
NOVEMBER 19, 2018

INCREASING THROUGHPUT OF
FPGA-BASED STREAMING
APPLICATIONS
BY USING PIPELINING

Rick van Loo
B.Sc. Thesis
November 2018

Faculty of Electrical Engineering
Computer Architecture for Embedded Systems
Supervisors:
dr. ing. D.M. Ziener
dr. ir. A.B.J. Kokkeler
dr.ir. M.S. Oude Alink

UNIVERSITY OF TWENTE.

Thesis description

The utilization of the used FPGA resources in time is rather low compared to an ASIC
due to the lower clock frequency. The efficiency of FPGA resources (lookup tables) can
be increased by using designs with many pipeline stages combined with a very high clock
frequency.

In this work, the automatic insertion of pipeline stages in data paths after synthesis
and the usage of high clock frequencies should be investigated. The overall goal is to
increase the efficiency and performance of FPGAs. The data paths of critical parts of a
design should be analyzed and additional pipeline stages should be automatic inserted.

The following issues should be solved:

• Get familiar with the FPGA design flow and architecture.

• Literature research about pipelining of FPGA-based implementations.

• Develop a concept for automatically pipelining a given hardware design.

• Implement the above mentioned concept.

• Evaluate the increase in throughput and clock frequency as well as the resource
overhead.

• Writing the thesis.

1

UNIVERSITY OF TWENTE. CONTENTS

Contents

1 Introduction 3

2 Theory and background 4
2.1 FPGA Design Flow . 4
2.2 Sequential Logic and Pipelining . 4

2.2.1 Design limits . 5
2.2.2 Pipelining . 6

2.3 RapidSmith2 . 8
2.3.1 CellDesign . 8

3 Method 10
3.1 Automatic Pipelining Methodologies . 10
3.2 Xilinx Vivado Pipeline Analysis . 11

4 Implementation 14
4.1 Pipeline Report Interpreter . 15
4.2 Pipeline Insertion and Recycling . 18

5 Evaluation 20
5.1 ZedBoard and the Zynq-7000 . 20
5.2 Advanced Encryption Standard (AES) Core 20
5.3 FIR Filter . 21

6 Discussion 23

7 Conclusion 24

8 Recommendations 25

2

UNIVERSITY OF TWENTE. 1. INTRODUCTION

1 Introduction

In the past years, FPGAs have been increasingly getting more popular due to the lower-
ing of costs. In many applications that require highly parallelizable work and streaming
applications, an FPGA is a good choice to improve performance. Designing an FPGA
requires good understanding of digital logic and the design aspects that go into imple-
menting a design from start to finish. Various attempts are being made to simplify this
process by extra tooling provided by FPGA suppliers that automate processes of the
design flow.

Various optimizations are being implemented in IDEs that should further improve the
requirements that the designer needs. One of these improvements is performance or
throughput. With streaming applications that continuously process data, throughput
is the most interesting design aspect as it will define the performance of the applica-
tion. More throughput means that more data can be processed in the same instant
of time. Another design aspect is latency. This is the time that is needed to process
the data. With a continuous stream of data this is less of an interesting design aspect
but for an application that doesn’t continuously receive data, this could be a big concern.

One of the most effective ways to improve the performance of FPGA applications is
by adding extra pipeline stages. FPGA designs have a synchronous nature consisting of
delay elements and logic, which means that it highly benefits from extra pipeline stages.
For a designer, this is in practice a very tedious and error-prone manual process where
the designer has to find critical paths in a design that can be pipelined. By balancing
the stages and simulating the design the designer has to ensure that both performance
increase has been reached, but also preserve the functionality of the design.

In this thesis, the various methods of pipelining a design are being looked into. An intro-
duction is made to the various topics that are necessary for understanding the subject.
An implementation is being made using the third-party tool RapidSmith2 to automat-
ically pipeline an existing streaming application. In the evaluation is looked into the
performance increase and the extra overhead in the design.

3

UNIVERSITY OF TWENTE. 2. THEORY AND BACKGROUND

2 Theory and background

This chapter will go through the necessary theory and background needed as a basis for
understanding the more in-depth methods and implementation described in the following
chapters. General concepts such as the FPGA Design Flow, Pipelining and used tools
will be described.

2.1 FPGA Design Flow

The FPGA is an integrated circuit that can be programmed after being deployed on
a board, using various programming languages called Hardware Description Languages
(HDL). The two mainly used HDLs being Verilog and VHDL. These languages are very
verbose and strictly typed but give the designer more in-depth and low-level control
over their intended design. After the designer is done programming, the programmed
blueprint goes into the FPGA Design Flow. This flow is a general step-by-step approach
that is not specific to a vendor. The two biggest vendors are Altera and Xilinx with their
own IDE tools, Quartus and Vivado respectively, to guide the hardware designer with
implementing their design.

The first step, called ’Synthesis’, is to convert the HDL code to an implementable digital
design. The result is a netlist containing basic elements such as lookup-tables and flip-
flops. Afterwards in the ’placing’ stage, these elements get an assigned physical location
on the FPGA. In the ’routing’ stage all these physical elements get properly connected
to each other. At last, a bitstream will be generated that can be programmed onto the
FPGA. Between different steps of the design flow, the FPGA design can be simulated.
Before synthesis, a behavioral simulation can be done to check if the HDL code has
the intended functionality. This can also be done Post-Synthesis and after Placing and
Routing. At this point timing analysis and simulation can be done as well to check if
the design meets the timing constraints. A more general view of the flow can be seen in
Figure 1.

2.2 Sequential Logic and Pipelining

After the design went through the Synthesis, the resulting netlist consist of basic FPGA
elements. Combinational logic such as the default set of AND- and OR- gates can all be
implemented in Lookup tables (LUT). In this case the LUT functions as a truth table to
implement multiple digital logic structures depending on the amount of inputs. Sequen-
tial logic is implemented using flip-flops (also called registers). This is a basic storage
element that can latch the input on basis of a clock. The combination of logic elements
and flip-flops make the design synchronous, where every next clock cycle all the latches
will keep the state of the input for a full clock cycle. In general, this means how higher
the clock frequency, how faster the circuit processes data. This improves the throughput

4

UNIVERSITY OF TWENTE. 2. THEORY AND BACKGROUND

of the design, so it would be interesting to look through options that can increase clock
frequency.

Unfortunately, it is not possible to increment the clock frequency without limit. Both
physical and design limits will bound the maximum frequency fMax that is achievable.
This thesis will only focus on the frequency limit imposed on by the design.

Figure 1: The Xilinx FPGA Design flow [1]

2.2.1 Design limits

All non-sequential elements such as the LUTs, combined with the propagation delay due
to the routing between the elements, will introduce a delay. In a sequential design, the
delay between two latches will ultimately limit fMax. An example of such a model can
be seen in Figure 2. A LUT, for example, needs time before it can produce an output
from its input signals, this is the logic delay. The route delay is also of interest; short
routes will produce the shortest delay. If the next latch would already take the input
before the logic settles the output would be wrong. In this example, the maximum path
delay shown is 4ns. Since this is the only path, this is the critical path delay. To produce
a correct output, the flip-flop has to ’wait’ 4ns, this means that fMax = 250MHz.

This sets the definition that fMax is directly set by the delay in the circuit, and while
this is true, it is not very often used in an environment where FPGA designers have to
work to a set requirement instead of the maximum possible achievable. This means that

5

UNIVERSITY OF TWENTE. 2. THEORY AND BACKGROUND

Figure 2: Example of a sequential circuit

the designer has to first set ’constraints’ that defines the required frequency. During the
’Max-Delay Analysis’ the following definition is used:

Definition 1. Slack (max-delay) = Required Time - Data Arrival Time [11]

A positive slack in this case means that the data has enough time to arrive at the next
register. A negative means it fails the requirements. This sets the definition that the
lowest or the worst slack will be the limiting slack in a design:

Definition 2. Worst Negative Slack (WNS) This value corresponds to the worst
slack of all the timing paths for max delay analysis. It can be positive or negative [11]

The WNS is the limiting factor for the maximum possible achievable frequency in a
design. FMax can be calculated on basis of these numbers:

ωmin = ωrequired −WNS (1)

fMax = (ωmin)
−1 (2)

Further referencing to Slack will be the Max-Delay Slack as described in Definition 1
or noted otherwise. The path containing the WNS, is often also called the ’critical
path’.

2.2.2 Pipelining

One of the most known examples of where pipelining is applied to a design is a micro-
processor [5]. In these microchips, the whole process of computing an instruction is cut
up in smaller pieces with memory elements in between. This makes it possible to have
multiple instructions being executed at the same time and opens up a whole world of
different parallelism techniques to improve the speed of a processor. Pipelining can also
be applied to FPGA designs, by adding new flip-flops to a design.

In Figure 3, a model can be seen that is the same as the example in Figure 2 but
with an added register in between. The maximum path delay has been reduced by half

6

UNIVERSITY OF TWENTE. 2. THEORY AND BACKGROUND

to 2ns, this leads to a doubling of the frequency: fMax = 500MHz. It is at the cost
of extra latency. This means it will take an extra clock cycle until the output is valid.
For streaming applications where input is constantly being streamed to the design this
initial latency should not matter, but for applications where input is not constantly being
fed into, this initial delay may cause performance issues. In those cases, adding pipeline
stages will be a design consideration between latency and clock frequency.

Another issue presents itself when there are loops present in the design. Simply in-
serting pipeline stages into a sequential loop might introduce functionality errors. For
instance it can be seen in Figure 4 that adding a flip-flop in the feedback loop, results in
the functionality changing.

Figure 3: A pipelined model

Figure 4: Example of pipelining sequential loops [4]

7

UNIVERSITY OF TWENTE. 2. THEORY AND BACKGROUND

2.3 RapidSmith2

RapidSmith2 is ’a library for Low-level Manipulation of Vivado Designs at the Cell/BEL
Level’ [8] written in Java. It is a direct successor of the earlier BYU project that was
aimed at the previous IDE of Xilinx: ISE. It has been developed to be able to manipulate
a design at a very low level at multiple steps in the FPGA design flow, as can be seen in
the Usage Model in Figure 5.

Figure 5: Vivado and RapidSmith2 Usage Model [8]

In Xilinx latest IDE Vivado, a TCL interface was added, which makes it possible to write
scripts and automate different parts of the design flow. While this works well for au-
tomation, it is not always an appropriate tool for writing bigger external tools that need
to modify and analyze parts of the design. RapidSmith2 heavily leans on the TINCR
project. TINCR is a TCL Framework for creating external tools for Vivado. It provides
an API for querying and manipulating existing Vivado design and has a set of comments
to export designs to open file formats. This last set of commands is used to generate the
required files that RapidSmith2 can open and parse. At any point in the FPGA Design
Flow, TINCR can create a so called ’RapidSmith2 Checkpoint’. This ’checkpoint’ can
be loaded by RapidSmith2 and the design will be represented by it’s RapidSmiths2 Java
objects and can eventually be exported again to a ’TINCR Checkpoint’. This checkpoint
file can again be read by TINCR and imported into Vivado for further processing. [8]

After loading a checkpoint file, the imported checkpoint is defined into three top-level
java classes: Device, CellLibrary and CellDesign. Device contains all the physical struc-
tures of the FPGA, and CellLibrary all the possible implementable cells on the physical
FPGA. CellDesign is the structure that encapsulates the full design.

2.3.1 CellDesign

CellDesign is the top-level Java class which contains the entire imported design and
provides several methods to manipulate the design. As described in Section 2.1, the syn-
thesis of HDL code results in a low-level netlist containing implementable elements. The

8

UNIVERSITY OF TWENTE. 2. THEORY AND BACKGROUND

CellDesign class encapsulates this netlist and provides physical references to the elements,
provided that the design has been placed and/or routed. A detailed data structure of
this class can be seen in Figure 6.

CellDesign

CellNet
(Array)

Cell
(Array)

CellPin
(Array)RouteTree NetType LibraryCell Bel

BackedCellPin PseudoCellPin CellPinType BelPin

LibraryCellPin

Figure 6: RapidSmith2 design data structure tree. [8]

A CellDesign or netlist is splitted up in two structures: Cells and CellNets. Cells are the
individual elements in a netlist such as LUTs and flip-flops. These types of cells are all
described in the CellLibrary, so that each individual Cell object contains a ’LibraryCell’.
CellNets contain the connections between the cells. Both ’Cells’ and ’CellNets’ contain
the individual CellPins and could be requested from either object. In the case of the Cell,
it contains all the individual pins of the Cell, and in the case of the CellNet it contains
all the pins that are connected with each other in a Net. RapidSmith2 provides all the
methods to manipulate existing Cells and CellNets or create new ones and add them to
the design.

9

UNIVERSITY OF TWENTE. 3. METHOD

3 Method

This chapter will show related work and look more in-depth at the possible methodologies
to improve the throughput.

3.1 Automatic Pipelining Methodologies

There are multiple papers that have researched methods to optimize synchronous designs.
First were Leiersons and Saxe in 1991 on their Retiming approach [7]. The Retiming
method is a technique to balance all existing registers in a synchronous design to find the
optimum location for them in the design to reduce the critical path. This optimization
can thus improve the throughput of a system while keeping the initial latency constant.
Two minor additions to this approach have been proposed by Weaver [9], Repipelining
and C-Slow Retiming.

The technique Repipelining differs from Retiming in that it will introduce extra latency
but further improve the throughput of the design. By adding an N amount of registers to
the input signals of the design, retiming can be used to optimally balance these registers
to introduce an N amount of pipeline stages to the design. One issue in this approach
is that doesn’t find an optimal amount of pipelines stages and can pass a point of no
additional performance increase.

Another option is C-Slow Pipelining, further investigated by Weaver et al. in 2003 [10].
C-Slow pipelining is implemented by replacing registers in the design by a sequence of a
separate amount C of registers. Again, retiming is used to balance the flip-flops through
the design. The biggest difference between this method and retiming or repipelining is
that the technique can improve design with feedback loops. This comes with a require-
ment; "Both repipelining and C-slow retiming can be applied only when there is sufficient
task-level parallelism, in the form of either a feed- forward pipeline (repipelining) or inde-
pendent tasks (C-slowing)" [9]. In C-Slow pipelining the design is separated in C tasks.
Enough task parallelism should be present to improve the throughput of the design. The
scope of this thesis limits itself to designs without feedback loops. This means C-Slow
pipelining does not need to be further investigated, since streaming applications should
show enough task-level parallelism in terms of a feed-forward pipeline.

When analyzing the performance of only the retiming algorithm in Table 1 of the C-Slow
pipelining tool developed by Weaver et. al [10], some evident issues arise. While the
Synthetic datapath and LEON Processor benchmark get marginally improved maximum
frequencies, both the AES core and Smith/Waterman benchmark actually perform worse.
Since these two benchmarks consist of single feedback loops, these programs do not
benefit from the Retiming algorithm. Nevertheless, Weaver also notes that "This tool
does not use a perfectly accurate delay model and has to place registers after retiming,
so it sometimes creates slightly sub-optimal results." [9]. When looking in-depth into the

10

UNIVERSITY OF TWENTE. 3. METHOD

Retiming algorithm, it is evident that a proper estimation of the delays in the design is
absolutely necessary for decent results.

Benchmark Unretimed Automatically Retimed
AES core 48 MHz 47 MHz
Smith/Waterman 43 MHz 40 MHz
Synthetic datapath 51 MHz 54 MHz
LEON Processor 23 MHz 25 MHz

Table 1: Results of retiming four benchmarks [9]

3.2 Xilinx Vivado Pipeline Analysis

In a Xilinx paper by Ganusos et. al. [4], an algorithm for improving performance is
looked into. They introduce an automated extra pipeline analysis that has been imple-
mented from Vivado 2015.3 on as ’report_pipeline_analysis’. By using the timing models
implemented in Vivado, an existing design is analyzed for critical paths, extra pipeline
stages are added and a report is generated. Since the implementation uses the outcome
of the report of the pipeline analysis, the algorithm will be described here further in detail.

Similar to the Retiming algorithm, the design is being modeled by a graph. In the
retiming algorithm , the circuit is defined as a graph with each node being a propagation
delay and each edge being a path that can either contain a register or not. In the Xilinx
algorithm, each node represents a ’pin’; both IO-pins and Cell pins. Each edge represents
the path between the pins, either internally in the Cell or externally. An example can be
seen in Figure 7.

A graph is an excellent model to computationally describe a design. It describes the
flow of the data in the design and timing information can also easily be added to each
node. An algorithm can simply traverse throughout the circuit. After having defined
how a design should look, a valid pipeline stage can be described.

Earlier has been established that a pipeline stage is an added register to an existing
design. A very simple single input to single output example of this was shown in Figure
3. However, it becomes more complicated when dealing with multiple inputs, outputs
and paths in a design. A valid pipeline stage in this case are multiple added registers
in the design, where every single path between an input- and output pin only contains
a single added register. This ensures that every forward path contains a single added
latency, and thus the functionality of the design does not change. Naturally, the added
register can only be inserted before or after a Cell, not between the pins. Due to hardware
limitations some pins can not have a direct register in front or after either. Gusanov et.
al. uses the following definition:

11

UNIVERSITY OF TWENTE. 3. METHOD

Figure 7: A digital circuit and its graph representation. Red colored edges are internal
paths [4]

Definition 3. A pin is qualified as legal if a pipeline register can be inserted on its
connected net [4]

They propose the following algorithm on how to implement a pipeline stage, their con-
sideration for designs with loops have been omitted.

1. Append all the legal pins p into list L.

2. Sort L on basis of Slack

(a) First priority on increasing Slack

(b) Second priority on decreasing possible slack improvement by virtually inserting
a pipeline stage

3. stageP ins = ∅, TFIP ins = ∅, TFOPins = ∅

4. For each p of L:

(a) If p ∈ TFIPins ∪ TFOPins; Continue.

(b) Append p to stageP ins

(c) Append all pins of L that are the Transitive Fan-In to TFIPins

(d) Append all pins of L that are the Transitive Fan-out to TFOPins

5. Return stageP ins

Listing 1: Pipelining algorithm [4]

In Step 2 of the algorithm in Listing 1, the list of legal pins are sorted first increasingly
on slack. As paths cross multiple pins with the same slack, the second sort priority is
necessary to find out which pins would introduce the best slack improvement. In Step 4,

12

UNIVERSITY OF TWENTE. 3. METHOD

the fan-in and fan-out is added to two extra lists. The ’Fan-In’ are all pins of the possible
paths that can lead to the point where the register gets added, the ’Fan-Out’ are the
pins of all further possible paths. This ensures that every forward path only contains a
single latency as TFIPins ∪ TFOPins /∈ stageP ins. Further mathematical proof can
be read in the paper [4].

Ganusov et. al. proposes two methods of implementation:

1. Using the generated report to directly implement all calculated pipeline stages, then
place and route. They note that this gives a reasonable estimation, but without
placement and updated timings it is not perfect.

2. An iterative approach:

(a) First Synthesis, Optimization and Placement

(b) Till no improvement is found:

i. Recalculate pipeline report and insert Pipeline.

ii. Update Placement and Timings.

(c) Lastly Routing

This approach can improve frequency improvements since actual placement and
timings get updated during the insertion of pipeline stages.

While the paper describes the results of the iterative approach, none of the approaches
have actually been made available to the Xilinx Vivado suite at the time of writing.
The user of Vivado currently only has the tool that will generate the report available.
Inserting the pipeline stages is up to the designer.

13

UNIVERSITY OF TWENTE. 4. IMPLEMENTATION

4 Implementation

In Section 3, various pipelining methodologies have been investigated in-depth. The
approaches by Weaver [9] have been looked at and only Repipelining is a viable imple-
mentation that would increase throughput of the design. One downside of this approach
is that it needs a proper implementation of the retiming algorithm, which requires a well
designed time model for the specific FPGA. The Xilinx Automated Pipeline Analysis [4]
evades this problem due to the fact that it can make direct use of the timing models
in Vivado. This also makes it an implementation that is unspecific to a certain FPGA
family, as long as it has Vivado support.

For various reasons, the earlier algorithm described in Section 3.2 has not been im-
plemented externally and the generated Vivado report is used. First, implementing a
timing model would possibly introduce less optimal results due to a sub-optimal model.
Secondly, it would make the implementation specific to a certain FPGA family. Thirdly,
at this time of writing there is no proper software or library to combine the timing in-
formation that Vivado holds with the low-level modifications RapidSmith2 offers. While
the ’Automatic Repipeliner’ was written with the ZedBoard containing the Zynq-7000
SoC in mind, it is not only written specifically for this FPGA. With small changes, the
implementation could be very well used on any Vivado supported FPGA Family.

The program was been written in Java 1.8. Vivado version 2017.2 is used. It heav-
ily relies on the functionality provided by RapidSmith2, which again leans on the Vivado
methods that TINCR provides. One requirement when using RapidSmith2 is to first
generate the needed device files. The RapidSmith2 Tech Report [8] describes in full de-
tail in how to create and install new design files. Note that every FPGA with a different
part number requires new device files.

1 i f { $argc != 2 } {
2 puts "The r s c p . t c l s c r i p t r e qu i r e s a top− l eve l name and extens ion name"
3 puts "vivado −mode batch −source r s c p . t c l − tc largs aes_top v"
4 exit 2
5 } else {
6 l ink_des ign −part xc7z020c lg484
7 read_ver i log [glob ∗ . [lindex $argv 1]]
8 synth_design −top [lindex $argv 0] − f latten_hierarchy f u l l
9 #100MHZ Clock

10 create_c lock −period 10 .000 −name CLK −waveform {0 .000 5 .000 } [get_ports { c l k }]
11 write_checkpoint −force [lindex $argv 0] .dcp
12 package require t i n c r
13 t i n c r : :w r i t e_ r s c p [lindex $argv 0]
14 c l o s e_pro j e c t
15
16 f i l e de l e t e {∗ } [glob ∗ . l o g]
17 f i l e de l e t e {∗ } [glob ∗ . j ou]
18 f i l e de l e t e {∗ } [glob ∗.dmp]
19 }

Listing 2: Synthesis ’rscp.tcl’ TCL Script

The TCL script in Listing 2 is used to automatically synthesize a HDL design and
outputs the needed ’RapidSmith2 CheckPoint’ for the implementation. Vivado can run

14

UNIVERSITY OF TWENTE. 4. IMPLEMENTATION

in ’batch-mode’ and sources TCL script to automatically execute, even arguments can
be provided. ’rscp.tcl’ is aimed at Verilogs designs for the ZedBoard specifically, but
can easily be altered for VHDL and different part numbers. The script also includes an
arbitrary 100 MHz clock to the design for timing purposes, writes a Vivado Checkpoint
for further possible evaluation and simulation of the original design and deletes all the
log- and dump files Vivado creates. Note that RapidSmith2 can only work with designs
that have a fully flattened hierarchy.

1 i f { $argc != 2 } {
2 puts "The s im . t c l r e qu i r e s a TCP f i l e and testbench f i l e "
3 puts "vivado −mode batch −source s im . t c l − tc largs aes_128_After test_aes_128.v "
4 exit 2
5 } else {
6 package require t i n c r
7 t i n c r : : r e ad_tcp [lindex $argv 0] . t cp
8 save_project_as −force Proj / [lindex $argv 0]
9 write_vhdl −force −mode funcsim [lindex $argv 0] _sim.vhd

10 set_property SOURCE_SET sources_1 [g e t_ f i l e s e t s sim_1]
11 impor t_f i l e s − f i l e s e t sim_1 −norecurse Test / [lindex $argv 1]
12 start_gui
13 f i l e de l e t e {∗ } [glob ∗ . l o g]
14 f i l e de l e t e {∗ } [glob ∗ . j ou]
15 f i l e de l e t e {∗ } [glob ∗.dmp]
16 }

Listing 3: Simulation ’sim.tcl’ TCL Script

The second script in Listing 3 is for evaluation and simulation of the generated de-
sign. As described earlier in Section 2.3, RapidSmith2 applications exports the design as
a TINCR CheckPoint. The script opens this checkpoint, adds a bench test and turns it
into a Vivado Project that can be used to simulate the design.

4.1 Pipeline Report Interpreter

First it is needed to look at how the pipeline analysis tool of Vivado works. ’re-
port_pipeline_analysis’ has to be used in combination with the
’-include_paths_to_pipeline’ argument and exported to a file for a complete report.
The generated document has three main parts: ’Report Description and Glossary’, the
’Intra-Clock Summary’, and the ’Paths to pipeline’.

The first part is only a description of the loop and a small glossary of the tool. The
’Intra-Clock Summary’ is a report to indicate the current fMax and the possible fMax

after every pipeline insertion. For the implementation of the pipeline tool, only the first
and last row are of interest. An example of this is shown in Table 2. The first row being
the current design which shows us the actual fMax. The last row being the theoretical
finalized design with the improved fMax and the newly added delay in the feed-forward
path.

The ’Paths to pipeline’ as shown in Table 3 contain all the individual ’instructions’
to pipeline the design. All instruction are written down as path cuts, with the start- and
endpoint listed with the necessary added registers in that path.

15

UNIVERSITY OF TWENTE. 4. IMPLEMENTATION

Clock Added
Latency

Ideal
FMax

Ideal
Delay Requirement WNS Added

Pipe Reg
Total

Pipe Reg
Pipeline Insertion

Startpoint
Pipeline Insertion

Endpoint

CLK 0 325.99 MHz 3.068 ns 10 ns 6.932 ns n/a 0 state_out[0]_i_1/O r1/state_out_reg[0]/D
CLK 13 651.98 MHz 1.534 ns 10 ns 8.133 ns 958 15060 out_1[0]_i_1/O state_out[0]_i_1/I3

Table 2: Example first and last line of the Intra-Clock Summary

Clock/PathGroup Path Cut Added Pipe Reg Startpoint Endpoint
CLK/CLK 0 4 out_1[88]_i_1__3/O state_out[88]_i_1__3/I4
CLK/CLK 1 6 out_1[88]_i_1__4/O state_out[88]_i_1__4/I4

Table 3: Example of two ’instructions’ of ’Paths to pipeline’

An interpreter is written in Java to import the information of the pipeline report to the
RapidSmith2 application. A detailed UML diagram of the classes involved can be seen
in Figure 8. All functionality has been en-capsuled by the ’ReportPipeLineInterpreter’
that handles the IO with the file and splits the report in two. By using the ’parse’
method it generates the ’IntraClockSummary’ and ’PipelineSummary’ class. Both these
classes individually parse their part of the report and have methods to return the parsed
information. Through the main class all the get-functions of these classes can be accessed.

All individual instructions get, after being parsed in the ’PipelineSummary’ class, stored
in a very basic ’PipelineInstruction’ class. This instruction contains all necessary infor-
mation for inserting a pipeline cut at the right location. An extra addition are the set-
and get-functions for the AddedDelays, this provides the instructions a current state of
the already added registers. This will be explained in the next section.

16

UNIVERSITY OF TWENTE. 4. IMPLEMENTATION

1

1

1..*

ReportPipeLineInterpreter

- FileName : String
- Document : ArrayList<String>
- IntraClockIndex : int
- PipelineSummary : int
+ Summary : IntraClockSummary
+ InstructionSummary : PipelineSummary

«constructor» + ReportPipeLineInterpreter(FileName : String)
+ getFileName() : String
+ importFile() : void
+ parseFile() : void
- OpenFile() : BufferedReader

IntraClockSummary

- Summary : List<String>
- CurrentFMax : float
- TheoreticalFMax : float
- Delay : int

«constructor» + IntraClockSummary(Summary : List<String>)
+ getCurrentFMax() : float
+ getTheoreticalFMax() : float
+ getDelay() : int
- parseSummary() : void

PipelineSummary

- Summary : List<String>
- Instructions : List<PipelineInstruction

«constructor» + PipelineSummary(Summary : List<String>)
+ GetInstruction() : List<PipelineInstruction>
- parseSummary() : void

PipelineInstruction

- Amount : int
- StartPoint : String
- EndPoint : String
- AddedDelays : int

«constructor> + PipelineInstruction(Amount : int, StartPoint : String, EndPoint : String)
+ GetAmount() : int
+ GetStartPoint() : String
+ GetEndPoint() : String
+ GetDelays() : int
+ SetDelay(n : int) : void

Figure 8: UML diagram of ReportPipeLineInterpreter and composition classes

17

UNIVERSITY OF TWENTE. 4. IMPLEMENTATION

4.2 Pipeline Insertion and Recycling

After all the instructions from the pipeline analysis report are parsed, the application
will move onto executing these instructions. The RapidSmith2 library provides us with
the tools to add these registers. The structure in how RapidSmith2 operates is described
in more detail in Section 2.1. Due to the fact that no automatic interface exists yet that
can run a design multiple times through Vivado and RapidSmith2 only the first direct
approach as listed in Section 3.2 is investigated.

The instructions as seen in Table 3 are supposed to be read that an amount of reg-
isters should be added on the path between the Startpoint and the Endpoint. This is
the ’path’, but this does not directly mean that the CellNet looks exactly the same. For
instance, the CellNet shown in Figure 9a shows a net with a single input and multiple
outputs. When executing the instruction, it should not affect the other 2 paths on the
CellNet. That is why the inserted registers should always be added just before the End-
point. Multi-driven nets, nets which have multiple input signals, are not supported.

Fortunately, the naming convention the pipeline report uses is quite simple. The first part
of the Start- or Endpoint is the Cell name, the part after the last slash ’/’ is the CellPin
name. With the use of regex the String can be split and both the Cells and CellPins can
be retrieved from the CellDesign. The CellNet connecting the StartPoint to the End-
Point is being disconnected from the EndPoint CellPin, a new array of N registers with
new CellNets inbetween is set in place and is ultimately connected again to the EndPoint.

When empirically looking at the Pipeline report, it was often seen that there could
be multiple instructions with the same StartPoint and different EndPoints, so although
it were two other paths, the CellNet would be exactly the same. This could result in
situations were unnecessary extra registers would be added. An example can be seen in
Figure 9b. Two delays would be added in front of EndPoint O1 and four delays in front of
O3, which ultimately results in six added flip-flops. Another option would be to recycle
existing registers like in Figure 9c. The resulting design is functionally and timing-wise
the same as Figure 9b but with a save of two added registers.

Because of the recycling of the newly added registers, a state (or AddedDelays) had
to be added to the ’PipelineInstruction’ class, and uses the algorithm shown in Listing 4.
Sorting the list of pipeline instructions ensures that the least necessary amount of reg-
isters will be added. The newly added flip-flops and CellNets inbetween will always be
conveniently named after the StartingPoint of the instruction, so that new instructions
containing a state can easily connect to the right register.

18

UNIVERSITY OF TWENTE. 4. IMPLEMENTATION

I1

O1

O2

O3

(a) Net without added delays

I1

D D D D O3

D D O1

O2

(b) Net with full added delays
I1

D D D D O3

O2

O1

(c) Net with recycled delays

Figure 9: An example of delay insertion

1. Get list L containing all pipeline instructions p.

2. Sort list decreasingly on the amount N of needed registers of p.

3. For each p ∈ L:

(a) If state of p is zero (no earlier added delays):

i. Add N registers before p EndPoint.

ii. Set State to N .

iii. For all p ∈ L with the same StartPoint, set state to N .

(b) Else:

i. Connect EndPoint of p with earlier added register CellNet.

4. Export design to TINCR checkpoint.

Listing 4: The Pipeline insertion algorithm including recycling

19

UNIVERSITY OF TWENTE. 5. EVALUATION

5 Evaluation

This chapter will go through the results and evaluation of the automatic pipeline imple-
mentation. Several existing designs will be tested on performance increase and resource
usage. A short introduction to the FPGA architecture is added to be able to evaluate
the resource usage of the applications.

5.1 ZedBoard and the Zynq-7000

Evaluation of the Automatic Pipeliner is aimed at the Avnet ZedBoard [2]. The FPGA
SoC on the chip is the ’Zynq-7000 All Programmable SoC XC7Z020-CLG484-1’. This
Zynq-7000 SoC combines a Dual-core ARM Cortex-A9 with a Artix-7 FPGA [13]. The
processing power of the ARM core will not be used, since only the FPGA architecture
is of interest. The ZedBoard has a FPGA that holds 53,200 LUTs and 106,400 registers,
which means that there abundance of Flip-flops with a 2:1 ratio towards LUTs.

All logic elements are embedded in so called ’Configurable Logic Blocks’(CLB). One
CLB contains two slices. One slice again has four LUTs, eight Registers, Carry logic
and multiplexers on the same area [12]. Not all elements on a slice have to be used and
signals can be fairly freely routed through the area. This means that for designs that
do not make optimally usage of this abundance of registers might have enough unused
flip-flops available that the used FPGA area will not dramatically increase by inserting
pipeline stages. Adding pipeline stages will thus not immediately increase the used area
as much as the added registers.

5.2 Advanced Encryption Standard (AES) Core

The first application looked at for repipelining is the ’Fully Pipelined AES Core’ [3] pro-
vided by Freecores. AES is an encryption technique that can encrypt data blocks of 128,
192, and 256 bits. AES can be implemented with loops, as multiple stages have to be
executed multiple times. Fortunately, based on the implementation it is known how often
these steps have to be repeated so the application can be unrolled in multiple identical
stages. This implementation is such an unrolled 128-bit AES core.

The documentation of the Core lists their own results using Xilinx ISE WebPack and
synthesizing for the Xilinx 5VLX50T. This is listed as ’Reported’ in Table 4 and 5. As
can be seen the original results perform ≈ 15% worse. This can be due to multiple fac-
tors: It has been synthesized in a different IDE and for another device. Less registers are
being used which could mean that the synthesizer optimized some flip-flops away. The
theoretical version is what the tool predicts and shows a massive improvement. For the
Total Registers at Repipelining, the total amount of flip-flops without recycling is shown.

20

UNIVERSITY OF TWENTE. 5. EVALUATION

Unfortunately, this prediction of the tool seems overly optimistic and the actual re-
pipelining application shows an ≈ 20% throughput improvement with 19 added delay.
After gathering these results, both the original and repipelined designs are being placed
’OUT-OF-CONTEXT’ (without placing IO) and the Slice usage is measured. As seen,
the Register Utilization increases with 152.70%, this is more than the increased Slice
usage as predicted earlier. This does mean that a 20% increase of performance means
that the application is more then twice as big. Fortunately by recycling and not directly
following the instructions of the tool, the repipeliner is able to use 43535 less registers
then predicted by the tool.

The recycle addition to the initial algorithm shows a lot of improvement when comparing
the resource usage. While the Throughput stays the same, the recycled version uses less
registers and slices. An interesting point to note is that fMax after Placing and Routing
is considerably lower for the implementation without recycling, this is most likely due to
the way higher Slice Utilization introducing more routing delay.

Unfortunately, the performance does not increase linearly to the size, meaning that a
doubling of Slice usage does not convert into the doubling of the throughput improvement.
This means that parallelization of this AES core would perform better at a lower area
cost.

Frequency (MHz) Throughput Improvement Extra Delay (cycles)
Reported ∼330 ∼42 Gbps - -
Original 278.96 35.71 Gbps -14.98% -
Theoretical 557.92 71.41 Gbps 70.02% 19
Repipelining 395.14 50.58 Gbps 20.43% 19
Repipelining + Recycling 395.14 50.58 Gbps 20.43% 19

Table 4: Throughput Improvement AES

Total Registers Register Utilization Slices Post P+R (MHz)
Reported 7873 - - -
Original 6482 6.09% 1699 190.94
Repipelining 59912 56.31%(+824.63%) 10490 (+517.42%) 202.35
Repipelining + Recycling 16377 15.39% (+152.70%) 3860 (+127.19%) 302.48

Table 5: Resource Usage AES

5.3 FIR Filter

Another design that has been evaluated is a FIR Filter provided by Digi-Key [6]. The
output of a standard FIR filter is defined by the following equation:

y[n] =
N∑
i=0

bi · x(n− i) (3)

21

UNIVERSITY OF TWENTE. 5. EVALUATION

Where N is the order of the filter and bi are the coefficients. Although this filter could
be implemented serially, with a known and constant maximum filter order, it is possible
to implement this with parallel execution. A filter with order N = 4 with 4-bits of data
has been implemented.

The FIR-Filter has been evaluated in the same way as the AES core in Section 5.2. The
results are shown in Table 6 and 7. In this result again a big difference is seen between the
theoretical throughput and the implementations. The recycling implementation uses 240
less registers while keeping the throughput roughly the same. After Placing and Routing
the maximum frequency is again higher for the recycled implementation. An interesting
number is the amount of slices in both implementations: Even with the extra pipeline
stages added, the Slice Utilization increased way less then the Register Utilization.

In this example it is seen that the performance increase after recycling actually is higher
than the area increase. This means that the recycling optimization performs better than
parallelization would.

Frequency (MHz) Throughput Improvement Extra Delay (cycles)
Original 167.15 668.6 Mbps - -
Theoretical 353.63 1.41 Gbps 110.89% 2
Repipelining 220.19 880.76 Mbps 31.73% 2
Repipelining + Recycling 241.12 964.48 Mbps 44.25% 2

Table 6: Throughput Improvement FIR, N=4

Total Registers Register Utilization Slices Post P+R (MHz)
Original 42 0.04% 40 162.31
Repipelining 340 0.32% (+700%) 101 (+152.5%) 198.02
Repipelining + Recycling 100 0.09% (+125%) 45 (+12.5%) 234.25

Table 7: Resource Usage FIR, N=4

What can be seen from both results is that the Vivado Pipeline Analysis tool is highly
optimistic in their theoretical assessment of how much improvement the Repipelining
algorithm would bring. The paper [4] shortly describes how their maximum frequency
is obtained; The maximum device frequency and the max loop frequency is obtained
and the smallest of these two is the maximum frequency possible. This frequency is un-
fortunately not reached. Both the original pipelining implementation and the one that
recycles added registers show that the extra flip-flops are unnecessary and after placing
and routing even decrease performance.

22

UNIVERSITY OF TWENTE. 6. DISCUSSION

6 Discussion

In this thesis various new and different topics have been looked into that are not part
of the standard Electrical Engineering curriculum. Research has been done in various
techniques to improve throughput on logic level and a good perspective has been brought
out on the current options in the field related to repipelining. Unfortunately working
with the tooling brought some problems.

One fairly big issue1 that arose was a problem with the RapidSmith2 checkpoint im-
porter. Lots of time was spend here to try to evade the issue. For some ports in the AES
design in Section 5.2 for example, there was a problem that the netlist interface could
not read them and further changes to the design would be impossible. RapidSmith2 is a
library in active development by the BYU Configurable Computing Lab so bugs and er-
rors are to be expected. Fortunately, after filling in an issue report the error was quickly
resolved by their team.

An issue with the Vivado Pipeline Analysis tool is that it is not that greatly documented
and adds unnecessary registers as shown in Section 4.2. While the paper describes their
algorithm in detail, it is difficult to set over this knowledge to their actual product which
uses different technical terms and ’speaks’ in paths instead of pins. The theoretical fre-
quency listed is way too optimistic and it seems that the timing data used by the tool,
in terms of amount of paths, is incomplete since the theoretical slack improvement is
never reached. But this is only guessing work since the complete workings of the tool are
not publicized. Finally, the Vivado tool gives instructions to unnecessary registers that
do not improve the performance of the design, increase overhead tremendously and even
perform worse after placing and routing.

1Github Issue: https://github.com/byuccl/RapidSmith2/issues/358

23

https://github.com/byuccl/RapidSmith2/issues/358

UNIVERSITY OF TWENTE. 7. CONCLUSION

7 Conclusion

This research shows that automatic algorithms can be used and are a viable approach to
improve throughput of an existing streaming application. External tooling has been used
and made to provide the designer a program that can automatically improve their design
post-synthesis. Even further improvement in terms of overhead reduction has been made
in the form of ’Recycling’.

Results show that a decent improvement can be made in respect to extra latency and
more overhead. While latency does not matter to a typical streaming application, the
resource overhead should be noted. This design choice between extra register overhead,
that shows itself in more area usage, and extra performance is in the end up to the
designer. Parallelization should also be considered, especially when the throughput im-
provement reached is lower than the increase of area. In the case of a parallel solution, the
outcome is always static: the doubling of the area results in the doubling of throughput.
This does mean that it could perform worse if repipelining actually improves throughput
beyond area increase.

The repipelining algorithm used shows improvement, and exported designs show cor-
rect functionality. Additionally it shows that RapidSmith2 is mature enough to be used
for low-level changes to a Vivado design at any point in the FPGA design flow. The fact
that the actual performance does not come close to the theoretical approximation proves
to be hopeful for further Repipelining analysis in combination with RapidSmith2.

24

UNIVERSITY OF TWENTE. 8. RECOMMENDATIONS

8 Recommendations

The first steps towards automatic throughput improvement of FPGA designs have been
made. But more areas which could provide more improvement should be investigated.

At first the iterative approach described in Section 3.2 has not been investigated. The
paper [4] describes this approach as the superior one since it can make usage of the im-
proved timing knowledge after every inserted pipeline stage. Unfortunately, this is not a
desirable approach, while in the first place the Vivado tool can’t export single pipeline
stages, it would also be a very tedious approach. In the time of writing an interface
that could automate this process does not exist. A recommendation would be to write a
Java interface that could automate the process of importing and exporting Vivado and
RapidSmith2 designs. The TCL commands used by Vivado are fairly simple so it would
be possible to write a TCL script generator and let Vivado execute these scripts by com-
mand of the Java RapidSmith2 application. With this approach, most of the steps such
as synthesis could be done in the Java application directly.

Additionally the algorithm proposed by Ganusov et. al. [4] has to be implemented directly
into Java instead of using the tool. At this point the reason why the tool does not reach
the theoretical estimation cannot be further investigated. An option would be to design
a timing model, unfortunately this would be very specific to an FPGA family. Another
approach would be to investigate the timing information that Vivado provides. This
report can provide the N worst paths the design currently has. RapidSmith2 presently
does not have a complete interface for the Timing Report available. Parsing this infor-
mation could provide us with enough timing data to iteratively repipeline the design.

At last more evaluation should be done on the hardware implementation of the repipelined
designs. The research done has only evaluated throughput improvement based on the
Vivado timing models. Actual implementation on the ZedBoard should be investigated
and measurements should be done to get more accurate results.

25

UNIVERSITY OF TWENTE. REFERENCES

References

[1] Aldec. Xilinx design flow. https://www.aldec.com/en/solutions/fpga_design/
fpga_vendors_support/xilinx--xilinx-fpga-design-flow.

[2] Avnet. ZedBoard Product Briefs, 2018.

[3] Subhasis Das. Fully pipelined aes core. https://github.com/freecores/aes_pipe,
2009.

[4] Ilya Ganusov, Henri Fraisse, Aaron Ng, Rafael Trapani Possignolo, and Sabya Das.
Automated extra pipeline analysis of applications mapped to xilinx ultrascale+ fp-
gas. In Field Programmable Logic and Applications (FPL), 2016 26th International
Conference on, pages 1–10. IEEE, 2016.

[5] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach, chapter C. Elsevier, 2011.

[6] Scott Larson. Digi-key: Fir filter (vhdl). https://www.digikey.com/eewiki/
pages/viewpage.action?pageId=78086825, 2018.

[7] Charles E Leiserson and James B Saxe. Retiming synchronous circuitry. Algorith-
mica, 6(1-6):5–35, 1991.

[8] Brent Nelson, Thomas Townsend, and Travis Haroldsen. Rapidsmith2 - a library
for low-level manipulation of vivado designs at the cell/bel level. Technical report,
Department of Electrical and Computer Engineering, Brigham Young University,
feb 2018.

[9] Nicholas Weaver. Retiming, repipelining and c-slow retiming. In Reconfigurable
Computing, pages 383–399. Elsevier, 2008.

[10] Nicholas Weaver, Yury Markovskiy, Yatish Patel, and John Wawrzynek. Post-
placement c-slow retiming for the xilinx virtex fpga. In Proceedings of the 2003
ACM/SIGDA eleventh international symposium on Field programmable gate arrays,
pages 185–194. ACM, 2003.

[11] Xilinx. Vivado Design Suite User Guide, Design Analysis and Closure Techniques,
2012.

[12] Xilinx. 7 Series FPGAs Configurable Logic Block, 2016.

[13] Xilinx. Zynq-7000 SoC Data Sheet: Overview, 2018.

26

https://www.aldec.com/en/solutions/fpga_design/fpga_vendors_support/xilinx--xilinx-fpga-design-flow
https://www.aldec.com/en/solutions/fpga_design/fpga_vendors_support/xilinx--xilinx-fpga-design-flow
https://github.com/freecores/aes_pipe
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=78086825
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=78086825

	Introduction
	Theory and background
	FPGA Design Flow
	Sequential Logic and Pipelining
	Design limits
	Pipelining

	RapidSmith2
	CellDesign

	Method
	Automatic Pipelining Methodologies
	Xilinx Vivado Pipeline Analysis

	Implementation
	Pipeline Report Interpreter
	Pipeline Insertion and Recycling

	Evaluation
	ZedBoard and the Zynq-7000
	Advanced Encryption Standard (AES) Core
	FIR Filter

	Discussion
	Conclusion
	Recommendations

