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Abstract 
In the past, it was expected that increasing the human likeness of a robot would increase their 

likability. Mori (1970/2012) argued this monotonous model is unfit. At some point, as a robot 

resembles a human too much and its non-human features become more salient, the emotional 

response to these becomes negative instead. Increasing human likeness further would turn the 

response positive again. The negative dip is referred to as the ‘Uncanny Valley’ and it is 

experienced as a feeling of strangeness.  

While the UV has been topic of research for years, which cognitive mechanisms 

underlie the phenomenon are still uncertain. There is an on-going debate on whether 

individual differences or innate human traits are reason for the experience of the UV. To 

examine the role of individual differences, the first question to ask should be whether the UV 

is a universal experience. When results are averaged for every participant, it is still possible 

that some people do not experience the UV at all. Additionally, it could be examined whether 

the trough of the UV is at the same position for everyone.  

The current study aims at answering these questions by replicating Mathur and 

Reichling’s (2016) experiment, adding multilevel modelling. By examining the individual 

results, we can calculate whether the UV is present for every participant and if there are 

differences in their experiences. Calculations using the MCMC method showed that the 

probability of a trough appearing for every participant (n=26) exceeded .995. From these 

results we can conclude that the UV is indeed a universal experience. 

However, here was some variability in responses, both in trough depth (intensity of 

eeriness experienced) and trough position (which human likeness score appeared most eerie). 

This suggests that innate traits may be at the core of the UV experience, but that individual 

differences may modulate the sensitivity to the phenomenon. From previous literature, it is 

unclear which differences significantly impact this sensitivity. Some of the proposed traits 

overlap in measurement methods, so future research should continue to focus on factors 

modulating the UV sensitivity.   
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Introduction 
The use of robots is becoming more commonplace. Human-like androids are on the rise and 

are expected to be involved in healthcare (supporting doctors & staff), as well as in social 

settings, such as accompanying elderly. Especially in social settings, there is interest in 

making robots appear more human-like. A robot’s appearance could influence the overall 

acceptance from people, as potential users may infer characteristics of the robot purely based 

on its physical form (Beer, Prakash, Mitzner, & Rogers, 2011). It is expected that as the 

human-likeness of a robot increases, their likability and the amount of trust people have in 

them are expected to rise as well. 

However, Mori (1970/2012) suggested this monotonous model between human 

likeness and emotional response was unfit. At some point, as human likeness increases, the 

emotional response might instead be negative. Only when human likeness increases further 

will the emotional response turn positive again. This trough in emotional response is referred 

to as the ‘Uncanny Valley’ (UV, see figure 1) and it is experienced as a feeling of 

‘strangeness’ when confronted with any humanoid object (such as a robot or prosthetic) that is 

not quite human. 

 

Figure 1: The Uncanny Valley as proposed by Mori (1970/2012). The trough is 

hypothesized to be around 70% human likeness.  

 

Since the term ‘Uncanny Valley’ has been coined, a lot of research has been done to 

its existence. MacDorman (2006) asked participants to rate morphed faces on their 
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mechanical vs human likeness, strangeness vs familiarity and eeriness. These faces were 

morphed from pictures of robots and humans, increasing in their human likeness. When 

averaging the results across participants, the UV could be discerned. However, when trying to 

replicate this experiment with videos, no clear trough was discovered. MacDorman (2006) 

hypothesized that human likeness is therefore not the only possible explanation for the 

Uncanny Valley. Other factors could influence the UV and, therefore, it is possible to design 

around it. 

Seyema and Nagayama (2007) found similar results; the UV phenomenon shows up, 

but only when the stimulus has an ‘abnormal feature’. They researched the UV with morphed 

pictures of robot and doll faces, alternating the sequence of morphing aspects. In some trials, 

they morphed the shape of the face first, while in others the shape of the eyes were changed 

before the head shape. Lastly, they also checked whether the UV shows up with faces on 

which the eyes were scaled to 150%. This feature was rated more eerie on human faces than 

on doll faces. These results suggest that realism and abnormalities are processed separately 

from each other and other features may determine what stimuli are perceived as ‘realistic’ or 

‘abnormal’. 

The Uncanny Valley is not just limited to robotic or morphed faces. Kätsyri, 

Mäkäräinen, and Takala (2017) compared three different types of movies to each other to 

check whether the UV also shows up for people who consume these types of media. Several 

movies were classified as either ‘Cartoonish’, ‘Semi-realistic’ or ‘Human’. The average 

scores across participants on constructs such as Human likeness of the character, Likability, 

Strangeness and Eeriness were compared for the three movie types. The ‘Semi-realistic’ 

movies scored highest on Strangeness and Eeriness, and lowest on Likability, which suggests 

that this level of human likeness negatively impacts familiarity and increases perceived 

eeriness. These results are in line with the UV theory, but are not decisive, as no UV graph 

was plotted. 

Using real-life examples of robotic faces, Mathur & Reichling (2016) researched the 

UV phenomenon and its influence on humans’ willingness to trust the depicted robots. They 

used pictures of 80 actually built robotic faces, which the participants rated from ‘mechanical’ 

to ‘humanlike’ and on emotional response. Using the Pearson correlation to determine the 

mechano-humanness (MH) score for each face and a third-degree polynomial regression 

analysis to model the relationship between the MH score and perceptions of likability, they 

found the UV showed up for people on average. 
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To determine if the UV has an influence on perceived trustworthiness of robots, 

Mathur and Reichling (2016) had subjects take part in an “investment game” in which the 

participant (player A) had to decide on an endowment of money to pass on to the pictured 

robot (player B). The endowment was then tripled and player B decided what proportion to 

return to player A. In the experiment, every participant only had one trial in order to prevent 

them from developing a strategy based on previous experiences. The same third-degree 

polynomial regression as the one used in the first experiment showed that implicit 

trustworthiness aligned with explicit reports of likability and, therefore, also follows an UV 

structure. Additionally, robots that were perceived as showing a ‘positive emotion’ got a 

higher score on invested wages, implying these were trusted to a higher degree. 

 

Which cognitive mechanisms underlie the UV are still uncertain. Some researchers 

suggest it has to do with learned behaviour or personality. Brink, Gray, and Wellman (2017) 

researched the UV in younger children and linked it to attribution of mind. They found that 

children until the age of 9 do not rate human-like robots as more eerie than mechanical 

looking robots. For younger children, perception of mind decreased uncanniness, whereas in 

older children it was the other way around. It is therefore possible that the UV is a result of 

violated expectations of what a machine should look or behave like; younger children 

attribute perceptual abilities to robots, which could explain why they do not think of these 

robots as ‘creepy’. When this attribution decreases, expectations of what robots should look 

like will change as well (Brink et al., 2017). 

The role of several traits in the sensitivity to the UV was researched by MacDorman 

and Entezari (2015). They found correlations between higher creepiness scores and nine traits 

that were supported by existing literature. These traits were Perfectionism, Neuroticism and 

Anxiety, Animal Reminder Sensitivity, Personal Distress, Human–Robot Uniqueness, 

Human–Android Uniqueness, Religious Fundamentalism, and Negative Attitudes Toward 

Robots. They found that individual differences on these traits also predicted differences in the 

eeriness scores, with the exception of Perfectionism. Some of the examined traits are learned 

behaviour (such as Religious Fundamentalism), while others are a more biological adaptations 

of threat avoidance (e.g. Anxiety), meaning the UV could be rooted in biological traits, but 

strengthened by learned ideas (MacDorman & Entezari, 2015). 

Threat avoidance as explanation for the UV is based on the model proposed by Park, 

Faulkner and Schaller (2003). They explain that it is an evolutionary mechanism that is meant 
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to avoid illnesses. Contagious diseases were often visible through abnormalities and in order 

to avoid catching these illnesses, it appears humans evolved mechanisms to respond to these 

abnormalities with negative emotions (e.g. disgust or anxiety) and behaviours (e.g. 

avoidance). However, the system is overactive and also triggers with abnormal features 

unrelated to contagious diseases (Park et al., 2003). This avoidance can also be seen in 

monkeys, as they spend less time looking less at realistic synthetic faces as compared to real 

or unrealistic synthetic faces (Steckenfinger & Ghazanfar, 2009).  

Building on this theory, Olivera-La Rosa (2018) theorizes the UV is a social response 

to avoid interaction with ‘twisted’ individuals. Humans read faces of other individuals to 

make a judgement on their intentions and abnormal features influence the assumed “moral 

status” of a face. Incongruent facial features trigger our alarm system, which in turn causes us 

to avoid these individuals. This effect is also present in robotic faces, as we are unable to 

accurately ‘read’ these faces. If these faces also have abnormal features, this would cause the 

characteristic uncanny feeling, which is in line with the research by MacDorman (2006) and 

Seyema and Nagayama (2007). 

One of the oldest theories on the UV is category confusion about whether something 

falls under human or non-human. Category confusion means one is unable to accurately 

distinguish entities between known categories (Jentsch, 1906/2008), such as robot and human. 

In their research, MacDorman and Chattopadhyay (2016) found that increasing category 

confusion by making 3D replicas of people, animals and objects and presenting transitional 

images to participants does not increase ratings of eeriness. They proposed instead a theory 

that realism inconsistency is the cause for the UV. Realism inconsistency refers to 

inconsistent levels of realism in a humanlike stimulus. This would lead to conflicting 

judgements on whether the entity is real.  

 

Keeris and Schmettow (2016) proposed a new framework that implements category 

confusion regarding the UV which is in line with the Realism Inconsistency theory by 

MacDorman and Chattopadhyay (2016). They theorized that processing these robotic faces 

has multiple steps. At first, there is a fast and early evaluation whether a face is human or 

non-human. This triggers an emotional response, which is followed by a closer inspection of 

the stimulus. When a face is first classified as ‘human’, this closer inspection might lead to a 

re-evaluation. Conflicting information builds up and might lead to a turnover of categories. 
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This confusion results in a negative judgement and the eerie feeling (Keeris & Schmettow, 

2016).  

Theories focused on individual differences, especially regarding learned behaviour, are 

based on higher level processing. Traits such as Religious Fundamentalism (MacDorman and 

Entezari, 2015) would require judgements based on pre-obtained knowledge of what a robot 

should be. Such theories do not take into account the speed at which a face is determined 

creepy. Slijkhuis and Schmettow (2017) compared the judgements of participants after a short 

exposure time (50 to 100ms) to judgements after a longer exposure time (2 seconds) on the 

same stimulus in a replication study of Mathur and Reichling's (2016) experiment. Although 

the UV shifted towards lower human-likeness with shorter presentation times, the UV was 

still found. This would suggest that higher processing such as the theories proposed by 

MacDorman and Entezari (2015) are unlikely, as the short presentation times do not allow for 

further cognitive elaboration. 

 

Although there has been a debate on individual differences vs. innate human traits in 

relation to sensitivity to the UV, most existing research is focused on the existence of the UV 

in general and on deriving possible explanations thereof. To examine the role of individual 

differences, however, the first question to ask should be whether the UV is a universal 

experience. When results are averaged for every participant, there is still a possibility that 

certain people do not experience the UV at all (or to a much lesser degree than others), even 

when the results show the UV exists on average. If the UV is a universal experience, it is 

likely the UV is linked to innate processes in the mind.  

The current research aims at answering this question by replicating Mathur and 

Reichling’s (2016) experiment. In this experiment, participants are shown a number of robot 

faces ranging from mechanical to humanlike and are asked how they feel about this image. By 

examining the individual results by means of a mulitlevel polynomial regression, we can 

check whether the UV is present for every participant and if there are differences in the 

magnitude of the experiences.   

Furthermore, if the UV is a universal experience, it could be examined whether the 

trough of the UV is the same for everyone as well. In other words; does the same level of 

human likeness cause the most uncanny feeling for everyone? Should this be the case, it 

would rule out individual differences and preferences for certain kinds of robots as 

explanations. Further research could then point out the universal reasons why certain levels of 
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human likeness invoke the uncanny feeling, while others do so to a lesser degree. If individual 

differences do show up, it could be examined if personality traits or learning activities shape 

the facial recognition mechanism that could explain these differences. 

Methods 

Procedure 

Participants were first given a short explanation of the procedure of the study. They were told 

that they would rate their emotional response on robot faces, but not that the goal of the 

experiment was to research the Uncanny Valley, because knowing this might result in 

thinking they were expected to fill it in accordingly and thus resulted in a response bias. 

After a participant signed the Informed Consent form, they completed some trial runs 

of the experiment to get acquainted with the controls and the type of stimuli they would be 

presented with during the experiment. During these trials, the experimenter was available in 

the room to answer questions about the program. When the participants cleared the practice 

trials, the experimenter left the room and the participants completed the experiment by 

themselves. 

In the experiment, participants rated all stimuli on their eeriness three times in random 

order, with a different item of the scale each time. This was done to avoid influences of 

stimuli sequence and item formulation on the eeriness scores. In-between every 48 stimuli, 

there was a short break of at least 30 seconds, after which the participant could choose to 

continue at any time. When the participant was finished, the experimenter explained the aim 

of the study and the participant had another chance to ask questions before leaving the room. 

Stimuli 

In order to see whether the Uncanny Valley phenomenon is a universal experience, we need 

to measure emotional responses people have on faces with a varying degree of human 

likeness. We used the 80 previously gathered robot faces from Mathur and Reichling (2016), 

which incorporate a spectrum from not humanlike to very humanlike (expressed in a human-

mechano score ranging from 1 to 80), as well as the additional 16 stimuli gathered by 

Slijkhuis and Schmettow (2017).   
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The stimuli Mathur and Reichling (2016) gathered were found via four Google image 

searches with the terms ‘‘robot face”, ‘‘interactive robot”, ‘‘human robot,” and ‘‘robot.” 

Slijkhuis and Schmettow (2017) found their additional stimuli with the terms “humanlike 

robot” and “human face robot”. These additional stimuli were rated in to be in the range of 70 

to 90 ranks of human likeness, as the trough was expected within that range and adding more 

stimuli would improve the accuracy of the curve. The scores for these faces were inter-rater 

reliability tested, taking the mean as the human-mechano score. 

Mathur and Reichling (2016) set up specific inclusion and exclusion criteria for their 

stimuli, which were also incorporated in Slijkhuis and Schmettow’s (2017) study. If multiple 

images of the same robot were found, only the first one they encountered that matched the 

graphical criteria was accepted. If the graphical criteria were not met, they looked up different 

images of the same robot. All images were cropped to only display the face entirely.  

Inclusion criteria were: 

1. Full face is shown from top of head to chin. 

2. Face is shown in frontal to 3/4 aspect (both eyes visible). 

3. The robot is intended to interact socially with humans. 

4. The robot has actually been built. 

5. The robot is capable of physical movement (e.g., not a sculpture or purely CGI 

representation that lacks a three-dimensional body structure). 

6. The robot is shown as it is meant to interact with users (e.g., not missing any hair, 

facial parts, skin, or clothing, if these are intended). 

7. The robot represents an android that is plausibly capable of playing the wagering game 

(e.g., not a baby or an animal). 

8. The resolution of the original image (or an exact copy when one could be located) is 

sufficient to yield a final cropped image at 100 d.p.i. and 3 in. tall. 

Exclusion criteria were: 

1. The robot represents a well-known character or a famous person (e.g., Einstein). 

2. The image includes other faces or human body parts that would appear in the final 

cropped image. 

3. Objects or text overlap the face. 

4. The robot is marketed as a toy.   

 

In the current study, another 10 images were added that are concurrent with the 

inclusion and exclusion criteria. The search terms used to find these images were “Android 

face”, “Human like robot” and  “Interactive robot face”. Similar to the 16 stimuli added by 

Slijkhuis and Schmettow (2017), these faces were also inter-rater reliability tested for their 

human-mechano scores. These images were selected to be in the range of ranks 50 and higher, 

to increase the accuracy of the trough, as it was found to be more to the left (lower scores) as 

the previously expected 70 to 90 (Slijkhuis & Schmettow, 2017). To decrease the strain on the 
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participants, 10 stimuli that had little influence on the UV in Mathur and Reichling’s (2016) 

and replication studies (Keeris & Schmettow, 2016; Slijkhuis & Schmettow, 2017) 

experiments had been taken out. 

Measures 

The program previously used by Slijkhuis and Schmettow (2017) included items from the 

‘eeriness’ construct of a questionnaire designed by Ho and MacDorman (2017). These items 

had been translated to both German and Dutch by native speakers. The translations were then 

checked by translating them back to English to compare to the original items. These 

translations were required so participants could fill in the experiment in their native language 

(see appendix A for the translated items).  

The items contained of two words describing the stimulus and were filled in using a 

Visual Analogue Scale with higher scores relating to more negative feelings towards the 

depicted face. Low scores would mean the emotional response on the face is ‘neutral’ rather 

than positive, as one would respond to a normal human face. Participants rated each stimulus 

in threefold, and in the fixed-effects model the average of these three measurements was taken 

to reflect their emotional response. In the multi-level model, the variance in these 

measurements was used. 

Design 

We used a repeated measure design in which the participants rated robot faces on their 

eeriness. The independent measure in this experiment is the human-mechano (huMech) score 

of the faces shown. The dependent measure was the eeriness score as rated by the participants. 

The repeated measures give a greater accuracy for the real subjective rating of a stimulus, by 

decreasing the influence of noise. 

The average score per participant per stimulus were plotted in a third-degree 

polynomial graph. This model fits the research question, because it is aimed at finding a 

trough in an otherwise increasing relation. A first-degree graph shows an increase (or 

decrease) of y based on x. This is a linear pattern in which y increases in a constant manner, 

which would only be applicable if the emotional response would only increase when human 

likeness scores went up. A second-degree graph is a curve with either a peak or trough, but 

not both. This would mean there is an increase of y until a certain amount of x, after which y 
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declines. In terms of this research, it would mean scores of emotional response would increase 

until a certain degree of human likeness, only to decrease after this point. Using this type of 

model, the UV can also not be researched, as Mori (1970/2012) theorized there is an increase 

of familiarity up until the human likeness becomes ‘eerie’. When the human likeness 

increases even more, the eeriness fades (and thus the emotional response becomes positive 

again).  

Only a third-degree polynomial with both a peak and a trough would accurately depict 

such a relationship between human likeness and emotional response. This is in line with 

Mathur and Reichling’s (2016) findings. In their study, they tested the accuracy of a first-, 

second- and third-degree model on their data and found the third-degree model to be the most 

fitting. 

To estimate the trough of a third-degree polynomial, several steps have to be taken. 

First, the stationary points have to be found. These are the points at which the slope of the 

graph is 0, which is either at a peak or a trough. This can be done by plotting the derivative of 

the polynomial, which shows the slope of the original function at any point x. Secondly, the 

local minimum point has to be selected. As the derivative of the third-degree polynomial 

crosses 0 on the  y-axis, there are two stationary points. The slope of the first derivative will 

be positive at the local minimum, meaning this point can be determined by taking the second 

derivative. When the second derivative is positive at the x of the first derivative crossing 0, it 

shows the slope of the first derivative is increasing. After this point, the initial function also 

shows an increase again. 

 

In contrast to Mathur and Reichling (2016), we analyse the polynomials on participant 

level using multi-level modelling. This is required to answer our research question, because 

we can only check whether everyone experiences the UV by analysing it per individual.  

In the regression analysis, we make use of the Monte-Carlo Markov Chain (MCMC) 

method. This is a method for predicting outcomes based on random sampling (Monte-Carlo), 

where each next point is predicted based on the current value (Markov Chain). It can be 

understood as a random walk along a graph in a probabilistic space. Every iteration of MCMC 

starts with an initial guess. Each next step on the graph is created by adding random noise to 

the current value and either accepting or rejecting the new value based on the likelihood of 

this being the true value given the parameters. When the new value is accepted, this value is 

used again for the same process; if not, another estimate is made for the current value. This 
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process is repeated numerous times until there are enough samples (van Ravenzwaaij, Cassey, 

& Brown, 2018). 

Materials 

The experiment was run on two different computers. The first one had a 15.6" screen, 4GB of 

RAM, Quad Core Intel Core i5 (2.6 GHz) and ran on OS Windows 10. The second computer 

had a 15.6” screen, 4GB RAM, Quad Intel Core i5 (2.4 GHz) and ran OS Windows 8.1. Both 

computers had PsychoPy 1.85.4 installed. As input devices, both computers used a mouse. To 

minimize the influence of different computers on the responses, both computers were used by 

the same amount of participants. 

Participants 

In total, 26 people (19 male) took part in the experiment with ages ranging from 18 to 76 

years old (average = 30,15; sd = 14,85). Of these participants, 20 were native Dutch speakers; 

the others were German speakers. We made use of a snowball sample starting with people 

close to the researcher. 13 participants were psychology students at the University of Twente, 

of which 4 Master students. All participants signed an informed consent form, confirming 

they understood the goal and procedure of the study and their voluntary participation. 

Results 

Exploratory Data Analysis 

In the experiment of Mathur and Reichling (2016), the data for all participants was averaged. 

Doing so gives little insight in the variability of responses and provides no information on if 

all participants individually experienced the uncanny feeling. Here, we try to find out if every 

participant shows a characteristic uncanny valley curvature and if so, if the trough position is 

the same for all participants. However, because this is in part a replication study, average 

results are first examined. 

In figure 2 the results of stimuli averaged over participants are plotted, which shows a 

clear third-degree polynomial curve. In this figure the horizontal axis represents the huMech 

scale expressed in percentages of the highest huMech score (80), the vertical axis resembles 
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the emotional response ratings. A local maximum (rating -.43) can be found around 25% of 

the huMech scale (huMech score 20), and a local minimum (rating -.58) at around 75% 

(huMech 60). In this graph, the eeriness scores were inversed, so higher scores mean lower 

eeriness ratings (or higher non-eeriness). The higher scores represent a ‘neutral’ response (like 

seeing an average human face), whereas lower scores mean a negative emotional response 

(i.e. eerie). The responses on repeated stimuli were highly correlated to each other (.89 for 

first and second; .90 for first and third; .91 for second and third), meaning the three responses 

of each participant on the same stimulus were coherent. 

However, the individual graphs show some variability in trough depth and position, as 

can be seen in figure 3. Trough depth resembles the lowest point in perceived non-eeriness, 

trough position points to the huMech score that resembles the eeriest stimuli. In these graphs, 

huMech ranges from 0 to 1, which relates to the entire huMech spectrum ranging from 1 to 

80. For all participants, the trough position  is between 0 and 1, which means our range of 

stimuli accurately captured the range of the UV for these participants. Had a trough shown up 

below 0 or above 1, it would mean they would respond more negatively to stimuli that were 

less or more humanlike than the ones presented in this study. More specifically, all troughs 

appear in the range of 50% to 90% (or 40 and 72 huMech). 

 

 

Figure 2: Graph of average responses of all participants. The x-axis resembles the huMech score expressed 

in percentages, with 0 being mechanical-like and 1 being most humanlike. On the y-axis, the inversed 

responses of the participants on the eeriness scale are presented. A higher score means lower eeriness (or 

higher non-eeriness) 
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In the next section, some examples will be presented to demonstrate this variability. 

The results for all participants can be found in appendix A. For some participants, the graph 

appears similar to the one in figure 1 (e.g. p2_05, see figure 4a). These graphs show a local 

minimum and maximum that differ greatly from each other (-0.25 to -0.65 for p2_05), but 

these are around the same huMech scores (25% / huMech 20 minimum and 75% / huMech 60 

maximum).  

 

 

Figure 3: Graphs of all participants, showing great variability in trough position and curvature steepness. 

 

For other participants, the difference between highest and lowest non-eerie scores is a 

lot smaller, making their curves less steep. In these graphs, a local minimum and maximum 

are visible, but their emotional response ratings are closer to each other (e.g. p1_05 with 

scores ranging from -0.50 to -0.60; see figure 4b). Most of these participants have the trough 

around the same huMech score, between ~70% and ~80% (56 and 64 on huMech 

respectively). The region of the trough appears roughly the same, but the intensity of non-

eeriness is lower. 
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Figure 4a: Graph of participant p2_05. Shows a clear 

polynomial with a steep curve 
Figure 4b: Graph of participant p1_05. Shows a polynomial 

which is less steep. 

 

The troughs for all participants are not always in the same area. Although most appear 

in the 70% to 75% range, there are some exceptions. P2_04 (see figure 5a) shows a trough 

near the 90% (72 on huMech score), which is higher than the others. The minimum can still 

be recognized as a trough, as there is a slight increase in non-eeriness afterwards. Therefore, a 

UV curve can still be discerned. 

 

  

Figure 5a: Graph of participant p2_04. Shows a polynomial 

with a trough around huMech score 0.90 
Figure 5b: Graph of participant p1_07. No third-degree 

polynomial is visible. 

 

Lastly, there are also participants that did not show a characteristic UV curve (e.g. 

p1_07. see figure 5b). Instead, the non-eeriness levels went down when huMech scores 

increased until approximately halfway (55% / 44 huMech). A trough was still visible, but the 

graphs lack a local maximum. After this point, faces became less eerie. More humanlike faces 

were rated lower than mechanical faces (lowest huMech scored -0.25, whereas highest 

huMech (80) scored around -0.35). 

Regression analysis 

The first steps of the regression analysis concern averaged results, starting with calculating 

the probability of a trough showing up given the current results. In Bayesian statistics, 

probability is not defined in terms of “in an infinite amount of tests, the UV would be defined 
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in 95% of the cases”, but rather explained as a certainty: “With a probability of 95%, the true 

value is contained in this interval” (Schmettow, 2018). Calculating the probability of a trough 

showing up given the averaged data in our sample, we can see that this value is 1. This 

suggests a probability of 100% that, on average, the Uncanny Valley shows up. Next, we look 

at the average trough position (see figure 6). As expected, it turns out that the trough is 

between 70% and 75% (huMech scores 56 and 60). 

 
Figure 6: Average trough position is between 70 and 75% of the huMech scale. 

 

For all MCMC draws (5 chains of 6000 iterations), it is determined whether a trough 

exists. This results in an overall probability for any participant to experience the UV. In our 

sample, this probability was bigger than .995 for all participants (see figure 7). For most 

participants (88%) this probability was virtually 1. This means that for all participants, it is 

more than 99,5% certain that they experience the Uncanny Valley phenomenon.  

 
Figure 7: Histogram of probabilities of a trough showing up. For all participants (n=26), 

this probability lies above .995.  
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Trough positions are also estimated for every participant. In figure 8, these trough 

positions are ordered from low to high center value. As can be seen, most participants have a 

trough around center 70% to 75% (huMech 56 and 60). For these participants, the lower 

bound is approximately 62% (huMech 50), and the upper bound 80% (huMech 64). The 

trough most towards ‘mechanical’ is around 55% / huMech 44 (lower bound 48% / huMech 

39; higher bound 60% / huMech 48). The trough most towards ‘humanlike’ is centered around 

90% / huMech 72, with more variance in bounds (85% / 68 huMech lower, 115% / huMech 

92 higher).  

 
Figure 8:Caterpillar graph of trough positions.  

 

 Lastly, figure 9 shows the coefficients that make up the polynomial graphs of each 

individual. These are the values of huMech³, huMech², huMech1 and constant for every 

participant. 

 

 
Figure 9:Polynomial coefficients per participant. From top to bottom, it shows the effects of 

huMech3, huMech2, huMech1 and constant huMech 0.  
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Additional findings 

When looking at the individual ratings participants gave, some distinctive response styles can 

be discovered. A response style is a participant’s tendency of responding in a way that cannot 

be explained by scale item (Survey Research Center, 2016).  

These response styles are in part caused by the process of anchoring, introspection and 

binning when evaluating. Anchoring means thinking of what it would mean to give the most 

extreme values (i.e. what face would call for a “Supernatural” vs “Ordinary” rating). 

Introspection is the process of evaluating how intensely they feel about the currently 

presented stimulus. This is influenced by several factors, such as current mood and a person’s 

history. Lastly, binning means dividing the ‘gut feeling’ intensity into the presented categories 

(e.g. a 5-point Likert scale), in some cases based on stereotypes (Schmettow, 2018).  

Schmettow (2018) also names some response patterns that can be distinguished. Some 

of these can also be discovered when looking at the results of the current study. For example, 

p1_13 fits the ‘undecisive’ trope; they do not fill in extreme values for any stimulus (see 

figure 9a). On the contrary, p1_12 filled in extremely values (especially on the higher end of 

non-eeriness) more often than other participants (see figure 9b). 

 

  

Figure 9a: Graph of p1_13. This participant did not fill in 

extreme values for any stimuli. 
Figure 9b: Graph of p1_12. This participant filled in 

extremely high values more often than other participants. 

 

Some participants have clear clusters in their answers (e.g. p1_01 and p1_06). These 

clusters are present at the higher end of the huMech range. Another participant, p2_04, has 

clusters on both the lower and higher end of the huMech scores. The responses in-between are 

mostly higher than the plotted line with some outliers below the graph. 
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Figure 10: Graphs of p2_01 and p2_02. These participants used the same eeriness values for all stimuli. 

 

Two participants (p2_01 and p2_02) had the same type of responses in the sense that 

they only filled in 6 or 7 different values. These values are approximately the same for both 

participants (see figure 10). This is odd, given that we used a Visual Analogue Scale rather 

than a 7-point Likert scale and therefore any value would be an acceptable response. Both 

participants also have high outliers on lower huMech scores. These participants show a clear 

form of binning, as they divided their feeling intensity into 7 points. 

Discussion 

In research concerning the Uncanny Valley, there has been a debate on whether individual 

differences or innate human traits are the cause for its existence. The goal of the current 

research was to provide some insight into the possibility that individual differences could 

explain the UV phenomenon. We did this by examining whether the Uncanny Valley is a 

universal experience, in which case we could conclude that individual differences (such as 

personality or learned behaviour) do not predict whether someone experiences the UV.  

A second goal was to find out if the trough for every participant would be the same. 

This would not only provide evidence that the UV shows up for everyone regardless of 

individual differences, but would also rule out that these differences have any impact on the 

sensation of the UV at all. In other words, neither personality traits nor learned behaviour 

would then influence which faces humans rated as most eerie. This would mean the 

experiencing of the UV is linked to innate human abilities that are the same for everyone.  

  



20 

 

Our data shows that a local minimum can be found reliably for every participant 

individually. This means that the Uncanny Valley is indeed a universal experience. In line 

with Mori’s (1970/2012) theory, there is an increase in affinity until a certain point of human-

likeness. Afterwards, the uncanny feeling sets in until a trough can be discerned. Increasing 

human likeness further would invoke a neutral to positive emotional response again. These 

results are also present when averaging results across participants, like Mathur and Reichling 

(2016) did in their research. 

However, there is some variability in individual responses. While most participants 

showed a third-degree polynomial, the intensity of eerie vs. neutral (visible by trough 

intensity) varied between participants. There were also participants who did not show the 

initial increase in non-eeriness as human-likeness went up; instead, their ratings decreased as 

human-likeness increased until a trough. For these participants the ‘valley’ was still visible, 

but their graphs were not characteristic UV curves.  

Not only trough intensity varies between participants, trough positions (which level of 

human likeness is considered most eerie) were also different between participants, meaning 

there is no specific human-mechano (huMech) score that appears least or most eerie to 

everyone. Most participants showed a trough between 70% and 80% on the huMech scale 

(Stimuli 56 and 64 respectively, see figures 11a and b). However, there were variations to 

both the lower end (around 60% – huMech 48, figure 11c) and the higher end (approximately 

90% – huMech 72, figure 11d). These individual differences might explain differences found 

in trough position in previous research (Mori, 1970/2012; Mathur & Reichling, 2016; Keeris 

& Schmettow, 2016; Slijkhuis & Schmettow, 2017).  

 

    

Figure 11a: Stimulus 

representing huMech 56 

Figure 11b: Stimulus 

representing huMech 64 

Figure 11c: Stimulus 

representing huMech 48 

Figure 11d: Stimulus 

representing huMech 72 
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Variability in trough depth and trough position between participants means there is 

support for individual differences modulating sensitivity to the UV. Sensitivity to the UV may 

be strengthened by individual differences (i.e. personality traits or learned behaviour). The 

sample in the current study cannot accurately portray the entire population, meaning some 

factors influencing UV sensitivity could not have been taken into account.  

Individual differences in Uncanny Valley sensitivity 

Which personal differences could influence the sensitivity to the Uncanny Valley has been 

topic of research for years, yet not always with conclusive evidence. MacDorman and 

Entezari’s (2015) provided a collection of theories concerning individual differences 

influencing the UV.  

Some of these theories have been in part debunked already by Slijkhuis & Schmettow 

(2017) in their research to the UV with short presentation times, as this meant higher level 

processing was unlikely to be involved in UV sensitivity. Religious Fundamentalism was one 

of such theories, as it relies on the assumption that religious people negatively respond to 

these faces, because they resemble humans and humans are supposed to be ‘unique creatures’. 

Another such theory is Animal Reminder Sensitivity, which proposes we are reminded of our 

own ‘animalness’ and robots lacking this property are therefore seen as unnatural 

(MacDorman & Entezari, 2015). 

 

Other theories proposed in MacDorman and Entezari’s (2015) research might still be 

viable explanations. These theories concern the traits Perfectionism and Neuroticism/Anxiety, 

as well as Human-Robot and Human-Android Uniqueness and Personal Distress. Other 

researchers have found traits that would modulate the UV sensitivity that tie in with the 

various theories explained by MacDorman and Entezari (2015).  

Perfectionism 

Perfectionism would modulate the UV, because perfectionists are more concerned about 

making mistakes. They have more attention for details, meaning they notice flaws earlier and 

feel worse when they do (MacDorman & Entezari, 2015). Concern about making mistakes 

predicts UV sensitivity due to the expectation violation theory. According to this theory, an 

entity is perceived as eerie when it invokes the brain’s model for ‘human’, but possess 

features that are not in line with this model (MacDorman & Ishiguro, 2006). This erroneous 
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judgement would lead to the negative emotional response, which is in line with the framework 

presented by Keeris and Schmettow (2016).  

Perfectionism was measured in MacDorman and Entezari’s (2015) research with the 

subscale “Concern over Mistakes” (CM) from the Multidimensional Perfectionism Scale 

(MPS; Frost, Marten, Lahart, & Rosenblate, 1990). This scale contains nine statements, such 

as “If I fail partly, it is as bad as being a complete failure” and “I hate being less than the best 

at things”. A high score would suggest someone experiences negative emotions when making 

a mistake, such as an erroneous judgement on whether an entity is human or not.  

 

Measuring only concern over mistakes seems to fall short when trying to find a link 

between perfectionism and UV sensitivity. While the CM scale might explain the negative 

response on the erroneous judgements, this does not yet take into account the suggested 

attention for detail perfectionist people would have. This could explain why MacDorman and 

Entezari (2015) did not find conclusive evidence for such a link. Considering the research by 

Slijkhuis and Schmettow (2017) in which the UV was shown to be experienced even when 

stimuli were presented for a short time, it should be expected that the ‘attention for detail’ is a 

fast process if it would play a part in UV sensitivity. This could be researched by a task in 

which the participants have to memorize details of specific stimuli that are presented for a 

short time. To incorporate the theory that attention for detail leads to better flaw recognition, 

this task could consist of finding differences between sets of two images that differ from each 

other slightly. 

By comparing UV sensitivity of people who perform well on a task that measures 

attention for detail to those who perform poorly on the same task, and taking into account 

CM, perfectionism could tested out as a possible explanation of UV sensitivity. People who 

perform poorly on the ‘attention for detail’ task or score low on CM (or both) are then 

expected to show a less defined UV curvature. 

Neuroticism and anxiety  

Neuroticism is thought to impact the UV, because people who are emotionally instable are 

more likely to be affected by entities that evoke feelings of fear, anxiety and disgust 

(MacDorman & Entezari, 2015). In other words, they would respond more negatively to 

uncanny faces.  
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Especially the anxiety facet of neuroticism has been linked to the UV in previous 

research (Jentsch, 1906/2008). MacDorman and Entezari (2015) suggest anxiety in this 

context stems from terror management. This theory concerns ways humans deal with the 

knowledge that death is inevitable, both consciously – for example by suppressing thoughts of 

death – and unconsciously by having a cultural worldview and self-esteem that one is living 

up to the values in their worldview. Being faced with an uncanny robot would draw out 

subconscious mortality-related fears (MacDorman, 2005). 

 

Alternatively, anxiety may be related to the threat avoidance theory. As explained 

before (see introduction), this is a mechanism meant to avoid illness or otherwise dangerous 

situations by giving a negative emotional response towards entities that appear to carry 

contagious diseases or deformities, which in turn leads to a desire to stay away from these 

individuals (Olivera-La Rosa, 2018; Park et al., 2003). Sasaki, Ihaya and Yamada (2017) 

found a link between avoidance of novelty and eeriness scores on entities resembling humans. 

People who scored higher on the Behavioral Inhibition System scales (Carver & White, 1994) 

also had elevated ratings of eeriness on hard-to-categorize objects. 

Examining the BIS scale shows that there are some items which are related to items on 

the CM scale of the MPS. These items include “I worry about making mistakes” and “I feel 

worried when I think I have done poorly at something” (BIS) vs. “I should be upset if I make 

a mistake” (CM). An overlap in measurement scales could suggest that novelty avoidance ties 

in partly with perfectionism. However, other items do not appear to be shared by 

perfectionism, meaning they have not simply been measuring the same aspect. 

 

Lastly, novelty avoidance in the context of the Uncanny Valley phenomenon may be 

influenced by interaction with robots. (Złotowski et al., 2015) found that repeated interactions 

with robots lead to reduced experiences of eeriness. This effect was present regardless of 

robot appearance. Additionally, likability of robots – especially mechanical looking robots – 

increased after interacting with these robots, depending on the robot’s attitude toward a 

human interaction partner (Złotowski et al., 2015). Combining these results with the novelty 

avoidance theory suggests that interacting with robots could make these robots less ‘novel’, 

and thus easier to categorize. This would then decrease perceived eeriness of these robots. 
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Human–Robot Uniqueness and Android–Robot Uniqueness 

Human-Robot and Human-Android Uniqueness are two similar theories, but would influence 

the UV in opposing ways. Both theories are based on Jentsch’s (1906/2008) category 

confusion theory. Human-robot uniqueness refers to someone’s tendency to see ‘robots’ and 

‘humans’ as completely separate entities, whereas Android-Robot uniqueness means 

knowledge of an ‘android’ concept which is different than ‘robot’. Seeing robots and humans 

as two unique ‘models’ would increase UV sensitivity, because humanlike robots would not 

fit either category.  

Keeris and Schmettow (2016) added that this confusion stems from an erroneous 

judgement of a stimulus; something that is first classified as ‘human’ might turn out to be 

‘non-human’ after a deeper inspection. This would lead to a negative emotional response 

which is classified as the ‘uncanny’ feeling.   

 MacDorman and Entezari’s (2015) explain that android-robot uniqueness would 

dampen the UV effect, because learning a new cognitive category (i.e. ‘android’) should 

resolve the uncertainty about which category an entity belongs to. This would mean entities 

are no longer perceived as ‘human’ or ‘robot’, but either ‘human’, ‘android’ or ‘robot’, which 

would prevent the deeper inspection leading to a turnover of category and thus the uncanny 

feeling. 

Lischetzke, Izydorczyk, Hüller and Appel (2017) researched UV sensitivity based on a 

need of structure. People who have a high need for structure are more likely to create 

cognitive structures that are clearly defined and well-bounded (such as mental models for 

‘human’ and ‘robot’). They are also more likely to respond negatively to situations in which 

these structures are challenged, or when no clear structure can be found. Lischetzke et al. 

(2017) reason that encountering a humanlike robot is a novel situation, meaning previous 

situations – and thereby existing mental models – provide too little information. Therefore, 

people who have a higher need for structure would respond more negatively to these 

situations as there is no pre-defined structure to hold onto. 

Lischetzke et al. (2017) used a mixed effects model to test whether higher need for 

structure predicted heightened sensitivity to the UV in two experiments. They found that this 

effect was present when using fine-grained morphs, but not in a 3-step manipulation. 

Although not decisive, these results suggest that people with a higher need for structure might 

have formed clear structures on ‘robots’ and ‘humans’ based on previous experiences or 

stereotypes. These people are likely to respond poorly to ‘androids’ that appear to exist in the 
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grey area in-between, because these challenge their mental models of what robots are 

(Lischetzke et al., 2017). 

However, some people with a higher need for structure may already have formed 

constructs for ‘android’. According to MacDorman and Entezari (2015), these people should 

not be especially sensitive to the UV, as their current structure is not challenged. Put 

differently, a closer inspection of an android would not lead to a turnover of categories. It 

would make sense that only people who score high on PNS, high on human-robot uniqueness 

and low on android-robot uniqueness experience the UV –  or at least more intensely than 

others. This might also explain why a 3-step manipulation did not lead to results, whereas  

fine-grained morphs did have an effect; in the first setup, only categories ‘robot’, ‘android’ 

and ‘human’ are needed. In the second, there may be faces that do not fit any of these 

categories well according to the mental model of the viewer, meaning they might still 

experience the overturning of categories upon deeper inspection. 

In the research by Lischetzke and colleagues (2017), need for structure was measured 

using the Personal Need for Structure (PNS) scale constructed by Neuberg and Newsom 

(1993). Like the BIS scale, the PNS scale shows overlap with some previously named 

measurement scales. For example, “It upsets me to go into a situation without knowing what I 

can expect from it” (PNS) and “If I think something unpleasant is going to happen I usually 

get pretty ‘worked up’” (BIS). For people with high need for structure, going into a novel 

situation is similar to being in an unpleasant situation. Therefore, they might rate these 

questions equally. Additionally, “I find that a well-ordered life with regular hours makes my 

life tedious (reverse scaled)” and “I enjoy having a clear and structured mode of life” (PNS) 

are similar to some items on the “Organization” subscale of the MPS (e.g. “Organization is 

very important to me”). This overlap could mean ‘need for structure’ is related to both 

‘novelty avoidance’ and ‘perfectionism’. 

Personal Distress 

MacDorman and Entezari (2015) mention ‘personal distress’ as a contributing factor to the 

UV phenomenon. By this, they mean that people who experience personal distress (i.e. 

anxiety and paralysis) when seeing others in stressful situations are more susceptible to the 

UV. Personal distress is a form of empathy which intensifies the UV sensitivity in a multitude 

of ways. The first theory is that humanlike robots that possess ‘unnatural’ features elicit 

personal distress, because these features make them seem like unhealthy individuals. 
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Secondly, these robots could act as reminders of mortality or soullessness (MacDorman & 

Entezari, 2015).  

Both of these theories seem related to the terror management theory or the threat 

avoidance theory, but differ slightly; rather than invoking a negative response due to fear or 

disgust, Personal Distress presumes that people try to empathize instead. However, because 

they usually know a humanlike robot is not actually human, subconscious reminders of its 

soullessness are thought to block the empathetic response (MacDorman & Entezari, 2015; 

Misselhorn, 2009). 

To measure the Personal Distress construct, MacDorman and Entezari (2015) used the 

Personal Distress subscale of the Interpersonal Reactivity Index (IRI; Davis, 1980). This scale 

contains questions on paralysis due to empathy (e.g. “When I am with a friend who is 

depressed, I become so uncomfortable that I can't really talk to him” and “When I see 

someone who badly needs help in an emergency, I go to pieces”), as well as questions on how 

someone reacts to emergency situations (e.g. “I tend to lose control during emergencies”). 

The latter category has some comparability to the Anxiety thing. 

 

Abubshait, Momen, and Wiese (2017) examined the role of empathy, social reasoning 

and mentalizing skills in UV sensitivity. Using a nested model, taking ‘likability’ as 

measurement for UV and Empathy Quotient (Baron-Cohen & Wheelwright, 2004) for 

empathy, they assessed whether higher scores on empathy predicted a more pronounced UV. 

In contrast to MacDorman and Entezari (2015), they found no link between the two. 

In order to come up with a definite answer, future research could focus on individuals 

who score particularly low on empathy. If these individuals show a less clearly defined UV 

curvature, it stands to reason that empathy does influence UV sensitivity. 

Additional findings 

The first thing to note is that not all the aforementioned research is comparable to each other. 

Some researchers examined average scores (e.g. MacDorman & Entezari, 2015), whereas 

others used multi-level models to draw conclusions (e.g. Lischetzke et al., 2017). Burleigh 

(2015) argues that especially when examining individual differences, the data analysis should 

include multi-level modelling. When averaging across participants, results might be 

misleading. Therefore, the collection of MacDorman and Entezari (2015) can be used as a 

frame of reference, but the underlying principles need to be examined further.  
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Some of the measurement scales for different traits do seem to overlap (e.g. the 

Behavioral Inhibition System scale and Concern over Mistakes scale of the Multidimensional 

Perfectionism Scale). Future research could examine which items have higher prediction 

value for the UV than others. It may be that overlapping questions are the main contributors to 

the UV, suggesting that only part of the construct is relevant for UV sensitivity.  

 Different aspects of the evaluated constructs could influence either trough depth 

(highest perceived eeriness) or trough position (which stimuli appear most eerie). Checking 

on participant- as well as item-level which influence the UV curvature most, it may be that a 

different construct (which combines items from different questionnaires) has a bigger 

influence on the UV sensitivity than those proposed before.   

Limitations of the current study 

Aside from the previously discussed sample that is not representative of the entire population, 

some additional factors could have played a role in the UV measurements in this study. As 

Slijkhuis and Schmettow (2017) already mentioned in their research using the same eeriness 

scale (Ho and MacDorman, 2016), the translations of the items could have shaped the 

responses of participants. Some participants also mentioned they found certain items of the 

eeriness scale unfitting for certain stimuli, e.g. where the face was neither ‘Uninspiring’ nor 

‘Spinetingling’. The Dutch translations of these words – especially the latter, which is 

‘Opwindend’ – had different connotations. ‘Opwindend’ could also mean ‘Exciting’ or 

‘Arousing’. German participants also mentioned some of these translation ‘errors’. 

 However, when comparing Dutch and German participants to each other, there are no 

characteristic differences between them. This suggests that translation issues might only be a 

minor inconvenience and that it didn’t have a significant effect on the eeriness ratings. 

Additionally, Mathur and Reichling (2016) used a different measurement in their study, but 

were also able to provide sufficient evidence for the existence of the Uncanny Valley. These 

findings contribute to the thought that the exact terminology does not affect the eeriness 

ratings, so long as the scale has a neutral statement on one end (such as “Uninspiring”) and a 

negative emotion (e.g. “Shocking”) on the other as is the case in the eeriness scale (Ho and 

MacDorman, 2016). 

 

 Before conducting the experiment, we had thought that knowing about the goal of the 

study (i.e. finding the Uncanny Valley) might influence participants’ ratings on humanlike 
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robots. Being familiar with the definition of the UV combined with the closeness to the 

researcher might lead participants to rate the stimuli in a way they think the researcher would 

expect them to. Despite efforts to only reveal the goal of the experiment after the participant 

finished it, there were participants who had knowledge about the UV and deducted what the 

goal of the experiment could be. Even though we did not test for this effect, it is unlikely that 

this significantly influenced eeriness ratings. At no point during the experiment was the 

human-mechano score visible for the participant, and ratings for human likeness are mostly 

subjective. Trying to reliably steer one’s responses to deliberately assist in (or sabotage) the 

experiment would therefore be a near impossible task. 

  

 Subjective ratings of human likeness such as the huMech score used by Mathur and 

Reichling (2016), Slijkhuis & Schmettow (2017) and in the current study might not be an 

accurate measurement. As suggested by MacDorman (see introduction), the Uncanny Valley 

only shows up when stimuli have features of non-humanness. These features would become 

more salient upon deeper inspection, which would then lead to a negative emotional response 

(Keeris & Schmettow, 2016). The findings of the current study and the previously named 

studies suggest otherwise. The UV phenomenon was clearly present for all participants while 

we did not morph any images to have more salient non-human features. 

 Additionally, even when a rating scale is accurate, the way participants fill in such a 

measurement tool can vary. Our results show that participants use different ‘strategies’ when 

they are answering the questions. Whereas some participants only gave ratings close to the 

middle (neither eerie nor non-eerie), others filled in extreme values. There were also 

participants who appeared to have used the Visual Analogue Scale in the same manner as one 

would fill in a 7-point Likert scale. All these different response styles could influence the 

degree to which these ratings represent the ‘true value’. Therefore, the differences found 

between participants may (in part) be caused by these response strategies. 

Conclusion 

In order to provide insight in the Uncanny Valley phenomenon, we conducted an experiment 

to examine if individual results may be the cause of this experience. Answering this question 

would require researching whether the UV is experienced by everyone and if it is experienced 

equally. The current study gave answers to both of these questions and provides guidelines for 

future research.  
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The Uncanny Valley is a universal experience, but variety appears to exist between 

people in regards to the intensity of the experience. Whether this is due to individual 

differences or a response style bias is uncertain. Additionally, there is not a certain level of 

human likeness that instills the most eerie feelings in every individual. These results are a step 

in finding the root causes of the Uncanny Valley, because they shift the focus from finding 

out whether the UV exists at all to which underlying principles cause this phenomenon.  
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Appendix A 
 

English items Dutch items German items 

Low High Low High Low High 

Reassuring Eerie Geruststellend Griezelig Beruhigend Gruselig 

Numbing Freaky Nietszeggend Eng Nichtssagend Unheimlich 

Ordinary Supernatural Gewoontjes Bovennatuurlijk Gewöhnlich  Übernatürlich 

Uninspiring Spinetingling Oninteressant Opwindend Uninteressant Aufregend 

Boring Shocking Saai Schokkend Langweilig Schockierend 

Predictable Thrilling Voorspelbaar Spannend Vorhersehbar Spannend 

Bland Uncanny Flauw Verontrustend Fade Beunruhigend 

Unemotional Hairraising Emotieloos Doodeng Emotionslos Haarsträubend 
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Appendix C 

Regression analysis 

Regression averaged over stimuli 

We start with the same model as Mathur, using a third degree polynomial on averaged data: 

𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝛽3𝑥𝑖

3 

In the later analysis we will estimate the trough of the UV curve as this is the most 
characteristic point of the function. It denotes where participants have the strongest feelings 
of aversion. Below, we define a function to compute the lowest stationary point (the trough) 
of third degree polynomials. 

## Finds the trough of the UV function (3d polynomial),  
## if no exists in real space, it returns Na 
 
trough <- function (coef, ...) { 
   UseMethod("trough", coef) 
 } 
 

trough.numeric <-  
    function(coef = c(-.2, -.5, .2, .7)) { 
      if(length(coef) != 4) stop("the uncanny valley trough polynomi
al requires exactly four parameters") 
      poly <- polynomial(coef) 
      dpoly <- deriv(poly) 
      ddpoly <- deriv(dpoly) 
      points <- solve(dpoly) 
      pt_dir <- as.function(ddpoly)(points) 
      if(!(any(is.complex(pt_dir)))){ 
        points[pt_dir > 0] 
      }else{ 
        NA 
      } 
    } 
 
trough.matrix <-  
  function(coef) plyr::aaply(as.matrix(coef), .margins = 1, trough) 
 

trough.data.frame <- function(coef) trough(as.matrix(coef)) 
 
   
# as.function(polynomial(c(-1, -2, -3, -4))) 
# c <- c(-1,-2,3,4) 
# m <- matrix(c(c, -.1,-.2,.3,.4), nrow = 2, byrow = T) 
#  
# class(c) 
# class(m) 
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#  
# trough(c) 
# trough(m) 
 
 
fn_uncanny <-  
  function (coef, ...) { 
   UseMethod("fn_uncanny", coef) 
 } 
 
fn_uncanny.numeric <- 
  function(coef) { 
    if(length(coef) != 5) stop("not the correct number of parameters
,  
                        four coefficients and x required") 
    coef[1] +  
      coef[2] * coef[5] + 
      coef[3] * coef[5]^2 + 
      coef[4] * coef[,5]^3 
  } 
 
 

fn_uncanny.matrix <- 
  function(coef) { 
    if(ncol(coef) != 5) stop("not the correct number of columns,  
                        four coefficients and x required") 
    coef[,1] +  
      coef[,2] * coef[,5] + 
      coef[,3] * coef[,5]^2 + 
      coef[,4] * coef[,5]^3 
  } 
   
 
fn_uncanny.data.frame <- 
  function(coef) { 
    fn_uncanny(as.matrix(coef)) 
  } 
 

dp_str <- 
  function(coef){ 
    print(str(coef)) 
  } 
 
# ##  
#  
# fn_maxlike <- 
#   function(coef) { 
#     coef_1 = cbind(coef, 0) 
#     fn_uncanny(as.matrix(coef_1)) 
#   } 
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#  
## use this to beautify rstanarm parameter names from polynomial reg
ression 
 
 
recode_poly_par <-  
  function(P){ 
    P_out <- 
    P_1 %>%  
      mutate(parameter = recode(parameter,  
                                 "poly(huMech, 3)3"  = "huMech3", 
                                 "poly(huMech, 3)2"  = "huMech2", 
                                 "poly(huMech, 3)1"  = "huMech1", 
                                 "Intercept" = "huMech0"), 
             fixef = recode(fixef,  
                                 "poly(huMech, 3)3"  = "huMech3", 
                                 "poly(huMech, 3)2"  = "huMech2", 
                                 "poly(huMech, 3)1"  = "huMech1", 
                                 "Intercept" = "huMech0")) 
    class(P_out) <- class(P) 
    P_out 
  } 
 
str_recode_poly <-  
  function(P) { 
    P <- str_replace(P, "poly\\(huMech, 3\\)", "huMech") 
    P <- str_replace(P, "Intercept", "huMech0") 
    P 
  } 
 
recode_poly_par <-  
  function(P){ 
    P_out <- 
      P_1 %>%  
      mutate(parameter = str_recode_poly(parameter), 
             fixef = str_recode_poly(fixef)) 
    class(P_out) <- class(P) 
    P_out 
  } 
 
 

par.poly <- function(P){ 
  P_out <-  P %>%  
  tidyr::extract(fixef, 
                 into = c("par_poly"), 
                 regex = "(huMech.)", 
                 remove = F) %>%  
  class(P_out) <- class(P) 
    P_out 
} 
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# trough.tbl_post <- 
#   function(P){ 
#     P <- as_data_frame(P_1) 
#     P_mat <- 
#       P %>% 
#       filter(str_detect(par_poly, "huMech")) %>%  
#       select(iter, Condition, par_poly, value) %>%  
#       spread(key = par_poly, value = value) 
#   } 
#   P_1 %>%  ## copying huMech0 to get a complete column set 
#   filter() 
#   bind_rows() 

We start with a regression on average responses (over stimuli). As we have averaged over 
stimuli, we only have fixed effects. 

load("RK.Rda") 
F_1 <-  
  formula("response ~ 0 + (huMech0 + huMech1 + huMech2 + huMech3)") 
 

# F_1 <-  
#   formula("response ~ 0 + poly(huMech, 3):Condition") 
 
M_1 <- 
  RK_2 %>% 
  brm(F_1, 
      family = gaussian, 
      data = ., 
      chains = 4, iter = 1000) 

## Compiling the C++ model 

## Start sampling 

save(M_1, file = "M_1.Rda") 
load("M_1.Rda") 
 

P_1 <-  
  posterior(M_1) %>%  
  print() 

## ** tbl_post:  2000  samples in  4  chains 
##  
## ** Effects:  
##  model parameter  type   fixef entities 
##    M_1         1 fixef huMech0        1 
##    M_1         2 fixef huMech1        1 
##    M_1         3 fixef huMech2        1 
##    M_1         4 fixef huMech3        1 
##  
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## ** Dispersion:  
##  parameter 
##      sigma 
##  
## ** Shape:  
## data frame with 0 columns and 0 rows 
##  
## ** Correlations:  
## data frame with 0 columns and 0 rows 
##  
## ** User annotations:  
##  

load("RK.Rda") 
load("M_1.Rda") 
 
P_1 <-  
  posterior(M_1) %>%  
  mutate(par_poly = as.integer(str_remove(fixef, "huMech"))) %>%  
  posterior() 

We compute the posterior distribution of troughs: 

T_1 <- fixef(P_1) 
 
 

T_1_fitted <- 
  predict(M_1) 
 

# T_1_poly <- 
#   data_frame(huMech = seq(from = 0, to = 1, length.out = 101)) %>%  
#   right_join(T_1) %>%  
#   mutate(score = huMech0 + huMech1 * huMech + 
#            huMech2 * huMech^2 + huMech3 * huMech^3) 
 
 
 

P_1_tr <- 
  P_1 %>% 
  filter(type == "fixef") %>%  
  select(iter, par_poly, value) %>%  
  spread(par_poly, value) %>%  
  mutate(trough = trough(.[2:5])) 
 

T_1_tr <- 
  P_1_tr %>%  
  filter(!is.na(trough)) %>%  
  dplyr::summarize(center = modeest::shorth(trough), 
            lower = quantile(trough, .025), 
            upper = quantile(trough, .975)) 
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T_1_tr 
 

RK_2 %>% 
  ggplot(aes(x = huMech, y = response)) + 
  geom_point(alpha = .3) + 
  geom_smooth(method="lm", se=TRUE, fill=NA, 
              formula=y ~ poly(x, 3, raw=TRUE)) + 
  #geom_point(data = T_1_tr, aes(x = center), y = -0.4, size = 3) + 
  geom_errorbarh(data = T_1_tr,  
                 aes(x = center,  
                     xmin = lower,  
                     xmax = upper, 
                     y = 0.1), 
                 height = .1) 

Computing the probability that a trough exists. 

Multilevel model 

Now, the non-averaged data is analyzed, where we have repeated measures. The model 
builds on the previous polynomial model, but adds participant-level random effects (as well 
as item-level and stimulus-level). Practically, this means that individual polynomials are 
estimated - one per participant. In result, we can describe individual differences in UV 
sensitivity. Do people have the same position of where their perceived uncannines is? 

As in the original data set we only have fifteen responses per participant, the following 
analysis uses only data from our experiment, where we have 40 per condition. 

load("RK.Rda") 
 

F_2 <- 
  formula(response ~ 
            0 + huMech0 + huMech1 + huMech2 + huMech3 + 
          ((0 + huMech0 + huMech1 + huMech2 + huMech3)||Part) + 
          ((0 + huMech0)|Item) + 
          ((0 + huMech0)|Stimulus)) 
 
 
M_2 <- 
  brm(F_2, 
      data = RK_1, 
      iter = 6000, 
      warmup = 2000, 
      chains = 5, 
      control = list(max_treedepth = 12)) 
 
save(M_2, file = "M_2.Rda") 

load("M_2.Rda") 
 
P_2 <- posterior(M_2) 
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Population-level troughs 

We start with the fixed effects, which reflects the population-level. We expect that the 
effects are similar to those obtained by averaging over participants. The plot below shows 
the fitted curves in all three conditions with the estimated population-level trough. 

## extracting posterior and fitted values 
P_2 <-  posterior(M_2) 
   
T_2_fixef <- fixef(P_2) 
T_2_ranef <-  
  P_2 %>%   
  filter(re_factor == "Part") %>%  
  posterior() %>%  
  ranef() 
 
# P_2 %>% 
#   filter(type == "ranef") %>%  
#   group_by(par_poly, Condition) %>%  
#   summarize(center = shorth(value)) %>%  
#   select(par_poly, Condition, center) %>%  
#   spread(par_poly, center) 
#    
   
# kable(T_2, digits = 2) 

Now we calculate the population level trough positions and depth of trough (fall). Depth of 
trough is calculated from the left, i.e. huMech = 0. 

# fixed effects posterior 
 

P_2_fixef <- 
  P_2 %>% 
  filter(type == "fixef") %>%  
  mascutils::discard_redundant() 
 
P_2_trough <- 
  P_2_fixef %>% 
  select(chain, iter, fixef, value) %>%  
  spread(fixef, value) 
   
P_2_trough$trough <- 
  P_2_trough %>%  
  select(huMech0:huMech3) %>%  
  trough() 
 

P_2_trough$trough_like <-  
  P_2_trough %>%  
  select(huMech0:huMech3, trough) %>%  
  fn_uncanny() 
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P_2_trough$low_like <- ## likeability at zero huMech 
  P_2_trough %>%  
  select(huMech0:huMech3) %>%  
  mutate(huMech_pos = 0) %>% 
  fn_uncanny() 
 
P_2_trough$fall <-  
  P_2_trough$low_like - P_2_trough$trough_like 
 
 
T_2_trough <- 
  P_2_trough %>%  
  select(trough, fall) %>%  
  gather(parameter, value) %>%  
  filter(!is.na(value)) %>%  
  group_by(parameter) %>%  
  dplyr::summarize(center = median(value), 
            lower = quantile(value, .025), 
            upper = quantile(value, .975)) 
 
kable(T_2_trough, digits = 2) 

parameter center lower upper 

fall 0.04 -0.06 0.15 

trough 0.73 0.67 0.79 

Participant level-troughs 

Mathur et al. examined the UV effect on population level, meaning that first all responses 
are averaged over participants. Averaging polynomials is a bad idea when participants differ 
in how they respond to the stimuli. In previous studies we have seen strong variation in 
participants response patterns, so this can be an issue. With a random effects analysis, we 
can estimate a polynomial curve per participant. We will see a bunch of curves and our 
question of interest is: 

1. Do participants vary in where they experience their trough? 

2. Do participants differ in their overall response pattern? 

3. What is the probability for any participant to experience the uncanny valley (i.e. there 
exists a trough) 

Random effect and fixed effects parameters are part of a linear model, which is why we first 
have to extract the posterior distributions for fixed and random effects separately. Then we 
sum fixed effects and participant-level random effects to get the polynomial coefficients per 
participant. From that we derive the participants’ troughs. All transformations are 
performed on posterior samples. Point and interval estimates are computed at the very last 
step. 

G_variation_polynomial <- 
  P_2 %>%  
  filter(type == "ranef", re_factor == "Part") %>%  
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  mutate(Part = re_entity) %>%  
  group_by(Part, parameter) %>%  
  summarize(center = median(value), 
            lower = quantile(value, .025), 
            upper = quantile(value, .975)) %>%  
  ggplot(aes(x = center,  
             y = parameter,  
             xmin = lower, 
             xmax = upper)) + 
  geom_point() + 
  geom_errorbarh() 
 

G_variation_polynomial 

## extracting random effects posterior 
P_ranef_Part <- 
  P_2 %>% 
  filter(type == "ranef", re_factor == "Part") %>%  
  posterior() 
 
## joining by chain, iter with fixed effects posterior 
P_ranef_trough <- 
  P_ranef_Part %>% 
  full_join(select(P_2_fixef, chain, iter, fixef, fixef_value = valu
e),  
            by = c("chain", "iter", "fixef")) %>%  
  mutate(score = value + fixef_value) %>%  
  select(chain, iter, fixef, re_entity, score) %>%  
  spread(key = fixef, value = score) %>%  
  mutate(trough = trough(.[,4:7])) 
   
 

P_ranef_trough$trough_like <-  
  P_ranef_trough %>%  
  select(huMech0:huMech3, trough) %>%  
  fn_uncanny() 
 
P_ranef_trough$low_like <-   
  P_ranef_trough %>%  
  select(huMech0:huMech3) %>%  
  mutate(pos_huMech = 0) %>%  
  fn_uncanny() 
 
P_ranef_trough$fall <-  
  P_ranef_trough$low_like - P_ranef_trough$trough_like 
 
 

#save(P_ranef_trough, P_2_trough, file = "P_ranef_trough.Rda") 

#load(file = "P_ranef_trough.Rda") 
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T_ranef_trough <-  
  P_ranef_trough %>%  
  gather(key = parameter, value = value, huMech0:fall) %>%  
  filter(!is.na(value)) %>% ## inexistent troughs 
  group_by(re_entity, parameter) %>%  
  dplyr::summarize(center = median(value), ## replace with shorth 
                  lower = quantile(value, .025),  
                  upper = quantile(value, .975)) %>%  
  dplyr::rename(Part = re_entity) %>%  
  ungroup()# %>%  

## Warning: attributes are not identical across measure variables; 
## they will be dropped 

  # filter(Condition != "Condition0.05") 

The below table shows the summary for all participants. The parameters represent the 
individual polynomial coefficients, from which the trough has been derived. 

T_trough <-  
  T_ranef_trough %>%   
  filter(parameter == "trough") %>%  
  mascutils::discard_redundant() %>%  
  rename(trough = center) 
 

T_trough %>%  
  mutate(Part_ord = min_rank(trough)) %>%  
  ggplot(aes(x = Part_ord, y = trough, ymin = lower, ymax = upper)) 
+ 
  geom_errorbar() + 
  geom_point(size = 2) + 
  ylim(0,1.2) 
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T_fall <-  
  T_ranef_trough %>%   
  filter(parameter == "fall") %>%  
  mascutils::discard_redundant() %>%  
  rename(fall = center) 
 
T_fall %>%  
  mutate(Part_ord = min_rank(fall)) %>%  
  ggplot(aes(x = Part_ord, y = fall, ymin = lower, ymax = upper)) + 
  geom_errorbar() + 
  geom_point(size = 2) 
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The caterpillar plot shows how the individual troughs are distributed. 

G_ranef_trough <- 
   
T_ranef_trough %>%  
  filter(parameter == "trough") %>%  
  mutate(Part_ordered = min_rank(center)) %>%  
  select(Part, Part_ordered) %>% 
  full_join(T_ranef_trough) %>%  
  arrange(Part_ordered) %>%  ## this is scary 
  filter(parameter == "trough") %>%  
  ggplot(aes(x = Part_ordered, y = center, ymin = lower, ymax = uppe
r)) + 
  geom_point() + 
  geom_errorbar() 

## Joining, by = "Part" 

G_ranef_trough 
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Probability that there is a trough per participant 

T_prob_trough <- 
  P_ranef_trough %>%  
  rename(Part = re_entity) %>%  
  mutate(has_trough = !is.na(trough)) %>%  
  group_by(Part) %>%  
  summarize(prob_trough = mean(has_trough)) 
 
kable(T_prob_trough) 

Part prob_trough 

p1_01 1.00000 

p1_02 1.00000 

p1_03 1.00000 

p1_04 1.00000 

p1_05 1.00000 

p1_06 1.00000 

p1_07 1.00000 

p1_08 0.99995 

p1_09 0.99800 

p1_10 1.00000 

p1_11 1.00000 

p1_12 1.00000 
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p1_13 1.00000 

p2_01 0.99590 

p2_02 0.99985 

p2_03 1.00000 

p2_04 0.99995 

p2_05 1.00000 

p2_06 1.00000 

p2_07 0.99855 

p2_08 0.99995 

p2_09 1.00000 

p2_10 1.00000 

p2_11 1.00000 

p2_12 1.00000 

p2_13 1.00000 

T_prob_trough %>%  
  ggplot(aes(x = prob_trough)) + 
  geom_histogram() 

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`
. 

 

 


