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Abstract

In wireless communication, the frequency offset is a problem that hinders the communication.
It arises from the discrepancy between the frequencies of the oscillator of the transmitter and
the one of the receiver. To solve this problem, oscillators with high frequency stability can be
employed, at the expense of higher power requirements. As a consequence, this solution can
be problematic in Wireless Sensors Network (WSN), where sensor nodes have limited power
resources. Another solution is to correct the frequency offset within the demodulation algorithm,
thus making it possible to use less power-hungry oscillators.

This thesis focuses on the hardware implementation of an existing offset tolerant demodu-
lation algorithm for BFSK modulation. Particular attention was posed in making the demod-
ulator as power efficient as possible, given its usage in a WSN. To reach this goal, the two
Discrete Fourier Transforms were optimised for zero-padding, which is an operation used in the
algorithm. These two modifications allowed to save power when compared with the standard
radix-2 FFT.

Fixed-point is the chosen data representation. As the word length of the representation is
a critical aspect that affects power consumption, an appropriate size was determined by using
a procedure that makes use of MATLAB. The complete demodulator is implemented in VHDL
and is used to characterise the system, when an FPGA is used in the synthesis process. Relevant
results analysed are bit error ratio (BER) with different levels of noise, power consumption with
different clock speeds, and resource usage.
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Chapter 1

Introduction

Figure 1.1: Example of sensors. From left to right: thermometer, image sensor, smoke sensor.

The acquisition of information is an important aspect in our lives. We use our five senses
to obtain data from our surroundings, but they are neither precise nor reliable. We can tell if
the weather today is hot or cold, however we cannot describe it using numbers, which makes
the statement consequently subjective.

With the advent of science, which required precise measurements, analog sensors have been
invented and improved since the 16th century, when the first thermometer was created by
Cornelis Drebbel [1]. Other examples are the barometer to measure pressure, hygrometer for
humidity, speedometers for speed, and many other exist to measure different physical variables.

Sensors have changed drastically with the coming of integrated circuits. They are now very
small, highly precise, and most importantly, can gather information faster than a human could
ever read. Imagine if we had to constantly monitor the vital signs of a patient, we would have
to spend an excessive amount of time reading the thermometer, the ECG, blood pressure and
so on. Thanks to electronic sensors, data can be continuously collected and stored for later use.

But what if we have a lot of these sensors, spread over a vast area? We can still place them
here and there and check them from time to time. This idea would be feasible, although rather
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10 CHAPTER 1. INTRODUCTION

Figure 1.2: The dotted signal represents the interference which is wide spread, while the solid
line depicts an ultra-narrowband signal.

tedious, when it comes again to patients or to monitor a vineyard or the temperature of each
room in your house. However, when safety or security are involved, this option is not viable. In
these cases, the information needs to be communicated as fast as possible. As a consequence,
sensors have been arranged in what are now called Sensors Network. Each sensor node can
communicate its retrieved data to the user, through wires or wirelessly. In the present context,
we will focus on the second group which is referred to as Wireless Sensors Network (WSN).

Many WSN are characterised by a very low data rate, in the order of Bytes or kBytes per
second. In fact, each sensor reading requires as many bit as the ADC bit resolution in use,
which usually spans from a few bit up to 32 bit. Moreover, the transmission of this data occurs
every now and then. Sensor nodes rely often on batteries and therefore it is necessary to use the
available power as sparingly as possible. Because of that, two approaches have been adopted
in order to maintain high power-efficiency in the sensor nodes: duty cycling [2], and wake-up
radios [3]. With the first approach, the radio gets ready to receive data at a fraction of the
time. This is already an improvement compared to leaving it continuously listening, but it
is not optimal. In fact, as it may not be known when the next transmission will occur, the
receiver might listen more than it is necessary in order not to miss messages. With the second
approach, two radios are employed: a main radio and a wake-up radio. The first one takes
care of demodulating the incoming signal and transmit the decoded bits to the microcontroller.
Because this operation is power expensive, the wake-up radio, which is designed to be as power
efficient as possible, is used to wake the main radio only when it detects a message being
transmitted.

Interference is a disturbance produced by the communication between other devices. It is
nowadays characterised by wideband signals, for example due to spread spectrum or OFDM
techniques. These are usually employed in devices that use Wi-Fi or Bluetooth technologies,
such as smartphones, PC, smart appliances, and so on.

In order to avoid it, ultra-wideband (UWB) techniques can be employed. The drawback is
the short range that they reach. This is due to the regulations that impose a maximum amount
of power that this techniques can use. The Slow Wireless Project proposes to utilise ultra-
narrowband (UNB) techniques to realise robust, power-efficient, ad-hoc radio links for WSN
that require low instantaneous data rates (Bytes/second). To understand how UNB signals
can be useful in wideband interference such as spread spectrum (SS), an example is shown in
Fig. 1.2. The dotted signal represents the interference which is characterised by a wideband
signal. The solid line indicates an ultra-narrowband signal. Its power is concentrated in a very
small bandwidth, while its power spectral density stands decisively above the interference. As
a consequence, the signal can be better discriminated by the receiver.

One of the problems of using UNB techniques is the frequency offset [4], which will be illus-
trated in Section 1.2. This thesis focuses on the implementation of a power-efficient frequency
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Figure 1.3: Example of a wireless sensor node.

offset tolerant demodulation algorithm for a BFSK modulation technique. Before presenting
the algorithm, an overview of WSN is given in the next section.

1.1 Wireless Sensor Network

A Wireless Sensor Network (WSN) is a collection of sensors physically distant to one another
that gather information and transmit them in a wireless manner. Usually, physical variables
like temperature, humidity, air pressure, etc. is the data being collected. In a WSN there
are usually two types of nodes. Sensor nodes obtain the relevant data from the environment
and constitute the majority of the nodes. The other type is gateway node, which gathers the
information transmitted by the sensor nodes and passes them to the user [5].

A node is usually composed by a radio transceiver, a microcontroller, at least one sensor,
and a power supply. An example is shown in Fig. 1.3. The radio transceiver is required to
send and receive data, although the latter functionality may not always be present. In fact, a
sensor needs to receive data only if it can be controlled. The microcontroller is used to collect
data from the sensor(s) and pass them to the transmitter, as well as receiving configuration
instructions, for example the frequency at which the data should be transmitted. At least one
sensor is connected to the node, although the system might incorporate multiple sensors.

Finally, a power supply is used to provide the energy to run the system. Depending on
where the node is deployed, it may run connected to a power grid or use an energy storage like
a battery or even harvest power on its own, for example by employing a small solar panel. Where
the battery is the only available resource of power, it is of paramount importance to maintain
the energy consumption as low as possible in order to use small batteries and/or guarantee
a long term running period. As the radio communication system is the most power-hungry
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component [6], modulation and demodulation techniques need to be designed as energy-efficient
as possible.

WSN are becoming more adopted in many different fields. In [7], an extensive taxonomy
of WSN applications is proposed. WSN can be characterised as single or multi-hop. In the
former case, a message sent by a sensor node is directly dispatched to the user node. Instead,
in multi-hop, a message is first sent to other nodes before reaching the user. Some of the
applications where WSN are being used and belong to the multi-hop group are: metropolitan
operation, military, civil engineering, environmental monitoring, logistics, position & animals
tracking, transportation, automobile, sensor & robots, reconfigurable WSN, and nanoscopic
sensors. Instead, single-hop WSN can find application in: industrial automation, health, mood-
based services, entertainment, smart office, sports, building automation, home control.

Another classification for WSN takes into account whether nodes are static or mobile [8]. In
the first case, the nodes are placed once and remain in the same position indefinitely, conversely,
in the mobile WSN nodes can move around. In our work, only static WSN are taken into
consideration.

In [7], WSN applications are grouped by data rate. Thirteen out of eighteen of the considered
applications are medium or low bit rate, which means they use less than 115.2 kbps. Because
of that, ultra-narrowband (UNB) modulation schemes are becoming more widespread [4]. The
advantage resides in the longer range that this technique is able to achieve compared with
wide-spectrum signals.

1.2 The frequency offset problem

The frequency offset is a non-ideality that arises from the discrepancy between the frequencies
of the oscillator of the transmitter and the one of the receiver. This is due to physical limitations
caused by the age of the oscillator, its temperature, mass transfer due to contamination, stress-
strain in the resonator, and quartz defects [9]. This imperfection is expressed based on deviation
from the nominal value of the frequency indicated by the manufacturer in terms of parts per
million (ppm). For example if an oscillator is rated 50 MHz with ±20ppm, then its actual
frequency is between 50.001 MHz and 49.999 MHz.

If the oscillators were ideal, the two frequencies used to transmit bit “1” and bit “0” would
remain unchanged. In reality, the frequency offset problem might occur. This produces a shift
of these two frequencies, which makes the receiver unable to detect the incoming data. The
lower the data rate, the higher the frequency stability of the oscillator has to be, being equal
the carrier frequency. For example, for frequency offset in the order of 20% of data rate and
data rate of 1 kbps, 2.4 GHz for the carrier wave, the frequency stability of the oscillator needs
to be less than ±1ppm. A crystal oscillator with low frequency stability is not only expensive,
but also more power-hungry [4]. However, that is not desirable in sensor nodes powered by
batteries.

This problem can be addressed in the digital or analog domain or both. A number of
algorithms have been proposed for the digital domain [10–12], but they can only partially solve
the problem. Another possible solution is to pass the burden of implementing frequency offset
cancellation techniques to demodulation and detection schemes. This, in turn, helps to ease the
constraints on the crystal by making it possible to adopt a less precise one, which ultimately
makes the system more power-efficient [13].

The Doppler shift effect happens when the receiver and the transmitter have a non-zero
relative speed. As a consequence, the signal acquired by the receiver results to have a different
frequency to the originally transmitted one [14]. When the Doppler shift effect is constant or
changes very slowly, it can be treated with the same method used for the frequency offset.
The method depends on the used modulation as follows. For differentially encoded BFSK
modulation, the Short-Time DFT (ST-DFT) is utilised [15], while for the Double Differential
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Figure 1.4: Diagram of the proposed demodulator [4].

BPSK the Auto-Correlation Demodulator is employed [16, 17]. The ST-DFT demodulation is
the centre of this thesis and will be explained further in the next section.

1.3 ST-DFT demodulation scheme

In the previous section it was illustrated how the frequency offset problem may negatively
affect the communication. In this section, an algorithm presented for BFSK modulation will
be presented which is capable of tolerating large frequency offset by employing the Short-
Time DFT [4]. In Fig. 1.4 its block diagram is shown. Initially, samples are acquired. A
window is then aligned over a symbol, in the synchronisation phase. These samples are then
processed by the ST-DFT block, which produces the power spectral density of the signal.
By using this representation, it is possible to determine at which frequencies the transmitter
is sending the data. Hence, a frequency offset would not hinder the correct data detection,
because the frequencies are determined whenever a new data packet is received. As soon as the
synchronisation is complete, the information regarding the detected frequencies is then passed
to the detection block, indicated by bL and bH . At this point, the ST-DFT is used to determine
the actual bits contained in the data packet. The algorithm will be explained in more details
in Section 2.1.

1.4 Radio receiver

In this section, a radio receiver will be outlined which will give an idea of where the demodulator
is placed. A generic schema for a radio receiver is presented in Fig. 1.5. A description of the
flow of the signal from the antenna to the demodulator according to the previous figure is as
follows.

1. An antenna is an electronic circuit that produces or captures radio waves. In our case it
receives the electromagnetic waves and transform them in a signal.

2. The second element is a bandpass filter, which is used to allow a certain range of
frequencies to pass through and reject those outside.

3. Next, the signal passes through a low-noise amplifier (LNA). It amplifies the signal,
which is at the present stage very low on power. The characteristic of this type of amplifier
is to enhance the useful signal, while adding as little noise as possible.

4. Up to this point the frequency of the signal is the same as the carrier wave. Processing
such a high frequency signal is power consuming. Therefore a mixer, together with the
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Figure 1.5: Schema of a generic radio receiver.

local oscillator, is used to shift the signal from the carrier frequency to an intermediate
frequency (IF).

5. Subsequently, a low-pass filter is applied to counter the side effect of the previous oper-
ation. The mixer brings the signal to a certain frequency fIF . As a result of the mixing
operation, an additional frequency component located in 2fc− fIF is generated, where fc
is the carrier frequency. Hence, the low-pass filter is used to remove it.

6. At this point, the signal is still in the analog domain. As the demodulator is digital, an
ADC is used to convert the signal to the same domain.

7. Next, a digital down converter (DDC) is employed. Recall that after the mixer, the
signal is now located in an intermediate frequency. A DDC is employed to bring the
signal in the base band, that is to centre it at the zero frequency. This operation is done
to further reduce the frequency, which helps to process the signal at lower speed. This in
turn, helps to reduce power consumption.

8. Before reaching the demodulator, the signal passes through a decimation filter. Its
purpose is to reduce the sampling rate in order to accommodate slower components of
the system. Additionally, it helps reduce the processing power, as less samples imply less
memory is needed and a slower clock can be employed.

9. Finally, the digital signal reaches the demodulator and the relevant information can be
extracted.

1.5 Research questions

The following objectives are defined in order to design and implement the proposed demodulator.
While designing the system, power-efficiency is the first aspect that will be kept in mind.
Previously, it was mentioned that the algorithm uses two DFT; in the synchronisation and in
the detection blocks. This is usually considered a very power-hungry operation. Therefore, the
first objective is to find a more power efficient implementation for the two DFTs.
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Another important aspect while designing a system is the determination of an appropriate
data representation, which is essential for two reasons. Firstly, an incorrect data representation
may produce incorrect results, for example due to overflow as a consequence of too small regis-
ters. Secondly, it influences the power consumption as more registers and interconnections are
needed.

Finally, the produced implementation of the system will be studied. As a power-efficient
demodulator is designed, it is relevant to know its power consumption for the technology used
to implement it. Additionally, its performance needs to be analysed in order to determine which
ADC frequencies can be supported.

To summarise, the research questions are as follows:

RQ1. How can the two DFTs be implemented in a more power-efficient way?

RQ2. What is the smallest number representation so that the BER is the same as when
full precision is used?

RQ3. What is the performance and the resource usage of the proposed implementation?

1.6 Thesis outline

In this chapter, the concept of WSN was introduced together with the frequency offset problem.
Additionally, the demodulation algorithm capable of solving such problem was briefly described.
In Chapter 2, the literature review on the subject is presented. In particular, the focus is on
the improvement of the two DFTs used in the algorithm. Chapter 3 will present the design,
implementation, and verification of the demodulator will be presented. After that, Chapter
4 includes the obtained results. It comprises the study of the BER while varying the SNR,
together with power analysis of the system. Finally, in Chapter 5 the conclusion and future
work will be presented.
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Chapter 2

Background

In this chapter, the possibility to use more power-aware solutions for the two DFTs, in the
synchronisation and the detection blocks will be investigated. As it will be shown, both cases
include a special function that enables additional optimisation compared to the standard radix-r
FFT.

In Section 2.1 the adopted demodulation algorithm will be further explained. In Section 2.2,
the DFT in the synchronisation block will be analysed. Subsequently, in Section 2.3, a solution
for the detection phase will be presented.

For the reminder of this text, the conversion from complex to real operation is as follows.
It is assumed that when converting from a complex operation to a real one, a complex addition
(CA) results in two real additions (RA), while a complex multiplication (CM ) is equivalent to
two real additions and four real multiplications (RM ).

Additionally, the following notation is used unless otherwise specified

W kn
N := e

j2πkn
N .

2.1 Demodulation algorithm

Figure 2.1: Schema of the demodulator.
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The ST-DFT demodulation scheme is used to achieve a frequency offset tolerant communi-
cation. It was originally proposed in [15] and improved in [4]. It can be used for differentially
encoded BFSK modulation. The algorithm is composed of two phases, namely window syn-
chronisation and data detection. The diagram that shows their interconnections is presented in
Fig. 2.1. Before describing the role of the two phases, the ST-DFT and zero-padding will be
explained.

2.1.1 ST-DFT and zero-padding
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Figure 2.2: (left) Power spectral density obtained by using the ST-DFT. (right) Same repre-
sentation viewed from above.

The ST-DFT is a linear transform that produces a time-frequency representation of a signal
[18]. This information is useful for example with BFSK modulation. As data is encoded by
varying the frequency of the transmitted signal over time, this frequency shift can be easily seen
in the frequency domain. An example is shown in Fig. 2.2.

This operation is used both in the synchronisation and detection phase. In the first one, it
is needed to detect the symbols present in the preamble of the transmitted packet. In this case,
a full N-point DFT is required. In the detection phase, it serves to detect the bits transmitted.
As this information is passed on two specific frequencies, in this case the algorithm needs only
two bins of the calculated DFT.

The DFT is performed on zero-padded samples, both in the synchronisation and in the
detection blocks. This operation is done to interpolate the bins in the spectrum. To understand
the effect of this operation, an example is shown in Fig. 2.3. In this case, the window is
composed of eight samples. The non-interpolated line was obtained by computing the 8-point
DFT, without applying any zero-padding. The same DFT result is shown with the purple
diamonds, but this time the magnitude of the bins have been spaced so that they are eight
points apart from each other. Finally, the blue line with full points indicates the interpolated
DFT of the same eight samples with a zero-padding factor of 8, which corresponds to a 64-point
DFT.

The peak in the non-interpolated line corresponds to the one in the spaced line on bin
25. The same peak corresponds to the one on bin 28 on the interpolated curve. This shift
even though it looks barely relevant, might compromise the detection. In fact, if bin low and
bin high are not far enough apart, they may be detected incorrectly. This is the case with the
non-interpolated line. As only eight points are available, it is more likely that two actually
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Figure 2.3: Comparison of different DFT.

different frequencies will fall into the same bin. Instead, thanks to the interpolation produced
by the zero-padding, the power spectral density is well spread and the positions of the peaks
can be better distinguished. In conclusion, the zero-padding was used to increase the resolution
of the incoming signal.

2.1.2 Window synchronisation

The task of the window synchronisation phase is to align the sample window over a symbol.
Moreover, this phase detects the bins corresponding to the frequencies used by BFSK, indicated
by bL and bH in Fig. 2.1.

To obtain this information, a rectangular window is shifted over the initially arrived samples
that belong to the preamble, which is a sequence of alternating zero and one symbols. Each
symbol is composed of a fixed number of samples indicated with M. In Fig. 2.4 this shifting
procedure is shown for three different delays. When the window exactly aligns with a symbol
(delay = 0), its spectrum shows a single clear peak, either on the low frequency flow or on the
high frequency fhigh, which are unknown at this stage of the algorithm. When the window
is not aligned, multiple peaks are present. Therefore, the idea is to slide the window over the
whole preamble and understand which of the M delays is the best one.

In Fig. 2.5, the windowing system when M=8 is depicted and will be used to explain the
procedure to determine the correct delay. The first window, window 1, contains the first eight
samples, labelled from 0 to 7, that have arrived and will contribute for the delay 1. They are
then zero-padded and a DFT is subsequently computed using them. The values resulting from
the DFT are complex and their magnitudes are afterwards calculated and stored in register
1. The same procedure is then repeated for delay 2. Window 2 is produced, using samples
from 1 to 8, they are again zero-padded, the DFT is computed, and finally the magnitudes
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Figure 2.4: Variation of spectrum when the window is delayed [4].

are obtained and stored in register 2. This operation is repeated for M=8 times and involves
samples labelled from 0 to 14. This was the first accumulation round, which corresponds to the
first symbol. As there are multiple symbols in the preamble, an equal amount of rounds needs
to be computed. In the subsequent rounds, the magnitudes are accumulated with the previously
computed values. The accumulation is separate for odd and even numbered symbols.

At the end of all the symbols of the preamble, it is determined which register contains the
biggest value, which indicates the delay that best alignes with the preamble symbols. Together
with this information, the bins that represent flow and fhigh are determined (also referred to as
bin low and bin high).

2.1.3 Data detection

The second phase receives timing information necessary to align the window on the incoming
data. The ST-DFT produces a time-frequency representation of the incoming signal, so that
the detection of the bits can be carried out. An example of this representation is shown in
Fig. 2.2. Each axes that starts from the time line indicates a new ST-DFT. The frequency axis
shows the bins of the DFT, while the vertical axis is the magnitude of each bin.

The DFT receives M samples, zero-pads them, and computes the result. Compared to the
window synchronisation, in this case only two bins of the DFT are required, those indicated
by bin low and bin high. The actual detection happens by comparing the magnitudes of the
previously computed two bins. Whenever the first is greater than the second, a bit “1” is
detected, otherwise it is a “0”.

2.2 DFT in synchronisation block

A DFT is used in the synchronisation phase. It is utilised to adjust the window over one symbol
period. The windowing system processes group of M complex samples at a time. An example
with M=8 is shown in Fig. 2.6.



2.2. DFT IN SYNCHRONISATION BLOCK 21

Figure 2.5: Shifting of the window when the number of samples per symbol is 8.

Figure 2.6: Window update process.

In the first window (window 1) the system has to wait for the first eight samples before
it can start to process them. Subsequently, for window 2, 3, and so on, the oldest sample of
the previous window is removed while all the other samples are shifted. This can be seen in
window 2, where the second sample is not in the second slot of the window, but it is now in
the first one. Then, the newest sample is inserted in the eighth slot. At this point they can be
processed and as soon as the 10th sample arrives, window 3 can be formed in the same manner.
The explained procedure is in fact, sliding a window over a series of samples. This encourages
us to investigate the possibility to use the sliding DFT.

2.2.1 Sliding DFT

As explained, each window overlaps with the previous one by the M-1 samples that they have
in common. This suggests that the DFT bins obtained for the nth window, can be reused for
(n+1)th window. This is the idea behind the sliding DFT (SDFT) as presented by Jacobsen and
Lyons in [19]. It is a reinterpretation of the DFT as a filtering operation. This method is useful
when the variation of a DFT bin during a time interval needs to be tracked. A conventional
DFT necessitates repetition of all computations for each new sample. However, using the sliding
DFT, the computation decreases to a simpler “update” operation.

Different versions of the sliding DFT have been proposed. They differ in terms of computa-
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Figure 2.7: Resonator for a single bin for the original SDFT.

tional cost and numerical stability. In the next section the original work will be presented and
will be followed by the modulated SDFT (mSDFT).

Original SDFT The first sliding DFT was proposed in [19] and updated in [20]. Its derivation
is now briefly explained. Let Sk(n) be the bin computed at time n for frequency index k for an
N-point DFT. With a standard DFT it would be calculated as

Sk(n) =
n∑

l=n−N+1

x(l)e
−j2πkl
N (2.1)

To calculate Sk(n+ 1), the same operation needs to be computed. However, Sk(n+ 1) and
Sk(n) can be related thanks to the circular shift property of the DFT. As mentioned before,
the nth window removes the oldest sample x(n-N) and adds the last arrived, x(n). Additionally,
samples that are in common need to be shifted, which is done by multiplying Sk(n − 1) by
ej2πkn/N . The equation to compute bin k at time n from the previous one at time n-1 is [19]:

Sk(n) = Sk(n− 1)e
j2πk
N − x(n−N) + x(n). (2.2)

This formula is correct as long as only the magnitude of the bin is required. A better
expression that corrects the phase is given by [20]:

Sk(n) = e
j2πk
N [Sk(n− 1)− x(n−N) + x(n)]. (2.3)

The cost of this solution can now be derived, with reference to Fig. 2.7. For K frequencies
(1 ≤ K ≤ N), after L samples (L ≥ N), when an N-point window is used and assuming complex
inputs, the cost is as follows. The total cost is divided into two parts. The cost of sign inversion
and first addition (left) and the rest of operations (right). The number of operations for the left
part is CL = (L−N)CA, where CA indicates complex addition. Since the delay register is empty
for the first N samples, the addition and the multiplication do not contribute for the first N
samples but only for the subsequent L-N samples. Additionally, notice that the left part is not
affected by the k index and as such its results can be shared among all the resonators. The sign
inversion was not counted as a standard operation. This is consistent with the approach that
many authors take while evaluating the performance of the various FFT variations. The cost
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for the right part is CR = K((L− 1)CA + LCM ), where CM indicates complex multiplication.
The final cost is:

C(tot) = CL + CR = CA(L−N +K(L− 1)) + CM (KL).

Note that additional simplifications can be obtained by taking into account the fact that for

certain combinations of k and N , the complex factor e
j2πk
N becomes a trivial multiplication by

1, -1, j or -j.

In terms of memory, the system requires N+1 registers for a single resonator. If multiple
resonators are used (K ≤ N), then N+K registers will be needed, as the left part is used for all
the resonators.

The stability of this filter is now discussed. The Z-transform of the k-th bin is given by:

H(z) =
1− z−N

1− e
j2πkn
N z−1

it has a single pole at z = e
j2πkn
N , which makes the filter marginally stable. In fact, the stability

is affected by coefficient precision (number of bits used for representation in hardware), if the
precision is not enough the pole moves outside the unit circle which leads to instability. However,
if the numeric coefficient is not excessively rounded, the filter is BIBO stable (Bounded Input
Bounded Output).

Modulated SDFT (mSDFT) The block diagram of the modulated SDFT is shown in Fig.
2.8 [21].

Figure 2.8: Resonator for a single bin for the mSDFT [21].

This variation of the SDFT takes advantage of the DFT modulation property. The kth bin is
shifted to the position zero. This removes the twiddle factor from the feedback, hence avoiding
accumulated errors due to its finite representation. This can be seen by using k = 0 in Eq. 2.3,
it becomes S0(n) = S0(n− 1)− x(n−M) + x(n) and the twiddle factor does not influence the
computation anymore. In order to produce the desired shift, Eq. 2.3 needs to be multiplied by
the factor W−kmN , where m is the phase of the shift. When m = 0, the phase of the modulating

sequence is 0, when the index increases, also the sequence increases by a factor of W−kN . In order

to correct the phase, a multiplication by W
k(m+1)
N is required to produce Xk

n = W
k(m+1)
N X0

n.

Also for this SDFT, the left side is independent of the bin index and the result can be
shared among multiple resonators. This can decrease hardware complexity by reusing the same
component. The number of operations can be calculated similarly to the original SDFT. The
cost is calculated for K frequencies (1 ≤ K ≤ N), L samples (L ≥ N), when a N-point DFT is
used and assuming complex inputs. For the left part the cost is CL = LCA. For the right part
the cost is CR = K(3L− 2)CM +KLCA. The total cost of this solution is:
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Figure 2.9: Block diagram of the original DFT when zero-padding is taken into account.

C(tot) = CL + CR = K(3L− 2)CM + L(K + 1)CA. (2.4)

In terms of memory, if K resonators are used, then N+2K registers are needed.

2.2.2 Sliding DFT in presence of zero-padding

The SDFT methods can be used to update previously computed bins whenever a new sample
arrives. The last sample of the previous window is removed, all the old samples are shifted, and
the new one is introduced. This operation though does not take into account the zero-padding
operation. Such an operation, as it was illustrated in 2.2, is necessary in the present case and
therefore has to be incorporated.

Currently, none of the existing SDFT methods can be utilised in the algorithm. In fact, the
zero-padding makes the concept of sliding a window incorrect. This problem can be resolved
by using the result proposed in [22]. The authors suggest that since the zero padding only adds
zeroes, part of the computation of a single bin can be avoided.

The idea behind this optimisation is as follows. Let N = Z + S be the number of point of
the DFT, Z the number of zeros and S the number of non-zero samples. Then a generic bin is
calculated, in the standard DFT, as:

X(k) =
N−1∑
n=0

x[n]e−
j2πkn
N (2.5)

the summation can be divided in two parts, because of the tailing zeros:

X(k) =

S−1∑
n=0

x[n]e−
j2πkn
N +

N−1∑
n=S

x[n]e−
j2πkn
N

In the second term all values are zeroes and therefore, only the first term needs to be
considered.

This idea was incorporated in the SDFT so that the zero-padding is maintained together
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Figure 2.10: Butterfly.

with the sliding property. The derivation is as follows.

Xk =
N−1∑
n=0

x(n)e−j
2πnk
N

=
M−1∑
n=0

x(n)e−j
2πnk
N

=
M−1∑
n=0

x(n)e−j
2πnk′
M

(2.6)

Where N indicates the DFT points, M the number of non-zero samples (N M), k′ = kM
N .

The first equality is the N-point DFT. The second equality is obtained by noting that N −M
samples are zero because of the zero-padding. The third equality is a rearrangement of the
indices.

The original SDFT can now be revisited in light of this new achievement by starting with
Eq. 2.3.

Xk(n) = Xk(n− 1)ej
2πk′
M − x(n−M)ej

2πk′
M + x(n)e−j

2π(M−1)k′
M

= (Xk(n− 1)− x(n−M) + x(n)WMk′
M )W−k

′

M

(2.7)

The block diagram of the modified SDFT is shown in Fig. 2.9, with k′ = kM
N . The trade-off

here is that while the number of total operations is reduced, a correcting factor appears, which
increases the complexity. Moreover, the new multiplication introduces the k factor on the left
side, meaning that the computation of this first stage cannot be shared among all the resonators.
Only the M registers and the sign inversion operation can be shared.

The cost of the revisited SDFT is as follows. On the left side the cost is CL = (L−M)CA+
KLCM , while on the right side CR = K((L− 1)CA + LCM ). The total is as follows.

Ctot = CL + CR = (2KL)CM + (L−M +K(L− 1))CA (2.8)

where M is the number of non-zero samples and N the order of the DFT, L is the number of
total samples passed to the resonators, and K the number of frequency of interest.

2.2.3 FFT zero padding (FFT-ZP)

The second approach that was studied started by considering the standard FFT radix-2. The
reason for choosing radix-2 instead of radix-4 or radix-8 is related to its simplicity. As the order
increases, also the structure of each solution becomes more complex.

In the present case, the incoming samples are zero-padded and the position of the zeros are
always fixed. By considering this information, a modification to the radix-2 FFT is proposed.
It will be shown that a considerable amount of multiplications and additions become trivial.
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Figure 2.11: 16-points FFT radix-2 DIF.

In the standard radix-2 N-point FFT, there are l stages, where l = log2N . An FFT stage
is a collection of butterflies. An example is depicted in Fig. 2.11. The FFT in the picture is
16-point and the number of stages is 4. The structure of a butterfly is illustrated in 2.10. The
interpretation of its flowgraph is as follows; its meaning extends as well to the previously shown
FFT stage. The resulting values are c = a+ b and d = (a− b)W kn

N . Usually the plus signs are
omitted and the intersection of an arrow into another indicates that a sum is occurring. Instead
a factor, like W kn

N of the example, which lies above an arrow, indicates that it is multiplying
the value carried by the arrow.

When M non-zero samples are given to an N-point FFT, with M = 2k and N = 2l and
M < N , then there exist l−k transfer stages and k normal stages. A transfer stage is a stage in
which there are no butterflies, cfr. Figs. 2.11-2.13. Because of the presence of the input zeros,
in the first l − k stages there are no additions, as they result in passing through the samples.
In this case though, the twiddle factors need to be multiplied with the non-zero samples. After
l− k stages, the following stage is a normal one because all its input are at this point non-zero.

The cost of this solution is calculated considering that all operations are complex. There are
additions only in the last k stages and for each one there are N additions. Considering M = 2k

and N = 2l, the number of multiplications can be calculated. There are M multiplications in
the first transfer stage, 2M in the second one, 4M in the third, and so on. The total number of
transfer stages is l-k. Thus, there are M

∑l−k−1
n=0 2n multiplications in all the transfer stages. In

the normal stages there are twiddle factor multiplications which account for N
2 multiplications

for each of the last k stages.
Overall, the total number of additions and multiplications are:

CA = kN. (2.9)

CM = M

l−k−1∑
n=0

2n +
N

2
k, (2.10)



2.2. DFT IN SYNCHRONISATION BLOCK 27

Figure 2.12: 16-points FFT radix-2 DIF. First stage transfers.

Figure 2.13: 16-points FFT radix-2 DIF. Second stage transfers.
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2.2.4 Comparison

In Table 2.1 all the analysed methods for the synchronisation block are summarised. Note that
none of the methods take into account the operation reduction due to trivial multiplications by
the factors 1, -1, j, -j generated by twiddle factor simplifications.

In general, multiplications are regarded as more power intensive operations than addi-
tions. A number of algorithms have been implemented to reduce the complexity of both
operations. For the addition, many adders have a logarithmic time. Namely, an n bit in-
put Kogge-Stone parallel prefix graph has a delay of log2 n as well as Ladner-Fischer, while
Brent-Kung adder has 2 log2 k−2 [23–25]. For the multiplication, the fastest algorithms reach a
computational time proportional to n log n. Mixed-level Toom-Cook implemented by D. Knuth
reaches O(n log n2

√
2 logn), the Schönhage–Strassen algorithm improves to O(n log n log log n),

and Fürer’s algorithm takes O(n log n22 log
∗ n) [26–28].

These two operations can be compared only when their implementation has been decided.
Until that time, they need to be regarded as two incomparable costs. As a consequence, the
cost of the DFTs cannot be expressed with a single number and therefore cannot be established
unambiguously which one has a lower complexity.

Additionally, the complexity itself also depends, other than on the algorithm, on the tech-
nology used (7 nm, 10 nm, 14 nm and so on) and the target IC (FPGA, ASIC, CPU, GPU),
among others. It is left to the designer to pick the best combinations depending on the cir-
cumstances. In this work, the actual implementation of adders and multipliers was left to the
synthesis tool.

The decision of which of these DFTs best suit the present context is postponed to Section
3.1.1, when the parameters of the system will be known, i.e. variables N, M, L, J, etc.

CM CA Note

Radix-2 N
2 lJ NlJ [29]

Radix-4 3
8NlJ

3
2NlJ [29]

Split-radix N
4 (l − 1)J NlJ [30]

SDFT KL L−N +K(L− 1) 2.2.1
SDFT revisited 2KL L−M +K(L− 1) 2.2.2
mSDFT K(3L+ 1) L(K + 1−N) 2.2.1

FFT-ZP J(M
∑l−k−1

n=0 2n + N
2 k) JNk 2.2.3

Table 2.1: Comparison of the DFT calculation methods studied that could potentially be used
in the implementation. N is the DFT order and M is the number of non-zero samples, with
M = 2k and N = 2l. For the SDFTs, L is the total number of samples present in the preamble,
for which the sliding operation is necessary; K is the number of bins (it may be less or equal to
N). For the standard DFTs, J is the number of times the DFT needs to be repeated to complete
the preamble.

2.3 DFT in data detection block

The DFT is also used in the data detection block. In this case it is used to identify whether
the received symbol is 0 or 1. The decision is made by comparing the magnitude of the two
bins determined in the synchronisation phase. M non-zero samples are zero-padded and sent
to a DFT block. However, in this case only two bins are of interest, bin low and bin high. In
this section, different methods that optimise the computation based on these conditions are
compared.

In the remainder of this section, N denotes the length of the DFT and M is the window size.
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Figure 2.14: Schema of the Goertzel algorithm.

2.3.1 Single bin DFT

A single bin of an N-point DFT can be calculated using Eq. 2.5. It involves N complex
multiplications and N-1 complex additions. Therefore, the computation cost in terms of real
operations is 4NRM + (4N − 2)RA.

In Section 2.2.2, it was shown that the single bin DFT can be improved in presence of zero-
padding. In this case the cost becomes equal to M complex multiplications and M-1 complex
additions.

2.3.2 Goertzel algorithm

The Goertzel algorithm was firstly presented in [31]; its derivation can also be found in [32].
With this technique it is possible to obtain individual terms of an N-point DFT. The advantage
is the reduced amount of operations. This is true as long as the number of bins of interest is
equal or less than log2N , otherwise the FFT outperforms this solution [32]. Only two bins out
of the 64 produced by the DFT were required in the data detection, and because of that the
previous condition is satisfied. Its schema is shown in Fig. 2.14. The algorithm is a two-stage
filter. The first one is:

s[n] = x[n] + 2 cosω0s[n− 1]− s[n− 2],

which produces an intermediate result. In the second one, the output of the previous stage
is used to compute the final value:

y[n] = s[n]− e−jω0s[n− 1],

where ω0 = 2πk
N and s[n] is the output of the first stage.

The first stage is repeated N times. The multiplication by the cosine factor is real, while the
input is complex, therefore two real multiplications are needed. The subtraction is equivalent
to a complex addition, as both the input and the value in the bottom register are complex.
Finally, the second addition is complex. Instead, the second stage requires a complex addition
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and a complex multiplication. The total cost is as follows

Ctot = N(4RA + 2RM ) + CA + CM = (4N + 4)RA + (2N + 4)RM . (2.11)

The Goertzel algorithm was improved by using the technique described in 2.2.2. The deriva-
tion is as follows. The starting point is the same as for the SDFT Eq. 2.6, with k′ = kM/N

and WM = e−j
2π
M .

Xk =
M−1∑
n=0

x(n)e−j
2πnk′
M

=
M−1∑
n=0

x[n]Wnk′
M

= W−k
′N

M

M−1∑
n=0

x[n]Wnk′
M

= W
−k′(N−M)
M

M−1∑
n=0

x[n]W
−k′(M−n)
M

(2.12)

We define

yk[m] :=

+∞∑
n=−∞

x[n]W
−k′(m−n)
M u[m− n] (2.13)

By combining Eq. 2.12 and 2.13

Xk = W
−k′(N−M)
M yk[m]|m=M (2.14)

Notice that

W
−k′(N−M)
M = ej

2π
M

M
N
k(N−M)

= e−j
2πM
N

k
(2.15)

Finally, from Eq. 2.14

Xk := e−j
2πMk
N yk[m]|m=M (2.16)

In Eq. 2.16, it can be seen that the new multiplication factor appears just before the output.
This operation can be avoided as it only affects the phase of the result and not the magnitude,
which is the only information needed by the algorithm. Therefore, such operation is not included
in the cost of the algorithm. Previously, the loop repeated N times, while now only M iterations
are needed.

Ctot = M(4RA + 2RM ) + CA + CM = (4M + 4)RA + (2M + 4)RM . (2.17)
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2.3.3 Comparison

In Table 2.2, a summary of the previously presented DFT is shown. In this case the operations
are all real. This conversion was necessary because the Goertzel algorithm contains a real
multiplication, which cannot be converted in term of complex operations.

For both the single bin DFT and the Goertzel algorithm, the improvement produced by the
optimisation indicated in 2.2.2, makes the cost become linear in the number of non-zero input
values (M) rather than the number of points of the DFT (N).

The decision of which of these DFTs best suit the present context is postponed to Section
3.1.2, when the parameters of the system will be known, i.e. variables N, M, L, J, etc.

RM RA Note

Single bin DFT 4N 4N-2 2.3.1
Single bin DFT rev. 4M 4M-2 2.3.1
Goertzel 2N + 4 4N + 4 2.3.2
Goertzel modified 2M + 4 4M + 4 2.3.2

Table 2.2: Number of real operations for the data detection, for a single bin and a N-point
DFT, where only the first M samples are non-zero. M = 2k and N = 2l.
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Chapter 3

Design, implementation, and
verification

In this chapter, the proposed implementation of the demodulation algorithm described in Section
2.1 is presented. This chapter opens by presenting implementation considerations regarding the
choice of the two DFTs 3.1. Following, the data representation will be discussed 3.2. Next,
the system architecture is explained by elaborating on the design blocks that compose the
demodulator 3.3. The chapter closes with a presentation of the tools used to verify the design
and the methodology adopted for the verification 3.4.

3.1 Implementation

3.1.1 DFT in the synchronisation block

In Section 2.2, different alternatives for the DFT in the synchronisation block were considered.
In the present section, their computational complexity will be revisited with defined parameters
of the system. The number of samples per symbol, indicated with M, is 8, which is also the size
of the window that is used in the SDFT and corresponds to the number of non-zero samples.
The number of DFT points, indicated with N, is 64, while the number of times a DFT has to
be repeated for a complete preamble, indicated with J, is 112. For the SDFTs, two additional
parameters were defined. The number of samples in the preamble, indicated with L, is equal to
119, while the number of bins that need to be computed, indicated with K, is equal to 64.

Table 3.1: Comparison of the DFT calculation methods defined in Table 2.1 when evaluating for
a full preamble. N=64, M=8, J=112, K=64, L=119, l=6, k=3. Input is a complex sequence,
all the operations are real.

RM RA Note

Radix-2 86,016 129,024 [29]
Radix-4 64,512 161,280 [29]
Split-radix 35,840 103,936 [30]
FFT-ZP 68,096 77,056 2.2.3
SDFT revisited 60,928 45,790 2.2.2

In Table 3.1 each implementation is reevaluated when considering the aforementioned pa-
rameters. Split-radix has the lowest number of real multiplications, while the revisited SDFT
has the lowest count of real additions. From this table it is evident that the Split-radix and the
SDFT are the best candidates to be implemented in the synchronisation block. To choose the
best one, the complexity of their structures are now considered. The Split-radix is a combina-
tion of FFT radix-2 and radix-4 [33]. Instead, the SDFT has a straightforward structure which

33



34 CHAPTER 3. DESIGN, IMPLEMENTATION, AND VERIFICATION

comprises of only four operations, which is easier to implement. At this point, the SDFT is the
best candidate to be implemented.

Before making a final decision, there is another aspect to be considered. In all the DFTs,
there are twiddle factors that equal to 1, -1, j, or -j. These values can be efficiently computed
by treating them as special cases. In Table 3.2 a summary is presented of the number of real
operations required to compute a full preamble, when simplifications are taken into account.
The FFT-ZP is the solution that best takes advantage of this simplification, while the SDFT
results to be the worst. While the SDFT has the lowest count of additions, it has the worst
count of multiplications, which is almost three times the number used by the split-radix or
two times the FFT-ZP. Because of this, the SDFT was discarded. The split-radix and the
FFT-ZP are the last two candidates. The second has one-third more multiplications than the
split radix, but less than half of the additions of the split-radix. In numbers, the price to save
50k additions is roughly 6k multiplications. As it was explained before, comparing these two
numbers is not possible until additional information is provided regarding the implementation
of these operations. Therefore, their structures will be compared to make a final decision. The
split-radix is a combination of radix-2 and radix-4, while the FFT-ZP is a simplified radix-2. In
conclusion, the FFT-ZP was deemed the best compromise in terms of ease of implementation
and computational cost.

Table 3.2: Comparison of the DFT calculation methods when evaluating for a full preamble.
N=64, M=8, J=112, K=64, L=119, l=6, k=3. Input is a complex sequence, operations are
real and trivial multiplications are removed.

RM RA Note

Radix-2 29,568 115,584 [33]
Radix-4 23,296 109,312 [33]
Split-radix 21,952 107,968 [33]
FFT-ZP 27,328 56,672 2.2.3
SDFT revisited 57,120 45,790 2.2.2

3.1.2 DFT in data detection block

In Table 2.2, different methods to compute a single-bin DFT were presented. Similarly to
what was done for the synchronisation block, these methods will now be revisited in light of
the defined parameters. The number of samples per symbol, indicated with M, is 8, while the
number of DFT point, indicated with N, is 64.

In Table 3.3 the cost for calculating a single bin DFT is reported in terms of real opera-
tions for each methods. The revisited Goertzel algorithm has 12 multiplications less than the
revisited single bin DFT, while this second one has 6 less additions. Since multiplications are
computationally more intensive than additions, the Goertzel algorithm was considered as the
best solution between the two.

Table 3.3: Number of real operations for the data detection, for a single bin and a 64-point
DFT, where only the first 8 samples are non-zero.

RM RA Note

Single bin DFT 256 254 2.3.1
Single bin DFT rev. 32 30 2.3.1
Goertzel 132 260 2.3.2
Goertzel revisited 20 36 2.3.2
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3.2 Data representation

3.2.1 Fixed-point representation

A fixed-point representation was chosen above floating-point. The latter has a lower power
efficiency, which is due to the additional hardware required to carry out operations like addition
and multiplication [34, 35]. Moreover, the dynamic range of the input data of the system was
limited between -100 and 100. This is in contrast with the practice of using floating-point,
which is more suitable when data with different order of magnitudes are present [34].

The fixed-point number representation is a data type used to represent real values. Its
advantage resides in the hardware. Operations like addition, multiplication, square root algo-
rithms and any other mathematical operation that can been used for integer arithmetic can
also be used for fixed-point values. This is the case because fixed-point representation is equal
to integer representation, except that the first is scaled by a predetermined factor. This factor
though, does not affect the actual computation, but is only used to interpret the results. An
example to clarify this concept will be presented later.

Similar to integers, fixed-point numbers can be signed or unsigned. Besides, signed values
can be achieved either with two’s complement or signed magnitude. Consider an unsigned N-bit
integer value, its binary representation is given by

x =

N−1∑
i=0

bi2
i, (3.1)

where bi is the ith bit. Each bit has a weight given by its position, i.e. bit ith has weight 2i. The
weights in this case are only powers of two, between 1 and 2N−1. With fixed-point, also negative
powers of two are used, which make it possible to represent real values. For the remainder of this
thesis, (i|f) denotes a fixed-point number in which i indicates the number of bits used for the
integer part and f for the fractional part. For example, given an unsigned number represented
in binary as (10010110)2 and FP representation (5|3), then the bit weights are between 2−3

and 24, which gives the value
∑5−1

i=−3 bi2
i = 18.75. Another way to obtain the same result is

by interpreting the binary representation as an integer in base 10, (10010110)2 = (150)10, and
then multiplying it by the weight of the LSB, which is in this case 2−3. As expected, the result
is the same 150 ∗ 2−3 = 18.75.

When operating with two values that use different FP representations, the user needs to
keep in mind the representations in order to interpret correctly the result. For example, let
a have FP (ia|fa) and b have FP (ib|fb). When adding these two values, the one with the
smallest fractional part needs to be adapted to the other. Assuming fa > fb, then the addition
is obtained as a+b∗2fa−fb . In this case the FP representation of the result is given by a because
of the bigger fractional part.

The multiplication is instead easier. Let c be the result of a ∗ b, then its FP representation
is (ia + ib|fa + fb). In this case the multiplication can be immediately carried out in integer
arithmetic and later the result can be interpreted as a real value by dividing it by 2fa+fb .

This shows that, except for a shifting operation in the addition, the two operations are the
same both in integer arithmetic and in fixed-point. Therefore, the hardware to compute the
result can be the same. Similar reasoning applies for division and square root.

3.2.2 Fixed-point optimisation

There are three aspects in digital design that depends on the word length. Arithmetic units
need to scale with the size of the operands. For example, the integer multiplication of the Altera
IP for integer arithmetic requires 82 LUTs for 8 bit signed operands. The number becomes 294
and 1106 for 16 and 32 bit, respectively. This means that more interconnections inside the
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Figure 3.1: Block diagram of the demodulator.

processing unit need to be driven in order to obtain the result, which in turn leads to higher
power consumption. Interconnections are not only present inside an arithmetic unit, but they
serve to move data between different blocks. Each wire acts as a capacitor which drains energy
when charged and discharged. As such, the total energy consumption is proportional to the
number of interconnections, which is dependent on the data word length.

Registers are needed where intermediate results need to be stored. These elements retain
information across subsequent clock cycles. It is in fact the system clock that dictates the
frequency at which the content can change. Whether the content of a register changes or not,
they still consume energy. Therefore, the higher the number of registers in use, the higher the
energy consumption. However, the size of a register is strictly related to the data representation,
hence another reason for keeping the word length as small as possible.

The third aspect is the precision of the computation. In the present algorithm there are
many values that depend on the sine and cosine functions. The more precise the results need
to be, the more the number of digits have to be stored. This translates to larger word lengths,
with all the consequences described earlier. Therefore, it is important to maintain the precision
just high enough to obtain correct results.

In conclusion, motivated by these three reasons, the next section will present the approach
adopted to determine the FP representation. The procedure will strive to obtain word length
as small as possible, while ensuring correct results.

3.2.3 Determination of the optimal fixed-point representation

The mathematical model of the demodulator was available as a MATLAB script. It ran-
domly generates a data packet, simulates its transmission through an AWGN channel, then
the demodulation algorithm takes place. Finally, a BER curve is produced by comparing the
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transmitted bits with those actually decoded. The system was tested for 14 different levels of
noise, Eb/N0 = 1, 2, ..14dB, with infinite data precision, that is by using the MATLAB default
data type which is 64 bit floating-point. The resulting curve was then used as the performance
measure for fixed-point optimisation, which will be referred from now on as the reference curve.

Optimal fixed-point representation of a certain entity of the system means the (i|f) combi-
nation that is as small as possible, while the results are still correct. To determine whether the
results were correct or not, the BER curve generated by each FP representation was compared
against the reference.

The entities for which the FP representation was determined, are shown in Fig. 3.1 with red
borders (also for the ADC, which is not depicted). The determination was carried out as follows.
The input and output values of the studied block were recorded while running the MATLAB
script. The biggest absolute values were used to have a first, rough estimation of the required
word lengths. Next, a formal reasoning was adopted to determine the correct representation
necessary to avoid overflow. For example, squaring an n bit value requires 2n bit for the output;
adding two n bit values require n+1 bit for the output, and so on. Gathering these information,
input, output, and formal values, was vital because the number of suitable FP representations
is infinite. Instead, with this approach a general idea of where to start searching for the best
(i|f) combination was obtained.

As the MATLAB data are in floating-point, a conversion function to fixed-point was needed.
The conversion function is as follows.

1 value = s i gn ( va lue ) ∗mod( f l o o r ( abs ( va lue ) ∗2ˆ f ) , 2ˆw) /2ˆ f ;
2

where f is the number of bits for the fractional part, w the word length, and value is
the data that is being converted. This conversion function can be applied after every basic
operation (addition, multiplication, square root). For example, if the following equation needs
to be evaluated f(x) = 2x2 − 3x + 7, the FP conversion function can be placed at different
stages of the computation: on the input, on the output, after computing 2x2, or after 2x and
then again after −3x+ 7, after each multiplication, or any other combination. The trade off is
between a very close representation, when a lot of conversions are executed, and a fast execution
time of the script, when a few conversions are used.

The determination of the FP representation was done for each block separately. Initially,
all blocks were set to use infinite precision. When a representation was obtained for a block,
the following one were simulated while maintaining the FP of the previous equal to the one just
determined, while the subsequent were still left with infinite precision. To clarify, an example is
now presented. With reference to Fig. 3.1, let us take into consideration only FFT-ZP, bank of
magnitudes (BOM), and bank of adders (BOA). Initially all three are given FP +∞. Then the
FFT-ZP FP is determined. At this point, BOM and BOA still have +∞, while FFT-ZP has
FP (a|b). In the next step, the FP for BOM is determined while maintaining (a|b) for FFT-ZP
and +∞ for BOA. After the determination, BOM has a defined FP (c|d) and the procedure can
finally be repeated once more for the BOA block.

This sequential determination was done for the synchronisation and detection block sepa-
rately. All the FP were then put all together in (Section 3.2.12). In this final step, only some
adjustments on the various FP representations were needed in order to obtain an acceptable
BER.

In the next section, the ADC will be modelled. Following, for each block of the demodulator,
the use of the conversion function will be explained and the determination of the smallest FP
representation will be presented.
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Figure 3.2: Comparison of different ADC resolutions.

3.2.4 Modelling the ADC

The precision of the digital input to the demodulator is determined by the ADC. It was necessary
to model it in order to determine the minimum number of bits necessary to represent the
input values, while maintaining the BER as close as possible to the reference. As the input
was complex, it was assumed that two ADCs were present, for the real and imaginary parts.
Similarly to fixed-point optimisation, the model of the ADC was tested in the MATLAB script.

The ADC used uniform quantisation with mid-riser characteristic. The values exceeding
the threshold were clipped. The threshold, or saturation level, varied dynamically and was set
equal to the square of the RMS of the incoming signal.

The results are shown in Fig. 3.2. For bit resolutions between 2 and 4, the distance from
the reference curve is noticeable. Instead, for 5 and 6 the difference is relevant only by zooming
in at the highest Eb/N0 levels, nonetheless it is still relevant. Finally, the curves 7 and 8 bit are
both very close to the reference. The latter was chosen as a conservative decision.

This part of the design was carried out for the sake of completeness. Additional research
should be performed in order to determine whether a lower amount of bit could have been used.

3.2.5 FP data representation - ADC

Data produced by the ADC are integer values. Generally speaking, all the data processed by
the hardware are integers. This is the case because, as it was explained earlier, fixed-point
and integer values are two faces of the same coin. Their difference is a scaling factor used to
interpret them.

The reason for viewing them as fixed-point, rather than as integer, is due to the fact that
the MATLAB script produced results in floating-point. Therefore, when comparing the results
from the hardware against those from the script, they had to be converted to integer or real
values and in either case a conversion was needed.

In this section we will start by interpreting the output of the ADC and trying to find the
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Figure 3.3: Comparison of BER results while varying word length and number of bits dedicated
to the integer part for the ADC block.

smallest FP representation that also maintains an appropriate BER. According to simulations
the maximum value of the ADC output was 9.0724 and therefore 4 bits were expected to be
enough for the integer part. In Fig. 3.3 simulations with different representations are presented.
Clearly, not dedicating enough bits for the fractional part leads to a loss of data, as curves (8|0),
(7|1), and (6|2) show. Curves (5|3) and (3|5) slightly move away from the reference for high
Eb/N0. Therefore, representation (4|4) was chosen.

3.2.6 FP data representation - FFT-ZP

For the FFT-ZP block, the FP conversion function was placed in multiple positions as indicated
with red blocks in Fig. 3.5. It was invoked on the input, for each twiddle factor and after each
addition and multiplication operation; however, it was not placed after intermediate operations
that arose with complex multiplications.

The maximum absolute value of all real and imaginary parts of the input was 7.25, and 26.95
for the output. Hence, at least 5 bits were necessary for the integer part. An upper bound on
the number of bits for the integer part can be obtained by considering the worst case in which
the inputs of the FFT-ZP all have the largest possible value, both for the real and imaginary
parts. In this case, the output of the FFT-ZP is 73.61, which requires 7 bits.

In Fig. 3.4, the results for different FP combinations are shown. Curve (5|7) matches the
reference curve completely. For (4|4), (5|5), and (6|6), the BER is noticeably higher than the
reference. Representation (3|8) slightly deviates from reference curve for Eb/N0 more than 7 dB.
Finally, curves (4|8) and (5|7) are fairly close to the reference, except the first that is marginally
higher at Eb/N0 larger than 13 and 14 dB. Therefore, the combination (5|7) is chosen for the
FFT-ZP block.
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Figure 3.4: Comparison of BER results while varying word length and number of bits dedicated
to the integer part for the FFT-ZP block.
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Figure 3.5: Butterfly used in the FFT-ZP. The red blocks indicate the position of the conversion
function.
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3.2.7 FP data representation - Magnitude (synchronisation)

The magnitude operation is composed by three steps; square of the operands, addition, and
square root. If the operands are n bit, after the squaring, 2n bits are needed, 2n+1 after the
addition and ceil((2n+ 1)/2) after the square root.

The maximum absolute value recorded at the input and output were 26.95 and 26.07 re-
spectively. Therefore, 5 bits for the integer part should suffice. However, as it was explained
before, intermediate values may require up to 2 ∗ 5 + 1 = 11 bit dedicated to the integer part to
avoid overflow. Therefore, it was expected that the final result may be contained in a register
of size between 5 and 11.

When simulating in MATLAB, the magnitude of a complex value can be simply obtained
by invoking the abs() function. The problem is that the intermediate operations are hidden,
which makes the intermediate values impossible to approximate. Therefore, the built in function
was not used and a dedicated one was made in which the squaring, addition, and square root
operations were all separate. The FP conversion was then placed between each operation as
well as on the input and output of the magnitude block.

In Fig. 3.6, the results are shown. Curve (10|0) is not suitable, which also suggests that the
fractional part should be maintained. Curve (6|3) indicates that using less than 7 bit for the
integer part is not correct. Finally, (8|3) and (7|2) are very close, and therefore the second is
chosen for the reduced number of bits.

3.2.8 FP data representation - Accumulation

This block corresponds to Bank of adders and Accumulation registers, with reference to Fig.
3.1. The accumulation phase sums incoming data from the magnitude for seven times. This
means that to avoid overflow three additional bits are required. The maximum absolute value
on the input is 26.07 which requires 5 bits for the integer part. According to simulations, the
maximum output value is actually 96.238, which suggests that 7 bit should suffice for the integer
part. The FP conversion function was executed after each addition and on the incoming data.

In Fig. 3.7, simulation results are shown. Curve (5|7) shows that 5 bit for the integer part
is not enough. Instead, no bit for the fractional part is also not a good decision, as shown by
curve (7|0). Finally, the remaining curves are all very close to the expectation. Therefore, curve
(6|2) was chosen.

3.2.9 FP data representation - Selection

This block corresponds to R, with reference to Fig. 3.1. In this block the delaysel and the two
bins, bin low and bin high, are determined. The procedure is as follows. Let x and y be two
arrays. The maximum value, and its position in the array, is searched for both. Let xmax and
ymax be these maximum values and xpos and ypos be their respective index position in their
corresponding arrays. Then, the value Ri for delay i calculated in this block is obtained as
Ri = xi,max − xi(yi,pos) + yi,max − yi(xi,pos). The maximum between the Ri dictates the delay,
i.e. delaysel = i.

Regarding data representation, if both maximum values, xmax and ymax, require n bits
to be represented, then the final value R needs n+1 bits. This can be understood by noting
that x(ypos) and y(xpos) are values smaller than xmax and ymax respectively. Therefore, the
differences are always representable with n bit. Finally, only the addition of the differences may
produce overflow and therefore n+1 bit are required.

The FP conversion was applied on the input, after the intermediate subtractions, and on the
final R value. The maximum input and output were 96.238 and 102.56 respectively, for which
7 bits should suffice. In the worst case, as previously explained, 8 bits might be required.
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Figure 3.6: Comparison of BER results while varying word length and number of bits dedicated
to the integer part for the magnitude (synchronisation) block.

In Fig. 3.8, the results are shown. Curves with integer bit 4, 5 and 6 are not suitable. Curve
(5|0) performs well on high Eb/N0, but bad on the low side, while curve (6|0) behaves in the
opposite way. Nonetheless, both were discarded. Instead, curves with 7 bit for the integer part
perform equally well suggesting that bit for the fractional part does not influence. Therefore,
curve (7|0) was chosen.

3.2.10 FP data representation - Goertzel algorithm

In the Goertzel algorithm there are two additions and one multiplication that are repeated 8
times. Each of these operations require an additional bit. After this loop stage, three more
additions are needed. In total there are 3 ∗ 8 + 3 = 27 operations in the algorithm, leading us
to add ceil(log2 27) = 5 bits.

The maximum values recorded and the input and output of the Goertzel block were 8.9047
and 23.998 respectively. Therefore, 9 bits for the integer part should suffice when also consid-
ering the extra 5 bits previously indicated. The FP conversion function was invoked on all the
twiddle factors, on the input, and after each arithmetic operation.

The results are shown in Fig. 3.9. The (7|0) curve suggests that leaving out the fractional
part drastically hinders the correct detection of the data packet. Also 3 bit for the fractional
part are not enough according to curves (7|3) and (5|3). Finally, (7|5) is picked as a conservative
decision.

3.2.11 FP data representation - Magnitude (detection)

The discussion regarding the magnitude data representation presented for the one in the syn-
chronisation block Section 3.2.7 applies for this case as well. The maximum values that were
recorded were 23.998 and 25.572 for the input and output respectively. Therefore, considering
intermediate operations it is expected that 11 bits will be enough for the integer part.



3.2. DATA REPRESENTATION 43

0 2 4 6 8 10 12 14

E
b
/N

0
 [dB]

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

B
E

R

reference

5|7

6|2

7|4

7|0

8|4

Figure 3.7: Comparison of BER results while varying word length and number of bits dedicated
to the integer part for the accumulation block.
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Figure 3.8: Comparison of BER results while varying word length and number of bits dedicated
to the integer part for the selection block.
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Figure 3.9: Comparison of BER results while varying word length and number of bits dedicated
to the integer part for the Goertzel block.
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Figure 3.10: Comparison of BER results while varying word length and number of bits dedicated
to the integer part for the magnitude (detection) block.
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Results are presented in fig. 3.10. Removing the fractional part is not appropriate as
shown by curves (7|0) and (10|0). FP (5|4) shows that overall the BER increases for all Eb/N0

suggesting that 5 bit for the integer part are not enough. In contrast with the expectation, 6
bit seems to be enough. Combination (6|2) is therefore picked as it has the smallest number of
bits in use.

3.2.12 FP data representation - Putting it all together
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Figure 3.11: Comparison of BER results while varying FP representation for different blocks.

FP1 FFT-ZP
Magn.
(sync)

Accumulation Selection Goertzel
Magn.
(det.)

RUN 1 (4|4) (5|7) (7|2) (6|2) (7|0) (7|5) (6|2)
RUN 2 (4|4) (5|7) (8|3) (6|2) (7|0) (7|5) (6|2)
RUN 3 (4|4) (5|7) (9|3) (7|2) (7|0) (7|5) (6|2)
RUN 4 (4|4) (5|7) (9|3) (8|3) (8|1) (7|5) (6|2)
RUN 5 (4|4) (5|7) (9|3) (8|3) (8|1) (7|5) (7|2)

Table 3.4: FP combination for the whole system used in Fig. 3.11.

To choose a proper FP representation for all blocks, the FP representations for the synchro-
nisation and detection blocks were simulated together. The results are shown in Fig. 3.11. The
FP combinations that were tested are listed in Table 3.4, bold text indicates which block FP
representations were changed from the previous run.

Both the FFT-ZP and the Goertzel blocks never change. That is because their implemen-
tation did not allow for an easy modification. Therefore, when their FP representations were
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determined, a conservative decision was made and kept unchanged. Instead, the ADC FP
representation was deemed to be appropriate because of its simplicity.

The final search for the correct combination was rather difficult. This is because it was not
easy to establish which block’s FP representation needed to be changed. Therefore, a trial and
error approach was adopted in which a few bits were changed between each run. Moreover, each
simulation took a considerable amount of time, about an hour. Because of that, an exhaustive
search was not possible.

RUN 1 corresponds to the combinations that were picked for each block. Its curve shows
that it is not suitable, as well as for RUN 2. RUN 3 improves the previous two cases, but it is
still noticeably far from the reference. RUN 4 and RUN 5 show appropriate results. Between
the two, RUN 4 was finally adopted because it uses 1 bit less in the magnitude of the detection
phase.

3.2.13 How many bits were saved?

Figure 3.12: Comparison of the required number of bits and the actual amount that was used.
The values outside the squares indicate the expected amount (out of parenthesis), values out of
the squares, but in parenthesis indicate the amount obtained using the FP optimisation. The
values inside the squares indicate the additional amount of bit that each block introduces.

This section will discuss the amount of bits that were saved by using the FP optimisation
method. The comparison will be done against a naive approach. With this method it is only
of interest to avoid overflow. The values will be obtained analytically, but will only account for
the integer part, while the FP representations also include the fractional one.

Given to an N-point FFT block n bits input, in the worst case log2N bits need to be added
on the output to avoid overflow, one bit for each stage. That is because of the additions that
require and additional bit, while multiplications do not influence as the twiddle factor values
are always between -1 and 1. For the FFT-ZP the number of addition stages are only three.
Therefore, at the output of this block n+3 bit are needed.

The magnitude operation that follows is comprised by three internal operation. The squaring
of the operands, which requires 2n bits, addition, which adds one bit, and square root, which
reduces the number of bits to half (rounded up). Therefore, given n bits input, the output
requires ceil((2n+ 1)12) bits, or in other words one additional bit compared to the input.

Following the magnitude, there is an accumulation phase, which is repeated 7 times. There-
fore, ceil(log2 7) = 3 additional bits are introduced by this block. Finally, as explained in
Section 3.2.9, an additional bit is required to avoid overflow in the R block.

For the detection part, the determination of the exact number of bits, when the input is n
bit, is as follows. The number of bits added by the Goertzel algorithm is 5, which was explained



3.3. SYSTEM ARCHITECTURE 47

Figure 3.13: Schema of the representation of complex data in hardware.

in Section 3.2.10. Following this block, a magnitude is present which requires an additional bit
for the same reason as indicated above.

In Fig. 3.12, a schema that recaps the expected amount of bits and the actual amount
that were used is portrayed. The expected amount, i.e. values obtained analytically, are out
of the squares and outside parenthesis. Instead, the number inside parenthesis indicates the
word length obtained with the FP optimisation. The values inside the squares, preceded by
a plus sign, indicate how many bits that block introduces. It can be seen that using the FP
optimisation only the FFT-ZP waste 1 bit, while the following magnitude equals the expectation.
Instead, all the other blocks use a reduced word length, which indicates that bits were saved
compared to the naive approach.

3.3 System architecture

In this section, the architecture of the system will be presented. Firstly, the way complex data
were encoded will be shown. Afterwards, the organisation of the blocks that compose the system
will be presented. For each one, the state machine (if present and non trivial) and the block
interface will be shown. In the interface, the term ”slv x” indicates a std logic vector of x bits.
With ”complex12” it is indicated a complex data type of which its real and imaginary parts
are 12 bits each, where for the FFT-ZP the FP is (5|7) while for Goertzel (7|5). Signals that
expose just the name, e.g. ”done” or ”start”, are intended as single bit wires. For all the state
machines, state S IDLE or IDLE indicates the initial state at reset time.

3.3.1 Complex data implementation

A complex value is made of four separate parts. The magnitude of the real and imaginary
parts and their signs. The magnitude and sign can be represented together, by using two’s
complement, or separately, with sign magnitude. In this design, the left part contains the real
part of the complex number, while the imaginary one is stored in the right side, as depicted
in Fig. 3.13. From the scheme it is also clear that a signed magnitude representation was
used. The reasoning behind this choice is as follows. In the FFT-ZP block, there are numerous
multiplications by -1, j, and -j. Because signed magnitude is used, sign inversion is a power
efficient operation as it is equivalent to inverting one single bit. Instead, if two’s complement
was used, the sign inversion would be obtained by inverting each bit and by adding one to the
result, which is a more complex operation 1. The downside of using signed magnitude is the
additional logic required to compute the addition operation. In Section 4.3.1, it will be shown
that from an energy point of view, the trade off between an easier multiplication by -1 surpasses
the downside of a more complex signed addition.

3.3.2 Data acquisition

The Finite State Machine of this module and its interface are presented in Fig. 3.14. This
module collects samples incoming from the ADC and passes them first to the synchronisation

1The idea of using the signed magnitude inside the FFT, has been firstly proposed by Oguz Meteer, who is a
Ph.D. student at the same research group of the author.



48 CHAPTER 3. DESIGN, IMPLEMENTATION, AND VERIFICATION

Figure 3.14: Finite state machine and interface of the Data acquisition module.

and then, to the Data detection. Its controller is straight forward. Initially, the Preamble
detector (which corresponds to the window synchronisation phase) is enabled. As soon as the
delaysel and bin high and bin low have been identified, the data detection block is enabled.

This module receives the delaysel signal generated by the preamble detector. It indicates
how many samples were acquired, which do not belong to the preamble. This information
is then passed to the Data detection - data acquisition block. It discards a certain amount of
samples that lies between the preamble and the data packet, in order to balance those wrongfully
acquired.

Preamble detector - data acquisition

The role of this block is to store eight samples at a time and pass them to the Preamble
detector module. This operation is repeated 112 times, that is as many samples that constitute
the preamble (eight for each of the fourteen symbols).

This module was implemented as a circular buffer of size 8. In fact, each window differs from
the previous by one sample. Therefore, the oldest sample of the previous window is replaced
with the newest. Two indices, head and tail, are maintained so that the samples can be passed
in the correct order.

Data detection - data acquisition

Similarly to the previous module, this block also has to pass eight samples at a time to the
Data detection unit. Its FSM and interface are depicted in Fig. 3.15. When the first sample
arrives, the delayselCounter loads the value from the input port delaysel. As long as its
value is different from zero, it will make the controller wait on S DELAYSEL WAIT. This
way, the samples that were previously acquired, but not actually belong to the preamble, are
compensated by discarding ”guard samples” that lie between the last symbol of the preamble
and the first one of the data packet.

In Fig. 3.16 an example is shown where the preamble is four symbols, each symbol is
composed by four samples, one guard symbol is used, and two initial samples are wrongfully
acquired. Window 3 is the one that properly overlaps, which indicates a delaysel of two samples.
This information is only available when the last window, window 4, has been processed. When
window 4 has been processed, it can be seen that delaysel+1 = 3 samples need to be discarded
before the actual payload is received. Instead, if three samples were wrongfully acquired at the
beginning, then delaysel would be 3 and the number of samples to be skipped 4.
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Figure 3.15: Finite state machine and interface of the Data detection - data acquisition module.

Figure 3.16: Packet composition when two samples are wrongfully acquired.
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3.3.3 Preamble Detector

This entity is in charge to properly aligning the window to the samples stream. Its output are
the delaysel and the indication of the two bins, bin high and bin low. As mentioned before,
they are used in the detection phase.

There are five steps in the preamble detection: DFT, an accumulation phase (carried out
by the even odd accumulator module), a maximum search (done by MAXs), a computation of
a value R (of which the unit R takes care of), and finally finding the maximum of the R values
which determines both the delay and the bins high and bin low (the module responsible is Max
of Rs or MOR).

Even/odd accumulator

The diagram of this unit is presented in Fig. 3.17. This unit is composed of four sub units: the
FFT-ZP module (presented in 3.3.5), a bank of magnitude, a bank of adders, and a bank of
registers. The initial eight samples are passed to the FFT-ZP, which produces a 64-point DFT.
The results, which are complex values, are passed to a bank of magnitudes. It is a collection of
64 units that compute the magnitude of a complex number. Subsequently, the 64 magnitudes
are accumulated in a two-dimensional array. The indices of this array are given by the parity
of the current symbol number (even or odd), and by the current window delay, which spans
between 0 and 7. Each register (eight for even and eight for odd symbols) accumulates values
incoming from the bank of magnitudes for seven times, that is half of the number of symbols
in the preamble (seven odd symbols and seven even symbols). When all the accumulations are
done, these 16 registers are passed to the following unit, MAXs.

MAXs

There are eight instances of this unit, one for each delay. The input of each one, is a row of
the array shown in Fig. 3.17, that is two arrays of 64 values each, one called ”odd”, the other
”even”. They are passed to the respective sub units present in each MAXs, called max finder64,
as shown in Fig. 3.18. The output of the max finder64 are the maximum value of each array
and their indices in their respective array. These indices are then passed to the other unit, which
outputs the element corresponding to these indices in the other array. Finally, four values are
the output of each MAXs unit.

R and Max of Rs

There are eight R modules, one for each delay. Each module receives the four values produced
by the corresponding MAXs and produces the result as follows. With reference to Fig. 3.18,
the result R is given by (max odd− val index even) + (max even− val index odd).

The eight R values produced in the previous blocks are the input of the module Max of Rs
(MOR). This unit simply indicates which of these eight values is the biggest. Because each R
values correspond to a specific delay, the maximum among them indicates the delaysel signal,
previously mentioned in Section 3.3.2. Additionally, the output of the corresponding MAXs
indicates also the indices of the max even and max odd. These values correspond to bin low
and bin high. The smallest of the two becomes bin low, while the other bin high.
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Figure 3.17: Schema of Even odd accumulator module.

Figure 3.18: Schema of MAXs module.
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3.3.4 Data detection

When the preamble has been detected and the delay determined, together with bin low and
bin high, the data detection phase starts. There are three steps in order to detect the received
symbol. Firstly, the Goertzel algorithm is used to determine the complex values of bin low
and bin high. Two Goertzel blocks are in use, so that the computation of the two bins is done
in parallel. Secondly, their magnitudes are determined. Follows a comparison of these two
magnitudes, which determines whether the received bit is 0 or 1.

Goertzel

The input is the index of the bin that needs to be calculated. Moreover, the eight samples
needed to compute the bin are passed one by one on the input port xn. The states of the FSM,
shown in Fig. 3.19, are reported in the following listing as comments. They indicate which
operations are carried out in each phase.

1 % bin i s the input f o r which the a lgor i thm i s c a l c u l a t e d
2 N = 64 ;
3 M = 8 ;
4 w0 = (2∗ pi ∗bin ) /N;
5

6 cos term = 2∗ cos (w0) ;
7 WkN = exp(−1 i ∗w0) ;
8 f a c t o r = exp(−2 i ∗ pi ∗bin /M) ;
9

10 s0 = 0 ;
11 s1 = 0 ;
12 s2 = 0 ;
13

14 f o r n = 1 :N
15 % SM1
16 s0 = x (n) − s2 ;
17 s2 = cos term ∗ s1 ;
18

19 % SHIFT
20 s0 = s0 + s2 ;
21 s2 = s1 ;
22 s1 = s0 ;
23 end
24

25 % MUL1
26 s0 = cos term ∗ s1 ;
27 s1 = s1 ∗WkN;
28 % SUB1
29 s2 = s0 − s2 ;
30 % SUB2
31 s2 = s2 − s1 ;
32 % MUL2
33 % s2 = s2 ∗ f a c t o r ;
34

35 output = s2 ;

The multiplicands, cos term, WkN, and factor, are precomputed and stored in a look-up-table,
which are indexed by the input. The multiplication by the factor is commented and its corre-
sponding state in the FSM is cancelled. It was explained in Section 2.3.2 that such multiplication
is not useful as long as the phase is not needed. In fact, in the present case, only the magnitude
is necessary, therefore the operation is avoided.
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Figure 3.19: Finite state machine and interface of the Goertzel module.

3.3.5 FFT-ZP

The FFT-ZP module implements the algorithm described in Section 2.2.3. It is composed by
three transfer stages and three normal stages, as shown in Fig. 3.20. The first stage is composed
by transfers and multiplications by twiddle factors. The other three instead, implement the
butterfly structures. Multiplication by the trivial factors 1, -1, j, -j, were treated separately.

The twiddle factors are precomputed as they remain always the same throughout different
computations. Intermediate registers were used to reduce the occurrence of glitches [36], which
are a cause of power waste. The FFT-ZP has been implemented as a fully parallel operation.
This way, multiple operations can be carried out simultaneously. The advantage is the possibility
to relax the system clock. This can be understood as follows. In Section 4.1 it will be shown
that if the algorithm requires a large amount of cycles, then the system clock needs to be faster
than the ADC clock by a factor proportional to the number of these cycles. Therefore, it is in
the interest of a power-efficient solution to compute in as little number of cycles as possible.
If the computation of a single butterfly can be executed in time T1, then N butterflies need
to be computed, using sequential computation, in N cycles of period T1 each. Instead, if N
butterflies are computed in parallel, it is likely that the period required is T2 ≥ T1, because
of the additional logic that might extends the longest combinational path. Nonetheless, it is
unlikely that T2 > NT1. Therefore, with the parallel approach, the number of total cycles is
less than the number used in a sequential solution. The downside of this choice is the additional
resources that are required.
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Figure 3.20: FFT-ZP schema.
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3.4 Verification and tools

3.4.1 Verification

Two types of tests were used to verify the correctness of the design: functional tests through
simple testbenches, and automated tests with input generation/output verification in MATLAB.
Testbenches were manually written in order to verify the correctness of each module. The input
provided covered a few cases, especially corner cases. Nonetheless, they were by no means
intended for an extensive coverage. They were only supposed to provide a regression test to
verify that new features did not break the existing code.

A more thorough verification was carried out using MATLAB. Recall that the demodulator
was available as a script and each implemented block had a counterpart in that script. The
input was generated using it and was then passed to the hardware implementation which was
subsequently simulated with QuestaSim. Following, the obtained output were saved and passed
back to the script. Finally, the script produced the BER curve. With this approach, had the
hardware implementation been done incorrectly, the BER curve would have showed it. This
procedure was repeated for the most important blocks, namely FFT-ZP, Goertzel, the complete
synchronisation block, the complete data detection one, and finally for the whole preamble.

VUnit framework VUnit is an open source unit testing framework for VHDL and Sys-
temVerilog. It helps to realise continuous and automated testing. In this context, VUnit was
used to parallelise the execution of the most time-consuming testbenches. To give an idea, the
simulation of the complete system for Eb/N0 ranging in 1, 2.., 14 dB and for 50 packets, each
one composed by 128 symbols, would have taken approximately 311 hours (or 13 days). Instead,
by using VUnit, different testbenches can be dispatched to different cores of the CPU, which
is a feature that QuestaSim does not offer. The verification of different packets is independent
from one another, also with respect to different level of noise. Hence, it was possible to execute
each simulation in parallel. With this approach, a test of roughly 800 packets, each composed
of 128 symbols, and Eb/N0 in 1, 2.., 14 dB, less then 24 hours were needed, which is thirteen
times faster than the non-VUnit case.

3.4.2 Tools

For this project, VHDL version 2002 was used. The reason for the language choice was related
to the author’s previous experiences, while the version is due to the fact that few compilers fully
support the 2008 standard. The chosen FPGA vendor was Intel Altera because also in this case
the author had a preexisting knowledge on how to obtain power simulations.

All the arithmetic operations were implemented by using Altera’s IP. Namely, addition,
multiplication, and square root were the ones required for the algorithm. Of these operations,
multiple instances were created to accommodate the different sizes of the operands. All the
IP were generated without allowing the use of DSP. The reason is that the whole project is
implemented for an FPGA, but only for prototyping reasons. It may actually be moved in the
future to an ASIC for which DSPs are separate resources, in contrast with FPGA that already
come equipped with them.
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Chapter 4

Simulation and results

In this chapter, various results regarding the design are presented. Firstly, the admissible clock
frequencies for the design are shown in Section. 4.1. Afterwards, the BER of the implemented
system is reported in Section 4.2. Subsequently, the power results are given in 4.3. In this
section, the advantage of using signed magnitude over two’s complement is demonstrated, the
power consumption of the whole demodulator is presented, and a power comparison of the
proposed FFT-ZP, Goertzel algorithm, and a standard FFT is provided. Finally, the chapter
concludes with Section 4.4 in which the resource usage of the design are elaborated.

4.1 Clock frequencies

The clock is a critical component of the design. If the frequency is higher or lower than the
admissible range, the system does not operate as expected. When it is too high,, the clock
signal arrives too quickly at the registers while the actual data that need to be stored may not
have reached its input. To avoid this, it is necessary to identify the longest combinational path,
also called critical path. The inverse of the time that a signal takes to cover this path indicates
the maximum frequency supported by the circuit. This information is provided by the synthesis
tool, which is Intel Altera Quartus in this case. The reported maximum frequency Fmax for the
whole demodulator is equal to 5.36 MHz.

Usually, the maximum frequency is the only constraint that the clock needs to meet. In
our system though, it is also necessary to determine the minimum frequency Fmin. In fact,
the ADC acquires samples at a certain speed, which are then passed to the demodulator. This
means that any possible operation that involves a sample needs to be completed before the
next sample is received, otherwise extra registers must be added for data storage. The slowest
operation of the algorithm occurs at the end of the synchronisation phase, when the two bins
are determined together with the delay. These steps require a total of 35 cycles. Therefore, the
relation between the ADC frequency (ADCf ) and the system clock frequency (CLOCKf ) is:

CLOCKf

ADCf
≥ 35. (4.1)

The system was tested with different ADC frequencies and the power results of each scenario
is presented in Section 4.3.3. They are 800 Hz, 8 kHz, and 80 kHz. When considering the number
of samples per symbol (M=8) these values correspond to data rates of 100 bps, 1 kbps, and 10
kbps, respectively. For each one, the slowest usable clock is 28 kHz, 280 kHz, and 2.8 MHz.
The maximum allowed frequency of the ADC can be derived using Eq. 4.1. Knowing that the
design supports a maximum clock of 5.36 MHz, then the highest ADC frequency is 153,142 Hz.

57
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Figure 4.1: BER curve for the FFT-ZP block simulated in QuestaSim.

4.2 BER in hardware

The functional correctness of the system is now presented. The reference BER curve produced
by the MATLAB script, described in Section 3.2.3, is compared against the BER curve obtained
by simulating the hardware implementation, as it was explained in Section 3.4.

The tests carried out for the FFT-ZP, for the Goertzel algorithm, and for the whole system
are here reported. The reason for simulating the FFT-ZP and the Goertzel algorithm is that
their complexity did not allow for an easy modification of their designs. In other words, had
the system been tested only when the whole system was complete and had it resulted in a non
satisfactory BER, changing the FP representation of those two blocks would have proven chal-
lenging. Therefore, immediately after their implementation, an extensive amount of tests were
carried out. The BER curves for the FFT-ZP and Goertzel algorithm are shown respectively in
Fig. 4.1 and Fig. 4.2. Both tests show that the implementation and the choice of the FP were
in fact correct. The FFT-ZP was tested for 50 packets, with a signal to noise level Eb/N0 in
range 1, 2,.. 14 dB, and each packet was 1024 symbols (preamble included). Instead, Goertzel
was tested for 10 packets to decrease simulation time. Levels of noise and number of symbols
were equal to the FFT-ZP test.

In Fig. 4.3, the BER result of the whole system simulated in QuestaSim is presented. Also
in this case, the BER curve is very close to the reference, which shows that implementation and
the FP representations were correct. The testing condition were as follows. The Eb/N0 was
between 1,2,.. 14 dB, the number of packets was 800, and the number of symbols per packet
was equal to 128 (preamble included). It was necessary to reduce the number of symbols per
packet because the simulation tool did not allow higher values.
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Figure 4.2: BER curve for the Goertzel algorithm block simulated in QuestaSim.
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Figure 4.3: BER curve for the complete system block simulated in QuestaSim.
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4.3 Power results

Power is either static or dynamic. Static power is due to MOS transistors leakage, mainly to
sub-threshold current and to a reduced extent by gate-induced drain leakage, gate leakage, and
diode leakage [37] (Chapter 11). Static power is determined by maintaining the input constant.
The amount of current that flows during this period of time, multiplied by the input voltage,
gives the static power.

Dynamic power instead, is characterised by the switching activity of CMOS gates. It is
defined as:

PD = αCV 2f (4.2)

where α is the switching activity, f is the clock frequency, C is the capacitance of the system,
and V is the input voltage. Dynamic power is obtained when a non-zero frequency input signal
is present.

Power results were collected using the PowerPlay Power Analyzer available in Intel Altera
Quartus. The FPGA used was a Cyclone V device 5CGTFD9E5F35C7, because it is part of a
development board offered by Intel Altera and the only one big enough to incorporate the design.
The software used for analysis, synthesis, fitting, and power estimation was Quartus Prime
Version 17.0.0 Build 595 04/25/2017 SJ Standard Edition. Instead, for simulation QuestaSim-
64 10.4a was used.

The workflow followed for the power simulation is the one proposed in [38]. Briefly, Quartus
is used to generate a netlist file, which is a special description of the design which takes into
consideration characteristics of the target device. This file is then used in QuestaSim, which
simulates the design with user-defined input. During simulation, the switching activities of each
component is registered and saved into a file. At the end of the simulation, the file is passed
to PowerPlay Power Analyzer which studies the switching activities and estimates the power
consumption.

The FPGA itself consumes a certain amount of power, even when it contains no logic, which
corresponds to the static power. Therefore, it is important to determine this amount in order
to understand approximately what the design actually consumes. To obtain this information,
a very simple design was made in which a single bit input is transferred to the output. Then,
the workflow previously explained was used to determine the power consumption. The results
are shown in Table 4.1. Power thermal dissipation is the amount of power lost due to heat. It
is characterised by static and dynamic power, which arise with different inputs, as previously
described. Because the design contains almost no logic for this test, and most importantly does
not use a clock, Core Dynamic Power Dissipation is 0. Therefore, when reading other tables, it
should be kept in mind that these values are actually due to the use of the FPGA, while they
would not be present in an ASIC design.

4.3.1 Power comparison - Signed vs. two’s complement arithmetic

In Section 3.3.1 it was explained why signed magnitude was used. The claim was that multi-
plication by -1 is more power efficient with signed magnitude than two’s complement. Instead,
the added logic required to carry out the addition with signed magnitude, may outweigh the
previous benefit. In this section it will be shown that multiplication by -1 is considerably more

Total Thermal
Power Dissipation

Core Dynamic
Thermal Power
Dissipation

Core Static
Thermal Power
Dissipation

I/O Thermal
Power Dissipation

524.91 mW 0.00 mW 518.59 mW 6.32 mW

Table 4.1: Minimum amount of power always consumed by the FPGA.
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Block type
Total
thermal
power

Thermal
dynamic
power

Thermal
static
power

Routing
thermal
dynamic
power

Average
toggle rate
(million of
transitions/sec)

Two’s
complement

Combinational cell 0.09 mW 0.01 mW - 0.08 mW 5.200
I/O 17.68 mW 15.42 mW 2.22 mW 0.04 mW 9.487

Signed
magnitude

Combinational cell - - - - -
I/O 2.78 mW 0.64 mW 2.15 mW 0.00 mW 0.769

Table 4.2: Comparison of the thermal power dissipation for the multiplication by -1 test.

Block type
Total
thermal
power

Thermal
dynamic
power

Thermal
static
power

Routing
thermal
dynamic
power

Average
toggle rate
(million of
transitions/sec)

Two’s
complement

Combinational cell 0.01 mW - - - 1.230
I/O 3.03 mW 0.67 mW 2.34 mW 0.01 mW 1.499

Signed
magnitude

Combinational cell 0.01 mW 0.00 mW - 0.00 mW 1.600
I/O 2.93 mW 0.67 mW 2.25 mW 0.01 mW 1.538

Table 4.3: Thermal Power Dissipation for the addition test.

power efficient in signed magnitude than for two’s complement. Moreover, the difference in
power consumption of adding two numbers in signed magnitude and two’s complement is only
slightly in favour of the second representation. For both tests, the inputs were kept the same
for both representation, therefore no randomisation was involved on the input data.

Multiplication by -1

The power results obtained for the multiplication by -1 test are shown in Table 4.2. It shows
that most of the power is consumed by the I/O. This is because the test designs were made
without using internal logic. That does not influence the comparison as the same policy was
adopted for both. From the table it is clear that the two’s complement is noticeably more
power hungry than the signed magnitude. These values are heavily influenced by the toggle
rates, shown in the last column. As it was expected, changing sign with two’s complement
requires a considerate amount of bit switching.

Addition

The results for the thermal power dissipation of the addition test are shown in Table 4.3. In
this case, the results of the two representation are very close. Signed magnitude total thermal
power for the I/O block slightly exceeds the two’s complement by just 0.1 mW.

Conclusion

In the FFT-ZP there are 96 additions and 124 multiplications which switch the sign. Of those
multiplications, 96 are actual multiplication by -1 from the butterflies, the other 28 are due to the
twiddle factors that become -j. Taken into consideration the power results, it was decided that
the trade off between a more power efficient multiplication by -1 was well worth the additional
cost due to the more complex signed addition.
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Module
Total Thermal
Power Dissipation

Core Dynamic
Thermal Power
Dissipation

Core Static
Thermal Power
Dissipation

I/O Thermal
Power Dissipation

FFT 528.62 mW 3.74 mW 518.64 mW 6.24 mW
FFT-ZP 526.92 mW 1.98 mW 518.62 mW 6.32 mW
Goertzel 525.16 mW 0.32 mW 518.60 mW 6.24 mW

Table 4.4: Power consumption summary for comparison between FFT-ZP, FFT, Goertzel algo-
rithm.

ADC clock
(system clock)

Total Thermal
Power
Dissipation

Core Dynamic
Thermal Power
Dissipation

Core Static
Thermal Power
Dissipation

I/O Thermal
Power
Dissipation

80 KHz (2.86 MHz) 530.22 mW 5.31 mW 518.66 mW 6.24 mW
8 KHz (286 kHz) 525.38 mW 0.54 mW 518.60 mW 6.24 mW
0.8 KHz (28.6 kHz) 524.89 mW 0.06 mW 518.59 mW 6.24 mW

Table 4.5: Power consumption summary for comparison between different ADC clock speeds.

4.3.2 Power results comparison for FFT, FFT-ZP, Goertzel

The DFT algorithm is the most power-hungry operation. As such, special attention was ded-
icated to find alternatives to make it more power-efficient. The proposed solutions were the
FFT radix-2, the FFT-ZP described in Section 2.2.3, and the Goertzel algorithm presented in
Section 2.3.2. In this section, the power results of these three alternatives will be presented and
motivated.

In Table 4.4, the summary of the power consumption is shown. The FFT-ZP consumes
almost half of the power of a standard FFT. This is due to the optimisation enabled by the zero
padding. In fact, in the standard FFT, there are double the number of registers, double the
number of additions, and 72 more multiplications. Clearly, these additional operations produce
a significant impact.

Using Goertzel in the data detection instead shows that it allows to save 85% of the power
of a standard FFT. For this module, the power simulation was obtained for a single Goertzel
block, that is for a single bin, while the demodulator uses two of them in parallel.

4.3.3 Power results for the complete Demodulator

In Table 4.5, the power results for three different clock speeds are shown, when simulating
the whole demodulator. By looking at the dynamic power, it can be seen that the power
consumption decreases by the same factor by which the ADC is decreased, which is 10. From
this, it can be concluded that the impact of the system clock is considerable.

In Table 4.6 the thermal power dissipation for each block is shown. It is read as follows. For
example, for the whole Demodulator, Total thermal power (first column) can be calculated in
two ways. By summing its immediate sub-entities, indicated with (a), (b), (c) (0.05 mW, 0.02
mW, 1.57 mW respectively), plus the power consumed by that entity alone, indicated in the
first column, the value between parenthesis, which is 5.72 mW. The other way is to sum the
values indicated out of parenthesis of the other three columns that lie on the same line: Block
thermal dynamic power (1.65 mW), Block thermal static power (2.12 mW), Routing thermal
dynamic power (3.59 mW). Similarly, any other block’s power consumption can be obtained in
the same way.

Data was obtained with an ADC clocked at 80 KHz, a system clock frequency of 2.86 MHz,
and 10 packets of 128 symbols. In the first column, a sketched hierarchical view of the system
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Compilation
Hierarchy Node

Total Thermal Power
by Hierarchy (1)

Block Thermal
Dynamic Power (1)

Block Thermal
Static Power (1)(2)

Routing Thermal
Dynamic Power (1)

Demodulator 7.36 mW (5.72 mW) 1.65 mW (0.01 mW) 2.12 mW (2.12 mW) 3.59 mW (3.59 mW)
(a)Data acquisition 0.05 mW (0.00 mW) 0.05 mW (0.00 mW) – 0.00 mW (0.00 mW)
——PD - DA 0.04 mW (0.04 mW) 0.04 mW (0.04 mW) – 0.00 mW (0.00 mW)
——DD - DA 0.01 mW (0.01 mW) 0.01 mW (0.01 mW) – 0.00 mW (0.00 mW)
(b)Data Detection 0.02 mW (0.00 mW) 0.02 mW (0.00 mW) – 0.00 mW (0.00 mW)
——GoertzelH 0.01 mW (0.01 mW) 0.01 mW (0.01 mW) – 0.00 mW (0.00 mW)
——GoertzelL 0.01 mW (0.01 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——MagnitudeH 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——MagnitudeL 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
(c)Preamble detector 1.57 mW (0.62 mW) 1.57 mW (0.62 mW) – 0.00 mW (0.00 mW)
——Even/odd acc. 0.93 mW (0.37 mW) 0.93 mW (0.37 mW) – 0.00 mW (0.00 mW)
———BOM 0.15 mW (0.00 mW) 0.15 mW (0.00 mW) – 0.00 mW (0.00 mW)
———BOA 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
———FFT-ZP 0.41 mW (0.14 mW) 0.41 mW (0.14 mW) – 0.00 mW (0.00 mW)
————Stage1 0.02 mW (0.02 mW) 0.02 mW (0.02 mW) – 0.00 mW (0.00 mW)
————Stage2 0.08 mW (0.00 mW) 0.08 mW (0.00 mW) – 0.00 mW (0.00 mW)
————Stage3 0.09 mW (0.00 mW) 0.09 mW (0.00 mW) – 0.00 mW (0.00 mW)
————Stage4 0.08 mW (0.00 mW) 0.08 mW (0.00 mW) – 0.00 mW (0.00 mW)
——Max of Rs 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——MAX0 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——MAX1 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——MAX2 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——MAX3 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——MAX4 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——MAX5 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——MAX6 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——MAX7 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——R0 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——R1 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——R2 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——R3 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——R4 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——R5 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——R6 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)
——R7 0.00 mW (0.00 mW) 0.00 mW (0.00 mW) – 0.00 mW (0.00 mW)

(1) Value in parentheses is the power consumed at that level of hierarchy. Value not in parentheses is the power
consumed at that level of hierarchy plus the power consumed by all levels of hierarchy below it.
(2) The ”Block Thermal Static Power” for all levels of hierarchy except the top-level hierarchy is part of the
”Core Static Thermal Power Dissipation” value. The ”Core Static Thermal Power Dissipation” also contains the
thermal static power dissipated by the routing.

Table 4.6: Thermal Power Dissipation by Hierarchy for the Demodulator.
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is shown, where more indentation to the right indicates that the module is a child of the first
previously less indented parent (e.g. BOM is child of Even/odd acc.). The Preamble detector,
together with its sub-modules, is the unit that consumes most of the power. Modules that
have power consumption indicated to be zero are actually consuming an amount smaller 10µW ,
which the tool does not take care to report.

4.4 Resources utilisation

In this section, the resource utilisation of the demodulator is presented. In Fig. 4.4, the number
of Adaptive Logic Module (ALM) is shown for each node of the hierarchy. An ALM is a basic
block in the Altera FPGAs.

The table is read as follows. For the whole demodulator, the total number of ALMs is
given by the ALMs needed only by the demodulator alone (10.70) plus ALMs needed by its
sub-entities (a), (b), and (c) (62,699.40, 452.40, 1,741.30 respectively). Roman numerals have
indicated the blocks that belong to the Preamble detector. The Preamble detector requires 96%
of the total design of said resource. In particular, the Even/odd accumulator takes 63% of the
total used ALMs. The sum of the submodules resource utilisation (FFT-ZP, BOA, BOM) is
roughly 46%. The remaining resources are used by the Even/odd accumulator itself. The whole
system requires 64,904 ALMs, compared to the 113,560 ALMs available on the target FPGA.
The number of used registers is 42,177, that is 19% of those available on the FPGA. Finally, 32
out of 616 available pins were used.



Compilation Hierarchy Node

DEMODULATOR 64,903.70 10.70

(a)   PREAMBLE_DETECTOR:preamble_detector_unit 62,699.40 7,828.20

        (I)       even_odd_accumulator:EOA 41,089.10 10,615.40

                        FFT_ZP:fft 19,921.40 1,145.70
                              fft_stage_1:S1 3,259.10 145.60
                              fft_stage_2:S2 6,726.90 0.00
                              fft_stage_3:S3 5,344.50 0.00
                              fft_stage_4:S4 3,445.20 0.00

      (II)        bank_of_adders:BOA 247.00 1.50
      (III)       bank_of_magnitude:BOM 10,305.20 0.00

      (IV)      maxs:MAXSu0 1,692.90 0.00
                        max_finder64:max_even 839.20 839.20
                        max_finder64:max_odd 853.70 853.70
      (V)       maxs:MAXSu1 1,704.30 0.00
      (VI)      maxs:MAXSu2 1,710.20 0.00
      (VII)     maxs:MAXSu3 1,703.50 0.00
      (VIII)    maxs:MAXSu4 1,705.60 0.00
      (IX)      maxs:MAXSu5 1,710.30 0.00
      (X)       maxs:MAXSu6 1,712.00 0.00
      (XI)      maxs:MAXSu7 1,699.80 0.00
      (XII)     R:R0 13.60 13.60
      (XIII)    R:R1 12.50 12.50
      (XIV)   R:R2 11.80 11.80
      (XV)    R:R3 12.60 12.60
      (XVI)   R:R4 13.20 13.20
      (XVII)  R:R5 10.90 10.90
      (XVIII) R:R6 13.40 13.40
      (XIX)   R:R7 13.70 13.70
      (XX)    max_of_Rs:MAX_OF_RSu 41.70 41.70

(b)   data_acquisition:data_acquisition_unit 452.40 1.00
            dd_data_acquisition:dd_da 59.00 59.00
            pd_data_acquisition:pd_da 392.40 392.40

(c)   data_detection:data_detection_unit 1,741.30 29.70
            GOERTZEL:grzH 708.30 94.70
            magnitude_grz:mag_grzH 119.20 17.50
            GOERTZEL:grzL 766.00 147.40
            magnitude_grz:mag_grzL 118.00 15.70

ALMs needed 
(for entity and sub 

entities)

ALMs needed 
(only current 
entity)
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Chapter 5

Conclusion and future work

In this section the work produced in this thesis will be summarised. The research questions will
be compared with the obtained results and recommendations for future work will be outlined
afterwards.

5.1 Conclusion

The objective of this thesis was to implement a power-efficient demodulator that uses the
algorithm described in [4] for BFSK modulation scheme. In Section 1.5, three research questions
were defined in order to help achieving a power-efficient implementation. Firstly, the two DFTs
used in the algorithm were studied.

RQ1. How can the two DFT be implemented in a more power-efficient way?

It was shown in Section 2.2 and in Section 2.3 that the radix-2 FFT is not the best option in
the presented context. In fact, the presence of zero-padding can be exploited in order to obtain
a less computationally demanding algorithm. For the synchronisation block, the FFT-ZP was
presented in Section 2.2.3 and implemented in Section 3.3.5. For the data detection, only two
bins were required to be computed. Therefore, a complete FFT would have produced 64 bins
of which 62 would have been discarded. Because of that, the Goertzel algorithm was presented
in Section 2.3.2 and implemented in Section 3.3.4. The power comparison obtained in Section
4.3.2 confirmed that the two alternatives to the standard FFT are more power-efficient.

Data representation is an important aspect of every design and as such needed to be ad-
dressed.

RQ2. What is the smallest number representation so that the BER is the same as
when full precision is used?

This question does not have a single answer. It was shown in Section 3.2 that each block of
the algorithm can be optimised for different fixed-point representations. This approach led us
to save on the number of registers needed for the computation, as a consequence also on the
power required.

RQ3. What is the performance and the resource usage of the proposed implemen-
tation?

In Section 4.1 the relation between the ADC frequency and the clock frequency of the system
was derived. This relation needs to hold that needs to hold, in order to have the system operates
correctly. In Section 4.3, extensive data was collected regarding the power consumption of the
system. Some of this information was used to motivate design choices, others could be used in
the future to make quantitative comparison with different implementations.

In conclusion, all three research questions were addressed and the initially planned goal was
achieved.
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5.2 Future work

In this thesis, the implementation of a frequency tolerant algorithm for BFSK was proposed.
As the designed system is fully digital, an ADC had to be modelled in absence of system
requirements. This aspect was just borderline with the scope of this work, nonetheless a starting
point needed to be defined. In Section 3.2.4, a mid-riser model with 8 bit precision was deemed
as a good solution, based on simulation. However, additional research should be dedicated to
this component to verify whether a less precise ADC could still produce correct results, while
consuming less power.

Another aspect is the chosen platform. A decision had to be made regarding whether to use a
certain vendor or another. In Section 3.4.2, the Intel Altera was chosen as a matter of experience.
Because of that, part of the IPs are now specific to this vendor. It would be interesting to make
the design vendor-independent and test it also with other FPGA manufacturers, like Xilinx or
Lattice, and ultimately compare the results.

The major concern of this design was to make the system as power efficient as possible.
Using an FPGA is in fact the opposite of that. This IC consumes a lot of static power, as
simulation did show in section 4.3, and therefore would never be used in an actual device.
That does not mean the work produced until now is a waste. Indeed, what is necessary now
is to divide the development in the ASIC flow and the FPGA flow. The first one is needed in
order to obtain more accurate power consumption estimation. Instead, the second should be
used to produce an actual prototype. This split can be easily achieved because the produced
implementation, written in VHDL, can be quickly ported to an ASIC design.

Another feature that could be tackled is the comparison with existing IPs for the FFT. In
Section 4.3.2, a comparison of the FFT and FFT-ZP was presented. Their structures were vol-
untarily made similar in order to guarantee a fair comparison, while demonstrating that taking
advantage of the zero-padding made the FFT-ZP a more power efficient solution. Nonetheless,
it should be investigated whether different architectures could achieve better results. For exam-
ple, in [39] radix-22 architecture is presented, while also reviewing existing ones like multi-path
delay-commuter or single-path delay-feedback.
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