
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Attribute Extraction from Darknet Markets
and the Applicability of Transfer Learning

M.Sc. Thesis by
Nicole Oonk

Master in Computer Science
Specialization in Data Science and Technology

November 2018

Graduation Committee:
University of Twente

dr. C. Seifert
dr. D. Bucur

Team High Tech Crime
dr.ir. A.H. van Bunningen

Datamanagement and Biometrics Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

iii

Abstract

Cybercrime is an international threat that is continuously growing. One of the fun-
damental strategies in the combat against cybercrime is intelligence-led policing.
Darknet markets (DNMs) are a rich source of information on cybercrime. However,
gaining in depth insight into the products and services offered on DNMs is diffi-
cult. Whereas studies have been conducted to gain insight into DNMs, no study has
yet focussed on extracting information from DNM posts to gain insight in the tech-
niques that are exploited, the locations that are mentioned and other characteristics
law enforcement agencies are interested in.

In this study, attribute extraction was performed to automatically extract attributes
from bulletproof hosting advertisements of a multi-lingual DNM. A variety of at-
tribute extraction techniques was tested and compared. The extraction techniques
included are dictionary-based, rule- and pattern-based and machine learning based
attribute extraction. The machine learning algorithms that were compared are Max-
imum Entropy Model (MEM), Conditional Random Field (CRF) and bidirectional
Long-Short Term Memory with Conditional Random Field (biLSTM-CRF). Further-
more, transfer learning by fine-tuning was applied to improve the performance of
the biLSTM-CRF extractor.

Russian attribute extraction was performed with a micro-averaged F2-score of 0.886,
using the biLSTM-CRF extractor developed with transfer learning. The ensemble
extractor, that combines for each attribute the best extraction technique, resulted in
a micro-averaged F2-score of 0.859 for English attribute extraction. Transfer learn-
ing applied to the biLSTM-CRF extractor resulted in a performance improvement of
0.014 and 0.002 micro-averaged F2-score for Russian and English respectively. With
attributes that improved with up to 0.074 F2-score.

These results show that attribute extraction and transfer learning have a great po-
tential to gain insight in DNMs and effectively include DNMs in intelligence-led
policing.

v

Acknowledgements

This master’s thesis marks the end of my five-year period as a student at the Uni-
versity of Twente. The last several months of carrying out my graduation project
have been a great experience for me. I would like to take this opportunity to thank
several persons that helped make this project possible. First of all, I would like to
thank my supervisors Christin Seifert, Doina Bucur and external supervisor Arthur
van Bunningen for taking the time to guide me during this project with meetings to
discuss the work and valuable feedback to improve this thesis. Our meetings always
left me feeling motivated and full of ideas. Furthermore, I would like to express my
gratitude to all my colleagues for being able to conduct this project at Team High
Tech Crime of the Dutch National Police. Lastly, I would like to thank my family
and friends for their continuous support during this project.

vii

Contents

Abstract iii

Acknowledgements v

List of Acronyms xiii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Goal and Questions . 2
1.3 Report Structure . 3

2 Domain Background Information 5
2.1 Layers of the World Wide Web . 5
2.2 Bulletproof Hosting on Darknet Markets 6

3 Related Work 9
3.1 Attribute Extraction . 9

3.1.1 Dictionary Based Approach . 9
3.1.2 Rule and Pattern Based Approach 10
3.1.3 Machine Learning Approach . 10
3.1.4 Suitability of Extraction Techniques 11

3.2 Transfer Learning for Attribute Extraction 13
3.2.1 Traditional Machine Learning . 13
3.2.2 Neural Networks . 13

3.3 Attribute Extraction and Transfer Learning on DNMs 14
3.3.1 DNM Attribute Extraction . 14
3.3.2 Transfer Learning for DNM Attribute Extraction 15

3.4 Summary . 15

4 Theoretical Background 17
4.1 Supervised Classification with Machine Learning 17

4.1.1 Supervised Classification . 17
4.1.2 Sequence Labelling . 18
4.1.3 Maximum Entropy Model . 19
4.1.4 Conditional Random Field . 19
4.1.5 Long Short-Term Memory Neural Network 21

4.2 Transfer Learning . 24
4.2.1 Notations and Definitions . 24
4.2.2 Transfer Learning Categories . 24

4.3 Evaluation . 25
4.3.1 Performance Measures . 26

4.4 Summary . 27

viii

5 Dataset 29
5.1 Dataset Construction . 29
5.2 Exploratory Data Analysis . 30
5.3 Data Preparation . 33

5.3.1 Automatic Split of English and Russian Posts 34
5.3.2 Final Russian and English Dataset 34

5.4 Attribute Identification . 35
5.5 Manual Annotation . 37

6 Methodology 39
6.1 Baseline Extractors . 40
6.2 Dictionary Extractors . 41
6.3 Rule and Pattern Extractors . 42
6.4 CRF Extractors . 44

6.4.1 Initial CRF Extractor . 44
6.4.2 Experiments . 45

6.5 Hybrid CRF Extractors . 46
6.6 biLSTM-CRF Extractors . 47

6.6.1 Initial biLSTM-CRF . 47
6.6.2 Experiments . 48

6.7 Transfer Learning with the biLSTM-CRF Extractors 49
6.7.1 Experiment 1: Transferring Word Embeddings vs. Word and

Character Embeddings . 49
6.7.2 Experiment 2: Comparing Source Datasets 50

6.8 Ensemble Extractors . 50
6.9 Training and Testing . 50

7 Experiments and Results 51
7.1 Experimental Setup . 51
7.2 Result Overview . 52
7.3 Baseline Extractors . 54
7.4 Dictionary Extractors . 55
7.5 Rule and Pattern Extractors . 58
7.6 CRF Extractors . 59
7.7 Hybrid CRF Extractors . 62
7.8 biLSTM-CRF Extractors . 65
7.9 Transfer Learning with the biLSTM-CRF Extractors 68

8 Conclusion and Discussion 71
8.1 Research Questions . 71
8.2 Discussion and Limitations . 72
8.3 Future Work . 73

A Hyper-parameter Tuning 75

B Feature Engineering 77

C Annotation Guidelines 81

D Baseline Results 87

Bibliography 91

ix

List of Figures

1.1 Research problem input and output . 3

2.1 Layers of the World Wide Web . 6
2.2 Russian BPH advertisement . 7
2.3 English BPH advertisement . 8

3.1 Applicability of extraction methods depending on text and attribute
type . 12

4.1 Graphical representation of the Linear Chain CRF [39] 20
4.2 RNN neuron . 21
4.3 LSTM network with gated cells . 23
4.4 Types of predicting errors . 26

5.1 Post lengths of the 844 BPH posts . 30
5.2 Post count per Language . 31
5.3 Length of English, Russian and all posts with five or more tokens . . . 31
5.4 BPH thread post count . 32
5.5 Post length per post index in BPH threads 32
5.6 Post count per day of week . 33
5.7 Post count per time of day . 33
5.8 Class frequency distribution . 37

6.1 Aggregated dictionary created from attribute specific dictionaries . . . 41

xi

List of Tables

4.1 Transfer learning categories . 25

5.1 Post, paragraph and sentence count in the Russian and English datasets 35
5.2 Sixteen identified attributes in BPH posts 36

6.1 Extraction techniques used per attribute 39

7.1 Attribution extraction result overview - The best F2-scores 53
7.2 F2-scores of the original baseline extractor and the impact of lower-

casing (L) and overlap removal (OR) . 54
7.3 F2Mi-scores of the aggregated and original baseline extractor 55
7.4 The F2-score (F2), precision (P) and recall (R) for dictionary-based lo-

cation extraction and the impact of lowercasing (L) and overlap re-
moval (OR) . 56

7.5 The F2-score (F2), precision (P) and recall (R) for dictionary-based cur-
rency extraction and the impact of lowercasing (L) and overlap re-
moval (OR) . 57

7.6 The F2-score (F2), precision (P) and recall (R) for dictionary-based
payment period extraction and the impact of overlap removal (OR) . . 57

7.7 The F2-score (F2), precision (P) and recall (R) for rule-based extraction
of ICQ, jabber mail, URL and price attributes 58

7.8 Performance scores of the initial CRF extractor and MEM extractor . . 59
7.9 CRF extractor - The performance impact of post, paragraph and sen-

tence sequence definitions . 60
7.10 CRF extractor - The performance impact of hyper-parameter tuning . . 60
7.11 CRF extractor - The performance impact of using the initial, all or all

beneficial features . 61
7.12 CRF extractor - The performance impact of using context features

with a window of 1, 3 and 5 . 61
7.13 CRF extractor - The performance impact of data pre-processing steps . 62
7.14 Final CRF extractor and initial CRF extractor F2-scores 63
7.15 Hybrid CRF extractor - The performance impact of dictionary and

rule features . 63
7.16 Hybrid CRF extractor - The performance impact of transfer learning

features . 64
7.17 Final CRF extractor and final hybrid CRF extractor F2-scores 65
7.18 biLSTM-CRF extractor - The performance impact of post, paragraph

and sentence sequence definitions . 66
7.19 biLSTM-CRF extractor - The performance impact of adapting hyper-

parameter values and architecture . 67
7.20 biLSTM-CRF extractor - The performance impact of data pre-processing

steps . 67
7.21 Initial biLSTM-CRF extractor and final biLSTM-CRF extractor F2-scores 68

xii

7.22 Transfer learning - The performance impact of transferring word em-
bedding versus word and character embedding layers 69

7.23 Transfer learning - The performance impact of the source datasets . . . 70

A.1 Hyper-parameter tuning phase 1: Discrete Hyper-parameters with
the tested parameter values and the tuned values 75

A.2 Hyper-parameter tuning phase 2: Continuous Hyper-parameters with
the tested parameter values and the tuned values 75

B.1 Initial feature set . 77
B.2 Extended feature set part 1 . 78
B.3 Extended feature set part 2 . 79
B.4 Extended feature set part 3 . 80

D.1 Baseline performance scores - English 88
D.2 Baseline performance scores - Russian 89

xiii

List of Acronyms

BB-code Bulletin Board Code

biLSTM-CRF Bidirectional Long-Short Term Memory with Conditional Random
Field

BPH Bulletproof Hosting

CRF Conditional Random Field

DNMs Darknet Markets

HMM Hidden Markov Model

IE Information Extraction

IOCTA Internet Organised Crime Threat Assessment

LM Language Model

LSTM Long Short-Term Memory

MEM Maximum Entropy Model

MEMM Maximum Entropy Markov Model

MUC Message Understanding Conference

NER Named Entity Recognition

NLP Natural Language Processing

POS Part Of Speech

RNN Recurrent Neural Network

SVM Support Vector Machines

Tor The Onion Router

1

Chapter 1

Introduction

Cybercrime is an international threat with extensive consequences. The global cost
of cybercrime in 2017 was estimated to be as much as 600 billion US dollars [1]. Fur-
thermore, the threat is continuously growing. Cybercriminals enhance their modus
operandi by rapidly exploiting technical innovations and developing protective coun-
termeasures against police operations. Moreover, other criminals are attracted to cy-
bercriminality due to the seemingly low risk of getting caught and the ease of getting
started with the availability of guides, tools and crimeware-as-a-service [2].

Cybercrime is vigorously combated by national law enforcement agencies as well as
international organizations including Europol. To direct the operational focus of this
fight, Europol publishes an annual strategic report known as the Internet Organised
Crime Threat Assessment (IOCTA) report. This report presents the key findings,
new threats and developments in cybercrime. Fundamental in the strategy of 2018
and preceding years is intelligence-led policing [3]. This includes collecting, pro-
cessing and analysing information on cybercrime from public and private sources.
Furthermore, it was predicted that promising techniques such as machine learning
will become invaluable for intelligence-led policing. Therefore, it was strongly rec-
ommended to continuously explore opportunities enabled by these techniques.

Darknet Markets (DNMs) are an importance source of information on cybercrime.
DNMs are illicit online markets on the dark web that allow criminals to commu-
nicate anonymously and participate in a worldwide trade of illicit products and
services of which many enable other criminal activities [3]. These markets are in-
tentionally hidden and are only accessible using a browser based on an anonymity
network, such as The Onion Router (Tor). This and other measures are used to re-
duce traceability of DNM users and that presents large limitations for police opera-
tions. Studies have been conducted to gather intelligence from and gain insight in
DNMs. These include exploring the DNM user migration to other DNMs after Op-
eration Bayonet successfully took down the two prominent DNMs Alphabay and
Hansa Market [4], the products and services sold on DNMs [5], the business models
used by sellers [2] and methods to increase traceability of DNM users such as au-
thorship analysis [6].

The IOCTA report is based on a set of cybercrime priorities determined by Europol.
These priorities include cross-cutting cybercrime enablers [3], i.e. activities that deal
with more than one area of cybercrime, but are not necessarily illegal themselves.
Bulletproof Hosting (BPH) is an important enabler that is offered as a service on
DNMs. BPH provides hosting of illicit content, such as phishing sites and malware,
that enables others to commit crimes.

2 Chapter 1. Introduction

1.1 Problem Statement

There is an unquestionable need for intelligence to effectively combat cybercrime.
DNMs provide a rich source of information about cybercrime including cross-cutting
cybercrime enablers, such as BPH. DNMs contain in depth information about BPH,
such as the techniques used and the locations of the servers. This knowledge can,
for example, be used to discover what technological innovations BPH providers
have exploited. To further illustrate the value of DNMs, imagine a fictional scenario
where the police is looking for a provider of BPH services that match a specific set
of characteristics. Since BPH providers commonly promote their services on DNMs,
the content on DNMs can be inspected for BPH advertisements that match these
characteristics to potentially find its DNM presence and gather information on the
provider.

However, obtaining the subset of DNM content that is useful for investigations or
gaining in depth insight into the BPH services offered on DNMs is complicated.
These tasks cannot be performed manually due to the vast amount of unstructured,
multilingual text data to comb through in combination with limited time, budget
and employees. Therefore a method should be developed that automatically recog-
nizes and extracts the information law enforcement is interested in. This can help
law enforcement agencies to increase their insight in DNMs and enable intelligence-
led policing.

Automatic attribute extraction has been successfully applied to a variety of domains
including biomedical attribute extraction [7] and product attribute extraction [8] to
extract information. DNMs have not received much attention. In 2017, Durrett et
al. conducted an initial attempt at attribute extraction for DNMs in general [9][10].
In their studies, they developed attribute extractors for product and price informa-
tion using Support Vector Machines (SVM). However, attribute extraction to gain in
depth information about specific topics including BPH has not been studied yet.

1.2 Research Goal and Questions

In this research, an initial attempt at attribute extraction from BPH advertisements
or post on DNMs was conducted as a step towards effectively including DNMs in
intelligence-led policing. For this attempt, we focussed on the BPH posts of one
DNM. The goal of this research is to develop attribute extractors to automatically
extract attributes relevant for police investigations from these BPH posts. This is
visualized in figure 1.1. Examples of relevant attributes are the type of service, tech-
nical specifications and contact details of the BPH provider.

For this application, the task of finding all posts, and therefore attributes, relevant
for an investigation is of importance. Therefore, a variety of attribute extraction
techniques was tested and compared to find the best performing technique for each
attribute. Furthermore, transfer learning was applied in an attempt to improve the
extractor performance. Transfer learning is a technique to reuse knowledge learned
by a pre-trained model for a new model, such as our attribute extractors. In other
words, transferring knowledge from the old to the new model. As shown in pre-
vious research [11] [7], using pre-trained models can greatly reduce the error rate
for language processing tasks. Moreover, models can be trained on significantly less

1.3. Report Structure 3

labelled data, reducing the common bottleneck of labelling natural text for attribute
extraction.

FIGURE 1.1: BPH posts as problem input (left) and extracted at-
tributes as problem output (right)

The research goal described above resulted in the following research questions:

RQ1: Which attributes are present in DNM posts advertising bulletproof hosting
services?
After exploring the dataset, generic and BPH specific attributes in BPH posts that are
relevant for law enforcement operations were identified. For this purpose, a subset
of the data was manually inspected. The identified attributes were then verified by
a domain expert.

RQ2: How well can these attributes be extracted from DNM posts advertising
bulletproof hosting services?
Attribute extractors were developed to automatically extract these attributes from
BPH posts. Several techniques were compared. These are dictionary-based attribute
extraction, rule- and pattern-based attribute extraction and machine learning based
attribute extraction. The machine learning algorithms that were compared are Maximum
Entropy Model (MEM), Conditional Random Field (CRF) and Bidirectional Long-
Short Term Memory with Conditional Random Field (biLSTM-CRF). Furthermore,
for each technique, experiments were conducted to improve the performance of the
attribute extractors. By combining the best performing technique of each attribute,
an ensemble model was created.

RQ3: What is the impact of applying transfer learning on attribute extraction from
DNM posts advertising bulletproof hosting services?
After developing the attribute extractors for research question 2, the potential of us-
ing transfer learning to improve the machine learning based extractors was explored.
Transfer learning was applied to the CRF, a traditional machine learning model, by
enriching the input data with the output of a model that was pre-trained on a large
corpus. Transfer learning was applied to the biLSTM-CRF, a neural network, by
pre-training the embedding layer of the model on a large corpus. Furthermore, ex-
periments were conducted to test the impact of the corpus used for pre-training.

1.3 Report Structure

The structure of the remainder of this report is as follows: Chapter 2 provides back-
ground information on the dark web, darknet markets and bulletproof hosting. Chap-
ter 3 presents related work about attribute extraction and transfer learning and de-
scribes how these fields have been applied in existing studies about DNMs. Chapter

4 Chapter 1. Introduction

4 provides theoretical background of the techniques used in this study. Chapter 5
explores the dataset and describes the data preparation, attribute identification and
manual annotation processes. Chapter 6 describes the research methodology that
was used to answer the research questions. In chapter 7, the results are presented
and evaluated. Finally, in chapter 8, a conclusion is drawn followed by a discussion
of the work and promising steps for future work.

5

Chapter 2

Domain Background Information

In this chapter domain background information is provided. First, the dark web
and the position of the dark web within the complete World Wide Web is explained
including the main reason criminals are attracted to the dark web to perform illicit
practices. Afterwards, bulletproof hosting and darknet markets are explained for
insight into bulletproof hosting services and how darknet markets are used to sell
them.

2.1 Layers of the World Wide Web

The World Wide Web can be divided in three main parts: the surface, deep and dark
web. Web pages belong to one of these parts based on their accessibility and whether
or not the pages are indexed by standard search engines, such as Google. The dark
web covers a small portion of the web. However, since the majority of the web is
hidden, the actual proportions can only be estimated. The difficulty of estimating
the proportions of the web is emphasised by the resulting estimated proportions of
the surface web. The surface web has been estimated to cover almost ten percent
[12] whereas others assign less that one percent of the web pages to the surface web
[13][14]. Figure 2.11 visualizes the three layers of the web including their estimated
proportions.

Web pages of the surface web are indexed by search engines and accessible to any-
one with an Internet connection. Therefore, all search results that are returned by
search engines are part of the surface web. The deep web consists of web pages that
are not indexed and commonly require a password to be accessed. Examples are
online banking accounts and the content of Dropbox accounts. The deep web covers
the majority of the web.

The dark web is an encrypted network that is often used for illicit purposes. It is
deliberately kept hidden and therefore the web pages are not indexed and cannot
be accessed with a regular browser. Commonly, a Tor browser is required to access
the encrypted network and the dark web pages. The encrypted network and Tor
browser result in deep layers of anonymity for both hosters and users. The level of
anonymity is the main reason criminals are attracted to the dark web [15]. With the
assurance of anonymity, criminals are free to perform their illicit practices without
having to worry about detection by law enforcement and their online presence being
traced back to their real identities.

1Source: https://ucsd.libguides.com/CAT3/web-sources

6 Chapter 2. Domain Background Information

FIGURE 2.1: Layers of the World Wide Web2

2.2 Bulletproof Hosting on Darknet Markets

DNMs are located on the dark web and provide a platform for anonymous com-
munication and worldwide sale and purchase of illicit goods and services. With
the availability of knowledge, goods and services on DNMs it has become easier to
conduct illicit activities. Instead of mastering the technical skills and gathering all
resources themselves, criminals can make online purchases of products and services
that allow them to realize their plans. This business model is called crimeware-as-
a-service [2]. Whilst DNMs exist in varying languages, Russian and English were
found to be the predominant languages on many DNMs [16] [17].

The interface of a DNM can be organized as a regular online market, such as eBay,
or it can be organized as a forum [3]. For this study we focus on forum style DNMs.
The content on these DNMs is commonly stored and presented in a structured way.
The structure relevant for this study is as follows: The top level is the DNM itself
that is split in categories to store content by topic. In each category, threads can
be found that consist of posts. The categories are not split in subtopics. Therefore,
threads with related sub topics are shown on the same page without further filtering
options. One of these subtopics is bulletproof hosting (BPH).

BPH is a cross-cutting cybercrime enabler that is offered on DNMs. BPH is similar
to regular hosting with a hosting party with access to a data center consisting of nu-
merous servers on the one hand and customers that pay to have their content hosted
on the other hand. The main difference can be found in the type of content that is
allowed to be hosted. Where regular hosting services have strict regulations that

2See footnote 1.

2.2. Bulletproof Hosting on Darknet Markets 7

forbid malicious and illegal content, bulletproof hosting providers are more lenient
in the type of content customers can upload and allow for example darknet markets,
phishing sites, malware and botnet command and control centers. Furthermore,
besides regular hosting features, such as SSL certificate and Distributed Denial or
Service protection, bulletproof hosting offers features specific for the protection of
customers against detection by, i.a., law enforcement.

A common method to promote an available BPH service on DNMs is for the provider
to start a new conversation, a thread, on the platform and to assign it the category
designated for hosting and related services. In the initial post, the service is intro-
duced and an overview is given of all types of the services offered including their
characteristics and price. Furthermore, the first post commonly contains the terms
of service explaining the content that is and is not allowed, the availability of the
provider for support and the contact details to ask questions and purchase the ser-
vice. Figure 2.23 and 2.34 show publicly available examples of a Russian and English
BPH posts. Noticeable is the occurrence of several English words in the Russian
post. In case the BPH provider extends its services through e.g. the purchase of
new servers, a new post is commonly added to the existing thread to promote the
extension of the service instead of creating a new thread. Details such as terms and
conditions and the contact details mentioned in earlier posts apply on the extended
service unless otherwise stated. These subsequent posts can be kept short as the de-
tails can be found in the initial post. Other options are to create a post similar to the
initial post with details being repeated or to use a mixture of the two. Furthermore,
a thread can consist of e.g. reviews and questions posted by others and responses of
the provider.

FIGURE 2.2: Russian BPH advertisement5- A publicly available BPH
advertisement with mixed languages.

3Source: https://securelist.com/the-botnet-ecosystem/36279/
4Source: https://blog.malwarebytes.com/threat-analysis/2012/11/citadel-a-cyber-criminals-

ultimate-weapon/
5See footnote 3.

8 Chapter 2. Domain Background Information

FIGURE 2.3: English BPH advertisement6- Despite several cut-off sen-
tences, this publicly available image gives a good example of an En-

glish BPH advertisement.

6See footnote 4.

9

Chapter 3

Related Work

This chapter describes how the fields of attribute extraction and transfer learning
for attribute extraction have been researched in other studies. Both fields have been
applied to a variety of domains. However, DNMs have not received much attention.
Therefore, in section 3.1 and 3.2, a domain independent explanation of attribute ex-
traction and the application of transfer learning is provided. Afterwards, in section
3.3, two related studies on DNMs are explored in detail. Finally, section 3.4 provides
a summary of the related work and describes how it relates to our study.

3.1 Attribute Extraction

Attribute extraction is the task of automatically discovering and extracting attributes
from text. It is a sub field of Information Extraction (IE) and Natural Language Pro-
cessing (NLP) and is applied on various domains including biomedical attribute
extraction [7] and product attribute extraction [8].

For attribute extraction and other sequence labelling tasks such as Named Entity
Recognition (NER), three main categories of extraction techniques can be distin-
guished: (i) dictionaries, (ii) rules and patterns and (iii) machine learning [18][19].
The techniques can be used separately or in combination to make hybrid models.
The subsections 3.1.1 to 3.1.3 explain the extraction techniques. Afterwards, section
3.1.4 provides an overview of in what situations the techniques are suitable.

3.1.1 Dictionary Based Approach

The dictionary-based approach makes use of a prepared dictionary or gazetteer to
scan for known attributes in the text [8]. The dictionary consists of known attributes,
e.g. a currency dictionary containing the known currencies.

For a simple dictionary lookup as described above, a dictionary can be constructed
by a domain expert or a publicly available dictionary can be used. However, a com-
mon downside is a low precision due to ambiguity of the dictionary values and a
low recall when the dictionary does not provide sufficient coverage of the possible
attribute values. To increase the performance of dictionary-based attribute extrac-
tion, studies have been conducted to, e.g., automatically generate dictionaries using
Wikipedia or to combine the dictionary-based and machine learning approach into
a hybrid attribute extractor [20].

10 Chapter 3. Related Work

3.1.2 Rule and Pattern Based Approach

For the rule- and pattern-based approach, linguistic extraction rules or patterns are
crafted that are able to locate the attribute based on, e.g., the grammatical structure
in the text [18][21]. An example is a regular expression to extract email addresses or
credit card numbers.

A downside of this approach is the complex and time-consuming task of crafting
rules and patterns that avoid false positives and at the same time cover the possible
structures the attribute can take. To overcome this limitation, studies have been
conducted to automate this process. For example, Li et al. [22] developed ReLIE,
an algorithm to learn a regular expression by updating an initial regular expression.
The purpose of this algorithm is to find the set of transformations to an initial regular
expression that maximizes the model’s F1-score using labelled training data.

3.1.3 Machine Learning Approach

For the machine learning approach, a model is trained to recognize attributes in text
using statistical techniques and a training dataset [18][23]. This section describes su-
pervised machine learning and neural networks for attribute extraction.

Supervised Machine Learning:

For supervised attribute extraction, i.e. with supervised machine learning, a model
is trained based on examples of labelled texts. Therefore, a training dataset should
consist of example texts and labels that indicate the attributes in each text. These
labels should indicate both the class and boundary, since attributes can encompass
more than one word, such as ’dedicated servers’ [24]. A common approach is to use
the BIO encoding [18]. BIO stands for Beginning, Inside and Outside of attributes.
Using the ’dedicated servers’ service attribute as example, the BIO encoding would
label the first word as B_service and all following words that are part of the same
attribute instance as I_service as shown below.

Example: [dedicated]B_service[servers]I_service[and]O ...

To train models based on the labelled training dataset, each word is first represented
as a feature vector. This process is called feature engineering. From these feature
vectors, patterns can be inferred that enable the model to distinguish between the
classes and to determine the boundaries of attributes. The process of feature engi-
neering can result in various types of features. Nadeau et al. [25] divided the feature
types in three categories: (i) word-level features, (ii) list lookup features and (iii)
document and corpus features. Word-level features provide information about the
character makeup of the tokens, e.g., the suffix of the token and whether the token
starts with a capital. List lookup features indicate whether the token is in a pre-
defined dictionary. Document and corpus features provide information about the
document and corpus, e.g., the token frequency in the corpus. Other features that
can be used to boost the performance are character-level embeddings [26] and word
representations, such as clustering-based representation and word embeddings [27].
Furthermore, features based on other natural language processing tasks can be in-
cluded, such as Part Of Speech (POS) and chunk tags [28]. Adding results from other
models to the feature vectors to increase the performance of the attribute extractor

3.1. Attribute Extraction 11

is a type of transfer learning that is further elaborated in section 3.2.

Various traditional machine learning algorithms have been used for attribute extrac-
tion in previous studies. These include sequence models that classify each word
whilst taking into account the word context, e.g. the surrounding words and their
predicted labels [18][23][24]. Examples are Hidden Markov Model (HMM), CRF and
Maximum Entropy Markov Model (MEMM). Furthermore, algorithms that classify
each word separately have been used [23]. Examples are support vector machines,
decision trees, boosting and maximum entropy. Whilst these latter algorithms clas-
sify each word separately, they can take the context of a word into account by adding
the features of the surrounding words to the feature vector.

Unsupervised machine learning techniques such as clustering can be used to over-
come the task of data labelling [25]. However, unsupervised machine learning is
difficult to evaluate and is often applied in combination with supervised learning to
augment the handcrafted features instead of as a standalone model [24][29].

Neural Networks:

Recent work has shown that neural networks can be successfully applied to NLP
tasks such as attribute extraction. The biLSTM-CRF, is a combination of models that
is commonly used and has proven to work for attribute extraction [30]. Instead of
handcrafted features, the bidirectional LSTM model captures the context and seman-
tics that are then used by the CRF model to predict the correct labels. However, even
though using neural networks instead of traditional machine learning does not re-
quire feature engineering, the time-consuming task of data labelling remains and
might be more severe due to the amount of data that is required to train neural net-
works.

3.1.4 Suitability of Extraction Techniques

All three extraction techniques can be used successfully for attribute extraction. How-
ever, the suitability of the techniques is application dependent. Two dimensions that
help determine the suitability are the text type and attribute type. In the following
two paragraphs the dimensions are explained followed by details about how the di-
mensions help determine the suitability of extraction techniques.

The text type can be structured, semi-structured or unstructured [31][21]. Structured
text has a fixed, pre-defined format. Examples are tables with product specifications
such as the price, weight and colour on an e-commerce site. Semi-structured text
has a flexible structure without a fixed format and contains natural language con-
tent. The content is commonly short and ungrammatical, but can also contain gram-
matical natural language. An example of semi-structured text is a HTML document
of a web page containing HTML tags, a short and ungrammatical title in telegraph
style and paragraphs of grammatical natural language. Unstructured text or free
text, such as news articles, consists of natural language without a fixed format.

There are open and closed attributes, i.e. the set of values the attribute can take is
open or closed. For open attributes, the set of possible values cannot be determined
beforehand as there continue to remain unknown values or new values will con-
tinue to arise [8]. Examples are product names and prices. Cohen et al. [32] further

12 Chapter 3. Related Work

distinguished open attributes into ’regular sets’ such as phone numbers, ’complex
patterns’ such as postal addresses and ’ambiguous patterns’ such as person names.
Closed attributes are characterized by the fact that the set of possible values is known
or can be specified before the extraction model is developed. Example attributes are
countries and currencies.

Figure 3.1 shows how the dimensions of text and attribute type help determine the
suitability of extraction techniques.

FIGURE 3.1: Applicability of extraction methods depending on text
and attribute type

For all text types holds that the application of dictionary-based extraction will only
result in a good performance for closed attributes, such as countries. In that case, a
dictionary-based extraction can be sufficient and there is no need to spend time and
resources to craft rules and patterns or to train a machine learning model based on
labelled data.

For open attributes, such as product names, dictionary-based extraction does not
provide a sufficient performance due to, e.g., a low recall caused by unknown val-
ues that were not recognized. Instead, a rule- and pattern-based extraction method
is best applied in case of a structured text type. The reason is that the known struc-
ture of the text provides good indicators of attributes. For example, extracting price
attributes from e-commerce tables when the price attribute has a fixed location in
each table.

For open attributes in combination with a semi-structured or unstructured text type,
either a rule- and pattern-based or a machine learning approach should be applied.
This depends on the structure within the attribute and in the text surrounding the
attribute. Regular set attributes, such as email addresses, that have a distinctive
structure within the attribute can be extracted using a rule- and pattern-based ap-
proach. The same holds for complex pattern attributes that have a text context with
a distinctive structure. An example is the price attribute that is commonly accom-
panied by a currency. For ambiguous attributes, such as product names, that have
no distinctive structure, a manageable set of rules and patterns will not be able to
capture the variability of the attribute values and their context. Instead a machine
learning approach should be used.

3.2. Transfer Learning for Attribute Extraction 13

3.2 Transfer Learning for Attribute Extraction

In this section, the field of transfer learning is explored with a specific focus on se-
quence labelling tasks, such as attribute extraction. First the field of transfer learning
is introduced followed by an exploration of transfer learning for traditional machine
learning and neural network based sequence labelling.

When applying machine learning, it is common to test and use a model on the same
task and domain as it was trained on. This results in a model that performs well
on, but is restricted to, a specific task and domain. In case a new model is required
for a scenario where either the task or domain differs, a new model is trained from
scratch requiring a sufficiently large labelled dataset to capture the new scenario.
The goal of transfer learning is to overcome this dependency on task and domain by
transferring knowledge learned by a pre-trained source model to the target model.
Not only would this require less labelled target data it can also result in performance
improvement and it requires less computational resources and time to develop new
models [33]. Transfer learning is especially beneficial in case insufficient labelled
data is available to train a target model from scratch [34][33].

Whereas the field of computer vision has received most attention from research into
transfer learning, transfer learning has also effectively been applied to language pro-
cessing tasks, such as attribute extraction. It can be applied to attribute extraction
with traditional machine learning models and neural networks as described in the
following two subsections.

3.2.1 Traditional Machine Learning

In contrast to neural networks, traditional machine learning models require exten-
sive feature engineering. A type of transfer learning that has been applied to se-
quence labelling tasks with traditional models is using the results of pre-trained
models as additional features. Using results such as cluster ID [10] as feature, pro-
vides knowledge learned by the source model. Examples of results that have been
used as additional features are: cluster ID, topic ID based on latent Dirichlet allo-
cation [35] and word representations such as features based on pre-trained word
embeddings [36].

3.2.2 Neural Networks

Deep learning techniques have been effectively applied at sequence labelling tasks
as described in section 3.1.3. Not only does it enable new opportunities for sequence
labelling tasks, but also for effective transfer learning due to the hierarchical repre-
sentation of the data through the layered set-up of deep neural networks [37]. Due
to the difference in architecture, transfer learning for neural networks requires a dif-
ferent approach compared to traditional techniques. The most common approach is
known as fine-tuning. That is also the approach used for this study. The fine-tuning
approach makes use of a pre-trained source model, a neural network. The weights
of the target model are then initialized according to the learned weights of the pre-
trained model and fine-tuned during the actual training phase of the target model to
fit the target task and domain [37][33]. When using the pre-trained weights instead
of random weight initialization, the model has a head start in training that enables
achieving a higher performance. Furthermore, it requires less labelled training data

14 Chapter 3. Related Work

compared to training from scratch.

The performance impact of transfer learning on neural network NLP applications in
general depends on the source dataset size, the out-of-vocabulary words and seman-
tic similarity with respect to the target dataset [37]. The out-of-vocabulary words are
words that are in the target dataset and not in the source dataset. In practice, the
suggested approach is to select a source dataset with a large vocabulary size and a
low out-of-vocabulary metric instead of selecting a small dataset with a high seman-
tic similarity [37].

Fine-tuning for NLP applications is commonly applied to the embedding layer of
the neural network [33]. Alternatively, more layers can be transferred. However,
this is a difficult task due to the risk of overfitting when using a small dataset and
catastrophic forgetting of the learned knowledge when fine-tuning the model. Only
recently, in 2018, Howard et al. [33] proposed a method named ’Universal Language
Model Fine-Tuning’ that avoids these issues for text classification. It was argued that
this method can also be applicable for sequence labelling tasks.

3.3 Attribute Extraction and Transfer Learning on DNMs

Attribute extraction and transfer learning have been studied for a variety of do-
mains. Whilst the successful techniques are domain independent, the results are not
comparable due to differences in the domain and the attributes in them. Therefore,
this section describes how the above mentioned techniques have been used in the
two related studies about DNMs.

3.3.1 DNM Attribute Extraction

In a study performed by Portnoff et al. [9], darknet fora in three languages were used
to train and evaluate new natural language tools to extract product and price infor-
mation from DNM posts. This resulted in an accuracy of 0.866 for product extraction
and a best F1-score of 0.988 for price information extraction. For product extraction,
a SVM was trained to predict which noun phrase most likely represents the product
advertised in the post. For this purpose, both surface and syntactic features of all
tokens in the noun phrase were used in addition to the position of the noun phrase
in the post. The SVM greatly outperformed a frequency baseline, selecting the most
frequent noun or verb as product, and a dictionary baseline. The dictionary baseline
used a dictionary of products obtained from the labelled training data. However,
for individual fora, the product extractor was not able to achieve a high recall. The
maximum recall reported was 0.70. For price extraction, two methods were devel-
oped and evaluated to extract the price, payment method and currency attributes
from DNM posts. The first extraction method used regular expressions to extract
all numbers and currencies. The second method was based on training a SVM to
extract the price information using token count, position, POS and clusterID as fea-
tures. The SVM greatly outperformed the regular expression based extractor. Using
regular expressions resulted in a bad performance due to variety in the way price
information is mentioned in posts and contextual information was not taken into
account. This caused the regular expression to also match regular numbers. Fur-
thermore, the majority of errors made by the SVM model were caused by ambiguity
of words. For example, ’PM’ can be meant as abbreviation for ’Personal Message’ or

3.4. Summary 15

as payment method ’Perfect Money’. However, despite the high performance scores
when training and testing on the same fora, precision and especially recall degrades
largely when product and price extractors are tested cross-domain on a new forum.
For example, the recall of the SVM price extractor dropped from 1.00 to 0.65 and
precision from 0.98 to 0.84.

3.3.2 Transfer Learning for DNM Attribute Extraction

In a similar research performed by Durrett et al. [10], an initial attempt was made
at performing transfer learning for DNM attribute extraction with traditional ma-
chine learning models. Without transfer learning, the cross-domain application of a
product extraction SVM model on an unseen forum, resulted in a large performance
reduction. The F1-score and Recall of 75.8 and 78.6 decreased to 50.6 and 50.2 respec-
tively. Next, several attempts of fine-grained domain adaptation were performed to
increase transferability of product extraction between darknet fora. The first attempt
of transfer learning was based on adding cluster information, the brown cluster ID,
to the feature vector of each token. This was aimed to enable the recognition of
unknown products in the new domain. This did, however, not result in significant
improvements. The second attempt was dictionary-based and added a feature indi-
cating whether the token occurred in a gazetteer of known products. This resulted
in slight improvements, though most were not significant. The last attempt had the
largest impact and used a small amount of labelled target data during training. With
80 labelled target posts, the F1-score improved from approximately 56 to 71 using
Hacker Forums as source and Darkode as target. However, it was concluded that
more research should be conduction to explore the applicability of transfer learning
for attribute extraction from DNM posts.

3.4 Summary

This section summarizes the related work and describes how it relates to our study.

Attribute extraction is the task of automatically discovering and extracting attributes
from text. Three main extraction techniques can be distinguished: (i) dictionary-
based extraction that uses a list of known attribute values to scan the text for matches,
(ii) rule- and pattern-based extraction that uses linguistic extraction rules or patterns
to locate attributes in text and (iii) machine learning based extraction that trains a
model to automatically extract attributes using statistical techniques and a labelled
dataset. For machine learning based extraction, traditional machine learning algo-
rithms can be used as well as neural networks, such as the CRF and biLSTM-CRF
respectively. Two dimensions that help determine the suitability of the extraction
techniques for a particular application are the text and attribute type.

For our study, attributes such as the type of service, technical specification and con-
tact details of the BPH provider were extracted from BPH posts. For this purpose,
all three extraction techniques were applied and compared. To compare the machine
learning models, we used both traditional machine learning models (MEM and CRF)
as well as a neural network (biLSTM-CRF). BPH posts on DNMs have an unstruc-
tured text type and contain open and closed attributes. Therefore, for each attribute

16 Chapter 3. Related Work

the most suitable extraction technique was determined according to the considera-
tions described in section 3.1.

When performing transfer learning, knowledge learned by a pre-trained source model
is transferred to a new target model. One of the benefits of transfer learning is that it
requires less labelled target data compared to training the target model from scratch.
Transfer learning can be applied to traditional machine learning models by adding
the output of the pre-trained model to the input data that is used to train the target
model. Transfer learning can also be applied to neural networks. This approach is
known as fine-tuning, where the weights of the pre-trained neural network are used
to initialize the weights of the target model.

For our study, transfer learning was applied in an attempt to improve the CRF and
biLSTM-CRF extractors. For this purpose, the output of pre-trained models was
used as input data to train the CRF. For the biLSTM-CRF extractor, fine-tuning of
the word and character embedding layers was performed and the impact several
source datasets was compared.

Portnoff et al. [9] and Durrett et al. [10], performed initial studies on attribute extrac-
tion from DNMs and the applicability of transfer learning respectively. For attribute
extraction, their scope was to extract product and price information from DNM posts
of various topics. For this they used the three types of attribute extraction. The scope
of our study is to extract all relevant attributes from DNM posts of one topic, BPH.
For this we also used the three extraction techniques, but took it a step further by
combining the techniques and comparing various types of machine learning algo-
rithms including sequence models and neural networks.
Durrett et al. performed a type of transfer learning known as domain adaptation
to reuse their SVM product extractor for another DNM. The focus of our project de-
viates from this as it aims to improve the performance of the developed machine
learning based extractors. For this we also used transfer learning for traditional ma-
chine learning models, but took it a step further by applying transfer learning for
neural networks.

17

Chapter 4

Theoretical Background

This chapter provides the theoretical background for this study. Section 4.1 describes
the supervised classification techniques and algorithms that are relevant for this
study. Section 4.2 describes transfer learning in more detail and section 4.3 describes
the evaluation of sequence labelling tasks. Finally, section 4.4 provides a summary
of the theoretical background.

4.1 Supervised Classification with Machine Learning

As defined by the artificial intelligence pioneer Arthur Samuel in 1959, machine
learning is a "Field of study that gives computers the ability to learn without being
explicitly programmed". Supervised classification is a class in the machine learning
taxonomy that we will focus on for this research. In section 4.1.1, an overview of
supervised classification is provided followed by a description of sequence labelling
in section 4.1.2. Afterwards, sections 4.1.3 to 4.1.5 explain the MEM, CRF and LSTM
algorithms including the biLSTM-CRF.

4.1.1 Supervised Classification

A classifier takes an input x and assigns it an output class y from a discrete set of
possible classes Y. An example is a classifier that is trained to classify credit card
transactions as genuine or fraudulent. Mapping the input x to an output y is based
on a function that is learned during the training phase. In the training phase, a ma-
chine learning algorithm is used to iteratively optimize parameters of the mapping
function based on example input-output (x,y) pairs, i.e. the training data. In each
iteration, the weights are updated to minimize the errors made by the model. This is
referred to as learning. The goal is to learn a function that correctly classifies unseen
data when it is executed to perform the task is was designed for.

Focussing on probabilistic models, the classification model aims to, given an input,
select the most probable class y∗, i.e. the class with the highest posterior probability.
This is shown mathematically in equation 4.1:

y∗ = arg max
y

P(y|x) (4.1)

The classification model can be generative or discriminative. For discriminative
models, the function is optimized to model the conditional probability distribution
P(y|x) that is directly used to select the class y∗. For generative models, the function
is optimized to model the joint probability distribution P(x, y). In order to select
class y∗, the joint probabilities are normalized to obtain P(y|x). This is obtained by
factorizing P(x, y) = P(x|y)P(y) and using Bayes’ rule shown in equation 4.2:

18 Chapter 4. Theoretical Background

P(y|x) = P(x|y)P(y)
P(x)

, where P(x) = ∑
y

P(x|y)P(y) (4.2)

For the supervised classification methods used in this study, the input x is repre-
sented as features fi, for i ∈ {1, 2, ..., n}, in a feature vector, x = [f1, ..., fn]. These
features describe specific properties of the input x. Features can be nominal, such
as the suffix of the token, boolean, such as ’ends with -ly’, and numeric, such as the
index of the token within a sentence. If the features are informative about the clas-
sification, the features help find the correct class y. For example, for POS tagging,
knowing that the token ends with -ly is an indicator that it is more likely to be an
adverb(Adv) than a noun(N) or adjective(Adj). For multi-class classification, these
features are a function of the input x as well as the class y, known as feature function
fi(x, y). As an example, the feature functions of the ’ends with -ly’ feature for three
classes are as follows:

fi(x, Adv) =

{
1, if ′ends with -ly′ = True and y = Adv
0, otherwise

fi(x, Adj) =

{
1, if ′ends with -ly′ = True and y = Adj
0, otherwise

fi(x, N) =

{
1, if ′ends with -ly′ = True and y = N
0, otherwise

During training, a weight is assigned to each feature function to indicate its im-
portance for assigning the correct class. Therefore, if feature ’ends with -ly’ is very
indicative of class ’adverb’, the feature function gets a high weight.

4.1.2 Sequence Labelling

The supervised classification description above focussed on selecting an output y
for each input x individually, referred to as regular classifiers. However, natural lan-
guage tasks commonly use data sequences as input, e.g. a sequence of words that
together form a sentence. Given a sequence of words denoted as x = (x1, x2, ..., xn),
sequence labelling is the task of assigning a class yi to each word xi in the sequence
x whilst assuming that the class of a word depends on the surrounding words and
their classes [18]. This is a sequence of classification tasks, since each xi is assigned
an output class yi from a discrete set of possible classes Y.

For sequence labelling, any classifier algorithm can be used. However, to take into
account the dependencies of instances within a sequence, both neighbouring in-
stances and predicted classes of these instances should be taken into account. Regu-
lar classifiers, such as SVM and MEM, can take neighbouring instances into account
by including their features, referred to as context features, in the feature vector rep-
resentation of the current instance. Sequence models, such as the CRF and HMM,
also take the predicted labels of the neighbouring instances into account when pre-
dicting the class with the highest posterior probability. This makes sequence models
highly suitable for sequence labelling tasks.

4.1. Supervised Classification with Machine Learning 19

4.1.3 Maximum Entropy Model

The Maximum Entropy Model (MEM) is a regular supervised classifier that makes
use of the information theoretic measure Entropy. Entropy is a measure for the un-
certainty of a probability distribution. The intuition behind maximum entropy mod-
els is to model what is known and to not make any assumptions about the unknown.
This is done by modelling the constraints learned from the training data, but other-
wise keep the probability distribution as uniform as possible and therefore maxi-
mize the entropy. This first requires us to find the constraints and to find models
that abide these constraints. Next, we have to find, from the set of abiding models,
the most uniform model. That is the model with the maximum conditional entropy.

The constraints we want to model consist of the empirical expected values of the n
binary feature functions, fi(x, y), using the empirical probability distribution p̃(x, y)
learned from the training data. This is shown mathematically in equation 4.3. In this
equation, N is the number of (x,y) pairs in the training data.

Ep̃[fi(x, y)] ≡∑
x,y

fi(x, y) p̃(x, y), where p̃(x, y) =
1
N
× count(x, y) (4.3)

Then, for each model p in the set of possible models P, holds that it abides the con-
straints if the model’s expected value of the feature functions is equal to the empiri-
cal expected value. The subset C of models that abide the n constraints is defined as
follows:

C ≡ {p ∈ P | Ep[fi(x, y)] = Ep̃[fi(x, y)] for i ∈ {1, 2, ..., n}} (4.4)

To find the model p∗ out of C with most uniform distribution, select the model that
maximizes the conditional entropy H(p):

p∗ = arg max
p∈C

H(p) (4.5)

With the conditional entropy H(P) defined as:

H(p) = H(Y|X) ≡ −∑
x,y

p̃(x)p(y|x) log p(y|x) (4.6)

More information on the MEM algorithm can be found in the paper by Berger et al.
[38] explaining the maximum entropy approach for NLP.

4.1.4 Conditional Random Field

The Conditional Random Field (CRF) model is a discriminative sequence model pro-
posed by Lafferty et al. [39]. The CRF was developed to overcome limitations of the
generative HMM and the discriminative MEMM, two popular sequence models.
The following paragraph describes how the CRF avoids the limitations of the HMM
and MEMM sequence models. Afterwards, the CRF model is described. Finally, the
Linear Chain CRF that was used for this study is explained.

As described before, generative models model the joint probability distribution P(x, y)
over the feature vector represented input x and class y. This includes modelling p(x).
However, this has several limitations[40]. These limitations are the potentially large
dimensionality of x and the complex dependencies between the features of x. To

20 Chapter 4. Theoretical Background

acknowledge these dependencies requires a large modelling effort and can lead to
intractable models. However, assuming feature independence hurts the model per-
formance. Discriminative models, such as MEMM and CRF, avoid modelling p(x)
by directly modelling the conditional probability P(y|x) over class y given input x
for classification. Resulting in less complex models due to the fact that the complex
dependencies between features of x do not need to be modelled, since they are a con-
stant with respect to class y. The MEMM does, however, have a label bias problem
due to local normalization of probabilities. This causes a bias towards states with
fewer transitions to other states [39]. This problem is avoided by the CRF due to
global instead of local normalization of probabilities.

The CRF is an undirected discriminative graphical model. The conditional probabil-
ity p(y|x) is modelled using a graph consisting of nodes for Y and X with undirected
edges between them. Y is the class sequence and X is the sequence of observed input
vectors. The definition of the model given by Lafferty et al.[39] is as follows:

Let G = (V, E) be a graph such that

Y = (Yv)v∈V , so that Y is indexed by the vertices of G. Then (X, Y) is a
conditional random field when the random variables Yv, conditioned on
X, obey the Markov property with respect to the graph: p(Yv|X, Yw, w 6=
v) = p(Yv|X, Yw, w ∼ v), where w ∼ v means that w and v are neighbors
in G.

The Linear Chain CRF is a family of CRF models that has been successfully used for
sequence labelling tasks. The graphical representation is shown in figure 4.1.

FIGURE 4.1: Graphical representation of the Linear Chain CRF [39]

The conditional probability p(y|x) is calculated as follows:

p(y|x) = 1
Z(x)

T

∏
t=1

exp

{
K

∑
k=1

θk fk(yt, yt−1, xt)

}
, (4.7)

where { fk(y, y′, xt)}K
k=1 is a set of feature functions, θk is the feature function weight,

and Z(x) is the normalization function

Z(x) = ∑
y

T

∏
t=1

exp

{
K

∑
k=1

θk fk(yt, yt−1, xt)

}
. (4.8)

The feature function fk(yt, yt−1, xt) ranges over all possible transition and state fea-
ture functions. A transition feature function captures a specific transition from a
class at timestep t to a class at t-1 (fytyt−1). A state feature function captures the occur-
rence of a specific combination of observation and class at the same timestep t (fotyt).
The observations refer to the features in the feature vector xt, a vector containing
the features from the current observation and, when applied, the context features of
neighbouring observations. An example fotyt and fytyt−1 are shown below. The fotyt

4.1. Supervised Classification with Machine Learning 21

feature function example is equal to one of the feature function examples for super-
vised classification in section 4.1.1.

fotyt =

{
1, if ′ends with -ly′ = True and yt = Adv
0, otherwise

fytyt−1 =

{
1, if yt = Adj and yt−1 = Noun
0, otherwise

4.1.5 Long Short-Term Memory Neural Network

For many sequence labelling applications including named entity recognition, the
state-of-the-art performance is achieved using Long Short-Term Memory (LSTM)
based models [41]. The LSTM is a Recurrent Neural Network (RNN) proposed by
Hochreiter et al. [42]. This section first shortly explains neural networks and recur-
rent neural networks. Afterwards, we explain the LSTM, how it differs from regular
RNNs and why these changes make the LSTM especially suitable for sequence la-
belling.

An artificial neural network is a weighted directed graph consisting of an input layer,
output layer and one or more hidden layers. Each layer consists of artificial neurons,
i.e. the nodes, with weighted directed edges between them allowing the data to flow
through the layers. A neuron receives data input from incoming edges, performs a
simple function and sends the output along the outgoing edge. Combining these
neurons with this architecture enables the artificial neural network to perform com-
plex tasks. Neural networks can be distinguished in two types: feedforward and
recurrent neural networks [43]. For feedforward neural networks hold that the out-
put of a neuron in a layer always moves forward to the next layer and therefore does
not affect the current layer. For RNNs this does not hold, allowing outputs to loop
back to the same layer such that information can persist in the network.

RNNs make use of their internal state, often referred to as memory, to store informa-
tion about calculations from previous inputs. Therefore, this information is accessi-
ble when performing calculations on subsequent inputs. This characteristic makes
them suitable for sequence labelling. As depicted in figure 4.2, a neuron receives xt,
the input a time step t, and st−1, the hidden state or memory from preceding time
steps, to calculate ot, the output at timestep t. At each time step, the hidden state is
updated with a function of xt, st−1 and the weights of the directed edges such that
st = f (Uxt + Wst−1).

FIGURE 4.2: RNN neuron1

22 Chapter 4. Theoretical Background

In theory, RNNs can apply stored information from any time step in the past, i.e.
a long-term memory and a short-term memory. However, in practice this is not
the case due to the vanishing and exploding gradient problem during the training
phase. In the training phase, the weights of the RNN are iteratively updated to min-
imize errors made by the model using backpropagation through time. Assume a
sequence consisting of tokens, i.e. the time steps. Each iteration starts with forward
propagation. This results in the total error for the sequence by summing over the
error of each time step. Next, with backpropagation through time, the calculated
error is back-propagated trough the unrolled RNN to update the weights. This is
done using the error gradient, i.e. the partial derivative of the error with respect to
the weights, at each state st. This includes multiplications of gradients due to the
chain rule. For example, the gradient at t=1 is multiplied by the gradient of all later
time steps. This is where the problem of the vanishing gradient comes is, because
multiplying values below 1.0 results in a gradients becoming closer and closer to
0, the more timesteps are included. This means that for long sequences, i.e. many
multiplications, the weights in the earlier layers of the network are not updated, i.e.
no learning takes place. In contrast, the values explode and the weights are updated
too much if the gradients are larger than 1.0.

Long Short-Term Memory networks, first proposed by Hochreiter and Schmidhuber
[42], resolves the gradient problems and enables learning long-term dependencies.
Similar to regular RNNs, LSTM networks can be unrolled into a chain of gated cells
for each time step in the sequence as shown in figure 4.3a. The difference is the
way information is selectively removed, added and outputted from memory. This
is represented by the upper line, called the cell state, going through each cell. These
changes to the cell state are based on the relevance of information that the forget
gate, input gate and the output gate learned to determine in the training phase. We
will now explain each step in the gated cell at timestep t in more detail.

Starting with the forget gate, shown in figure 4.3b. The input xt and output from
previous gated cell ht are concatenated, represented as [xt, ht], and used as input
vector for the first sigmoid layer. The sigmoid layer transforms the values of the
input vector to values between 0 and 1. With pointwise multiplication, shown in
figure 4.3d, between the obtained vector ft and the previous cell state vector, Ct−1,
cell state values are multiplied by values between 0 and 1, were 0 means the value is
completely forgotten and 1 means the value remains unchanged.

Next, we determine what information from [xt, ht] to add to the cell state as depicted
in figure 4.3c. The input gate, a sigmoid layer, converts [xt, ht] to values between 0
and 1, representing the importance of each value. The tanh layer converts [xt, ht] to
values between -1 and 1. This regulates the network by avoiding exploding (and ex-
tremely small) values. The pointwise multiplication, shown in figure 4.3d, of the two
resulting vectors ensures that less relevant values are multiplied by a value closer to
0. This prevents irrelevant information from being added to the memory. Now that
we know what information to add to the cell state, the vector is added to the cell
state using pointwise addition.

1Source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-
introduction-to-rnns/

4.1. Supervised Classification with Machine Learning 23

(A) Unrolled LSTM network

(B) Forget gate (C) Input gate

(D) Update cell state (E) Output gate

FIGURE 4.3: LSTM network with gated cells2

Lastly, the output is generated based on the updated cell state as shown in figure
4.3e. To determine which values of the cell state to output, the [xt, ht] goes through
the sigmoid function of the output gate for conversion to values between 0 and 1.
At the same time, the cell state values are transformed to values between -1 and 1 in
the tanh layer. Both vector are pointwise multiplied to find the cell state values that
we want to output ht. ht is the output for timestep t and is used as input for the next
gated cell together with the actual cell state.

Bidirectional LSTM-CRF

The bidirectional LSTM-CRF (biLSTM-CRF), proposed by Huang et al. [44], com-
bines a bidirectional LSTM network with the CRF algorithm. In the following para-
graph we explain how the LSTM network collaborates with the CRF and the benefit

2Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

24 Chapter 4. Theoretical Background

of using a bidirectional LSTM.

As described in section 4.1.4, CRFs make use of feature functions to predict the most
likely class labels for an input sequence. When using an LSTM-CRF, the most likely
class label is predicated based on the LSTM output instead of feature functions. The
LSTM therefore replaces the feature engineering step that is otherwise required for
the stand-alone CRF. The LSTM provides an output for each token xi in sequence
x where i = [1,...,n]. These outputs are based on the current token and on relevant
information from preceding tokens, but not on following tokens. This is where the
bidirectional LSTM is helpful. For this network, two LSTM networks are trained.
The first model receives the original sequence x = [x1, ..., xn] as input and the sec-
ond model receives the reversed sequence x = [xn, ..., x1]. Then, for each token, the
output of both layers is combined. This combines relevant information from preced-
ing as well as following tokens. The combined output is then used as input of the
CRF. In this collaboration, the LSTM ensures relevant characteristics from context to-
kens are included in predicting the correct labels and the CRF includes information
about previously predicted labels.

4.2 Transfer Learning

In this section the definition of transfer learning is provided. Furthermore, the three
main categories of transfer learning are described.

4.2.1 Notations and Definitions

For transfer learning, the following notations and definitions apply:
Source: S with source task TS and source domain DS
Target: T with target task TT and target domain DT
Task: T : {Y , f (·)} with Y representing the label space, and the predictive function
f (·) of assigning labels Y , which is to be learned from the data.
Domain: D : {X , P(X)} where X is the input feature space, and P(X) the marginal
probability distribution of the input.

Using the notation given above, transfer learning is defined as follows:
"Given a source domainDS and learning task TS , a target domainDT and learning task TT ,
transfer learning aims to help improve the learning of the target predictive function fT (·) in
DT using the knowledge in DS and TS , where DS 6= DT , or TS 6= TT ." [45]

4.2.2 Transfer Learning Categories

Various categories of transfer learning can be distinguished. In a survey on trans-
fer learning performed by Pan et al. [45], transfer learning is divided in three main
categories based on the different changes of target T with respect to source S as
described above. The categories are inductive transfer learning, transductive trans-
fer learning and unsupervised transfer learning as shown in table 4.1 together with
their indicators.

Inductive Transfer Learning

For inductive transfer learning the tasks differ (TS 6= TT) whereas the domains may
or may not differ. Furthermore, labelled target data should be available. Depending

4.3. Evaluation 25

Labelled
Category DT DS Similar To
Inductive Yes Yes Multi-task learning,
TS 6= TT and if TS and TT are learnt simultaneously.
DS = DT or DS 6= DT

Yes No Self-taught learning
Transductive No Yes Domain adaptation,
TS = TT and DS 6= DT if TS = TT and DS 6= DT

Covariate Shift,
if TS = TT and DS = DT

Unsupervised No No
TS 6= TT

TABLE 4.1: Transfer learning categories

on the amount of labelled source data, inductive transfer learning relates to two spe-
cific fields: multi-task learning and self-taught learning. With multi-task learning
sufficient labelled source and target data are available and a model can be trained
for multiple tasks simultaneously. With self-taught learning no labelled source data
is available.

An example of inductive transfer learning is fine-tuning the embedding layer of a
biLSTM-CRF model aimed to improve the model performance. This method trans-
fers knowledge from an embedding model pre-trained on a large corpus to induce,
e.g., an attribute extractor such as the one of our study.

Transductive Transfer Learning

For transductive transfer learning the task is equal (TS = TT) but shifted to a dif-
ferent domain (DS 6= DT) for which no sufficient labelled target data is available.
Transductive transfer learning relates to domain adaptation.

An example of domain adaptation is the transfer learning attempt of Durrett et al.
[10]. Here they reused the attribute extraction model pre-trained on one DNM to
perform attribute extraction on another DNM. Another example is cross-lingual
transfer learning that makes use of correspondence between languages to transfer
knowledge from one language to another [11].

Unsupervised Transfer Learning

For unsupervised transfer learning the tasks differ (TS 6= TT) and there is no la-
belled source and target data available. This type of transfer learning can be used
for unsupervised learning tasks, such as clustering and dimensionality reduction.

4.3 Evaluation

Evaluation of attribute extraction models can be a complex task. The main cause
of the complexity is the fact that attributes can consists of more than one token and
that the exact number of tokens, the boundaries of the attribute, is not fixed. The

26 Chapter 4. Theoretical Background

complexity of deciding which tokens are part of attributes is portrayed in the fact
that annotators also disagree on this decision.

Due to the fact that an attribute can consist of multiple tokens and each token has its
own label, five different types of predicting errors can occur [25] as shown in figure
4.4. Based on these predicting errors, an extracted attribute can match the ground
truth in one of three ways: an exact match, partial match or no match. Exact matches
occur when no predicting error is made and both boundaries and label are correctly
predicted. Partial matches occur with predicting error three and four where either
the label or the boundaries are incorrect. No match occurs when both boundaries
and labels are incorrect as in predicting error one, two and five.

FIGURE 4.4: Types of predicting errors

Various evaluation models have been introduced in the past and each model has its
own method of assigning scores based on the predicting errors. A simple but strict
evaluation model was used for the CoNLL-2003 shared task [28] where only exact
matches are seen as correct and all other matches are incorrect. Other evaluation
models take the possibility of partial matches into consideration. The Message Un-
derstanding Conference (MUC) evaluation model [46] is a frequently used model
that takes partial matches into account by scoring the extraction model separately
for label and boundaries.

4.3.1 Performance Measures

According to the MUC evaluation, type (label) and text (boundary) are correct in
the following scenarios: "A correct TYPE is credited if an entity is assigned the cor-
rect type, regardless of boundaries as long as there is an overlap. A correct TEXT is
credited if entity boundaries are correct, regardless of the type." [25]. For both the
evaluation of the type and text, three measures are calculated. These are the number
of correct predictions (COR), the number of actual predictions made by the model
(ACT) and number of possible correct predictions (POSS). Using these measures, the
precision and recall can be calculated for the type and text combined. This enables
the calculation of a final performance score, a micro-averaged Fβ-score.

Precision (P) is the percentage of actual predictions made that are correct [46].

4.4. Summary 27

P =
CORtype+text

ACTtype+text
(4.9)

Recall (R) is the percentage of possible correct predictions that are correctly predicted
[46].

R =
CORtype+text

POSStype+text
(4.10)

Fβ-score is the weighted harmonic mean of precision and recall. For the micro-
averaged Fβ-score, precision and recall are calculated using sums of the individual
COR, ACT and POSS measures of type and text. Therefore, each extracted attribute
has an equal weight for the evaluation. A macro-averaged Fβ-score gives each class
an equal weight by calculating the scores for all classes and taking the unweighted
mean [47]. An alternative is the weighted macro-averaged Fβ-score that calculates
the scores for all classes and takes the weighted average based on class size.

Fβ-score = (1 + β2) · P·R
(β2·P)+R

Here β represents the relative importance of recall over precision. The F1-score (β =
1) assigns equal importance to both precision and recall. For this application recall
is considered of greater importance than precision. Therefore one of two possible
alterations can be made. The first alteration is to report both precision and recall in
addition to the F1-score. Another alteration is to increase β of the F-score [46].

4.4 Summary

Sequence labelling is a classification task that, given a sequence of instances such as
words, assigns a class to each word in the sequence whilst assuming that the class of
a word depends on the surrounding words and their classes. Supervised machine
learning algorithms that can be used for this are regular classifiers, such as the Max-
imum Entropy Model, sequence models, such as the Conditional Random Field, or
neural networks, such as the Long Short-Term Memory based Bidirectional LSTM-
CRF. Transfer learning can be split in three main categories. These categories are
inductive transfer learning, transductive transfer learning and unsupervised trans-
fer learning. The category depends on the difference between target T and source
S. A popular evaluation model for sequence labelling tasks, such as attribute ex-
traction, is the MUC evaluation model. This model takes the possibility of partial
matches into consideration.

29

Chapter 5

Dataset

This chapter introduces the dataset. Section 5.1 describes the dataset construction.
Section 5.2 describes the results of an exploratory data analysis. Section 5.3 describes
the data preparation steps. Section 5.4 describes the attribute identification and
shows the results. Section 5.5 describes the manual annotation that was performed.

The data this study focussed on originates from a DNM. The dataset consists of a
subset of 844 multilingual BPH posts from 27 threads that were manually identified
to have BPH as subtopic. BPH posts refers to posts in threads with BPH as subtopic
and that were written by the BPH provider. In section 2, two example BPH posts
were presented in figures 2.2 and 2.3.

The raw data consists of the post text, author, thread ID, thread title, publication date
in UTC, category, language and a machine translation. As is common for DNMs
[16][17], the main language is Russian followed by English. BPH posts, from here
on referred to as posts, can contain Bulletin Board Code (BB-code) to format the
content, e.g. [b] and [size=5]. Furthermore, a post can consist of multiple languages,
e.g. a Russian post with an English version and vice versa. Another characteristic
of Russian posts is the usage of English key words, e.g. ’Hosting’ and ’Pentium
4 3.0GHz’, to make the post more intuitive for readers that are unable to read the
original language or in case the term does not exist or is uncommon in the original
language.

5.1 Dataset Construction

The starting point for the dataset construction consisted of two parts. The first part
was a DNM user list. The list contains for each user the probability of being a BPH
provider given the words used in their post. These probabilities were obtained in a
previous project and used a gazetteer of pre-determined distinctive words for BPH
and other DNM topics. The second part was the set of raw posts from the DNM.

The aim was to extract the BPH posts written by the thread initiator, the BPH provider.
Therefore, the user list was sorted to show users most probable to have a connec-
tion with BPH first. Using the sorted user list, a domain expert labelled users as
’provider’, ’non-provider’ or ’unknown’. Here provider refers to BPH provider. For
users labelled as ’unknown’, the corresponding initiated threads were manually in-
spected. In case one or more BPH advertisements were created by the user, the user
was labelled as ’provider’ and ’non-provider’ otherwise. The manual inspection
continued until ten subsequent users were labelled as ’non-provider’.

30 Chapter 5. Dataset

The threads from users labelled as ’provider’ were then manually inspected to detect
and subsequently extract threads with BPH as subtopic. Since the focus is on adver-
tisements of BPH services, the resulting BPH threads and their posts were further
reduced to only include posts that were written by the BPH provider. Posts from
other users containing, e.g., comments, reviews or questions were omitted.

5.2 Exploratory Data Analysis

This section describes the results of an exploratory data analysis aimed to gain in-
sight into the constructed dataset of 844 posts written by 23 BPH providers. In this
section, the distribution of individual variables and the relationships between vari-
ables are explored. The variables included are post length, post language, thread
post count, thread category and publication day and time.

The post lengths vary between one and 1800 tokens, splitted on white space, with
a mean of 28 and median of ten tokens. The post length distribution over all 844
BPH posts including mean and median is shown in the Tukey boxplot in figure 5.1.
Noticeable are the two rightmost outliers with token counts 936 and 1787 and the
fact that half of the posts contain ten tokens or fewer. After a manual inspection of
posts with ten tokens or fewer, it turned out that the set of 298 posts with fewer than
five tokens contained almost no attributes and should be excluded from that dataset.
In contrast, posts with five up to ten tokens are relevant, since they do commonly
contain attributes.

FIGURE 5.1: Post lengths of the 844 BPH posts [mean: 28, median: 10]

In the dataset, posts of fourteen different predicted languages are present. The two
most common languages are Russian and English with 517 and nineteen posts of five
or more tokens respectively. The remaining languages occurred in one up to fifteen
posts. Figure 5.2 shows for each language the number of posts with five or more
tokens and with fewer than five tokens. Noticeable is the fact that many sparse lan-
guages, such as Ukrainian(uk) and Albanian(sq), consists solely of posts with fewer
than five tokens. Due to lack of text, the language could have been wrongly pre-
dicted, causing the languages to be included due to an error. Furthermore, the label
’??’ indicates that for some posts no language could be predicted. Important for this
research is the fact that all languages besides Russian and English contain fewer than
five posts with five or more tokens. Therefore, it was argued that only Russian and
English posts should be used for this research, since no reliable extraction models

5.2. Exploratory Data Analysis 31

FIGURE 5.2: Post count per Language

FIGURE 5.3: Length of English, Russian and all posts with five or
more tokens

can be developed in case of too little data. Besides the varying languages assigned
to posts, it was found that posts themselves can contain multiple languages. For
example, Russian posts can contain an English translation provided by the author.
Splitting posts in case they consist of two separate versions can therefore enable a
more distinct split of Russian and English posts. Furthermore, in case many Russian
posts contain an English translation, the number of English posts can grow substan-
tially.

Based on the findings above, figure 5.3 shows the post length distribution for posts
with five or more tokens for all languages and for Russian and English posts sepa-
rately. Furthermore, the two rightmost outliers were removed to get a clearer pic-
ture of the distribution. However, they remain part of the dataset. Due to the high
percentage of Russian posts in the complete dataset, the Russian post length distri-
bution is similar to that of all languages combined. Comparing the distributions,
English posts have a higher median and the average post is longer than Russian
posts. Furthermore, English posts have fewer outliers.

The 27 threads vary in number of posts as shown in figure 5.4. The majority of
threads have five (median) or fewer posts. There were, however, some active threads
with a post count up to 268, causing a disproportionate representation of authors in
the dataset. This can be argued to be an influencing factor, since posts of one author

32 Chapter 5. Dataset

can have distinct characteristics due to a particular writing style of the author.

FIGURE 5.4: BPH thread post count

When creating a new thread on a DNM, the creator can assign it a category. Looking
at the categories of the 27 threads, all but one thread are assigned the category that
encompasses hosting and related services. This category is assigned to two percent
of all posts on the DNM. The remaining thread in the constructed dataset has the
’general’ category.

We explored post lengths for all languages and for English and Russian separately.
Next, post lengths were explored per post index or position in the threads to, e.g.,
see differences between first and second posts in BPH threads. The two outmost
outliers were excluded from the visualisation. The results are presented in figure
5.5. Not all threads have an equal number of posts. Therefore, there will be more
posts with index 1 than with index 30. In figure 5.5, the post length distributions are
shown for posts up to index 19, since for each remaining index there are fewer than
10 posts in the dataset. The blue line shows post length of five tokens. Noticeable
is the difference in post length when comparing first posts with all following posts.
Furthermore, all first posts have five tokens or more and all subsequent post indexes
have a median of at least five.

FIGURE 5.5: Post length per post index in BPH threads

Lastly, some insight is given into the publishing of BPH posts on the DNMs by show-
ing the number of posts per day of week in figure 5.6 and per time of day in figure

5.3. Data Preparation 33

5.7. Noticeable is the fact that, in general, the number of posts on a day reduces as
the week progresses, with the least number of posts on Sunday. Furthermore, the
most popular time is from 8AM to 12AM UTC.

FIGURE 5.6: Post count per day of week

FIGURE 5.7: Post count per time of day (UTC)

5.3 Data Preparation

Using the constructed dataset and the findings from the exploratory data analysis,
the dataset was prepared for our study. This included removal of the posts with
scarce languages labels and posts consisting of fewer than five tokens. Furthermore,
duplicate posts were removed and posts were split in an English and a Russian
dataset. No data pre-processing steps, e.g. lowercasing and stemming, were per-
formed at this stage.

The duplicate posts were removed using the hashlib Python library1. The duplicate
files were detected by calculating and comparing the MD5 hash for each file.

1Hashlib library: https://docs.python.org/3/library/hashlib.html

34 Chapter 5. Dataset

5.3.1 Automatic Split of English and Russian Posts

To enable the development of separate English and Russian extraction models, a
distinct Russian and English dataset is required. Therefore, the constructed dataset
was split in two phases. In the first phase, posts were split in two groups based on
the occurrence of either language label ’ru’ or ’en’. The second phase is based on the
finding that Russian posts can contain an English translation provided by the author
and vice versa. Therefore, posts with both languages were automatically detected
and split. The part containing the second language was then added as post to the
other dataset to keep English and Russian separate. The exact method for the second
phase is described below.

The second language can occur as a translation subsequent to the original text or
it can be intertwined with the original language. In order to avoid disturbing the
structure of the posts, only posts with a distinct Russian and English version were
automatically split and the intertwined posts remained unaltered. The split was per-
formed based on the language of the paragraphs. The paragraphs were obtained by
splitting the post using the regular expression \n(\s| − |\r|\n)∗\n. Using the PyPi
langdetect library2, the language of each paragraph was detected. This resulted in
a sequence of languages representing a post. For example, a post consisting of two
Russian paragraphs followed by two English paragraphs was represented by [’Ru’,
’Ru’, ’En’, ’En’].

For each paragraph, the most likely associated languages were obtained. In case
either Russian or English was detected, the paragraph was assigned the respective
language. In case neither or both Russian and English was detected, the presence
of Cyrillic script was used as indicator of Russian paragraphs. Otherwise, in case
no Cyrillic script was found, the paragraph was labelled as English. Furthermore,
paragraphs without alphabetic characters were omitted from the language sequence
due to the inapplicability of language detection. An example is the paragraph rep-
resenting a border between the Russian and English versions ’——-’.

Using the language sequences, only posts with a distinct Russian and English ver-
sion were automatically split. Therefore, a requirement for splitting a post was the
presence of a language sequence that reflects this separation, such as [’Ru’, ’Ru’, ’En’,
’En’]. Posts that did not have approximately 50% Russian paragraphs followed by
approximately 50% English paragraphs or vice versa remained unaltered.

5.3.2 Final Russian and English Dataset

The originally constructed dataset consisted of 517 Russian and nineteen English
posts. After the duplicate post removal and splitting the data set as described above,
the final Russian and English datasets consisted of 470 and 62 posts respectively.
Table 5.1 shows the number of posts, paragraphs and sentences in both datasets.
Sentences were obtained by splitting posts on newlines (\n).

2PyPi langdetect library: https://pypi.org/project/langdetect/

5.4. Attribute Identification 35

Russian English

Posts 470 62
Paragraphs 1358 160
Sentences 2960 333

TABLE 5.1: Post, paragraph and sentence count in the Russian and
English datasets

5.4 Attribute Identification

Using the final Russian and English datasets, the domain was explored to iden-
tify generic and BPH specific attributes. For this purpose, posts were manually in-
spected. Due to the manageable size of the English dataset, all posts were included
for inspection. For Russian posts, a domain expert with knowledge of the language
performed the attribute identification task on a set of approximately one hundred
posts. Afterwards, the findings were combined and then verified by the domain
expert. For each identified attribute, the most suitable extraction method was then
determined based on attribute type as described in section 3.1.4 and taking into ac-
count the unstructured text type of BPH posts.

The attribute identification resulted in the discovery of sixteen attributes. In table
5.2, each attribute is presented including the data type and examples. Due to the sen-
sitivity of information, some examples were anonymized or omitted. Furthermore,
the generality of the attribute is included to distinguish between generic attributes
and attributes specific for BPH posts. The attribute type (value set column) and the
most suitable extraction method are shown in the last two columns.

Closed Attributes

Three of the identified attributes have a closed value set. These are payment period,
currency and location. For both location and payment period, fixed dictionaries can
be constructed that capture all locations worldwide and all time periods. However,
due to the growing number of existing cryptocurrencies, the currency attribute is
not as fixed. Possible solutions for currency extraction are to frequently update the
dictionary with newly discovered cryptocurrencies or to use machine learning based
extraction.

Open Attributes

The remaining attributes with an open value set were further divided in regular sets,
complex patterns and ambiguous patterns. Attributes with a regular set are jabber
mail, ICQ and URL due to their distinct internal structure. The price(amount) at-
tribute in BPH posts is of the category complex patterns. Prices commonly consist
of integers that do not have a distinct internal structure. However, they commonly
occur near a currency or payment period. The four attributes mentioned in this para-
graph have a distinct internal or external structure and that makes them eligible for
rule- and pattern-based extraction.

Attributes with ambiguous patterns are: content, communication channel, nick-
name, other contact details, payment method, service, service details, support and

36 Chapter 5. Dataset

technical specification. Due to the lack of structure, machine learning based extrac-
tion is the most suitable extraction method.

A
ttribute

D
ata

Type
Exam

ple
G

eneric
V

alue
Set

Extraction
M

ethod

C
ontent

String
exploits,botnets

N
O

pen
M

achine
Learning

C
om

m
unication

C
hannel

String
jabber,IC

Q
Y

O
pen

M
achine

Learning
IC

Q
Int/String

000000,000-000-000
Y

O
pen

R
ule

and
pattern

Jabber
M

ail
String

123-em
ail@

em
ail.ru

Y
O

pen
R

ule
and

pattern
Location

String
Europe,А

зии
(=

A
sia)

Y
C

losed
D

ictionary
N

icknam
e

String
<nicknam

e>
Y

O
pen

M
achine

Learning
O

ther
C

ontactD
etails

Int/String
<contactdetails>

Y
O

pen
M

achine
Learning

Paym
entM

ethod
String

m
oneybookers

Y
O

pen
M

achine
Learning

Price
-A

m
ount

Int/Float
130,90

Y
O

pen
R

ule
and

pattern
Price

-C
urrency

String
§,долларов

(=
dollars)

Y
C

losed
D

ictionary
Price

-Paym
entPeriod

String
m

o,м
есяц

(=
m

aand)
Y

C
losed

D
ictionary

Service
String

shared
хостинг

(=
hosting)

N
O

pen
M

achine
Learning

Service
D

etails
String

Private
data

center
N

O
pen

M
achine

Learning
Support

String
24/7,technical

Y
O

pen
M

achine
Learning

TechnicalSpecification
String

4G
B

R
A

M
,IntelX

eon
E5440

N
O

pen
M

achine
Learning

U
R

L
String

<url>
Y

O
pen

R
ule

and
pattern

TABLE 5.2: Sixteen identified attributes in BPH posts

5.5. Manual Annotation 37

5.5 Manual Annotation

For consistency in the annotation process, a set of guidelines was constructed. The
guidelines were constructed based on the annotations of 15 random Russian and
English posts that were verified by a domain expert. The annotation guidelines can
be found in appendix C. Using the identified attributes as labels and the annota-
tion guidelines, posts were manually annotated. GATE was used for the annotation.
GATE is an offline tool that facilitates NLP tasks. The Russian posts were annotated
using an English translation. To determine the correctness of the Russian annota-
tion, a subset of 50 random annotated posts was assessed by a second annotator
with knowledge of the Russian language. With respect to the labels in the 50 posts,
3.8% were changed, removed or added by the second annotator. Therefore, we can
argue that the Russian posts were sufficiently annotated.

For more insight in the sixteen attributes, the class frequency distribution is visu-
alized in figure 5.8. Noticeable is the large class imbalance for both English and
Russian.

FIGURE 5.8: Class frequency distribution

39

Chapter 6

Methodology

This chapter describes the research methodology that was used to answer the re-
search questions. For this study the domain was explored, relevant attributes were
identified and the attribute extractors were developed and evaluated. Furthermore,
transfer learning was applied in an attempt to improve the developed attribute ex-
tractors. In the following paragraphs, a general introduction of the methodology is
given. Afterwards, in sections 6.1 to 6.9, each step in the methodology is explained
in more detail. Table 6.1 provides an overview of the extraction techniques that were
applied including the attributes they were applied to.

Attribute B D R C H L T E

URL x x x x x x x
ICQ x x x x x x x
Nickname x x x x x x
Communication Channel x x x x x x
Techical Specification x x x x x x
Service x x x x x x
Content x x x x x x
Location x x x x x x x
Payment Period x x x x x x x
Currency x x x x x x x
Payment Method x x x x x x
Jabber Mail x x x x x x x
Service Details x x x x x x
Other Contact Details x x x x x x
Support x x x x x x
Price x x x x x x x

TABLE 6.1: Extraction techniques used per attribute

In chapter 5, the dataset construction was described followed by the data exploration
and data preparation. Furthermore, the attributes in BPH posts were identified and
used to manually annotate the data. Next, several techniques were used to perform
attribute extraction aimed to compare the performance of these methods. These
include a baseline extractor (B), dictionary-based extractor (D), rule- and pattern-
based extractor (R), CRF extractor (C), hybrid CRF extractor (H) and a biLSTM-CRF
extractor (L). For each technique, experiments were conducted to improve the per-
formance.

Transfer learning was applied to the hybrid CRF extractor (H) and to the biLSTM-
CRF extractor (L). The hybrid CRF extractor is based on a CRF, a traditional machine

40 Chapter 6. Methodology

learning model. Therefore, transfer learning was applied by including the results
of pre-trained models as features. The biLSTM-CRF extractor is a neural network.
Transfer learning was applied to the biSLTM-CRF by pre-training the embedding
layer on a large corpus. This biSLTM-CRF extractor resulted in model T.

Finally, an ensemble extractor (E) was developed that combines for each attribute
the best performing extractor.

6.1 Baseline Extractors

The baseline is a dictionary-based extraction method, i.e. it extracts a word, or mul-
tiple words, from text when it occurs in a dictionary. For this baseline, sixteen dic-
tionaries were created, one for each attribute, and filled with the attributes in the
labelled training dataset excluding duplicate values. For example, the location dic-
tionary consists of all location attributes in the training dataset. The baseline extracts
a word from unseen posts in the test dataset when it occurs in one of these dictionar-
ies and assigns the corresponding class label, e.g. location if it occurs in the location
dictionary.

The baseline has two main limitations. First of all, the baseline allows for words to be
extracted more than once when it matches with multiple values in the dictionaries.
For example, ’dedicated server’ can be extracted as ’server’ and ’dedicated server’
if both occur in a dictionary. This is referred to as overlapping attributes. Secondly,
true attributes are not extracted due to case sensitivity. To overcome these limita-
tions, three adapted versions of the baseline model were tested. The first adapted
version performs overlap removal to avoid the extraction of overlapping attributes.
First, the overlapping attributes are detected based on the location of the words in
a post. Subsequently, all except the largest attribute are discarded to ensure all pos-
sible relevant information is extracted. The second adapted version performs low-
ercasing of the posts as a pre-processing step. The third adapted version performs
both lowercasing and overlap removal.

Another baseline extractor was developed and tested, referred to as the aggregated
baseline extractor. This extractor was developed to test how good the original base-
line extractor is at distinguishing between the sixteen attributes, i.e. the classes. For
this purpose, the sixteen dictionaries are aggregated into one flat dictionary that dis-
cards all class information as depicted in figure 6.1. Using the aggregated dictionary,
the model extracts words that occur in the dictionary, but it assigns all extracted
words the same class label. It can be argued that, in case the aggregated baseline
performs better compared to the original baseline, this indicates that the original
baseline has difficulty assigning the correct class labels, e.g. due to the fact that at-
tribute instances might be present in more than one attribute specific dictionary due
to ambiguity.

6.2. Dictionary Extractors 41

FIGURE 6.1: Aggregated dictionary created from attribute specific
dictionaries

6.2 Dictionary Extractors

This section describes the dictionary-based attribute extractors for the closed at-
tributes location, currency and payment period.

In contrast to the baseline, the dictionaries are based on external sources instead of
annotated training data. For each attribute, several dictionaries were successively
developed and evaluated to improve the performance. Similar to the baseline, the
impact of lowercasing and overlap removal was tested. An exception is the payment
period attribute, since the dictionary values are lowercased by default only overlap
removal was tested.

To prevent false positives, regular expressions were used. The regular expression for
location and currency extraction scans for matches that are not preceded or followed
by a Latin or Cyrillic character. The regular expression for payment period scans the
posts for periods that are preceded by a digit in the same sentence and not followed
by a Latin or Cyrillic character.

Location extraction:

The first (’Naive’) dictionary is based on the continents, countries and cities in the
complete GeoNames data dump. GeoNames1 is a database of known locations in
multiple languages including English and Russian. For each location we included
the full name, two-character code (ISO-3166), all alternative names and the iana
timezone that also includes continent and city information. Furthermore, we added
the locations ’world’ and ’worldwide’. The final dictionary was obtained by remov-
ing duplicates and all locations that did not contain at least one character in the Latin
or Cyrillic script.

The second (’Restrictive’) dictionary is similar to the ’Naive’ dictionary, but without
the two-character codes and other locations with three characters or fewer.

The third (’Most Restrictive’) dictionary is based on the country information from the
GeoNames API. The benefit of using the API instead of the full data dump is that
many uncommon locations that cause false positives are avoided. For each country
we included the name, continent, and capital. To this we added the corresponding
continents and alternative country names in Cyrillic script from the Geonames data

1https://www.geonames.org/ - a geographical database consisting of countries and other geoloca-
tions in i.a. English and Russian

42 Chapter 6. Methodology

dump. Furthermore, we added the locations ’world’ and ’worldwide’.

Currency extraction:

The first dictionary (’Crypto and Regular’) consists of the names and abbreviations
of cryptocurrencies from Coinmarketcap2. Coinmarketcap is a webpage that reports
the price of popular and obscure cryptocurrencies. The dictionary was extended
with the ISO 4217 regular currencies including their abbreviation3, the Russian ma-
chine translation of the regular currencies and the currency symbols4.

The second dictionary (’Regular’) is similar to the first dictionary, but without the
cryptocurrency names and abbreviations from Coinmarketcap.

The third dictionary (’Restricted Regular’) is similar to the second dictionary, but
without the alphabetic, single character currency symbols. The non-alphabetic sym-
bols were kept.

Payment period extraction:

The first dictionary (’Naive Periods’) consists of commonly used time periods up
to a year, [’second’, ’minute’, ’hour’, ’day’, ’week’, ’month’, ’year’], including their
other forms, such as ’weekly’, ’min’, ’yr’. The dictionary was extended with Russian
machine translations of the periods.

The second dictionary (’Realistic Periods’) is similar to the first dictionary, but with-
out periods that are uncommon for a payment period. These are the periods ’sec-
ond’, ’minute’ and ’hour’ and their other forms and translations.

6.3 Rule and Pattern Extractors

This section describes the rule- and pattern-based attribute extractors for the reg-
ular set attributes, i.e. ICQ, jabber mail and URL, and complex pattern attribute
price(amount). For the regular set attributes, case insensitive regular expressions
were developed to capture their distinctive internal structure. Another method is
required to extract price values, since these are commonly integers and therefore
lack a distinctive internal structure. Instead, structure in the word context was used
to extract prices.

ICQ:
ICQ consists of a sequence of five or more digits, optionally interrupted by dashes
or spaces. To prevent matching colour codes in BB-code tags, the regular expression
was defined as follows:

\d+(\d(-|)?){3,}\d+(?!\d*\])

Jabber Mail:
The regular expression for jabber mail addresses is based on a naive structure of

2https://coinmarketcap.com/all/views/all/ - Coinmarketcap tracks the price of popular and ob-
scure cryptocurrencies

3https://en.wikipedia.org/wiki/ISO_4217
4https://www.xe.com/symbols.php

6.3. Rule and Pattern Extractors 43

mail addresses consisting of any character except newlines and whitespaces, inter-
rupted by one at-sign and a dot symbol. Based on deviations of addresses written in
BPH posts, the regular expression was adapted to a sequence of any characters with
the exception of white spaces, newlines and square brackets, interrupted by one at-
sign and a dot, either the symbol or written version, followed by Latin or Cyrillic
characters:

[^\n\s@\]\[]+@[^\n\s@\[\]]+(\.|dot)[\u0400-\u04FFa-z]+

URL:
The regular expression for URL attributes is based on the URL standards described
in the RFC-3986 standard5. However, since URLs in the posts do not have to comply
to the official URL characters and structure, several adaptations were necessary. This
resulted in the following regular expression:

([a-z]+:\/\/?(www\.)?|www\.)[\w\d\-\._~=;,\+*\)\(\’&\$!@#\?\/:]+
\.[a-z]+[\w\d\-\._~=;,\+*\)\(\’&\$!@#\?\/:%]*

Several URLs did not contain protocol information as well as no ’www’. Therefore
a more relaxed regular expression was also tested:

([a-z]+:\/\/?(www\.)?|www\.)?[\w\d\-\._~=;,\+*\)\(\’&\$!@#\?\/:]+
\.[a-z]+[\w\d\-\._~=;,\+*\)\(\’&\$!@#\?\/:%]*

Price:
The regular expression for price attributes is based on structure in word context that
is indicative for prices. A main indicator or a price is the occurrence of a currency
before or after an integer or float. This was incorporated in the first regular expres-
sion. For this we used the currency dictionary from section 6.2 that resulted in the
best performance. The expression is as follows:

’((’+LB_CUR+’)\d+(\.\d+)?|
\d+(\.\d+)?(?= ?(’+str(’|’.join(x for x in CUR))+’)))’

LB_CUR consists of a collection of look behind actions. These actions look for a known
currency that precedes the price directly or with a whitespace in between. Separate
look behind actions were required due to a fixed-length restriction. As an indication
the two first actions are as follows: ((?<=\$)|(?<=\$\s)|...). The look forward ac-
tion does not have a fixed-length restriction, therefore the list of known currencies,
CUR, was used for the look forward action was as follows: (?= ?(\$|...)).

It is also common for a price to be followed by a payment period within the same
sentence. The second regular expression incorporates this indicator by extending the
first regular expression. The last two rows of the extended regular expression shown
below contain the extension. PER refers to the payment period dictionary from sec-
tion 6.2 that resulted in the best performance. To prevent false positives, several
restrictions were added. So should the period start within 10 characters from the
integer or float and should the payment period not be directly preceded or followed
by a Latin or Cyrillic character.

’((’+LB_CUR+’)\d+(\.\d+)?|
\d+(\.\d+)?(?= ?(’+str(’|’.join(x for x in CUR))+’))|
\d+(\.\d+)?(?=.{0,10}[^\u0400-\u04FFA-Z](’+str(’|’.join(x for x in
PER))+’)[^\u0400-\u04FFA-Z]))’

5RFC-3986 standard: http://www.ietf.org/rfc/rfc3986.txt

44 Chapter 6. Methodology

6.4 CRF Extractors

Sequence labelling with traditional machine learning algorithms, such as CRF, can
be performed with a wide variety of configurations. The configurations include the
algorithm itself, its hyper parameters, text pre-processing, token representation into
feature vectors and the definition of a document, e.g. a sequence of tokens in a post
or in a sentence.

Several CRF extractors were developed for this study. The first, the initial CRF ex-
tractor, is a basic CRF extractor that is explained in section 6.4.1. Afterwards, a series
of experiments was conducted aimed to improve the performance of the initial CRF
extractor by discovering good configurations for this particular application. The ex-
periments are explained in section 6.4.2. The final CRF extractor was constructed
based on the outcome of all experiments and is explained in the results section 7.6.
This process was performed separately for English and Russian.

6.4.1 Initial CRF Extractor

The initial CRF extractor makes use of the discriminative linear chain CRF (LC-CRF)
from the sklearn-crfsuite6. The LC-CRF, described in section 4.1.4, and makes of the
preceding predicted class label and the feature vector of the current token, i.e. tran-
sition and state feature functions respectively. The default hyper-parameter values
were used with the L-BFGS training algorithm and L1 and L2 regularization.

Data Preparation

Posts were split into tokens using a tokenizer. For this purpose, a tokenizer was
developed that splits on pre-determined delimiters in order to meet several main
requirements. The first requirement was that no token contained two separate at-
tribute instances. The second requirement was to keep the BB-codes intact. Each
token was then paired with their BIO encoded label. Furthermore, for the initial
CRF extractor, no data pre-processing was performed and the posts were not split
into smaller paragraphs or sentences. Instead the post sequence definition was used.

Feature Engineering

Feature engineering is the process of representing tokens as feature vectors that are
used as input for the CRF extractor. For the initial CRF extractor, each token ti was
represented with features from the token itself and from the neighbouring tokens,
ti−1 and ti+1, resulting in a total of 27 features per feature vector. Tokens from the
neighbouring tokens are referred to as context features.

A basic set of word-level features, list lookup features and document and corpus fea-
tures were used that are commonly used for NER [25]. The word-level features used
are the token, three-character prefix, three-character suffix and three boolean fea-
tures representing the presence of a capital character, digit and any special character
in the token respectively. The list lookup feature used is a boolean feature represent-
ing the presence of the token in a list of English and Russian stopwords from NLTK.
The document and corpus features used are the token index in the sequence and
token frequency in the corpus.

6https://sklearn-crfsuite.readthedocs.io/en/latest/index.html

6.4. CRF Extractors 45

6.4.2 Experiments

The following paragraphs describe the experiments that were conducted to improve
the performance of the initial CRF extractor. The first experiment compared our
initial CRF extractor, a sequence model, with a regular classifier. The second exper-
iment compared the performance impact of several sequence definitions. The third
experiment tested the impact of performing hyper-parameter tuning. The fourth ex-
periment looked at the impact of extending the feature vectors. The fifth experiment
focussed on the impact of data pre-processing steps. The outcome of each experi-
ment was used as input for the next experiment.

Experiment 1: Machine Learning Algorithms

The first experiment focussed on comparing our initial CRF extractor, a sequence
model, against a regular classifier. For the regular classifier we used the discrimi-
native MEM classifier from NLTK7 with default hyper-parameters. Everything else
was kept the same for both extractors.

Experiment 2: Sequence Definition

The second experiment compared three sequence definitions: i) post-level, ii) paragraph-
level and iii) sentence-level sequences. For the post-level sequence, each post is
regarded as one sequence. This was used for the initial CRF extractor. For the
paragraph-level sequence, each paragraph in the posts is regarded as one sequence.
For the sentence-level sequence, each sentence in the posts is regarded as one se-
quence. The number of posts, paragraphs and sentences in the English and Russian
datasets were shown in section 5.3.2.

Experiment 3: Hyper-parameter Tuning

The third experiment tested the performance impact of hyper-parameter tuning of
the CRF extractor. The GridSearchCV hyper-parameter optimizer from scikit-learn8

was used. It performs an exhaustive search through a set of predetermined parame-
ter values. The tuning consisted of two phases. In the first phase, the discrete valued
parameters were tuned. Here all values for the discrete parameters were tested in
combination with the default valued continuous parameters. In the second phase,
the continuous valued parameters were tuned. Here three up to five values were
tested for each continuous parameter including the default value. The discrete pa-
rameters were set to the tuned parameter values from phase one. The set of discrete
and continuous parameters and their pre-determined parameter values can be found
in appendix A.

Experiment 4: Feature Engineering

The fourth experiment tested the impact of extending the features in the feature vec-
tor. The process consisted of feature development and feature selection.

For feature development, the set of word-level features, list lookup features and doc-
ument and corpus features was extended. This resulted in 82 features, not including
context features. The extended feature set can be found in appendix B. Several of

7https://www.nltk.org/_modules/nltk/classify/maxent.html
8http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

46 Chapter 6. Methodology

the new features were dependent on the training data. An example is the boolean
feature ’isKnownService’ that is true in case the token matches a service attribute
in the training data. It was ensured that the test data was not used to generate this
feature.

Feature selection was performed to select only the features that contain information
that is beneficial for the attribute extraction. For this purpose, the CRF extractor was
trained and tested iteratively. In each iteration, one of the new features was added to
the initial feature vector and removed afterwards. Features were said to be beneficial
if they resulted in an improved performance with respect to using the tuned CRF
with the initial feature vector from the previous experiment. Feature selection was
performed for features representing the current token as well context features of the
4 neighbouring tokens, i.e. a window of five tokens. However, context features that
were an exact replica of the current token feature, e.g. the sequenceLength feature,
were not included.

Experiment 5: Data Pre-processing

The fifth experiment tested the impact of several data pre-processing steps. These
are the text normalization steps lowercasing, stemming, punctuation removal and
stopword removal. Furthermore, we evaluated the impact of removing BB-codes
from the posts as a noise-removal step. The stemmers used are the Porter and Snow-
ball stemmers for English and Russian respectively. Both are available in the stem
package of NLTK9. The punctuation removal step removed the punctuation tokens
(.?!,;:-()) that where already split into separate tokens by the tokenizer. For stop-
word removal, tokens that occur in the English or Russian NLTK stopword lists
were removed. Each BB-code was also tokenized as one token. BB-code removal
could therefore be performed by removing tokens matching the regular expression
for BB-codes: \[/?\w+(="?#?\w+"?)?\] .

6.5 Hybrid CRF Extractors

Besides the individual dictionary-, rule- and machine learning based methods for
attribute extraction, we explored the performance impact of combining the methods
into a hybrid extractor. The hybrid CRF extractor consists of the final CRF extrac-
tor described in section 6.4, but with additional features based on external sources.
These features are referred to as hybrid features. The impact of each hybrid feature
was tested individually. The features that resulted in a performance improvement
were added to the feature vector of the final hybrid CRF extractor. This was per-
formed for English and Russian separately. The feature additions can be split in
three categories.

The first two categories consists of new features that incorporate the output of best
performing dictionary extractors and rule based extractors described in section 6.2
and 6.3 respectively. These are referred to as dictionary features and rule features.
Dictionary features are boolean features indicating whether the token consist in a
list of known attributes, e.g. isInGeoNamesLocations. The rule features are boolean
features indicating whether the token is part of an attribute extracted by a regular

9https://www.nltk.org/api/nltk.stem.html

6.6. biLSTM-CRF Extractors 47

expression, e.g. isPartOfURL.

The third category consists of features that incorporate the output of pre-trained
models. This is transfer learning for traditional machine learning models as de-
scribed in section 3.2.1. These features are therefore referred to as transfer learning
features. The first feature captures the part-of-speech tag of the token. For this we
used the English and Russian version of the part-of-speech tagger called TreeTag-
ger10. The second feature addition resulted in a new feature for each value in a 100
dimensional word embedding of the token. The third feature addition consisted of
the 1, 5, 10, 20 or 40 most similar words of a token based on learned word embed-
dings. The word embedding model was trained on all posts of the DNM, irrespective
of category and language. For this purpose, word2vec from the Gensim Python li-
brary11 was used. Word embeddings are words mapped to vectors of real numbers.
These mappings can be learned using word2vec, a shallow neural network that re-
ceives as input a large corpus and returns a vector space with a vector representing
each word. As a result, word vectors that are close to each other in the vector space
represent words that occur in a similar text context in the input corpus. A word
embedding model was trained for the English and Russian hybrid CRF extractors
separately to ensure the same data preparation and pre-processing methodology
was used as that of the final English and Russian CRF extractors from the previous
section.

6.6 biLSTM-CRF Extractors

This section describes how the biLSTM-CRF neural network was used to perform
machine learning based attribute extraction. The biLSTM-CRF extractor was de-
veloped to compare its performance with that of the traditional CRF extractors de-
scribed in the previous two sections.

Several biLSTM-CRF extractors were developed for this study. The first, the initial
biLSTM-CRF extractor, is explained in section 6.6.1. Afterwards, experiments were
conducted aimed to improve the performance of the initial biLSTM-CRF extractor.
The experiments are explained in section 6.6.2. The final biLSTM-CRF extractor was
constructed based on the outcomes of all experiments and is explained in the results
section 7.8. This process was performed separately for English and Russian.

6.6.1 Initial biLSTM-CRF

Model Input

For good comparison, the data preparation was kept identical to that of the CRF de-
scribed in section 6.4.1. Next, the data was formatted to make it compatible as model
input. For this purpose, the sequences of tokens and labels were transformed to vec-
tors of integers. These integers are the unique IDs of tokens and labels respectively.
To obtain equal length input vectors, they were padded with ID 0, the padding to-
ken. These zero values were ignored by the model by setting the mask_zero param-
eter in the embedding layer to True.

10Part-of-speech tagger TreeTagger: https://treetaggerwrapper.readthedocs.io
11Source Gensim Python library: https://radimrehurek.com/gensim/

48 Chapter 6. Methodology

Architecture

The initial biLSTM-CRF consists of a word embedding layer, with randomly ini-
tialized weights, followed by a bidirectional LSTM and a CRF layer. In order to
obtain a good performance, the right hyper-parameters should be used [41]. The
hyper-parameters described in the next paragraph are based on the optimal hyper-
parameters for a biLSTM-CRF for sequence labelling tasks, as found by Reimers et
al. [41].

Details of the model architecture including hyper-parameters are as follows: The
word embeddings, with a dimension of 100, are used as input for the forward and
backward LSTM layers. For each LSTM layer the number of recurrent units is 100
and both dropout and recurrent dropout are set to 0.5 to prevent overfitting. The
output of the LSTM layers is then concatenated and used as input for the CRF. To
ensure the output of the bidirectional LSTM is sequential, i.e. an output for each
token in a sequence, the return_sequences parameter is set to True. To train the
biLSTM-CRF, the Adam with Nesterov momentum optimizer (Nadam) is used with
the default learning rate of 0.002 in combination with a batch size of 8 and 25 epochs.
For the initial biLSTM-CRF, the sentence sequence definition was used.

6.6.2 Experiments

The following paragraphs describe the experiments that were conducted to improve
the performance of the initial biLSTM-CRF extractor. The first experiment tested
the impact of the sequence definitions. The second experiment tested the impact
of changing hyper-parameters and architecture. The third experiment tested the
impact of several data pre-processing steps. All experiments were conducted in iso-
lation, i.e. one change with respect to the initial biLSTM-CRF extractor.

Experiment 1: Sequence Definition

The first experiment compared the post-level, paragraph-level and sentence-level
sequence definitions.

Experiment 2: Hyper-parameters and Architecture

The second experiment explored the performance impact of adapting the model
hyper-parameters and architecture. Changing certain hyper-parameters has a larger
performance impact compared to changing others [41]. Based on this finding ex-
periments were conducted to find good values for the hyper-parameters batch size,
epochs, dropout and embedding dimension.

For batch size, we experimented with sizes 8 and 32. Even though a batch size closer
to 32 was found to be optimal for named entity recognition and related tasks, a lower
batch size of 8 is more suited for small datasets, since it results in more robust mod-
els [41]. The epoch sizes tested are 25, 100 and 200. The dropout values tested are
0.15, 0.25 and 0.5. Furthermore, the impact of using only regular dropout and only
recurrent dropout was explored. Lastly, the embedding dimensions tested are 100,
200 and 300.

For the architecture, we explored the impact of using a single (forward) LSTM in-
stead of the bidirectional LSTM. Furthermore, we tested the impact of using both

6.7. Transfer Learning with the biLSTM-CRF Extractors 49

word and character embeddings compared to using solely word embeddings. The
character embeddings have a dimension of 100. When using both embedding types,
separate word embedding and character embedding layers are trained and the out-
comes are concatenated. The word embedding contains information about the word
context whereas the character embedding contains information about orthographic
similarities, i.e. what the word looks like [7].

Experiment 3: Data Pre-processing

The third experiment compared several pre-processing steps. These are lowercas-
ing, stemming, BB-code removal, punctuation removal and stopword removal. The
same techniques and resources were used as described in the CRF pre-processing
experiment in section 6.4.2.

6.7 Transfer Learning with the biLSTM-CRF Extractors

This section describes how transfer learning by fine-tuning was applied in an at-
tempt to improve the performance of the biLSTM-CRF extractor. Several experi-
ments were conducted to test the applicability of transfer learning. The first exper-
iment, described in section 6.7.1, tested the impact of applying transfer learning on
the word embedding layer versus both the word and character embedding layers.
The second experiment, described in section 6.7.2, tested the impact of using various
source datasets for pre-training. This process was performed separately for English
and Russian

6.7.1 Experiment 1: Transferring Word Embeddings vs. Word and Char-
acter Embeddings

The first experiment compared the impact of applying transfer learning on the word
embedding layer versus both the word and character embedding layers.

First, transfer learning was applied on the word embedding layer. The remaining
layers, including the character embedding layer, were trained from scratch. For this
purpose, an embedding model was pre-trained on a large source dataset. The source
dataset consisted of all posts of the DNM, irrespective of category and language.
Then, instead of random weight initialization of the word embedding layer of our
target biLSTM-CRF model, the weights were initialized according to the learned
weights in the pre-trained embedding model. Lastly, the target model was trained
on the target dataset as you would without any transfer learning. This fine-tuned
the weights for our target attribute extraction task.

To pre-train the word embedding model on the source dataset, word2vec from the
Gensim Python library 12 was used. The dimensionality of the embeddings was set
to the default value of 100. Before pre-training, preparation and pre-processing of
the source data was performed equal to the description given in previous section 6.6
and based on the outcome of the pre-processing experiment.

For the second part of the experiment, we applied transfer learning on both the word
and character embedding layers. The remaining layers were trained from scratch.

12Source Gensim Python library: https://radimrehurek.com/gensim/

50 Chapter 6. Methodology

For this purpose, the same pre-trained word embedding model was used. To pre-
train the character embedding model, the same source dataset and methodology was
used as described in the previous two paragraphs. The difference was that, instead
of using sequences of words as model input, we used sequences of characters.

6.7.2 Experiment 2: Comparing Source Datasets

As described in section 3.2.2 of the related work, the suggested approach is to select
a source dataset with a large vocabulary size and a low out-of-vocabulary metric.
Therefore, the source dataset consisting of all posts of the DNM was used for the
first transfer learning experiment. However, the semantic similarity is also of im-
portance. Therefore, in this second experiment, we explored several other source
datasets.

The second source dataset consists of the language filtered DNM posts, i.e. all Rus-
sian and English posts for the Russian and English biLSTM-CRF extractor respec-
tively. The third source dataset is a copy of the second dataset, but only contains
posts from the hosting and related services category. The fourth source dataset con-
sists of the language filtered posts with a hosting category from multiple DNMs
including our original DNM.

6.8 Ensemble Extractors

An ensemble extractor was developed that combines for each attribute the best per-
forming extractor. The extractors considered are the dictionary-based extractor, rule-
based extractor, CRF extractor, hybrid CRF extractor, biLSTM-CRF extractor and
biLSTM-CRF extractor developed with transfer learning. For this extractor we used
the sentence sequence definition. The ensemble extractor was developed as follows:
for each attribute, the best performing extractor is selected based on the F2-score for
that attribute. The predicted labels obtained by these selected extractors are then
combined. Since two models can assign different labels to the same token, a sequen-
tial approach is used to give priority to labels of attributes with a higher F2-score.
This begins by adding the labels of the attribute with the highest F2-score and ends
with adding the labels of the attribute with the lowest F2-score.

6.9 Training and Testing

Due to the small dataset, five-fold cross-validation was applied to train and test
the machine learning models and the baseline model. This resulted in a more ac-
curate model performance estimate. With five-fold cross-validation, the dataset is
randomly split in five parts. During training, one part is selected for testing and the
remaining four are used to train the model. This is performed five times, each time
with a different part for testing. The split in five folds, i.e. how the input data and
classes are distributed over the five folds, influences the model performance. There-
fore, generating five folds for each model resulted in varying performance influences
that were not caused by the models themselves. To avoid this and better compare
the performance of the models, the five folds were generated once and used to train
and test all models.

51

Chapter 7

Experiments and Results

This chapter evaluates the results of all attribute extractors including experiments
and transfer learning attempts. Section 7.1 describes the experimental setup. An
overview of the main findings including a comparison of the extraction techniques
is provided in section 7.2. Sections 7.3 to 7.9 provide for each extraction technique
and transfer learning attempt an in depth analysis of the results.

7.1 Experimental Setup

This section describes the experimental setup including a recap of the data and the
method and performance metrics used to evaluate the attribute extractors.

The data used consists of the English and Russian datasets as described in chapter 5.
The datasets consist of 62 and 470 BPH posts respectively. The following sixteen at-
tributes can be found in the data: URL, ICQ, nickname, communication channel,
technical specification, service, content, location, payment period, currency, pay-
ment method, jabber mail, service details, other contact details, support and price.
BIO encoding was used to annotate the data. This resulted in 33 classes, two per
attribute in addition to the ’O’ class for non-attribute tokens.

To evaluate the attribute extractors, the MUC evaluation method was used as de-
scribed in section 4.3. This method allows for partial matches where either the cor-
rect class is predicted or the correct boundaries of the attribute are found. The inclu-
sion of partial matches in addition to exact matches is of importance due to the fact
that partial matches can also provide relevant information for a police investigation.
For example, the extraction of ’hosting’ is still relevant even though the true bound-
aries contain ’bulletproof hosting’. However, the exact matches receive more weight
compared to partial matches.

The performance metrics used are precision, recall and F2-score. The exact formula’s
used to calculate the performance of an extractor can be found in section 4.3. The F2-
score was used instead of the F1-score, since extracting all attribute instances (recall)
is of greater importance than extracting solely correct attribute instances (precision).
To compare the machine learning based attribute extractors and the impact of trans-
fer learning, we provided the micro-averaged (F2Mi), macro-averaged (F2Ma) and
weighted macro-averaged (F2W) F2-scores as well as the micro-averaged precision
(PMi) and recall (RMi). However, due to class imbalance as described in section 5.5,
we evaluated the attribute extractors based on the F2Mi.

52 Chapter 7. Experiments and Results

Furthermore, the development of attribute extractors and the application of transfer
learning was performed for English and Russian separately.

7.2 Result Overview

In this study, several attribute extraction techniques were used and compared to
find the best performing extractor per attribute. The extractors developed include
a baseline extractor (B), dictionary-based extractor (D), rule- and pattern-based ex-
tractor (R), CRF extractor (C), hybrid CRF extractor (H), biLSTM-CRF extractor (L), a
biLSTM-CRF extractor developed with transfer learning (T) and an ensemble extrac-
tor (E). In this section, the main findings of this study are presented. An overview of
the best obtained F2-scores is shown in table 7.1.

Dictionary-based and Rule- and Pattern-based Extraction

For the location, payment period and currency attributes, dictionary-based extrac-
tion (D) was performed. This resulted in the best performance for the location and
payment period attributes for English. However, machine learning approaches out-
performed the dictionary-based approach for the other attributes.

For the URL, ICQ, jabber mail and price attributes, rule- and pattern-based extrac-
tion (R) was performed. For both English and Russian, this resulted in the best
performance for all four attributes. The exception is price attribute extraction for
Russian. This was best performed with machine learning.

Machine Learning Based Extraction

For both English and Russian, it was found that the hybrid extractor (H), with a
F2Mi-score of 0.825 and 0.877 respectively, outperformed the CRF extractor (C) as
well as the biLSTM-CRF extractor (L). However, the performance of machine learn-
ing based extractors is attribute dependent. Therefore, some attributes were ex-
tracted with a higher F2-score by the biLSTM-CRF (L) or CRF (C) extractors instead
of the hybrid extractor (H).

Transfer Learning

For both English and Russian, training the biLSTM-CRF with transfer learning (T)
resulted in an improved performance compared to training from scratch (L). How-
ever, this requires a source dataset that consists of a sufficient amount of language
filtered posts about a related topic, e.g. Russian hosting posts for Russian. Further-
more, for some attributes transfer learning resulted in a worsened F2-score.

Ensemble Extractor

For English, the ensemble extractor (E) outperformed all other machine learning
based extractors. For Russian, the ensemble extractor (E) outperformed the CRF (C),
hybrid (H) and biLSTM-CRF (L) extractors. However, it was not able to outperform
the biLSTM-CRF developed with transfer learning (T).

7.2. Result Overview 53

Conclusion

For English, the ensemble extractor (E) resulted in the best performance with a F2Mi-
score of 0.859. For Russian, this was not the case as the biLSTM-CRF developed with
transfer learning (T) resulted in the best performance with a F2Mi-score of 0.886.

Attribute (class f requency) B D R C H L T E

En
gl

is
h

URL (2) 0.000 1.000 0.000 0.000 0.000 0.000 1.000
ICQ (10) 0.533 1.000 0.880 0.816 0.913 0.880 1.000
Nickname (3) 0.000 0.000 0.000 0.000 0.000 0.000
Comm. Channel (39) 0.777 0.905 0.930 0.974 0.954 0.974
Tech. Spec. (85) 0.240 0.712 0.689 0.625 0.640 0.714
Service (184) 0.832 0.888 0.890 0.911 0.894 0.916
Content (81) 0.848 0.787 0.803 0.881 0.813 0.881
Location (28) 0.729 0.899 0.603 0.638 0.496 0.472 0.870
Payment Period (3) 0.250 1.000 0.882 0.833 0.714 0.714 1.000
Currency (13) 0.467 0.747 0.794 0.847 0.917 0.917 0.917
Payment Method (23) 0.290 0.636 0.625 0.467 0.514 0.625
Jabber Mail (19) 0.493 1.000 1.000 0.916 0.964 1.000 1.000
Service Details (9) 0.000 0.000 0.000 0.000 0.000 0.000
Other Contact D. (2) 0.400 1.000 1.000 1.000 1.000 1.000
Support (16) 0.467 0.577 0.570 0.570 0.617 0.625
Price (13) 0.150 0.985 0.703 0.703 0.738 0.794 0.985
Best F2Mi 0.618 0.820 0.825 0.804 0.806 0.859

R
us

si
an

URL (35) 0.147 0.783 0.729 0.738 0.711 0.675 0.777
ICQ (174) 0.819 0.973 0.945 0.953 0.934 0.944 0.977
Nickname (106) 0.645 0.684 0.723 0.613 0.632 0.662
Comm. Channel (406) 0.714 0.915 0.907 0.921 0.918 0.922
Tech. Spec. (757) 0.579 0.807 0.818 0.813 0.837 0.827
Service (1102) 0.862 0.939 0.932 0.927 0.932 0.935
Content (387) 0.530 0.754 0.771 0.797 0.793 0.780
Location (306) 0.818 0.528 0.841 0.877 0.860 0.870 0.860
Payment Period (32) 0.306 0.886 0.774 0.774 0.890 0.849 0.890
Currency (114) 0.322 0.766 0.941 0.954 0.963 0.943 0.963
Payment Method (22) 0.480 0.400 0.571 0.337 0.347 0.365
Jabber Mail (131) 0.850 0.989 0.974 0.979 0.983 0.980 0.989
Service Details (177) 0.371 0.677 0.680 0.691 0.693 0.693
Other Contact D. (14) 0.622 0.882 0.882 0.797 0.857 0.882
Support (62) 0.693 0.787 0.776 0.697 0.771 0.795
Price (118) 0.248 0.908 0.934 0.944 0.920 0.905 0.949
Best F2Mi 0.637 0.870 0.877 0.872 0.886 0.884

TABLE 7.1: Attribution extraction result overview - The best F2-scores

54 Chapter 7. Experiments and Results

7.3 Baseline Extractors

This section shows and evaluates the baseline extractor results. Several baselines
were developed. These are the original baseline and three improved baselines that
include lowercasing and overlap removal. Furthermore, an aggregated baseline ex-
tractor was developed to test how good the original baseline is at distinguishing
between the sixteen classes. First, the result of the original baseline and the impact
of lowercasing and overlap removal is evaluated. Afterwards, the results of the ag-
gregated baseline is provided. The full set of performance scores of the baseline
extractors including precision and recall can be found in appendix D.

The results of the original baseline extractor and the impact of lowercasing (L) and
overlap removal (OR) are shown in table 7.2. With respect to the F2Mi-score of the
baseline extractor, overlap removal resulted in a large performance improvement for
both English and Russian. However, lowercasing worsened the performance. This
is arguably due to ambiguity caused by lowercasing that resulted in more attribute
values that occur in two or more dictionaries. Interesting is that combining lower-
casing and overlap removal resulted in the best performance for the original Russian
baseline extractor. This indicates that lowercasing resulted in more overlapping at-
tributes and that overlap removal prevented this from worsening the performance.
From the F2-scores of the attributes, it can be inferred that the impact of lowercasing
and overlap removal is attribute and dataset dependent.

English Russian
Attribute Raw L OR L+OR Raw L OR L+OR

Service 0.485 0.438 0.811 0.832 0.554 0.533 0.860 0.862
ServiceDetails 0.000 0.000 0.000 0.000 0.216 0.199 0.371 0.369
TechSpecification 0.240 0.190 0.240 0.201 0.457 0.408 0.530 0.579
Location 0.729 0.538 0.729 0.729 0.800 0.685 0.818 0.779
Price 0.150 0.150 0.150 0.150 0.091 0.091 0.245 0.248
Currency 0.267 0.467 0.267 0.467 0.316 0.277 0.322 0.319
PaymentPeriod 0.250 0.183 0.250 0.217 0.237 0.224 0.306 0.291
PaymentMethod 0.290 0.290 0.290 0.290 0.480 0.433 0.480 0.433
CommChannel 0.759 0.748 0.777 0.766 0.655 0.621 0.714 0.672
ICQ 0.533 0.533 0.533 0.533 0.819 0.819 0.819 0.819
Nickname 0.000 0.000 0.000 0.000 0.596 0.550 0.645 0.583
JabberMail 0.493 0.493 0.493 0.493 0.850 0.850 0.850 0.850
OtherContactD. 0.400 0.400 0.400 0.400 0.622 0.605 0.622 0.605
Content 0.818 0.828 0.818 0.848 0.416 0.425 0.509 0.530
Support 0.270 0.382 0.460 0.467 0.653 0.682 0.663 0.693
URL 0.000 0.000 0.000 0.000 0.133 0.133 0.147 0.147

F2Mi 0.485 0.447 0.618 0.612 0.469 0.447 0.634 0.637

TABLE 7.2: F2-scores of the original baseline extractor and the impact
of lowercasing (L) and overlap removal (OR)

The aggregated baseline results together with the original baseline results are shown
in table 7.3. Comparing the best F2Mi-scores, the aggregated baseline outperforms
the original baseline with 0.038 and 0.082 F2Mi-score for English and Russian respec-
tively. From this we can infer that the original baseline is able to distinguish between

7.4. Dictionary Extractors 55

the sixteen classes and that the aggregated model does not provide large additional
benefits.

English Russian
Baseline Raw L OR L+OR Raw L OR L+OR

Aggregated 0.502 0.472 0.651 0.656 0.485 0.477 0.705 0.719
Original 0.485 0.447 0.618 0.612 0.469 0.447 0.634 0.637

TABLE 7.3: F2Mi-scores of the aggregated and original baseline ex-
tractor

7.4 Dictionary Extractors

In this section, the results of the dictionary-based attribute extractors are shown and
evaluated for the attributes location, currency and payment period.

Location:

Three dictionaries were compared for location extraction. These are the ’Naive’, ’Re-
strictive’ and ’Most Restrictive’ dictionaries. Furthermore, the impact of lowercasing
the text and performing overlap removal was explored. The results are presented in
table 7.4.

The ’Naive’ dictionary resulted in the highest recall for both English and Russian
due to the fact that many locations are included in the dictionary. However, for
that same reason, many false positives were obtained. This resulted in a low preci-
sion and F2-score. The reason is that location names can be ambiguous and match
other English or Russian words and abbreviations. An example is Many, a town in
Louisiana. Furthermore, the large number of locations with three or fewer charac-
ters worsened the precision.

The ’Restrictive’ dictionary, with the locations of thee or fewer characters removed,
resulted in a slight improvement of the precision, but a worsened recall. This holds
for both English and Russian.

The ’Most Restrictive’ dictionary resulted in the best performance for both English
and Russian with a F2-score of 0.899 and 0.528 respectively. A large increase of
the precision was measured with respect to the ’Naive’ and ’Restrictive’ dictionary.
However, the recall was worsened with respect to the ’Naive’ dictionary, but in-
creased with respect to the ’Restrictive’ dictionary. The low recall of the Russian
location extractor indicates that the GeoNames locations in Cyrillic script are not
sufficient for this task. This is due to the variety in writing style and due to the
numerous possible suffixes for one location. For example, Europe was written as
Европе, Европа and Европы and not all versions are incorporated in GeoNames.

When using the ’Most Restrictive’ dictionary, lowercasing increased the F2-score for
both English and Russian whereas removing overlapping attributes did not have a
performance impact.

56 Chapter 7. Experiments and Results

English Russian
Dictionary L OR F2 P R F2 P R

Naive 0.163 0.039 0.786 0.213 0.065 0.498
Naive x 0.091 0.020 0.964 0.112 0.027 0.539
Naive x 0.173 0.042 0.821 0.218 0.066 0.508
Naive x x 0.094 0.020 0.982 0.112 0.027 0.538
Restrictive 0.326 0.106 0.679 0.338 0.203 0.405
Restrictive x 0.171 0.041 0.857 0.211 0.068 0.444
Restrictive x 0.352 0.116 0.714 0.347 0.212 0.413
Restrictive x x 0.177 0.042 0.875 0.211 0.068 0.443
Most restrictive 0.870 0.923 0.857 0.510 0.976 0.456
Most restrictive x 0.899 0.926 0.893 0.528 0.904 0.479
Most restrictive x 0.870 0.923 0.857 0.510 0.976 0.456
Most restrictive x x 0.899 0.926 0.893 0.528 0.904 0.479

TABLE 7.4: The F2-score (F2), precision (P) and recall (R) for
dictionary-based location extraction and the impact of lowercasing

(L) and overlap removal (OR)

Currency:

Three dictionaries were compared for currency extraction. These are the ’Crypto and
Regular’, ’Regular’ and ’Restricted Regular’ dictionaries. Furthermore, the impact
of lowercasing and overlap removal was explored. The results are presented in table
7.5

For the Russian currency extraction, the ’Crypto and Regular’ dictionary resulted in
a small recall improvement compared to the ’regular’ and ’restricted regular’ dictio-
naries. Cryptocurrencies are not commonly used to describe the price of BPH. How-
ever, the few cryptocurrencies used were captured by including cryptocurrencies in
the dictionary. This resulted in the recall increase. However, the addition of cryp-
tocurrencies also resulted in a low precision due to false positives that were mainly
caused by ambiguous cryptocurrency abbreviations, e.g. Ethereum Classic (ETC).
In the English posts no cryptocurrencies are mentioned. Therefore, the ’crypto and
regular’ dictionary only resulted in a worsened precision compared to the other dic-
tionaries.

The ’Regular’ dictionary, without cryptocurrencies, resulted in an improved preci-
sion, but also a slight reduction in recall for the Russian extractor. However, espe-
cially for the Russian extractor, the precision remained low due to false positives
caused by alphabetic, single character currency symbols.

The ’Restricted Regular’ dictionary, without alphabetic, single character currency
symbols, resulted in the best performance for both English and Russian with a F2-
score of 0.747 and 0.766 respectively.

It was found that overlap removal did not have a performance impact. Lowercas-
ing improved the recall, but largely decreased the precision. Recall improved due to
the fact that false negatives caused by unconventional usage of capital characters in
currencies is avoided, e.g. writing ’usd’ instead of ’USD’. However, the main reason

7.4. Dictionary Extractors 57

lowercasing decreased precision is the occurrence of ambiguous currency abbrevia-
tions, e.g. the Albanian lek (ALL), that cause more false positives when lowercased.
Removing all abbreviations largely reduced the recall and was therefore not an op-
tion.

English Russian
Currency dictionary L OR F2 P R F2 P R

Crypto and Regular 0.572 0.306 0.731 0.563 0.266 0.781
Crypto and Regular x 0.194 0.047 0.885 0.449 0.154 0.860
Crypto and Regular x 0.572 0.306 0.731 0.563 0.266 0.781
Crypto and Regular x x 0.194 0.047 0.885 0.449 0.154 0.860
Regular 0.731 0.731 0.731 0.704 0.537 0.763
Regular x 0.728 0.426 0.885 0.660 0.354 0.842
Regular x 0.731 0.731 0.731 0.704 0.537 0.763
Regular x x 0.728 0.426 0.885 0.660 0.354 0.842
Restricted Regular 0.731 0.731 0.731 0.766 0.777 0.763
Restricted Regular x 0.747 0.460 0.885 0.720 0.455 0.842
Restricted Regular x 0.731 0.731 0.731 0.766 0.777 0.763
Restricted Regular x x 0.747 0.460 0.885 0.720 0.455 0.842

TABLE 7.5: The F2-score (F2), precision (P) and recall (R) for
dictionary-based currency extraction and the impact of lowercasing

(L) and overlap removal (OR)

Payment Period:

Two dictionaries were compared for payment period extraction. These are the ’Naive
Periods’ and ’Realistic Periods’ dictionaries. Furthermore, the impact of overlap re-
moval was explored. The results are presented in table 7.6

For the English payment period extraction, both dictionaries resulted in a F2-score of
1.000. For the Russian payment period extraction, the ’Realistic Periods’ dictionary
resulted in the best performance with a F2-score of 0.886. The ’Naive Periods’ dic-
tionary resulted in a lower performance. The reason is that the periods that are not
commonly used as payment period caused many false positives. The recall of the
’Realistic Periods’ dictionary slightly decreased with respect to the ’Naive Periods’
dictionary due to the fact that uncommon periods do occasional occur as payment
period. For English as well as Russian, overlap removal did not have an impact on
the performance.

English Russian
Period dictionary OR F2 P R F2 P R

Naive Periods 1.000 1.000 1.000 0.808 0.457 1.000
Naive Periods x 1.000 1.000 1.000 0.808 0.457 1.000
Realistic Periods 1.000 1.000 1.000 0.886 0.660 0.969
Realistic Periods x 1.000 1.000 1.000 0.886 0.660 0.969

TABLE 7.6: The F2-score (F2), precision (P) and recall (R) for
dictionary-based payment period extraction and the impact of over-

lap removal (OR)

58 Chapter 7. Experiments and Results

7.5 Rule and Pattern Extractors

In this section, the results of the rule- and pattern-based attribute extractors are
shown and evaluated for the attributes ICQ, jabber mail, URL, and price. The per-
formance of all four attributes is shown in table 7.7.

English Russian
Rule/Pattern F2 P R F2 P R

ICQ 1.000 1.000 1.000 0.973 0.934 0.983
Jabber Mail 1.000 1.000 1.000 0.989 0.977 0.992
URL1 1.000 1.000 1.000 0.783 1.000 0.743
URL2 0.323 0.087 1.000 0.428 0.137 0.914
Price1 0.985 0.929 1.000 0.907 0.907 0.907
Price2 0.985 0.929 1.000 0.908 0.799 0.941

TABLE 7.7: The F2-score (F2), precision (P) and recall (R) for rule-
based extraction of ICQ, jabber mail, URL and price attributes

ICQ:

The English and Russian extractors resulted in F2-scores of 1.000 and 0.973 respec-
tively. The Russian extractor was unable to extract ICQ mentions that strongly de-
viated from the conventional writing style, e.g. by using Latin or Cyrillic characters
to represent digits. Furthermore, most false positives were caused by year and price
ranges in the posts, e.g. 2012-2014.

Jabber Mail:

The English and Russian extractors resulted in F2-scores of 1.000 and 0.989 respec-
tively. It was found that BPH providers occasionally forget or intentionally omit
white spaces or replace white spaces by special symbols, such as a dash. This re-
sulted in boundary errors, since jabber mail addresses were extracted with excess
characters. These excess characters that were mistaken as being part of the attribute
were in fact legal characters for mail addresses. Therefore, the regular expression
could not be updated to avoid these mistakes without causing other mistakes.

URL:

Two regular expressions were compared for URL extraction. These are ’URL1’ and
’URL2’. The first regular expression resulted in the best performance for both En-
glish and Russian with a F2-score of 1.000 and 0.783 respectively. It was found that
the Russian extractor resulted in several false negatives due to URLs that did not
start with protocol information, e.g. ’http’, followed by ’www’. The second regular
expression was a copy of the first, but less restricted due to the fact that the protocol
information and ’www’ was made optional. However, even though the second reg-
ular expression increased the recall, it greatly worsened the precision and F2-score
for both English and Russian.

7.6. CRF Extractors 59

Price:

Two regular expressions were compared for price extraction. These are ’Price1’ and
’Price2’. The first regular expression scanned for numerical values followed of pre-
ceded by a currency. This resulted in a F2-score of 0.985 and 0.907 for English and
Russian respectively. It was found that false negatives occurred due to a lack of
currency or an unknown Russian currency in the sentence. Furthermore, when ob-
serving a price range, e.g. 100-200 USD, only the second price was extracted. False
positives occurred due to ambiguous regular currency abbreviations, such as the
Philippine peso (PHP) that matched PHP 5.

It was also found that prices are occasionally followed by a payment period. This
was added in the second regular expression. The addition increased the recall of the
Russian extractor with respect to the first regular expression, but worsened the pre-
cision due to new false positives. The F2-score of the Russian extractor only slightly
increased using the second regular expression and there was no performance impact
for the English extractor.

7.6 CRF Extractors

In this section, the results of the English and Russian CRF attribute extractors are
presented and evaluated. As described in section 6.4, we started with an initial
CRF extractor and conducted a series of experiments to improve the performance
of the initial CRF extractor. These experiments explored the impact of the machine
learning algorithm, sequence definition, hyper-parameter tuning, feature engineer-
ing and data pre-processing. Afterwards, the outcomes of all experiments were used
to develop the final CRF extractor.

The following paragraphs show and evaluate the results of each experiment. Af-
terwards, the final CRF is described and its performance compared with that of the
initial CRF extractor.

Experiment 1: Machine Learning Algorithms

In the first experiment, a sequence model was compared against a regular classifier,
the initial CRF extractor and the MEM extractor respectively. For both English and
Russian, it was found that the initial CRF extractor outperformed the MEM extractor
with respect to the F2Mi-score as shown in table 7.8. This indicates that knowing the
predicted label of the preceding token is helpful.

ModelInfo F2Mi PMi RMi F2Ma F2W

En

CRF 0.697 0.829 0.670 0.387 0.541
MEM 0.544 0.724 0.512 0.270 0.408

R
u CRF 0.777 0.904 0.751 0.582 0.694

MEM 0.612 0.729 0.589 0.448 0.547

TABLE 7.8: Performance scores of the initial CRF extractor and MEM
extractor

60 Chapter 7. Experiments and Results

Experiment 2: Sequence Definition

In the second experiment, the impact of using three different sequence definitions
was explored. These are the post, paragraph and sentence sequence definitions.
For both English and Russian, it was found that the sentence sequence definition
resulted in the best performance with a F2Mi-score of 0.778 and 0.832 respectively
as shown in table 7.9. This indicates that knowing context from the previous and
following sentences or paragraphs is not beneficial for attribute extraction.

Sequence definition F2Mi PMi RMi F2Ma F2W

En

Post 0.697 0.829 0.670 0.387 0.541
Paragraph 0.726 0.862 0.698 0.389 0.565
Sentence 0.778 0.896 0.753 0.535 0.633

R
u

Post 0.777 0.904 0.751 0.582 0.694
Paragraph 0.807 0.903 0.786 0.606 0.722
Sentence 0.832 0.917 0.813 0.671 0.752

TABLE 7.9: CRF extractor - The performance impact of post, para-
graph and sentence sequence definitions

Experiment 3: Hyper-parameter Tuning

The third experiment explored the impact of hyper-parameter tuning using the sen-
tence sequence definition. For both English and Russian, it was found that the tuned
hyper-parameters resulted in a slight performance improvement compared to us-
ing the default hyper-parameter values of the initial CRF extractor. The results are
shown in table 7.10. The hyper-parameters and their tuned values can be found in
appendix A.

Hyper-parameters F2Mi PMi RMi F2Ma F2W

En

Default 0.778 0.896 0.753 0.535 0.633
Tuned 0.781 0.902 0.755 0.538 0.638

R
u Default 0.832 0.917 0.813 0.671 0.752

Tuned 0.838 0.929 0.818 0.668 0.758

TABLE 7.10: CRF extractor - The performance impact of hyper-
parameter tuning

Experiment 4: Feature Engineering

The fourth experiment tested the impact of extending the features in the feature
vectors using the sentence sequence definition and tuned hyper-parameters. This
process consisted of feature development to create new features and feature selec-
tion to select the features that are beneficial for the attribute extraction performance.
The results are shown in table 7.11. The first row shows the performance when us-
ing the features of the initial CRF extractor as described in section 6.4.1. The second
row shows the performance when using all features including context features of the
four neighbouring tokens. The third row shows the performance of the CRF extrac-
tor with only the beneficial features, i.e. all features excluding the features without

7.6. CRF Extractors 61

a positive performance impact.

For both English and Russian, it was found that the CRF extractor using all fea-
tures outperformed the CRF using the initial features. Furthermore, using beneficial
features instead of all features resulted in a performance improvement for Russian.
However, for English this was not the case. From this is can be inferred that the
CRF was able to tackle the problem of unbeneficial features, e.g. by using possible
beneficial feature dependencies that include these features.

Feature set F2Mi PMi RMi F2Ma F2W

En

Initial features 0.781 0.902 0.755 0.538 0.638
All features 0.811 0.757 0.825 0.531 0.639
Beneficial features 0.809 0.889 0.791 0.541 0.651

R
u

Initial features 0.838 0.929 0.818 0.668 0.758
All features 0.857 0.760 0.885 0.707 0.765
Beneficial features 0.861 0.915 0.849 0.712 0.777

TABLE 7.11: CRF extractor - The performance impact of using the
initial, all or all beneficial features

The impact of adding context features from neighbouring tokens was also explored.
The results are shown in table 7.12. For this we used all features for the English
extractor and all beneficial features for the Russian extractor. The window sizes that
were tested are 1, 3 and 5 tokens. For both English and Russian, it was found that
adding context features improves the performance. However, for English a window
of 3 resulted in the best F2Mi-score and for Russian there was no difference in F2Mi-
score when using window 3 or 5.

Context F2Mi PMi RMi F2Ma F2W

En

window 1 0.788 0.723 0.806 0.548 0.641
window 3 0.820 0.773 0.832 0.553 0.661
window 5 0.811 0.757 0.825 0.531 0.639

R
u

window 1 0.848 0.904 0.835 0.699 0.766
window 3 0.861 0.916 0.849 0.719 0.780
window 5 0.861 0.915 0.849 0.712 0.777

TABLE 7.12: CRF extractor - The performance impact of using context
features with a window of 1, 3 and 5

Experiment 5: Data Pre-processing

The fifth experiment explored the impact of five data pre-processing steps. These
are lowercasing, stemming, BB-code removal, punctuation removal and stopword
removal. The results are shown in table 7.13. For English, it was found that none
of these pre-processing steps improved the F2Mi-score. Instead, pre-processing re-
moved characteristics from tokens that were beneficial for the English CRF extrac-
tor. For the Russian CRF extractor, stemming increased the F2Mi-score from 0.861 to
0.870. The other pre-processing steps did not have an impact on the performance of
worsened the performance.

62 Chapter 7. Experiments and Results

Pre-processing step F2Mi PMi RMi F2Ma F2W

En

None 0.820 0.773 0.832 0.553 0.661
Lowercasing 0.809 0.759 0.823 0.552 0.642
Stemming 0.807 0.753 0.822 0.547 0.647
BB-code removal 0.814 0.765 0.827 0.551 0.652
Punctuation removal 0.801 0.754 0.813 0.551 0.650
Stopword removal 0.792 0.771 0.798 0.546 0.629

R
u

None 0.861 0.913 0.848 0.717 0.779
Lowercasing 0.861 0.913 0.848 0.712 0.778
Stemming 0.870 0.921 0.858 0.719 0.785
BB-code removal 0.859 0.913 0.847 0.710 0.778
Punctuation removal 0.848 0.911 0.834 0.716 0.767
Stopword removal 0.857 0.906 0.845 0.715 0.775

TABLE 7.13: CRF extractor - The performance impact of data pre-
processing steps

Initial CRF Extractor vs. Final CRF Extractor

The final CRF extractor was developed by incorporating the results of the experi-
ments. The English final CRF extractor uses the sentence sequence definition, tuned
hyper-parameters as shown in appendix A, all features with a window of 3 and no
data pre-processing. The Russian final CRF extractor uses the sentence sequence def-
inition, tuned hyper-parameters, beneficial features with a window of 3 and stem-
ming as a pre-processing step.

For both English and Russian, in was found that the final CRF extractor outper-
formed the initial CRF extractor with respect to the F2Mi-score as shown in table
7.14. For Russian, the F2-score of each individual attribute was improved by the
final CRF extractor. For English, most attributes improved. The F2-score of the at-
tributes ICQ, payment method and jabber mail worsened and the F2-score of URL,
nickname and service details remained unchanged.

7.7 Hybrid CRF Extractors

In this section, the results of the English and Russian hybrid CRF extractors are pre-
sented and evaluated. The hybrid CRF extractor was created by adding hybrid fea-
tures to the final CRF extractor from the previous section in an attempt to improve
the performance. As described in section 6.5, we experimented with adding dictio-
nary, rule and transfer learning features. The outcomes of these experiments were
used to develop the final hybrid CRF extractors for English and Russian. In the
following paragraphs the impact of each individual dictionary and rule feature is
evaluated followed by that of each individual transfer learning feature. Afterwards,
the final hybrid CRF extractor is described and compared with the final CRF extrac-
tor from section 7.6.

Dictionary and Rule Features

7.7. Hybrid CRF Extractors 63

English Russian
Attribute Initial Final Initial Final

URL 0.000 0.000 0.726 0.729
ICQ 0.880 0.816 0.844 0.945
Nickname 0.000 0.000 0.366 0.684
CommunicationChannel 0.802 0.905 0.872 0.915
TechSpecification 0.486 0.712 0.705 0.807
Service 0.769 0.888 0.903 0.939
Content 0.698 0.787 0.673 0.754
Location 0.588 0.603 0.764 0.841
PaymentPeriod 0.714 0.882 0.645 0.774
Currency 0.200 0.794 0.864 0.941
PaymentMethod 0.636 0.625 0.137 0.400
JabberMail 1.000 0.898 0.936 0.974
ServiceDetails 0.000 0.000 0.201 0.677
OtherContactDetails 0.000 1.000 0.746 0.882
Support 0.321 0.577 0.357 0.787
Price 0.185 0.703 0.819 0.934

F2Mi 0.697 0.820 0.777 0.870

TABLE 7.14: Final CRF extractor and initial CRF extractor F2-scores

It was found that for both English and Russian, one of the dictionary features re-
sulted in a slightly improved F2Mi-score as shown in table 7.15. These are the loca-
tion and payment period dictionary features respectively. None of the rule features
resulted in a performance improvement.

AddedFeature F2Mi PMi RMi F2Ma F2W

En
gl

is
h

None 0.820 0.773 0.832 0.553 0.661

D
ic

t Location 0.825 0.789 0.834 0.556 0.663
Currency 0.819 0.780 0.829 0.554 0.658
Period 0.818 0.770 0.831 0.557 0.660

R
ul

e

URL 0.820 0.775 0.832 0.556 0.660
ICQ 0.814 0.773 0.825 0.546 0.648
Mail 0.819 0.779 0.829 0.553 0.659
Price 0.816 0.776 0.827 0.554 0.657

R
us

si
an

None 0.870 0.921 0.858 0.719 0.785

D
ic

t Location 0.868 0.920 0.856 0.720 0.783
Currency 0.870 0.918 0.859 0.721 0.786
Period 0.871 0.921 0.859 0.722 0.786

R
ul

e

URL 0.870 0.919 0.858 0.718 0.784
ICQ 0.867 0.916 0.855 0.719 0.782
Mail 0.870 0.920 0.858 0.719 0.785
Price 0.868 0.921 0.856 0.719 0.785

TABLE 7.15: Hybrid CRF extractor - The performance impact of dic-
tionary and rule features

64 Chapter 7. Experiments and Results

Transfer Learning Features

It was found that performing transfer learning by adding similar word features re-
sulted in an improved F2Mi-score. For English, this holds for the transfer learning
features that add 1 up to 10 similar words to the feature vector. For Russian, this
holds for the transfer learning features that add 10 up to 40 similar words. The other
transfer learning features did not have a performance impact or worsened the per-
formance. The results of all transfer learning features are shown in table 7.16.

AddedFeature F2Mi PMi RMi F2Ma F2W

En
gl

is
h

None 0.820 0.773 0.832 0.553 0.661
POS 0.815 0.774 0.826 0.552 0.653
embedding 0.804 0.743 0.821 0.542 0.648
1similar 0.823 0.789 0.832 0.560 0.663
5similar 0.821 0.785 0.830 0.557 0.661
10similar 0.824 0.791 0.833 0.559 0.665
20similar 0.815 0.781 0.824 0.545 0.657
40similar 0.820 0.790 0.827 0.543 0.658

R
us

si
an

None 0.870 0.921 0.858 0.719 0.785
POS 0.868 0.915 0.857 0.719 0.783
embedding 0.868 0.905 0.859 0.717 0.782
1similar 0.870 0.918 0.859 0.723 0.786
5similar 0.870 0.921 0.858 0.719 0.786
10similar 0.871 0.918 0.860 0.717 0.785
20similar 0.876 0.920 0.865 0.728 0.790
40similar 0.877 0.921 0.866 0.736 0.791

TABLE 7.16: Hybrid CRF extractor - The performance impact of trans-
fer learning features

Hybrid CRF Extractor vs. CRF Extractor

For English, the final hybrid CRF extractor was developed by adding the location
dictionary feature to the English final CRF extractor. For Russian, the final hybrid
CRF extractor was developed by adding the 40 similar words transfer learning fea-
ture to the Russian final CRF extractor. It was found that for both English and Rus-
sian, the final hybrid CRF extractors slightly outperformed the final CRF extractors
from section 7.6 with respect to the F2Mi-score as shown in table 7.17. Using the En-
glish hybrid CRF extractor, the F2-score improved for six attributes and decreased
for three attributes. For the Russian hybrid CRF extractor, the F2-score improved for
eleven attributes and decreased for three attributes.

Noticeable is that none of the other beneficial features from tables 7.15 and 7.16 are
part of the final hybrid CRF extractors. This is due to the fact that adding the best
transfer learning feature in combination with the best dictionary feature resulted in a
slightly worsened performance for both English and Russian. An influencing factor
is the finding that the performance impact of hybrid features is attribute dependent.
For example, whereas the 40 similar words transfer learning feature improved the

7.8. biLSTM-CRF Extractors 65

F2-score of the Russian extractor for the location attribute, the period dictionary fea-
ture worsened this F2-score. Therefore, once combined, some improvements caused
by one feature were neutralized by the other.

English models Russian models
Attribute CRF Hybrid CRF Hybrid

URL 0.000 0.000 0.729 0.738
ICQ 0.816 0.816 0.945 0.953
Nickname 0.000 0.000 0.684 0.723
CommunicationChannel 0.905 0.930 0.915 0.907
TechSpecification 0.712 0.689 0.807 0.818
Service 0.888 0.890 0.939 0.932
Content 0.787 0.803 0.754 0.771
Location 0.603 0.638 0.841 0.877
PaymentPeriod 0.882 0.833 0.774 0.774
Currency 0.794 0.847 0.941 0.954
PaymentMethod 0.625 0.625 0.400 0.571
JabberMail 0.898 0.916 0.974 0.979
ServiceDetails 0.000 0.000 0.677 0.680
OtherContactDetails 1.000 1.000 0.882 0.882
Support 0.577 0.570 0.787 0.776
Price 0.703 0.703 0.934 0.944

F2Mi 0.820 0.825 0.870 0.877

TABLE 7.17: Final CRF extractor and final hybrid CRF extractor F2-
scores

7.8 biLSTM-CRF Extractors

In this section, the results of the English and Russian biLSTM-CRF extractors are pre-
sented and evaluated. As described in section 6.6, we started with an initial biLSTM-
CRF extractor and conducted experiments to improve its performance. These ex-
periments explored the impact of the sequence definition, hyper-parameter values,
architecture and data pre-processing. Afterwards, the outcomes of all experiments
were used to develop the final biLSTM-CRF extractor.

The following paragraphs show and evaluate the results of each experiment. After-
wards, the final biLSTM-CRF extractor is described and its performance compared
with that of the initial biLSTM-CRF extractor.

Experiment 1: Sequence Definition

The first experiment explored the impact of using the post, paragraph and sentence
sequence definitions. For both English and Russian, it was found that the sentence
sequence definition resulted in the best performance with a F2Mi-score of 0.728 and
0.822 respectively. The results are shown in table 7.18.

66 Chapter 7. Experiments and Results

Sequence F2Mi PMi RMi F2Ma F2W

EN

Post 0.433 0.581 0.407 0.065 0.264
Paragraph 0.613 0.734 0.588 0.201 0.455
Sentence 0.728 0.764 0.719 0.445 0.584

R
U

Post 0.732 0.815 0.714 0.542 0.651
Paragraph 0.775 0.839 0.760 0.600 0.698
Sentence 0.822 0.862 0.812 0.671 0.739

TABLE 7.18: biLSTM-CRF extractor - The performance impact of post,
paragraph and sentence sequence definitions

Experiment 2: Hyper-parameters and Architecture

The second experiment explored with adapting the batch size, dropout, embedding
dimension and epoch hyper-parameters. Furthermore, the impact of using a single
LSTM instead of a bidirectional LSTM and adding character embeddings was tested.
The experiments were conducted with the initial biLSTM-CRF extractor that makes
use of a sentence sequence definition. The results are shown in table 7.19.

For English, using a batch size of 8 instead of 32 improved the F2Mi-score as well
as using both the regular and recurrent dropout, especially with a lowered dropout
rate of 0.15. Increasing the word embedding dimension and adding character em-
beddings improved the F2Mi-score as well. Furthermore, it was beneficial to increase
the number of epochs and to use the bidirectional LSTM instead of a single LSTM.

For Russian, the findings are similar to those of the English biLSTM-CRF extractor. It
was found that using a batch size of 8, lowering the dropout rate to 0.25, increasing
the number of epochs, using a bidirectional LSTM and adding character embeddings
was beneficial for the performance. However, increasing the embedding dimension
did not have much impact on the performance.

Experiment 3: Data Pre-processing

The third experiment explored with the data pre-processing steps lowercasing, stem-
ming, BB-code removal, punctuation removal and stopword removal. The experi-
ments were conducted with the initial biLSTM-CRF extractor with a sentence se-
quence definition. The results are shown in table 7.20.

For both English and Russian, it was found that lowercasing and stemming im-
proved the performance.

7.8. biLSTM-CRF Extractors 67

Experiment F2Mi PMi RMi F2Ma F2W
En

gl
is

h
Initial extractor 0.728 0.764 0.719 0.445 0.584
Initial with batch 32 0.691 0.754 0.676 0.268 0.528
Initial with dropout .25 0.727 0.749 0.722 0.416 0.580
Initial with dropout .15* 0.741 0.768 0.734 0.429 0.591
Initial with no recurrent dropout 0.714 0.732 0.710 0.406 0.565
Initial with no regular dropout 0.726 0.787 0.713 0.428 0.586
Initial with embedding dim 200 0.734 0.775 0.724 0.442 0.587
Initial with embedding dim 300* 0.738 0.780 0.729 0.479 0.596
Initial with 100 epochs 0.753 0.768 0.750 0.462 0.601
Initial with 200 epochs* 0.763 0.789 0.757 0.497 0.610
Initial with 1 LSTM (no bidirectional) 0.718 0.663 0.733 0.405 0.560
Initial with character embeddings* 0.764 0.772 0.762 0.489 0.603

R
us

si
an

Initial extractor 0.822 0.862 0.812 0.671 0.739
Initial with batch 32 0.816 0.848 0.809 0.658 0.736
Initial with dropout .25* 0.825 0.863 0.817 0.662 0.743
Initial with dropout .15 0.820 0.873 0.808 0.670 0.740
Initial with no recurrent dropout 0.813 0.859 0.803 0.666 0.732
Initial with no regular dropout 0.823 0.887 0.809 0.677 0.741
Initial with embedding dim 200 0.823 0.883 0.809 0.670 0.741
Initial with embedding dim 300 0.822 0.883 0.808 0.667 0.743
Initial with 100 epochs 0.828 0.878 0.817 0.674 0.745
Initial with 200 epochs 0.831 0.865 0.823 0.678 0.746
Initial with 1 LSTM (no bidirectional) 0.810 0.837 0.803 0.660 0.726
Initial with character embeddings* 0.838 0.861 0.833 0.692 0.754

TABLE 7.19: biLSTM-CRF extractor - The performance impact of
adapting hyper-parameter values and architecture

Experiment F2Mi PMi RMi F2Ma F2W

En
gl

is
h

Initial extractor 0.728 0.764 0.719 0.445 0.584
Initial with lowercasing* 0.758 0.782 0.752 0.475 0.607
Initial with stemming* 0.731 0.760 0.724 0.414 0.585
Initial with BB-code removal 0.722 0.711 0.725 0.462 0.580
Initial with punctuation removal 0.708 0.739 0.701 0.452 0.564
Initial with stopword removal 0.700 0.728 0.693 0.415 0.546

R
us

si
an

Initial extractor 0.822 0.862 0.812 0.671 0.739
Initial with lowercasing* 0.844 0.887 0.834 0.688 0.760
Initial with stemming* 0.853 0.889 0.844 0.689 0.766
Initial with BB-code removal 0.820 0.881 0.806 0.662 0.738
Initial with punctuation removal 0.808 0.864 0.795 0.654 0.729
Initial with stopword removal 0.818 0.863 0.807 0.674 0.738

TABLE 7.20: biLSTM-CRF extractor - The performance impact of data
pre-processing steps

68 Chapter 7. Experiments and Results

Initial biLSTM-CRF Extractor vs. Final biLSTM-CRF Extractor

The final English and Russian biLSTM-CRF extractors were developed by incorpo-
rating the results of the experiments. The experiments indicated with a * in tables
7.19 and 7.20 were used for the final biLSTM-CRF extractors. Furthermore, the sen-
tence sequence definition was used. For Russian, the number of epochs was set at
25 instead of 200 due to computational constraints. Furthermore, we did not incor-
porate the embedding dimension of 200 and we used both regular and recurrent
dropout.

For both English and Russian, it was found that the final biLSTM-CRF extractor
outperformed the initial biLSTM-CRF extractor as shown in table 7.21. For both
languages, the F2-scores of most attributes improved when using the final instead of
initial extractor. The exceptions with a reduced F2-score are technical specification
for English and URL, other contact details and support for Russian.

English models Russian models
Attribute Initial Final Initial Final

URL 0.000 0.000 0.720 0.711
ICQ 0.652 0.913 0.878 0.934
Nickname 0.000 0.000 0.496 0.613
CommunicationChannel 0.916 0.974 0.886 0.921
TechSpecification 0.625 0.617 0.747 0.813
Service 0.812 0.911 0.895 0.927
Content 0.767 0.881 0.703 0.797
Location 0.481 0.496 0.767 0.860
PaymentPeriod 0.385 0.714 0.786 0.890
Currency 0.424 0.917 0.963 0.963
PaymentMethod 0.463 0.467 0.208 0.337
JabberMail 0.911 0.964 0.968 0.983
ServiceDetails 0.000 0.000 0.642 0.691
OtherContactDetails 1.000 1.000 0.870 0.797
Support 0.563 0.570 0.710 0.697
Price 0.328 0.738 0.871 0.920

F2Mi 0.728 0.804 0.822 0.872

TABLE 7.21: Initial biLSTM-CRF extractor and final biLSTM-CRF ex-
tractor F2-scores

7.9 Transfer Learning with the biLSTM-CRF Extractors

This section evaluates the impact of performing transfer learning, by fine-tuning, on
the final biLSTM-CRF extractor from the previous section. As described in section
6.7, two experiments were conducted to test the applicability of transfer learning.
The first experiment compared the impact of applying transfer learning on the word
embedding layer versus both the word and character embedding layers. The second
experiment tested the impact of using various source datasets for pre-training. The
following paragraphs show and evaluate the results of the experiments. Afterwards,
the results are compared with those of the final biLSTM-CRF extractor trained from

7.9. Transfer Learning with the biLSTM-CRF Extractors 69

scratch.

Experiment 1: Transferring Word Embeddings vs. Word and Character Embed-
dings

For both English and Russian, it was found that transfer learning, with pre-training
on the complete DNM as source dataset, worsened the performance. This is ar-
guably due to the fact that the source dataset consists of mainly non-English posts
and posts about unrelated topics. Of the two transfer learning attempts, transferring
word embeddings resulted in a better performance compared to transferring both
word and character embeddings.

Transferred layer F2Mi PMi RMi F2Ma F2W

EN

None 0.804 0.848 0.793 0.546 0.653
Word only 0.779 0.849 0.764 0.522 0.631
Word + character 0.767 0.837 0.751 0.499 0.626

R
U

None 0.872 0.896 0.867 0.709 0.783
Word only 0.866 0.891 0.860 0.689 0.760
Word + character 0.864 0.886 0.859 0.696 0.770

TABLE 7.22: Transfer learning - The performance impact of transfer-
ring word embedding versus word and character embedding layers

Experiment 2: Comparing Source Datasets

The second source dataset consists of language filtered posts of the DNM, e.g. all
English posts for English. For Russian, it was found that the second source dataset
improved the performance with respect to the first source dataset. However, the
F2Mi-score was comparable to that of performing no transfer learning. For English,
it was found that the second source dataset worsened the performance with respect
to the first source dataset. This is arguably due to the posts about unrelated topics
or due to the small size of the second source dataset.

The third source dataset consists of the language filtered and category filtered posts
of the DNM, e.g. all English hosting posts for English. For Russian, the second and
third source datasets resulted in a comparable F2Mi-score. For English, it was found
that the third source dataset improved the performance with respect to using the
first or second source dataset. However, transfer learning still resulted in a wors-
ened performance with respect to training from scratch.

The fourth source dataset consists of the language filtered and category filtered posts
of multiple DNMs. For both Russian and English, it was found that the fourth source
dataset improved the performance with respect to all other source datasets. Fur-
thermore, for both languages and with the fourth source dataset, transfer learning
resulted in a biLSTM-CRF extractor that outperformed the extractor when trained
from scratch. This shows that transfer learning, by fine-tuning a transferred word
embedding layer, can result in an improved performance compared to training from
scratch if the source dataset consists of a sufficient amount of language filtered posts
about a related topic.

70 Chapter 7. Experiments and Results

Source Dataset F2Mi PMi RMi F2Ma F2W

EN

All posts of 1 DNM 0.779 0.849 0.764 0.522 0.631
English posts of 1 DNM 0.775 0.825 0.764 0.521 0.627
English hosting posts of 1 DNM 0.790 0.835 0.780 0.540 0.647
English hosting posts of >1 DNM 0.806 0.833 0.800 0.553 0.653

R
U

All posts of 1 DNM 0.866 0.891 0.860 0.689 0.760
Russian posts of 1 DNM 0.873 0.886 0.869 0.696 0.762
Russian hosting posts of 1 DNM 0.872 0.890 0.868 0.698 0.747
Russian hosting posts of >1 DNM 0.886 0.892 0.884 0.715 0.790

TABLE 7.23: Transfer learning - The performance impact of the source
datasets

71

Chapter 8

Conclusion and Discussion

In this study, attribute extraction was performed on BPH posts of a DNM as a step
towards effectively including DNMs in intelligence-led policing. For this purpose, a
variety of attribute extraction techniques was tested and compared to find the best
performing technique for each attribute. Furthermore, transfer learning was applied
in an attempt to improve the attribute extraction performance.

Section 8.1 summarizes the results to answers the three research questions. Section
8.2 discusses the work including the limitations and improvements. Section 8.3 pro-
vides opportunities for future work.

8.1 Research Questions

RQ1: Which attributes are present in DNM posts advertising bulletproof hosting
services?

English and Russian BPH posts contain both generic attributes, e.g. location, and
BPH specific attributes, e.g. content. In total, sixteen attributes were identified, in-
cluding twelve generic and four BPH specific attributes. This set consists of closed
attributes, applicable for dictionary-based extraction, and open attributes. Open at-
tributes can be extracted using either rule- and pattern-based extraction, in case of a
distinctive structure, or machine learning based extraction.

RQ2: How well can these attributes be extracted from DNM posts advertising
bulletproof hosting services?

In this study, we compared the performance of several extractors that used a variety
of extraction techniques. All extractors were able to outperform the baseline extrac-
tor. The performance of the extractors is attribute dependent. Therefore, no extractor
was able to extract all attributes and obtain their best F2-scores. For English, the en-
semble extractor was able to outperform all other extractors with a F2Mi-score of
0.859. For Russian, the biLSTM-CRF extractor developed with transfer learning re-
sulted in the best performance with a F2Mi-score of 0.886.

Most attributes were extracted with a F2-score greater than 0.850. For English, the ex-
ceptions are the attributes nickname(0.000), technical specification(0.714), payment
method(0.636), service details(0.000) and support(0.625). For Russian, the excep-
tions are the attributes URL(0.783), nickname(0.723), technical specification(0.837),
content(0.797), payment method(0.571), service details(0.693) and support(0.795).

72 Chapter 8. Conclusion and Discussion

RQ3: What is the impact of applying transfer learning on attribute extraction from
DNM posts advertising bulletproof hosting services?

Transfer learning was applied to the CRF and the biLSTM-CRF extractors. For the
CRF extractor, adding similar words based on word embeddings as features to the
token feature vector resulted in a slight performance improvement. The F2Mi-score
improved from 0.820 to 0.824 for English and from 0.870 to 0.877 for Russian.

The biLSTM-CRF extractor developed with transfer learning by fine-tuning the word
embedding layer was able to outperform the biLSTM-CRF extractor trained from
scratch. This required a source dataset with language and category filtered posts
from multiple DNMs to pre-train the word embedding layer. The F2Mi-score slightly
improved from 0.804 to 0.806 for English and improved from 0.872 to 0.886 for Rus-
sian.

8.2 Discussion and Limitations

For this study, we performed attribute extraction on 62 English and 470 Russian
posts. Preferably, a larger dataset should be used. This is especially the case for
the biLSTM-CRF extractors, as more data would have helped to improve the ro-
bustness of the extractors. Besides the dataset size, the class frequencies are also of
importance. As was mentioned in section 5.5, there is a large class imbalence in both
datasets. This is one of the reasons several attributes were extracted with a low F2-
score and some attributes could not be extracted.

The data consists of posts from 27 threads created by a total of 23 BPH providers.
Furthermore, whereas the majority of threads have five or fewer posts, some threads
were very active with a post count up to 268. This caused a disproportionate repre-
sentation of authors in the dataset. In case the 23 authors have a writing style that is
distinct from other authors, this could result in bad generalizability to new authors.
If the writing style of these new authors is in fact distinct, we can speak of having
different domains.

We attempted to develop attribute extraction models for English and Russian sep-
arately. However, the automatic split of posts did not result in making the two
datasets fully English or Russian. This is due to the fact that some authors inter-
changed both languages in their post. To keep the structure of the posts, this did not
result in a split of the post. One can argue that part of the English domain is in this
case used to train the Russian attribute extraction model and vice versa. This could
result in a better cross-lingual applicability of the extractors, similar to the success-
ful transfer learning experiment performed by Durrett et al. [10] described in section
3.3.2.

Due to the similarity in research performed by Portnoff et al.[9], the performance
of the three price related attributes could be compared. The attributes are payment
method, price(amount) and currency. Portnoff et al. extracted price information
using regular expression and SVM based extraction. The regular expression extrac-
tor, developed to extract numbers and known currencies, resulted in a low F1-score
varying between 0.296 and 0.356 depending on the darknet forum. The SVM extrac-
tor, trained to extract prices and payment methods including currencies, resulted in

8.3. Future Work 73

F1-scores between 0.988 and 0.729. It was found that the regular expression extrac-
tor lacked context information required to distinguish between prices and regular
numbers and to capture the various ways of presenting price information in posts.
In our study, the prices were extracted, using regular expressions, with a F1-score of
0.963 for English. This performance was the result of including context information
that the regular expression of Portnoff et al. lacked. More specifically, the numerical
values should be preceded or followed by a currency. For Russian, prices were ex-
tracted with a F1-score of 0.937, using an ensemble extractor, compared to 0.907 with
a regular expression.The result of our payment method extraction, 0.683 for English
(CRF) and 0.615 for Russian (Hybrid), is far below the result Portnoff et al. achieved
with their SVM model. The results of our currency extraction, 0.917 for English and
0.960 for Russian (biLSTM-CRF), is comparable to that of the best SVM model de-
veloped by Portnoff et al.

In this study, hyper-parameter optimization was performed in two phases, tuning
discrete hyper-parameters and continuous hyper-parameters separately. However,
ideally, hyper-parameter tuning is performed for both hyper-parameter types at the
same time. Furthermore, a more extensive hyper-parameter optimization can be
performed, since in this research we tested three up to five values per continuous
hyper-parameter.

Feature selection tested one feature at a time and therefore did not take into account
possible dependencies between features. An alternative is to perform an incremental
feature selection. At each iteration the feature with the largest performance improve-
ment is added. Without removing the feature for the next iteration, as we did due to
time and computational constraints.

Another impact on the choice of extraction technique can be how long each tech-
nique takes to train. This was not included in our study. However, in case of limited
time, this might be useful as training the dictionary-based and rule- and pattern-
based extractors takes a few seconds, training the CRF takes a few hours for Russian
and training the biLSTM-CRF with transfer learning takes a few days for Russian.

Furthermore, one might question the ethicality of using machine learning to gain
insight in DNMs. For example, are we allowed to actively explore cross-cutting cy-
bercrime enablers if the providers do not necessarily perform illegal activities them-
selves? Are we allowed to use neural networks for law enforcement operations,
since they are often compared to a black box with no way to trace how a decision
has been made by the network.

8.3 Future Work

In recent work by Howard et al. [33] a new method named Universal Language
Model Fine-Tuning was developed. This method is focussed on performing transfer
learning on neural network models trained to perform language processing tasks.
This method was able to outperform state-of-the-art text classification tasks includ-
ing topic classification on a DBpedia dataset and sentiment analysis on an IMDb
dataset. Furthermore, it is argued to be equally applicable for sequence labelling
tasks. This method is a great opportunity for future work. The method is intro-
duced (for text classification) in the remainder of this paragraph.

74 Chapter 8. Conclusion and Discussion

The method consists of three parts: Language Model (LM) pre-training, LM fine-
tuning, and classifier fine-tuning. Language modelling is the task of predicting to-
ken n+1, e.g. a word or character, given the preceding sequence of n tokens. The first
phase trains a LSTM language model on a large, domain general dataset consisting
of approximately 28.000 Wikipedia articles. The goal is to learn general characteris-
tics of the language. The second phase transfers the pre-trained LSTM to the target
domain through fine-tuning on the domain specific target data. In general, fine-
tuning updates weights of the last layer, the last several layers or all layers of the
LSTM. This results in a language model for the target domain that learned target
specific characteristics. The last phase transfers the LSTM to perform the desired
task, a classifier task in their case. In this phase two ’classifier layers’ are added and
their weights learned from scratch. Previously learned weights are fine-tuned using
gradual unfreezing to prevent overfitting and catastrophic forgetting. Weights of
frozen layers are not updated. With the gradual unfreezing method, layers are de-
frosted one layer per epoch ending at the initial layer that captures the more generic
knowledge.

Another opportunity for future work is to perform single-attribute optimization of
the extractors. For this study, we focussed on performing experiments to improve
the F2Mi-score of the extractors. However, this resulted in a disadvantage for at-
tributes with a low class frequency and an advantage for attribtutes with a high class
frequency. For example, we used the sentence sequence definition as that was found
to outperform paragraph-level and post-level sequences. However, there might be
attributes that benefit more from a paragraph-level sequence. For example, payment
methods, that are more often represented in a listing, with one attribute per sentence.
Instead, extractors can be optimized for each attribute separately and the results of
this study can be used as a starting point for this.

A third opportunity, since the majority of our attributes is not BPH specific, is to ap-
ply our extractors in a cross-domain or cross-language setting to see how good our
extractors generalize. Furthermore, transfer learning can be applied to perform do-
main adaptation as was attempted by Durrett et al. [10] and to make the extractors
more domain independent.

75

Appendix A

Hyper-parameter Tuning

Discrete hyper-parameters tested:

Tuned value
Hyper-parameter Values English Russian

Algorithm lbfgs, l2sgd, ap, pa, arow lbfgs lbfgs
All possible states True, False True True
All possible transitions True, False True False
Linesearch* MoreThuente, Backtracking,

StrongBacktracking MoreThuente MoreThuente
error_sensitive** True, False - -
Averaging** True, False - -

TABLE A.1: Hyper-parameter tuning phase 1: Discrete Hyper-
parameters with the tested parameter values and the tuned values

* lbfgs hyper-parameter
** pa hyper-parameter

Continuous hyper-parameters tested:
For this we used the tuned discrete hyper-parameter values shown in table A.1.

Tuned value
Hyper-parameter Values English Russian

c1 [0.0, 0.05, 0.1, 0.4, 1.0] 0.05 0.05
c2 [0.0, 0.05, 0.1, 0.4, 1.0] 0.05 0.1
max_iterations [50, 100, 150, 250] 150 250
max_linesearch [10, 20, 40] 10 10
min_freq [0, 5, 15] 0 0
num_memories [3,6,9] 9 6
epsilon [0.000001, 0.00001, 0.0001] 1e-06 1e-06
period [5, 10, 20] 5 5
delta [0.000001, 0.00001, 0.0001] 1e-06 1e-06

TABLE A.2: Hyper-parameter tuning phase 2: Continuous Hyper-
parameters with the tested parameter values and the tuned values

77

Appendix B

Feature Engineering

nr Feature Type Description

1 Token w Token value
2 IndexInSeq d Index of the token in the sequence
3 Prefix3char w First three characters of the token
4 Suffix3char w Last three characters of the token
5 ContainsCap w Does the token contain a capital letter?
6 ContainsDigit w Does the token contain a digit?
7 ContainsSpecialChar w Does the token contain a special character (non

word character, non digit and non whitespace)
8 IsInStopwords l Is the token a Russian or English stopword
9 TokenFrequency d Number of occurrences of the token in the

dataset

TABLE B.1: Initial feature set

78 Appendix B. Feature Engineering

nr
Feature

Type
D

escription

10
Low

er
w

Low
ercased

token
value

11
Stem

w
Stem

ofthe
token

value
12

Pattern_Latin(l)C
yrillic(c)

w
M

apping
characters

to
a

sm
allsetofsym

bols
representing

capitaland
low

er
Latin(Ll)and

C
yrillic

letters(C
c),digits(d)and

other
characters

(o):f(BBbБ
б-26)=LLlC

codd
13

Pattern_short_Latin(l)C
yrillic(c)

w
Sum

m
arized

version
ofthe

Pattern_Latin(l)C
yrillic(c)feature,representa

sequence
oftw

o
or

m
ore

identicalpattern
sym

bols
as

one
sym

bolfollow
ed

by
’+’:f(BBbБ

б-26)=L+lC
cod+

14
Pattern_LatinC

yrillic(a)
w

M
apping

characters
to

a
sm

allsetofsym
bols

representing
capitalletters

(A
),low

er
letters

(a),
digits(d)and

other
characters

(o):f(BBbБ
б-26)=A

A
aA

aodd
15

Pattern_short_LatinC
yrillic(a)

w
Sum

m
arized

version
ofthe

Pattern_LatinC
yrillic(a)feature,representa

sequence
oftw

o
or

m
ore

identicalpattern
sym

bols
as

one
sym

bolfollow
ed

by
’+’:f(BBbБ

б-26)=A
+aA

aod+
16

Prefix1char
w

Firstcharacter
ofthe

token
17

Prefix2char
w

Firsttw
o

characters
ofthe

token
18

Suffix1char
w

Lastcharacter
ofthe

token
19

Suffix2char
w

Lasttw
o

characters
ofthe

token
20

C
ontainsLatin

w
D

oes
the

token
contain

a
letter

in
Latin

script?
21

C
ontainsC

yrillic
w

D
oes

the
token

contain
a

letter
in

C
yrillic

script?
22

IsFirstC
ap

w
Is

the
firstcharacter

a
capitalletter?

23
IsLastC

ap
w

Is
the

lastcharacter
a

capitalletter?
24

IsA
llLow

er
w

A
re

allletters
low

ercased?
25

IsA
llC

ap
w

A
re

allletters
capitalized?

26
IsLow

erA
ndC

ap
w

D
oes

the
token

contain
a

capitalized
and

low
ercased

letter?
27

IsFirstD
igit

w
Is

the
firstcharacter

a
digit?

28
IsLastD

igit
w

Is
the

lastcharacter
a

digit?
29

IsA
lphaA

ndD
igit

w
D

oes
the

token
contain

a
letter

and
a

digit?
30

IsA
llD

igit
w

A
re

allcharacters
digits?

31
C

ontainsD
ot

w
D

oes
the

token
contain

a
dot?

32
C

ontainsA
tSign

w
D

oes
the

token
contain

an
atsign

(@
)?

TABLE B.2: Extended feature set part 1

Appendix B. Feature Engineering 79

nr
Feature

Type
D

escription

33
C

ontainsD
ollarSign

w
D

oes
the

token
contain

a
dollar

sign?
34

C
ontainsParenthesis

w
D

oes
the

token
contain

parenthesis?
-(or

)
35

C
ontainsH

yphen
w

D
oes

the
token

contain
a

hyphen?
36

C
ontainsSquareBrackets

w
D

oes
the

token
contain

square
brackets?

-[or
]

37
C

ontainsForw
ardSlash

w
D

oes
the

token
contain

a
forw

ard
slash?

38
C

harBiG
ram

s
w

A
feature

for
each

unique
character

bi-gram
in

the
token

f(token)=[to,ok,ke,en]
39

C
harTriG

ram
s

w
A

feature
for

each
unique

character
tri-gram

in
the

token
f(token)=[tok,oke,ken]

40
U

niqueC
haracters

w
A

feature
for

each
unique

character
in

the
token

f(tokentoken)=[t,o,k,e,n]
41

TokenFrequency_low
er

d
N

um
ber

ofoccurrences
ofthe

low
ercased

token
in

the
dataset

42
SequenceLength

d
The

num
ber

oftokens
in

the
sequence

43
PositionO

fTokenInSequence_Percentage
d

(token
index

in
the

sequence+1)/num
ber

oftokens
in

the
sequence

44
PositionO

fTokenInSequence_Q
uartiles

d
Is

the
token

in
the

first,second,third
or

fourth
quarter

ofthe
sequence?

45
PositionO

fTokenInSequence_H
alves

d
Is

the
token

in
the

firstor
second

halfofthe
sequence?

46
IsInListing

d
D

oes
the

sequence
startw

ith:-,•,digit.,digit),+,*
or

[*]?
47

TokensR
em

ovedFrom
PreviousPunctuation

d
H

ow
m

any
tokens

rem
oved

from
the

previous
punctuation

in
the

sequence?
48

TokensU
ntilN

extPunctuation
d

H
ow

m
any

tokens
untilthe

nextpunctuation
in

the
sequence?

49
IsInK

now
nV

alues_C
ontent

l
Is

the
token

a
know

n
contentattribute

50
IsInK

now
nV

alues_C
om

m
unicationC

hannel
l

Is
the

token
a

know
n

com
m

unication
channelattribute

51
IsInK

now
nV

alues_C
urrency

l
Is

the
token

a
know

n
currency

attribute
52

IsInK
now

nV
alues_IC

Q
l

Is
the

token
a

know
n

IC
Q

attribute
53

IsInK
now

nV
alues_JabberM

ail
l

Is
the

token
a

know
n

jabber
m

ailattribute
54

IsInK
now

nV
alues_Location

l
Is

the
token

a
know

n
location

attribute
55

IsInK
now

nV
alues_N

icknam
e

l
Is

the
token

a
know

n
nicknam

e
attribute

56
IsInK

now
nV

alues_O
l

Is
the

token
a

know
n

non-attribute
57

IsInK
now

nV
alues_O

therC
ontactD

etails
l

Is
the

token
a

know
n

other
contactdetails

attribute
58

IsInK
now

nV
alues_Paym

entM
ethod

l
Is

the
token

a
know

n
paym

entm
ethod

attribute
59

IsInK
now

nV
alues_Paym

entPeriod
l

Is
the

token
a

know
n

paym
entperiod

attribute

TABLE B.3: Extended feature set part 2

80 Appendix B. Feature Engineering

nr
Feature

Type
D

escription

60
IsInK

now
nV

alues_Price
l

Is
the

token
a

know
n

price
attribute

61
IsInK

now
nV

alues_Service
l

Is
the

token
a

know
n

service
attribute

62
IsInK

now
nV

alues_ServiceD
etails

l
Is

the
token

a
know

n
service

detailattribute
63

IsInK
now

nV
alues_Support

l
Is

the
token

a
know

n
supportattribute

64
IsInK

now
nV

alues_TechSpecification
l

Is
the

token
a

know
n

technicalspecification
attribute

65
IsInK

now
nV

alues_U
R

L
l

Is
the

token
a

know
n

U
R

L
attribute

66
C

ountInK
now

nV
alues_C

ontent
l

H
ow

often
is

the
token

a
contentattribute

67
C

ountInK
now

nV
alues_C

om
m

unicationC
hannel

l
H

ow
often

is
the

token
a

com
m

unication
channelattribute

68
C

ountInK
now

nV
alues_C

urrency
l

H
ow

often
is

the
token

a
currency

attribute
69

C
ountInK

now
nV

alues_IC
Q

l
H

ow
often

is
the

token
an

IC
Q

attribute
70

C
ountInK

now
nV

alues_JabberM
ail

l
H

ow
often

is
the

token
a

jabber
m

ailattribute
71

C
ountInK

now
nV

alues_Location
l

H
ow

often
is

the
token

a
contentattribute

72
C

ountInK
now

nV
alues_N

icknam
e

l
H

ow
often

is
the

token
a

nicknam
e

attribute
73

C
ountInK

now
nV

alues_O
l

H
ow

often
is

the
token

a
contentattribute

74
C

ountInK
now

nV
alues_O

therC
ontactD

etails
l

H
ow

often
is

the
token

an
other

contactdetails
attribute

75
C

ountInK
now

nV
alues_Paym

entM
ethod

l
H

ow
often

is
the

token
a

paym
entm

ethod
attribute

76
C

ountInK
now

nV
alues_Paym

entPeriod
l

H
ow

often
is

the
token

a
paym

entperiod
attribute

77
C

ountInK
now

nV
alues_Price

l
H

ow
often

is
the

token
a

price
attribute

78
C

ountInK
now

nV
alues_Service

l
H

ow
often

is
the

token
a

service
attribute

79
C

ountInK
now

nV
alues_ServiceD

etails
l

H
ow

often
is

the
token

a
service

details
attribute

80
C

ountInK
now

nV
alues_Support

l
H

ow
often

is
the

token
a

supportattribute
81

C
ountInK

now
nV

alues_TechSpecification
l

H
ow

often
is

the
token

a
technicalspecification

attribute
82

C
ountInK

now
nV

alues_U
R

L
l

H
ow

often
is

the
token

an
U

R
L

attribute

TABLE B.4: Extended feature set part 3

81

Appendix C

Annotation Guidelines

Annotation Guidelines: Bulletproof Hosting Attributes

This document contains the annotation guidelines in section 1 followed by annotation
examples of each attribute in section 2.

Example annotated post: See ExamplePost.png

1. Annotation Guidelines:

General annotation guidelines:

- Only annotate specific information provided by the author, such as ‘fast-flux’ and ‘hosting’.
Vague terms such as ‘other services’ and ‘tools’ should be omitted.

- Annotate each attribute individually:
o ‘servers and domains’
o VDS/VPS

- Keep annotations as short as possible, unless removing preceding/following words
removes information

o 5 to 50GB: annotating 5 on its own causes drastic loss of information
o 256mb to 1gb: no loss of information
o 1GB – connection speed: removing connection speed causes drastic loss of

information
- Adjectives: only include adjectives to the annotation if it provides new and relevant

information about the attribute. For example: include bp (:bulletproof) in bp hosting.
Omit adjectives that provide information that could already (implicitly) be inferred from the
main attribute and that are buzz words. For example: do NOT include reliable in reliable
hosting (or stable, comfortable etc.)

- If an adjective refers to two attributes: e.g. ‘bulletproof hosting and domains’. Include the
adjective to the first attribute only and keep the attributes split. Result: ‘bulletproof hosting’,
‘domains’.

- Two adjectives for one attribute (with at least one relevant adjective): e.g. ‘dedicated and
virtual servers’. Annotate the complete set of words.

- Quotes from other users: if it contains relevant properties, annotate them too.

- Do not annotate ‘irrelevant’ parts:
o Quick installation – quick server setup

- Avoid including: ()

2. Attributes
Service
Service are all mentions of offered services/products (explicit and implicit).

• Explicit: ‘our services are bp hosting and dedicated servers’.
• Implicit: ‘new servers in Malaysia’ and ‘choose from the following domains’.

Examples:

• Are sold SERVERS
• Available SERVERS in Malaysia
• Bp domain registration
• Bp hosting service
• arrangement of servers: Malaysia, jamaica… (12163_1 ??)
• Servers for virtual hosting are equipped with ..
• At the moment is accessible dedicated servers in Hongkong, Russia…
• The opportunity to gather server for your project
• Abuseproof dedicated servers
• VPN-service
• Autonomous systems (AS)
• abuse-servers

TechSpecification
Technical specifications are all server specifications (operating system, hdd, memory, speed,
ip, etc.), control panel information and techniques mentioned.

Examples:

• P4 2.4 GHZ / 512 RAM / 1000 gb traffic / 1gb connection speed /5 IP + cPanel / WHM
• Core2due 2.1 1 gb RAM 50 gb HDD + panel
• CentOS 4.4 (Linux) (or any other OS)
• OS: linux
• OS: linux, *BSD, Windows
• Operating system: linux, *BSD, Windows
• - channel: 100mb/s
• 1GB – connection speed
• Connection speed 1GB (end of sentence)
• Control panel: directadmin – free
• Directadmin included
• Control panel: directadmin, pleks
• With Control panel…
• 3GB – RAM
• sentence: ‘high speed of channels from 100mb to 1GB’.
• Sentence: HDD from 5 to 50GB, memory from 256mb to 1gb
• 100mbps speed
• RAID
• IRON
• Channels from SCNET and LEVEL3

• Server with 80GB HDD and limited domains(=service) and databases
• VPN
• IP blocking
• Anit-DDoS Software
• Dedicated IP
• Its Ip network

Do not annotate:

• OS – any
• Domains: 3 (Domains=service)

ServiceDetail
Service detail is information that distinguishes the offered service from others, excluding
service and technical specification attributes.

Example:

• Daily backup of the data ..
• Backups every 24hours …
• Backups simply daily…
• Installation of additional hard drive
• Uptime 99%
• Partner and reseller programme
• We are no resellers
• Servers in our own datacenter
• (3 different data centers with different IP networks(techspec))
• (private data center …)
• .com
• Load balancers and computer clusters
• Distributed network architecture

Do NOT annotate:

• We offer bulletproof and normal: hosting, servers, domains

Nickname
Nicknames are names given to the online presence of the seller or others.

PaymentMethod
Payment methods that can be used to pay for the service. Such as paypal and
moneybookers.

Price
Price attributes convey information about the price of the service.
Example:

• 204$ B mecrl
• 120 to 200 dollar

Currency
Currency attributes are the currencies used to express the price of the service.
Example: 204$ B mecrl

PaymentPeriod
Payment period attributes show for which period a service is paid. Such as month or week.
Example: 204$ B mecrl

URL
URL attributes are URL mentions in posts to, e.g., link to the seller’s webpage.
Examples:

• [URL]https://NAME.NL/shop[/URL]
• Ohtps:/name-name.nl

CommunicationChannel
Communication Channels are the online channels that can be used to contact the seller
Examples are ICQ and Jabber mail

ICQ
ICQ attributes are the ICQ accounts mentioned in the post
Examples:

• 000-000-000
• 000000

JabberMail
Jabber mail attributes are the jabber mail addresses mentioned in the post
Examples:

• name@name.info
• Name_name-name@name1.com

OtherContactDetails
Other contact details attributes are the other contact details provided in the post. Such as
Skype contact details.
Examples:

• Name123
• Name-Name

Support
Support attributes provide information about the support offered by the seller:
Examples:

• Technical
• 24/7

Location
Location attributes contains all locations mentioned in the post. Including: cities, countries,
Continents

Examples:
• Netherlands
• Amsterdam
• Chinese partners

Content
Content attributes describe the types of content that can and cannot be hosted. These
contain specific content instances such as spam and exclude generic information such as
‘white projects’.
Examples:

• Any forms of spam
• For spam resources.
• SPAM using direct access
• Zooph
• projects directed towards breaking government organizations and organs of the

executive power

Do not annotate: Any project

87

88 Appendix D. Baseline Results

Appendix D

Baseline Results
N

o
ov

er
la

p
re

m
ov

ed
O

ve
rl

ap
re

m
ov

ed
N

o
lo

w
er

(r
aw

ba
se

li
ne

)
Lo

w
er

N
o

lo
w

er
Lo

w
er

A
tt

ri
bu

te
F2

P
R

F2
P

R
F2

P
R

F2
P

R

A
gg

re
ga

te
d

0.
50

2
0.

48
7

0.
51

9
0.

47
2

0.
42

0
0.

53
9

0.
65

1
0.

73
9

0.
58

3
0.

65
6

0.
69

8
0.

61
9

ov
er

al
ls

co
re

0.
48

5
0.

46
8

0.
50

2
0.

44
7

0.
39

4
0.

51
7

0.
61

8
0.

69
9

0.
55

6
0.

61
2

0.
64

1
0.

58
5

Se
rv

ic
e

0.
48

5
0.

39
4

0.
64

1
0.

43
8

0.
34

0
0.

62
4

0.
81

1
0.

83
2

0.
79

1
0.

83
2

0.
83

8
0.

82
7

Se
rv

ic
eD

et
ai

ls
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
Te

ch
Sp

ec
ifi

ca
ti

on
0.

24
0

0.
54

9
0.

15
7

0.
19

0
0.

19
1

0.
19

4
0.

24
0

0.
54

9
0.

15
7

0.
20

1
0.

21
5

0.
19

4
Lo

ca
ti

on
0.

72
9

0.
86

7
0.

67
5

0.
53

8
0.

52
0

0.
67

5
0.

72
9

0.
86

7
0.

67
5

0.
72

9
0.

86
7

0.
67

5
Pr

ic
e

0.
15

0
0.

11
7

0.
21

7
0.

15
0

0.
11

7
0.

21
7

0.
15

0
0.

11
7

0.
21

7
0.

15
0

0.
11

7
0.

21
7

C
ur

re
nc

y
0.

26
7

0.
30

0
0.

25
0

0.
46

7
0.

50
0

0.
45

0
0.

26
7

0.
30

0
0.

25
0

0.
46

7
0.

50
0

0.
45

0
Pa

ym
en

tP
er

io
d

0.
25

0
0.

21
7

0.
35

0
0.

18
3

0.
16

8
0.

35
0

0.
25

0
0.

21
7

0.
35

0
0.

21
7

0.
19

0
0.

35
0

Pa
ym

en
tM

et
ho

d
0.

29
0

0.
40

0
0.

23
8

0.
29

0
0.

40
0

0.
23

8
0.

29
0

0.
40

0
0.

23
8

0.
29

0
0.

40
0

0.
23

8
C

om
m

C
ha

nn
el

0.
75

9
0.

73
9

0.
79

1
0.

74
8

0.
71

4
0.

79
1

0.
77

7
0.

76
8

0.
79

1
0.

76
6

0.
74

3
0.

79
1

IC
Q

0.
53

3
0.

60
0

0.
50

0
0.

53
3

0.
60

0
0.

50
0

0.
53

3
0.

60
0

0.
50

0
0.

53
3

0.
60

0
0.

50
0

N
ic

kn
am

e
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
Ja

bb
er

M
ai

l
0.

49
3

0.
80

0
0.

36
9

0.
49

3
0.

80
0

0.
36

9
0.

49
3

0.
80

0
0.

36
9

0.
49

3
0.

80
0

0.
36

9
O

th
er

C
on

ta
ct

D
et

ai
ls

0.
40

0
0.

40
0

0.
40

0
0.

40
0

0.
40

0
0.

40
0

0.
40

0
0.

40
0

0.
40

0
0.

40
0

0.
40

0
0.

40
0

C
on

te
nt

0.
81

8
0.

92
1

0.
74

6
0.

82
8

0.
87

4
0.

79
5

0.
81

8
0.

92
1

0.
74

6
0.

84
8

0.
91

7
0.

79
5

Su
pp

or
t

0.
27

0
0.

31
3

0.
26

3
0.

38
2

0.
39

2
0.

42
0

0.
46

0
0.

60
0

0.
38

7
0.

46
7

0.
56

7
0.

42
0

U
R

L
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

TABLE D.1: Baseline performance scores - English

Appendix D. Baseline Results 89

N
o

ov
er

la
p

re
m

ov
ed

O
ve

rl
ap

re
m

ov
ed

N
o

lo
w

er
(r

aw
ba

se
li

ne
)

Lo
w

er
N

o
lo

w
er

Lo
w

er
A

tt
ri

bu
te

F2
P

R
F2

P
R

F2
P

R
F2

P
R

0
A

gg
re

ga
te

d
0.

48
5

0.
39

5
0.

62
9

0.
47

7
0.

36
8

0.
68

1
0.

70
5

0.
69

3
0.

71
9

0.
71

9
0.

67
9

0.
76

4
1

ov
er

al
ls

co
re

0.
46

9
0.

37
3

0.
63

4
0.

44
7

0.
33

6
0.

66
8

0.
63

4
0.

60
1

0.
67

2
0.

63
7

0.
57

7
0.

71
3

2
Se

rv
ic

e
0.

55
4

0.
42

4
0.

80
4

0.
53

3
0.

39
7

0.
81

5
0.

86
0

0.
83

6
0.

88
8

0.
86

2
0.

82
2

0.
91

0
3

Se
rv

ic
eD

et
ai

ls
0.

21
6

0.
17

4
0.

36
2

0.
19

9
0.

14
1

0.
39

3
0.

37
1

0.
38

8
0.

36
9

0.
36

9
0.

35
6

0.
40

5
4

Te
ch

Sp
ec

ifi
ca

ti
on

0.
45

7
0.

49
4

0.
43

0
0.

40
8

0.
33

9
0.

51
7

0.
53

0
0.

65
1

0.
45

1
0.

57
9

0.
61

0
0.

55
3

5
Lo

ca
ti

on
0.

80
0

0.
90

3
0.

72
1

0.
68

5
0.

62
9

0.
77

6
0.

81
8

0.
94

3
0.

72
6

0.
77

9
0.

78
7

0.
78

7
6

Pr
ic

e
0.

09
1

0.
05

0
0.

57
3

0.
09

1
0.

05
0

0.
57

3
0.

24
5

0.
15

3
0.

71
4

0.
24

8
0.

15
5

0.
71

4
7

C
ur

re
nc

y
0.

31
6

0.
35

7
0.

29
3

0.
27

7
0.

28
1

0.
29

3
0.

32
2

0.
37

1
0.

29
3

0.
31

9
0.

36
5

0.
29

3
8

Pa
ym

en
tP

er
io

d
0.

23
7

0.
15

0
0.

71
5

0.
22

4
0.

14
1

0.
71

5
0.

30
6

0.
21

3
0.

73
5

0.
29

1
0.

20
2

0.
73

5
9

Pa
ym

en
tM

et
ho

d
0.

48
0

0.
80

0
0.

38
5

0.
43

3
0.

66
7

0.
43

5
0.

48
0

0.
80

0
0.

38
5

0.
43

3
0.

66
7

0.
43

5
10

C
om

m
C

ha
nn

el
0.

65
5

0.
53

0
0.

88
4

0.
62

1
0.

47
0

0.
91

4
0.

71
4

0.
60

7
0.

89
2

0.
67

2
0.

52
9

0.
92

2
11

IC
Q

0.
81

9
0.

94
8

0.
73

1
0.

81
9

0.
94

8
0.

73
1

0.
81

9
0.

94
8

0.
73

1
0.

81
9

0.
94

8
0.

73
1

12
N

ic
kn

am
e

0.
59

6
0.

76
8

0.
52

6
0.

55
0

0.
59

5
0.

54
6

0.
64

5
0.

86
6

0.
54

6
0.

58
3

0.
67

4
0.

54
6

13
Ja

bb
er

M
ai

l
0.

85
0

0.
97

8
0.

77
1

0.
85

0
0.

97
8

0.
77

1
0.

85
0

0.
97

8
0.

77
1

0.
85

0
0.

97
8

0.
77

1
14

O
th

er
C

on
ta

ct
D

et
ai

ls
0.

62
2

0.
56

7
0.

73
3

0.
60

5
0.

54
8

0.
73

3
0.

62
2

0.
56

7
0.

73
3

0.
60

5
0.

54
8

0.
73

3
15

C
on

te
nt

0.
41

6
0.

33
8

0.
60

3
0.

42
5

0.
33

2
0.

64
0

0.
50

9
0.

45
5

0.
65

7
0.

53
0

0.
45

6
0.

70
3

16
Su

pp
or

t
0.

65
3

0.
69

7
0.

62
7

0.
68

2
0.

70
3

0.
66

7
0.

66
3

0.
71

9
0.

62
7

0.
69

3
0.

72
5

0.
66

7
17

U
R

L
0.

13
3

0.
20

0
0.

10
0

0.
13

3
0.

20
0

0.
10

0
0.

14
7

0.
30

0
0.

10
0

0.
14

7
0.

30
0

0.
10

0

TABLE D.2: Baseline performance scores - Russian

91

Bibliography

[1] J. Lewis, “Economic impact of cybercrime-no slowing down”, Santa Clara: McAfee
& CSI (Center for Strategic and International Studies), 2018.

[2] A. K. Sood and R. J. Enbody, “Crimeware-as-a-service—a survey of commodi-
tized crimeware in the underground market”, International Journal of Critical
Infrastructure Protection, vol. 6, no. 1, pp. 28–38, 2013.

[3] Europol, Internet Organised Crime Threat Assessment 2018. Europol, 2018.

[4] R. van Wegberg and T. Verburgh, “Lost in the dream? measuring the effects of
operation bayonet on vendors migrating to dream market”, in Proceedings of
the Evolution of the Darknet Workshop, 2018, pp. 1–5.

[5] M. Graczyk and K. Kinningham, “Automatic product categorization for anony-
mous marketplaces”, 2015.

[6] M. Spitters, F. Klaver, G. Koot, and M. van Staalduinen, “Authorship analysis
on dark marketplace forums”, in Intelligence and Security Informatics Conference
(EISIC), 2015 European, IEEE, 2015, pp. 1–8.

[7] J. M. Giorgi and G. D. Bader, “Transfer learning for biomedical named entity
recognition with neural networks”, Bioinformatics, 2018.

[8] A. More, “Attribute extraction from product titles in ecommerce”, arXiv preprint
arXiv:1608.04670, 2016.

[9] R. S. Portnoff, S. Afroz, G. Durrett, J. K. Kummerfeld, T. Berg-Kirkpatrick, D.
McCoy, K. Levchenko, and V. Paxson, “Tools for automated analysis of cyber-
criminal markets”, in Proceedings of the 26th International Conference on World
Wide Web, International World Wide Web Conferences Steering Committee,
2017, pp. 657–666.

[10] G. Durrett, J. K. Kummerfeld, T. Berg-Kirkpatrick, R. S. Portnoff, S. Afroz,
D. McCoy, K. Levchenko, and V. Paxson, “Identifying products in online cy-
bercrime marketplaces: A dataset for fine-grained domain adaptation”, arXiv
preprint arXiv:1708.09609, 2017.

[11] D. Wang and T. F. Zheng, “Transfer learning for speech and language pro-
cessing”, in Signal and Information Processing Association Annual Summit and
Conference (APSIPA), 2015 Asia-Pacific, IEEE, 2015, pp. 1225–1237.

[12] A. Greenberg, Hacker lexicon: What is the dark web?, Accessed: 2018-06-10, 2014.
[Online]. Available: https://www.wired.com/2014/11/hacker-lexicon-
whats-dark-web/.

[13] M. Chertoff and T. Simon, “The impact of the dark web on internet governance
and cyber security”, 2015.

[14] P. Lyman, “Archiving the world wide web”, Building a national strategy for dig-
ital preservation: Issues in digital media archiving, pp. 38–51, 2002.

[15] G. Weimann, “Going dark: Terrorism on the dark web”, Studies in Conflict &
Terrorism, vol. 39, no. 3, pp. 195–206, 2016.

https://www.wired.com/2014/11/hacker-lexicon-whats-dark-web/
https://www.wired.com/2014/11/hacker-lexicon-whats-dark-web/

92 Bibliography

[16] T. J. Holt, O. Smirnova, and A. Hutchings, “Examining signals of trust in crim-
inal markets online”, Journal of Cybersecurity, vol. 2, no. 2, pp. 137–145, 2016.
DOI: 10 . 1093 / cybsec / tyw007. eprint: /oup / backfile / content _ public /
journal/cybersecurity/2/2/10.1093_cybsec_tyw007/2/tyw007.pdf.
[Online]. Available: http://dx.doi.org/10.1093/cybsec/tyw007.

[17] V. Ciancaglini, M. Balduzzi, R. McArdle, and M. Rösler, “The deep web”, Trend
Micro, 2015.

[18] J. Jiang, “Information extraction from text”, in Mining text data, Springer, 2012,
pp. 11–41.

[19] S. Sarawagi et al., “Information extraction”, Foundations and Trends R© in Databases,
vol. 1, no. 3, pp. 261–377, 2008.

[20] L. Ratinov and D. Roth, “Design challenges and misconceptions in named en-
tity recognition”, in Proceedings of the Thirteenth Conference on Computational
Natural Language Learning, Association for Computational Linguistics, 2009,
pp. 147–155.

[21] S. Soderland, “Learning information extraction rules for semi-structured and
free text”, Machine learning, vol. 34, no. 1-3, pp. 233–272, 1999.

[22] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. Jagadish, “Reg-
ular expression learning for information extraction”, in Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, Association for Com-
putational Linguistics, 2008, pp. 21–30.

[23] R. J. Mooney and R. Bunescu, “Mining knowledge from text using information
extraction”, ACM SIGKDD explorations newsletter, vol. 7, no. 1, pp. 3–10, 2005.

[24] D. Jurafsky and J. H. Martin, Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition.
Pearson/Prentice Hall, 2009.

[25] D. Nadeau and S. Sekine, “A survey of named entity recognition and classifi-
cation”, Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007.

[26] C. N. d. Santos and V. Guimaraes, “Boosting named entity recognition with
neural character embeddings”, arXiv preprint arXiv:1505.05008, 2015.

[27] B. Tang, H. Cao, X. Wang, Q. Chen, and H. Xu, “Evaluating word represen-
tation features in biomedical named entity recognition tasks”, BioMed research
international, vol. 2014, 2014.

[28] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the conll-2003 shared
task: Language-independent named entity recognition”, in Proceedings of the
seventh conference on Natural language learning at HLT-NAACL 2003-Volume 4,
Association for Computational Linguistics, 2003, pp. 142–147.

[29] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neu-
ral architectures for named entity recognition”, arXiv preprint arXiv:1603.01360,
2016.

[30] G. Zheng, S. Mukherjee, X. L. Dong, and F. Li, “Opentag: Open attribute value
extraction from product profiles”, arXiv preprint arXiv:1806.01264, 2018.

[31] C. C. Aggarwal and C. Zhai, Mining text data. Springer Science & Business
Media, 2012.

[32] W Cohen and A. McCallum, “Information extraction from the world wide
web”, in Tutorial Note of The Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2003), 2003.

https://doi.org/10.1093/cybsec/tyw007
/oup/backfile/content_public/journal/cybersecurity/2/2/10.1093_cybsec_tyw007/2/tyw007.pdf
/oup/backfile/content_public/journal/cybersecurity/2/2/10.1093_cybsec_tyw007/2/tyw007.pdf
http://dx.doi.org/10.1093/cybsec/tyw007

Bibliography 93

[33] J. Howard and S. Ruder, “Universal language model fine-tuning for text clas-
sification”, arXiv preprint arXiv:1801.06146, 2018.

[34] J. Y. Lee, F. Dernoncourt, and P. Szolovits, “Transfer learning for named-entity
recognition with neural networks”, arXiv preprint arXiv:1705.06273, 2017.

[35] R. Nallapati, M. Surdeanu, and C. Manning, “Blind domain transfer for named
entity recognition using generative latent topic models”, in Proceedings of the
NIPS 2010 Workshop on Transfer Learning Via Rich Generative Models, 2010, pp. 281–
289.

[36] B. Tang, H. Cao, X. Wang, Q. Chen, and H. Xu, “Evaluating word represen-
tation features in biomedical named entity recognition tasks”, BioMed research
international, vol. 2014, 2014.

[37] T. Semwal, P. Yenigalla, G. Mathur, and S. B. Nair, “A practitioners’ guide to
transfer learning for text classification using convolutional neural networks”,
in Proceedings of the 2018 SIAM International Conference on Data Mining, SIAM,
2018, pp. 513–521.

[38] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra, “A maximum entropy approach
to natural language processing”, Computational linguistics, vol. 22, no. 1, pp. 39–
71, 1996.

[39] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data”, 2001.

[40] C. Sutton, A. McCallum, et al., “An introduction to conditional random fields”,
Foundations and Trends R© in Machine Learning, vol. 4, no. 4, pp. 267–373, 2012.

[41] N. Reimers and I. Gurevych, “Optimal hyperparameters for deep lstm-networks
for sequence labeling tasks”, arXiv preprint arXiv:1707.06799, 2017.

[42] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[44] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence tag-
ging”, arXiv preprint arXiv:1508.01991, 2015.

[45] S. J. Pan and Q. Yang, “A survey on transfer learning”, IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[46] N. Chinchor and B. Sundheim, “Muc-5 evaluation metrics”, in Proceedings of
the 5th conference on Message understanding, Association for Computational Lin-
guistics, 1993, pp. 69–78.

[47] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Re-
trieval, 1st ed. Cambridge University Press, 2008, ISBN: 0521865719.

http://www.deeplearningbook.org

	Abstract
	Acknowledgements
	List of Acronyms
	Introduction
	Problem Statement
	Research Goal and Questions
	Report Structure

	Domain Background Information
	Layers of the World Wide Web
	Bulletproof Hosting on Darknet Markets

	Related Work
	Attribute Extraction
	Dictionary Based Approach
	Rule and Pattern Based Approach
	Machine Learning Approach
	Suitability of Extraction Techniques

	Transfer Learning for Attribute Extraction
	Traditional Machine Learning
	Neural Networks

	Attribute Extraction and Transfer Learning on DNMs
	DNM Attribute Extraction
	Transfer Learning for DNM Attribute Extraction

	Summary

	Theoretical Background
	Supervised Classification with Machine Learning
	Supervised Classification
	Sequence Labelling
	Maximum Entropy Model
	Conditional Random Field
	Long Short-Term Memory Neural Network

	Transfer Learning
	Notations and Definitions
	Transfer Learning Categories

	Evaluation
	Performance Measures

	Summary

	Dataset
	Dataset Construction
	Exploratory Data Analysis
	Data Preparation
	Automatic Split of English and Russian Posts
	Final Russian and English Dataset

	Attribute Identification
	Manual Annotation

	Methodology
	Baseline Extractors
	Dictionary Extractors
	Rule and Pattern Extractors
	CRF Extractors
	Initial CRF Extractor
	Experiments

	Hybrid CRF Extractors
	biLSTM-CRF Extractors
	Initial biLSTM-CRF
	Experiments

	Transfer Learning with the biLSTM-CRF Extractors
	Experiment 1: Transferring Word Embeddings vs. Word and Character Embeddings
	Experiment 2: Comparing Source Datasets

	Ensemble Extractors
	Training and Testing

	Experiments and Results
	Experimental Setup
	Result Overview
	Baseline Extractors
	Dictionary Extractors
	Rule and Pattern Extractors
	CRF Extractors
	Hybrid CRF Extractors
	biLSTM-CRF Extractors
	Transfer Learning with the biLSTM-CRF Extractors

	Conclusion and Discussion
	Research Questions
	Discussion and Limitations
	Future Work

	Hyper-parameter Tuning
	Feature Engineering
	Annotation Guidelines
	Baseline Results
	Bibliography

