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Abstract

The last decade has seen a rise in the use of interactive technology in physical
play, with games and interactive installations using players’ body movements
as core part of the game experience. This addition of technology gives
extra sensing and feedback capabilities to these interactive playgrounds,
which enables them to adapt to the current situation and players. This
study aims to design and develop an adaptive intervention to enhance player
engagement in the Interactive Tag Playground (ITP), an interactive camera-
projector system to play the game of tag.

Playing data from the ITP was gathered, and video recordings were
analyzed by an observer to mark periods of low engagement during play.
This data is used to train a logistic regression model in order to predict the
level of engagement during play. The final logistic regression model, using
only a subset of features that can be easily retrieved from the ITP, has an
F1-score of 0.75. This model, combined with a time frame of 15 seconds and
a threshold of 85%, shows promising results at triggering an intervention at
appropriate times.

In order to evaluate this model, it was implemented in the live ITP,
together with a previously-designed ‘swag’ intervention. This intervention
spawns ‘power-ups’ around the tagger, which merely embellish the players’
circle upon collecting. The effect of the adaptive intervention on player en-
gagement was measured with a post-game Game Engagement Questionnaire
Revised (GEQR). Unfortunately, from the results it can not be concluded
that the adaptive intervention in the ITP leads to higher engagement. In-
stead, triggering the intervention at a set time during the game even low-
ered the engagement score. However, the intervention did lead to some
unexpected behavior that indicate a motivating factor, where players ex-
ploited the embellishments as a target to be tagged. Further research, with
a different set of interventions, might be needed to validate the engagement
prediction algorithm and the application of an adaptive intervention.
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1 Introduction

Play is widely accepted as an essential activity for children, as it provides
entertainment, social interaction, as well as physical and cognitive benefits
(Barnett, 1990). In the last decade, more technology has been introduced
into play, as video games have become a very popular way of playing. How-
ever, there has also been a rise in the use of interactive technology in phys-
ical play. This has been done in several ways, ranging from interactive toys
and attributes to complete interactive installations which use players’ body
movements as core part of the game experience (Moreno et al., 2015). True
interactive play differentiates from interactive toys in four ways, as defined
by Van Delden et al. (2018). Firstly, interactive play systems require explicit
body movements for interaction, as opposed to using a controller such as a
joystick or mouse. Second, it can enhance the provided feedback in several
ways, e.g. by using lights, sounds or movements/vibrations. Thirdly, the
interactive play system is able to store a history of states. This means it can,
for example, remember where a player has been in order to switch between
states or change scores. Lastly, these systems provide the ability to share
their state and data between multiple devices, which opens opportunities
for new ways of interaction.

These sensing and feedback capabilities enable the use of interactive play-
grounds and systems for a number of different goals, as defined by Poppe et
al. (2014). First and foremost, interactive playgrounds can provide a fun ex-
perience and enhance engagement by presenting novel interaction methods
and visualizations. Second, by providing a fun experience, interactive play-
grounds further promote physical activity. Through sensing, the system can
measure players’ skill and adapt the game accordingly. Third, interactive
playgrounds can be employed to stimulate behavior change, i.e. encour-
age positive behavior and discourage negative behavior. Fourth, interactive
playgrounds can play a role in education and learning. The systems can be
adapted to support a certain theme or learning goal. Finally, interactive
playgrounds may even provide opportunities for diagnosis. Using automatic
sensing, players’ behavior can be analyzed and possibly spot any abnormal-
ities.

A large variety of interactive play systems have been developed over the
years, for both research and commercial purposes. One of the most well-
known, and also one of the first interactive play systems is the Kidsroom
developed by Bobick et al. (1999). The Kidsroom is a specially designed
room, which can be completely transformed by projections, music, narration
and sound effects to guide children through an interactive adventure. The
fully automated system can react to the children’s action using computer
vision-based action recognition and a microphone. Using these sensors, the
Kidsroom creates a rich, immersive environment. Kajastila and Hämäläinen
developed an augmented climbing wall (Kajastila and Hämäläinen (2014);
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Kajastila et al. (2016)). The system uses a depth camera and projector to
help climbers by projecting possible routes, giving video feedback or even
play small games. Their study has shown that these augmented visuals
can increase the diversity of movements and challenges, by steering play-
ers to unexpected directions. Based more on traditional children’s play is
the interactive playground developed by Tetteroo et al. (2011). Their sys-
tem tracks players’ positions with an infrared camera which films reflective
markers attached to the players’ heads. Next to that, Sun SPOT sensors
were used to track small foam balls. A projector mounted on the ceiling can
project visualizations on the floor. This playground allows for open-ended
play, where players can create and interact with several projected shapes.
Similar to this setup, are a number of commercially available interactive play
systems. Most of them employ a similar setup of a (depth-)camera to track
players and a projector to project visualizations on the floor, like the BEAM
from EyeClick 1 and the MotionMagix box2. LumoPlay3, for example, only
provides the software that can be used with your own projector/camera
setup.

1.1 Adaptivity in interactive play

The first three chapters of this thesis are largely based on the ‘research
topics’, a preliminary (literature) study conducted as an exploration of the
research area (Pingen, 2017). This preliminary study mainly focused on the
possibilities of adaptivity in the Interactive Tag Playground (ITP), an inter-
active playground setup at the University of Twente. This setup is further
discussed in section 3. Previous interventions in the ITP were analyzed,
along with different methods to make the ITP more adaptive. Because of
its availability, it was decided to use the ITP as main instrument for this
research. Focusing specifically on player engagement in the ITP appeared
to give the most interesting options for adaptive interventions. Previous
research with children in the ITP has shown that player engagement de-
creases after about 90-100 seconds. This is a good opportunity for the ITP
to adapt to and automatically intervene, in order to restore engagement.
Furthermore, to circumvent any issues with tracking issues in the ITP, the
system should look at a global (combined) model of player engagement in-
stead of each individual player. The preliminary study lead to the following
research question, which form the basis for this thesis:

• How to create adaptive interventions for the Interactive Tag Play-
ground to enhance player engagement?

1http://www.joinbeam.com/ , last accessed 18-06-2018
2http://www.motionmagix.com/, last accessed 15-06-2018
3http://www.lumoplay.com/, last accessed 18-06-2018
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To answer this main research question, the following two sub-questions
were devised:

1. How can the ITP sense or detect when to intervene?

2. What is the effect of an adaptive intervention?

1.2 Methodology

When trying to solve these questions, one has to take the requirements for
the intervention into account. The intervention should preferably be simple
and robust, have a clear and great effect on the players, and be easy to
make adaptive. Next to this, the limitation of the system should be taken
into account. Previous research with the ITP has shown that occasionally
a ‘track switch’ occurs, which means that the tracking system assigns the
wrong ID to the wrong player. This may result in incorrect adaptations. To
solve such issues, the adaptive system only looks at a global model of player
engagement.

The goal of this research is thus to develop an adaptive intervention,
which can enhance player engagement in the ITP. In order to do so, the
approach is divided into three steps:

1. Gather data and recordings of play sessions in the ITP. In
order to create an adaptive intervention, the system must be able to
distinguish between a high and low level of engagement. Therefore, the
recorded play sessions should include both a high level of engagement
as well as (part of) sessions with a low level of engagement.

2. Create a model of player engagement in relation to playing
in the ITP. Using the data gathered in the previous step, determine
which elements indicate engagement levels and should thus be the
actual trigger for the intervention. This might be a combination of
different types of player data, such as amount of movement, sound,
game speed or even the players’ heart rate.

3. Create an adaptive intervention to increase player engage-
ment. With a model that can determine the engagement level in the
ITP, it is possible to create an adaptive intervention. Naturally, this
intervention should then be tested with players in the ITP to measure
the impact and effectiveness in solving the engagement dip.
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2 Literature review

In order to properly design an adaptive intervention, it is important to
discuss the previous research in this area. The following chapter provides
an overview of the different adaptive systems that have been developed,
which problems they aim to solve and what is needed to create such adaptive
systems.

2.1 Goals of Adaptivity

As shortly mentioned before, by making interactive playgrounds adaptive
they can provide an engaging and entertaining experience, while actively
promoting or discouraging certain types of behavior. Ambient games have
been shown to benefit from behavioral analysis to adapt the game (Schouten
et al., 2011). Instead of analyzing the data afterwards, information can
be processed during play, which makes new types of interactions possible
(Moreno, 2016). By adapting the game mechanics during play, an interactive
playground can challenge the players based on their personal skill level, thus
making the game more fun to play. Next to that, adaptive playgrounds can
even be used to encourage positive social behavior.

2.1.1 Skill balancing

Games, and thus interactive play systems, become boring when they are too
easy and frustrating when the difficulty is too high, which might lead to a
lower level of engagement. In order to account for this problem, games usu-
ally give the player the option to select a difficulty level (Lopes and Bidarra,
2011). However, the chosen challenge level is static, and does not depend
on the actual player performance. This may lead to a mismatch between
player skill and game difficulty, for example when players incorrectly clas-
sify themselves. Therefore, many game designers aim to adjust the game
difficulty during the play. This is also known as Dynamic Difficulty Adjust-
ment or Dynamic Game Balancing. Even in multiplayer games, similar to
a handicap in the game of golf, some players can be given an advantage or
disadvantage based on their skill level in order to even the playing field. This
can be done for each (sub)set of skills: e.g. running speed, strength, agility,
etcetera. This can increase challenge for the player, which in turn leads to
a higher level of engagement. However, proper dynamic game balancing is
not easy to accomplish. Schell (2008) defines three problems with dynamic
game balancing:

1. It spoils the reality of the world. Adaptive game difficulty might break
the illusion of immersion, as players realize that opponents’ abilities
are not absolute.
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2. It is exploitable. When players realize the game will get easier if
they play badly, they might play badly on purpose in order to win or
complete a challenge. This migh defeat the purpose of an adaptive
difficulty (i.e. players are not challenged anymore).

3. Players improve with practice. If enemies get easier to beat each time
you’re defeated by them, the game loses the aspect of challenge and
the pleasure it gives players of mastering that challenge.

The first might not be too much of a problem for interactive playgrounds.
These systems are usually not designed to fully immerse the players in a vir-
tual world, since they are mostly augmenting the real world. The other two
problems mentioned above should definitely be considered while designing
the adaptive system for such a playground. Exploitation, for example, might
be hard to detect without an external (human) observer. Next to that, it
is important to keep the challenge at an adequate level in order not to lose
engagement.

Skill balancing is not new, as extensive has been done on this subject.
For example, Andrade et al. (2006) developed an intelligent adaptive agent
for a real-time fighting game, using reinforcement learning. This agent can
choose between actions with high or low expected performance. For exam-
ple, if the game level is too hard, the agent chooses a sub-optimal action,
and progressively less optimal actions until its performance is as good as
the player. Similarly, if the game level is too easy, it will pick a progres-
sively better action until it matches the player’s skill. Their study shows
that this adaptive approach has the best result compared to other adaptiv-
ity approaches: it can adequately deal with players of different skill levels,
providing a challenging opponent for each. Next to that, it also provided the
highest user satisfaction. Their approach is similar to the dynamic scripting
technique by Spronck et al. (2003). Dynamic scripting uses an adaptive rule-
base to control the opponent AI in a game. The rulebase’s weights are then
updated based on the success or failure rate of a particular rule. Dahlbom
(2004) proposes a new, adaptive structure for this approach, employing a
goal-rule hierarchy. In this case, rules are viewed as a strategy to reach a
higher-level goal. The system is adaptive by adjusting the probabilities of
selecting each rule. This allows the AI to make strategic choices and in-
crease the challenge for the player when needed. Results have shown that
this updated dynamic scripting algorithm can be more effective, and can
re-adapt quicker than the original algorithm.

Also in interactive play systems, skill balancing is used to increase en-
gagement. Altimira et al. (2016) implemented skill balancing with a digi-
tally augmented tennis table. By adjusting the playing surface area through
projections, the more skilled player was induced towards a playing style that
was easier for the less skilled player to counteract. Their study shows that
while they were able to balance the players’ skills (i.e. allow the lesser player
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to win more), it reduced the engagement for the higher-skilled player. Jog-
ging over a Distance, as developed by Mueller et al. (2012) aims to balance
exertion in jogging pairs. The joggers can hear the audio of their co-located
jogging partner. This audio is positioned in a 2D space around the joggers
head, based on the difference of the relative heart rates. If one jogger’s heart
rate is relatively high, the other jogger would hear him ‘in front’ of him, and
vice-versa. This allows people with different skill levels to run together in
a balanced way. Also the Adaptive Circles by Van Delden et al. (2014)
balance players of different skill levels. In a game of tag, players of a higher
skill level (i.e. those who are never tagged), are made easier to tag. This
evens out the playing field to some extent.

2.1.2 Behavior steering

As mentioned before, interactive play systems can be employed to stimulate
behavior change. In order to encourage positive social behavior, the system
needs to be able to steer the player’s behavior. In this case, steering refers to
“introducing interactions or gameplay elements that change in-game physi-
cal play behavior towards a desired direction”. This is different from more
traditional persuasion methods, as it does not aim for long-term behavior
change outside of the game (Van Delden et al., 2018). It also does not
constrain behavior by hiding certain options or enforcing a specific type of
interaction. In contrast, it tries to influence player activity, such as how and
where they move or what type of interaction they perform.

This can be done by changing (adapting) the game mechanics. Naturally,
the best way to accomplish this is to employ a (slightly) different set of game
mechanics or feedback tailored towards each specific player (Poppe et al.,
2014). As one player might not be as involved as the others, the system
could give them a more prominent role. As mentioned previously, steering
gameplay also allows players of different skill levels to play together (such as
done by Van Delden et al. (2014)). Next to that, it can also be employed to
increase physical exertion and activity (Moreno, 2016). For example, Landry
and Pares (2014) show that they are able to control physical activity of the
players by changing the interaction tempo of the game (i.e. the pace of
gameplay).

2.2 Requirements for adaptivity

However, implementing adaptivity is not a straightforward task. Lopes and
Bidarra (2011) discuss the steps needed in order to achieve optimal adaptiv-
ity. In order to improve player experience, the system needs to be steered by
some purpose that can be identified, measured and influenced by the devel-
opers. Therefore, the adaptation algorithm should: 1) identify what triggers
the need for adjustments and 2) identify what should be adjusted. These
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two steps, required to ensure that game adjustments induce the personalized
player experience, are essential but still form a major challenge.

2.2.1 Sensing

To correctly interpret player behavior, sensors are needed that can capture a
player in sufficient detail (Greenberg et al., 2011). Currently, most inputs are
low-fidelity, limited and include some level of noise. It is therefore a challenge
to design a robust interactive system with such data. More importantly,
these sensors need to be embedded into the environment without hindering
or distracting players (Moreno, 2016). For example, equipping children with
microphones might restrict their movement, or at the very least make them
aware of the microphones, which in turn might lead to different behavior. In
the case of interactive play systems, the tracking should have a high temporal
and spatial resolution. This means it should react quickly and accurately:
it should be accurate enough to distinguish different players and possibly
even different types of movement. If the system wrongly identifies players
or behavior, it means it will now adapt to the wrong action. Moreover, the
study of Nijhar et al. (2011) shows that a higher accuracy of movement
recognition leads to a higher level of immersion for the players.

2.2.2 Measure of Engagement

In order to increase player or group engagement, the level of engagement
needs to be measured accordingly. However, it must be noted that inter-
preting behavioral cues only indirectly observes actual player experience
(Yannakakis et al., 2013). For example, a player who has only little inter-
action with the system (i.e. is not moving much) may be either bored or
actually thoughtful and captivated. As such, behavioral metrics can only
approach the likelihood of experience.

Bianchi-Berthouze discusses the role of body pose and motion in detect-
ing user engagement, by using body tracking systems such as the Kinect
(Bianchi-Berthouze, 2012, 2013). Changes in body movement entropy can
show how the player is appropriating the game control, which might be an
indicator of user engagement. Players enter a vicious circle of sorts; they
are more affected as they move more, which in turn makes them want to
move even more. Monitoring movement entropy might, therefore, be a good
indicator of user engagement, either personal or for the group of players
as a whole. Measuring group engagement might also give a way to detect
outliers: players that are not really engaged and might need some extra
stimulation to join the play.

Next to kinesics (‘body movement’), proxemics is also provides an inter-
esting feature to look at in terms of user engagement. Proxemics includes
the inter-player distance (distance between two players), orientation, move-
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ment, identity (who is playing) and location (Greenberg et al., 2011). The
physical arrangement of groups, how players position themselves in relation
to others, can be an indicator of engagement. For example, shy players
might hide behind others, or very engaged players might hide behind other
players to use them as a ‘human shield’. This physical group-arrangement
might therefore be an indicator of the relation between players.

2.2.3 Measure of Difficulty

Relating to the previously discussed ability of the system to ‘identify what
triggers the need for adjustments’, it can be hard to assess whether a game
is too difficult for a player or not. Hunicke and Chapman (2005) try to
predict this level of difficulty by determining flailing behavior. To do this,
they look at the inventory of the player. First, the overall flow (input and
output) of inventory items is modeled. Using this inventory flow, and an
estimation of the upcoming damage to be received, it is possible to predict a
shortcoming in the inventory. When this is detected, the player will probably
not complete the level or task and most likely fail. When this is detected,
the game can adapt by, for example, spawning more items or decreasing the
damage of an incoming attack.

Bailey and Katchabaw discuss several factors that need to be taken into
account in order to determine when to adjust game difficulty (Bailey and
Katchabaw, 2005): the player’s skill level, their success/failure rate for var-
ious gameplay elements, and the player’s general type, motivations, frustra-
tion tolerance, and emotional state. The player’s skill and success/failure
rates are naturally tied to the particular game or gameplay elements. There
are multiple metrics that can be measured from the game itself, for exam-
ple the number of attempts before success, time to completion or amount
of damage taken per level. Using these metrics, it is possible to determine
when a player is encountering difficulty with a certain element of gameplay.
In these cases, the game or interactive play system can adapt that particular
game-element, or support the player in other ways.

2.2.4 Player modeling

Another important aspect to take into account is the fact that different peo-
ple might react differently to games or specific game-elements. One way of
dealing with this is by creating player models. Such player models try to
encapsulate individual player characteristics and preferences. The game can
then use these preferences to adapt certain game mechanics and parameters
in order to maximize player satisfaction. Previous work in this field maps
player behavior to a number of different ‘player styles’ or game preferences
(Orji et al., 2013), even through the use of Artificial Intelligence (Derakhshan
et al., 2006; Yannakakis and Hallam, 2009). Based on the classification of
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the player, one of the pre-defined game adaptations can be utilized, tai-
lored to that specific playing style. This process consists of three phases:
observation, classification and adaptation. The observation phase can be
automatically done by the interactive play system’s sensors. The classifi-
cation phase is a difficult problem. First, different classes of players must
be defined. Consecutively, an on-line classifier must be constructed which
can classify players to one of the defined classes in (near) real-time. The
adaptation phase is then merely choosing the right (pre-defined) parameters
based on the classification. For example, idle players might be encouraged
to become more active by choosing a higher game speed. With a working
classifier, one can even analyze different game strategies employed by the
players, and see which one works best. Going even further, the playground
can potentially steer the players towards the optimal playing strategy.

Besides player classification based on their behavior, it is also possible
to create unique, personal profiles tailored towards a single user. For each
person, the system would store their personal preferences and behavior, as
opposed to mapping them to a set of pre-defined profiles. This could lead
to a highly optimized and adapted system. However, constructing such user
profiles is a hard problem. The system would need a way to learn that user’s
behavior. Next to that, it would need a way to detect which user is playing.
This can be done either automatically (e.g. using cameras to detect and
identify different players), or by making the players log-in before the game
(and log-out afterwards). The latter method has a downside that players
are not able to simply walk in and out of the playground whenever desired,
as is common in regular playgrounds.

2.2.5 Interventions

In order to design and develop a fully adaptive system, an inventory of
different kinds of interventions is needed. Such an ‘intervention’ is a set of
game mechanics or interactions designed to either stimulate or discourage a
certain type of behavior. This means that (ideally) for each type of possible
(undesired) behavior or interaction in the game, an intervention needs to be
designed, leading to a database of interventions. This can be a very time-
consuming process, as each intervention needs to be studied and evaluated
to make sure it has the right, desired, effect on the players.

The sensed behavior (i.e. measure of engagement and/or difficulty, as
discussed before) is as such used as the time trigger of when to apply the
designed intervention. For example, whenever a player gets below a certain
threshold of engagement, or the fail rate gets too high, it might be a good
time to intervene. It is then important to know which intervention to pick.
This is dependent on two variables: 1) the type of behavior to adapt to and
2) the player model. Naturally, different player (styles) may react differ-
ently to certain interventions. It is therefore important to take the player
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model into account and the expected outcome behavior when selecting an
intervention. This is a continuous process, which can be roughly modeled
as outlined in figure 1.

Figure 1: Flowchart of the game adaptation process

The game adaptation process is, for the most part, separate from the
game logic. This separation between game logic and adaptation logic can
also be found in the ALIGN system as developed by Peirce et al. (2008).
Each intervention, or Adaptive Element (AE) as they call it, is pre-designed
and annotated with metadata which describes in which game settings it can
be used and what the outcome of its use would be. A separate process
analyzes game events and translates this to the appropriate AE, taking the
player model into account. This separation of adaptation logic and game
logic allows for greater independent control over each element.

The possible interventions can be roughly divided into two types: Player
versus Player (PvP) and Player versus Environment (PvE). In the first case,
Player versus Player, the most obvious types of adaptation are of the skill-
balancing kind: giving one player a (dis)advantage over the other(s). This
can be done by simply changing or adapting one or more gameplay elements,
as mentioned before. Previous research with the Interactive Tag Playground
has shown that these kind of interventions have a positive balancing effect
(Van Delden et al., 2014). Next to this, PvP games or situations allow the
possibility to measure ‘outliers’, i.e. players showing behavior that is not
expected. For example, given the previously discussed flow patterns shown
by Kim et al. (2010), it might be possible to detect players that do not
conform to this pattern. They might be standing still or even going in the
complete opposite direction (i.e. some kind of avoiding behavior). It is most
likely that these players are not engaged. The ITP could adapt to this by,
for example, by spawning power-ups in their location (Van Delden et al.,
2014) or showing them the best way to move. Lastly, it might be possible to
adapt to inter-personal interactions such as rough play (or even fighting in
extreme cases). However, this might be difficult to detect using the available
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sensors in the ITP.
In the second case, Player versus Environment, adapting the difficulty

might be easier as it is a matter of changing the opponent (AI) strength
or intelligence. Several methods to accomplish this are discussed in section
2.1.1. In terms of low engagement, the system could, for example, even
spawn additional side-quests that might spark new interest as they fit better
with the player’s desired playing style. Even if these side-quests do not aid in
fulfilling the game’s main objective, previous research in the ITP has shown
that non-functional rewards such as mere decoration to the player’s avatar
can be used to steer behavior and might increase engagement (Van Delden
et al., 2017). In the case of PvE, it might also be easier to detect possible
future failures or defeats in the game, as the upcoming game-elements are
known and there is no possibility of unexpected interactions from other
players. This, however, does not hold for the game of tag in the ITP.
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3 The Interactive Tag Playground

The Interactive Tag Playground (ITP) is an interactive playground, aug-
mented with sensors and projectors in order to enhance game play (Moreno
et al., 2015; Van Delden et al., 2014). It was developed by the Human-
Media Interaction group at the University of Twente to conduct research on
interactive play.

3.1 Setup

The ITP consists of four Kinect 3D-cameras and two projectors. The four
Kinect cameras are mounted on the ceiling in a grid-like pattern, 4 meters
apart. The two wide-angle projectors are also mounted on the ceiling, 4
meters apart, displaying visualizations on the floor. Together, they cover an
area of about 5.3 by 5.3 meters. Figure 2 shows the setup of the interactive
playground. Only the depth images from the Kinect cameras are used,
since the projected visualizations would be picked up by the color cameras
as well. These depth images are filtered to remove noise and thresholded
in order to detect players. The detected positions are then mapped from
local Kinect coordinates to global coordinates. The cameras have a slight
overlap, thus in order to prevent duplicate detections, detections closer than
50 centimeters are merged together. Based on the detections, the movement
of each player is logged using a real-time tracker. This tracker uses Kalman
filters to estimate the locations for each player in each frame.

Figure 2: Left: Disposition of the Kinects and projectors on
the ceiling of the playground. Right: Playing area of the
ITP. (Moreno et al., 2015)

The tracking system and projected visualizations are separated. The
tracking is performed by a single computer, which transmits the data over
the network. Any connected computer can then access this data. In the
current setup, a second computer receives the data and runs the ‘Interactive
Tag’ game, implemented in the Unity3D engine. The ITP projects circles
around the players, indicating whether they are a runner (blue circle) or a
tagger (orange circle). When the game starts, a random player is automati-
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cally chosen as tagger by the system. When the tagger tags another player,
their roles, and thus the color of their circles, switch. In contrast to tradi-
tional tag, players do not have to physically touch, but can tag each other
by making their circles overlap. A sound effect is played to indicate the tag
event. Next to that, a cooldown period of two seconds is enforced, during
which the tagger cannot tag back the previous tagger. This is visualized
by making the previous tagger’s circle semi-transparent. In case the tagger
leaves the playing area (or is lost by the tracking system) for two seconds,
another player is randomly assigned as tagger.

Since the ITP is equipped with multiple sensors, it is possible to au-
tomatically detect and analyze different cues of player behavior. The ITP
currently tracks the player position, movement (speed and direction, which
can be deducted from the position), tag events and current game state (e.g.
who is tagger or runner in the game of tag). All this information is stored
and can be used for analysis, either afterwards or possibly even during play.

3.2 Adaptivity in the ITP

A number of different interventions have already been implemented and re-
searched using the ITP. However, the interventions were not all fully adap-
tive. Table 1 shows the previously implemented interventions in the ITP.

Table 1: Previous interventions done with the ITP

Intervention Goal Method Results Adaptive

Circle sizes a Skill balancing Circle size of the player in-
creases the longer you have
not been a tagger

Less variation in the dura-
tion of each player being a
tagger

Very basic

Arrows a Behavior steering Arrows are displayed,
pointing from the tagger
towards a randomly chosen
runner

Pointing an arrow at some-
one in the ITP increased
the chance of getting some-
one tagged more often.

No

‘Swag’ b Behavior steering Projecting collectible par-
ticles around the tagger
that upon collection by
runners resulted only in
the embellishment of their
circles.

Runners got closer to and
moved more towards tag-
gers when using our entic-
ing strategy

No

Power-ups a Behavior steering Power-ups are distributed
outside the ‘normal’ paths
of the players

No significant effect No

aVan Delden et al. (2014). bVan Delden et al. (2017).
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In order to detect and decide when adaptivity is required, the ITP needs
to sense when the engagement appears to be low. Therefore, in order to
properly apply such adaptivity, it is required to do some behavior analysis
or activity recognition.

Taking into account the requirements for adaptivity (see section 2.2) and
properties of the ITP, one possibility is by employing some vision-based anal-
ysis utilizing the Kinect cameras. Moreno (2016) discusses several methods
of automatic social cue processing and visual behavior analysis in games.
Furthermore, Lan et al. (2012) also show that looking at the behavior of
different players in a game (field hockey) can aid in activity recognition.
The combination of low-level actions and social roles is effective in event
recognition. For the ITP, this means a combination of movements (i.e. po-
sition, speed, direction) and whether the player is currently a ‘tagger’ or
‘runner’. These are relatively easy cues that can be analyzed for unexpected
behavior, for example runners that are running in the direction of taggers.
Also the previously described motion fields might give more insight in the
overall movement pattern of players in the ITP, as synchronized actions can
indicate a feeling of belonging (Miles et al., 2009).
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4 Experiment 1 - Data collection and analysis

4.1 Introduction

In order to make the system adaptive, it needs to be able to distinguish
between high and low engagement during play. Previous research with the
ITP resulted in the creation of the ‘Play Corpus’: a dataset of children
playing tag. Unfortunately, the playing time in this dataset was deliberately
kept short so the children would not get too bored. This means that there
are very few periods of low engagement in the dataset. Furthermore, it
would be hard to visually detect engagement, as there is no video of the
players’ facial expressions. Therefore, new data would have to be gathered
which includes periods of both high and low engagement. To make sure
that the new dataset would indeed include periods of low engagement, it
was decided to let the game run for a longer time. It was expected that
by letting the players play for a longer time, eventually an engagement dip
would occur as players get bored.

4.2 Methodology

Five games were played in the ITP, each game consisting of four players,
giving a total of 20 participants. Participants’ age ranged from 16 to 28
(median: 17), with 15 males and 5 females. Each game had a duration of
10 minutes, with about 13 seconds of introductory audio at the start. Play-
ers were instructed to stay within the designated play area until the game
was finished. Before playing, each player was also outfitted with a Scosche
Rhythm+ heart rate monitor armband4, which was connected through Blue-
tooth to an Android smartphone running the Sport Gear Tracker5 applica-
tion. Figure 3 shows players playing a game of tag in the ITP.

A Kinect 2 sensor was placed on a tripod (putting the sensor at around
2 meters high) next to the playing area to capture sound. This sensor was
chosen due to its multi-array microphone setup and ambient noise cancel-
lation abilities. A separate video camera was used to capture video of the
play area. During play, the ITP automatically logs players’ positions, role
(tagger or runner) and tag events. An observer annotated any anomalies
during the game, such as heart rate armbands getting loose, track switches,
etcetera. Afterwards, the video recordings were re-watched and periods of
low engagement were marked.

4www.scosche.com/rhythm-plus-heart-rate-monitor-armband, last accessed 12-01-
2018

5www.pnnproducts.com/en/mobile/android/Sport-Gear-Tracker, last accessed 16-
01-2018
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Figure 3: Circles projected on the floor during the tag game. The orange
circle denotes the tagger.

Data collection

With the setup as described, for each game a number of different types of
data is collected:

Heart rate: The Scosche Rhythm+ heart rate armband, connected to the
Android app, records the player’s heart beat every second, in beats
per minute.

Sound: The Kinect v2 has a four-microphone array, which detects audio
input in an angle of 100◦around the sensor. It outputs a 32-bit audio
stream, sampled at 48 kHz.

Position & role: About 3 times per second, the ITP logs for each player
their position, as well as their current role in the game (tagger or
runner). A median filter of 5 frames is applied to the x- and y-position
separately to filter out noise. From this position data, other data such
as player speed can be derived.

Tag events: Every time a tag event occurs, the ITP logs the timestamp
(in milliseconds since the game started) at which it happened, as well
as which player was tagged by who.

Engagement: The periods (start and end times) of low engagement were
noted after watching the recorded videos by an observer.
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4.3 Observations

From the observations, a couple of things could be noted. Firsly, it appears
that ‘track switches’, where players are assigned the wrong circle after com-
ing too close to each other, are almost no issue for the game. These track
switches would occur a couple of times per game. Players quickly learned
to deal with it, and some even used it to their advantage by clinging onto
other people so their own circle would disappear. The same can be said for
the tracker performance: the projected circles would sometimes lag behind
the player a bit depending on the their speed, but again players quickly
adapted their playing style to make use of this mechanic. No real problems
with these ‘bugs’ were expressed by the players.

4.4 Analysis

After collecting all the data, it is possible to make a comparison between
periods of low engagement and the rest of the game. In the following section,
each type of data is analyzed to find possible indicators of low engagement.
For this analysis, the SciPy6 package for Python was used, which contains
several tools for data analysis and statistics.

Heart rate

Heart rate is a generally accepted indicator of a person’s physical effort
(Achten and Jeukendrup, 2003). Physical exertion will lead to an increase
in heart rate. Therefore, heart rate might be a good indicator of engagement
in the ITP.

Unfortunately, the heart rate sensors that were used were not completely
fool-proof. One player had issues with correctly fastening the sensor to his
arm, which resulted in the armband shifting and coming loose during the
game. For another player in a different game, it was noted afterwards that
apparently the sensor had some problems with connecting to the Android
application, leading to missing heart rate readings. For these two players,
the heart rate data was discarded, resulting in 18 correct heart rate readings
which could be used for analysis.

Comparing exercise intensity between individuals is often done by using
a percentage of the person’s maximal heart rate (HRmax), as this maximal
heart rate appears to decrease with age. The most commonly used equation
is HRmax = 200 - age, but it is debated how accurate this is (Tanaka et al.,
2001). Combined with the fact that the age range of the participants is
relatively small, it was decided to just use the absolute heart rate instead.

However, simply taking the heart rate for the whole game yields skewed
results, as can be seen in figure 4. The histogram shows a lot more occur-

6http://www.scipy.org

25



rences in the lower regions (<140 bpm) for not-low engagement. This is due
to the way a person’s heart rate changes during exercise. Figure 5 shows a
single player’s heart rate during the game. As can be seen, the heart rate
keeps rising for about 150-200 seconds (from 75 bpm to 175 bpm), after
which it only fluctuates around 150-175 bpm. This effect is visible for all
players. This, combined with the fact that low engagement generally occurs
in the second half of the game, skews the analysis quite a bit.

Figure 4: Frequency histogram of
players’ average heart rate for a sin-
gle game

Figure 5: Heart rate development
over time for single player

To solve this problem, the first two minutes were dropped, which removes
the rise in heart rate at the start of the game. Dropping the first two
minutes of heart rate data and averaging them per game, yields a histogram
as can be seen in figure 6. Looking at the figure, there seems to be a visible
difference between low- and high engagement. Low engagement periods
have more occurences in the 120-140 bpm region, while high engagement
generally occurs more often in the region of 140-150 bpm. However, no
statistical significant difference could be found between the two conditions
(meanLow engagement = 149.4, meanHigh engagement = 154.6, p-value = 0.28).

Sound

The loudness of an audio signal closely corresponds with the energy of that
signal (the total amplitude of the signal), which is defined as:

energy =
∑
n

|x(n)|2
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Figure 6: Frequency histogram of players’ average
heart rate for a single game after dropping first
120 seconds

The root-mean-square energy (RMSE), which will be used as indicator of
‘loudness’ in the analysis is thus defined as:

RMSE =

√
1

N

∑
n

|x(n)|2

For the analysis of the sound files, the LibROSA7 library for Python was
used, which can compute the RMSE for each frame in the recorded audio
file. It is expected that the energy will be lower (i.e. players are more quiet)
during low engagement periods.

As can be seen in figure 7, during periods of low engagement (the blue
bars) there are relatively more occurrences in the lower end of the spectrum
for most games. This might indicate that players are quieter when the
engagement is low, which would be consistent with the observations. During
high engagement, players tend to shout to each other, laugh more often, and
their shoes make more noise on the floor.

Due to the large number of samples (over 25.000 per game), when con-
ducting a t-test on the mean RMSE the p-value will quickly go to zero, in
this case with results in in the order of p=10-20. Therefore, instead of relying
on this extremely low p-value, the effect size is analyzed instead by means
of Cohen’s d. Cohen’s d is the difference between the two sample means,
divided by the pooled variance. A score of 0.2 is considered a ‘small effect’,
a score of 0.5 a ‘medium effect’ and 0.8 a ‘large effect’. As can be seen in
table 2, the effect size is very small with an average of 0.12 over all games.

7http://librosa.github.io/librosa/

27



Figure 7: Root-mean-square energy of the sound signal for both low and
not-low engagement in each game. Note that the vertical scales are different
per game.

Game 4 shows the largest effect, but with d=-0.249 this is still considered
relatively small.

Table 2: Average sound level (RMSE) and Cohen’s d

Game Low engagement
mean

Not-low en-
gagement
mean

Cohen’s d

1 1.013 0.798 0.148
2 0.892 1.005 -0.085
3 0.399 0.470 -0.087
4 0.886 1.320 -0.249
5 1.166 1.242 -0.049

Speed

Player speed is naturally expected to be lower when the engagement is low.
The speed can be retrieved from the positions logged by the ITP. After
applying a 5-frame median filter to the position for each player to filter
out noise, each player’s speed is calculated in km/h. Figure 8 shows the
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frequency histograms for player speeds, for both low engagement and not-
low engagement.

As can be seen in the figure, there is not much difference in player speed
between low engagement and not-low engagement. In game 1, 2 and 5, the
histogram for low engagement (blue bars) seems a bit shifted to the left:
higher speeds (>6 km/h) occur less, whereas lower speeds (<4 km/h) occur
more. Interestingly, standing (almost) still (speed <0.5 km/h) appears to
happen less during low engagement.

Figure 8: Average player speed (km/h) for each game during low engagement
(blue) and not-low engagement (red)

As with the sound analysis, the speed data also has a lot of samples
(around 15000) for each game. Thus, again the Cohen’s d is calculated to
measure the effect size. Table 3 shows the Cohen’s d for each game. With
an average of d=0.153 over all games, the effect is considered to be low.
Moreover, the effect is not even in the same direction for all the games: in
game 3 and 4, the speed is higher on average during low engagement.

Tag speed

The speed of the tagger is analyzed separately, due to the leading role (s)he
has during the game. If the tagger is running around very quickly and
enthusiastically, the runners will have to run quicker as well. Likewise, if the
tagger is not engaged anymore and has a lower speed, the rest of the players
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Table 3: Average player speed (km/h) and Cohen’s d

Game Low engagement
mean

Not-low engage-
ment mean

Cohen’s d

1 3.423 3.703 -0.154
2 3.794 4.300 -0.267
3 4.081 3.703 0.207
4 3.712 3.485 0.127
5 3.782 3.802 -0.010

will likely follow. As such, the speed of the tagger might say something
about engagement. From the observations it was noted that during low
engagement, taggers would make low effort to tag others, usually slowly
walking around until (s)he could tag someone. Therefore the speed of the
tagger at the time of tagging is analyzed.

First, the timestamp from the logged tag events are taken. Then, from
the previously discussed player speeds, the speed of the player who was the
tagger at that time is taken. These speeds are then averaged for both low-
engagement and the rest of the game. The results can be seen in table 4.
For each game the tagger’s speed is lower when the engagement is low, as
expected. For game 3 and 4, this shows a trend (p<0.1) but also game 5
shows a high difference between low engagement or not. These results show
that the speed of tagger at the time of tagging can be an indicator of low
engagement.

Table 4: Average tagger speed at time of tag (in km/h) and standard devi-
ation (SD)

Game Low engagement
mean (SD)

Not-low engage-
ment mean (SD)

p-value Observations

1 7.81 (3,6) 7.94 (2,7) 0.79 (83,154)
2 7.51 (2,6) 8.10 (2,8) 0.30 (39,111)
3 5.52 (2,7) 8.00 (2,6) 0.051 (9,83)
4 5.03 (2,4) 8.26 (2,5) 3.74e-5 (19,119)
5 8.37 (3,1) 9.48 (3,1) 0.14 (29,134)

Tag frequency

Another hypothesis was that the higher the engagement, the more often
players would tag each other. As players would become more bored and
engagement drops, they would not put in as much effort to tag another
player, thus resulting in a lower tag frequency.

The ITP logs a timestamp for each tag event, the time between tags

30



can easily be retrieved. Table 5 shows the average time between tags for
each game for periods of low engagement and not-low engagement. In the
Observations column, the first number is the number of tags that happened
during a period of low engagement, the second number are the amount of
tags during the rest of the game. Except for game 1, the time between tags
is higher when the engagement is low. This again shows a trend (p <0.1)
for game 2 and 5. Game 3 shows the largest difference (8.38 seconds versus
6.13 seconds), but with a p-value of 0.186 cannot be considered significant.
This is likely due to the relatively low number of observations (only 9 tags
occurred during low engagement, 83 tags during the rest of the game). The
time between tags appears to be a promising indicator of low engagement.

Table 5: Average time between tags (in seconds) for each game

Game Low engagement
mean

Not-low en-
gagement
mean

p-value Observations

1 3.65 3.71 0.867 (83,154)
2 4.59 3.64 0.091 (39,111)
3 8.38 6.13 0.186 (9,83)
4 5.38 4.04 0.140 (19,119)
5 4.54 3.37 0.032 (29,134)

4.5 Conclusions

From the analysis, it appears that mainly ‘tagger speed’ and ‘tag frequency’
might be good indicators of low engagement, since they show the most sig-
nificant difference between high- and low-engagement periods. As expected,
both of them are lower during low engagement, meaning that taggers tag
people less often and do so with a lower speed. Contrary to expected, this
same difference could not be found for the average speed of all players. Es-
pecially heart rate is difficult to use as indicator of low engagement. Players’
heart rates start rising at the start of a game, until they reach a more stable
value. Next to that, it is difficult to correlate heart rate with engagement
levels. This is also shown by Yannakakis et al. (2008), who reach a 64%
accuracy on children’s preferences in interactive playgrounds, by using mul-
tiple heart rate features in a complex neural network.

While the analysis shows some promising indicators, it is difficult to
manually create a proper model from these results. Differences between
high and low engagement are not always as obvious. Therefore, a machine
learning approach will be used to implement these indicators in a prediction
model.
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5 Engagement prediction model

After manual statistical analysis has shown promising indicators of low en-
gagement, a model is created in order to try to predict low engagement
accurately in new games. Using the previous analysis as a starting point, a
machine learning classifier was implemented and used as a predictor.

5.1 Data

The complete dataset consists of five games of four players each. Each game
had a duration of 10 minutes. During each game, the following data was
recorded: position of each player (about 3 times per second), player role
(tagger or runner), tag events, heart rate of each player and global sound
level. From these recordings, the following data features were derived:

• Seconds since start: Amount of time the current game is running
(in seconds)
• Sound level: Captured global sound energy (total magnitude of the

signal)
• Time between last two tags: Amount of time (in seconds) between

the last two tag events
• Tagger speed: Speed (in km/h) of the tagger at the last tag event
• Speed: Average speed of the four players, in km/h
• Heart rate: Average heart rate of the four players, in beats per

minute
• Heart rate variability: Average heart rate variability of the four

players over the last five seconds

However, these features cannot simply be generalized over all games.
During the observations it was noted that even for normal play or ‘high’
engagement, speed of the players, for example, would be different between
games. Some sets of players would simply run faster than others. As such,
each game has a different ‘baseline’ of normal player behavior, from which
the periods of low engagement could be defined. Therefore, in order to
combine the data of all the games together, a baseline value was calculated
for each feature for each game. From the observations it was noted that
most of the periods of low engagement occur in the second half of the game,
making the first half suitable for calculating the baseline values. Next to
that, players would need to get used to the game and its mechanics at the
start of the game. Based on these observations, it was decided to take 2
minutes of data, starting after 20 seconds, to calculate the baseline value.
This means, that for each feature in the dataset (except for ‘Seconds since
start’), the average value was calculated from second 20 to second 140.
Then, all the data points for this feature would be divided by this baseline.
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This results in a relative score of the feature, compared to normal play (the
‘baseline’ value).

Next, the data was split into frames of 0.5 seconds, where the average
value for each feature during this time frame was taken. Each frame was
then assigned a label (low engagement or not) based on earlier observations.
In order to account for observer accuracy, frames within a second of the
edges of a period of low engagement were dropped, as illustrated in figure
9. Each vertical bar represents a frame of 0.5 seconds, the frames classified
as low-engagement are colored green. The red area shows the frames that
are dropped. This resulted in a final dataset of 6522 frames with 7 features.
Of these 6522 frames, around 23% is labeled as low engagement.

Figure 9: Illustration of dropped frames around the edges of periods classi-
fied as low-engagement.

5.2 Methodology

Two different machine learning algorithms were implemented in this analy-
sis. Since the frames can be divided into two classes (low engagement or not),
it was decided to use Logistic Regression and Random Forests. These were
chosen for their performance (fast training times) and ease of implementa-
tion in a ‘live’ system. For the implementation, the Scikit-learn package for
Python was used (Pedregosa et al., 2011). Because the data is relatively im-
balanced (where low engagement frames make up less than a quarter of the
whole dataset), earlier models had trouble identifying these frames correctly,
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only slightly outperforming randomly guessing. Therefore, under-sampling
is first applied to the dataset, by using Scikit-learn’s default ‘RandomUnder-
Sampler’ method. The under-sampling method randomly picks frames from
the majority class (not-low engagement) to approximately balance the two
classes. This results in a dataset of 3032 frames, with a ratio of 46/54
low-engagement/not-low engagement.

This balanced dataset is split into 75% training set and 25% test set after
shuffling. The dataset is shuffled because frames labeled as low engagement
are always next to each other, leading to an imbalanced training and/or
test set. Next, both the Logistic Regression classifier and Random Forest
classifier are fitted to the training set, using the features as described earlier.

5.3 Results

Using all 7 available features, the initial classifiers seem to perform quite
well. As can be seen in table 6 and table 7, the logistic regression classifier
has an average F1-score of 0.78. The precision for the low-engagement class
is a bit lower than for the non-low engagement class, but this is reverse for
recall.

Table 6: Logistic Regression classification metrics

Class Precision Recall F1-score N

Not-low engagement 0.83 0.73 0.78 406
Low engagement 0.73 0.83 0.78 352

average/total 0.78 0.78 0.78 758

Table 7: Logistic Regression confusion matrix (’0’ denotes not-low engage-
ment, ‘1’ denotes low engagement)
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s

Predicted values

0 1

0 298 108

1 60 292

On the other hand, the Random Forest classifier seems to perform way
better with an average F1-score of 0.94, as can be seen in table 8 and table 9.
However, this number seems to be too high, which might indicate overfitting
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of the model. Looking further into some of the decision trees of this random
forest classifier, it appears that they are indeed overfitting mainly on the
‘Seconds since start’ feature. The classifier learns the exact timings of the
periods of low engagement in the dataset. While this yields a very high
accuracy score, this cannot be generalized over future games as timings will
be different. Countering overfitting by limiting, for example, the maximum
tree depth or minimum samples required for a split or a leaf reduces the
score on the test set, but the model still tries to capture the exact training
values.

Therefore, logistic regression seems to be the better choice for the prob-
lem. A linear relation between the features and classes (low engagement or
not) is a logical fit and less prone to overfitting than the way the decision
trees try to capture the data.

Table 8: Random Forest classification metrics

Class Precision Recall F1-score N

Not-low engagement 0.96 0.92 0.94 406
Low engagement 0.91 0.96 0.93 352

average/total 0.94 0.94 0.94 758

Table 9: Random Forest confusion matrix (‘0’ denotes not-low engagement,
‘1’ denotes low engagement)

A
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Predicted values

0 1

0 372 34

1 14 338

5.4 Feature selection

The previous models used all seven features. However, they might not be all
equally significant. Reducing the amount of features prevents overfitting and
enhances generalization, which makes the model more useful for predicting
low engagement in future games. Going forward with logistic regression, it
is possible to look at the coefficients of the features in the decision function
of the trained model. As can bee seen in table 10, ‘Seconds since start’
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is obviously the most important feature. The longer players are playing,
the more likely the engagement will be low. This corresponds with the
observations, where almost all periods of low engagement were in the second
half of the game. The next most important feature is the average speed of
all players, which is inversely correlated. This means that as the speed gets
higher, the logistic regression model will go to zero, which indicates not-low
engagement. In short, a lower speed indicates low engagement, as expected.

However, in selecting the features, the future application must also be
taken into account. The goal of an interactive playground, as noted earlier,
is to enhance traditional play. Equipping players with heart rate sensors
before they can start playing severely limits players to simply walk in and out
of the playground whenever desired, as is common in regular playgrounds.
Because of this, combined with the fact that both ‘heart rate’ and ‘heart rate
variability’ have a relatively low importance, it might be useful to drop these
features given the model still performs adequately. Also ‘Sound level’, which
requires the addition of an extra sensor, has a relatively low importance. It
is therefore interesting to see how the model performs with just the features
available from the playground itself.

Table 10: Logistic regression feature coefficients

Feature Coefficient

Seconds since start 1.381
Sound level -0.145
Time since previous tag -0.287
Tagger speed -0.131
Speed -0.673
Heart rate 0.238
Heart rate variability -0.119

A number of different combinations of features are tested with the logistic
regression model. Firstly, the impact of ‘Seconds since start’ is examined,
as it does not say much about what the players are doing. Removing this
feature from the model has a light negative effect on the accuracy scores.
Interestingly, the feature ‘Heart rate’ gets assigned a much higher coefficient
in this case. Removing ‘heart rate’ as well leads to drastically worse results.
It seems like ‘Seconds since start’ and ‘heart rate’ might be correlated, as
was discussed in section 4.4. This was confirmed after analysis (r=0.69),
which is another reason to leave out ‘heart rate’ as feature.

Finally, a new logistic regression model is trained on the same dataset,
using just the features that come directly from the playground: ‘Seconds
since start’, ‘Time since previous tag’, ‘Tagger speed’ and ‘Speed’. This
resulted in the classification metrics as can be seen in table 11. The newly
trained model, with just 4 features, appears to perform just as well as the
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previous model (with all 7 features).

Table 11: Logistic Regression classification metrics after feature selection

Class Precision Recall F1-score N

Not-low engagement 0.84 0.72 0.77 406
Low engagement 0.72 0.84 0.78 352

average/total 0.78 0.77 0.77 758

5.5 Cross validation

Neighbouring samples (frames) in the dataset are not truly independent, as
the features’ values do not change that quickly over time. As such, the clas-
sifier is trained on data that might be very similar to the test set, leading
to overfitting and thus higher results than the live predictor would be able
to achieve. Therefore, to properly measure the performance of the classifier,
it was decided to perform 5-fold cross-validation where the subsamples are
created per game. This means that for each fold, 4 games are taken as train-
ing data and the remaining game is used as test set. Because neighbouring
samples are not independent, the data is not shuffled.

Table 12 shows the results for the 5-fold cross validation. While the
scores are still good for predicting high engagement, both precision and
recall are quite a bit lower for predicting low engagement (around 61%).

Table 12: Cross validation classification metrics

Class Precision Recall F1-score

Not-low engagement 0.89 0.87 0.88
Low engagement 0.61 0.62 0.61

average/total 0.75 0.74 0.75

5.6 Intervention Trigger

Using the trained classifier, it is possible to start looking at the timing of
intervention triggers. Looking at the overall goal, an intervention needs to
be triggered when the players are no longer engaged. However, it is unde-
sirable to immediately trigger an intervention at the first frame classified as
‘low engagement’ by the classifier. Especially with the trained model, the
chances of a false positive (i.e. the players are actually still engaged, but
the classifier thinks otherwise) are relatively high which might lead to too
many interventions too quickly.
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The intervention trigger is dependent on two variables: the time frame
over which the frames are analyzed, and a threshold: the percentage of
frames in this time frame that need to be classified as ‘low engagement’.
From the observations, it was noted that the periods of low engagement
usually took between 30 and 60 seconds. In order to trigger the intervention
on time, the time frame over which to analyze the frames must thus be
smaller that that. Making the time frame too small, however, will increase
the chance of triggering on a false positive. Based on these observations,
it was decided to vary the time frame between 10 and 30 seconds. Next to
that, within this time frame a significant percentage of the frames need to
be classified as ‘low engagement’. Making this percentage too high reduces
the chance of even triggering an intervention, due to the number of false
negatives coming from the classifier. Therefore it was decided to vary this
threshold between 70% and 90%.

(a) Game 1 (b) Game 2

(c) Game 3

Figure 10: Adaptation trigger examples per game
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Varying with both time frame and threshold, eventually the combination
of a 15-second time frame and 85% threshold has proven to be the best
fitting. See figure 10 for some examples of the results. The plots show how
the frames are classified by the trained model, where the green areas indicate
periods of low engagement. At the vertical red lines, an intervention would
be triggered. As can be seen in figure 10b, short periods of low engagement
do not trigger an intervention. Next to that, mainly at the end of the games
(e.g. see figure 10a) an intervention would be triggered more often than
needed. This, however, is not expected to be an issue, as in this case players
would already be playing for over 8 minutes, making it most likely a welcome
change in the game.

5.7 Conclusions

The final logistic regression model can predict engagement with an accuracy
of around 75% on average for both classes, based on four features that can
easily be retrieved from the current set-up of the interactive playground:
‘Seconds since start’, ‘Time since previous tag’, ‘Tagger speed’ and ‘Speed’.
The accuracy for the ‘low engagement’ class is a bit lower: just above 60%.
Even though this might be lower than expected, the intervention triggers
(with a combination of a 15-second time frame and 85% threshold) show
adequate results, with a model that can be relatively easily implemented in
the ITP. Concluding, it can be said that the trained model shows promising
results at triggering the interventions at appropriate times.
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6 Experiment 2 - Model evaluation

6.1 Introduction

While the previous analysis has shown promising results on the test set,
the model still needs to be validated in the live playground. As mentioned
before, the overall goal of this adaptive algorithm in the ITP is to enhance
player engagement. Therefore, it needs to be validated whether the algo-
rithm can actually achieve this goal. However, objectively measuring player
engagement is a difficult, not completely solved, task. Many different meth-
ods have been developed by different researchers, such as (semi-)structured
interviews, video analysis or more automatic methods of analysis as de-
scribed in chapter 2.2.2. Often, though, engagement is evaluated using a
post-game or even in-game questionnaire.

There exist a number of different questionnaires that go by (almost) the
same name: Game Engagement/Experience Questionnaire (GEQ). Often
used are the ones by IJsselsteijn et al. (2013) or Brockmyer et al. (2009).
Berthouze et al. (2007) developed a revised version (GEQR) aimed at whole-
body movement. Considering the ITP also uses whole-body movement as
main control element, the GEQR appears to be a fitting method of evalu-
ation in this case. The full GEQR used in this study can be found in the
appendix.

Since players might react differently to games and have different engage-
ment tendencies, this needs to be accounted for. As Bianchi-Berthouze et al.
(2007) describe, engagement is the first step towards immersion. By control-
ling for this immersion tendency, the outcome of the GEQR can be reliably
compared. For this the Game Immersion Tendency Questionnaire (GITQ)
is used. The GITQ is a revised version of the ITQ proposed by Witmer and
Singer (1998), which measures the tendency of players to get immersed in
games, movies, etcetera. The GITQ can be found in the appendix.

6.2 Intervention

Looking back at the flowchart in figure 1, once the system can adequately
determine the correct timing, it still needs to pick the right intervention. In
this case, the goal of the adaptation is to improve engagement, therefore the
intervention must be designed towards that goal. To ensure the intervention
has the desired effect, it is most useful to look at previous interventions used
in the ITP. Designing an intervention from scratch would require additional
experiments towards the effect of this new intervention. Looking at table
1, the ‘swag’ intervention seems to increase the movement and challenge for
players by enticing them to take more risk. Furthermore, as described by Van
Delden et al. (2017), the ‘swag’ intervention was preferred by participants
over the baseline version. Due to the enticing way of steering (i.e. not forcing
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players towards a certain behavior) and positive response from players to
the ‘swag’, it makes a fitting intervention for the case at hand. Figure 11
shows the implementation of the intervention in the adaptive ITP. Figure 11a
shows the yellow power-ups that are spawned around the tagger. Collecting
these results in the embellished circle in figure 11b.

(a) Powerups (yellow circles) spawned around the
tagger

(b) Regular runner’s circle (left) vs embellished
circle (right)

Figure 11: Implementation of the swag intervention in the adaptive ITP

6.3 Implementation

The logistic regression model, as described in the previous chapter, was im-
plemented in C# and built into the Unity3D tag game in the ITP. Each
0.5 seconds, the average value for each of the four features is taken, which
together form a single ‘frame’. This frame is then fed into the logistic regres-
sion model, which predicts whether the engagement is low (output=1) or not
(output=0). Subsequently, the algorithm checks the average prediction of
the last 30 frames (=15 seconds) and compares this with the pre-set thresh-
old of 85%. If the average prediction is higher than 85%, the intervention is
triggered.

6.4 Methodology

In order to adequately measure the effects of the model, two control groups
are used, making a total of three different conditions. Players in the ex-
perimental group (which will be referred to as ‘Adaptive’) will play the
aforementioned adaptive game in the ITP, where the designed engagement
recognition algorithm will decide when to introduce the intervention. The
first control group (‘Basic’), will play the basic tag game, without any inter-
vention. Since the engagement-recognition algorithm is mainly concerned
with finding the correct timing of the intervention, another control group is
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introduced to account for the effect of the correct timing instead of merely
introducing the intervention. Therefore, the second control group (‘Naive’)
will play a game of tag where the intervention will ‘naively’ be deployed at
a fixed time halfway through the game.

A total of 36 players participated in the experiment (20 male, 16 female,
median age = 20). Each game consisted of four players, thus making 9
games total. Each group of players was assigned one of three conditions
mentioned earlier: ‘basic’, ‘naive’, or ‘adaptive’. After signing the consent
form, players were asked to fill in the GITQ questionnaire. As during the
first experiment, each game again had a duration of 10 minutes, with about
13 seconds of introductory audio at the start. Players were instructed to
stay within the designated playing area until the game was finished. After
playing, players were again asked to fill in a questionnaire: this time the
GEQR questionnaire.

6.5 Results

From the logs generated by the ITP, it can be noted that for the adaptive
condition the intervention triggers after 6:32, 7:35 and 5:51 minutes respec-
tively, meaning on average after 6 minutes and 39 seconds of playing. An
interesting observation that was made during the different games, was that
the swag intervention had an unexpected side-effect. Runners with a pret-
tier circle were targeted by the tagger and other runners. Some considered
the embellishment an indicator that the runner was ‘too good’ so the tagger
had to go after them. Players tried to hide themselves behind the runner
with the most embellishment, and tried to persuade the tagger to go after
them by shouting ‘No, no, you have to tag him! He has a prettier circle!’.
While not intended, this was an interesting side-effect. It could even be seen
as a sort of self-regulating skill balancing. This will be further discussed in
section 7.

Analyzing the GITQ questionnaire, the results are first combined into a
single GITQ score per player, which denotes their tendency to get immersed
on a scale of 1-7. The same is done for the GEQR questionnaire. In order to
see whether there is a difference in immersion tendency, an ANOVA test is
applied to the obtained GITQ scores. Table 13 (first row) shows the results
of the ANOVA test. With a p-value of 0.27 (F = 1.37), the null hypothesis
cannot be rejected, meaning there is no significant difference in GITQ scores
between the three groups. In this case this is a positive result: since there is
no significant difference in tendency to get immersed between participants
of the different conditions, the GEQR scores can be fairly compared. Addi-
tionally, the correlation between the GITQ and GEQR scores was analyzed
by means of Pearson’s R. There was only a weak correlation found between
the two (r = 0.32, p = 0.05).

The GEQR scores are also analyzed by means of an ANOVA test. The
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Table 13: Results of ANOVA test for GITQ and GEQR scores

Condition: Basic Adaptive Naive p-value**

GITQ score 4.71 (0.65) 4.26 (0.75) 4.42 (0.62) 0.27
GEQR score 5.44 (0.38) 5.13 (0.57) 4.91 (0.52) 0.04

*Variables are denoted as mean (SD).
**Group differences were tested with one-way ANOVA.

bottom row of table 13 shows the results of this test. With p <0.05 (F =
3.46), this shows there is a significant difference in GEQR scores between
groups. In order to determine which groups differ significantly, a post-hoc
Tukey HSD test was conducted, the results of which can be found in table
14. This post-hoc test shows us there is a significant difference between the
‘Basic’ and ‘Naive’ conditions. There was no significant difference found for
the ‘Adaptive’ condition with any of the other conditions. Interestingly, as
the boxplot in figure 12 further shows, the ‘Basic’ condition, without the
intervention, scored the highest on the GEQR questionnaire.

Table 14: Results of post-hoc Tukey’s HSD test for GEQR scores

Group1 Group2 Difference Lower bound Upper bound p <0.05

Adaptive Basic 0.308 -0.1875 0.8034 False
Adaptive Naive -0.221 -0.7165 0.2744 False
Basic Naive -0.529 -1.0244 -0.0335 True

Lastly, the distance between runners and taggers are compared, since
Van Delden et al. (2017) mention that, on average, runners get closer to
the tagger during the swag intervention. The results of this can be seen in
figure 13. On average, the distance between runners and tagger was sig-
nificantly smaller in the baseline (mean=2.39) than with the intervention
(mean=2.43, p<0.01). Interestingly, this is an opposite effect than observed
by Van Delden et al., who saw a decrease in the distance with the inter-
vention. However, while statistically significant, with a difference of only
4 centimeters between conditions the effect is negligible in this case. To
confirm this effect size, Cohen’s D is calculated. With D=0.07, this effect is
indeed considered to be very small.

6.6 Conclusions

Based on these results, the null hypothesis can not be rejected, meaning that
it can not be concluded that the adaptive intervention in the ITP leads to
higher engagement. The condition without intervention lead to the highest
engagement score, significantly higher than the ‘naive’ condition, while the
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Figure 12: Result of GEQR questionnaire scores, per condition

Figure 13: Average distance between runners and tagger, with and without
‘swag’ intervention

‘adaptive’ condition showed no significant difference with the other two.
Next to that, the addition of the swag intervention shows no considerable
effect, opposing what was suggested from previous research. From this, it
can be concluded that the adaptive intervention as implemented here is not
(yet) beneficial addition to the ITP. This will be discussed in section 7.
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7 Discussion and limitations

The following discussion is divided into four parts. The first three sections
discuss the three parts of the research (i.e. chapter 4, 5 and 6 consecutively),
and the fourth section discusses the intervention that was used. Lastly,
section 7.1 discusses future work, with recommendations for the design of
possible future experiments based on the knowledge gained in this research.

Data gathering and analysis

The first part of this research was concerned with gathering the play data
and statistical analysis thereof, in order to find cues of low engagement.
For this part, five games were played in the ITP, consisting of four play-
ers each, yielding a total of 20 participants. While this number is not ex-
ceptionally low, more data would probably have helped with making more
significant conclusions. However, it has been proven to be quite difficult
to gather enough participants for these experiments, as groups of 4 players
were needed. With a single game (plus briefing the players, setting up the
heart rate monitors, de-briefing, etcetera) taking about half an hour, it was
difficult to gather 4 people who could participate the same time.

Determining the level of engagement during each game, i.e. which peri-
ods were marked as ‘low engagement’, was only done by a single observer. In
order to account for observer (in)accuracy, data within a second of the start
or end of a period of low engagement was already discarded. This was done,
because it was assumed that the observer could not be accurate to the exact
second. While determining engagement based on video observations remains
a subjective task, this subjectivity could be reduced in future research by
having multiple (expert) observers independently mark the periods of low
engagement. With a high inter-rater agreement, it can then be concluded
that the marked periods could indeed be considered as low engagement.

Furthermore, recording data during this experiment did not always go
as smooth as desired. Some small problems with the heart rate sensors
were already mentioned in section 4.4, where heart rate data for 2 players
(10%) had to be discarded. However, some further noise might have crept
in the other data that went unnoticed, mainly due to the location of the
ITP. Namely, the ITP is set-up in the middle of a hallway, which makes it
susceptible for outside influences. During the experiments, the playing area
was blocked off by means of posts at the corner with tape in-between, to
make passers-by walk around the playing area. While this worked as in-
tended, players could still get distracted, or feel uncomfortable, from people
watching or walking by. Next to that, with such an open playing area, there
is also a possible influence of background noise. Even though the open play-
ground for the ITP simulates a ‘regular’ playground quite well (which also
has influence from outsiders), it is less optimal for accurate data collection.
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The sound data analysis during this stage was relatively coarse, as only
the global sound level (i.e. volume) was taken into consideration. This was
done mainly due to practical reasons (only one microphone) and time con-
straints, as more in-depth per-participant sound analysis can be the topic of
a complete PhD thesis (Kim, 2018). Kim shows that with more complicated
models, it is possible to more accurately automatically recognize of engage-
ment levels. Another interesting take from his work (Kim et al., 2016) is
not to model engagement in a binary way (e.g. high or low), but consider
more levels. In his research, which focused on groups of children solving a
puzzle game together, 4 levels of engagement were distinguished:

1. giving relatively less attention to others and getting relatively less
attention from others.

2. giving relatively less attention to others but getting attention from
others.

3. giving attention to others but getting relatively less attention from
others.

4. giving attention to others and getting attention from others

While these exact descriptions might not be totally fitting for the ITP (as
players tend not to have actual conversations with each other), it might still
be a good pointer for future research to work with more levels of engagement
than simply high or low.

Engagement prediction model

The second part of this research was mainly concerned with employing ma-
chine learning in order to predict the engagement level, based on the data
gathered in the previous section. Two different machine learning models
were used: Logistic Regression and Random Forests. As mentioned in sec-
tion 5.2 these were chosen (after consultation with an expert) for their ease
of use, fast training times and ease of implementation in a ‘live’ system.
Even though the combination of the logistic regression model and interven-
tion threshold showed promising results, an interesting area for future work
would be to improve the engagement prediction model by exploring differ-
ent machine learning algorithms. Based on previous research, interesting
options would be SVMs (Kim et al., 2016) or even artificial neural networks
(Yannakakis and Hallam, 2008).

Model evaluation

The last part of this research is evaluating the created model in the ‘live’
playground. This evaluation was done by means of the GEQR question-
naire. Interestingly, the evaluation showed results contrasting to the hy-
pothesis: the adaptive intervention did not significantly improve engage-
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ment in the ITP. A possible explanation, and point of discussion, is the
evaluation method used here. The GEQR seems to not have been validated
(yet). There are different GEQ(R) questionnaires, as explained in section
6.1, that have been validated. However, these focus mainly on regular video
games with a more obvious storyline, and using a controller or mouse and
keyboard. The GEQR that was used specifically focuses on games incorpo-
rating whole-body movement, which makes it the most fitting questionnaire
for the ITP.

Furthermore, the question remains whether the GEQR measures the
same sense of ‘engagement’ as the observer’s annotations in chapter 4 and
the model built upon these annotations. The model, naturally, looks at more
physical aspects of engagement (running speed, sound, etc.) since they can
be easily retrieved from the ITP. The GEQR, on the other hand, is more
concerned with the players’ overall experience and feelings during the game.
It seems that these two measures of engagement do not completely align.
Next to that, the GEQR gives an overview of the experience during the
whole playing session (including the time before the intervention), which
makes it more difficult to capture the actual effect of the intervention on
the engagement. This is related to the ‘interest curves’ as defined by Schell
(2008): the intervention might create a peak in the interest curve, but such
a peak after a downwards curve might not be enough to rate the overall
experience as highly engaging.

It is also important to look at the timing of the intervention during the
evaluation. In the adaptive condition, the intervention was triggered on
average after 6 minutes and 39 seconds, while in the naive condition it was
always triggered at 5 minutes. This means that in de adaptive condition, the
intervention was always triggered at a later time than in the naive condition.
This makes it difficult to assess whether the difference in result is merely due
to the timing of the intervention (i.e. just trigger it later on in the game,
as happens in the adaptive condition) or really due to the adaptivity of the
intervention where it gets triggered during a period of low engagement. A
point for future work would be to design the experiment in such a way that
this effect can be controlled for.

Intervention

Lastly, the results showed that the intervention did not have the desired
effect. Contrasting to earlier research, runners got marginally closer to the
tagger without the ‘swag’ intervention. This might be due to the difference
in participants’ age between the two studies. As the participants in this re-
search were much older, they might be less susceptible to the embellishments
that could be gathered. Older participants might be, subconsciously, more
concerned with the outcome or ‘winning’ than simply having fun while play-
ing. Therefore, a point of discussion is if this particular intervention even
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leads to a higher engagement.
From the observations, however, it could be noted that the embellish-

ment had a different effect. Players who gathered more ‘swag’, were more
targeted by the other players to be tagged. It might be interesting for future
work to further explore this effect, as it can be used towards skill balancing.
While not intended, it looks like the swag intervention did have a certain
motivating effect in this case. Furthermore, since the chosen intervention did
not have the desired effect, future research could look into using the engage-
ment prediction model with a different set of interventions which may have
a stronger effect on players. This way, the added value of the engagement
model can be properly evaluated.

7.1 Future work

Even though the adaptive intervention in this research did not appear to be
successful in enhancing player engagement, it still provided valuable knowl-
edge on the design of such systems and the experimental setup required
to properly evaluate adaptivity. Using this knowledge, the following section
will discuss possible directions for future research to overcome the previously
discussed limitations of this study.

There are three main challenges to solve, namely: the effect of the in-
tervention on engagement, the timing of the intervention (e.g. what about
just ‘naively’ triggering the intervention after 7 minutes?) and the outcome
measure (since the GEQR as implemented here did not seem adequate).

One of the main solutions could be to deploy the ITP ‘in the wild’:
by placing the ITP at a school or another (semi-)publicly accessible area
for a longer time, a lot more data can be gathered. This also opens up
the possibility to introduce more variety in order to control for different
variables. While keeping the three conditions (basic, naive and adaptive),
the timing of the intervention in the ‘naive’ condition would vary. This
way, a more fair comparison can be made between simply triggering the
intervention at a later time, or actually triggering it during a period of
low engagement through the adaptive model. Furthermore, by extending
the study over a longer period of time, the effect of the intervention on
the engagement can also be further researched through the introduction of
different interventions or even combinations of interventions. Instead of the
binary comparison (i.e. intervention vs. no intervention), this will hopefully
lead to a more profound understanding of the effects of the interventions.
Both on the directly-observable physical aspects such as player speed, as well
as on the overall indirectly-measured engagement level. The result of these
can then be linked to the different aspects of the engagement recognition
model (e.g. ‘the later the intervention is triggered, the more effective it is’
or ‘trigger intervention Y when the speed is low’).

Finally, the outcome measure still remains a challenge. As discussed in
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chapter 2.2.2, interpreting behavioral cues only indirectly observes actual
player experience, which makes it difficult to objectively measure engage-
ment. Giving each player a questionnaire after playing is an impossible task,
in a ‘free-play’ environment as proposed (where players can freely join and
leave the game). One possible metric to optimize for might then be play-
ing time. If players walk away after only a short time of playing, one can
assume they were not really engaged. Trying to maximize the playing time
by utilizing a set of interventions might therefore lead to the most engaging
game. This introduces, of course, a different set challenges such as sensing
who is playing when (e.g. what if a single player leaves and another one
joins?), which might be the topic of a complete new thesis.
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8 Conclusion

The main research question for this thesis was ‘How to create adaptive inter-
ventions for the Interactive Tag Playground to enhance player engagement?’
This question as answered through a series of experiments. Firstly, data was
gathered on players in the ITP to determine which variables could indicate
a low player engagement. Using this data, a logistic regression model was
created which could adequately predict the engagement level, and in turn
trigger an intervention. Lastly, this algorithm combined with a ‘swag’ inter-
vention was evaluated with players in the ITP. In order to answer the main
research question, first the sub-questions are discussed.

The first sub-question was ‘How can the ITP sense or detect when to
intervene?’ The data analysis (see chapter 4) has shown promising indicators
of low player engagement in the ITP, but not every type of data gathered
was equally valuable. The final logistic regression (chapter 5) model uses
only four features: ‘Seconds since start’, ‘Time since previous tag’, ‘Tagger
speed’ and ‘Speed’. These features are easily retrievable from the ITP, and
together yield a model accuracy of around 75% on average. The model uses
these four features to determine the engagement level (low or not) every 0.5
seconds. Together with a threshold of 85% over 15 seconds, this results in
an algorithm that can determine the necessary timing of the intervention,
at what seems to be appropriate moments (chapter 5.6).

The second sub-question, ‘What is the effect of an adaptive interven-
tion?’, was answered through the evaluation in chapter 6. The algorithm
was implemented in the ITP, together with the ‘swag’ intervention (see chap-
ter 6.2). The goal of this intervention was to enhance player engagement, as
previous research has shown a positive effect using this ‘swag’. The player
engagement was measured by means of the GEQR-questionnaire, and inter-
personal differences were controlled for by means of the GITQ-questionnaire
(chapter 6.1). Contrasting the hypothesis, the condition without interven-
tion lead to the highest engagement score, significantly higher than the
‘naive’ condition. The ‘adaptive’ condition showed no significant difference
with the other two. Moreover, the addition of the swag intervention made
no considerable difference to player movement. Therefore, the adaptive in-
tervention as implemented here has unfortunately shown no improvement
to player engagement.

With the two sub-questions answered, also the main research question
can be answered: ‘How to create adaptive interventions for the Interactive
Tag Playground to enhance player engagement?’ The algorithm developed
in this research appears to be adequate in determining the correct timings for
intervention(s) based on the available data (chapter 5.6), but the adaptive
intervention did not prove to be enhancing player engagement. Further
research, with a different set of interventions, might be needed to validate
the engagement prediction algorithm and the adaptive intervention.
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1. Do you easily become deeply involved in movies or tv dramas?

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY OFTEN 

2. Do you ever become so involved in a television program or book that people have

problems getting your attention? 

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

3. How mentally alert do you feel at the present time?

|________|________|________|________|________|________|________| 

NOT ALERT MODERATELY   FULLY ALERT 

4. Do you ever become so involved in a movie that you are not aware of things

happening around you? 

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

5. How frequently do you find yourself closely identifying with the characters in a story

line? 

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

6. Do you ever become so involved in a video game that it is as if you are inside the

game rather than moving a joystick and watching the screen? 

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

Appendices

A – GITQ Questionnaire



7. How physically fit do you feel today?

|________|________|________|________|________|________|________| 

NOT FIT MODERATELY EXTREMELY 

FIT FIT 

8. How good are you at blocking out external distractions when you are involved in

something? 

|________|________|________|________|________|________|________| 

NOT VERY SOMEWHAT   VERY GOOD 

GOOD GOOD  

9. When watching sports, do you ever become so involved in the game that you react as

if you were one of the players? 

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

10. Do you ever become so involved in a daydream that you are not aware of things

happening around you? 

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

11. Do you ever have dreams that are so real that you feel disoriented when you awake?

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

12. When playing sports, do you become so involved in the game that you lose track of

time? 

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

13. How well do you concentrate on enjoyable activities?

|________|________|________|________|________|________|________| 

NOT AT ALL MODERATELY VERY WELL 

WELL   



14. How often do you play arcade or video games?  (OFTEN should be taken to mean

every day or every two days, on average.) 

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

15. Have you ever gotten excited during a chase or fight scene on TV or in the movies?

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

16. Have you ever gotten scared by something happening on a TV show or in a movie?

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

17. Have you ever remained apprehensive or fearful long after watching a scary movie?

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

18. Do you ever become so involved in doing something that you lose all track of time?

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

19. Do you easily become deeply involved in computer games or video games?

|________|________|________|________|________|________|________| 

NEVER OCCASIONALLY   OFTEN 

20. How interested are you in playing computer games?

|________|________|________|________|________|________|________| 

NOT VERY  SOMEWHAT     VERY 



1. Were you able to anticipate what would happen next in response to the actions you initiated?

NOT AT ALL COMPLETELY 

2. How much delay did you experience between your actions and the expected outcomes within

the game?

LONG DELAY NO DELAYS 

3. How appropriate were the physical controls for the game?

NOT APPROPRIATE VERY APPROPRIATE 

4. How well were you able to understand the physical controls for the game?

NOT AT ALL COMPLETELY 

5. How natural did you find the physical controls for the game?

NOT NATURAL VERY NATURAL 

6. How appropriate was the graphical interface for the game?

NOT APPROPRIATE VERY APPROPRIATE 

B – GEQR Questionnaire



7. How well were you able to understand the graphical interface for the game? 

       

NOT AT ALL      COMPLETELY 
 

 

8. How proficient at controlling the game did you feel at the end of today’s gaming session? 

       

NOT PROFICIENT    VERY PROFICIENT 
 

 

9. How enjoyable did you find the graphics in this game? 

       

NOT ENJOYABLE    VERY ENJOYABLE 
 

 

10. How well were you able to identify what game pieces/objects/models represented? 

       

NOT AT ALL      COMPLETELY 
 

 

11. How enjoyable did you find the sound effects in this game? 

       

NOT ENJOYABLE    VERY ENJOYABLE 
 

 

12. How consistent were the graphics and sound together? 

       

NOT CONSISTENT    VERY CONSISTENT 
 

 

13. How consistent were the graphics and controls together? 

       

NOT CONSISTENT    VERY CONSISTENT 
 

 

14. How involved were you in the game experience? 

       

NOT INVOLVED    FULLY INVOLVED 
 



 

15. Were you involved in the game to the extent that you lost track of time? 

       

NOT AT ALL      COMPLETELY 
 

 

16. How much did you feel like you were inside the game world? 

       

NOT AT ALL      COMPLETELY 
 

 

17. How often do you play other games of this genre? 

       

NEVER      OFTEN 
 

 

18. How enjoyable do you find the content and theme of this game? 

       

NOT ENJOYABLE    VERY ENJOYABLE 
 

 

19. How interested are you in playing this game again? 

       

NOT INTERESTED    VERY INTERESTED 
 

 

20. How much did the game's controllers interfere with your ability to perform actions within the 

game? 

       

NOT AT ALL     INTERFERED GREATLY 
 

 

21. To what extent did you feel spatially disoriented with your ability to perform actions within the 

game? 

       

NOT AT ALL      VERY MUCH 
 

 

22. To what extent are you interested in engaging in further exploration of the game’s 

environment? 

       



NOT INTERESTED    VERY INTERESTED 
 

 

23. How completely were you engaged in the game? 

       

NOT AT ALL      VERY MUCH 
 

 

24. To what extent did events such as noise occurring outside of the game distract you from playing 

the game? 

       

NOT AT ALL      VERY MUCH 
 

 


