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ABSTRACT
DDoS attacks form a severe threat to organizations, as
their services can be made unavailable at any moment,
resulting in major direct and indirect damage. This re-
search compares the performance of 8 supervised machine
learning classifiers on a DDoS Google Alert dataset. We
provide an annotated dataset and suggest that the Sup-
port Vector Machine and the Neural Network perform best
based on the desired performance focus. Last, we publish
a tool that eases the process of comparing and optimizing
multiple (supervised) classifiers on a given dataset, while
ensuring valid results. The research can be used to collect
all reported DDoS attacks on the internet. This collec-
tion can be used to gain a better understanding of DDoS
attacks.
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1. INTRODUCTION
Distributed Denial of Service attacks, better known as
DDoS attacks, are attempts to make services or infras-
tructure unavailable by flooding them with requests from
multiple sources. In 2016, a botnet with more than a mil-
lion devices was used to attack DNS provider Dyn. Not
only were major services like Netflix and Airbnb unavail-
able, access to public broadcasting services like the BBC
was also cut off. This shows the major damage DDoS
attacks can affect.

DDoS attacks are the most common network security threat
experienced by Enterprises, Governments and Educational
bodies, while the customers of Service Providers (e.g. ISPs
and Data Centers) remain to be the number one target
of DDoS attacks [3]. Santanna et al. pointed out that
DDoS attacks are easy to execute with DDoS-as-a-Service
Providers, even for people without any technical knowl-
edge [23].

Much about DDoS attacks has been researched, including
how to efficiently detect and mitigate them [29, 15, 16].
Various sources have been used to identify DDoS attacks,
including leaked booter databases and DNS provider data.
In this research, we explore the possibility to use Google
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Alerts as an additional source to identify DDoS attacks.

Google Alerts is a content change detection and notifica-
tion service [28], notifying users when a new or changed
result has been detected on a certain keyword. We use
a dataset, comprised of Google Alerts, that has been de-
scribed by Abhishta et al. [1]. The dataset consists of
Google Alerts on the keywords “DDoS” and “Distributed
Denial of Service”. This research aims to select the re-
sults that describe a DDoS attack. To do this, we classify
into four categories: “Attack”, “Arrest”, “Research” and
“Other”. They are defined in Section 3.1.

The main contributions of this paper are:

• An annotated event-related Google Alert dataset

• Comparison of the efficiency of different supervised
machine learning classifiers on this dataset

• Suggestion of the best classifier for this specific dataset
as a result of the efficiency comparison

• A tool that can help classify a given dataset into
various categories

The contributions can be used to collect all reported DDoS
attacks on the internet. This information is important to
increase our understanding of DDoS attacks, to ultimately
outsmart attackers and stop DDoS attacks from happen-
ing. Increasing understanding may happen on a wide va-
riety of topics. For example, it can be analyzed which
attacks get reported and which ones don’t. By correlating
the data with other information on DDoS attacks, new
insights may be gathered. We might, for example, gain a
better understanding of the impact on individual victims.

This paper is structured as follows: first, we will describe
the dataset we have used. Second, we will explain the clas-
sification methodology in detail. Then, we will present the
results, draw conclusions and discuss future work. Finally,
we will introduce the classification tool we used for obtain-
ing the results of this research. This tool allows extensive
exploration to be performed on a given dataset, result-
ing in a valid analysis. The annotated dataset, the tool
and all other code used will be published at Github1 after
publication.

2. DATASET
The complete dataset consists of 67.831 alerts, categorized
by Google into three categories: web, news and blog. The
dataset contains 46.641 web alerts, 21.142 news alerts and
48 blog alerts. Since the number of blog alerts is not
sufficient for reliable training and testing, we leave them

1https://github.com/wmkamerman
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Table 1. Details of Dataset

#alerts Start End

Web 46.641 2015-08-20 2018-03-22
News 21.142 2015-08-25 2018-03-21

out. The category “News” is assigned by Google when the
source is recognized by Google as being a publisher [11].
The remaining dataset, consisting of only news and web
alerts, is summarized in Table 1.

Each Google Alert consists of a title and a short text snip-
pet (215±63 characters), a date and a link to the acces-
sory page. Additionally, an abovementioned predefined
category is present.

3. METHODOLOGY
We manually annotate a part of the dataset into 4 classes
(Section 3.1), followed by automatic classification using
supervised machine learning algorithms (Section 3.2).

3.1 Annotation into 4 classes
We manually annotated 1000 Google Alerts into one and
only one of the following categories:

1. Attack: describes an occurrence of a DDoS attack.
For example: “Dutch tax office, banks hit by DDoS
cyber attacks (...)”

2. Arrest: describes law enforcement after an occur-
rence of a DDoS attack. This includes the identifica-
tion of the hacker and responsibility claims. For ex-
ample: “Two Israeli teens arrested for running major
DDoS service”, “Teenage hacker arrested for unleash-
ing DDoS on 911 system” and “British Hacker Ad-
mits Using Mirai Botnet to DDoS Deutsche Telekom”

3. Research: an alert describing DDoS research or a
DDoS background article. This includes guides on
how to protect against DDoS attacks but does not
include DDoS protection service providers. DDoS at-
tacks may be described, usually as a reason to write
an article, but the main article must not solely be
about this particular attack.

4. Other: all other results not fitting in the attack,
arrest or research categories. This includes organi-
zations that offer DDoS protection services and com-
plaints of gamers accusing DDoS attacks to be the
reason for bad gameplay.

The resulting annotated dataset consists of 630 “Web”
Alerts and 370 “News” Alerts. It is shown in detail in Fig-
ure 1. The arrest category is smallest with 3 web alerts
and 14 news alerts.

3.2 Multiclass ML Classification
We have used multiclass Machine Learning classification
algorithms. As opposed to unsupervised learning, this
type of algorithm is able to learn rules based on not only
input but also on output. It requires known labels (the cor-
responding correct outputs), so it can learn how to classify
based on the targeted output class. We will use the anno-
tated classes as output data. We categorize into the four
beforementioned classes, so we need to use multiclass al-
gorithms, able to distinguish between more than 2 classes.
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Figure 1. Annotated Dataset

3.2.1 Used Algorithms
Kotsiantis [14] has described the best-known supervised
machine learning classifiers in detail. He categorized the
algorithms into 6 categories: Decision Trees, Neural Net-
works, Naive Bayes, k-Nearest Neighbors, Support Vector
Machines and Rule Learners. We have compared algo-
rithms from all categories, except k-Nearest Neighbors and
Rule Learners. k-Nearest Neighbors was left out because
of its intolerance of noise, its preference towards classes
with more instances and because of its large computa-
tional time needed for classification. Rule Learners were
left out because they cannot be easily used as incremental
learners [14].

We have used the following 9 multiclass supervised algo-
rithms from the remaining four categories:

• Logistic Regression (LR): one of the most widely
used algorithms for classification in the industry, per-
forming well on linearly separable classes [18]. By
default LR is a binary model, that is, only capable
of separating two classes. To enable multiclass clas-
sification we make use of the One-versus-Rest (OvR)
technique.

• Support Vector Machine (SVM): introduced by Cortes
and Vapnik, it is designed to maximize the so-called
margin [8]. The margin is defined as the distance be-
tween the separating hyperplane (the decision bound-
ary) and the training samples that are closest to this
hyperplane, which are the so-called support vectors
[18]. Models with a maximum margin tend to have
a lower generalization error, whereas smaller mar-
gins are more prone to overfitting. Overfitting occurs
when the generalization a model creates to classify
unseen data corresponds to closely to the training
data. This results in poor performance, as the model
takes the specific characteristics of the training data
into account too much. Like LR, we use the OvR
technique to enable multiclass classification, as SVM
is binary by default.

• Decision Tree (DT): introduced by Breiman, it is an
easily interpretable model, designed to maximize the
information gain [18, 4]. The DT makes decisions
based on a series of questions the algorithm learns.
This forms a tree of questions, in which each ques-
tion is called a node. Each node leads to a decided
category or another question. The question with the
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highest information gain, that is, the question that
has most influence on the decided class, is on top.
Pruning is performed to limit the size of the tree,
thus avoiding overfitting. The implementation we
use is binary - meaning that every parent node is
split up into two child nodes.

• Random Forest (RF): can be intuitively seen as an
ensemble of decision trees, in which a voting system
for the most popular class is present. By combining
multiple decision trees with the same distribution,
each suffering from high variance, the generalization
error is decreased and the RF is less susceptible to
overfitting [5, 18].

• Extremely Randomized Trees (ET): in short: Extra
Tree. It was introduced by Geurts et al. as a varia-
tion on the Decision Tree [10]. It randomizes both
attribute and cut-point choices when splitting a tree
node. The strong point of the ET is, besides a high
predictive accuracy, the computational efficiency.

• Three Naive Bayes algorithms: Multinomial Naive
Bayes (M-NB), Bernoulli Naive Bayes (B-NB) and
Gaussian Naive Bayes (G-NB). Naive Bayes algo-
rithms make the strong assumption that each predic-
tion variable is independent from the others. In text
classification this means that each word is seen as in-
dependent from all other words. In practice, Naive
Bayes systems can work surprisingly well, even when
the conditional independence assumption is not true
[21].

The Multinomial, Bernoulli and Gaussian preposi-
tions refer to the distribution of the probability a
feature belongs to a certain class. The Multinomial
Naive Bayes is used for discrete data, so in our case
for the total number a certain word appears. The
Bernoulli Naive Bayes assumes the feature distribu-
tion is binary: a word either exists (1) or not (0).
And finally, the Gaussian Naive Bayes assumes a
normal distribution, and so is used when features
are continuous.

• Multi-layer Perceptron (MLP): a network consisting
of multiple layers containing single neurons. Neurons
are referred to as ADAptive LInear NEurons (Ada-
line), first published in 1960 by Widrow and Hoff.
What’s interesting about the Adaline algorithm is
that it focuses on minimizing continuous cost func-
tions, and updates weights based on a linear acti-
vation function. Gradient descent optimization is
used to learn the weight coefficients. Part of this
gradient descent optimization is the learning tech-
nique called backpropagation, introduced by Rumel-
hart et al. [20]. We make use of Adam, a simple
and computationally efficient algorithm for gradient-
based optimization of stochastic objective functions
[12].

According to [14], Decision Trees tend to perform better
for classifying categorical features than Support Vector
Machines and Neural Networks. Yet, because this might
not be true for our unique dataset, we will test using all
these algorithms.

3.2.2 Pre-Processing
Next, before applying the algorithms on the dataset, we
performed pre-processing. We removed 285 duplicates, by
retaining the oldest alert when multiple alerts have the

same url. Afterwards we have selected only English alerts
using langdetect2, a language detection library ported from
Google’s language-detection. After removal of 10.521 non-
English alerts, 58.572 English alerts remain.

From these non-duplicate English alerts, 1000 alerts were
randomly selected. Annotation was performed as described
in Section 3.1.

Further processing has been performed on the annotated
dataset. First, we tokenized and lowercased the alerts.
Next, we used term frequency-inverse document frequency
(TF-IDF) weighting, as described by Salton and Buckley,
for feature extraction [22]. This calculates the importance
of terms in a document, and in this case, a category. Chi-
Square was used select the most outstanding correlated
terms as identified by TF-IDF in each of the categories
[25]. We ignored words that appeared in over 50% of all
alerts (maximum document frequency = 50%). We assume
that these words don’t significantly contribute to correct
determination of a certain class. We have taken 50% as
an initial max-df and varied this variable to find the opti-
mal setting. English stopwords have been ignored as well,
using the English stopword dictionary3 by the Glasgow
Information Retrieval Group.

Tests have also been performed with applying Stanford
Named Entity Recognition (NER) to the Google Alert
dataset. Stanford NER labels sequences of words in a
text which are the names of things [9]. Using NER, we
were able to remove words that were identified as a name
(person), organization (Cisco, ING) or a location (Ams-
terdam, New York). We compared the performance with
and without applying NER to the Google Alerts.

3.2.3 Analysis
To avoid overfitting, we use the stratified k-fold cross-
validation method as described by Kohavi [13]. This method
splits up the training dataset into k equal size subsets
(folds). One fold is kept as validation data, while the other
k-1 folds are used for training. The validation process will
repeat k times so that every fold will be used as validation
data once. The effectiveness is then the average of the k
times the process has been repeated. We will stratify the
folds “so that they contain approximately the same pro-
portions of labels as the original dataset” [13]. This yields
better bias and variance estimates, especially in cases of
unequal class proportions [7]. In our case, we will vary
the number of folds, starting with 4 folds. That means
that we will create 4 folds of 250 Google Alerts each, and
validate the algorithms with those folds accordingly.

Additionally, we have applied over- and undersampling.
As can be seen in Figure 1, the various annotated cat-
egories are not equal in size. Especially “Arrest” is ex-
tremely small, compared to the others. In other words,
we are dealing with a skewed class distribution. According
to Weiss et al., “the classifier built from a data set with
a highly skewed class distribution generally predicts the
more frequently occurring classes much more often than
the infrequently occurring classes. This is largely due to
the fact that most classifiers are designed to maximize ac-
curacy.” [26] Over- and undersampling tackle this problem
by either reducing the number of features in the major-
ity categories (undersampling) or increasing the number
of features in the minority categories (oversampling). We
have used oversampling, which appears to be most suit-

2https://pypi.org/project/langdetect/
3http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop
words
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able for small datasets (<10.000 examples), according to
Weiss et al. [26].

To prevent information leakage, we used pipelines and a
holdout dataset. Information leakage appears when infor-
mation from the test data is used for training the model.
This makes the model biased towards the test data, result-
ing in a too optimistic performance estimation. Pipelines
were used to perform pre-processing solely on training
data. Additionally, a part of the dataset was held out,
only to be used for final testing, after the model has been
trained.

To find the best-fitting hyper-parameters for each of the al-
gorithms and pre-processing methods, we have performed
hyperparameter optimization. A hyperparameter is a pa-
rameter from a prior distribution; it captures the prior
belief, before data is observed [19]. For example, we have
varied the number of Chi-Square features to be used, and
the maximum document frequencies of words. Addition-
ally, algorithm-specific parameters have been tuned. Final
testing as described in the previous paragraph has been
performed using the found optimal set of hyperparame-
ters.

Lastly, we have varied the input data based on the assump-
tion that the title of a Google Alert can better be used to
distinguish target categories, compared to the body of the
alert. We have found that articles belonging in the “Back-
ground” category use a recent attack as a reason to write
the article. Therefore this attack is mentioned in the body,
while the title actually tells us that this alert belongs in
another category. Tests have been performed that increase
the importance of the words in the title, compared to the
body.

3.2.4 Performance Measurement
The performance of the algorithms is measured using the
F-score, which is based on precision and recall. Precision
is the number of positive predictions divided by the total
number of positive class values predicted. Recall is the
number of positive predictions divided by the number of
positive class values in the test data [6]. Because the F-
score takes both false positives and false negatives into
account, the F-score is a good measure. The algorithm
with the highest F-score is considered to be most effective
for classifying Google Alerts into several classes.

4. RESULTS
In this section we will present the outcomes of our clas-
sification research. In Section 4.1 we show the results of
the stratified fold validation on the four categories, and
we show an aggregated confusion matrix. Then, in Sec-
tion 4.2, we present outcomes of the various variations as
described in the Methodology section. In Section 4.3, we
suggest the best classifier for this dataset, as a result of
the efficiency comparisons in Sections 4.1 and 4.2. Finally,
as a sidestep, we show the results of 2-class classification
in Section 4.4, distinguishing only Attack alerts.

4.1 Results of Stratified 3-Fold Cross Vali-
dation on the Four Categories

Table 2 shows the results of the various algorithms we
tested on the original data. For each algorithm and cat-
egory, the Precision, Recall and F-Score are mentioned.
The Gaussian Naive Bayes (B-NB) algorithm was dropped
from the results because it can only accept continuous
data. The sparse matrix that the TF-IDF analysis pro-
duces is discrete, and can therefore not be accepted. Con-
verting the discrete values to continuous data is possible,

but converting costs a lot of computing power. Therefore,
we dropped the algorithm from our analysis.

The Extra Tree Classifier performed exceptionally bad,
with a weighted F-Score of 0,435. The reason ET performs
so bad is the skewed dataset. With a recall of 0,964 for
the Other category, it does not detect any Attack or Arrest
alerts. It focuses on the category with most alerts, in this
case Other.

The Arrest and Research columns both have a low F-score
on average. The reason for the score in Arrest is simply
because the number of samples (17) is too low to get a
diverse group of terms for classification. Oversampling
for this category has been performed on all algorithms,
but still only ∼5 samples could be included in the test
subset, resulting in major drops in the score per alert.
The Research category suffers from high numbers of alerts
being classified as Other, as can be seen in Figure 2.

RF 35 0 10 10
SVM 38 1 6 10
M-NB 25 3 10 17
B-NB 30 0 8 17
LR 35 2 10 8
DT 32 2 15 6
ET 0 0 2 53

MLP 43 0 7 5
RF 0 3 2 0

SVM 1 2 2 0
M-NB 1 2 2 0
B-NB 2 0 3 0

LR 1 2 2 0
DT 0 3 2 0
ET 0 0 0 5
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Figure 2. Aggregated Confusion Matrix

LR and MLP score best for this dataset, both with a
weighted F-score of 0,727. SVM follows closely at 0,725.
When comparing these three algorithms, it can be seen
that MLP achieves the highest results for Attack (+0,03)
and Arrest (+0,07), while only 0,02 lower for Research and
0,01 lower for Other. Weighted though, with Other hav-
ing by far the most alerts, it is equal to LR. Not weighted,
it performs 0,037 better than LR and 0,023 better than
SVM. It can be concluded that MLP performs best for
this dataset, as it is able to differentiate better between
the different categories.

4.2 Pre-Processing Variations
Table 3 shows 7 variations of the standard data (Std) we
used in the first place. The standard data is described in
Section 4.1, and the results are shown in Table 2. The
weighted F-scores of the standard data are mentioned in
the first column of Table 3 as reference. The variations
are as follows:

1. NER: Stanford NER was applied to remove named
entities from the original Google Alert content.

2. News: Analysis was only performed on the “News”
alerts (n=370).

3. News NER: Analysis was performed on the “News”
alerts, after applying Stanford NER.
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Table 2. Stratified 3-fold classification results: precision (P), recall (R) and F-Score (F)
Attack Arrest Research Other Mean

P R F P R F P R F P R F F*

RF 0.576 0.618 0.596 0.667 0.400 0.500 0.511 0.600 0.552 0.793 0.721 0.756 0.671
SVM 0.745 0.691 0.717 0.667 0.400 0.500 0.560 0.560 0.560 0.795 0.824 0.810 0.725
M-NB 0.781 0.455 0.575 0.333 0.400 0.364 0.564 0.587 0.575 0.750 0.836 0.791 0.690
B-NB 0.641 0.455 0.532 0.600 0.600 0.600 0.575 0.667 0.617 0.781 0.800 0.790 0.697
LR 0.761 0.636 0.693 0.500 0.400 0.444 0.554 0.613 0.582 0.808 0.818 0.813 0.727
DT 0.471 0.582 0.520 0.375 0.600 0.462 0.458 0.587 0.515 0.867 0.673 0.758 0.648
ET 0.000 0.000 0.000 0.000 0.000 0.000 0.615 0.107 0.182 0.560 0.964 0.708 0.435
MLP 0.717 0.782 0.748 1.000 0.400 0.571 0.529 0.600 0.562 0.830 0.770 0.799 0.727

* Weighted average of F-Scores

Table 3. F-Scores for various data columns
Std NER News News NER Web Web NER 2xTitle 3xTitle

RF 0.671 0.651 0.507 0.419 0.6912 0.7352 0.655 0.683
SVM 0.725 0.738 0.579 0.605 0.7412 0.7162 0.692 0.713
M-NB 0.690 0.660 0.554 0.527 0.6612 0.6602 0.662 0.651
B-NB 0.697 0.679 0.608 0.612 0.6822 0.6662 0.706 0.693
LR 0.727 0.711 0.5852 0.584 0.6982 0.7072 0.701 0.695
DT 0.648 0.639 0.485 0.468 0.6502 0.6272 0.632 0.625
ET 0.43513 0.4001 0.201124 0.22724 0.62012 0.1212 0.391123 0.3872

MLP 0.727 0.709 0.5932 0.5732 0.7152 0.7252 0.699 0.665

Mean 0.665 0.648 0.514 0.502 0.682 0.620 0.642 0.639

F-Score of Attack1, Arrest2, Research3 or Other4 is 0.000

4. Web: Analysis was only performed on the “Web”
alerts (n=630).

5. Web NER: Analysis was performed on the “Web”
alerts, after applying Stanford NER.

6. 2x Title: The term document frequencies of the words
in the title were doubled.

7. 3x Title: The term document frequencies of the words
in the title were tripled.

Analysis on only the News alerts results in low perfor-
mance (highest 0,608). We expect this to be a result of
the number of samples (n=370) being too low to perform
4-category classification. Only classifying the Web alerts
results in higher accuracies: using SVM on the Web alerts
even achieves the highest F-Score (0,741). Even though
the number of Web alerts (n=630) is higher than the num-
ber of News alerts, there are only 3 Web Arrest alerts. This
results in no Arrest alerts being detected in the Web alert
dataset. In the weighted F-Score however, this is not an
issue since the score of 0.000 is only weighed with 3/670,
resulting in the high F-score of 0,741.

Applying NER seems to have barely any effect on the re-
sults. Only SVM profits from NER for the full dataset
(+0,013), while B-NB and ET profit for the News sub-
set as well. On the contrary, for the Web alerts, SVM
loses 0,025. However, as discussed in the previous para-
graph, the Web alerts subset is not suitable for 4-category
classification, and can therefore be neglected. It can be
concluded that NER only has a consistent positive effect
for the SVM.

Analysis on only the title and only the body both resulted
in lower F-scores than the title and body combined. This
suggests that the title and body reinforce each other. In-
creasing the importance of the title in the Google Alerts
(2x Title and 3x Title) did not result in higher accuracies
than the standard text.

4.3 Suggestion of Best Classifier
According to Kotsiantis, Decision Trees tend to perform
better when dealing with categorical features, as opposed
to Support Vector Machines and Neural Networks [14].
When we look at the results, though, Kotsiantis was wrong.
For all tests, the Decision Trees performed worse than the
SVM and the MLP.

As can be seen in Table 3, SVM, Logistic Regression and
the Neural Network perform best. In Section 4.1 a com-
parison was made between these three algorithms on the
standard dataset, resulting in the conclusion that MLP is
best. However, after analysis of the various other datasets,
an even higher score was achieved by the SVM in the NER
dataset. The following is a direct comparison between the
SVM in the NER dataset (F=0,738) and the MLP in the
standard dataset (F=0,727).

Table 4. SVM + NER versus MLP

SVM MLP
P R F P R F

attack 0.632 0.782 0.699 0.717 0.782 0.748
arrest 0.750 0.600 0.667 1.000 0.400 0.571
research 0.580 0.627 0.603 0.529 0.600 0.562
other 0.864 0.770 0.814 0.830 0.770 0.799

avg 0.749 0.733 0.738 0.737 0.723 0.727

The choice which algorithm is best depends on the desired
results. Overall, the SVM performs better, but when high
precision in the attack and arrest category is desired, MLP
is the best choice. For quick testing SVM is definitely the
best algorithm as it provides similar results way faster.
The computation intensity of the MLP is much higher.
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Figure 3. 2-class most distinctive terms

4.4 2-class classification
We make a sidestep to show the results of the best per-
forming algorithm for a 2-class classification, instead of
4-class. We have merged the Arrest, Research and Other
categories into a new “Other” category. This way, only
Attack alerts are being distinguished from all other alerts.

Using the same methodology that was used for the 4-class
classification, we have found the best performing algo-
rithm to be the Support Vector Machine, with the fol-
lowing result:

Table 5. SVM 2-class results
P R F

attack 0.700 0.495 0.580
other 0.893 0.952 0.922

avg 0.858 0.868 0.859

Note that the F-score of the Attack category is lower than
the F-score that was obtained in the 4-class classification,
mainly because of the low recall. The categories being
even more extremely skewed may be the reason for this
lower performance.

The most outstanding correlated terms as identified by
TF-IDF can be seen in Figure 3. Various names can be
noticed in the term list, including “ethereum”, “pokemon”
and “github”. With Stanford NER it is possible to filter
those terms, however, both the weighted F-score and the
precision in the Attack category were lower when NER
was used. This could point to the SVM being overfitted.
Since the 2-class classification is not the main topic of the
paper, further research may address this issue.

Finally, a confusion matrix for the 2-class classification can
be found in Figure 4.

5. RELATED WORK
No related work on classifying Google Alerts has been
found, however, the methodology we have used is similar
to the methodology used in the following papers:

Figure 4. 2-class confusion matrix

• Priante et al. [17]: Twitter profiles are categorized
into multiple categories using four algorithms, and
their efficiencies are compared.

• Abu-Nimeh et al. [2]: The predictive accuracy of sev-
eral Machine learning methods for predicting phish-
ing emails is compared.

• Santanna et al. [24]: Eight classification algorithms
are compared to most accurately be able to detect
Booter websites, offering DDoS as a Service.

6. CONCLUSIONS
In this research, we analyzed and compared the perfor-
mance of 8 supervised machine learning classifiers on a
Google Alert dataset on DDoS attacks. We conducted
a multiclass experiment as we classified into four cate-
gories: attack, arrest, research and other. First, we an-
notated 1000 alerts, which we consequently analyzed in
detail. We constructed multiple variations of the original
dataset, aiming to achieve higher performances. For ex-
ample, we used Stanford NER to remove named entities,
and we varied the importance of the title of every Google
Alert.

As a result, we can conclude that two algorithms perform
best, depending on the desired performance focus. The
Linear Support Vector Machine performs best overall with
a weighted F-score of 0,738. However, the Neural Network
performs best when high precision is desired for the attack
and arrest categories. The choice for the best algorithm
may also be influenced by the required computation power:
the Neural Network is much more intense and therefore
takes longer to compute.

We have also taken a first look into 2-class classification,
in which only Attack alerts are being distinguished. The
overall performance is much higher, however, the perfor-
mance of the attack category is lower.

Our last contribution is a classification tool, described in
Section 7. This tool eases the process of comparing and op-
timizing multiple (supervised) classifiers on a given dataset
while ensuring valid results. The tool will be published af-
ter submission of this paper.

6



Several limitations have been identified for this research
that should be addressed in future research. First, we
make use of 1000 annotated Google Alerts. This is insuf-
ficient for a 4-category comparison, especially because the
dataset is extremely skewed. The arrest class only repre-
sents 3% of all alerts, affecting analysis for skew-sensitive
algorithms. We have used oversampling to increase the
number of arrest alerts in the training data, which in-
creased the performance for all algorithms. However, the
number of arrest alerts in the training set turned out to
be the bottleneck. More annotated data is the solution.

Second, we showed only a part of the possible combina-
tions of classifiers, pre-processing techniques and parts of
the dataset. We recommend trying more combinations, es-
pecially combinations where multiple algorithms are used
for one alert. For example, the one algorithm may better
be able to classify a title, whereas another may be better at
classifying the body. Additionally, more experimentation
with the Stanford NER, also on these title/body combi-
nations, may pay off. We have seen a slight increase in
performance for the SVM with NER, which may further
be used in other data combinations.

Third, this research is limited to analyzing full alerts.
Some early tests showed that the title and the body sepa-
rately achieved lower results than the title and body com-
bined. This points to the conclusion that the title and
body reinforce each other.

Fourth, in our analysis, we have not differentiated between
the dataset with alerts on the “DDoS” keyword and the
dataset with alerts on the “Distributed Denial of Service”
keyword. Performance differences, in combination with
the second point, may be found.

Last, for achieving better results from the Google Alerts, it
could be considered to perform web scraping of the acces-
sory pages to get more text to analyze. This may add valu-
able information to the restricted content of the Google
Alert. Besides this, consider performing date clustering
of some sort. This may help increase performance in the
attack category, where alerts in the same timeframe may
be more likely to be about the same attack.

7. APPENDIX: CLASSIFICATION TOOL
Valid classification while preventing common pitfalls is dif-
ficult, and mistakes are easily made. Therefore, we have
developed a tool to ease the process of comparing and opti-
mizing multiple (supervised) classifiers on a given dataset.
The tool includes the following functionality:

1. Any datafile can be loaded, and feature and target
(name) columns can be selected.

2. Multiple classifiers can be fed to the program. It
will execute every classifier so that results can be
compared.

3. Every classifier can be combined with an arbitrary
set of pre-processing functions, such as TF-IDF, Chi-
Square and LSA dimension reduction, to find the op-
timal combination of classifiers and pre-processing
functions. Functions from the imbalanced learning
Python package, such as various under- and over-
sampling methods, can be used as well. A set of
pipelines is automatically built. The performance
can be compared by cross-validating each of them.

4. Every combination of classifiers and pre-processing
functions can be optimized. (Stratified) Cross-Validated

GridSearch is applied to tune (sets of) hyperparam-
eters. GridSearch automates this process by brute
force calculating the performance of every hyperpa-
rameter combination. Complete pipelines can be op-
timized this way, using only training data, while a
final test will be performed on the test data.

5. A list of optimization parameters can be set at the
start of the program. Every pipeline will be equipped
with only the parameters that apply, before being
processed by the GridSearch.

6. An adjustable part of the dataset is held out by de-
fault to ensure no information can be leaked into the
training data.

7. Various visualizations are built-in, including confu-
sion matrices for every pipeline, box plots for com-
paring performances between classifiers and (aggre-
gated) bar charts for visualizing the content of a
datafile.

Besides this, an annotation tool is present for annotating
a (part of a) datafile. For every row, the content will
be displayed and the user is asked for the correct input.
This input is validated and saved. It is possible to stop
the program and continue annotating at a later time, as
progress is saved. The tool will be made public at Github4

after publication.
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