one.

Caches are limited in the amount of files
they can store. A cache cannot store every file
avaible, therefore every cache has the capac-
ity to store K files. This is why the objective
function has to be minimized subject to the
following equality constraint for every cache.

min f (B)

s.t. b(m)
1 + . . . + b(m)

J ≤ K (3)

2.1. Convexity

Solving this optimization problem is not yet
possible because the model is not convex.
Therefore the following variable is introduced.

Zs = ∏
m∈s

(1− b(m)
j) (4)

This variable Zs equals 0 if file j is stored in
one or more caches in s.

Such a variable can be written differently,
which will yield the same result, but in a con-
vex optimization system.

If file j is not stored in any caches in s then
all (1− b(m)

j) terms are 1, and so the following
equation holds.

∑
m∈s

(1− b(m)
j) = |s| (5)

From (5), if file j is not stored in any cache
of s.

∑
m∈s

(1− b(m)
j) + 1− |s| = |s|+ 1− |s| = 1 (6)

Now if file j is stored in k ≥ 1 caches in s
then the next equations hold.

∑
m∈s

(1− b(m)
j) + 1− |s| = |s| − k + 1− |s| (7)

|s| − k + 1− |s| = −k + 1 ≤ 0 (8)

So from (7) and (8), if file j is stored in one
or more caches in s.

∑
m∈s

(1− b(m)
j) + 1− |s| ≤ 0 (9)

And so (4) can be written written as follows

Zs = max{0, ∑
m∈s

(1− b(m)
j) + 1− |s|} (10)

Because written like this, (10) has the same
properties as (4).

Zs =

{
1 If file j is not stored in any cache of s
0 If file j is stored in one or more caches of s

Because of the new Zs the objective function
of the model now satisfies more constraints and
the optimizations system is now convex. It is
now solvable.

f (B)=
J

∑
j=1

aj ∑
s∈Θ

psZs (11)

min f (B) (12)

s.t. b(m)
1 + . . . + b(m)

J ≤ K

2

3. Solving the model

The model is solved in MATLAB, using a soft-
ware package called ’cvx’. This package is
able to solve all kinds of optimization systems,
using different solvers for different forms of
systems.

To solve the model, a mixed integer opti-
mization system, the solver Mosek is used. The
objective function and it’s constraints are both
given as an input.

The code written in MATLAB generates the
optimal distribution matrix B from the users
input variables. These input variables describe
the amount of caches and files, and the range
and capacity of every cache. From this the code
generates and plots a random network of the
caches, and solves the optimization system.

The locations of the caches can also be spec-
ified as input, instead of a random locations,
so real networks can also be solved. This has
been done for an existing network of caches in
Berlin.

In figure 1 a plot of a small network con-
sisting of six caches and eight files can be seen.
Every cache has a capacity of three files. As
seen in the corresponding distribution matrix
(13), the files with the lowest request probabil-
ity does not get stored much.

Figure 1: A small network

B =

1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0

 (13)

In figure 2 the locations of caches of a real
network in Berlin are plotted. This network
consists of 62 caches, each with a capacity of
three and range of 700, and 200 files. Unfor-
tunately the network is too big to solve in an
appropiate amount of time, so the results are
run with less files, namely 40. The resulting dis-
tribution matrix has dimensions 62− by− 40,
and the resulting probability a request is not
answered is 0, 2177.

Figure 2: Berlin network

4. Analysis

When solving the model every entry in the dis-
tribution matrix B is a variable. So a network
consisting of N caches and J files has N ∗ J
variables. When the network is quite small the
solving of the model does not take too much
time, but when the network is big the runtime
of the code can increase drastically. In this
section there will be looked at the change of
probabilities, andd also at how much the run-
time increases when parameters like caches,
files and range are changed.

These tests in this section have all been run
with a cache capacity of three files and a range
of three. (Except for figure 8.) Because of the

3

randomness of the cache locations, to make the
result more robust, every network has been ran
five times and the result is their mean.

In the appendix all the figures’ correspond-
ing tables can be viewed.

4.1. Miss probabilities

In figure 3 some networks with different
amount of caches and their respective prob-
abilities that a file request cannot be answered,
so called ’miss probabilities’, are graphed while
adding more files to the networks.It can be seen
that if a network has fewer files, the probibility
of missing a file is lower. This is makes sense
because there are fewer files to request.

Figure 3: Miss probabilities adding files

When a network increases in the amount of
caches the miss probability decreases. This is
also seen in figure 4.

Figure 4: Miss probabilities adding caches

4.2. Simple distribution

Most often existing caches save only the few
most popular files. Such a simple distribution
matrix consists of only 1’s the first K (cache ca-
pacity) columns and zeros in all the remaining
columns. This way of distributing files is very
inefficient when a lot of caches overlap. Many
files will be saved in multiple caches in range
of a user.

In figure 6 the change of the miss probabil-
ity for a network with 10, 25, 50 and 75 caches
and a cache capacity of three, are graphed
while increasing the amount of files. The
result is the same for each network because
when only the first three most popular files are
stored, no matter how many caches their are,
in every area the miss probability is the same.

Adding cases to a network is only useful
when they save more different files.

4

Figure 5: Miss probabilities adding files using a simple
distribution strategy

4.3. Runtimes

For big networks the runtime of the code will
be very long. In figures 6 and 7 the increase
of runtime can be seen when adding files and
caches, for networks with different amount of
caches.

Figure 6: Runtime increase while adding files

The more caches in a network the steeper
the increase in runtime when adding files.

Figure 7: Runtime increase while adding caches

The increase of runtime when adding files
to a networks seems to grow almost linear,
while when adding caches to a network the
runtime seems to increase exponentially.

4.4. Cache ranges

The range of caches is an important factor
when distributing files over a network. When
the cache ranges are large there will be many
overlapping areas, causing more different files
to be saved. For the graph of figure 8 networks
with 10, 25 and 50 caches, all with 25 files, are
tested.

Figure 8: Change of miss probabilities when cache range
increases

As expected the miss probabilities decrease
while the cache range becomes larger.

5

4.5. Variables and Constraints

When running the code ’cvx’ calculates the
amount of variables and constraints in the opti-
mization system. These depend on the amount
of caches and files in the network, but also on
the amount of overlapping areas.

For the figures in this section networks were
used in which there where no overlapping ar-
eas. Every cache has their own area and no
caches caused overlapping areas.

This has been done because when there are
overlapping areas the variables and constraints
of the system change a lot. Using random
networks, causing random amounts of over-
lapping areas, will give many different results
because of this.

In the figures 9 and 10 the increase of vari-
ables and corresponding amount of constraints,
while adding more files to the networks, are
graphed. Both seem to increase linear although
the amount of variables increase way faster
then the constraints.

Figure 9: Variables

Figure 10: Constraints

The runtimes for generating a distribution
for the non overlapping networks are given in
figure 11 and 12.

Figure 11: Runtimes adding files

Figure 12: Runtimes adding caches

6

5. Discussion and Conclusion

By distributing files over a network of caches
using the method described in this paper some
internet traffic will be relieved from the current
infrastructure.

Using caches efficiently does have a signifi-
cant result on the amount of file requests that
can be answered. The more caches, and the
larger the their range, the more files can be

saved and the more file requests will be an-
swered.

Calculating a distribution for a big network
gets complex really fast, but by fine-tuning the
code used this will get a lot better. The vari-
ables and constraints for the model described
grow fast, especially in big networks. If files
will be distributed in this way cache networks
in the future will be way more efficient then
they are now.

7

References

[1] Jasper Goseling
Berksan Serbetci
Stochastic Operations Research
University of Twente
Konstantin Avrachenkov, INRIA Sophia Antipolis
A Low-Complexity Approach to Distributed Cooperative Caching with Geographic Constraints On
Optimal Geographical Caching in Heterogeneous Cellular Networks

[2] Michael Grant and Stephen Boyd
CVX: Matlab Software for Disciplined Convex Programming, version 2.1
http://cvxr.com/cvx
March 2014

[3] Negin Golrezaei, University of Southern California
Andreas F. Molisch, University of Southern California
Alexandros G. Dimakis, Viterbi School of Engineering, University of Southern California
Giuseppe Caire, Viterbi School of Engineering, University of Southern California
Femtocaching and Device-to-DeviceCollaboration: A New Architecture for Wireless Video Distribution
2013

[4] Nicaise Choungmo Fofack, Sara Alouf
Modeling modern DNS caches 2013

[5] Arpan Chattopadhyay, BartÅĆomiej BÅĆaszczyszyn
Gibbsian On-Line Distributed Content Caching Strategy for Cellular Networks 2016

8

http://cvxr.com/cvx

6. appendix

Figure 13: Miss probabilities change

Caches/files 50 100 150 200
10 0.557 0.608 0.641 0.658
25 0.481 0.551 0.560 0.5862
50 0.338 0.428 0.4525 -
75 0.235 0.337 0.3836 -

Figure 14: Comparison to most popular distribution

Caches/files 50 100 150 200
10 0.593 0.647 0.672 0.688
25 0.593 0.647 0.672 0.688
50 0.593 0.647 0.672 0.688
75 0.593 0.647 0.672 0.688

Figure 15: Runtime change

Caches/files 20 30 40 50
5 2.406 4.431 6.037 7.795
10 9.532 12.576 18.658 23.413
15 21.802 29.945 45.954 62.950
20 45.947 55.641 79.329 102.515

Figure 16: Change of miss probabilities when cache
range increases

Range/caches 10 25 50
2 0.4938 0.4114 0.2501
5 0.3858 0.2290 0.1414
10 0.3083 0.1362 0.0726
15 0.2366 0.1187 0.0711

9

Table 1: Legenda

Symbol Description
C Set of all files
J Amount of files
cj File j
aj Probability file j is requested
N Amount of caches
K Capacity of a cache
m Cache m
Θ Set of all possible combinations of caches that can be in range of an area
s Set of caches in range of an area
As The area in which all caches in s are in range
ps Probability a user is in an area in range of the caches in s
Acov The total area all caches cover
b(m)

j File storage index of file cj in cache m
B Storage policy matrix (NXJ)
f (B) Probability a requested file is not found

Table 2: Variables

Caches/files 10 25 50 100 150 200
5 155 v 55 c 380 v 130 c 755 v 255 c 1505 v 505 c 2255 v 755 c 3005 v 1005 c
10 310 v 110 c 760 v 260 c 1510 v 510 c 3010 v 1010 c 4510 v 1510 c 6010 v 2010 c
25 775 v 275 c 1900 v 650 c 3775 v 1275 c 7525 v 2525 c 11275 v 3775 c 15025 v 5025 c
50 1550 v 550 c 3800 v 1300 c 7550 v 2550 c 15050 v 5050 c 22550 v 7550 c 30050 v 10050 c
75 2325 v 825 c 5700 v 1950 c 11325 v 3825 c 22575 v 7575 c 33825 v 11325 c 45075 v 15075

Table 3: Runtimes

Caches/files 10 25 50 100 150 200
5 0.7423 1.6297 3.1677 6.1373 9.3968 12.9194
10 1.3107 3.0522 6.0692 12.4735 19.3260 27.5507
25 3.0581 7.6029 15.7807 36.2222 57.8310 83.7663
50 6.1947 15.8061 36.0718 83.0759 140.2921 206.0263
75 9.3152 25.4866 59.2876 140.3925 242.3616 367.4525

10

	Introduction
	The Model
	Convexity

	Solving the model
	Analysis
	Miss probabilities
	Simple distribution
	Runtimes
	Cache ranges
	Variables and Constraints

	Discussion and Conclusion
	appendix

