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Management Summary

Introduction and Problem Analysis

University Medical Center of Utrecht’s (UMCU) brain division houses three clinical
wards and two Medium Care Units (MCUs). Two of these clinical wards and both MCUs
are central in this research. In these wards there is too much variability in bed utilization,
and too many patients are being declined due to a fully occupied ward. Besides that,
a lot of incident reports are due to communication errors between the professionals of
the different wards. To solve these problems, the management has decided to merge
both MCUs and clinical wards. This intervention alone would not solve all problems.
After a thorough analysis, we have discovered that the management lacks understanding
of the (quantitative) relation between the bed occupancy and bed blocking probability.
In order to solve the problems mentioned, we thus need to provide information on the
optimal bed capacity and its relation with relevant Key Performance Indicators (KPIs).
The central problem is therefore formulated as:

“What is the optimal number of beds for the new wards, taking the relevant KPIs into
account?”

Method

The foundation of this research is a thorough data analysis. Using UMCU’s data cube,
we investigated the arrival and length of stay data of the year 2017 for all four wards.
With the results of the data analysis, we derived the current performance of the wards
with respect to bed occupancy and blocking probability. According to the literature,
the blocking probability should be the central KPI when determining the bed capacity.
The target blocking probability for the new clinical ward is set to 5%, and for the MCU
to 3%. The current performance of the clinical wards is 3.4 % (D340&D370) and 10.9%
(D350). For the MCUs this is 7.5 % (D351) and 23.5% (D361). To solve the central
problem, we apply a variety of mathematical optimization techniques. We use queueing
theory to derive the relation between the blocking probability and bed occupancy for
both the new MCU and clinical ward. Furthermore, we use mathematical programming
to alter the elective arrivals of the clinical ward such that the variability is reduced, and
use simulation modelling to see the possible gain of this intervention.
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Results

Using the models of the previous section, we calculated the relation between the blocking
probability and bed occupancy given a number of beds. This relation is pictured in
Figure 1.

Figure 1.: The relation between the blocking probability and bed occupancy for a given
number of beds for the MCU (left) and clinical ward (right).

From this figure we can derive that, if we want to meet the target, we need at least 16
beds for the MCU resulting in a bed occupancy of about 62%. For the clinical ward we
pictured both the current situation (dark colors) as well as the situation after altering
the elective arrivals (light colors). To meet the target blocking probability we now need
28 beds with a bed occupancy of 74%. If however the management is able to stabilize
elective arrivals through the week (including the weekend), we need 27 beds for a lower
blocking probability resulting in a bed occupancy of about 79%. Furthermore, we remark
that for all set-ups altering the elective arrivals results in a higher bed occupancy and
lower blocking probability.

Recommendations

We have translated the described analysis into workable recommendations which are
presented below.
• We recommend to base the number of required beds for the new ward and MCU on a
quantitative method as ours rather than solely using a target occupancy and averages.
Given the desired rejection rate of 3% for the MCU and 5% for the clinical ward, we
advise a bed capacity of 16 and 28 beds respectively.
• The variability in elective arrivals should be reduced as much as possible. Ideally, the
number of elective arrivals should be equal per day per week.
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• Capacity decisions should be based on the entire distribution of the relevant variables
rather than averages (to avoid the well-known “the flaw of averages”). This means
that UMCU should use decision models (e.g., from Operations Research) for capacity
problems, that use the underlying variability of the data instead of simple rules of thumb
that only use averages.
• Improvements should be made regarding the available data. The number of rejections
should be recorded. This will make future capacity decisions more reliable. Furthermore,
data should be entered more accurately. It could however be wise to explain to the
employees why correct data matters, and that (capacity) decisions based on correct data
can actually reduce the workload. Besides that, a possible solution is to automatize
registration of e.g., admission and discharge time.
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Definitions, Abbreviations and Notation

Definitions

• Clinical ward: A room or group of rooms with beds to provide regular care to
patients.
•MCU/Step Down Unit: Medium Care Unit; a special ward providing care of a level
between the Intensive Care and the clinical ward. Within the Neurology & Neurosurgery
department, the MCU also has a stroke unit for emergency patients.
• Bed blocking probability / Probability of refusal: The probability that a patient
can not be treated where he/she should be treated because all beds are occupied.
• The management: The main group of stakeholders within UMCU who are entitled
to make the decisions, for example about bed capacity, the decision for which this thesis
gives advice.

Abbreviations

• ALOS: Average Length Of Stay
• CI: Confidence Interval
• CV: Coefficient of Variation
• ICU: Intensive Care Unit
• KPI: Key Performance Indicator
• LOS: Length of Stay
• MCU: Medium Care Unit
• MOL: Modified Offered Load
• MSER: Marginal Standard Error Rule
• N&N:Neurology and Neurosurgery
• OR: Operations Research
• PCIR: Patient Care Incident Report
• SMEs: Subject Matter Experts
• UMCU: University Medical centre of Utrecht
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Notation

Symbol Definition

n The number of replications in a simulation study.

X̄ Sample mean.

S Sample standard deviation.

τ Lexis ratio.

k,K Subgroup and total number of subgroups respectively.

t, T
Moment in time (e.g., day of the week) and
total time span under consideration respectively.

s, c
Number of beds under considerations,
and maximum number of beds respectively.

Bt, B̄ Blocking probability on t, average blocking probability.

µk
Parameter of hyperexponential distribution,

µ−1
i is the mean of subgroup k.

pk
Parameter of hyperexponential distribution,
pk is the fractional size of subgroup k.

λt Arrival rate on time t.

Λ Total arrival rate over T .

mk(t) Offered load (i.e., patients present) of subgroup k on time t.

m(t) Total offered load on time t.

m∗(t) Target load on t.

cit Constant.

X̄ Sample mean.

S Sample standard deviation.

tn−1,1−1/2α
The Student-t distribution with n− 1 degrees of freedom,
and a significance level of α.

Table 1.: Definitions of mathematical symbols.
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1. Context Analysis and Problem
Formulation

In this chapter we describe the problem statement. We use a problem cluster by which
we analyse what the core problem is, which will be the common thread throughout
thesis.

1.1. The University Medical centre of Utrecht

University Medical centre of Utrecht (UMCU) is one of the eight university medical
centres of the Netherlands. UMCU employs more than eleven thousand people, and
provides care to more than thirty thousand patients a year. Within UMCU, there are
twelve divisions corresponding to their function. One of these divisions is the brain di-
vision. The brain division is divided into four departments: Psychiatry, Neurology and
Neurosurgery, Rehabilitation Physiotherapy Science & Sport and Translational Neuro-
science. This assignment takes place in the Neurology and Neurosurgery department
(N&N). The N&N department is divided into seven care units which groups patients
according to their clinical status of diagnoses, see Figure 1.1.

1.1.1. Wards

Within the N&N department, there are three clinical wards and two Medium-Care Units
(MCUs). For this assignment, two clinical wards and both MCUs are considered. These
wards correspond to one or multiple cost centre(s)1. The distribution of care units over
the different wards and the wards’ cost centres are given in Table 1.1.

1.1.2. Merger

The management of the N&N department has encountered several problems. There is
a deficit of 2.3 million euros, nurses experience a lot of variability in bed demand and
patients are being refused due to lack of beds at certain moments. Furthermore, there
are a lot of Patient Care Incident Reports (PCIR)2 regarding communication between
(medical) professionals. As an attempt to solve these problems, the management has
decided to merge two of its wards (C3 East and D3 West) and join its MCUs. The
required capacity is yet unknown, and is one of the reasons for this research.

1kostenplaats
2Meldingen Incidenten Patintenzorg
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1. Context Analysis and Problem Formulation

Cost Centre Care Units

Clinical Ward C3 East D340&D370
General Neurology (GN)
Neuro Muscular Diseases (NMD)
Functional Neurosurgery and Epilepsy (FNE)

Clinical Ward D3 West D350 General Acute Neurosurgery (GAN)

MCU C3 West D361 Cerebro Vascular Diseases (CVD)

MCU D3 West D351 Primarily General Acute Neurosurgery

Table 1.1.: The link between the wards, the care units and the cost centres of the Brain
division.

The relation between and context of the mentioned problems is further investigated
within the next section.

Figure 1.1.: The organigram of the Brain division of UMCU.
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1.2. Problem Definition

1.2. Problem Definition

This section explains the managerial problems that triggered this research. Subsequently,
it will be clarified how these problems lead us to the core problem. The two management
problems that are central in this assignment are

“There are patients who are declined or placed within another division” -and-
“There is too much variability in bed demand”

These problems signaled the management that the care giving process is not efficient
enough. Since the causes of these managerial problems are yet unclear, we need to
distract the core problem. To do so, we will use the method provided of Heerkens
and Van Winden (2011:44-50). Roughly this method consists of analyzing the problems’
context by means of a problem cluster, and then select the core problem based on several
criteria. The graphical illustration of the problem cluster can be found in Appendix A.
The explanation of this figure is given in the text below. To start, we analyse the
management problems and subsequently how they share partly the same cause, which
happens to be the core problem of this assignment.

1.2.1. Rejection of Patients

The fact that patients are declined is caused by having no unoccupied beds which is
in turn caused by the fact that on a certain moment, the number of beds is too low.
This does not necessarily mean that the number of beds should be higher, since the
bed demand fluctuates over time. However, to correctly determine the number of beds
needed good understanding of the relation between the fraction of patients that are
declined and the bed utilization is required. The management has indicated that they
lack this knowledge. For instance, the management does know that it does not want
too many patients to be refused but they can not tell the desired and current number
of refusals. After all, having no declined patients is not reasonable due to the stochastic
nature of patient arrivals. The above boils down to an absence of knowledge about
the trade-off between bed utilization and patient refusals. Due to this lack of insight, it
could be that the number of beds is too high because the number of rejections is actually
(very) low. This would lead to overcapacity which is a waste of money. This in turn
leads to an increase of the deficit. All in all, the management needs understanding of
the bed utilization and capacity and its relation with patient refusals, because now it is
likely that the number of beds is either too high or too low.

1.2.2. Variability in Bed Demand

The experienced variability of bed demand makes it hard to determine the right number
of nurses, and therefore the department is likely to have either too many or too few
nurses. The former is unwanted because then the hospital wastes money, and the latter
because having too few nurses increases their work pressure which reduces the quality
of care (Lang et al.,2004).
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1. Context Analysis and Problem Formulation

We observed three causes of the variability of bed demand. The first is that admissions
take place before discharges. This causes peak demand for beds, which increases the
variability. The second is that the current wards and MCUs are too small. This is an
additional reason that led to the decision to merge both wards and MCUs. The third
reason is that it is not entirely clear how to measure bed occupancy and it means. One
can thus say that the management lacks knowledge about bed capacity management.
There is also no knowledge about which type of patients (elective or scheduled) exactly
cause the variability in bed demand.

The lack of insight into the bed capacity has in turn several causes. One of them
is that there is no registration of beds that are closed that day. This means that the
utilization of beds as reported by the information system is much lower than in reality.
Another cause is that there is variability in the arrival of patients which makes the
process complex.

1.2.3. The Core Problem

The next step is to select the core problem. We will do so following the guidelines of
Heerkens and Van Winden (2011:48). The main idea is to go “back” in the problem
cluster to the first problem that can be solved and has no external causes. This leaves us
two candidates: “There is no registration of beds that are closed” and “There is a lot of
variability in the arrivals of patients”. The first is not suitable as this is something the
department is already working on. The latter is not suitable because we cannot change
the way most patients arrive. Therefore this problem is not really solvable which is why
these are not suitable candidates (Heerkens and Van Winden, 2011:48). The variability
of elective patients could be decreased when using a better way of scheduling based on
the pattern of emergency patients, but the department would first prefer to have better
insight in what would be the optimal number of beds (where these patterns probably
also play a role). This argument, together with the fact that the first candidate is not
suitable, results in moving forward one step in the cluster. Since, as said before, the
management is eager to gain this knowledge and it is the first suitable problem in the
cluster we decided let this be the core problem. Resembling the above, the core problem
is formulated as:

“The management does not have enough understanding of the different variables that
play a role when determining the bed capacity”

Solving this problem will help the management to decide on the bed capacity for the
merged ward and joined MCU.

1.2.4. Scope

This section serves to define the scope of this research which is determined using the
framework of Hans et al.(2011). A picture of this framework is given in Figure 1.2.
The research focuses on determining the bed capacity for the new ward and the MCU.
Following the framework this corresponds to “Resource capacity planning” on strategic

18



1.3. Knowledge problem and Research Questions

level. Using the framework, we underpin further scope conditions. First of all, the
implementation and evaluation is not part of this assignment. The management has
indicated that the advice will (most likely) be taken into account when the rebuilding of
the nursing wards and MCUs takes place. This will not be until 2019, which is outside the
time window of this assignment. Secondly, the scheduling of personnel is not taken into
account. This corresponds well to the framework of Hans et al.(2011), since personnel
planning belongs to the “Offline Operational” level. Third, the allocation of care units to
wards is assumed to be fixed. The management has indicated that the decision making
regarding the assignment of care units to wards has been completed and should not be
revised. Fourth, the research most likely will not entail admission scheduling which is
planning on the tactical level (Hans et al.,2011). The number of admissions allowed
heavily depends on other parts of the chain, like operation room planning. Studying
this aspect is not feasible within the given time frame as it is a fairly complex process.
The intended deliverable is, as stated in the previous subsection, insight into the bed
utilization and its relation with relevant variables given historical data. It will not be a
real time tool to plan day-to-day bed capacity.

Figure 1.2.: The framework of Hans et al. (2011).

1.3. Knowledge problem and Research Questions

1.3.1. Research Aim

The aim of this research is to provide understanding of the bed utilization and capacity.
After using the results presented in this thesis, the management can underpin their
decision on the number beds. Solving the core problem will result in less variability in
bed demand and a better understanding of how many patients are declined.
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1. Context Analysis and Problem Formulation

1.3.2. Knowledge problem

Solving the problem stated in the previous section requires knowledge. This knowl-
edge will be acquired by following the information strategy when one faces a knowledge
problem. The knowledge problem in this assignment is formulated as:

“What is the optimal number of beds for the new wards taking the relevant KPIs into
account?”

Answering this question will provide the required understanding of the bed capacity
and occupancy.

1.3.3. Research Questions

To solve the knowledge problem, we break the problem down into smaller sub prob-
lems which are presented below research questions. These research questions are the
foundation of this thesis.

Current situation

First, we have to get insight about the current situation. The management indicated
that there is no consensus over how many beds are optimal. A first step to provide
insight is to determine what “optimal” in this context exactly means. The first research
question serves to shed some light on this:
1: What is the current performance with respect to bed capacity on both

wards and MCUs? (Ch.2)
a: What are the most important Key Performance Indicators (KPIs) regarding
bed capacity, and how do both bed wards and MCUs perform now?
b: What are the desired levels of the KPIs ?

Then it should investigated what the arrival process looks like. What are the care
pathways? Is there a difference between elective and emergency patients? One should
also think of the statistical properties of the arrival time- and service time distribution.
The next question deals with these issues.

2: What are the characteristics of the patient related processes? (Ch.2)
a: What are the patient care pathways?
b: What are the statistical properties of the arrival and service process according
to historical data?

3. What are the characteristics of the clinical ward and MCU after the
merger? (Ch.3)

Literature

To prevent ourselves from reinventing the wheel, we look at work from other researchers
about this topic. The one question we answer in this section is:

20



1.3. Knowledge problem and Research Questions

4: How to correctly determine the right number of beds on wards and
MCUs according to the literature?(Ch.4)

Desired situation

To apply the theory and models, we will try to estimate their performance. To do so,
we will test different configurations. Thereafter we will summarize the findings of this
research with the final research question. Therefore, the last two research questions are:

5: What is the quantitative relation between the relevant KPIs when de-
termining the required bed capacity? (Ch.5)

a: What are the scenarios to test?
b: How do these scenarios perform?

6: What are the practical insights gained from this research? (Ch.6)
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2. Analysis of the Current Situation

In this section we investigate the current situation on the discussed wards and MCUs.
First, the patient flows towards and in between the wards and MCUs will be discussed.
Then, relevant concepts and Key Performance Indicators (KPIs) will be defined. Sub-
sequently we will use UMCU’s database, called the data cube hereafter, to analyse the
arrival process in more depth and develop understanding about the length of stay of
the patients. The descriptives of the data used from the data cube can be found in the
caption of the relevant figures and tables.

2.1. Patient Flows and Context

This section serves to shed light on the various patient flows. This will be done by
considering three dimensions: the type of admissions, whether an admission is planned
or not and whether a patient is assigned to the proper ward. Furthermore the arrival
process is discussed. As a last subject, the typical patients and ward characteristics are
discussed.

2.1.1. Type of Admissions

Patient admissions can be split up into new and transfer arrivals. Transfer arrivals
encompass patients that are admitted on the concerning ward after an admission on
another ward. Suppose a patient is admitted on the Intensive Care Unit (ICU) after
receiving surgery and after some time (e.g., when the patient’s physical condition is more
stable) the patient is transferred to the clinical ward. In this example, the new arrival is
registered at the ICU, and the transfer arrival is registered at the clinical ward. Both the
clinical wards and MCUs have both type of admissions. Moreover, part of the transfer
admissions of the wards are caused by transfers from the MCUs to the clinical ward and
vice versa. In the sequel, both transfer- and external arrivals are considered.

2.1.2. Elective and Emergency Patients

Another common way to distinguish arrivals of patients is to consider whether their
admission was planned or not. These are oftentimes called elective and emergency
arrivals. This stands for a scheduled and unscheduled admission respectively. Examples
of scheduled admissions are day treatments for certain neuro muscular diseases (e.g.,
Multifocal Motor Neuropathy) or a sleep deprivation in case of epilepsy. An example of
an emergency patient is an arriving patient with head trauma caused by a car accident.
The data cube keeps track of this distinction for both new and transfer admissions.
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2.1.3. Diverted Patients

A third way to look at patient inflow, is to consider whether the ward of admission is
the one where the patient should be admitted. Consider the patient with head trauma
again. After arrival, the patient needs observation of the neurologist. Ideally, the patient
is placed on the D340&D370 ward. Now suppose that this ward is occupied, and that
the patient is diverted to the D350 ward, or even worse a ward in another division or
hospital. The patient is then admitted on a “wrong” bed. The number of patients on
wrong beds should be kept as small as possible both from a cost and a quality of care
point of view. This means that a ward should not be fully occupied when a patient
arrives.

2.1.4. The Arrival Process

Before admission, a patient goes through several steps. Most of the emergency patients
arrive at the hospital via the Emergency Department (ED) or the outpatient clinic1.
If a patient needs to be admitted, a doctor of the regarding department is contacted.
This doctor in turn contacts the coordinating nurse who tries to find a free bed on the
correct clinical ward or if this is not possible on another ward within the department. If
it turns out that all of the above mentioned beds are occupied UMCU’s bed coordinator
tries to find a bed somewhere else within the hospital. If this also fails, the patient is
redirected to another hospital. Elective patients are directly admitted on the ward of
destination. An elective patient makes an appointment and the staff reserves a bed. If,
due to an unforeseen event (such as an unusual number of emergency arrivals) there is
no bed available anymore, the elective patient is canceled.

2.1.5. The Clinical wards

As mentioned in Chapter 1 there are two clinical wards under consideration. The max-
imum bed capacity on these wards is 18 beds for the D340&D370 ward and 12 beds for
the D350 ward. Most of the days however, some of these beds are “closed”. As said
before, the number of beds that is closed per day is not available in the data cube. This
decision is made every morning when a group of nurses discuss the expected arrivals,
discharges and transfers of that day. The beds are distributed over rooms, which are in
turn located close to each other. A typical aspect of the first ward is the relatively high
number of short stays. This is caused by the fact that there are many day treatments on
this ward. The second ward has many (neuro) surgical patients which are e.g., admitted
on the ward, receive surgery and subsequently are transferred back. In the desired future
situation these two wards become one ward.

2.1.6. The Medium Care Units

Besides the clinical wards, also two Medium Care Units (MCUs) are under study: the
D361 MCU and the D351 MCU. The MCUs have a capacity of 7 and 6 beds respectively.

1Polikliniek
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Noteworthy is that the first MCU is a stroke unit, which consists of beds reserved for
patients with a stroke. Because the level of care is higher than clinical wards (hence the
prefix medium), there are more nurses per patient. Similar to the clinical wards, the
number of beds in use varies per day. Similar to the clinical wards, the MCUs will be
combined.

2.2. Performance Indicators

There are many indicators for performance in healthcare regarding bed capacity. A
selection of them is used in this thesis, on which we elaborate below. For each KPI we
first explain what is measured and then how it is calculated.

2.2.1. Length Of Stay

The length of stay (LOS) is the time that passes between the moment that a patient is
assigned to a hospital bed on a ward and the moment that patient is discharged. It is
important to keep in mind that discharge in our context could also mean the transfer
to e.g., the operation room, the MCU, the ICU etc.,contrary to the commonly used
definition of discharge which is to be discharged from the hospital. To measure the
LOS per patient, we do consider transfers. For example, suppose that a patient stays 3
days on Ward A and 4 days on Ward B. According to our intuition, this results in two
LOS data points, being 3 days for ward A and 4 days for ward B (contrary to summing
them). The LOS is an important KPI because it can be used used in the calculation
of bed occupancy as we will see later, and thus is related with decisions regarding the
number of beds. The financial controller of the department calculates the average length
of stay (ALOS) as:

ALOS =
Total LOS

Number Of New Admissions
(2.1)

This overestimates the “real” LOS because the transfer patients are not taken into
account. UMCU’s Business Intelligence division also provides information on the LOS.
They do take the transfers into account, but again only provide averages. It is well
known that (capacity) decisions in general should not be based purely on averages (also
known as “The flaw of averages”) but rather on the underlying distribution. This will
be further investigated in Section 2.4. The equation used to determine the ALOS in the
sequel of this thesis is:

ALOS =
Total LOS

Number Of New Admissions + Transfer Admissions
(2.2)

2.2.2. Rejection Rate

Another interesting KPI is the rejection rate, i.e., the percentage of patients that cannot
be admitted due to a lack of capacity. This occurs when a patient arrives and finds all
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beds occupied. The rejection rate is defined as follows:

Rejection Rate =
Number of Rejected Patients

Total Number of Arrivals
(2.3)

This is an important KPI in bed capacity decisions. Unfortunately, this KPI is not
(yet) being monitored because it is hard to keep track of the number of patients that is re-
jected. We should therefore analyse the data to calculate the current performance.There
is no log of patients that are rejected. The same goes for the total number of arrivals,
because only the admissions are being registered (i.e., the number of patient that do
not find the ward fully occupied). The best thing that can be done is to estimate the
current performance by estimating the fraction of time the wards are fully occupied.

2.2.3. Bed Occupancy

The last KPI that will be discussed is the bed occupancy. This is probably the hardest
KPI to define, because there is no consensus both in the literature and at UMCU on how
to calculate this ratio. It is an important KPI because in many hospitals it plays a central
role in determining the number of beds needed (which in fact is strongly advised against
by e.g., Green (2002)). Intuitively, one would say that bed occupancy is calculated as
the capacity in use divided by the total capacity available (as one would usually define
occupancy or utilization). Following this reasoning, the occupancy then can be defined
as:

Bed Occupancyt =
Number of Patients Presentt
Number of Beds Availablet

∗ 100% (2.4)

Where the t indicates the time at which we evaluate the KPI (e.g., hour of the day).
Following this definition, two difficulties arise. The first is that it is hard to measure the
number of patients present at a given time. Time is a continuous parameter, and giving
a precise measurement of bed occupancy would require continuous measurements which
are not available in the data cube. The data cube does provide data on the number of
patients present per 15 minutes. This data however is highly sensitive for input errors.
An example of an input error is when a patient is already discharged but not registered
as such, because the person in charge of this first had other things to do. Besides that,
sometimes a patient is not physically present whereas he is registered as such. This can
be the case when someone has completed his take-in for surgery, and can wait the days
at home. The system then registers the patient as being present, whereas he does not
occupy a bed. Reasoning this, the bed occupancy can be higher than 100%. The second
difficulty is that beds are some days “closed” but for the previous years this has not
been registered. It should be noted that the department is working on this, and does
monitor the beds that are open/closed since a couple of months. The previous analysis
underpins the need for another, more objective, estimator for the bed occupancy.

A well known result often used in Operations Research is Little’s Law (Little, 1961).
It is formulated as follows:

L = λW (2.5)
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With L being the number of customers present, λ being the arrival rate per time unit
and W being the average length of stay. This equation is used in the same context as
ours by e.g., De Bruin et al. (2009) and Cochran and Roche (2008). We could define λ
as the arrival rate of patients per day and L as the number of patients present in steady
state. Define c as the average open beds on day. Combining equation 2.4 and 2.5 then
results in:

Bed Occupancy =
λALOS

c
(2.6)

2.3. Arrivals

In this section the patient arrival process will be analysed in depth. We do so by splitting
the admissions into emergency and elective admissions (see Section 2.4). This is a useful
distinction because especially unexpected arrivals (i.e., emergency arrivals) tend to be
well described by a Poisson process (Young, 1965). The Poisson process will be explained
in more depth below. Furthermore De Bruin et al. (2009) discovered that in a hospital
situation also the planned arrivals (i.e., elective arrivals) are well described by a Poisson
process. First the Poisson process will be explained as it plays a central role in this
section. Subsequently we look at the arrival patterns of patients per ward (both elective
and emergency), at the arrivals per day of the week and finally at the arrivals per hour
of the day. It should be noted that the D351 ward was closed the first few weeks of 2017.
This has been taken account for during all further analyses in the sequel of this thesis.

2.3.1. Poisson Process

Let N(t) be the number of arrivals up to time t ≥ 0 (so N(3) is the number of arrivals
up to and including t = 3). If the following (mild) assumptions hold, number of arrivals
in a specified interval N(t+ s)−N(t) tend to have several interesting properties.
Assumptions:
1. The probability that 2 or more customers (patients) arrive at exactly the same time
is 0.
2. The number of arrivals in non-overlapping time intervals is independent
3. In case of a stationary Poisson process: the distribution of N(t+s)−N(t) is indepen-
dent of t (i.e., the probability of 6 arrivals today is equal to the probability of 6 arrivals
eight days from now).

If the above assumptions hold, then N(t + s) − N(t) (the number of arrivals in an
interval of length s) follows a Poisson distribution with parameter λs = E[N(s)] and
λ = E[N(1)]. Moreover, the inter-arrival times (the time between subsequent arrivals)
tend to have follow an exponential distribution (Law, 2015:380-384). In other words,
using the theory above, we can draw inferences about the arrival patterns. It is not hard
to conclude that this property is very useful in capacity related problems.

If the arrival rate is time dependent (i.e., the average number of customers arriving
between e.g., 3:00 AM and 5:00 AM differs from the number of customers arriving
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between 7:00 AM and 09:00 AM), assumption 3 is violated. We then could be dealing
with a non-stationary Poisson process (Law, 2015:380-384) (which turns out to be the
case in our situation). In this case, we should specify the arrival rate as a function of
the time (e.g., day of the week). Techniques for doing this will be discussed in Chapter
4.

2.3.2. Arrivals Per Ward

Elective Arrivals

To analyse the arrival pattern per ward, we counted the number of emergency and
elective arrivals on each day of the year 2017. Both new arrivals and transfers are
taken into consideration, since also transfers are patient arrivals. Subsequently, the
data was used to calculate summary statistics, and to draw a histogram. A histogram
can be seen as a draft of the underlying probability distribution. Because a Poisson
distribution (see Appendix B.1) is suspected, this distribution is “fitted” through the
data to check whether Poisson arrivals are reasonable on first sight. The estimator of
the parameter of the Poisson distribution used is the sample average X. This is also
the Maximum Likelihood Estimator (MLE) and thus has several desirable properties
(for more information see Appendix B.4). For both the clinical wards (D340&D370 and
D350) the histograms can be found in Figure 2.1. It turns out that the frequency of 0
elective arrivals on a day seems to be a bit high. By visual inspection it is clear that the
Poisson model underestimates this frequency and therefore we do not need a statistical
test to verify this. The high frequency of 0 arrivals could be caused by the fact that

Figure 2.1.: Histogram of the elective arrivals on the clinical wards in 2017. Data re-
trieved from data cube, n=363 (days) and n=362 respectively.

there are (basically) no planned admissions on weekend days and holidays2. Splitting
the elective arrivals of the clinical wards into week- and weekend arrivals (where holidays
on weekdays are excluded) gave the histograms of Figure 2.2.

2First- and second day of Christmas, Easter and Pentecost, New Years day, Ascension day and the day
after, Good Friday and Kingsday
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2.3. Arrivals

Figure 2.2.: Daily elective arrivals of the ward D350 after being split into week- and
weekend days in 2017. Data retrieved from the data cube, n=250 and n=105
respectively.

This provides a much better fit (see Table 2.1 for the p-values the χ2 goodness-of-fit
test) for the elective arrivals for the D350 ward. The histograms for elective arrivals
split into week- and weekend days for the D340& D370 ward can be found in Appendix
C in Figure C.1. For the MCUs, such behavior did not occur. This is confirmed by the
fact that the MCUs keep running on the same level (do not scale down which is the case
with the clinical wards) during weekends. Furthermore, even though the elective arrivals
of the MCUs are labeled “elective”, their urgency is often still quite high and therefore
admissions during the weekend continue. The histograms for the elective arrivals for the
MCUs can be found in the Appendix C in figure C.2.

Emergency Arrivals

For the emergency arrivals the same analysis has been made, see Figure 2.3. We did
not split the arrivals into week and weekend days since emergency arrivals are not likely
to change in number during weekends or holidays. This is confirmed by Figure 2.6,
where the emergency arrivals of both MCUs are pictured. The emergency arrivals of the
clinical wards can be found in the Appendix C in Figure C.3.

Summary statistics per ward

In Table 2.1 the summary statistics regarding patient arrivals are portrayed. The mean
is just the sample mean X = 1

n

∑
i xi. The standard deviation is an (often) used measure

for the “spread” of the data, and is estimated with the sample standard deviation s =√
1

n−1

∑
i(xi −X)2. For discrete data (as is the case), another useful statistic is the lexis

τ ratio which is the variance divided over the mean, and estimated by τ̂ = s2

X
. This last

statistic is helpful, since it can be used to choose between distributions. τ ≈ 1 indicates a
Poisson distribution because the variance of this distribution equals the mean (Appendix
B.1). For each ward the p-value for the χ2 Goodness-of-Fit test is given. Note that the
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Figure 2.3.: Daily arrivals of emergency patients for both MCUs in 2017. Data retrieved
from the data cube, n=310 and n=357 respectively.

H1 of this test is to reject the fit. Since rejection occurs for low p-values, we have that
p-values < α = 0.05 advocate a bad fit. In the table these cases are boldfaced.

Mean Standard Deviation Lexis p-value

D361 0.36 0.54 0.81 0.48

D340&D370 Week 2.64 1.32 0.66 0.00

D340&D370 Weekend 0.62 0.85 1.19 0.92

D350 Week 1.88 1.27 0.86 0.66

D350 Weekend 0.29 0.53 0.99 0.98

D351 0.31 0.51 0.82 0.49

Table 2.1.: Summary statistics of the arrivals of elective patients, year 2017.

With respect to the elective patients, we see that the lexis ratio varies between 0.81 and
1.19. The Poisson distribution “passes” the χ2 test for all wards except the arrivals for
the D340&D370 ward. However, by visual inspection of the observation vs. the Poisson
fit we see that the variance is over all well captured by the Poisson fit. Especially in
large samples, the H1 is quite easily accepted (i.e., not much deviation is required).
Combining the above, we conclude that a Poisson distribution is an appropriate fit for
all wards. The summary statistics w.r.t. emergency patients are given in Table 2.2.

Mean Standard Deviation Lexis p-value

D361 1.87 1.31 0.92 0.74

D340&D370 1.69 1.56 1.43 0.00

D350 1.02 1.00 0.98 0.81

D351 0.80 0.85 0.90 0.52

Table 2.2.: Summary statistics of the arrivals of emergency patients, year 2017.
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With respect to the emergency arrivals, the Poisson model provides a good fit for all
wards except the D340& D370 ward (like in the elective case). By visual inspection we
see that especially the frequency of days with 0 elective patients is “too high”. How-
ever, especially for emergency arrivals, the Poisson process assumptions oftentimes hold.
Moreover, again the variance of the observations is well captured by the Poisson model.
Therefore, albeit the fact that the fit is not perfect, we still assume a Poisson distribution
for this ward. Hence the overall conclusion is that the Poisson distribution provides a
suitable fit for all wards regarding emergency arrivals.

2.3.3. Weekly Patterns

Elective Patients

The previous analysis gives the underlying distribution for the arrivals per day. It could
be that this pattern is suitable for all days of the week. However, it could very well be
the case that certain patients do not arrive during certain days. One can think of the
absence of planned patients during weekends. This subsection serves to investigate this.

In Figure 2.4 the number of elective arrivals in the year 2017 can be found per day for
the wards D340 & D370 and D350.

Figure 2.4.: Weekly pattern of elective patients for the clinical wards D340& D370, and
D350 in 2017. Data retrieved from data cube, n=729 and n=500 respectively.

The first thing that strikes is the significantly lower number of elective admissions
during weekends on the clinical wards. This is perfectly in line with the expectations of
the management that planned patients are not admitted during weekends. Besides that,
it underpins the choice to split week from weekend days in the previous subsection.For the
D350 ward (the surgical ward), we see furthermore that there is a peak on Friday and a
trough on Mondays. This is confirmed by the fact that surgeries need some preparation
which is not currently done during the weekend (hence the trough on Monday), and
that scheduled admissions during the weekend should be prevented (hence the peak on
Friday).

For both MCUs the graphs are given in Figure 2.5. Although there seem to be peaks
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and troughs for the MCUs, these are not easily explained by the management. Further-
more it should be noted that the total number of elective admissions on these wards
is much lower than on the clinical wards, making it more likely that these peaks and
troughs are just caused by randomness.

Figure 2.5.: Weekly pattern elective patients for the MCUs D351 and D361 in 2017.
Data retrieved from data cube, n=48 for both wards.

Emergency Patients

The same analysis is made for emergency patients. There is no reason to assume that
there is such a pattern as with elective patients, because there is no reason to think
that there are e.g., fewer stroke cases during weekends. This absence of a pattern is
confirmed by the data of all wards. The emergency arrivals per weekday for one of the
clinical wards and one MCU are pictured in Figure 2.6. For the other clinical ward and
MCU the graphs can be found in the Appendix D and these show similar results.

Figure 2.6.: Weekly pattern emergency patients for D350 ward and D361 MCU in 2017.
Data retrieved from data cube, n=373 and n=666 respectively.
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Conclusion

Both the data and the management tell us that there is a strong indication for a different
number of arrivals per weekday for the clinical wards D340&D370 and D350. For the
MCUs this is less obvious, and due to the low number of elective arrivals it is hard to
draw inferences about this. A summary of the variation in the number of elective arrivals
per weekday is given in Figure 2.7.

Figure 2.7.: Distribution of elective admissions per day of the week in 2017.

Using this section’s analysis and the Poisson assumption of Subsection 2.3.1, the arrival
rates per day of the week for each ward are given in Table 2.3.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

D350 2.76 3.08 2.63 3.04 3.30 1.02 1.34

D340&D370 4.32 3.82 5.04 4.47 4.17 2.04 2.20

D351 1.21 1.11 1.11 1.15 1.32 1.06 0.84

D361 2.25 2.06 2.35 2.41 2.59 1.87 1.91

Table 2.3.: Poisson arrival rates per day of the week per ward, including both elective and
emergency admissions. Data from 2017, retrieved from data cube, n=3219.

2.3.4. Arrivals per hour

Elective Patients

It could also be the case that arrivals differ per hour of the day. Again, one would
expect that this is especially the case for planned admissions. For instance, patients
suffering from epilepsy sometimes need to stay awake during for a night for examination
purposes. These patients are logically admitted in the evening which could cause a
(small) peak in these hours. Another, more significant pattern that one would expect
is the absence of planned admissions during the night. For all four wards the hourly
elective arrivals of the year 2017 are given in Figure 2.8 and 2.9 (Note: when hours
are missing on the x-axis, it means there are no admissions registered on that time in
2017). As expected, the number of arrivals during night is near zero for all wards. Most
wards plan their elective admissions between 08:00 AM and 01:00 PM. The huge peak
for the D350 ward is confirmed by that ward’s staff, because planned surgical patients
are oftentimes admitted around 01:30 PM.
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Emergency Patients

For emergency arrivals a similar analysis has been made. Although the differences
throughout the day are less significant, there still is some pattern. The number low-
est number of patients arrive around 08:00 AM. This number is slowly increasing with
midnight as peak hour. After that, the numbers are decreasing again till sunrise. This
is not counter intuitive because e.g., when a patient has a stroke, he or she could remark
this by not being able to move certain extremities when he or she wakes up (and thus
not during the night). There are some strange peaks for some wards around midnight.
The management has explained that when the nursing staff starts the night shift around
11:00 PM, they first evaluate the evening shift with the evening nurses. After that, they
meet with patients, provide them their medicine etc. When most patients sleep and the
nurses got some spare time (around 01:00 AM) they update the admissions of the last
two hours. This could cause a peak around 01:00 AM, whereas the admissions are actu-
ally spread out more evenly. This tend to happen more with emergency patients, due to
their unexpected arrival. The same phenomenon happens in the morning and afternoon.
The graphs picturing the hourly emergency arrivals can be found in Appendix E.

Figure 2.8.: Hourly admissions of elective patients in 2017. Data retrieved from data
cube, n=503 and n=48 respectively

Figure 2.9.: Hourly admissions of elective patients in 2017. Data retrieved from data
cube, n=729 and n=48 respectively
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Conclusion

Both the elective and emergency admissions do show a difference throughout the day.
To quantify this, a heat map has been made which is pictured in Figure 2.10. This

Figure 2.10.: Distribution of elective and emergency arrivals per hour of the day in 2017.

heat map can be used to determine the busy moments on a day, i.e., the moments
with a lot of admissions. This is of course useful for answering the main question of this
research, but can also help with e.g., nurse scheduling. Emergency patients tend to arrive
between 1:00 PM and 10:00 PM, with a concentration around 6:00 PM. Elective patients
arrive roughly between 7:00 AM and 1:00 PM. The hourly variability discovered in this
subsection has to be taken into account in our model which will be introduced in Chapter
4. Therefore, we already give the arrival rates incorporating the hourly variability (i.e.,
a slight adaptation of the ones given in Table 2.3). Since giving hourly arrival rates
will result in 168 different rates per ward which is a bit cumbersome, we assume equal
emergency arrivals over the day. Furthermore we assume that all elective patients arrive
equally distributed over daytime hours, and are forbidden during night. This somehow
represents reality. Not taking into account hourly variability in detail might seem an
unrealistic simplification, but this will be justified in Chapter 5 in Section 5.1. The
adapted arrival rates are given in Table 2.4.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
D N D N D N D N D N D N D N

D340&
D370

7.15 1.48 6.37 1.27 8.21 1.87 7.23 1.71 6.03 2.31 2.58 1.50 2.89 1.51

D350 4.27 1.25 5.20 0.96 4.12 1.14 5.00 1.08 5.62 0.98 1.19 0.85 1.74 0.94

D351 1.51 0.91 1.52 0.70 1.44 0.77 1.37 0.93 1.80 0.84 1.32 0.80 0.40 0.64

D361 2.41 2.08 2.48 1.63 2.60 2.10 3.01 1.82 3.18 2.00 2.04 1.71 3.45 2.76

Table 2.4.: Daily Poisson arrival rates (both elective and emergency) split up into day
(D) and night (N). Retrieved from data cube, year 2017, n=3219.

2.3.5. Arrivals throughout the year

The last type of pattern that will be examined is the pattern throughout the year. It
could for instance be that the number of admissions is lower during summertime due to
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holidays. In Figure 2.11 the admissions for the entire department have been pictured for
both emergency and elective arrivals. The choice to display the entire division at once
instead of splitting into wards is made deliberately because it is not expected that this
will differ considerably per ward.

Figure 2.11.: Arrivals of respectively emergency and elective patients within the N&N
department in 2017. Data retrieved from data cube, n=1903 and n=1328
respectively.

As can be seen there are no major differences throughout the year for emergency
arrivals; we see that the number of admissions in January is much lower than e.g., in
October. There is no clear explanation for this. For elective arrivals however, we see
that the number of admissions is a bit lower during the months April and July. For
April, this can be explained by the large number of holidays within this month. For July
this can be explained because this is a typical month that people go on vacation.

2.4. Length of Stay

2.4.1. Gini Coefficient

The length of stay is defined as the time that a patient occupies a bed (see Subsection
2.2.1). As a Poisson distribution is a distribution often used to model customer arrivals,
there are also distributions that are often used for modelling service times (the LOS can
be regarded as such). One can think of the Gamma, Weibull and Lognormal distribution
(Law, 2015:286-305). The LOS distribution is analysed per ward. Contrary to the
arrivals, there is no clear pattern in this data. This unfortunately was the case for all
wards. Several distributions have been tried, but none of them provided a reasonable
fit. This is underpinned by analysis of e.g., De Bruin et al. (2009) and Costa et al
(2003). Most likely this “fuzzy” data is caused by the fact that the LOS should not
be considered as being equally distributed for all patients. We present several summary
statistics for all wards. In addition to the regular summary statistics, we also present the
Gini coefficient (Gini, 1912). This is suggested by De Bruin et al. (2009), and based on
the Lorentz curve often used in economics. The Lorenz curve can be used to picture the
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concentration of wealth (Lorenz, 1905) (i.e., what percentage of the total wealth belongs
to what percentage of the population). See Figure 2.12 for an example.

Figure 2.12.: A Lorenz curve.

The bigger the “belly” i.e., area A, the more unevenly wealth is distributed. The blue
line means perfect equality. The Gini-coefficient (G) quantifies this dispersion as:

G =
A

A+B

Now this idea can be used to analyse the LOS. If the distribution of the LOS would
be equal for all patients, G would be close to 0 (i.e., there would be no “belly” at all
because of perfect equality). If G is close to one there is a lot of dispersion and the
distribution is more variable. It is expected that for some wards G will be quite close to
1, the difference between the medians and means is big. This means that a small part
of the patient population has a disproportional long LOS. For the calculation of G per
ward, we use the formula provided by De Bruin et al. (2009):

G =
1

n
(n+ 1− 2

∑n
i=1(n+ 1− i)yi∑n

i=1 yi
) (2.7)

With n being the total number of observations (i.e., registered LOS), yi the LOS of
arrival i and yi ≤ yi+1, i = 1, ..., n− 1.
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2. Analysis of the Current Situation

2.4.2. Summary Statistics

The summary statistic per ward w.r.t. the LOS are given in Table 2.5.

D361 D340&D370 D350 D351

Mean 2.85 3.26 3.93 3.17

Standard Deviation 4.32 5.45 4.28 4.82

Coefficient of Variation 1.52 1.67 1.09 1.52

Median 1.45 1.30 2.94 1.50

Skewness 4.32 5.13 4.21 3.98

Gini 0.58 0.64 0.45 0.59

Table 2.5.: Summary statistics LOS in 2017. Retrieved from data cube, n=3226.

As can be seen, patients on average stay the longest on the D350 (surgical) ward, and
the shortest on the D361 MCU. The LOS data does not really have a pattern which
is, as explained before, most likely caused by different LOS distributions for different
patient groups. Striking are the big differences between the means and medians. This
could indicate very skewed data or outliers. The latter cannot be easily confirmed since
for instance on the D340&D370 ward there are many patients who stay very short, and
many patients who stay much longer. This also explains the large standard deviations.
The best thing to do would be splitting to search for the underlying patient groups
having a homogeneous distributions.

2.4.3. Distribution Fitting

As said, the LOS data is not as easily described by a probability distribution as the arrival
data. This is also encountered by other studies, see for example De Bruin et al. (2009)
or Costa et al. (2003). Following the reasoning of Subsection 2.4.1 and our intuition,
it might very well be the case the group of patients should be split into patients who
stay long and short, each having their own distribution. According to Adan and Resing,
we should fit a hyper exponential distribution with two exponentials if the coefficient
of variation is greater than or equal to 1 (2015:17). This happens to be the case for
all wards (see Table 2.5). The hyperexponential distribution sums several exponential
distributions, each with a different parameter (see Appendix B.3). This corresponds to
our intuition because e.g., the long stay patients could have their “own” exponential
distribution as do the short stay patients. For a hyperexponentially distributed variable
the notation Hk(p1, ..., pk;µ1, .., µk) is common. In this notation, k is the number of
groups, pi stands for the proportion (size) of group i and µi for the parameter of the
exponential distribution of group i (i.e., the ALOS of group i is 1

µi
). In order to apply

this distribution to our case, we must estimate the parameters p1, p2, µ1 and µ2 (k = 2).
Oftentimes, we assume equal weighted means for both subgroups, i.e., p1

µ1
= p2

µ2
(“bal-

anced means assumption”). Furthermore, since we divide the total population into
subgroups according to a proportion pi we have p1 + p2 = 1 and p1

µ1
+ p2

µ2
= ALOS. It

turns out that the Gini coefficient G can be of help in this matter. De Bruin and Bekker
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(2010) indicate that when 0.5 ≤ G ≤ 0.75 we can estimate the parameters using the
Gini coefficient as follows:

p̂1 =
1

2
−
√
G− 1

2
µ̂1 =

ALOS

2p̂1
(2.8)

p̂2 = 1− p̂1 µ̂2 =
p̂2µ̂1
p̂1

This applies to three out of four wards (see Table 2.5). For the other ward, we need
some additional analysis provided by Adan and Resing (2015:18). If G does not fulfill
the requirement of De Bruin and Bekker (2010), we can estimate the parameters with:

p̂1 =
1

2

(
1 +

√
ĉv2 − 1

ĉv2 + 1

)
µ̂1 =

ALOS

2p̂1
(2.9)

p̂2 = 1− p̂1 µ̂2 =
p̂2µ̂1
p̂1

Where ĉv = s
X

denotes the coefficient of variation. The results are given in Table 2.6,

together with the p-value of the χ2 goodness-of-fit test.

D361 D340&D370 D350 D351

p̂1 0.79 0.88 0.65 0.80

p̂2 0.21 0.12 0.36 0.20
1
µ̂1

1.81 1.85 3.05 1.99
1
µ̂2

6.78 13.46 5.54 7.80

p-value χ2 0.01 0.00 0.00 0.05

Table 2.6.: Results of fitting the hyperexponential distribution to the LOS of the four
wards.

The p-values suggest a bad fit for three out of four wards (i.e., p-value< α = 0.05).
We made a histogram together with the probability density function (pdf) of the hy-
perexponential distribution to compare the data with the hypothesized distribution for
all wards. See for an example Figure 2.13. After eyeballing this figure, we conclude
that the hyperexponential distribution does approach the LOS data fairly good. It does
capture most of its variance, and has more or less and identical shape. Besides that,
we see that our intuition about the subgroups (long and short stay patients) was right,
all four wards have a group of long and short stay patients. It should be noted that
the LOS data is hard data to find a suitable distribution for, which again has also been
noted by many other researchers before. Both the figure and our intuition therefore let
us conclude that it is reasonable to assume the hyperexponential distribution for the
LOS for all four wards.
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2. Analysis of the Current Situation

Figure 2.13.: LOS 2017 data vs. hyperexponential distribution. Note: LOS over 20 days
have been left out for illustratory purposes. Data retrieved from data cube,
n=714 and n=1345.

2.5. Performance

This section evaluates the current performance with respect to the defined KPIs. The
KPI Length of Stay will not be considered again, since it has been extensively analysed
in the previous section. First, we discuss the bed occupancy, and after that the rejection
rate.

2.5.1. Bed Occupancy

To evaluate the current performance with respect to bed occupancy, Equation 2.6 is used.
The input needed for Equation 2.6 is given in Sections 2.3 and 2.4. Besides Little’s Law,
we also calculated the bed occupancy using the hourly presence data (note again, this
data is very sensitive for input errors). In Table 2.7 the average bed occupancy for the
year 2017 is given, using both Equation 2.6 and 2.4.

Little’s Law Data

D340&D370 66.67% 69.38%

D350 79.03% 82.98%

D351 58.87% 51.64%

D361 90.73% 82.20%

Table 2.7.: Bed occupancy per ward in 2017.

First of all, the bed occupancy for both the D361 and D350 ward are much higher
compared to the other wards. Together with the variable arrival- and LOS process, this
results in a relatively high rejection rate (see Table 2.8). Little’s Law and the data pretty
much coincide for the clinical wards, but differ a bit for the MCUs. Especially for the
MCUs (a lot of) data was missing, what could have caused this result. See Chapter 6
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for a thorough discussion about the available data. Although controversial (see Chapter
4), the management strives for a bed occupancy of 85% for all wards.

2.5.2. Diverted Patients

As discussed in Section 2.1.3, diverted patients are patients that are assigned to a bed
on another ward other than the ward where he belongs. In the worst case, a patient
is diverted to another division or even hospital but this rarely happens. Ideally we
would prefer to know the frequency of this phenomenon (for instance to be able to say
something about the true arrivals of a ward) , but the data cube does not provide the
required data. This complicates using this Chapter’s analysis for mathematical models
since the measured admissions do include diverted patients from other wards. Since
for the MCUs diversions almost exclusively happens between the MCUs (i.e., not to
other divisions or hospitals) this is not a problem because these wards are merged. For
the clinical wards this is more troublesome since there is also a third clinical within the
division ward (D360) to which patients can be diverted. However, this ward is left out of
consideration in this thesis. Due to the lack of data, we assume that all patients diverted
from one of our clinical wards (e.g., D350) are placed on the other (e.g., D340&D370)
and v.v, cf. Section 5.1.

2.5.3. Rejection Rate

The rejection rate can be calculated using Equation 2.3. Unfortunately, there is no data
available about the number of rejections. One could think of considering the fraction of
time that the wards are fully occupied considering the same data used for calculating the
bed occupancy. However, this data is as stated before highly sensitive for input errors
(e.g., more patients than beds present). Another way of calculating the current rejection
rate is by considering the queueing model suggested in Chapter 5, which also is used
for the calculation of the future situation (see Chapter 3). Because of the sensitivity to
input errors we decided to use the model to estimate current performance. The results
are depicted in Table 2.8.

Model

D340&D370 3.4%

D350 10.9%

D351 7.5%

D361 23.5%

Table 2.8.: Estimations of current rejection rate, calculated using the data (first column)
and the model of Ch. 5 (second column).

The management has indicated to strive for an average blocking probability of 3% for
the MCU and 5% for the clinical ward.
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2.6. Conclusion

This chapter serves to answer the first and second research question. The relevant
KPIs are the bed occupancy, the LOS and the rejection rate. Since the data available
is erroneous (see Chapter 6) we decided to calculate the current bed occupancy using
Little’s Law and the current rejection rate using the model of Chapter 5. The current
bed occupancy for the clinical wards is 69.38% (D340&D370) and 82.98% (D350). For
the MCUs, the current occupancy is 51.64% (D351) and 82.20% (D361). The current
rejection rates for the clinical wards are 3.4% (D340&D370) and 10.9% (D350). For the
MCUs, the rejection rates are 7.5% (D351) and 23.5% (D361). The management now
primarily bases bed capacity decisions on a target occupancy of 85%. Besides that this
target is not met, many studies show that bed capacity decisions should rather be based
on the rejection rate. The target rejection rates for the new clinical ward and MCU are
5% and 3% respectively.

For modelling purposes, we wanted to find a suitable distribution for the LOS data
and to discover the underlying arrival pattern. The LOS data is known to be difficult,
since there are different subgroups within the patient population with different LOS dis-
tributions (e.g., short and long stay patients). We fitted a hyperexponential distribution
to the LOS data for all wards, which sums various exponential distributions and thus
copes with the different subgroups. The ALOS in 2017 was around 3 days for all wards.
The arrival data turned out to be well approximated by a non-stationary piecewise con-
stant Poisson process with a cycle length of 1 week. The rates change each day part of
12 hours (i.e., day and night).
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Introduction

As explained in Section 1.3.2 we are primarily interested in the number of beds on the
clinical ward and MCU after the merger. The analysis in Chapter 2 shed light on the
current situation, and can be used to compare with the estimations of the performance
of the future situation. This chapter serves to answer the third research question, and
has roughly the same set up as the aforementioned chapter. First, the arrival process is
discussed, and thereafter the LOS is examined.

3.1. Physical Changes

As discussed, the merger will result in both clinical wards and MCUs being combined into
one clinical ward and one MCU respectively. The management hopes to gain economies
of scale and to improve the communication between the medical professionals. The
merger will eliminate the flow in between the clinical wards and MCUs, since the clinical
wards and MCUs are no longer separated. This results in a lower arrival rate and higher
LOS. The former is caused by the absence of transfers, and the latter by the transfer
patients now stay on a single ward. Figure 3.1 illustrates the physical change.

3.2. General approach

Since there is no data available of the situation after the merger, we have to deal with
this in another way. Intuitively, one would suggest merging the data of the clinical wards
and the MCUs respectively. This implicitly assumes that the arrival process and LOS are
independent for the separate wards and MCUs. This does not seem to be unreasonable
for most patients, except for those who were transferred once or multiple times from
e.g., one clinical ward to the other. For example, consider patient X who stays 3 days
at the D340&D370 ward. After that, he is transferred to the D350 ward where he
stays another 5 days. In the current situation, this would boil down to two separate
admissions (one at each clinical ward) and two separate LOS entries. To generate data
for the new situation, one would ideally delete one admission, and add up both LOS
(i.e., one admission at the new clinical ward with a LOS of 8 days). Unfortunately, the
data cube does not provide the LOS data per transfer as is required (see Section 6.3.1).
Since these transfers from clinical ward to clinical ward and MCU to MCU caused only
a relatively small part of the total admissions in 2017 (1.12% and 4.46% respectively),
we ignored this phenomenon and merge the arrival and LOS data as given.
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Figure 3.1.: A schematic view of the current and future situation.

We thus assume independency of the arrivals for both clinical wards and MCUs.

3.3. Arrivals

The arrival process will again be analysed for the clinical ward and MCU separately.
First, we look at the arrivals per day. Subsequently patterns throughout the day and
week respectively are investigated. As shown in Section 2.3, the arrival processes for
all wards tend to be well described by a (non-stationary) Poisson process. One of the
properties of a Poisson process is the merging property: if we have two independent
Poisson processes X and Y with parameters λ1 and λ2 respectively, we can describe
the joined process Z = X + Y again with a Poisson process, with parameter λ1 + λ2.
This directly applies to our situation, since we have just assumed an independent arrival
process for the separate wards. Using the merging property, the arrival rates for the new
wards are given in Table 3.1.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
D N D N D N D N D N D N D N

CW 7.15 1.48 6.37 1.27 8.21 1.87 7.23 1.71 6.03 2.31 2.58 1.50 2.89 1.51

MCU 4.27 1.25 5.20 0.96 4.12 1.14 5.00 1.08 5.62 0.98 1.19 0.85 1.74 0.94

Table 3.1.: Predicted Poisson arrival rates for the new clinical ward and MCU per day
of the week, split into day (D) and night (N) time.
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3.4. Length of Stay

Similar to the current situation, we also analyse the LOS for the future situation. We
generated the LOS data for the new wards as described in the section “General Ap-
proach”. The summary statistics for the LOS data of the new wards can be found in
Table 3.2. For modelling purposes we again have fitted a statistical distribution through
the data. For both wards again a hyperexponential seems to describe the underlying
data properly and is therefore assumed to be a good fit. The parameters of both hy-
perexponential distributions together with the p-values of the χ2 goodness-of-fit test are
given in Table 3.2. Note that the p-values suggest a bad fit. However, because the
variability of the LOS data is well captured and taking into account that it is hard to
find a suitable distribution for the LOS data, we ignore this.

CW MCU

Mean 3.52 2.94

Standard Deviation 5.03 4.47

Coefficient of Variation 1.43 1.52

Median 2.10 1.45

Skewness 4.92 4.21

Gini 0.57 0.59

p̂1 0.77 0.79

p̂2 0.23 0.21
1
µ̂1

2.29 1.86
1
µ̂2

7.69 7.10

p-value χ2 0.00 0.02

Table 3.2.: Summary statistics and parameter estimation of the LOS of new clinical ward
and MCU.

3.5. Conclusion

In this chapter, we answer the third research question. Similar to Chapter 2, we consid-
ered to arrival and LOS process. To generate data for the new wards, we merged data
of the separate wards, and ignored transfers in between these separate wards. Using
the merging property of the Poisson process, we (again) can assume a non-stationary
Poisson process with a cycle length of one week and varying arrival rates per day part of
12 hours. The LOS data is well approximated by a hyperexponential distribution, with
an ALOS of 3.52 days for the clinical ward and 2.94 days for the MCU.
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4. Modelling Approach

This chapter discusses the modelling approaches available to answer the central research
question, and to provide argumentation to make a valid choice amongst them. This
chapter is supported by the existing literature on the subject. Therefore we first define
the theoretical perspective used for the literature search. Subsequently we provide an
overview of the techniques available to determine the number of beds, and conclude with
the method of our choice.

4.1. Theoretical Perspective

The theoretical perspective used in this chapter is that of optimizing hospital bed ca-
pacity along the edges of Operations Research (OR). Optimizing in this context means
establishing a perfect trade off between bed occupancy and patient rejections (cf. Sec-
tion 2.2), while keeping the variability in bed demand in mind. Operations Research is
an umbrella term consisting of mathematical techniques to support decision making.

4.2. General notions

There are many different approaches to optimize bed capacity. Roughly, most research
either is based on queueing theory and/or simulation. Most authors agree that current
practices of determining bed capacity used by healthcare managers are not correctly
underpinned. First of all, now the bed occupancy is oftentimes leading in the decision
making process (e.g., the “85% occupancy rule”). Green (2002) points out that it is
better to base the decision regarding the number of beds on the availability of care that
is the fraction of declined patients. Secondly, performance indicators which are used to
determine the number of beds, are often not well defined (e.g., Green, 2002; Cochran and
Roche, 2008). And finally, many managers underestimate the importance to incorporate
the variability of e.g., LOS and patient arrivals. Decision makers now primarily use
averages to make their decisions, resulting in the underestimation of beds required (De
Bruin et al., 2009). There is rich literature about solving the issues mentioned. This
chapter serves to shed some light on this, and ultimately providing an (preliminary)
answer the research question. We will discuss methods from Queueing Theory, Discrete
Event Simulation and Mathematical Programming.
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4.3. Queueing Theory

Queueing theory is a branch of OR and can be used to describe and predict behavior
of waiting lines. It also entails the study of the arrival process (input process) and the
service process (output process). In case of a hospital ward, the beds can be seen as
servers, the patients’ length of stay as service time, the admission of patients per time
as arrival rates and a possible waiting list as queue. Queueing systems are oftentimes
categorized using the Kendall-Lee notation : A/S/c/K/N/D (Kendall,1951). In this
notation, A stands for the arrival process, S for the service process, c for the number of
servers, K for the queue capacity, N for the population size and D for queueing discipline.
Oftentimes the last two symbols are omitted, because of their irrelevance to the system
on hand.

Regarding the problem under examination, several queueing related methods are pro-
posed. Green (2002) and Cochran and Roche (2008) suggest the M/M/c/∞ system to
model the situation. This model assumes exponentially distributed inter arrival times
(i.e., a Poisson process, see Subsection 2.3.1), exponentially distributed service times,
c servers (beds) and an infinite queue capacity. Exponentially distributed inter arrival
times are proposed for both elective and scheduled admissions. As discussed before, it
is reasonable to approximate both scheduled and unscheduled arrivals with a Poisson
process. Since two merged Poisson processes again form a Poisson process, the “M” as-
sumption for patient arrivals is not unreasonable on itself, but it also assumes stationary.
As is pointed out in Chapter 2, the arrival process for elective patients varies across the
week. The model its main advantage is the relatively simple calculations of KPIs. It is
not hard to point out the restrictions of this model. For instance, this model assumes
infinite queue capacity. It is probably more realistic to assume a finite queue capacity,
or even no queue capacity at all since patients that arrive when all beds are occupied,
are diverted to another ward. Besides that, the model assumes homogeneous LOS and
arrival rates, which might very well be a wrong assumption as is pointed out in Section
2.6.2. Green (2002) does consider the refusal of patients, by examining the probability
of delay. Cochran and Roche (2008) optimize capacity with respect to target utilization,
which is not the way to go as explained earlier.

De Bruin et al.(2009) model a hospital ward as a M/G/c/c queueing system (also
known as Erlang-Loss model). In this model, the patient arrival process is assumed to
be a Poisson process, the service distribution is not pre-specified (G means general) and
that the number of beds equals the queue capacity i.e., patients that arrive when all
beds are occupied are “blocked”. According the De Bruin et al., blocked in this context
could mean sent away to another ward, or even another hospital. This seems to be a
more accurate approach, because in our situation there also is no waiting room and the
LOS distribution is hard to specify. A drawback is that also this model does not take
non stationarity of the arrival process into account. Besides that, there is still some
generalization of the LOS needed, albeit to a lesser extent than the previous approach.

Gorunescu et al.(2002) and Belciug and Gorunescu (2014) provide an even more so-
phisticated approach because they also take several cost aspects into consideration. The
method is based on the M/PH/c/c model. This model is identical to the one De Bruin
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et al. use except for the distribution of the LOS. The PH stands for phase type distri-
bution, which means that different type of patients are allowed to have different LOS
parameters. An example of a phase type distribution is the Erlang distribution. Together
with the blocking probability they use inventory theory to draw up a cost function. More
specifically, slow moving expensive items have demand processes that are often modelled
with a Poisson process (due to the infrequent random arrivals of customers). The goal
here is to optimize the trade off between stock out cost and holding cost. Gorunescu
et al. (2002) use this approach, where the stock out cost can be seen as the cost for
diverting a patient, and holding cost the cost for having an empty bed. The resulting
cost function contains a factorial which makes the optimization not straightforward. In
more recent work Belciug and Gorunescu append the described approach by suggesting
the use of a genetic algorithm to optimize the cost function (2014). A drawback of these
approaches is the stationarity assumption, and the fact that it is really hard to properly
determine the costs involved.

The last queueing model that will be discussed is the Mt/H2/s/s model as proposed
by Bekker and de Bruin (2010) and Bekker and Koeleman (2011). This model assumes
a non-stationary piece wise constant Poisson process, i.e., a different arrival rate per
time interval t (e.g., a different rate per day of the week or hour of the day). The LOS
is assumed to be hyperexponentially distributed with 2 exponential distributions. This
model does not need many restrictive assumptions, and its non-stationarity assumption
is distinctive. However, exact analysis of this model and even for the more general
Mt/G/s/s is known to be difficult. To this end, there are two famous approximations
available, being the Modified Offered Load (MOL) (Jagerman, 1975) approximation and
the Pointwise Stationarity Approximation (PSA) (Green and Kolesar, 1991). Massey
(2002) argues that the MOL approximation is superior to the PSA approximation, which
is also the approximation that Bekker and de Bruin (2010) base their analysis on. Bekker
and Koeleman (2011) base their approximation on the Hayward approximation with
non-integer input for the Erlang-Loss function. The drawbacks are the requirement of
a piece wise constant arrival rate, where this is likely to fluctuate smoothly over time.
Furthermore, the model requires a (hyper)exponential LOS distribution, where this is
obviously not always the case. All in all, this last model requires only a few assumptions
and captures most of the variability discovered in Chapter 2.

4.4. Simulation Modelling

Nearly all parts of critical care have a certain variability because many processes are of
a stochastic nature. Although the models in the previous section do take this variability
into account to some extent, all models have to obey several restriction assumptions.
For example, homogeneous arrival patterns were assumed for most models. As Costa et
al.(2003) point out, it is nearly impossible to encompass all this variability through math-
ematical equations (i.e., queueing theory). Therefore, the use of simulation modelling
is suggested. Simulation modelling is another branch of Operations Research, that is
often used to provide insight in the effect of variables in complex systems. An advantage
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of simulation modelling is that generally fewer assumptions are required than when one
uses an analytic model. Besides that, it is also a suitable tool to perform experiments
or what if scenarios as is done by Devapriya (2015) because the real system is not used
(which would oftentimes be very costly). A drawback of simulation is the fact that one
is actually performing experiments and uses this experiments to draw inferences about
the system in real life. This is obviously less “precise” than when using an analytic
solution of which queueing theory is an example. Furthermore, building a simulation
model is time consuming, and case specific. A last drawback is that also with simulation
one cannot perfectly represent reality which also is the case for queueing theory. All
discussed articles use a (sometimes healthcare) specific simulation tool. Because mainly
the model development process is relevant, the used software is not discussed.

Costa et al. provide a systematic approach of how to develop a simulation model to
provide insight into bed capacity (2003). This approach consists of four steps. The first
is to describe the patient flows in the hospital compartment under study. This could be
done by e.g., a flowchart. Subsequently, one has to analyse the statistical information
available. This encompasses fitting statistical distributions to e.g., the arrival rate and
LOS. According to Costa et al. one needs three types of data, being demographic data
about the patient group that are likely to affect the LOS, data about arrival patterns
and lastly data describing the LOS. The third step is to repetitively perform experiments
where after one should validate the results with the “real world” to ensure correctness
of the model.

Once the model has been built, it is important to draw up useful performance indica-
tors. Harper and Shahani suggest the bed occupancy (which they define as the ratio of
bed days used to bed days available) and the refusal rate (2002). Devapriya et al. add
patient wait time (if applicable) and the number of patients arrived per arrival source
(2015). Finally, Costa et al. (amongst others) suggest the total number of admissions
and the admissions split into elective and emergency patients (2003).

4.5. Mathematical Programming

Up to this point, we have primarily discussed the optimal number of beds based on some
care process related characteristics. Closely related to the discussion above is how to
deal with scheduled- and unscheduled arrivals. One of the issues belonging to this area is
the impact of scheduled admissions on variability in bed demand. It turns out that the
blocking probability increases as the peakedness of inter arrival times increases (Bekker
and Koeleman, 2011). In other words, smoothing the elective arrivals has a positive
effect on the number of patients that are blocked, on the variability of bed demand and
thus lower number of beds required.

Bekker and Koeleman (2011) propose the use of quadratic programming with linear
constraints to deal with this. The objective function is the sum over a time period of
the quadratic difference between a target load1 and the offered load. The constraints
are primarily concerned with the calculation of this offered load. Bekker and Koeleman

1Load=Arrivals per time unit * Time required per patient
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provide models to calculate this load in case of non-homogeneous arrival patterns per
day. Based on this model a guideline for the number of elective admissions per day
can be derived. The described model does not need a lot of restricting assumptions;
the arrival process may be non-homogeneous and the LOS can be different for different
patient groups. However, the LOS still needs to be (hyper) exponentially distributed.
Furthermore, the calculations involved are quite cumbersome. This could be a reason
not to apply this method given the limited time available. Another aspect that limits
the applicability of the described model is that it does not take into account that (a part
of the) elective arrivals are dependent on e.g., operation room schedules, which are in
turn dependent on availability of personnel. Leaving this out of consideration could be
a non-realistic simplification.

4.6. Conclusion of the Literature Study

Both simulation and queueing models can provide the answer for the central research
question. The analyses of Chapters 2 and 3 show that we are dealing with a non-
stationary Poisson process, and that the processing times are hyperexonentially dis-
tributed with two exponentials. Furthermore, the system can be seen both as two sepa-
rate “stations” and as a network as a whole. There are no closed form queueing models
available for the latter point of view that entails the discussed variability in arrivals
and service times. This could be a reason to consider simulation. On the other hand,
analytic techniques as queueing theory are less time consuming and are more suitable
for creating a tool such that the management is able to replicate the calculations in this
thesis even after the project has been completed. Furthermore, using queueing theory
and mathematical programming it might be possible to also take a look at how the
management should organise the elective arrivals and what that would yield in terms of
bed capacity by using quadratic programming.

Taking all of the above into consideration, the modelling approach of this thesis will be
based on the Mt/H2/c/c model discussed by Bekker and Koeleman (2011) and Bekker
and de Bruin (2010) in Section 4.3 because it encompasses most of the discovered vari-
ability. Besides that, it also shares part of the analysis required for the quadratic pro-
gramming model discussed in Section 4.5. To predict the effect of the new admission
schedule generated by the quadratic program, we built a simulation model. This is the
answer to the fourth research question.

51
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In this chapter we apply the models of Chapter 4 to our situation. The results are
presented and form the foundation of the recommendations of Chapter 6. We first
discuss the assumptions needed for the sequel of this chapter. Subsequently we present
the queueing model which gives the relation between the bed occupancy and blocking
probability. The quadratic programming model that follows shows us how to alter the
elective arrivals such that a target load (i.e., number of patients present) per day is
met and there is no variability in arrivals. With a simulation model we then see what
the effects are of this reduction in variability. The calculations for the queueing model
were done using Matlab. The quadratic program is solved using the CPLEX plug-in
for Matlab. The simulation model is built in Siemens Tecnomatrix Plant Simulation,
version 13.

5.1. Assumptions

It is nearly impossible to perfectly represent reality using (mathematical) modelling.
However, mathematical modelling can provide useful insight into the relations amongst
the variables on hand. To this end, we need to make assumptions under which we can
model the system and calculate several characteristics. This section provides these as-
sumptions:
• We assume Poisson arrivals, as is substantiated in Chapter 2 and 3.
• We assume hyperexponential LOS, which seems reasonable according to Section 2.4.3
and Section 3.4.
• We ignore the interaction between the MCU and the clinical ward.
• We assumed that fluctuations in arrivals within the time span of 12 hours do not
influence our analysis. This is underpinned by the rule of thumb derived by Bekker and
Koeleman (2011), who state that if the time span of fluctuating arrivals is less than 5
times the ALOS, these fluctuations average out.
• We assume that the admission data of Chapter 2 and Chapter 3 represent the real
arrival data (i.e., refused admissions are not taken into account). This is justified by
the fact that many refused D351 patients are admitted on D361 and v.v. (which causes
the data cube’s arrival rate to be higher on both MCUs), and many refused D340&D370
patients are admitted on the D350 ward and vice versa. Besides that, the number of
patients that is diverted to another division or hospital is negligible (cf. Section 2.5.2).
We ignore the patients diverted from and to the D360 ward, since this ward is not part
of this study.
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•We assume the time of arrival to be independent of the LOS, whereas this in reality
might not be the case (e.g., a patient arriving at 11:00 PM is not likely to leave before
07:00 AM the next day).

5.2. Queueing Model

We will first discuss some section specific notation. For the main definitions we refer
to Table 1. Following the analyses of Chapter 2 and 3, we consider time intervals of
twelve hours which results in 14 intervals per week (day and night for each day of the
week), i.e., t = 1, .., 14 = T . As can be seen in Table 1, m(t) is the load during interval
t from which it follows that m(t) is piece wise constant. µ1, µ2, p1, p2 correspond to the
parameters of the hyperexponential LOS distribution with k exponentials, see Section
2.4.3 and Appendix B.3.

First of all, m(t) needs to be calculated. This is done in two steps. First the m(t)’s
are calculated per “hyperexponential group” (Equation 5.1), and then the total m(t) is
calculated (Equation 5.2).

mk(t) =
1

µk

1− e−µk
1− e−Tµk

T−1∑
i=0

λt−ie
−µki, t = 1, .., 14, k = 1, 2 (5.1)

m(t) = p1m
1(t) + p2m

2(t) (5.2)

For the derivation of Eq. 5.1 and 5.2 we refer to Bekker and Koeleman (2011) and
Bekker and de Bruin (2010) and references therein. Using the calculated load we can
estimate the probability of c customers present (i.e., the blocking probability) using the
MOL approximation of Jagerman (1975) discussed earlier, and besides that also estimate
the bed occupancy given a number of beds. Let Bt denote the blocking probability
during t, and let B̄ denote the average blocking probability over all t. Then Bt and B̄
are calculated using:

Bt(s,m(t)) =
m(t)s/s!∑i=s
i=0m(t)i/i!

(5.3)

B̄ =
1

T

t=T∑
t=1

Bt (5.4)

The bed occupancy on t can be calculated by dividing the product of the average
acceptance rate (i.e., 1− B̄) and the offered load m(t) over the number of beds available
c, i.e.,

Bed Occupancyt =
(1− B̄)m(t)

c
(5.5)
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5.2. Queueing Model

5.2.1. Input data

We need input data regarding the arrivals (λt) and the processing times ( 1
µ). This input

is directly provided by the analysis of Chapter 3. Regarding the arrivals Table 3.1 will
be used. For the processing times we will make use of Table 3.2.

5.2.2. Mean Load across the week

In this subsection we predict the mean number of patients present per day part of the
week (day and night for each day). These figures are presented in Table 5.1.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
D N D N D N D N D N D N D N

MCU 10.5 10.0 10.5 9.5 10.2 9.7 10.6 9.9 11.2 10.4 10.3 9.5 10.1 10.1

CW 22.0 19.0 24.3 20.1 25.7 21.9 26.9 22.6 27.0 23.1 20.8 18.0 17.9 15.9

Table 5.1.: The predicted number of patients present per day part per ward.

We can easily conclude that the mean number of patients present (i.e., mean load) on
the MCU is rather constant, whereas the mean number of patients on the clinical ward
fluctuates heavily. Combining the fact that the mean load only depends on the LOS-
and arrival distribution and that the LOS distribution is constant throughout the week,
we can derive that this fluctuation in load is caused by the fluctuating arrival rate (cf.
Section 3.3).

5.2.3. Bed Occupancy vs. Blocking Probability

For both the new clinical ward and the MCU, we calculated the average and maximum
blocking probability (i.e., the day part with the highest rejection rate) across the week
for a different number of beds, using Equations 5.3 and 5.4. These numbers are denoted
with B̄ and Bmax respectively. Besides that, we calculated the corresponding average
bed occupancy. From the average blocking probability, we can easily derive the mean
number of days that the regarding ward is fully occupied (i.e., B̄ · 365). These numbers
have been included for illustratory purposes. For the new MCU, the results are given in
Table 5.2. For the CW, the results are given in Table 5.3.
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Nr. of
beds

B̄ Bmax Occupancy Days fully occupied

11 17.1% 21.7% 76.7% 62.5

12 12.7% 16.9% 74.1% 46.4

13 9.1% 12.7% 71.2% 33.2

14 6.2% 9.3% 68.2% 22.7

15 4.1% 6.5% 65.1% 14.9

16 2.6% 4.4% 62.0% 9.3

Table 5.2.: Trade off between the blocking probability and bed occupancy for the new
MCU.

Nr. of
beds

B̄ Bmax Occupancy Days fully occupied

25 8.8% 18.5% 79.5% 32.1

26 7.2% 16.1% 77.8% 26.2

27 5.8% 13.9% 76.0% 21.2

28 4.6% 11.8% 74.2% 16.9

29 3.6% 9.9% 72.4% 13.3

30 2.8% 8.2% 70.6% 10.3

31 2.2% 6.6% 68.8% 7.9

32 1.6% 5.3% 67.0% 5.9

33 1.2% 4.2% 65.2% 4.4

34 0.9% 3.2% 63.5% 3.2

35 0.6% 2.4% 61.9% 2.3

Table 5.3.: Trade off between the blocking probability and bed occupancy for the new
clinical ward.

The capacity decision based on the blocking probability can be made by starting at
the bottom of the table and move up till B̄ or Bmax “hits” the pre-specified target.
Especially for the CW the differences between the occupancy and the max occupancy
respectively B̄ and Bmax are large. This is due to the fluctuating load across the week,
see Section 5.2.2. Particularly for the CW, we can alter this load by improving the way
elective arrivals are scheduled. If we eliminate (unnecessary) variation in the elective
arrivals, most likely the rejection rate will drop and the occupancy will rise (Bekker and
Koeleman, 2011). In the next subsection we further analyse this issue.

5.3. Quadratic Programming Model

To derive an admission schedule, we use a quadratic program based on Bekker and
Koeleman (2011). Since we are interested in a number of allowable arrivals per day, the
model is on a day-to-day basis (hence does not consider day and night). In this model,
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5.3. Quadratic Programming Model

we minimize the sum of quadratic differences between the offered load on day t, m(t),
and a target load m∗(t) (Eq. 5.6) . A possibility is to redistribute the calculated load of
Table 5.1. This target load can either be based on a target blocking probability (i.e., Eq.
5.3), or a target occupancy. The choice of using the quadratic instead of the absolute
deviation is based on the intuition that larger differences in load cause bigger problems
for the staff. The model is given below. For the definitions we refer to Table 1.

Minimise

7∑
t=1

[m(t)−m∗(t)]2 (5.6)

Subject to mk(t) =
1

µk

1− e−µk
1− e−Tµk

6∑
i=0

λt−ie
−µki, t = 1, .., 7, k = 1, 2 (5.7)

m(t) = p1m
1(t) + p2m

2(t) (5.8)

λt = c1t t = 6, 7 (5.9)

i=7∑
i=1

λi ≥ Λ (5.10)

λt ≥ c2t t = 1, .., 7 (5.11)

The objective function 5.6 minimizes the sum of the quadratic differences between the
load as a function of the new arrival rates and the target load per day. Constraints 5.7
and 5.8 calculate the load as a function of lambdas, and are equivalent to equations 5.1
and 5.2. Constraint 5.9 is optional, and can be used to forbid elective arrivals during
the weekend (e.g., scenario 2 of the next section). In that case, c16 and c17 are equal to
the arrival rate of emergency patients during the weekend. Constraint 5.10 ensures that
the total number of arrivals is equal or greater than it is now. Constraint 5.11 can be
used to ensure that the λs are at least equal to the emergency arrivals per day (since
these cannot be altered).

Solving the model results in a vector of λs (one for each day of the week). Subtracting
the emergency arrivals results in the allowable elective arrivals. Non-integer arrival rates
are rounded to the nearest integer as is suggested by Bekker and Koeleman (2011). As
the target load is calculated using the current arrival rates, the total new arrival rate
may not be lower than the total current arrival rate since that would lead to an unfair
comparison. If the rounding procedure results in a total number of elective arrivals lower
than it is now (≈ 24.4), we have fixed this by rounding up the highest fractional rate(s)
which was/were initially rounded down.
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5.3.1. Implementation

To implement the quadratic programming model, we have to determine the target load
per day of the week. We do so by redistributing the load per week as given in Table 5.1.
The total load for the clinical ward is 153.13. The management has indicated that the
target load during weekends should be 4 patients less during than on weekdays, because
then one nursing shift can be saved. Besides that, we try to level the load throughout
the week as much as possible. This results in a load of m∗(1) = ... = m∗(5) = 23.019
on weekdays and m∗(6) = m∗(7) = 19.019. We will evaluate two scenarios with this
target load. In the first scenario, elective arrivals during weekends are allowed, whereas
these are not allowed in the second scenario. A third scenario that will be evaluated is
when we try to level the load over the week including weekends. This results in a target
load of m∗(1) = ... = m∗(7) = 21.88 The parameters µ1, µ2 are given in Table 2.6 and
Λ = 43.22. The results are given in Table 5.4.

Mon Tue Wed Thu Fri Sat Sun

Scenario 1 7 4 4 4 3 0 3

Scenario 2 9 4 4 4 4 0 0

Scenario 3 4 4 3 3 3 4 4

Table 5.4.: Target admissions to achieve specified load (rounded off).

The table provides guidelines about the number of admissions per weekday, given the
constraints per scenario. If no elective arrivals during weekends are allowed (Scenario
2), the “missed” patients should roughly be admitted on Monday. If the load should be
equal for all days, we see that the number of arrivals allowed per weekday are nearly
equivalent. One might expect to have a schedule of 4-3-4-3-4-3-4 for Scenario 3, since
that seems to be more equal throughout the week. The actual schedule looks different
due to the fact that the number of emergency arrivals is not perfectly level through the
week. The number of elective arrivals on Monday is very high for Scenario 2, which might
lead to a high blocking probability. It would be interesting to know what the effects of
the schedules in Table 5.4 would be on the occupancy and blocking probability. Equation
5.3 cannot be used to this end, since we no longer have Poisson arrivals for the elective
patients. We therefore need a model that takes a mix of Poisson and deterministic
arrivals. To the best of our knowledge, there is no closed form analytical expression to
solve this problem. Therefore, we built a simulation model which is substantiated in the
next section.

5.4. Simulation Model

In this section, we perform a simulation study to analyse the performances of the admis-
sion schedules derived in the previous section for the clinical ward. To develop a sound
model and draw proper inferences, we use the guidelines of Law (2015:67). We first
describe the system, collect data and set the required assumptions. This has been done
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5.4. Simulation Model

extensively in Chapters 2 and 3 and Section 5.1. Subsequently the computer program is
made, and one we have taken care of validation and verification issues. Thereafter the
warm-up period and run length discussed. Lastly the experiments are performed and
inferences are drawn.

5.4.1. The Model

Input and Output Variables

The input of the simulation model consists of a description of both the arrival- and
service process. This analysis is provided in Chapter 3. We assume Poisson emergency
arrivals, deterministic elective arrivals and hyperexponential service times. The output
variables of interest are the fraction of time that the clinical ward is fully occupied (i.e.,
blocking probability) and the bed occupancy. The arrival rates are again split up into
day (6:00 AM to 6:00 PM) and night (6:00 PM to 6:00 AM) per day of the week. We
assume that the (deterministic) elective arrivals occur uniformly between 6:00 AM and
6:00 PM. The occupancy and blocking probability (fraction of time that all servers are
occupied) are registered on an hourly basis (i.e., number of patients present at the start
of each hour vs. the number of beds available). Because the arrival rate fluctuates
over time and the simulation software generates inter arrival times (cf. Section 2.3.1), a
thinning algorithm is used (Law, 2015:477-478). In this algorithm, we generate arrivals
according to the maximum arrival rate and accept the arrival with a probability equal
to the fraction of the arrival rate of that day part over the maximum arrival rate.

Flow chart

To visualize the building blocks of the simulation, an event flow chart is used. The flow
chart is given in Figure 5.1.

Figure 5.1.: Event flow chart of the clinical ward.
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5.4.2. Verification & Validation

Verification

According to Law, “Verification is concerned with determining whether the “assumptions
document” has been correctly translated into a computer “program”...” (2015:246). This
boils down to translating the assumptions in Sections 5.1 and 5.4.1 correctly into a model
that works. Since the required input distribution can easily be configured in Plant
Simulation, this should not cause any trouble. Furthermore, the thinning algorithm
takes care of the fluctuating arrivals. If we run the simulation model it runs without
errors and produces reasonable output, justifying the claim that the model is verified.

Validation

Validation is concerned with ensuring that the simulation is a “good” representation of
reality. That is, “Validation is the process of determining whether a simulation model
is an accurate representation of the system, for the particular objectives of the study”
(Law,2015:247). In our context, this means that the simulation should be a credible
representation of reality and able to predict the mentioned KPIs for the new situation. A
commonly used technique is “black-box validation” where simulation output is compared
to real world output and statistical techniques are used to judge the (possible) differences.
Since this real world output is not yet available (we are simulating a future situation), we
are designated to other techniques. We therefore compared the simulation output with
the output of Table 5.3 given the same input assumptions. This comparison is given in
Table 5.5. On eyeballing we see that these values do not differ significantly. Furthermore,
Law suggests having conversations with Subject-Matter Experts (SMEs) who are able
to judge whether the simulation model on hand is valid (2015:267-268). In our case, the
SMEs will be the management. Furthermore, Law states that thorough data analysis
and an assumptions document contribute to validity (2015:258-259). Together with the
management we consider the simulation model as being valid.

5.4.3. Output analysis

Type of simulation

Since simulation modelling essentially boils down to using a computer program to model
a real world situation and performing experiments to draw inferences, we need statistical
techniques to do this in a correct manner. We are dealing with a non-terminating
simulation since there is no natural endpoint. We could either have transient, steady
state or cyclic steady state output. Since our arrival rate varies over the week, cyclic
output seems to be the case (Law, 2015:493-497). To deal with this, we need cyclic steady
state output parameters, and thus calculate the blocking probability and occupancy as
averages per week.
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Occupancy Blocking Probability
No of Beds Simulation Queueing Simulation Queueing

25 78.65% 79.51% 8.34% 8.79%

26 77.20% 77.79% 6.52% 7.19%

27 75.73% 76.02% 5.37% 5.81%

28 74.16% 74.22% 4.08% 4.63%

29 72.54% 72.40% 3.13% 3.65%

30 70.81% 70.58% 2.42% 2.83%

31 68.99% 68.77% 1.86% 2.16%

32 67.30% 66.99% 1.31% 1.63%

33 65.62% 65.24% 0.93% 1.20%

34 63.93% 63.53% 0.62% 0.88%

35 62.28% 61.87% 0.44% 0.63%

Table 5.5.: Comparison of queueing model with simulation model.

Warm-Up

As stated above, we are dealing with non-terminating simulation and thus have steady
state output. However, it usually takes some time till the steady state is achieved
(Law, 2015:512). The data retrieved during this warm-up period should not be taken
into account when drawing inferences. There are two ways of calculating the warm-up
period suggested by Robinson (2014:175-178) and Law (2015:511-523). First graphical
inspection, second the Marginal Standard Error Rule (MSER). The MSER seems more
objective, which is why we decided to use it. For the formal definition of the MSER
rule we refer to Robinson (2014:177-179). We apply the MSER to the elective arrivals
according to scenario 2 from Table 5.4 with a bed capacity of 25. Using data from
5 replications (initial guess) with a run length of 52 weeks and the maximum warm-
up period of the average bed occupancy and blocking probability per week, we have a
warm-up period of 1 week. However, the hyperexponential distribution of the LOS of the
clinical ward has as parameter values 1

µ1
= 2.29 days with p1 = 0.79 and 1

µ2
= 7.69 days

with p2 = 0.21 respectively, and therefore one can conclude that 21% of the patients has
a LOS of around 8 days. Therefore, a warm-up of 3 weeks seems to be more safe.

Number of Replications

Next, we need to determine the number of replications (i.e., the size of our sample) such
that we have enough data to properly draw inferences. We fix the run length to a period
of 52 weeks excluding the warm-up period. For the calculations in this section we use the
average blocking probability per week as input data, since this KPI seems empirically to
be the most unstable. To determine the number of replications, we use the confidence
interval method as proposed by Robinson (2014:184-186). This is an algorithm which
chooses a number of replications such that the interval bounds around the mean deviate
at most a pre-specified percentage (say d). Without going into details, the method boils
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down to running experiments until the width of the confidence interval is smaller than
d i.e., :

tn−1,1−1/2αS√
n|X̄|

< d (5.12)

See Table 1 for the definition of the mathematical symbols. If we set d = 0.05, the
number of replications is 36.

5.4.4. Results

In this section we present the results. We calculated the average bed occupancy and
blocking probability over the week for all three scenarios, using a net run length of 52
weeks and 36 replications per experiment. For both KPIs, the 95%-confidence inter-
vals are given, indicated with CI-Left (left interval bound) and CI-Right (right interval
bound). For each scenario, we evaluated a set-up of 25 to 30 beds. The output for
Scenarios 1 up to 3 is given in Tables 5.6, 5.7 and 5.8 respectively.

Scenario 1
Nr of Beds B̄ CI-Left CI-Right Occupancy CI-Left CI-Right

25 7.83% 7.53% 8.12% 81.39% 81.15% 81.63%

26 6.12% 5.83% 6.40% 79.93% 79.69% 80.16%

27 4.50% 4.21% 4.80% 78.22% 77.94% 78.50%

28 3.21% 2.98% 3.44% 76.47% 76.20% 76.75%

29 2.32% 2.09% 2.55% 74.60% 74.30% 74.89%

30 1.57% 1.38% 1.76% 72.65% 72.34% 72.95%

Table 5.6.: Simulation output for Scenario 1.

Scenario 2
Nr of Beds B̄ CI-Left CI-Right Occupancy CI-Left CI-Right

25 8.37% 8.13% 8.61% 80.74% 80.50% 80.98%

26 6.48% 6.22% 6.75% 79.37% 79.13% 79.62%

27 4.86% 4.56% 5.15% 77.79% 77.52% 78.05%

28 3.59% 3.35% 3.83% 76.10% 75.82% 76.39%

29 2.50% 2.27% 2.73% 74.36% 74.08% 74.64%

30 1.72% 1.55% 1.89% 72.46% 72.15% 72.76%

Table 5.7.: Simulation output for Scenario 2.
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Scenario 3
Nr of Beds B̄ CI-Left CI-Right Occupancy CI-Left CI-Right

25 7.24% 6.91% 7.57% 82.40% 82.18% 82.62%

26 5.40% 5.09% 5.71% 80.69% 80.43% 80.95%

27 3.97% 3.68% 4.26% 78.95% 78.66% 79.24%

28 2.76% 2.51% 3.01% 76.97% 76.66% 77.29%

29 1.85% 1.62% 2.07% 74.91% 74.61% 75.22%

30 1.18% 1.01% 1.34% 72.86% 72.54% 73.19%

Table 5.8.: Simulation output for Scenario 3.

Comparing these results with Table 5.3, we see that for all configurations and scenarios
the blocking probability is lower (up to 1.88 percent point) and the bed occupancy higher
(up to 2.93 percent point) if we remove the variability in elective arrivals. This proofs
by example the hypothesis of Bekker and Koeleman (2011), and shows the value of
reducing variability. The improvement is even better if elective arrivals during weekends
are allowed (Scenario 3). In that case, we could in some cases reduce the number of
beds required by 2. This is a serious improvement. Besides that, since the offered load is
more equal through the week, it is expected that the workload is more even distributed.

5.5. Conclusion

This chapter answers the fifth research question. We used a Mt/H2/c/c queueing model
to calculate the number of beds required given the target rejection rate of 3% for the
MCU and 5% for the clinical ward. The required number of beds is 28 for the clinical
ward, resulting in a bed occupancy and rejection rate of 74.2% and 4.6% respectively.
For the MCU we need 16 beds resulting in a bed occupancy and rejection rate of 62.0%
and 2.6% respectively.

Since elective arrivals can be altered, we investigated the effect of such an intervention
for the clinical ward by means of a quadratic programming model and a simulation
model. If we are able to level the elective arrivals over the week, we can reduce the
number of beds required to 27 with a rejection rate of 3.97% and a bed occupancy of
78.95%.
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6. Conclusion, Recommendations and
Discussion

This chapter answers the research questions and solves the knowledge problem intro-
duced in Chapter 1. Subsequently, we present our recommendations and we discuss
difficulties and reflect on our work. Lastly, we underpin the relevance of our research
and provide suggestions for further research.

6.1. Conclusion

In Chapter 1 we deducted the core problem, which was to be solved by answering several
research questions. The research questions have been answered in the preceding chap-
ters, and are repeated in this section together with a condensed answer per question.
These answers together solve our core problem.

1:What is the current performance with respect to bed capacity on both wards
and MCUs?
To answer this question, we have evaluated the bed occupancy and estimated the cur-
rent rejection rate to judge the performance of both wards and MCUs. To evaluate
the bed occupancy, we used the available data on hourly presence and because of er-
roneous data we also used Little’s Law. The target occupancy is set at 85%. The bed
occupancy for the MCUs in 2017 was 58.87% (D351) and 90.73% (D361), and for the
clinical wards 66.67% (D340&D370) and 79.03% (D350) according to Little’s Law. Due
to a lack of data, the rejection rate is estimated using a queueing model. The target
rejection rate is 5% for the clinical wards, and 3% for the MCUs. The rejection rate for
the MCUs is estimated as 7.5% (D351) and 23.5% (D361), and for the clinical wards as
3.4% (D340&D370) and 10.9% (D350).

2: What are the characteristics of the patient related processes?
First, we distinguished the different type of patient arrivals. Subsequently we have per-
formed an extensive analysis on both the patient arrival process as well as the LOS
process. It turned out that the patient arrivals can be well approximated by a non-
stationary Poisson process, and that especially the elective arrivals fluctuate over the
day and over the week whereas the emergency arrivals seemed to be rather constant.
We therefore assume piecewise constant arrival rates, varying per day part of 12 hours.
We have illustrated by the Gini coefficient that the total LOS is unequally distributed
over the patient population, and that the LOS distribution probably consists of multiple
sub-distributions. This was confirmed by the fact that the LOS is well approximated by
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a hyperexponential distribution.

3: What are the characteristics of the clinical ward and MCU after the
merger?
To be able to predict the characteristics of the new wards, we have merged the arrival
and LOS data respectively to “simulate” the new situation. Using the merging property
of the Poisson process, the arrival process can be approximated by a non-stationary Pois-
son process, and the LOS by a hyperexponential distribution. The arrival rates again
are piecewise constant, varying per 12 hours.

4: How to correctly determine the right number of beds on wards and MCUs
according to the literature?
After reviewing a selection of articles in the field of Operations Research, we discovered
that most methods used to determine bed capacity are based on Queueing Theory, Dis-
crete Event Simulation and Mathematical programming. Besides that, almost all studies
advocate that solely basing the capacity decision on a target occupancy is a bad idea,
and that the focus rather should be on the blocking probability. Several models have
been evaluated which led to the choice of a time depending, hyperexponential and finite
server queueing model (Mt/H2/c/c) based on the MOL approximation. Furthermore, a
quadratic program is used to alter the elective arrivals such that a target load per day
is met. Using simulation modelling one can calculate the effect of such an intervention.

5: What is the quantitative relation between the relevant KPIs when deter-
mining the required bed capacity?
To answer this question, we used a queueing model with time-dependent Poisson arrivals,
a hyperexponential service time distribution and finite capacity. This showed us that
there is a non-linear relation between the number of beds and both the bed occupancy
and blocking probability. To meet the target blocking probability, we need 16 beds for
the MCU and 28 beds for the clinical wards, resulting in a blocking probability and bed
occupancy of 2.6% and 62% and 4.6% and 74.2% respectively. If however, the manage-
ment is able to alter the elective arrivals (which only applies for the clinical ward) such
that the variability in the number of arrivals per day of the week is reduced (e.g., always
3 elective arrivals on Monday), the number of beds can be reduced for the same blocking
probability. If for instance we can level the elective arrivals through the week (including
the weekend), we need 27 beds resulting in a blocking probability and bed occupancy of
3.94% and 78.83% respectively.

6.2. Recommendations

In this section we provide workable recommendations resulting from the conclusions of
Section 6.1.
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•We recommend to base the number of required beds for the new ward and MCU on the
tables provided in Chapter 5, i.e., Table 5.2 and 5.3. These tables provide insight into
the relation between the bed occupancy and rejection rate. Given the desired rejection
rate of 3% for the MCU and 5% for the clinical ward, we advise a bed capacity of 16
and 28 beds respectively.
• The variability in elective arrivals should be reduced as much as possible. Ideally, the
number of elective arrivals should be equal per day per week. We have shown by means
of a simulation study that the number of beds on the clinical ward can be reduced to 27
for the same rejection rate and a higher occupancy.
• Capacity decisions should be based on the entire distribution of the relevant variables
rather than averages (to avoid the well-known “the flaw of averages”). This coincides
with the notion of many researchers that the bed capacity should be determined based
on the rejection rate and not (primarily) on the bed occupancy.
• Improvements should be made regarding the available data. The number of rejections
should be recorded, both within the division as for patients diverted to another division
or hospital. This will make future capacity decisions more accurate. Furthermore, data
should be entered more accurately. Given the already high workload of health care
employees, it is not our intention to increase this even more. It could however be wise to
explain to the employees why correct data matters, and that (capacity) decisions based
on correct data can actually reduce the workload. Besides that, a possible solution is to
automatize registration of e.g., admission and discharge time. Automatically registering
data is more objective and saves valuable time.

6.3. Discussion & Limitations

In this last section, we critically reflect on the research process and the thesis as a
whole. Possible errors and difficulties encountered will be discussed, and differences with
comparable work will be underlined. We will first discuss the (in)availability of data.
Subsequently we will discuss experienced difficulty when fitting statistical distributions
to the arrival and LOS data. As a last subject we will advocate the practical and
scientific relevance, and provide suggestions for further research.

6.3.1. Data Issues

LOS Data

The first data issue that will be discussed is the troublesome LOS data. The data
provided by the cube is focused on averages rather than separate data points. For
the analysis of Chapter 2, we needed separate LOS data per stay. Now however, if a
patient is transferred n times to the same ward within the same admission, the cube
only provide the average LOS of these separate stays. To generate separate LOS points
for these cases, we manually added n− 1 extra data points with this average LOS. This
most likely results in more centered data than actually is the case. This in turn results
in a lower coefficient of variation and Gini coefficient which are used for the distribution
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fitting process of Chapters 2 and 3. Since these cases of missing data points did not
occur too often, we do not think the results would be significantly different compared to
the case of complete data.

Something similar occurred when analyzing the merger in Chapter 3. If for instance
we consider the merger of D351 and D361, we would ideally sum the separate LOS
of patients who were being transferred from the D351 to the D361 one or multiple
times during the same admission. Because we do not have these separate LOS but only
averages, we were unable to do so. Since the fraction of arrivals due to these transfers
is relatively low, we do not expect the effect of this assumptions to be significant.

Hourly Presence Data

The second data issue is about the presence data. This data provides the number of
patients present per ward on a given hour. However, it turned out that on multiple
occasions, there were more patients present than there was capacity. This does not seem
to be correct, and the management has indicated that this is most likely due to input
errors. This forced us to use models to evaluate e.g., the bed occupancy.

Diverted Patients Data

The third data issue is that, as discussed in Chapter 2, there is no data on the number
of patients being rejected or assigned to the wrong ward due to a fully occupied ward.
This is the reason we had to assume that the number of admissions coincides with
the total number of arrivals (i.e., the sum of admissions and rejected patients). Since
patients are rarely diverted to other divisions or hospitals, this assumption is not too
restrictive. However, patients are frequently assigned to another ward within the division
(i.e., when a surgical patient is diverted to the non-surgical ward). Since we are primarily
considering the situation after the merger (and the MCUs are merged), this does not
cause problems for the MCUs. However, for the clinical wards this is slightly different
since we are only considering 2 out of 3 clinical wards of the division. Since there is no
data, we cannot say whether the number of diversions from and to this third ward cancel
out against each other and thus we cannot say whether this assumption is completely
justifiable or not.

Missing Arrival Data

The last data issue encountered was the missing arrival data. Especially for the MCUs,
a many were not registered. It is not clear if this means that there are no arrivals at the
given day, or if the ward was closed that day. The former seems unlikely, because there
are also days registered with 0 admissions. The missing data for the MCUs could be a
cause for the gap between occupancy reported by the data and that calculated by the
model in Table 2.7.
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6.3.2. Distribution Fitting

Also regarding the fitting of statistical distributions several footnotes can be made. First
of all, one could argue whether the Poisson assumptions for all wards is a valid one. We
have tried to objectively underpin this claim by providing p-values of the χ2 goodness-
of-fit test. However, especially for the D340&D370 ward one could question the validity
of the Poisson assumption. It is important to realize that although the fit does not seem
to perfectly follow the data, it does (roughly) have the same shape. This indicates that
the Poisson model captures (most of) the variance of the arrival process, and therefore
is not necessarily a bad assumption.

Secondly, the hyperexponential distribution does not seem to be a perfect fit for the
LOS in both the current as well as the future situation. It should be noted that many
authors experience difficulties when fitting a distribution to the LOS data. We have tried
many distributions (Lognormal, Gamma, Normal) to the data, but the hyperexponential
distribution provided the best fit. Besides that, it also coincides with our intuition about
a separate distribution for both the short and long stay patients. For the clinical ward,
the model seems to overestimates respectively underestimates the frequency of short stay
and medium stay patients compared to the data. This could result in a slightly lower bed
demand given the same number of admissions. For the MCU, the model underestimates
short stay patients a bit but overestimates medium stay patients which could result in
a slightly higher bed demand than actually is the case. Most likely the data is hard
to fit because many patients groups within the population are likely to have a different
LOS distribution. To discover all these groups, one could use e.g., Classification and
Regression Trees as suggested by Costa et al. (2003). This however falls outside the
time window of this assignment.

6.4. Relevance and Future Research

In this section we argue the scientific and practical relevance of this research and provide
possible openings for future research.

6.4.1. Scientific Relevance

This research is based on a continuation of a line of research in bed capacity planning.
Especially work of De Bruin (2010), Bekker and Koeleman (2011) and Bekker and De
Bruin (2010) was used. We have modelled the arrival and service process as suggested by
De Bruin (2010), and thus supported his analysis by another case. Besides that, we have
applied the queueing model proposed by Bekker and Koeleman (2011) and Bekker and
De Bruin (2010) and have shown that also within our case a time dependent queueing
model seems appropriate. On top of that, we have applied the quadratic programming
model suggested by Bekker and Koeleman (2011) and proved its value by means of a
simulation study. To the best of our knowledge, a combination of the above techniques
has not been applied before which directly confirms the scientific relevance. Buter (2017)
shares part of our analysis but focuses on distributing medical disciplines over wards
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and hence uses a less sophisticated queueing model to determine capacity. Furthermore,
Buter (2017) uses an extensive simulation study to evaluate different set-ups regarding
the distribution of medical disciplines, whereas we used simulation modeling to show the
possible gain of reducing variability in elective arrivals.

6.4.2. Practical Relevance

Using the analyses, the management now knows how to properly determine the number of
beds required. The management has gained insight into the quantitative relation between
the bed occupancy and blocking probability. We have shown that a target occupancy
of 85% is unreasonable, and that the blocking probability should be the leading KPI
in bed capacity decisions. This insight decreases the number of diverted patients, and
thus increases the quality. Besides that, we have shown the value of altering the elective
arrivals which could increase the bed occupancy (i.e., productivity) without increasing
the blocking probability. Our research thus could lead to an increase both quality of care
as well as productivity, from which we conclude that our research is practically relevant.

6.4.3. Future Research

This research quantifies a strategic decision (see Section 1.2.4); using the analyses pro-
vided the management can choose a (maximum) number of bed positions for the long
term. However as indicated before, the operational management consisting of head
nurses discuss on a day-to-day basis how many beds to “close” on a certain day. In
future research, it could be helpful to develop a tool supporting this decision.

Besides that, in Section 5.4.4 we have showed the value of rearranging the elective
admissions. A next step would be to investigate how such an intervention would look
like in practice.

A more theoretical starting point for future research would be to develop an analytical
model to optimize the bed occupancy for a multi-echelon chain of e.g., wards or even
hospitals instead of single wards. In supply chain it is well-known that optimizing
the chain instead of single echelons at a time is considerably more difficult, but could
result in much better performance than optimizing each echelon sequentially. It is not
unreasonable to assume that this will also be the case in healthcare.
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A. Problem Cluster

Figure A.1.: Problem cluster
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B. Probability distributions and MLE

B.1. Poisson distribution

The Poisson dsitribution is a discrete probability distribution, with:

pdf : P (X = k) = e−θ
θk

k!
mean : θ

variance : θ

B.2. Exponential distribution

pdf : f(xi, θ) = θe−θxi

mean :
1

θ

variance :
1

θ2

B.3. Hyperexponential distribution

pdf : Hk(p1, ..., pk;µ1, .., µk) =

k∑
i=1

pif(xi, µi), pi ∈ [0, 1],
∑

pi = 1

with f(xi, µi) being the pdf of an exponential distribution with parameter µi.

mean :
k∑
i=1

pi
µi

variance :

[ k∑
i=1

pi
µi

]2
+

k∑
i=1

k∑
j=1

pipj

(
1

µi
− 1

µj

)2
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B. Probability distributions and MLE

B.4. MLE Poisson

In maximum likelihood estimation, we try to optimize the likelihood function L(θ1, ..., θm, x1, ..., xn).
This answers the question “What is are the values of the parameters (θ1, .., θm) that best
explain the data (x1, ..xn)?”. In case of the Poisson distribution, this boils down to:

max
θ

L(θ, x1, ..., xn) =
n∏
i=1

f(θ, xi) =
n∏
i=1

e−θ
θxi

xi!
⇐⇒

max
θ

ln(L(θ, x1, ..., xn)) = −nθ + ln(θ)
∑
i

xi −
∑
i

ln(xi!) FOC

n =

∑
i xi
θ

⇐⇒ θ̂MLE = X
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C. Arrivals per day

Figure C.1.: Elective arrivals split into week- and weekend days for the D340&D370 ward
in 2017. Data retrieved from data cube, n=251 and n=104 respectively.

Figure C.2.: Elective arrival patterns for both MCUs in 2017.Data retrieved from data
cube, n=133 and n=153 respectively.
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C. Arrivals per day

Figure C.3.: Emergency arrivals for both clinical wards in 2017.Data retrieved from data
cube, n=373 and n=616 respectively.
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D. Arrivals per day

Figure D.1.: Emergency arrivals for the D351 MCU and D340&D370 clinical ward in
2017.Data retrieved from data cube, n=248 and n=616 respectively.
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E. Arrivals per hour

Figure E.1.: Hourly admissions of emergency patients for all wards in 2017. Data re-
trieved from data cube, n=373 and n=666 respectively.

Figure E.2.: Hourly admissions of emergency patients for all wards in 2017. Data re-
trieved from data cube, n=616 and n=248 respectively.
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