W ROBOTICS

MECHATRONICS

On the Control Allocation of Fully-Actuated and
Over-Actuated Multirotor UAVs

UNIVERSITY OF TWENTE.

R. (Rens) Werink

MSc Report

Committee:

Dr.ir. P.C. Breedveld
Dr.ir. J.B.C. Engelen
R. Hashem, MSc
Dr.ir. W.B.J. Hakvoort

January 2019

001RAM2019

Robotics and Mechatronics
EE-Math-CS

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

MIRA CTIT

BIOMEDICAL TECHNOLOGY
AND TECHNICAL MEDICINE

Contents

1 Introduction
1.1 Background
1.2 Research problem L.
1.3 Research method
2 UAV theory
2.1 UAV definition
2.1.1 Actuation
2.1.2 Sensory system
2.2 Dynamics
2.2.1 Rotor dynamics
2.3 UAV Classifications
2.3.1 Under-actuated
2.3.2 Fully-actuated
2.3.3 Over-actuated
2.4 Static and convertible systems00
3 Control allocation theory
3.1 Application of control allocation
3.2 Control allocation problem
3.2.1 Actuator limitations
4 Control allocation solutions
4.1 Introduction oo
4.2 Literature survey
4.2.1 Integration in controller
4.2.2 MatrixInverse. L
4.2.3 Moore-Penrose pseudo-inverse
4.2.4 Redistributed pseudo-inverse
4.2.5 Force decomposition
4.2.6 Search algorithms

14
14
15
15

4.3 Literature summaryo 22
New control allocation algorithm 25
5.1 Design requirementso 25
5.1.1 Comparison between 12DoF and 7DoF control allocation 25
52 Approach 26
5.2.1 Cost function L. 27
5.2.2 Actuator limits L 27
5.2.3 Tilt limits 28
5.3 Simulations 29
54 Conclusion 32
Control allocation in software 34
6.1 Introduction 34
6.2 Software structure 34
6.3 Software goalso 35
6.3.1 Communication 35
6.3.2 Modules 36
6.4 Software analysis L 36
6.4.1 Controllers. 38
6.4.2 Mixer / Control allocation 38
6.4.3 Mixer class implementation 40
6.5 Conclusion 40
6.5.1 Control system 41
6.5.2 Normalized signals 41
New software implementation 42
7.1 Required changes oL 42
7.1.1 Intermodular communication 42
7.1.2 Support for fully-actuated and over-actuated UAVs . . 43
7.2 Implementation 44
7.3 Results. 45
7.3.1 Controller changes 45
732 Results. 46
74 Conclusion 47
Conclusion 48
Further work 50

A Detailed Code Changes 51

A.1 Communication 51
A.1.1 wvehicle_attitude_setpoint 51
A.1.2 Mixer control groups o1

A2 Controllers. 51
A.2.1 Position controller 52
A.2.2 Attitude controller 52

A3 MIXero 52
A.3.1 Mixerclass 52
A.3.2 Matrix generation 53

Chapter 1

Introduction

1.1 Background

During the development of UAVs, large improvements have been made in
the control of these vehicles. During the long history of control, several
different methods of control have been used. Over the last decades, control
of systems and in particular multi-rotor UAVs has shifted to purely software
based control. This has opened a large amount of opportunity to implement
even more complex control algorithms. This technological advantage has
enabled many different types of UAVs to be introduced, each with their own
advantages, limitations and novel designs. The current experience is that the
application of control allocation in software has not yet reached the level of
current research. The focus will be on control allocation, as control of UAVs
is a far more investigated topic and very application-dependent.

1.2 Research problem

The problem that will be addressed in this thesis is that the current state of
control allocation, both in control allocation algorithms and implementation
in software, are not sufficient for projects in current research. By addressing
these shortcomings, it should be easier and faster for researchers to implement
correct control allocation in their research projects.

1.3 Research method

In this thesis, this phenomenon will be investigated by comparing the control
allocation as used in current research with the implementation of control

allocation in currently available software packages. From this investigation,
it will be possible to find points where the software implementation of control
allocation can be improved.

In addition to this investigation, the current range of solutions to the
control allocation problem will be expanded by introducing an additional
control allocation algorithm that will provide a solution to some systems
that were not solvable with existing solutions in literature.

In the software, general improvements that will be found during a detailed
analysis of the implementation of the software will also be addressed and
improved. This will focus on future development of the software and in
particular the control allocation for future research.

Chapter 2
UAYV theory

2.1 UAYV definition

As there exist many different types of UAVs (Unmanned Aerial Vehicles), a
definition will be given of what types of vehicles are considered in this thesis.
Figure 2.1 shows a classification of different types of UAVs, which are all
single-body vehicles, i.e. all systems here are considered to consist of a single
rigid base onto which all actuators are placed.

This thesis will focus on multi-rotor heavier-than-air vehicles, therefore
all forces that are exerted on the body result directly from the actuators
themselves, this is in contrast with systems that are equipped with control
surfaces, such as planes.

As for interaction, it is assumed that the vehicle is completely free-
floating, which means that there are no external forces (except gravity) acting
on the system.

Wing type Rotor type
2 —_
e 2 £ 5 & & B g B
= = Q. o o E kel
2 = [e)) 3 o o = T
i o Q ©
Lo} o c o o o o m o
9] = a = B o] g
x > Q [} > [0} O
i i = T €] T o

Figure 2.1: Overview of UAV types [1]

2.1.1 Actuation

The main method of propulsion is through the use of fixed-pitch propellers,
actuated by brushless DC motors. Other control surfaces, such as wings or
ailerons, are not considered. This has the advantage that the forces and
torques acting on the UAV are not dependent on velocity, but only on actu-
ator outputs.

To describe these forces and torques more easily, the concept of a wrench
will be used. A wrench consists of the set of forces and torques acting on a
body, in this case the UAV itself. As a single body has 6 degrees of freedom,
the acting wrench on a UAV is also composed of 6 elements: three forces and
three torques, as shown in equation 2.1. In a similar way, the position can
be defined as a matrix H and the velocities as a twist T'. [2]

W = H (2.1)

2.1.2 Sensory system

To control a multi-rotor UAV, sensors are included to measure the position,
velocity and attitude of the vehicle. To measure the position and therefore
the velocity, GPS can be used when flying outdoors, however, the accuracy
is not good and GPS is unreliable. When flying indoors, other systems, such
as OptiTrack can be used [3]. This measurement is based on infra-red cam-
eras and indicators placed on the vehicle and therefore more accurate. An
accelerometer is used to estimate the position as well, but as this involves
a double integration, direct position measurements are more reliable. Mea-
surements of the attitude of the vehicle are performed using a gyroscope
and an accelerometer. State estimation techniques such as a Kalman filter
can be used to further increase the accuracy of the measurements by using
an internal model of the UAV and combining measurements of position and
velocity.

2.2 Dynamics

To fully analyse the the behaviour of a UAV and therefore to understand
the meaning of control allocation, the dynamics of a UAV are important to
know. The main point is to understand how the actuator together produce
a wrench on the system, and how this relation can be found.

To find the relationship between the propeller thrusts (A) and the result-
ing wrench (W), as described by W = M () ,all the forces acting on the

UAYV can be described separately. This can be done as each force generates a
wrench around the centre of mass of the body, this is only dependent on the
force vector and the position of the propeller relative to the centre of mass.
Additionally, a torque will be generated opposite the rotational direction of
the propeller. These can the be summed to find the total wrench acting on
the body.

W/total = Z Wk (22)

By taking the Jacobian over the individual propeller thrusts, a linear
description of the wrench can be found, which is the matrix M. This M
could still contain actuator outputs in the case of non-static UAVs, this will
be explained in more detail later.

2.2.1 Rotor dynamics

The rotor itself is not an ideal system, to understand the limitations of the
rotor, it must be understood that internally, there are some dynamics that
influence the control of a multi-rotor UAV. Each propeller has a certain
inertia and with the speeds that are used, the spin-up and spin-down times,
which are an indication of the time it takes before a propeller is at its desired
speed, are not insubstantial.

As a propeller rotates, it will experience drag as a result of friction with
the air, this will result in a torque being generated in the opposite direction
as the rotation of the propeller, this torque is linearly related to the rotational
speed of the propeller through the drag-to-thrust coefficient ~.

Another point that shows up in the case of tiltable propellers is that
gyroscopic forces will appear when rotating a propeller around a certain
axis. This will influence the rate of change of the tilt of a rotor.

The force created by a propeller is also not linear with the rotational
velocity of the rotor. This relation will depend on the rotors used, but
generally follows a quadratic relationship. Due to this relation, only the
output force A will be considered in the analyses in this thesis.

2.3 UAYV C(lassifications

Multi-rotor UAVSs exist in several different configurations, they can be clas-
sified to be under-actuated, fully-actuated or over-actuated. These classifi-
cations will be presented now to distinguish different UAV platforms.

Figure 2.2: Example of an underactuated quadrotor [4]

Different platforms can be classified using the mapping matrix M to
define some strict boundaries between the classes. Equation 2.3 shows the
relation between the output wrench W and the actuator outputs A in case
of a static system. M is the relation between these two and is assumed to be
constant, any non-linear dependencies have been removed. From the rank of
the matrix M, the classification of the UAV can be determined. In the case
of a matrix multiplication b = M -a, the rank of a matrix gives an indication
of the dimension of the attainable set of b. For example, if the matrix has
a rank of 3, it can produce a vector a in three dimensions, regardless of the
sizes of vectors a and b.

W =DM-:)\ (2.3)

In the case of convertible systems, it must be noted that the classification
as presented here that applies to the system will depend on the current pose
of all actuators. Such convertible systems are not necessarily always in the
same category.

2.3.1 Under-actuated

A system is considered under-actuated if the rank of the matrix M is less than
6, this means that the specific configuration of the actuators is not sufficient
to fully actuate in all 6 dimensions of a full wrench, which is composed of
three forces and three torques. To give an example of such a system, a
standard quadrotor such as the one in figure 2.2 can be considered.

If the mapping matrix M is written out for this configuration, the matrix
in equation 2.4 is found. In this matrix, the length of the arms is proportional
to L and v defines the drag-to-thrust coefficient, which is the resulting torque

10

Figure 2.3: Example of an underactuated octo-rotor [5]

on the axis of the propeller given a certain thrust produced by that propeller.

L -L —L L

L -L L —L

I A B .
M=15 0 0o o (24)

00 0 0

11 1 1

The rank of this matrix is equal to 4, as two force components cannot
be actuated. As this is less than the six required for actuation of the full
wrench, it means that this system is under-actuated.

Some configurations will have more actuators, but will still be under-
actuated. This is then due to the orientation of the propellers An example
of this is the octorotor in figure 2.3, it has eight propellers, but as the force
vectors are all parallel, it can only produce forces in one direction, making it
an under-actuated system.

Additionally, the energy required to rotate a propeller is related to the
rotational velocity of this propeller an d therefore quadratically related to
the output force of a propeller. By spreading the required force over more
propellers, the energy usage of a UAV can be lowered by installing more
propellers.

The additional benefit of having eight rotors in this case is that four can
be used for redundancy and it can therefore handle rotor failure or use this
redundancy to lower the energy consumption by spreading the forces needed
over all eight rotors.

Under-actuated UAVs are mainly used in cases where energy efficiency
is important. As the largest contributor to propeller energy usage is the
maintaining of an upwards force to counteract gravity. By aligning the rotors
with this anti-gravitational force, the least amount of energy is used. In
comparison, if rotors are tilted away from this upwards force, these rotors

11

Figure 2.4: Example of a fully-actuated hexarotor [7]

do not only need to generate the force required to keep the system afloat,
but must also counteract the force applied sideways by the other propellers,
therefore wasting energy that should otherwise not be needed.

2.3.2 Fully-actuated

A configuration is considered fully-actuated if the rank of the mapping matrix
is equal to 6 and the number of actuators is equal to 6. An example of this is
a hexarotor with tilted propellers [6]. The mapping matrix of such a system
is given in equation 2.5, the tilting angle of the propellers («) is in this case
a constant value. For all values of o # k- 7, this matrix has rank 6 and
therefore the system is fully actuated.

oL —Co L —%caL %CQL %caL —%caL]
0 0 Be L —LBe, L Le,L L, L
M= |7 + 8oL —v—=5,L yH+ 5oL —yv—8,L —vy—5,L v+ s,L
—Sa —Sq \/?gsa ‘/?gsa %ﬁsa %sa
0 0 58a 58a —355a —35a
| Ca Ca Ca Ca Ca Co
(2.5)

Here ¢, = cos(a) and s, = sin(«) for readability

A special case within this category is an omni-directional system, this is
the case if the combined set of all attainable forces, which are the last three
elements of the wrench, can support the weight of the vehicle in all directions.
This allows the vehicle to sustain flight in all possible orientations.

Fully-actuated systems are used when actuation in the x- and y-axes
are necessary for correct operation of the UAV in for example inspection
situations where the attitude of a system is important to the application. As
an example, all of these papers use fully-actuated UAVs: [6], [8], [9], [10].

12

(b) Large quadrotor [12]

Figure 2.5: Vehicles having integrated control allocation

2.3.3 Over-actuated

If a configuration has a full rank, i.e. rank(M) = 6, mapping matrix and
the number of actuators is larger than 6, it is considered over-actuated. It
has the same properties as a fully-actuated system, but has a larger freedom
in the control allocation due to the redundant actuators. This redundancy is
again useful for fault-tolerancy and energy-efficiency. However, a lot of the
time, this extra actuation is a result of tilting propellers, which allow the
UAV to change the force vectors that act on the system. By changing its
configuration, a UAV is capable of fingin

2.4 Static and convertible systems

Some multi-rotor systems have propellers that can change the angle under
which the force is applied to the system, for example by using a servo motor
to rotate the motor that drives the propeller. This is for example used in the
Voliro [11] and the FAST-Hex [12], these can be seen in figure 2.5.

In the case of a convertible system, the matrix M will not be a static
matrix, but is dependent on the tilting angle of the individual rotors. This
means that the relation between the actuator forces A and the output wrench
W is no longer a given relation, but will depend on the tilting angle as well.

The main advantage of convertible systems is that they can change their
classification and therefore take advantage of the energy-efficiency of under-
actuated systems, but when needed can use the additional forces that fully-
actuated systems allow.

13

Chapter 3

Control allocation theory

3.1 Application of control allocation

To understand why control allocation is used and what it is, first the general
structure of a control system should be understood. A control system is used
to monitor and control a given system. This is done by interfacing a controller
to the system using sensors to get information about the state of the system
and actuators to influence this system. Schematically, this structure is given
in figure 3.1.

UAV

| |
» |
|

w |
: Controller Control :
|
| |
| |
| |

Allocation

Software Boundary

Figure 3.1: General communication diagram.

The first step in this control architecture is the controller itself, this sys-
tem takes information from the UAV such as position, attitude and the cur-
rent velocities. From this information, it creates a desired output wrench to
control the UAV in the body reference frame of the UAV.

14

To find the required actuator outputs to create this desired wrench, a
second block is added which is the control allocation. The implementation
of this is highly dependent on the configuration of the UAV.

By separating these two tasks, the implementation of different controllers
becomes much easier, as the configuration and individual actuators do not
need to be considered as the interface between the different blocks is defined
as only a wrench.

3.2 Control allocation problem

The main problem in control allocation is the transformation of a desired
wrench into individual motor commands. To do this, a combination of all
actuator outputs has to be found that results in the desired output wrench
and optimally distributes this over all individual actuators.

Given the general equation that describes the relationship between the
actuator outputs A and the output wrench W: W = M (). The control al-
location problem is to find the inverse relationship between these two vectors.
This can be a very difficult task, as M(A) could be any function that links
these two. In general the solution is a function or algorithm dependent on the
desired wrench that produces the required actuator outputs: A = M*(W).

That is to say, to find an optimal relation between a desired wrench and
the individual actuator outputs. This M™* can be anything from a static
matrix to a multi-step algorithm. The actual solution will depend on many
factors including actuator configuration, non-linearity and actuator limits.
Before solving this problem, it first needs to be understood that there are
different classifications of drones, which all have their own properties and
special cases.

Solutions to the control allocation problem are based on an optimization
over all actuators while producing the desired output wrench. This means
that the desired wrench is attained while considering actuator properties, this
can be their limitation, a preferred output value or weights can be placed on
the individual actuators.

3.2.1 Actuator limitations

An important aspect that a control allocation algorithm should consider are
limitations on the actuators. For example, a propeller has both a lower and
upper force limit due to velocity constraints. If these limits are not used, the
output wrench of the system will not correspond to the desired wrench and
the system will become unstable.

15

Chapter 4

Control allocation solutions

4.1 Introduction

As the implementation of the control allocation is highly dependent on the
configuration of the UAV, there are many different solutions to the control
allocation problem. To find out what the most commonly used solutions are,
a literature survey was performed to compare the algorithms used in current
research. The next section will describe the different solutions, how they
work and what research projects use that implementation. [13].

After this survey, a summary of the different solutions and the number
of times they have been used will be presented.

4.2 Literature survey

4.2.1 Integration in controller

In situations where the configuration of a platform is fixed and a controller
is designed for this specific configuration, a good solution is to inherently
include the configuration of the UAV into the controller, this controller will
then return the desired actuator forces A. This approach is used in several
projects that mainly focus on hardware design. These are for example a
miniature quadrotor [14] and a large quadrotor [15], which can be seen in
figure 4.1.

The main disadvantage of this approach is that the implementation of a
different controller will require more work as the output has to consider the
configuration of the UAV used.

16

(a) Unusually shaped f“”y(b) Fully actuated hewaro-(¢) FAST-Hew tiltable
actuated hexarotor [8] tor [7] hezarotor [12]

Figure 4.2: Vehicles using the matrix inverse

4.2.2 Matrix Inverse

In the case where the number of actuators is equal to the number of degrees
of freedom of a platform, the mapping matrix M is a square matrix. If this
matrix is directly invertible, which means that no singularities can occur in
this system, the optimal and only solution to the control allocation problem
is to take the inverse of the mapping matrix as the control allocation matrix:

A= M Wy,

This is a very common solution and is used in many projects [8] [7] [12].
For reference, these can be seen in figure 4.2. The similarity between these
projects is that these are all fully actuated hexarotors, all under-actuated
quadrotors that have been analysed had their control allocation included in
the controller itself.

17

4.2.3 Moore-Penrose pseudo-inverse

A simple solution to the control allocation problem is the Moore-Penrose
pseudo-inverse. The pseudo-inverse tries to solve an unconstrained control
allocation problem. For a given system of the form W = M A\ with static M,
a quadratic cost has been placed on the deviation of the actuator output from
its preferred value multiplied by a weighting factor, as is shown in equation
4.1. By minimizing this cost function, the optimal values for the actuator
outputs can be found.

Cost — %(A “A)"D(A-) (4.1)

In the case that B is full rank, or equal to the number of degreees of
freedom, the general solution can be given by:

A=(I-CM),+CD (4.2)

where

C=D'M"MD‘'M")™! (4.3)

In these equations, D is a diagonal weighting matrix for the individual
actuators. A, are the preferred values for the actuators.

If it is assumed that the preferred output value for all actuators is zero
and the weighting for all actuators is equal, as is the case for most general
multirotors, the solution can be simplified to the form:

A=CW (4.4)

where

C=M"(MM")! (4.5)

This final C' is what is known as the pseudo-inverse.

Most commonly, this solution is used in systems that do not have the
same number of actuators as the number of degrees of freedom. The best
example for this is a system with redundant propellers, such as an under-
actuated hexarotor or an octorotor. Examples of papers that have used
the Moore-Penrose pseudo inverse are the new ODAR [16], which is from
the same project in [8], but with two additional (redundant) propellers and
therefore requiring the pseudo-inverse. This UAV can be seen in figure 4.3b.

Reference [17] presents a hexarotor with tilted propellers, which would
normally use just the matrix inverse solution. However, this paper also han-
dles situations in which the system is underactuated and also focusses on

18

DO

- Lad .
}(la) ‘/7;0“771 I/fully tz’ltable(b) Unusually shaped oc- -
exarotor
torotor [16] (¢) Tilted hexarotor [17]

Figure 4.53: Vehicles using the Moore-Penrose pseudo-inverse

fault tolerancy, where the failure of an actuator causes the system to become
under-actuated. In both of these cases it is necessary to use the pseudo-
inverse. This UAV can be seen in figure 4.3c.

The Voliro [11], which is an over-actuated hexarotor, uses the Moore-
Penrose pseudo-inverse for the control allocation, but as this system uses
tiltable rotors and therefore a non-static mapping matrix, addition processing
is needed. This will be explained in more detail in section 4.2.5.

4.2.4 Redistributed pseudo-inverse

A limitation of the Moore-Penrose pseudo-inverse is that it assumes an un-
constrained output of the actuators, which is rarely the case.

To try to solve this problem of actuator limitations, the redistributed
pseudo-inverse method was created. This method starts by performing a
regular pseudo-inverse, but then continues to identify actuator outputs that
have been saturated and will try to redistribute the missing part of the de-
sired wrench by altering the remaining, unsaturated actuator outputs. This
redistribution can be repeated until a satisfactory result is obtained. In some
cases, an optimal result cannot be found, but the wrench error can be mini-
mized using this approach.

The redistributed pseudo-inverse works as follows: [13]

1. Start by performing a pseudo-inverse on the unconstrained system:

A=Bt.- W

2. Due to constraints, the actual outputs are a projection onto the allow-

able set A = Proj().

3. The next step is to decompose the constrained output into a constrained
and an unconstrained part: A = (AL, AT)T

19

4. A similar decomposition will be performed on the mapping matrix M:
M = (Mg, My)

5. The wrench as generated by the saturated output is found next: We =
M - Ao

6. The remaining wrench is then attempted to be generate using the un-
constrained actuator outputs: My - Ay = Waes — We

7. This algorithm is then repeated until a solution is found or no further
improvements can be made

In literature, the redistributed pseudo-inverse is used in [18], which presents
a fault-tolerant octorotor. In this case the researchers have chosen to include
actuator saturations into their control allocation, which lead to the redis-
tributed pseudo-inverse being used in this research

4.2.5 Force decomposition

The inverse and pseudo-inverse are only applicable to static systems, To solve
the control allocation problem for convertible systems, additional methods
have to be used. A common actuation method used in convertible systems
is a tilting rotor, such as is used in the Voliro [11] and the FAST-Hex [12].
These systems have rotors that can be moved by using servo motors to change
the direction of the thrust vectors.

A general way of solving the control allocation problem that is introduced
by tilting rotors is to transform the polar force description that uses the
physical outputs of the actuators to a form using Cartesian coordinates. The
polar force description is a result of the two actuators that make up the
tilting system, which is a standard propeller producing a force F' and a servo
that rotates this thrust around an angle .

This decomposition is visualised in figure 4.4. Here, F, is directed in the
upwards vector of the body-fixed frame, F,, is directed in the x-y plane of
the body-fixed frame of the system.

F,, =sin(a) - F
F, =cos(a) - F

This transformation will result in a mapping matrix that is again linear
in F, and Fy, such that it can be solved with more general control allocation
algorithms. After the control allocation, F, and F), are transformed back

20

\ Fuy

Figure 4.4: Definition of force decomposition

into a polar force description, as this is the information that can be used by
the actuators.

This is also the solution used in the Voliro project [11], where an inde-
pendently tiltable fully-actuated hexarotor is presented. As the force decom-
position is performed, the mapping matrix becomes a 6 by 12 linear matrix,
which is then used with the Moore-Penrose pseudo-inverse to find the con-
trol allocation solution. To give an idea of how this approach works, the
non-linear mapping matrix of the Voliro is given in equation 4.8

1L
0
v+ SalL
—Sq1
0
Cal

—ca2L —1c3L icAL leaBL —1ca6L]
0 Be 3L —Le Al B, 5L —Le,6L
—y —Sa2L v+ 8,3L —v —58,4L —7y — 8,BDL v+ s,6L
—542 ‘/T?SOCS ‘/755@4 ‘/7?;3&5 ‘/755@6
0 Ns3 Ls a4 Vg5 Vg6
Co2 Ca3 o4 CoD N 0)
(4.8)

Here ¢, = cos(a) and s, = sin(«) for readability

21

Decomposed, this becomes the following 12 by 6 matrix:

M =
0 L 0 —-L 0 —3L 0 1L 0 1L

0 0 0 o 0o ¥Yr o YL 0o LI
vy+L 0 —yv—-L 0 ~v+L 0 —y—-1L 0 —~v—L 0 v
-1 0 -1 0 %2 0 s 0 L 0

0 0 0 0o X0 a 0 —Y1
0 10 10 1 0 1 0 1

The corresponding lambdas are in this case:

A= ()\l,asya)\1,z>)\Z,Iy7)\2,,27)\S,Iya)\3,27)\4,xy>)\4,,27)\5,933/7)\5,z7)\6,963/7)\6,Z)T

Due to this approach, control for the convertible Voliro can be allocated
using standard linear methods.

4.2.6 Search algorithms

Reference [19] presents a multirotor UAV designed by an optimization algo-
rithm on the configuration of the rotors, therefore the amount of propellers
and their orientations are unknown. An example of this system can be seen
in figure 4.5. The approach used in this paper is to use a generalized pattern
search to find the optimal distribution of actuator outputs. This method was
probably chosen as the number of rotors and their positions are unknown or
constantly changing.

In general, search algorithms can be used for all different control alloca-
tion problems, as it will try to iteratively find the optimal solution for all
actuators. It is however rarely used as it has a great computational disad-
vantage over all other solutions.

4.3 Literature summary

To effectively compare the different solutions, their use cases will now be
presented in table 4.1.

In this summary, it can be seen that the more simple solutions are more
commonly used. This is to be expected, as researchers are inclined to choose
the easiest solution that meet their requirements. It is therefore more use-
ful to create a new algorithm for cases that are not covered by the above
solutions.

22

Figure 4.5: A computer generated hexarotor [19], this vehicle uses a search
algorithm to find the solution to the control allocation problem

Solution Usage Count
Integration in con- | This method is mostly used in research that is not | 2
troller directly focussed on control and does not have an
explicit control allocation loop.
Matrix inverse This is the easiest method for separated control | 3
allocation, it is used in cases where the number
of actuators is equal to the number of degrees of
freedom.
Moore-Penrose This is an optimised solution that can be applied | 3
matrix inverse on vehicles that have a different number of actu-
ators compared to the numbers of freedom.
Redistributed In cases where actuator limitations should be con- | 1
pseudo-inverse sidered, this method can be used as an extension
on the Moore-Penrose pseudo-inverse.
Force decomposi- | For systems with independently tilting rotors, this | 1
tion method can be used to create a static control al-
location problem, which can be solved with the
above methods.
Search algorithms | In cases where the above methods are not appli- | 1

cable, this method can be used to iteratively find
the optimal solution for the actuator outputs, it
is very computationally intensive.

Table 4.1: Summary of the different control allocation solutions

23

To improve this range of control allocation methods, a new method will
be proposed that will introduce a new step between force decomposition and
search algorithms and will be suitable for systems that can partially be solved
with the known control allocation solutions and partially have to be solved
iteratively. By introducing this solution, it could create an opportunity to
use a less computationally intensive solutions for the control allocation.

24

Chapter 5

New control allocation
algorithm

5.1 Design requirements

From the comparison of the different control allocation algorithms in chap-
ters 4, it was concluded that there is a large step between using the force de-
composition method, which can control systems with independently tiltable
propellers and the application of a dynamic search algorithm. To show how
a new algorithm can help in this context, the control allocation solutions of
the Voliro [11], which is an independently tiltable hexarotor and the FAST-
Hex [12], a hexarotor with coupled tilting propellers will be compared

5.1.1 Comparison between 12DoF and 7DoF control
allocation

As discussed in chapter 4, a tiltable rotor can be decomposed into a vertical
and horizontal component. Applying this to the Voliro [11] creates a 12 by 6
mapping matrix that can be solved with the Moore-Penrose pseudo-inverse
and by reverse mapping the output signal can be found.

This method will not work for the FAST-Hex, of which the mapping
matrix is given in equation 5.1. Trying to apply the same technique will
transform the originally 7 degrees of freedom of the actuators into 12 degrees
of freedom and will disconnect the six tilting angles, which is not possible.
The solution proposed by the original paper is to allow the pilot to choose
the tilt angle.

However, this solution will not work in an automated system and will not
always have the most optimal solution. To improve the control allocation of

25

Ow Xw

Figure 5.1: Diagram of the FAST-Hex construction [12]

such systems, a new algorithm will be presented.

c.al
0
v+ s.al
-5«

0
c.x

—c_al
0

—y —s.al. v+ s.alL

—5_x
0
.o

1
2c,OzL

\/Tg c_aL

s
1
§S,CK
CcC_(

1
ZC,OLL

—%gc,OzL
—y —s_.alL

V3

o
§S,Oé

c_.«

Here c.a = cos(a) and s_a = sin(«) for readability

5.2 Approach

1
5 c.al

‘/730,&[/

—y —s_.alL

P
1
—§S,CK

c_«

—¥X2c.al
v+ s_.al

c_«

(5.1)

To solve the control allocation problem of the FAST-Hex, a hybrid solution
is proposed that uses the Moore-Penrose pseudo-inverse for the main control
allocation and a separate search algorithm to find the optimal tilt angle.
By combining these, the angle can be adjusted to find the optimal propeller
output. The algorithm works as follows:

1. Given a system that can is linear in A and where the mapping matrix
is only dependent on a single a. The dynamic equation can be written
as W = M(a)A.

2. For a certain «, the propeller forces A can be found by solving the
(pseudo-)inverse of M: A = MTW. This step will give the actuator

outputs for a given angle a.

26

3. To find an optimal value for the tilt angle a, a cost function is intro-
duced on the propeller forces A. This cost function is free to choose
and can be used to address limitations on the actuator.

4. By minimizing this cost function, an optimal value of the tilt angle o
can be found. By choosing an appropriate minimization algorithm or
by limiting the allowed change in angle, limitations on « itself can be
included, this will be explained in the next section.

This minimization does not have to be performed at every control allo-
cation step, as only the first two steps are necessary to find a solution to the
control allocation problem and can use a previously determined tilt angle.
This property of the algorithm could be used if computational load is an
important factor: by limiting the amount of angle optimization steps, com-
putational load can be reduced, this should be done carefully, as it could lead
to non-consistent loop timing.

5.2.1 Cost function

An easy cost function that can be used to optimize the tilt angle is to take
the sum of the square of the output forces, as is described in equation 5.2. In
this case, A(«) is a function that describes the actuator forces as a function
of @ and is a result of the pseudo-inverse of the mapping matrix.

Nact

Cquadratic(a) = Z >\k(05)2 (52)

This can be seen as putting a cost on the energy use of the actuators
and by taking this cost function, the most energy efficient tilt angle can be
found while also getting the required actuator output. This is also the same
cost function as used by the Moore-Penrose pseudo-inverse to get the optimal
output

There are limitations on what cost functions can be chosen for this pur-
pose. The main criteria are that it is a continuously differentiable function
with no local minima, the derivative of this function should also always have
a finite value at all possible values of the output. This will allow the opti-
mization algorithm to find the global optimum for the tilt angle.

5.2.2 Actuator limits

A point that can be taken into account with the choice of cost function is that
actuators will have limitations on their output force, this may be a maximum

27

Cost functions
100 T T 7

Quadratic cost
Lower limit

80

60

Cost

40 F

20F

-6 -4 -2 0 2 4 6
Actuator output (N)

Figure 5.2: The two cost functions as a function of the exerted force

attainable force or the fact that a UAV is fitted with unidirectional propellers
and therefore cannot produce negative thrusts.

This can be taken into account while choosing a cost function by shaping
it such that an additional cost is placed on unattainable forces, this will not
prevent the control allocation algorithm to use these force sets, but the use
is heavily penalized. This should help the control allocation algorithm to
choose the angle a such that the actuators are within their allowed range.

To test this with an example, when an actuator cannot produce negative
thrusts, an additional weight should be placed on the negative forces. The
cost function that has been chosen for this is given in equation 5.3.

Nact
Climit (@) = Z()\i +e M) (5.3)
k=1
Plotting these cost functions against A result in the plot in figure 5.2. It
can be seen that this new cost function is similar to the previous cost function
in the positive force range, but shows exponential behaviour towards the
negative force range, which should discourage the optimization from choosing
negative actuator outputs.
To test the functionality of this new cost function, a simulation will be
performed in cases where it will reach the lower force limit

5.2.3 Tilt limits

Similar to the limits on the propellers themselves, there exist limits on the
tilt angle as well. These are usually more pronounced than the propellers,
which react relatively quickly to changes. The most important limits on the
tilt angle are the absolute attainable angle as the tilt may be restricted due

28

to physical limits and the tilt rate. The rate is limited as the time it takes for
the tilt to change is relatively high. This is mostly caused by a combination
of a large inertia in the system, friction and the gyroscopic effects that will
appear when tilting spinning propellers.

Both of these limits can be solved by adapting the search algorithm, by
implementing either global limits to limit the angle itself and a limit on the
allowable change to limit the rate of change. How the algorithm works under
different limits of the angle will be investigated in the simulations.

5.3 Simulations

To test the ability of the algorithm to work with the limits on the actuators,
a simulation has been performed in 20-sim [20]. The trajectory taken in
this simulation was chosen such that the lower limit on the rotors would be
reached, which is where the difference between the cost functions is expected
to show.

The particular trajectory used for the comparison between the different
cost functions is a vertical circular trajectory. To compare the two cost
functions, the UAV will be asked to trace this trajectory with different radii
and increasing radial velocity. At some point the UAV will become unstable
and fail to follow the trajectory.

Expected is that the cost function that takes into account the lower limit
will be able to work at a higher radial velocity compared to the cost function
that is ignorant to the actuator limits. The limits for the angle have been
set to +90°, such that they would not influence this simulation.

The points at which the UAV failed can be seen in figure 5.3, on the
x-axis, the different radii at which the test was performed are plotted and on
the y-axis is indicated at which angular velocity the UAV became unstable.
From these results, it can be concluded that the algorithm that knows about
the limits is able to sustain the trajectory for much longer when the lower
limits are reached. On average, the lower limit cost function is able to sustain
flight for about 40% higher angular velocity compared to the quadratic cost
function.

29

Failure points with vertical trajectory

w1 —s— Quadratic cost|]
'% —#—Lower limit
S

N

>

=

o 10F

o

o

>

p -

o

S cf

=N 5

c

<

1.5 2 25 3 35 4 4.5 5
Radius of trajectory (m)

Figure 5.3: Failure points on a vertical trajectory

Next, it is interesting to also compare how the different algorithms han-
dle limitations on the tilt angle, for that purpose, simulations have been
performed where the angle was limited to £45° and 30° from the under-
actuated position. These values were chosen to be around the values that
the algorithm used in the unconstrained case and that the limits would be
hit. However, the system would still be able to fly while using these limits.

The results of the simulation with a limit of +45° can be found in figure
5.4. Here, the same behaviour can be observed with an average increase of
around 20% in angular velocity.

Failure points with horizontal trajectory and angle limit of 45

w 12F —s—Quadratic cost| |
'% —&— L ower limit

1

N

210}

(&)

o

g

S 8 [h
<

S

S)

c 6 -
<

3 35 4 4.5 5
Radius of trajectory (m)

Figure 5.4: Failure points on a horizontal trajectory and a limit of 45 deg
When the limit of +30° is applied, the results in figure 5.5 are found.
It can be seen that the effect of the different cost function has decreased

significantly. This is due to the limit that is being hit at a relatively low
velocity, in that case, the controller is no longer capable of correctly flying

30

the UAV. The difference that the control allocation can make is in also quite
limited, as the optimal angle is beyond the limits that have been set.

Failure points with horizontal trajectory and angle limit of 30

—e—Quadratic cost
—o— | ower limit

=
o

[e)]
T

Angular velocity (rad/s)
o]

N

2.5 3 3.5 4 4.5 5
Radius of trajectory (m)

N

Figure 5.5: Failure points on a horizontal trajectory and a limit of 30 deg

When comparing the actual actuator outputs from a simulation, such
as the outputs in figures 5.6 and 5.7. These figures are the outputs for an
equal vertical trajectory with a radius of 3.5m and a angular velocity of 3.8,
which is well within the stable region of both cost functions. It can clearly
be seen that the asymmetrical cost function that uses the lower limit has
significantly less outputs in this negative range while the tracking error is
mostly similar. To compensate for the reduced negative output, the positive
side of the outputs has been increased slightly, but from the simulations it
can be seen that this is not a significant increase.

10 T T T T T T 1

Output 1
Output 2
Output 3
Output 4/ |
Output 5
Output 6

Desired output (N)

10 15 20 25 30 35 40 45 50
Time (s)

Figure 5.6: Actuator outputs with the quadratic cost function

31

8 T T T T T T T
N\ \ Output 1
/ / / ——Output 2
6 / \ Output 3
/ / / Output 4
/ Y / \ / \ ——Output 5
2 L~ / \ - \ / \ - Output 6
- f A N p— N ~ N/ ,
= | : / | 1 aw { ay { -
3 Xv\ v \ Xv \\ |
=1 { \ | \ { |
3 | f \ [\ f \ [
h=] | | | |
© of .
7
o)
2F -
Ak -
6 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50

Time (s)

Figure 5.7: Actuator outputs with the asymmetrical cost function

5.4 Conclusion

From the literature survey on control allocation solutions, it became clear
that there was room for an algorithm that could solve the control allocation
problem for systems that do not have fully independent actuators but where a
dynamical search algorithm is too advanced. As an example, the full control
allocation of the FAST-Hex has been used.

By using a hybrid solution of both the Moore-Penrose pseudo-inverse and
a search strategy, an algorithm was created that could use the output of this
pseudo-inverse to optimize the remaining actuator outputs. In this case, the
shared tilting angle was optimized.

Another point that was implemented with this algorithm was the possibil-
ity of implementing limits of the actuator outputs into the control allocation.
This was done by altering the cost function on the actuator outputs to apply
a greater cost on the unattainable part of the output forces. Optimizing the
tilt angle by minimizing the cost function will lead to the actuator outputs to
shift towards the attainable force region and therefore minimizing the output
wrench error.

From simulations, it was shown that the output did indeed shift to the
positive range when a limit was applied. The negative forces would not
completely disappear, but this was not expected as the control allocation
would still try to create an output that would represent the desired wrench.

By trying different trajectories where the actuator limits would influence
the behaviour of the UAV | it was shown that by respecting the lower limits, it

32

would take a larger rotational velocity to make the UAV fail to fly stably. The
simulations in this chapter were only performed on a single type of UAV, but
the approach could easily be adapted to fit other types of partially solvable
problems and can improve flight properties.

33

Chapter 6

Control allocation in software

6.1 Introduction

In research, it is common to include the control allocation in a software
package that is responsible for the control system of the UAV. To create
a functional system for current research, an analysis of the limitations of
current software packages can be performed.

There are several different software packages that can be used to control
UAVs. These include for example the ArduPilot [21], LibrePilot [22] and the
PX4 control software of the Dronecode project [23].

For the investigation of the UAV control software, one package will be
chosen and analysed. For this project, this will be the PX4 software package,
as it is open-source and the design principles have also been published [24],
therefore the code can be analysed easily. Additionally, as it is currently
in use in the research environment, there is already some knowledge about
this software package within the research group and the adapted version can
easily replace the current solution.

In this chapter, the PX4 system will be investigated to find points of
improvements to make the software more applicable in current research.

6.2 Software structure

The PX4 software is a modular system that is based around a shared pub-
lisher /subscriber communications system. In this software package this is
handled by the uORB system, which predefines the messages as a collec-
tion of values. These messages are called topics within the framework. The
different modules of the system communicate using these channels and not
directly with each other. This architecture allows the different modules to

34

run independently. This has the advantage that controllers can run at dif-
ferent loop speeds and priorities, it also allows for modules to be substituted
by similar modules with different implementations. This system is visualised
in the diagram in figure 6.1.

Module Module Module Module

vh v b v by h

uORB communications layer

Figure 6.1: PX4 system architecture

6.3 Software goals

To find what needs to be improved in the software, some goals are defined for
what the software should be capable of to allow for efficient research. These
goals will be set within the current framework of the software. The two main
points that will be considered are the communication and the implementation
of the modules.

6.3.1 Communication

To allow for predictable communication between the different modules in the
software, it is important that all topics are clearly defined and physically
accurate. It is then also important that the values sent through the topics
are correctly scaled, such that a module that uses these values can use them
as absolute truth and does not need to perform any additional scaling. By
implementing this, the software will provide a clear interface between the
modules.

By defining this communication, it will prevent dimensional mismatch
within individual modules as the input and output dimensions are clearly
defined. For example, if a positional controller will has as an input a position
defined in meters and the output should be defined as a force in Newton,
then the output cannot be mistaken for an acceleration as it has been clearly
defined.

35

6.3.2 Modules

To allow for a versatile software package, the included modules should be
applicable for various different cases. For example, an under-actuated UAV
uses very different controllers and control allocation algorithms compared
to a fully-actuated or over-actuated system. To allow for various different
configurations, different modules should be included that can be picked and
activated whenever it is necessary for the correct functioning of the system.
As a start, the most common approaches should be available to researchers.

6.4 Software analysis

The general structure of a control system is given in figure 6.2. Such a control
system is also implemented into the PX4 software, which uses several modules
to house the different control blocks that compose the control system.

36

o B
| |
| mr T A |
l l
: Position I I, | Control :
: Controller Allocation :
l \ /’ l
| |
: Rdes T :
| Attitude !
: Controller |
| |
| |
| |

Software Boundary

Figure 6.2: Communication diagram of the three modules that make up the
flight stack.

37

6.4.1 Controllers

Within the software, control of the UAV has been split into a position con-
troller and an attitude controller, which are also decoupled within the soft-
ware itself. This also allows both to run at different loop speeds and perform
a specific task.

Position controller

The position controller consists of two main parts, a PID controller and
a force projection. The PID controller uses the position error to create a
velocity setpoint vg, = 75, — 7, this velocity setpoint is subsequently used
to calculate the velocity error, which is used as an input into another PID
controller to produce the desired acceleration. As the system is at this point
agnostic about the physical properties of the UAV, this acceleration is used
as a desired force vector.

The next step is to transform this desired force vector into a single up-
wards force and an attitude to recreate the desired force vector. This step
is performed as the software assumes an under-actuated system and requires
the vehicle to tilt in order to generate .

Attitude controller

The role of the attitude controller is to generate a desired torque to steer the
vehicle to the desired attitude as generated by the position controller. The
reason that this controller is separated from the position controller is because
the attitude controller needs a higher update rate compared to the position
controller because of the unstable nature of a multi-rotor UAV. It can then
match the update rate of the gyroscope to create accurate outputs.

6.4.2 Mixer / Control allocation

The next step is the control allocation or mixer, as it is called within the
PX4 software. This implements a pseudo-inverse mixing using a previously
generated 4xN 'mixing matrix’, which is the inverse of the mapping matrix
M as shown in chapter 3.

The mixing matrix in the current implementation of the software is a
normalized matrix, which means that it is independent of the physical prop-
erties of the vehicle. To show how such a matrix is composed, the mapping
matrix M of the quadrotor in equation 2.4 will be used.

For this example, the 4 DoF version will be considered:

38

Figure 6.3: Configuration of a standard quadrotor [25]

L -L -L L

o |t L L L (6.1)
S B B
1 1 1 1

To create a normalized matrix, this mapping matrix will be split into a
diagonal matrix that contains all parameters and an additional matrix that
will only contain constant values. The decomposed matrices can be seen next

L 0 001 -1 -1 1
0O L OO0l -1 1 -1
M=10 0 5o0ll1 1 -1 -1 (6.2)
0 0011 1 1 1
To find the mixing matrix, the inverse of this matrix will be taken:
1 1 1 1][& 0 0 0
4 |-1 -1 1 1|0 £ 0 0
MZ=10 10— o 0 £ o (6:3)
1 -1 =110 0 0 1%

The second matrix can then be included as a scaling factor in the desired
wrench, which is also a normalized signal. This results in a mixing matrix
that can be used for any quadrotor with the configuration of figure 6.3. The
only thing that needs to be changed with regards to size and inertia are the
control tuning parameters.

39

Base Mixer

A

Helicopter Mixer Mixer Group

Multirotor Mixer

Figure 6.4: Class structure of the mizers in the current implementation.

6.4.3 Mixer class implementation

The way it is implemented in the code is such that different control allocation
methods can be used simultaneously . Several different mixer classes have
been created, which are all based on a single base mixer. These mixing classes
can then be combined into a so-called mixer group, which defines which
mixers and in which order they are executed. The structure of this can be
seen in figure 6.4. This structure directly relates to the C++ implementation
in the software itself, where each mixer class is derived from the base mixer
class.

The different mixers have access to the control groups that are defined
within the PX4 software, these channels contain all information that has to
be sent to the UAV, including the desired output wrench of the actuators.
This desired wrench is used by the defined combination of mixers to produce
the various actuator outputs.

6.5 Conclusion

During the analysis of the software, two main points of interest have been
found that limit the usability of the PX4 software for further research.

40

6.5.1 Control system

From the analysis of the controller and the control allocation, it was found
that the software was designed for under-actuated systems. This was evi-
dent from the implementation of the position and attitude controller, which
together produced a desired wrench of only 4 elements (a single force and
three torques). To be able to fly a fully-actuated or over-actuated UAV, the
controllers should be able to output a full 6-element wrench to the control
allocation.

In turn, the control allocation should also be able to handle this new im-
plementation. Currently, it is also designed to only consider under-actuated
UAVs. To mitigate this problem, the communication towards the control
allocation should be redefined, but more importantly, the implementation of
the control allocation has to be altered. The new implementation should be
able to handle configurations that have forces in 3-dimensional space instead
of only in the z-direction. In line with the software goals set, this new im-
plementation should be implemented alongside the existing control system
in the PX4 software.

6.5.2 Normalized signals

Between the controllers and the control allocation, the communication signals
are normalized to a value between 0 and 1. This is a result of creating
a system that will function for every system in its supported range. The
signals will be the same between UAVs of different sizes. Individual vehicles
are optimized by tuning the PID controller itself instead of changing the
physical parameters of theses vehicles.

After mixing, the output is given as a value between 0 and 1 for the
PWM signal. This value comes directly from the mapping matrix, but this
hides a step that should have been taken. The output signal is sent to the
ESC (electronic speed controller) on the vehicle and is directly related to the
rotational velocity of the propeller. However, as described in chapter 2, the
output of this matrix should be the thrust generated by the propeller. Due
to experiments done on the relation between the rotational velocity and the
output thrust, it has been found that this mapping is closer to a quadratic
relation. The assumed linear relation is therefore not accurate.

To be able to implement a control system to which it is important to
reach a certain force, the control signals should have a physical meaning, e.g.
Forces, Torques and rotor speeds. This will allow the system to correctly scale
and transform the signals within the controllers and control allocation.

41

Chapter 7

New software implementation

7.1 Required changes

As stated in the previous chapter, there are two main points that need to
be improved. The first is that the current software does not support fully-
actuated UAVs in its control, the second point is that it currently uses nor-
malised signals in the communication instead of signals with physical mean-
ing.

In this chapter, the steps needed to improve these two issues will be
presented and the implementation of one of these changes will be executed
and tested.

7.1.1 Intermodular communication

Considering the communication in the flight stack of the software, as de-
picted in figure 6.2, the following observations can be made when trying to
implement the physics based communication.

To implement the non-normalised signals, the signals do not need any
updating as the size of the communication channels will not change. Most of
the work will be performed in the conversion of controllers, mixers and other
modules to use the new signal definitions.

After this, additional changes can be implemented that would increase
the physical accuracy of the system. For example, the signals coming from
the mixer can now be interpreted as a desired force and be translated by
another module or implementation to calculate the required rotor velocity to
get this force.

In the work done for this thesis, this improvement has not been imple-
mented. It was found to be more important and more related to the research
problem to update the mixer to support additional platforms.

42

2 e
| |
| H.T BT A |
l l
: Position 7 F> Control :
: Controller Allocation :
| |
: Rdes T :
| Attitude !
: Controller |
| |
| |
| |

Software Boundary

Figure 7.1: Communication diagram of the modified firmware.

7.1.2 Support for fully-actuated and over-actuated UAVs

To support fully-actuated systems, the flight control stack requires additional
changes.

In the controllers, the output is no longer a reduced 4-element wrench,
which only contains the upwards thrust, but the mixer will expect a full
6-element wrench with a full force vector. This requires changes to the con-
trollers, as the additional input should be taken either from the operator
or from an additional algorithm. For testing purposes, a simplified control
structure can be used to show the correct operation of the new flight stack.
The update communication diagram can be seen in figure 7.1.

The mixer itself requires most of the changes. It currently uses a 4xN
mapping matrix to perform the control allocation. This will have to be
changed to a 6xN version, however, the software uses an internal generator
for these matrices using the positions of the actuators to create this mapping
matrix, therefore this algorithm also needs to be changed.

43

Base Mixer

A

Helicopter Mixer Mixer Group

Multirotor Mixer

Complex Mixer

Figure 7.2: Structure of the mizers in the adapted software.

7.2 Implementation

To implement these changes, the code structure itself had to be altered. This
was done to allow backwards compatibility with previous implementations.
This is necessary as the controller for an under-actuated UAV is fundamen-
tally different from one that is designed for fully-actuated UAVs. For the
new implementation, two new controllers and an additional mixer have been
created within the software package. Due to the modularity of the soft-
ware, these can coexist with the previous controllers without any problems
or compatibility issues.

A new mixer class, which has been called the 'Complex mixer’, will be
derived from the base mixer class, as is the case for all existing mixers. This
is done to be able to quickly switch between implementations to compare the
behaviour. The addition of this new mixer will expand the class structure of
the mixers to the situation in figure 7.2.

For now, this new complex mixer will have the same control allocation
algorithm implementation as the 'multirotor mixer’, which is the current

44

mixer class used for multirotor systems. The only difference is that the
complex mixer will use a 6 by N mixing matrix instead of the previous 4 by
N. The additional x- and y-forces have been mapped to 2 unused channels
used in the communication between the controllers and the control allocation.

The mixing matrices are created while building the software using a
python script. This script uses the rotor position definitions for each sup-
ported platform and creates a mapping matrix from this information. The
mixing matrix is then created by taking the pseudo-inverse of this mapping
matrix. The advantage of this approach is that control allocation is now only
a matrix multiplication, which greatly improves the computational complex-
ity of the system.

This script required an extension to create 6 by N mixing matrices re-
quired by fully-actuated control allocation, but it should also still output
the original 4 by N mixing matrices for the previous under-actuated control
allocation.

For now, the mixer only accepts the 6-element wrench as an input, this re-
quires all implementations of control allocation algorithms to be self-contained.
Which means that the algorithms should only expect a desired wrench and
produce the individual actuator commands. If additional inputs are required
for a correct functioning of a control allocation algorithm, they should first
be implemented in the code and made available to other modules or the pilot
itself.

A more detailed overview of the changes made can be found in appendix

A.

7.3 Results

To test the new implementation of the control allocation, the system was
tested using a simulation in Gazebo [26] where the software is expected to
try to fly several different UAVs. A constant attitude setpoint will be sent
to the attitude controller while using the full available force-space to move
the UAV, it is expected that the system would still be able to keep the
UAV stable in flight, but that lateral movement would not be observed if
a set-point change was introduced. Only when a fully-actuated system is
implemented, would lateral movement be possible.

7.3.1 Controller changes

To test the new mixer, the controllers have been temporarily altered to output
a full wrench, note that this is still using the normalized signals. These

45

(¢) Fully-actuated

der-actuated _
(a) Under-actuate (b) Under-actuated herarotor

quadrotor hezarotor

Figure 7.3: The different platform during a simulation in Gazebo

controllers were also changed in separate modules, to allow easy switching
between the two controller implementations.

As stated in the previous chapters, the position controller performed two
tasks, which were the actual control and a mapping for under-actuated con-
trol. In the new system, this second task was bypassed and all three control
forces were sent to the attitude controller together with a constant setpoint
for the attitude.

The attitude controller was kept the same, except that it had to forward
two more forces to the mixer.

When applied to under-actuated UAVs, it is expected that the software is
able to keep the flight stable as the attitude controller has not changed. How-
ever, as this new position controller will not tilt the UAV to move sideways,
it will not be able to hold it in position but drift around uncontrolled.

This new control system should be able to fly a fully actuated UAV cor-
rectly, that means that it should fly stable and be able to hold position.

7.3.2 Results

The system has been tested with three different UAVs, all of which can be
seen in the simulation in figure 7.3

1. An under-actuated quadrotor
2. An under-actuated hexarotor

3. A fully-actuated hexarotor

After tuning the controller to create stable flight, it was observed that
the first and second UAVs could fly in a stable attitude, but could not hold

46

their absolute position as the controller uses forces that are not attainable
by these systems. They would simply drift around as corrections were also
communicated through these unattainable channels. This shows that the
controller is indeed only using the three forces to move the vehicle and the
controller implementation was successful.

When simulation the fully-actuated system, it was observed that the
under-actuated control allocation could not hold this system in a stable po-
sition, which is a result of the two additional forces not being communicated.
The fully-actuated control allocation was however successful in flying this
system.

7.4 Conclusion

From the analysis of the PX4 software package two main improvement points
were found that would enable the software to be more readily available for
research purposes. By implementing these changes, it will be easier and more
straightforward for users of this package to adapt it to their particular needs.

The first point that was found was that the communication between the
different modules is not based on any physical basis. To allow for predictable
messaging and a clearer interface between the different modules, the commu-
nication has to be altered software-wide to allow for more specific modules
to be implemented.

The second improvement point is that the current iteration of the PX4
software only supports under-actuated multirotors. This change was im-
plemented by altering the communication towards the control allocation to
allow for a full wrench to be transmitted. Additionally, the control allocation
module was altered to be able to process this desired wrench and to use the
existing UAV configuration files to generate the required mixing matrices.

As of now, the software is capable of controlling fully-actuated and over-
actuated static systems. To be able to control additional configurations,
such as UAVs with tiltable propellers, additional control allocation methods
have to be added. With respect to the software goals set in chapter 6, these
should preferably be implemented in separate modules as well to allow for
greater flexibility of the software. For now, the greatest limitation in the
implementation of the control allocation is that it only expects an input
wrench and requires all algorithms to be self-contained.

47

Chapter 8

Conclusion

To find the current state of control allocation in research, a literature survey
was performed with papers on the development of multirotor UAVs. This
resulted in a collection of solutions that are all applicable in specific cases.

This survey also found that there was room for an additional algorithm
that could be used for UAVs that are partially solvable with traditional
methods, such as the Moore-Penrose pseudo-inverse, but need an additional
search algorithm for the remaining actuator outputs. As these remaining
outputs are effectively redundant, the cost function could be customized. For
example, actuator limitations can be considered by applying a great weight
on the unattainable force region.

A new algorithm that was not yet implemented in literature was devel-
oped as a case study for the FAST-Hex, which is a hexarotor with coupled
tilting propellers. This implementation was tested using a flight simulation.
When changing the cost function to include actuator limitations, it was ob-
served that the flight behaviour improved and that stable flight could be
sustained with higher trajectory speeds.

From an analysis of the implementation of control allocation in the PX4
software package, it was found that there are two major point of improvement
to make the package more applicable in current research. By addressing these
problems, the software will be more versatile and easier to use in current
research and other applications.

The first was a limitation on the communication between the modules,
which in the current implementation is implemented as a normalised value.
To allow for more predictable communication between the modules and a
more accurate prediction of the output wrench, these values should be ex-
pressed on a physical basis. The implementation of this would require a
full analysis of the current communication and an adaptation of most of the
modules.

48

The second improvement point was the implementation of the control
system, which currently assumes the control of an under-actuated system.
This was clear as the input wrench toward the control allocation was defined
as a reduced wrench with no lateral forces included. To address these prob-
lems, the communication towards the control allocation was redefined to a
full wrench and the control allocation module was altered to accept this new
communication and to use the existing UAV configuration files.

The main limitation of the current implementation is that no other input
but the desired wrench is expected in the control allocation. This creates
the requirement that all algorithms should be self-contained. Most of the
solutions in the literature survey in chapter 4 meet this requirement and with
the addition of the algorithm presented in chapter 5, even more configurations
should be able to be added to the PX4 software bundle.

In general, the range of control allocation solutions as found in literature
was quite extensive and could cover many UAV configurations. With the
addition of a new control allocation algorithms, some more supported con-
figurations were added. However, the software support as found in the PX4
software package was not at the same level as the control allocation used
in current research, this will require extensive changes to the software in
both the inter-modular communication as the implementation of the various
modules in the software.

49

Chapter 9
Further work

After this work, there are some open points that can be implemented or
improved:

e In the proposed control allocation algorithm, two cost functions were
chosen. These were arbitrarily chosen for their shape and resulting
properties, but there are many different possibilities. It could be inter-
esting to investigate the result of these cost functions on the behaviour.

e The new control allocation algorithm has only been tested on a single
system, but the design approach can also be applied to many different
systems.

e As indicated in the analysis of the PX4 software, the inter-modular
communication can be improved by using physics-based messages in
the communication, where currently it uses normalized signals. This
has currently not been implemented, but could be done to streamline
the communication in the system.

e In the complex mixer, tests can be performed with different control al-
location algorithms to search for a more optimal solution and to include
additional control allocation algorithms.

30

Appendix A
Detailed Code Changes

This appendix will show in more detail the changes made to the code, the
descriptions here will be very specific, as they reflect the actual structure of
the PX4 code.

A.1 Communication

Two large changes were made to the pfORB communication definitions, which
is the module responsible for all communication within the software:

A.1.1 vehicle_attitude_setpoint

The message /msg/vehicle_attitude_setpoint.msg was copied to /msg/vehi-
cle_attitude_setpoint_6dof.msg. This new message was then changed to in-
clude the additional lateral forces and will be used by the 6dof versions of
the controller.

A.1.2 Mixer control groups

Unused channels were used for two additional forces, these are channels 4
and 5 on mixer control group 1. These were chosen as they were the first
unused channels in the spectrum, being labelled aux(0 and auxl1.

A.2 Controllers

Both controllers were duplicated to allow changes without influencing the
old configurations. A side-effect of the duplication is that the controller

o1

parameters also needed to be duplicated, therefore all MC_* and MPC_*
parameters were duplicated with M6_* and MP6_* parameters

A.2.1 Position controller

The position controller has had two big changes. The first is the circumven-
tion of the transformation step. The under-actuated controller first generated
a desired 3-dimensional force, which was then transformed into a single force
and an attitude corresponding to the direction of the original force vector.
This transformation step was taken out and the desired attitude was
fixed to a constant of (0,0,0). The original 3-dimensional force was then
communicated directly to the attitude controller using the new message.

A.2.2 Attitude controller

The inner workings of the attitude controller have not changed as these would
still work with the new implementation and is still used to stabilize the UAV
around the desired attitude. The only difference made is that instead of a
single force feed-through, it now has to communicate a 3-dimensional force
to the mixer.

A.3 Mixer

To allow for a fully-actuated control allocation algorithm, some larger changes
were made to the mixer module.

A.3.1 Mixer class

To house the new mixer implementation away from the currently existing
one, a new mixer class was defined and called a 'complex mixer’. This name
merely suggests that it is a more complicated mixer than the already existing
multi-rotor mixer.

This new class was built equal to all other mixer classes, that is, inheriting
from the base mixer class.

The algorithm at this point is equal to the already existing one in the
multi-rotor mixer. The change made at his point is that it uses the additional
two forces to create a 6-element desired wrench. This full wrench is then used
with a new mixing matrix to create the new mixing algorithm.

92

A.3.2 DMatrix generation

The mixing matrices are generated using a python script (/src/lib/mixer/ge-
ometries/tools/px_generate_mixers.py), this script had to be duplicated and
altered to also output a 6xN mixing matrix.

33

Bibliography

1]

Chun Fui Liew, Danielle DeLatte, Naoya Takeishi, and Takehisa Yairi.
Recent developments in aerial robotics: A survey and prototypes
overview. Cornell University Library, 2017.

J.B.C. Engelen and G.F. Folkertsma. Control for uavs. Course material,
2018.

Optitrack motion capture. https://optitrack.com/.

Underactuated quadrotor. http://serl.systems/wp-content/
uploads/2012/07/2012-06-29_15-20-25_461. jpg.

Underactuated octorotor. https://static.bhphotovideo.com/
explora/sites/default/files/octo-rotor. jpg.

Ramy Rashad, Johan B.C. Engelen, Stefano Stramigioli, Jelmer Graat,
and Geert Folkertsma. Unified passivity-based framework for the ge-
ometric modeling and control of interactive aerial robots: A port-
hamiltonian approach.

Sujit Rajappa, Markus Ryll, Heinrich H. Biilthoff, and Antonio Franchi.
Modeling, control and design optimization for a fully-actuated hexarotor
aerial vehicle with tilted propellers. 2015 IEEFE International Conference
on Robotics and Automation, 2015.

Sngyul Park, Johnbeom Her, Juhyeok Kim, and Dongjun Lee. Design,
modelling and control of omni-directional aerial robot. 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016.

Guangying Jiang, Richard Voyles, Kenneth Sebesta, and Helen Greiner.
Estimation and optimization of fully-actuated multirotor platform with
nonparallel actuation mechanism. 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2017.

o4

https://optitrack.com/
http://serl.systems/wp-content/uploads/2012/07/2012-06-29_15-20-25_461.jpg
http://serl.systems/wp-content/uploads/2012/07/2012-06-29_15-20-25_461.jpg
https://static.bhphotovideo.com/explora/sites/default/files/octo-rotor.jpg
https://static.bhphotovideo.com/explora/sites/default/files/octo-rotor.jpg

[10]

[11]

[17]

[18]

Guangying Jiang, Richard M. Voyles, and Jae Jung Choi. Precision
fully-actuated uav for visual and physical inspection of structures for
nuclear decommissioning and search and rescue. 2018 IEEE Interna-
tional Symposium on Safety, Security, and Rescue Robotics (SSRR),
2018.

Mina Kamel, Sebastian Verling, Omar Elkhatib, Christian Sprecher,
Paula Wulkop, Zachary Taylor, Roland Siegwart, and Igor Gilitschenski.
Voliro: An omnidirectional hexacopter with tiltable rotors. Robotics and
Automation Magazine, 2018.

Markus Ryll, Davide Bicego, and Antonio Franchi. Modeling and control
of fast-hex: a fully-actuated by synchronized-tilting hexarotor. ieee/rsj
international conference on intelligent robots and systems (iros) 2016,
oct 2016, daejeon, south korea. jhal-01348538;. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) 2016, 2016.

T.A. Johansen and T.I. Fossen. Control allocation - a survey. Automat-
1ca, 2013.

Samir Bouabdallah, Pierpaolo Murrieri, and Roland Siegwart. Design
and control of an indoor micro quadrotor. Proceedings of the 2004 IEEE
International Conference on Robotics 8 Automation, 2004.

P. Pounds, R. Mahony, and P. Corke. Modelling and control of a large
quadrotor robot. Control Engineering Practice 18, 2010.

Sangyul Park, Jeongseob Lee, Joonmo Ahn, Myungsin Kim, Jongbeom
Her, Gi-Hun Yang, and Dongjun Lee. Odar: Aerial manipulation plat-
form enabling omnidirectional wrench generation. IEEE/ASME Trans-
actions on mechatronics, VOL. 23, NO. /, 2018.

Juan 1. Giribet, Ricardo S. Sanchez-Pena, and Alejandro S. Ghersin.
Analysis and design of a tilted rotor hexacopter for fault tolerance. IEEFE
Transactions on aerospace and electronic systems VOL. 52, NO. 4, 2016.

Aryeh Marks, James F Whidborne, and Ikuo Yamamoto. Control alloca-
tion for fault tolerant control of a vtol octorotor. UKACC' International
Conference on Control 2012, 2012.

Alexandros Nikou, Georgios C. Gavridis, and Kostas J. Kyriakopoulos.
Mechanical design, modelling and control of a novel aerial manipula-
tor. 2015 IEEE International Conference on Robotics and Automation
(ICRA), 2015.

95

[20]
[21]

[22]

23]
[24]

[25]

[26]

20-sim simulation software. http://www.20sim.com/.
Ardupilot control software. http://ardupilot.org/.

Librepilot control software. https://www.librepilot.org/site/
index.html.

Px4 control software. http://px4.1io/.

Lorenz Meier, Dominik Honegger, and Marc Pollefeys. Px4: A node-
based multithreaded open source robotics framework for deeply embed-
ded platforms. 2015 IEEFE International Conference on Robotics and
Automation (ICRA), 2015.

Px4 online airframe reference. https://dev.px4.io/en/airframes/
airframe_reference.html.

Gazebo simulator. http://gazebosim.org/.

56

http://www.20sim.com/
http://ardupilot.org/
https://www.librepilot.org/site/index.html
https://www.librepilot.org/site/index.html
http://px4.io/
https://dev.px4.io/en/airframes/airframe_reference.html
https://dev.px4.io/en/airframes/airframe_reference.html
http://gazebosim.org/

	Introduction
	Background
	Research problem
	Research method

	UAV theory
	UAV definition
	Actuation
	Sensory system

	Dynamics
	Rotor dynamics

	UAV Classifications
	Under-actuated
	Fully-actuated
	Over-actuated

	Static and convertible systems

	Control allocation theory
	Application of control allocation
	Control allocation problem
	Actuator limitations

	Control allocation solutions
	Introduction
	Literature survey
	Integration in controller
	Matrix Inverse
	Moore-Penrose pseudo-inverse
	Redistributed pseudo-inverse
	Force decomposition
	Search algorithms

	Literature summary

	New control allocation algorithm
	Design requirements
	Comparison between 12DoF and 7DoF control allocation

	Approach
	Cost function
	Actuator limits
	Tilt limits

	Simulations
	Conclusion

	Control allocation in software
	Introduction
	Software structure
	Software goals
	Communication
	Modules

	Software analysis
	Controllers
	Mixer / Control allocation
	Mixer class implementation

	Conclusion
	Control system
	Normalized signals

	New software implementation
	Required changes
	Intermodular communication
	Support for fully-actuated and over-actuated UAVs

	Implementation
	Results
	Controller changes
	Results

	Conclusion

	Conclusion
	Further work
	Detailed Code Changes
	Communication
	vehicle_attitude_setpoint
	Mixer control groups

	Controllers
	Position controller
	Attitude controller

	Mixer
	Mixer class
	Matrix generation

