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Abstract

This research aims to solve an adapted version of the general assignment problem. This assignment
problem is the representation of finding a revenue maximizing assignment of products of a store to the
physical locations within this store, where the assignment should satisfy additional feasibility require-
ments that induce a store layout which is intuitive from a customers’ point of view. The main focus in
this intuitive store layout, is assigning products of the same kind to physical locations within the store
that are in close proximity to each other. It appears that the adapted assignment problem with this
requirement can be modelled as the maximum weight connected subgraph problem, which turns out to
be NP-hard.
This research consists of two parts. First the expected weekly revenue of every product on every physical
location within the shop will be estimated by an intuitive statistical method using the available weekly
sales data. These expected weekly revenues are used as input to determine the revenue maximizing
assignment of the store.
The second part is the main focus of this research and consists of a NP-hardness proof of the considered
adapted assignment problem and an Integer Linear Program to find the revenue maximizing assignment
of the store, including a penalty in the objective function in case there is no feasible solution possible.

Keywords: Assignment problem, maximum weight connected subgraph, NP-hard, reduction, ILP.
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1 Sets and variable definitions

Below the sets and variables are stated that are used frequently during this report:

P The set of products that is sold in the store.

L The set of physical locations within the store.

W The weeks that products P have been sold in the store.

C The set of product categories.

R The set of product groups.

S The set of product subgroups.

P (Cx) The set of products belonging to category Cx.

S(Cx) The set of subgroups belonging to category Cx.

R(Cx) The set of groups belonging to category Cx.

L(Cx) The set of locations belonging to category Cx.

Li(Cx) The set of locations a product pi ∈ P (Cx) was assigned to in the past.

W (pi, `j) The weeks a product pi was positioned on location `j .

Qt(pi, `j) The quantity of product pi that was sold on location `j in week wt.

X(pi, `j) The expected weekly sales of product pi on location `j .

Y (pi, `j) The expected weekly revenue of product pi on location `j .

g(pi) The gross profit of a product pi.

A(`j) The capacity of a location `j ∈ L(Cx).
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2 Introduction

This research is conducted in collaboration between the University of Twente and the company IG&H
Consulting. IG&H Consulting provides advice to their clients in the retailing sector. For one of their retail
clients, they analyzed which size of each category of products to sell in each store of this client. This resulted
in determining which selection of products of each category should be sold within a store.
A question which remained unanswered in this project is where to place the selected products of each category
in the layout of the store. This research aims to answer this question for a particular store.

2.1 Global description of the problem

For the store of this client, the products of this store have to be assigned to the locations within the store
layout. Part of creating this layout is the consideration on which shelf each product should be positioned,
i.e. to which physical location within the store a product should be assigned to. From the customers’ point
of view, the store layout should be intuitive and reasonable in order to find the products one is searching
for. Therefore, in the positioning it is taken into account that products of the same kind, should also be
positioned on locations within the store that are in close proximity to each other. But is it also considered
on which location each product contributes to the highest revenue of the store?

There is much research dedicated to answering this question, mainly on the topic of shelf-space allocation
[1, 2, 3, 4, 5, 6, 7]. In many of this literature, deterministic models are set up to maximize the revenue of
a store. As far as we know, there is no research that also models the close proximity of locations based on
the floor plan of the store.
Therefore this research aims to answer the question above by considering the problem of finding the revenue
maximizing assignment of products of a particular store to the physical locations within this store. This
assignment should meet the requirement that products of the same kind should be assigned to locations that
are in close proximity to each other.

2.2 Global approach to solve the problem

In order to find this revenue maximizing assignment, this research is separated into two aspects. At first we
need to obtain the expected weekly revenue of every product on each location within the store. Secondly,
using these expected weekly revenues, the revenue maximizing assignment of the store need to be found.

First notice that the revenue of a product is actually its gross profit, the difference between the sales price
and the cost price. For simplicity, we will call this revenue throughout this report.
For predicting the expected weekly revenues we use weekly sales data of this store from October 2017 up to
February 2018. Hereby, we know how products have been sold on locations they were assigned to during this
period. To consider which location results in the highest expected weekly revenue of a product, an estimation
should be made for the expected weekly revenue of products on locations they never stood before.
Regarding the revenue maximizing assignment, the assignment should satisfy some feasibility requirements
that illustrate a store layout which is convenient and intuitive for the customer. This mainly consist of the
positioning of products of the same kind to locations that are in close proximity to each other.

2.3 Outline of this report

After this section, the report will continue with Section 3 which includes the problem description formulated
as the assignment problem with additional feasibility requirements. After that, Section 4.1 will provide the
method which is used to predict the expected weekly revenues and Section 4.2.2 will explain which model is
used to determine the revenue maximizing assignment of the store.
Section 5 contains the computational comparison between the historical weekly revenue of the store and the
expected weekly revenue of the revenue maximizing assignment of the store. The conclusions which can be
drawn from these results are formulated in Section 6 and we will end with the topics which are applicable
for discussion and further research in Section 7.
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3 The problem description formulated as the assignment problem
with additional feasibility requirements

This section outlines an elaborate description of the revenue maximizing assignment problem of the retail
store we are considering. Section 3.1 will start with a clarification of the available sales data together with the
notation we will use throughout this report. Subsequently, Section 3.2.1 will explain that the assignment of
the store can be decomposed into an assignment for each category of products and locations. The additional
feasibility requirements of the assignment problem will be explained in Section 3.2.2. At the end, Section
3.2.3 will finish with the formal statement of the revenue maximizing categorized assignment problem, for
which this research aims to find the optimal solution.

3.1 Notation and available data

As described in section 2, we use the sales data of the store to find its revenue maximizing assignment. This
data contains the weekly sales of each product of this store from October 2017 up to February 2018 together
with the physical location the product was positioned on. Hereafter we will give some overload of notation,
but this will be convenient throughout this report.

First of all, the weeks of sales data are defined as W = {w1, . . . , wnw
}, where nw denotes the number of weeks

of the sales data. The products that were sold during these weeks are denoted by the set P = {p1, . . . , pnp
}

and the physical locations within the store as L = {`1, . . . , `n`
}.

In addition, every product is part of some subgroup, group and category, whereby each subgroup belongs
to some group, and every group belongs to a certain category. The set of product subgroups is defined as
S = {S1, . . . , Sns

}, product groups as R = {R1, . . . , Rnr
} and the product categories as C = {C1, . . . , Cnc

}.
The connection between these product groups can be illustrated with the following example. Consider an
electronic shaver as a product which belongs to the subgroup shavers. This subgroup belongs to the group
electronic personal care. Finally, the group electronic personal care is part of the product category electronic
equipment.
Each product pi ∈ P belongs to precisely one subgroup of S. The same holds for each subgroup of S to a
group of R, and for each group of R to a category of C.
Therefore we can denote the subgroup, group and category a product pi belongs to, as S(pi) ∈ S, R(pi) ∈ R
and C(pi) ∈ C respectively. Since each product pi belongs to exactly one category Cx, we can define the set
of products that belong to category Cx as P (Cx), where P (Cx) ⊆ P . Besides the products, we can denote
the subgroups and groups which belong to category Cx by S(Cx) and R(Cx) respectively.

Besides products, the set of physical locations L can also be categorized into their corresponding category
Cx since each location is predetermined to a category. The locations that belong to category Cx are denoted
by L(Cx). Since we can separate the products and locations of the store into the categories {C1, . . . , Cnc

},
we can decompose the problem to find the revenue maximizing assignment of the store into the problem of
finding the revenue maximizing assignment for each category Cx, which we will call the categorized assign-
ment problem. By combining these assignments, the assignment of the store will be obtained. Section 3.2.1
will explain this decomposition with some visualizations and introduces the categorized assignment problem.

Before clarifying this decomposition, we need some last notation to indicate information about a prod-
uct pi ∈ P (Cx).
A product pi ∈ P (Cx) was only positioned on a part of the locations L(Cx) during the weeks {w1, . . . , wnw}.
The locations a product pi ∈ P (Cx) was positioned on in the past will be mentioned as historical locations
and denoted by Li(Cx), which is a subset of L(Cx): that is, Li(Cx) ⊆ L(Cx). Therefore the non-historical
locations of a product pi consist of the set L(Cx) \ Li(Cx). The weeks a product pi was positioned on its
historical location `j ∈ Li(Cx), is denoted by W (pi, `j).
Furthermore, the revenue of a product is given by its gross profit, denoted by g(pi). These are necessary to
obtain the expected weekly revenues of products on locations.
At last, we define the sales of a product pi ∈ P (Cx) on location `j ∈ Li(Cx) in week wt ∈W by Qt(pi, `j).
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Now the notation is defined, we can give an overview of the available sales data. Table 1 illustrates the
sales data of all products P over the weeks of W :

Product Week Weekly sales Subgroup Group Category

p1 w1 Q1(p1, `j) S(p1) R(p1) C(p1)
p1 w2 Q2(p1, `j) S(p1) R(p1) C(p1)
...

...
...

...
...

...
p1 wnw

Qnw
(p1, `j) S(p1) R(p1) C(p1)

p2 w1 Q1(p2, `j) S(p2) R(p2) C(p2)
p2 w2 Q2(p2, `j) S(p2) R(p2) C(p2)
...

...
...

...
...

...
p2 wnw

Qnw
(p2, `j) S(p2) R(p2) C(p2)

...
...

...
...

...
...

...
...

...
...

...
...

pnp
w1 Q1(pnp

, `j) S(pnp
) R(pnp

) C(pnp
)

pnp
w2 Q2(pnp

, `j) S(pnp
) R(pnp

) C(pnp
)

...
...

...
...

...
...

pnp
wnw

Qnw
(pnp

, `j) S(pnp
) R(pnp

) C(pnp
)

Table 1: Available sales data of all products P .

As input for the revenue maximizing assignment problem, we need the expected weekly revenues Y (pi, `j),
obtained from the expected weekly sales X(pi, `j) of a product pi ∈ P (Cx) on all locations `j ∈ L(Cx). Sec-
tion 4.1 clarifies the method which is used to obtain the expected weekly revenues Y (pi, `j) ∀pi ∈ P (Cx), `j ∈
L(Cx).

3.2 The categorized assignment problem with additional feasibility require-
ments

The previous section described the notation which we will use throughout this report and the data which is
available to predict the expected weekly revenues.
Section 3.2.1 starts with the explanation how the assignment problem of the entire store is decomposed
in the assignment problem per category. After that, Section 3.2.2 will describe the additional feasibility
requirements that are applicable to the categorized assignment problem and Section 3.2.3 will provide the
final statement of the categorized assignment problem.

3.2.1 Decomposition of the assignment problem of the store into the categorized assignment
problem

A categorized assignment problem aims to find the revenue maximizing assignment of products P (Cx) to
locations L(Cx) for a category Cx which satisfies some additional feasibility requirements. The representation
of products P (Cx) and locations L(Cx) can be visualized as a bipartite graph Gx = (P (Cx) ∪ L(Cx), E) as
in Figure 1:
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p1

p2

p|P (Cx)|

`1

`2

`|L(Cx)|

P (Cx) L(Cx)

Figure 1: Categorized assignment problem: bipartite graph Gx = (P (Cx)∪L(Cx), E), |E| = |P (Cx)|·|L(Cx)|.

The weight of every edge (pi, `j) ∈ E represents the expected weekly revenue of product pi on location
`j . In the categorized assignment problem it has to be determined which edge to choose for each product,
i.e. to which location `j ∈ L(Cx) each product pi ∈ P (Cx) will be assigned to. The products and loca-
tions of each category can be visualized in this way. Only the size and weights of the graph differ per category.

To visualize the decomposition of the assignment problem of the store into the categorized assignment
problems, consider Figure 2.
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p1

p2

p3

p4

p5

pnp

`1

`2

`3

`4

`5

`n`

Products Locations

P (C1)

P (C2)

P (Cnc)

L(C1)

L(C2)

L(Cnc
)

Figure 2: Assignment problem of the entire store: bipartite graph G = (P ∪ L,E), with |P | = np, |L| =
n`, |E| =

∑nc

x=1 |P (Cx)| · |L(Cx)|.

In Figure 2 an example is given of a decomposition of the assignment problem of the store into nc catego-
rized assignment problems. The upper three products and upper two locations belong to the first category.
In determining the revenue maximizing solution of the store, the solution for each categorized assignment
problem can be computed individually.

The next section will describe the additional requirements an assignment has to satisfy for the catego-
rized assignment problem of category Cx. We will explain this for some category Cx ∈ C, where Cx could
be any of the {C1, . . . , Cnc

} categories.

3.2.2 Feasibility constraints

In determining the revenue maximizing assignment, we have to take into account the requirements for an
assignment to be feasible. This section will describe each of those requirements and explains why they are
necessary. Section 4 will derive the mathematical formulation of these requirements.

First of all, each location `j ∈ L has a certain capacity A(`j) which indicates the maximum number of
different products that can be assigned to this location. This capacity A(`j) is equal to the highest number
of different products of category Cx that have been positioned on location `j in a week.
Within this research, we only focus on which product to assign to which location. The quantity of such a
product is outside of the scope of this research. Section 7 will discuss whether it is relevant to include the
quantity of an assigned product into the assignment problem.
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With the above mentioned in consideration, the first feasibility requirement can be formulated as follows:

Definition 1. Within a feasible solution to the categorized assignment problem, the number of different
products to a location `j ∈ L(Cx) may not exceed its capacity A(`j).

The second requirement concerns the hierarchy of products, subgroups and groups within a category Cx.
For the convenience of the customer, products of of a certain subgroup or group should be assigned to
locations of L(Cx) that are in close proximity to each other. In this way a store layout becomes reasonable
and intuitive for the customers of the store.
However, close proximity can be interpreted differently regarding a subgroup or a group. To illustrate this
difference, consider the following example:

Example 1. Consider the example of a store layout in Figure 3 together with its schematic representation
in Figure 4.

Figure 3: A physical store layout with six locations illustrated as grey boxes and walkways illustrated as
arrows.

`1

`2

`3

`4

`5

`6

Figure 4: Schematic representation of Figure 3.

Within Figure 3, observe that the facing of each location is directed towards the walkways. Location `1 is
positioned next to location `2 and they are facing the same walkway. Location `3 is standing with its back to
location `1, as well as for location `4 and `2.
Now consider the situation in which the subgroup shavers, from the example of Section 3.1, would be assigned
to location `1 and `3. A customer could experience this assignment as unreasonable because the customer has
to walk around the locations to the other walkway to compare products of the subgroup shavers. So products
of a certain subgroup should be positioned on the same location or locations that are next to each other and
facing in the same direction. On the other hand, it might be more reasonable to assign different subgroups of
a certain group to location `1 and `3 because products of different subgroups may be positioned more widely
from each other and the locations a group is assigned to, cover a larger area of the store layout than the
locations a subgroup is assigned to.

As Example 1 illustrates, there is a difference in close proximity regarding subgroups and groups.
For this reason we introduce the connectivity graphs Bx = (L(Cx), Ẽ) and Ux = (L(Cx), E) for each cate-
gory, that represent the locations L(Cx) within the store layout together with the edges that represent which
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locations are in close proximity to each other regarding subgroups and groups respectively. The edges Ẽ
illustrate which locations are in close proximity to each other regarding subgroups, i.e. which locations are
adjacent regarding subgroups. The same applies for the edges E within Ux regarding groups, i.e. which
locations are adjacent regarding groups.

As suggested in Example 1, an edge e = (`j , `k) ∈ Ẽ only exists if the locations `j and `k are positioned
next to each other within the store layout and if they are facing in the same direction.
Regarding groups, an edge e ∈ E exists if one of the following scenario’s is applicable:

1. two locations are positioned next to each other and they are facing in the same direction.

2. two locations are facing in the opposite direction, with a walkway in between.

3. two locations are facing in a perpendicular direction, with a walkway in between.

4. two locations are positioned back to back.

Thus, an edge e ∈ Ẽ only exists if the first scenario is applicable and an edge e ∈ E if one of the four
scenario’s is applicable. For this reason Ẽ is always a subset of E: that is, Ẽ ⊆ E.
Observe that the graph Bx only consists of paths since locations in Bx are adjacent if the first scenario is
applicable.

To illustrate how a graph Bx and Ux is created, observe Figure 5 and Figure 6. They illustrate the graphs
Bx and Ux respectively, generated by the store layout of Figure 3.

1

2

3

4

5

6

Figure 5: The graph Bx = (L(Cx), Ẽ) which is induced by the layout of Figure 3.

1

2

3

4

5

6

Figure 6: The graph Ux = (L(Cx), E) which is induced by the layout of Figure 3.

Observe that within Ux, the locations `1 and `2, `3 and `4, and `5 and `6 are adjacent by scenario 1. Location
`3 and `5, and `4 and `6 are adjacent by scenario 2. At last, location `1 and `3, and `2 and `4 are adjacent
by scenario 4. To illustrate when scenario 3 would be applicable, consider you are facing a location `j and
you have to rotate 45 degrees and face location `k with a walkway in between.

In order to check whether the assigned locations of a subgroup are positioned in close proximity to each
other, the assigned locations of each subgroup must induce a connected subgraph in Bx, for each subgroup.
Similarly, the assigned locations of each group must induce a connected subgraph in Ux, for each group.

Definition 2. Within a feasible solution to the categorized assignment problem, the allocated locations of
every subgroup should induce a connected subgraph in graph Bx, for each subgraph, and the allocated locations
of every group should induce a connected subgraph in graph Ux, for each group.

To give insight how the graphs Bx and Ux play a role in the feasibility of the solution, consider Example 2.

Example 2. Consider the case of assigning the four products of Table 2 to the locations {`1, `2, `3} of Figure
4.
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Product Subgroup Group

p1 S1 R1

p2 S1 R1

p3 S2 R1

p4 S2 R1

Table 2: Example of the properties of the products P (Cx).

The edges between the locations {`1, `2, `3} of graph Bx in Figure 5 and of graph Ux in Figure 6 can be inserted
into the bipartite graph of products and locations as in Figure 7 and Figure 8 respectively. Furthermore
products of the same subgroup are circled together in Figure 7 and products of the same group are circled
together in Figure 8.

p1

p2

p3

p4

`1

`2

`3

Products Locations

Figure 7: The bipartite graph
Gx = (P (Cx) ∪ L(Cx), E) with graph Bx inserted.

p1

p2

p3

p4

`1

`2

`3

Products Locations

Figure 8: The bipartite graph
Gx = (P (Cx) ∪ L(Cx), E) with graph Ux inserted.

As stated in Definition 2, the locations allocated to each subgroup should form a connected subgraph in graph
Bx. The same applies for the locations allocated to each group regarding graph Ux. To illustrate that a
feasible solution should satisfy these requirements, consider a feasible assignment that is depicted in Figure
9 regarding subgroups and Figure 10 regarding groups.
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p1

p2

p3

p4

`1

`2

`3

Products Locations

Figure 9: Feasible solution regarding subgroups
since the locations allocated to subgroup S1 form a
connected subgraph in Bx by the edge between `1
and `2. The same applies for the locations allocated
to subgroup S2.

p1

p2

p3

p4

`1

`2

`3

Products Locations

Figure 10: Feasible solution regarding groups since
the locations allocated to the one existing group R1

form a connected subgraph in Ux by the edge
between `1 and `2.

We illustrate the assignment in two figures because the assignment illustrated in both figures should be feasible
regarding subgroups and groups. As explained in the figures, this assignment is feasible because the locations
allocated to each subgroup form a connected subgraph in graph Bx and the locations allocated to each group
form a connected subgraph in graph Ux.

To illustrate an infeasible assignment, consider the assignment which is illustrated in Figure 11 regarding
subgroups and in Figure 12 regarding groups.
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p1

p2

p3

p4

`1

`2

`3

Products Locations

Figure 11: Infeasible solution regarding subgroups
since the locations allocated to subgroup S2 do not
form a connected subgraph in graph Bx.

p1

p2

p3

p4

`1

`2

`3

Products Locations

Figure 12: Feasible solution regarding groups since
the locations allocated to group R1 form a connected
subgraph in Ux.

As explained in Figure 11, the assignment illustrated in Figure 11 and Figure 12 is infeasible because the
locations allocated to subgroup S2 do not form a connected subgroup in Bx since location `2 and `3 are not
connected in Bx.

Now all the feasibility requirements are formulated, the next section will describe the definition of the
categorized assignment problem with the additional feasibility requirements.

3.2.3 Definition of the categorized assignment problem with feasibility requirements

Recall that the goal is to find a feasible revenue maximizing assignment of products P (Cx) to locations
L(Cx) for every category Cx ∈ C. These revenue maximizing assignments for the categories {C1, . . . , Cnc

}
together will form the revenue maximizing assignment of the store. An illustrated example of this is given
in Figure 2. In the previous section we described the requirements for a feasible solution to the categorized
assignment problem. Therefore we now can formally define the categorized assignment problem, which we
will refer to as the CA-problem:

Definition 3. The categorized assignment problem
Given a set of products P (Cx) with corresponding subgroups S(Cx) and groups R(Cx), a set of locations
L(Cx), the expected weekly revenues Y (pi, `j) ∀pi ∈ P (Cx), `j ∈ L(Cx), the location capacities A(`j) and the
graphs Bx and Ux, find the revenue maximizing assignment of products to locations such that the assignment
satisfies the feasibility requirements of Definition 1 and 2.
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4 Estimating the expected weekly revenues and an Integer Linear
Program formulation to solve the CA-problem.

This section explains how to compute the revenue maximizing assignment for the categorized assignment
problem formulated in Definition 3. Section 4.1 describes the way the expected weekly revenues are predicted,
which are needed as input for the categorized assignment problem. Section 4.2 outlines the algorithm which
is used to find the revenue maximizing assignment to the CA-problem.

4.1 Estimate the expected weekly revenue for the categorized assignment prob-
lem

This section explains how the expected weekly sales X(pi, `j) ∀pi ∈ P (Cx), `j ∈ L(Cx) are predicted. These
are necessary to predict the expected weekly revenues Y (pi, `j), which are simply predicted by multiplying
the expected weekly sales X(pi, `j) by its gross profit g(pi).
To predict the expected weekly sales, we use the historical sales of products on their historical locations as
depicted in Table 1. However, the historical locations of almost every product is a subset of the locations
it can be assigned to, L(Cx). Estimating the expected weekly sales of a product on a historical location
sounds reasonable, but estimating the expected weekly sales of a product on a location it never stood before,
requires another approach.

Before we will explain how we predict the expected weekly sales X(pi, `j) ∀pi ∈ P (Cx), `j ∈ L(Cx), we
want to address that we are aware of the fact that the expected weekly sales will be estimated by simple
methods and that these methods are imperfect. This is caused by the quality and characteristics of the
available historical weekly sales data, depicted in Table 1. That is, it is difficult to fit a distribution to the
historical weekly sales of a product because many products have not been sold for weeks and when they were
sold, the quantity varied a lot. Furthermore, given the available sales data, the only features we were able
to use, are the location and the product itself. The quality and characteristics of the data will be further
discussed in Section 7.

Now we shall explain the different approaches to predict X(pi, `j), depending on whether `j is a histori-
cal or non-historical location of product pi.
Section 4.1.1 will provide a method to predict X(pi, `j) on historical locations of each product pi and Section
4.1.2 will explain the method whereby X(pi, `j) is predicted on non-historical locations of product pi.

4.1.1 Estimate the expected weekly sales of products on historical locations

We are interested in estimating the expected weekly sales X(pi, `j) for all products pi ∈ P (Cx) on its his-
torical locations `j ∈ Li(Cx) using the historical weekly sales data. This section will propose two simple
methods that will predict these expected weekly sales of products on its historical locations. The first method
is taking the average of all historical weekly sales of a product pi on its historical location `j . The second
method is to use a Poisson regression with the product pi and historical location `j as predictors.
After the explanation of both methods, we will validate and argue which method is the most appropriate
to use and conclude with the formula we will use to predict the expected weekly sales of products on its
historical locations.

In the following two paragraphs the proposed methods will be explained.

Taking the average

Taking the average of the historical weekly sales of a product in order to predict the expected weekly
sales is intuitive and applicable. Consider the following example to illustrate this:

Example 3. Assume that the following sales data is available of product p2:
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Product Week Weekly sales Location Subgroup Group Category

p2 w1 3 `3 S1 R3 C1

p2 w2 0 `3 S1 R3 C1

p2 w3 1 `3 S1 R3 C1

p2 w4 0 `5 S1 R3 C1

p2 w5 3 `5 S1 R3 C1

p2 w6 4 `5 S1 R3 C1

Table 3: Historical sales of a certain product.

The prediction of the expected weekly sales X(p2, `3) and X(p2, `5) is executed as follows:

X̂(p2, `3) =
1

3

3∑
t=1

Qt(p2, `3) = 1
1

3

X̂(p2, `5) =
1

3

6∑
t=4

Qt(p2, `5) = 2
1

3
.

So given these historical sales, it is expected that the weekly sales of product p2 on location `3 and `5 will
amount to 1 1

3 and 2 1
3 respectively.

Recall that the weeks a product pi was positioned on its historical location `j , is denoted by W (pi, `j).
In general, using the average of historical sales to estimate the expected weekly sales of a product pi ∈ P (Cx)
on a historical location `j ∈ Li(Cx), is done in the following way:

X̂(pi, `j) =

∑
wt∈W (pi,`j)

Qt(pi, `j)

|W (pi, `j)|
. (1)

Poisson regression

The second method which can be used to predict the expected weekly sales of a product on its historical
location is a Poisson regression. A regression is utilized to reflect the relationship between a response variable
and a set of predictors. In our case the response variable is the weekly sales of a product on its historical
location and the predictors are the locations and the products. To use a Poisson regression to predict the
expected weekly sales X(pi, `j), we have to assume that the weekly sales of a product on its historical location
follow a poisson distribution [8].
Since the weekly sales of a product on its historical location can be described as a count of events in the
time interval of a week, the weekly sales might follow a Poisson distribution [9]. Therefore it is a reasonable
attempt to predict the expected weekly sales by a poisson regression.
However, it appears that the available historical weekly sales of a product does not fit the Poisson distri-
bution very well due to the poor quality of the data. Nevertheless, we want to compare the approach of
taking the average with another method and therefore we do perform a poisson regression and analyze the
performances of both methods.

Where an ordinary least squares (OLS) regression aims to model the expected value of the response variable
on itself, a Poisson regression aims to model the natural log of the expected value of the response variable.
To understand what a Poisson regression precisely does to predict the expected weekly sales, we will give
two examples. In Example 4 only the location is used as a predictor and in Example 5 both the location
and the product are a predictor.

Example 4. Consider the weekly sales of Table 3 again. These are illustrated in Figure 13.
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Figure 13: Visualization of weekly sales of a product on two locations illustrated as dots, together with the
expected weekly sales per location illustrated as crosses.

We predict the expected weekly sales X(p2, `j) with the location `j ∈ L2(Cx) as predictor. The product pi is
not a predictor yet, because in this example we only possess over the sales data of product p2.
Since the Poisson regression models the natural log of the expected weekly sales, the model will be of the form:

ln(X̂(p2, `j)) = β0 + βj + µ2,j

⇐⇒ X̂(p2, `j) = eβ0+βj+µ2,j .

The Poisson regression reveals the relationship between the expected weekly sales and the locations of this
product p2. To notice the effect a location has on the expected weekly sales, some location has to be selected
as a benchmark such that the other locations can be compared to this benchmark location. In our example
location `3 is the benchmark location, so the expected weekly sales of product p2 on location `3 is given by
X̂(p2, `3) = eβ0 . The effect in weekly sales of changing location from `3 to `5 is given by eβ5+µ2,5 and hence
X̂(p2, `5) = eβ0+β5+µ2,5 . These expected weekly sales are denoted as crosses in Figure 13. We will explain
how the coefficients such as β0, β5 and µ2,5 are estimated if we add the product as a predictor.

So with one product, the Poisson regression with the location as predictor is given by:

X̂(pi, `j) = eβ0+βj+µi,j .

For every location `j that is not equal to the benchmark location, there is a coefficient βj and µi,j that will
correct for a change in location from the benchmark location to `j .

However, we possess over the historical weekly sales data of all products P (Cx). Therefore not only the
location is a predictor, but the product as well. Besides a benchmark location, we also need a benchmark
product, which results in a benchmark (product, location) combination. From this benchmark a correction
will be made for a change in product and location.
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Hereby the Poisson regression with the product and location as categorical predictor will be of the form:

ln(X̂(pi, `j)) =γ0 + αi + βj + µi,j

⇐⇒ X̂(pi, `j) =eγ0+αi+βj+µi,j .
(2)

For the benchmark product pi and benchmark location `j , the expected weekly sales are given by X̂(pi, `j) =
eγ0 . With Equation 2 a change in product and change in location are considered dependent from each other.
This also is the case since the sale of a product pi occurred when it was positioned on its historical location
`j . Therefore we make a correction for a change in product pi with coefficient αi, for a change in location
`j with coefficient βj and the interaction of those changed product and location is given by coefficient µi,j .
For each product pi ∈ P (Cx) and location `j ∈ Li(Cx), the coefficients αi, βj and µi,j are determined by
the method of maximum log-likelihood [8].

Within the program R, we predicted the expected weekly revenues X(pi, `j) via Equation 1 and Equation
2. It turns out that both approaches resulted in the exact same predictions. It appears that by includ-
ing the interaction coefficient µi,j in Equation 2, the Poisson regression predicts the same expected weekly
sales as the expected weekly sales predicted by taking the average. A proof of this is included in Appendix A.

Since we want to compare the approach of taking the average with another approach, we will perform a
Poisson regression with the product and location as predictor under the assumption that the product and
location are independent from each other. So the interaction coefficient is not included. Then the Poisson
regression to predict the expected weekly sales is given by:

ln(X̂(pi, `j)) =γ0 + αi + βj

⇐⇒ X̂(pi, `j) =eγ0+αi+βj .
(3)

To demonstrate how the Poisson regression of Equation 3 works, consider Example 5:

Example 5. Consider the weekly sales of product p2 and p4, illustrated within Figure 14 as black and grey
dots respectively.

Figure 14: Visualization of weekly sales of two products on two locations.
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In this example product p2 and location `3 are chosen as the benchmark product and location. Hence,
X̂(p2, `3) = eγ0 is the expected weekly sales of product p2 on its historical location `3. The expected
weekly sales X(p2, `5), X(p4, `3) and X(p4, `5) are given by X̂(p2, `5) = eγ0+β5 , X̂(p4, `3) = eγ0+α4 and
X̂(p4, `5) = eγ0+α4+β5 .

So using the Poisson regression, Equation 3 is used to predict the expected weekly sales of products on its
historical locations.

Observe that a correction βj that is made for a change in location `j from the benchmark location, is
based on the sales of the products that were positioned on this location `j in the past. So the correction βj
is actually induced by the products that were sold on location `j , and not only by the characteristics of the
location itself. This will be further discussed in Section 7.

Computational validation

We proposed two methods to predict the expected weekly sales of products on historical locations. In
order to determine which method we shall use, a validation on the predictions via Equation 1 and Equation
3 will be executed. The program R is used for this.

We are aware of the fact that given the quality of the data, we can not be very certain about the con-
clusions we can draw from the validations. However, it does give an indication about the performance of
both methods.

For the validation we split the data set D, illustrated in Table 1, into two mutually exclusive subsets,
named the training set Dtraining and the test set Dtest. We will validate the methods for all products P to
obtain a validation that is applicable for the whole store.
The training set is used to train the model, i.e. to predict the expected weekly sales X(pi, `j) ∀ pi ∈ P, `j ∈
Li(Cx). These expected weekly sales can be compared to the actual weekly sales the corresponding product
and location included in the test set. In order to validate each expected weekly sales X(pi, `j), every (pi, `j)
combination needs to be present in the test set as well as in the training set. Therefore we include 20 % of
the weekly sales of each product on its historical location (pi, `j) in the test set, rounded up to an integer.
The other 80 % is included in the training set. The training set is therefore defined by Dtraining = D \Dtest.
The weeks of historical sales of product pi on historical location `j that are included in Dtest are denoted by
W (test)(pi, `j), where W (test)(pi, `j) ⊆W (pi, `j).
In the validation, each prediction X(pi, `j) will be compared to every occurring Qt(pi, `j) in Dtest. During
the validation a metric has to be chosen to compare the predictions with the real weekly sales. For this
validation we will use the mean absolute error (MAE) to determine the performance of both methods. The
performance of a model will then be given by:

MAE =

∑
pi∈P

∑
`j∈Li(Cx)

∑
wt∈W (test)(pi,`j)

∣∣∣X̂(pi, `j)−Qt(pi, `j)
∣∣∣∑

pi∈P
∑
`j∈Li(Cx)

|W (test)(pi, `j)|
. (4)

Recall that Qt(pi, `j) is the number of sales of product pi on its historical location `j in week wt.
Thus, the MAE is the average deviation between the predicted expected weekly sales and the historical
weekly sales over all observations of products on its historical locations that are included in Dtest.
If X(pi, `j) is predicted by the Poisson regression, we denote the MAE by MAEPoisson and if the average is
used to predict X(pi, `j), the MAE is denoted by MAEaverage.

To compare the performance of the methods as objective as possible, we need to validate the predictions of
the methods on different test sets, i.e. validate whether the predictions of the methods fit different samples
of reality.
Therefore we will compute twenty different samples of D from which Dtest and thereby also Dtrain is ob-
tained. In each of those twenty runs, we compute the MAEPoisson and MAEaverage. In this way, each
method is trained and tested on a different part of the data set D. The results of the MAE for both methods
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are depicted in Table 4 together with the mean of the historical sales of the test set Dtest of each run.

run MAEPoisson MAEaverage Mean of historical sales
1 1.1576 1.1762 1.0302
2 1.0995 1.1102 1.0532
3 1.2157 1.2329 1.1671
4 1.0877 1.0859 1.0818
5 1.1413 1.1495 1.0741
6 1.0602 1.0786 1.1732
7 1.1471 1.1777 1.1980
8 1.1317 1.1389 1.0238
9 1.1586 1.1841 1.2608
10 1.1088 1.1198 1.1745
11 1.1140 1.1232 1.1149
12 1.1098 1.1142 1.1628
13 1.1028 1.1314 1.1538
14 1.0771 1.0901 1.1276
15 1.1470 1.1688 1.2687
16 1.1239 1.1411 1.1112
17 1.1391 1.1570 1.1239
18 1.0961 1.0948 1.1366
19 1.0332 1.0575 1.0887
20 1.1238 1.1395 1.1642

Table 4: MAEPoisson and MAEaverage for 20 runs.

In order to interpret each MAE, the last column is added which indicates the mean of the historical sales
of the corresponding Dtest. In each run, the MAE represents the mean error the predictions deviate from
the mean sales. It can be noticed that in most of the runs the deviation is almost equal to the mean. This
confirms the remark at the beginning of this section that the methods will be imperfect due to the quality
of the data that is available.

Moreover, it can be observed that the differences between MAEPoisson and MAEaverage are negligible.
We already argued that the available sales of the historical weekly sales of a product on its historical lo-
cation can not be fitted by a Poisson distribution very well. Due to this and the fact that the difference
in performance between the Poisson regression and taking the average is negligible, we do not predict the
weekly sales on historical locations by a Poisson regression as in Equation 3.
For taking the average, the only requirement is that the average of weekly sales of a product exist. This is
the case since the weekly sales are non-negative and bounded.
Therefore we will use the average to predict the expected weekly sales of products on its historical locations.

In the next section we will provide the method by which the expected weekly sales of products on its
non-historical locations are estimated. In this method we pretend like the products of a group are identical
and therefore use the historical weekly sales of the group R(pi) to predict the expected weekly sales of a
product pi on the non-historical locations of the group R(pi). Section 4.1.2 explains this in detail, but to
compare the expected weekly sales of a product objectively over all locations L(Cx), we will also use the
historical weekly sales of a group R(pi) to predict the expected weekly sales of the historical locations of the
group R(pi).
Thus, instead of Equation 1, we will use the average of the weekly sales of group R(pi) to predict X(pi, `j)
for locations `j ∈

⋃
pf∈R(pi)

Lf (Cx):

X̂(pi, `j) =

∑
pf∈R(pi)

∑
wt∈W (pi,`j)

Qt(pf , `j)∑
pf∈R(pi)

|W (pf , `j)|
∀`j ∈

⋃
pf∈R(pi)

Lf (Cx). (5)
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4.1.2 Estimate expected weekly sales of products on non-historical locations

So far, we only discussed how to predict the expected weekly sales of products on their historical locations.
As mentioned at the beginning of Section 4.1, we are aware of the fact that the methods we use to predict
the expected weekly sales are imperfect. This applies to the predictions on historical locations of products,
but certainly also to the predictions on non-historical locations of products.

Section 3.2.2 describes how the graphs Bx and Ux are formed for each category, which are representa-
tions of the connectivity between the locations L(Cx) regarding subgroups and groups respectively. If we
would like to predict the expected weekly sales of a product pi on a location `k it never stood before, the
product might have been positioned on locations that are in close proximity, i.e. locations that are adjacent
to `k in Ux. However, most products have stood on one or two locations in available dataset. As mentioned
at the end of Section 4.1.1, it is more interesting to look at the products of its group R(pi), i.e. products
that are similar to pi, since it is reasonable that these products together have stood on more locations than
the product pi itself.
Therefore the expected weekly sales of product pi on the historical locations of its group R(pi), are predicted
by the average sales of its group on this location. We do not take the average of the weekly sales of the prod-
uct itself anymore because we want to compare the expected weekly revenues of a product, predicted from
the expected weekly sales, objectively over all locations. This can only be done if we use the historical sales
of a group for all locations. Otherwise, the best performing products of a group will be assigned to one of its
historical locations and the worst performing products of a group will be assigned to non-historical locations.

To predict the expected weekly sales on non-historical locations, we will use a weighted average, based
on the idea of the kriging method, which uses statistical interpolation on spatial data [10]. To predict the
sales of a non-historical location of group R(pi), we will use the expected weekly sales of group R(pi) on
locations that are in close proximity to the non-historical location of group R(pi).
Notice that hereafter we will define some new notation in order to explain how this results in a weighted
average.

We want to estimate X(pi, `k) for non-historical location `k of product group R(pi) by using the predictions
X̂(pf , `j) of products pf ∈ R(pi) on adjacent locations `j ∈ {L(Cx)|(`k, `j) ∈ E(Ux)}.
This is done in the following way:

X̂(pi, `k) =


∑
`j∈L(Cx)

d
(i)
k,jX̂(pi, `j), if

∑
`j∈L(Cx)

d
(i)
k,j > 0

∑
`j∈L(Cx)

∑
pf∈R(pi)

∑
t∈W (pi,`j)

Qt(pf ,`j)∑
`j∈L(Cx)

∑
pf∈R(pi)

|W (pf ,`j)| , if
∑
`j∈L(Cx)

d
(i)
k,j = 0

(6)

The clarification of the different cases will be explained after the explanation of the weights d
(i)
k,j .

These weights d
(i)
k,j denote the normalized closeness between location `j and `k regarding group R(pi) and

therefore
∑
`j∈L(Cx)

d
(i)
k,j = 1.

The weights d
(i)
k,j are obtained by:

d
(i)
k,j =


d
(i)
k,j∑

`q∈L(Cx) d
(i)
k,q

, if
∑
`q∈L(Cx)

d
(i)
k,q > 0

0, if
∑
`q∈L(Cx)

d
(i)
k,q = 0

The weight d
(i)
k,j indicate the closeness between the locations `k and `j regarding group R(pi), by a value

between zero and one. The weights are determined according to the scenario’s that induce the edges in Ux,
described in Section 3.2.2. A weight of zero indicates that the location `j is not comparable to `k regarding
group R(pi) and a weight of one would indicate that location `j is perfectly comparable to location `k
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regarding group R(pi):

d
(i)
k,j =



1, If `j = `k and group R(pi) was positioned on location `j

0.8,
If location `j is adjacent to location `k according to scenario 1,
and group R(pi) was positioned on location `j

0.6,
If location `j is adjacent to location `k according to scenario 2,
and group R(pi) was positioned on location `j

0.4,
If location `j is adjacent to location `k according to scenario 3,
and group R(pi) was positioned on location `j

0.2,
If location `j is adjacent to location `k according to scenario 4,
and group R(pi) was positioned on location `j

0,
If there is none of the four scenario’s applicable to locations `j and `k,
or group R(pi) was not positioned on location `j .

Note that d
(i)
k,j = 1 is only added for completeness because this weight will never be used. If group R(pi) was

positioned on location `j = `k, then X(pi, `k) is predicted by Equation 5.

The weights d
(i)
k,j are based on the expertise of a data expert in the field of retail because we could not compute

reliable correlations between locations due to the quality of the data. This will also be discussed in Section 7.

Further observe that the weights d
(i)
k,j depend on the group R(pi) because not every group is positioned

on every location of L(Cx). To illustrate this, consider the case that location `j might be adjacent to `k in
graph Ux, but if the group of the product pi which we try to predict, was never positioned on location `j ,
this location can not be used for the expected weekly sales of product pi on non-historical location `k. For
a product of a different group, this group might be positioned on location `j and this location can be used

to estimate the expected weekly sales. Therefore a weight d
(i)
k,j depends on the group R(pi).

At last, consider the case in Equation 6 where the group R(pi) was not positioned on any of the adja-
cent locations of `k in the past. Then there is no location to use for the estimation of the expected weekly

sales X(pi, `k) and therefore
∑
`j∈L(Cx)

d
(i)
k,j = 0 and thus

∑
`j∈L(Cx)

d
(i)
k,j = 0. In this case, the expected

weekly sales X(pi, `k) will be predicted by the average sales of the group R(pi) over all locations of L(Cx).

So far we have a method to predict the expected weekly sales X(pi, `j) for the historical locations and
non-historical locations of its group R(pi). As input for computing the revenue maximizing assignment of
category Cx, we need the expected weekly revenues Y (pi, `j) for all products P (Cx) on locations L(Cx). The
expected weekly revenues Y (pi, `j) are predicted by multiplying each expected weekly sales X(pi, `j) by its
gross profit g(pi):

Ŷ (pi, `j) = g(pi) · X̂(pi, `j) ∀pi ∈ P (Cx), `j ∈ L(Cx). (7)

Summarizing, the expected weekly sales of a product pi on the historical locations of its group R(pi) are
predicted by the average sales of the group R(pi) on this location:

X̂(pi, `j) =

∑
pf∈R(pi)

∑
wt∈W (pi,`j)

Qt(pf , `j)∑
pf∈R(pi)

|W (pf , `j)|
∀`j ∈

⋃
pf∈R(pi)

Lf (Cx).

To predict the expected weekly sales of the product pi on the non-historical locations of its group R(pi), we
use a weighted average on the expected weekly sales of the products of its group R(pi) on locations that
are adjacent to these non-historical locations in Ux. If it occurs that the group R(pi) was not positioned on
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locations that are adjacent to a non-historical location of group R(pi), the expected weekly sales of product
pi on this location will be the average sales of the group R(pi) over all locations L(Cx):

X̂(pi, `k) =


∑
`j∈L(Cx)

d
(i)
k,jX̂(pi, `j), if

∑
`j∈L(Cx)

d
(i)
k,j > 0

∑
`j∈L(Cx)

∑
pf∈R(pi)

∑
t∈W (pi,`j)

Qt(pf ,`j)∑
`j∈L(Cx)

∑
pf∈R(pi)

|W (pf ,`j)| , if
∑
`j∈L(Cx)

d
(i)
k,j = 0

With the expected weekly sales X(pi, `j) and gross profits g(pi), we can predict the expected weekly revenues
Y (pi, `j):

Ŷ (pi, `j) = g(pi) · X̂(pi, `j) ∀pi ∈ P (Cx), `j ∈ L(Cx).
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4.2 Compute the revenue maximizing assignment to the categorized assignment
problem

This section will explain how to obtain the revenue maximizing assignment for the CA-problem, defined in
Definition 3. It appears that the CA-problem is NP-hard, which will be proved in Section 4.2.1. After that,
Section 4.2.2 will provide the Integer Linear Program whereby the revenue maximizing assignment for the
CA-problem is computed.

4.2.1 NP-hardness

To show that the CA-problem is NP-hard, we will prove that a simplified version of the CA-problem is
NP-hard. If this holds, then the CA-problem itself is also NP-hard.
We will derive to this simplified version in two steps. First assume that the requirement of Definition 2 is only
considered for groups, that is that the locations allocated to every group should form a connected subgraph
in Ux. So focused on one group, the aim is to assign products of this group to locations such that these
locations form a connected subgraph in the corresponding graph Ux and the number of assigned products
to a vertex does not exceed its capacity. This can be defined mathematically as the following problem:

Capacitated connected subgraph problem (CCS)
Given a graph Ux = (V,E) with vertex capacities A(v), vertex weights w(v) and a positive integer k, find
a connected subgraph (V ′, E′) with vertex loads r(v) such that

∑
v∈V ′ r(v) = k, r(v) ≤ A(v) ∀v ∈ V ′ and∑

v∈V ′ r(v) · w(v) is maximized.

One may think of k as the number of products of some group that have to be assigned. The vertices
V of Ux correspond to the locations L(Cx). The vertex load r(v) is the number of products which is assigned
to vertex v and trivially, this number of products may not exceed its capacity A(v). The vertex weights w(v)
correspond to expected weekly revenue of products to locations. Here the expected weekly revenue of every
product on a location v has the same weight w(v), so this also is a simplification of the CA-problem.
Now we will simplify the CCS-problem by setting all vertex capacities equal to one. Actually we neglect
the capacity constraint by allowing a vertex to be allocated to only one product and therefore the vertex
loads r(v) become unnecessary. With this simplification we will study a well known problem in the literature:

Maximum weight connected subgraph (MWCS)
Given a graph G = (V,E) with vertex weights w(v) and a positive integer k, find a connected subgraph
H = (V ′, E′) with |V ′| ≤ k such that

∑
v∈V ′ w(v) is maximized.

Below we will provide a proof to show that MWCS is a NP-hard problem even if w(v) ∈ {0, 1} ∀v ∈ V [11].
We do this by using a special case of the well known Steiner tree problem, which is a NP-hard problem [12]:

Steiner Tree (ST)
Given a graph G = (V ,E), R ⊆ V , find a tree T = (V ′, E′) in G that spans R with a minimum number of
vertices |V ′|.

We will prove that MWCS with binary vertex weights is NP-hard by showing that the decision version
of MWCS is NP-complete.

Theorem 1. The decision version of the MWCS problem is NP-complete, even if the vertex weights are
restricted to be binary: w(v) ∈ {0, 1} ∀v ∈ V .

Proof.
The decision version of the MWCS with binary vertex weights is formulated as follows:
Given a graph G = (V,E) with vertex weights w(v) ∈ {0, 1}, positive integers k and z , is there a connected
subgraph H = (V ′, E′) with |V ′| ≤ k and w(H) ≥ z ?
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First, it is not hard to see that the decision version of the MWCS is in NP. Given a subgraph H = (V ′, E′)
of an instance of MWCS, it can be decided in polynomial time whether this subgraph H satisfies the con-
ditions |V ′| ≤ k, w(H) ≥ z and whether the subgraph H is connected [13].

The decision version of the ST problem is as follows:
Given a graph G = (V ,E), R ⊆ V , an integer l ≥ |R|, is there a tree T = (V ′, E′) in G that spans R with
|V ′| ≤ l ?

To reduce this problem to the decision version of the MWCS problem, we introduce the polynomial-time
computable mapping f : IST → IMWCS that maps every instance of the Steiner tree to an instance of the
MWCS. If we can prove that this mapping maps every yes-instance of IST to a yes-instance of IMWCS and
idem dito for every no-instance, then we have found a reduction from ST to MWCS.
Let G = (V ,E), R ⊆ V , an integer l ≥ |R| be an instance of IST . The mapping f is then defined as follows:

1. Create a node-weighted graph G = (V,E), with V = V , E = E and vertex weights:

w(v) =

{
1, ∀v ∈ R
0, ∀v ∈ V \R

2. z = |R|, k = l.

Consider a yes-instance of IST : A Steiner tree T of q vertices (q ≤ l) and q− 1 edges (since T is a tree) that
spans all vertices of R. Now consider this tree T as the subgraph H, that is H = T .
Then in G = (V,E) this tree H contains less than or equal to k vertices and w(H) ≥ z since all vertices
with w(v) = 1 are contained in T by construction. Since a tree is a connected subgraph, H is a connected
subgraph. So every yes-instance of IST will be mapped to a yes-instance of IMWCS .

Consider a no-instance of IST : There is no tree T = (V ′, E′) in G with |V ′| ≤ l = k that spans all R
vertices. This means that all Steiner trees in G contain |V ′| > k vertices. So in G, any connected subgraph
H with a weight w(H) ≥ z contains more than k vertices.
We show this by contradiction. Assume that there is a connected subgraph H = (V ′, E′) in G with
|V ′| ≤ k = l and w(H) ≥ z = |R| , then in G there should be a tree T = (V ′, E′) that spans R with
|V ′| ≤ l because of the following:

1. If the connected subgraph H described above already is a tree, T = H would have been a tree in G
that spans R and contains |T (V ′)| ≤ l vertices.

2. If the connected subgraph H described above is not a tree and thus contains one or more cycles, then
we can remove edges from H under the condition that H remains connected until eventually a tree T
is obtained. By this, T would be a tree in G that still spans R and still contains |T ′(V ′)| ≤ l vertices.

In both cases, this leads to a contradiction since we assumed such a Steiner tree did not exist in G.
So every no-instance of IST will indeed be mapped to a no-instance of IMWCS .

Thus, we can map every yes-instance of IST to a yes-instance of IMWCS and map every no-instance of
IST to a no-instance of IMWCS in polynomial time.
Since ST is a NP-hard problem and we found a polynomial-time computable reduction from the decision
version of ST to the decision version of MWCS, which is in NP, we can conclude that the decision version
of MWCS is NP-complete. �

We proved that the decision version of MWCS is NP-complete and therefore MWCS is NP-hard to solve.
Since the MWCS is a simplified version of the CCS problem, the CCS problem is also a NP-hard problem.
As argued earlier, to solve the CA-problem, the CCS problem has to be solved for every group. Thus, with
the proof above we can state that the CA-problem is also a NP-hard problem.

Now we know that the CA-problem is NP-hard, it is justified to set op an Integer Linear Program (ILP) to
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solve the CA-problem. The following section describes the way this ILP is created and ends with the ILP
as a whole.

4.2.2 Integer Linear Program to solve the CA-problem

We are going to set up an ILP to solve the CA-problem.
First of all, we will denote the expected weekly revenues Y (pi, `j) by w(pi, `j) ∀pi ∈ P (Cx), `j ∈ L(Cx).
Furthermore, we have to indicate whether a product is assigned to a location within a solution. Therefore
we define the following binary variable:

x(pi, `j) =

{
1, When product pi is assigned to location `j

0, Otherwise.

In the assignment every product should be assigned to exactly one location. Using the variable x(pi, `j), this
requirement can be formulated as the following constraint:

Allocation constraint. ∑
`j∈L(Cx)

x(pi, `j) = 1 ∀pi ∈ P (Cx). (8)

Furthermore Section 3.2.2 already describes the feasibility constraints that a solution has to satisfy. As said
in Definition 1, the number of assigned products to a location `j , may not exceed its capacity A(`j). This is
translated into the following constraint:

Capacity constraint. ∑
pi∈P (Cx)

x(pi, `j) ≤ A(`j) ∀`j ∈ L(Cx). (9)

Recall that every product pi belongs to a subgroup S(pi) and a group R(pi). Thus, besides a set of products
P (Cx), every category Cx also contains a set of subgroups and groups denoted by S(Cx) and R(Cx) respec-
tively.
In addition to the capacity constraint, it has to be ensured that the products of a subgroup are assigned to
locations that form a connected subgraph in Bx. Before stating this in a constraint, we first need a variable
that indicates whether a subgroup Sh ∈ S(Cx) is assigned to a location `j :

y(Sh, `j) =

{
1, When subgroup Sh is assigned to location `j

0, Otherwise.

Whether a subgroup is assigned to a location `j , only depends on the fact whether a product of this subgroup
is assigned to location `j . If one or more products of the subgroup are assigned to location `j , the subgroup is
also assigned to location `j . If none of the products of the subgroup is assigned to location `j , the subgroup
itself is neither assigned to location `j . To force this, we use the following two constraints:

Coupling constraints.

y(Sh, `j) ≥ x(pi, `j) ∀Sh ∈ S(Cx), pi ∈ Sh, `j ∈ L(Cx) (10)

y(Sh, `j) ≤
∑
pi∈Sh

x(pi, `j) ∀Sh ∈ S(Cx), `j ∈ L(Cx). (11)

Consider the case where x(pi, `j) = 0 for all products pi ∈ Sh. Then y(Sh, `j) is free to choose regarding the
constraint of Equation 10, but the constraint of Equation 11 forces y(Sh, `j) = 0 because the value of the
sum equals zero.
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If there is some product pi ∈ Sh for which x(pi, `j) = 1, then y(Sh, `j) is free to choose regarding the con-
straint of Equation 11 because the value of the sum is one or higher. However, the constraint of Equation 10
enforces y(Sh, `j) = 1 because there is at least one product of subgroup Sh that is assigned to location `j .
Thus, the constraints of Equation 10 and 11 force y(Sh, `j) to be the correct binary value.

Now we know whether a subgroup is positioned on a location or not, it is possible to check if the loca-
tions a subgroup is assigned to, indeed form a connected subgraph in Bx. As explained in Section 3.2.2, the
graph Bx only consists of paths. Therefore there exists one or no path between two vertices `j and `k in
Bx. The locations located on such a path are defined by the set P (`j , `k). Using each set P (`j , `k), we can
formulate the following constraint which checks for every subgroup Sh if the vertices for which y(Sh, `j) = 1
form a connected subgraph in Bx:

Connectivity constraint regarding subgroups.

y(Sh, `j) + y(Sh, `k)−
∑

lr∈P (`j ,`k)

y(Sh, lr) ≤ 1 ∀Sh ∈ S(Cx),∀`j , `k ∈ {L(Cx)|(`j , `k) /∈ E(Bx)}. (12)

Observe that only for the case where y(Sh, `j) = 1 and y(Sh, `k) = 1 it has to be determined whether the
constraint is satisfied. For all other cases the constraint is automatically satisfied since the left-hand side is
one or less.
So the constraint verifies for each pair of vertices {(`j , `k)|(`j , `k) /∈ E(Bx)} for which y(Sh, `j) = 1 and
y(Sh, `k) = 1, if there is at least one vertex `r ∈ P (`j , `k) for which y(Sh, lr) = 1. If this holds, then the
locations a subgroup is assigned to, form a path and thus a connected subgraph in Bx. Note that even if
y(Sh, `j) = 1 and y(Sh, `k) = 1, the constraint does not need to be checked if `j and `k are adjacent vertices
in Bx because adjacent vertices are always connected.
To illustrate that the constraint of Equation 12 correctly verifies connectivity of the induced subgraph,
consider an extension of the graph Bx which is depicted in Figure 5 of Section 3.2.2:

1

2

3

4

5

6

7

Figure 15: An extended version of the graph Bx = (V, Ẽ) of Figure 5.

We added a seventh vertex to create the pair (`5, `7) where the vertices are reachable but not adjacent.
Consider the case that y(Sh, l5) = 1 and y(Sh, l7) = 1, but y(Sh, l6) = 0 for some Sh ∈ S(Cx). With
P (l5, l7) = {l6}, the constraint of Equation 12 will not be satisfied since y(Sh, l6) = 0 and therefore the
left-hand side of the constraint is two, which is higher than one.
If y(Sh, l5) = 1, y(Sh, l7) = 1 and y(Sh, l6) = 1, the constraint of Equation 12 is satisfied and the locations
{l5, l6, l7} the subgroup Sh is assigned to, indeed form a connected subgraph in Bx.
Secondly, consider the case that y(Sh, l5) = 1, y(Sh, l3) = 1, then constraint 12 will be violated since
P (l3, l5) = {∅} because `3 and `5 are not reachable. Thus, the constraint of Equation 12 is correctly violated
for locations that are not reachable in Bx.

Besides the connectivity check for the locations that are allocated to each subgroup, we have to verify
whether the locations assigned to each group Rd form a connected subgraph in Ux.
To specify whether a group is assigned to a location, we create the variable z(Rd, `j):

z(Rd, `j) =

{
1, When group Rd is assigned to location `j

0, Otherwise.

Similar to subgroups and products, a group Rd is assigned to a location `j if one or more subgroups of this
group are assigned to location `j . To provoke this, we need the following two constraints which are similar
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to the constraints of Equation 10 and 11:

Coupling constraints.

z(Rd, `j) ≥ y(Sh, `j) ∀Rd ∈ R(Cx), Sh ∈ Rd, `j ∈ L(Cx) (13)

z(Rd, `j) ≤
∑

Sh∈Rd

y(Sh, `j) ∀Rd ∈ R(Cx), `j ∈ L(Cx). (14)

Now we know whether a group is assigned to a location in Ux, we can focus on the connectivity of all the
locations a group Rd is assigned to. In comparison to Bx, in Ux there might exist several paths between
vertices `j and `k because Ux can contain cycles. Therefore the constraint of Equation 12 should be adjusted
in order to check connectivity regarding groups.
To specify the paths corresponding to locations `j and `k, we first create the set that consists of the paths
between every two vertices in Ux, i.e. the set that contains all paths of Ux: that is, T = {t1, t2, . . . , tnt

}.
Here a path tm ∈ T contains the vertices `j ∈ L(Cx) this path tm consists of without the source and
destination vertex of the path. These paths can be found using a depth-first search [14]. The paths within
Ux corresponding to source `j and destination `k are denoted by the set T (`j , `k) and is a subset of T : that
is, T (`j , `k) ⊆ T .
Comparable to the constraint of Equation 12, for every group Rd we want to check if any two locations
(`j , `k) for which z(Rd, `j) = 1 and z(Rd, `k) = 1, are connected via vertices that are also assigned to group
Rd, i.e. if there is a path tm ∈ T (`j , `k) where all vertices of this path are also assigned to Rd. To specify
whether this holds for a given path tm ∈ T and group Rd, we introduce the following variable:

γ(tm, Rd) =

{
1, If z(Rd, `j) = 1 for all vertices `j ∈ tm
0, Otherwise.

To force γ(tm, Rd) to the correct binary value, we need the following two constraints:

Path constraints.

γ(tm, Rd) ≤ z(Rd, `j) ∀Rd ∈ R(Cx), tm ∈ T, `j ∈ tm (15)

γ(tm, Rd) ≥
( ∑
`j∈tm

[z(Rd, `j)− 1]
)

+ 1 ∀Rd ∈ R(Cx), tm ∈ T. (16)

If z(Rd, `j) = 1 for all vertices `j ∈ tm, γ(tm, Rd) is free to choose regarding the constraint of Equation 15.
However, the right-hand side of the constraint of Equation 16 is equal to one since the summation equals
zero. As a result, γ(tm, Rd) is set to one correctly.
If there is a vertex `j ∈ tm for which z(Rd, `j) = 0, γ(tm, Rd) is free to choose regarding the constraint of
Equation 16 since the right-hand side of this constraint is zero or less. However, the constraint of Equation
15 forces γ(tm, Rd) to be zero since γ(tm, Rd) ≤ 0 for the location `j that was not assigned to group Rd.

Now it is correctly specified whether all vertices of a path are assigned to a group, we can model a constraint
that verifies for any pair of locations (`j , `k) for which z(Rd, `j) = 1 and z(Rd, `k) = 1 whether there is a
path tm ∈ T (`j , `k) for which γ(tm, Rd) = 1 that assures connectivity between `j and `k. If there is such a
path for any two locations that are assigned to group Rd, the locations the group Rd is assigned to, form a
connected subgraph in Ux. This is done by the following constraint:

Connectivity constraint regading groups.∑
tm∈T (`j ,`k)

γ(tm, Rd) ≥ 1−
[
1− z(Rd, `j)

]
−
[
1− z(Rd, `k)

]
∀Rd ∈ R(Cx), `j , `k ∈ {L(Cx)|(`j , `k) /∈ E(Ux)}.

(17)
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For the case that z(Rd, `j) = 1 and z(Rd, `k) = 1, the constraint of Equation 17 is only satisfied if there is
at least one path tm ∈ T (`j , `k) for which all the vertices on this path are assigned to group Rd and thus `j
and `k are connected via this path.
If z(Rd, `j) = 0, z(Rd, `j) = 0 or both are zero, the constraint is automatically satisfied since the right-hand
side is zero or less.
With the constraint of Equation 17, we have modelled all the feasibility constraints a solution for the CA-
problem has to satisfy.

Briefly summarizing, for a given category Cx, the CA-problem wants to assign the corresponding prod-
ucts P (Cx) to the corresponding locations L(Cx) with the objective to maximize the total expected weekly
revenue of the assignment

∑
pi∈P (Cx),`j∈L(Cx)

x(pi, `j)w(pi, `j).

The locations L(Cx) located in the store layout induce the connectivity graphs Bx and Ux regarding sub-
groups and groups respectively. The locations in the revenue maximizing solution that are assigned to a
subgroup Sh should form a connected subgraph in Bx such that the products of subgroup Sh are positioned
in close proximity to each other. Comparable, the locations in the revenue maximizing solution that are
assigned to a group Rd should form a connected subgraph in Ux such that the products of this group Rd are
positioned in close proximity to each other.
Furthermore the number of products assigned to a location may not exceed its capacity and every product
is assigned to one location only.

The Integer Linear Program as a whole then looks as follows:

max
∑

pi∈P (Cx)

∑
`j∈L(Cx)

w(pi, `j)x(pi, `j)

subject to ∑
`j∈L(Cx)

x(pi, `j) = 1 ∀pi ∈ P (Cx) (Eq. 8)

∑
pi∈P (Cx)

x(pi, `j) ≤ A(`j) ∀`j ∈ L(Cx) (Eq. 9)

y(Sh, `j) ≥ x(pi, `j) ∀Sh ∈ S(Cx), pi ∈ Sh, `j ∈ L(Cx) (Eq. 10)

y(Sh, `j) ≤
∑
pi∈Sh

x(pi, `j) ∀Sh ∈ S(Cx), `j ∈ L(Cx) (Eq. 11)

y(Sh, `j) + y(Sh, `k)−
∑

lr∈P (`j ,`k)

y(Sh, lr) ≤ 1
∀Sh ∈ S(Cx),
`j , `k ∈ L(Cx)|(`j , `k) /∈ E(Bx)

(Eq. 12)

z(Rd, `j) ≥ y(Sh, `j) ∀Rd ∈ R(Cx), Sh ∈ Rd, `j ∈ L(Cx)(Eq. 13)

z(Rd, `j) ≤
∑

Sh∈Rd

y(Sh, `j) ∀Rd ∈ R(Cx), `j ∈ L(Cx) (Eq. 14)

γ(tm, Rd) ≤ z(Rd, `j) ∀Rd ∈ R(Cx), tm ∈ T, `j ∈ tm (Eq. 15)

γ(tm, Rd) ≥
∑
`j∈tm

[
z(Rd, `j)− 1

]
+ 1 ∀Rd ∈ R(Cx), tm ∈ T (Eq. 16)

∑
tm∈T (`j ,`k)

γ(tm, Rd) ≥ 1−
[
1− z(Rd, `j)

]
−
[
1− z(Rd, `k)

] ∀Rd ∈ R(Cx),
`j , `k ∈ {L(Cx)|(`j , `k) /∈ E(Ux)} (Eq. 17)

x(pi, `j), y(Sh, `j), z(Rd, `j), γ(tm, Rd) ∈ {0, 1}.
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Adding a penalty to the objective function

It appears that historical store layouts not always satisfy the feasibility constraints which verify the connec-
tivity of the locations allocated to a subgroup or group. Thus given the input for a category, it could be
that the ILP can not find a feasible solution.
Therefore we want to allow subgroups and groups to violate with the constraints that are forcing the con-
nected subgraph, but minimize these number of violations. To achieve this, we create significantly high
penalties Msub and Mgroup that can be subtracted from the total revenue of the solution. The penalties
should be chosen significantly high such that it is not attractive to allow a penalty in order to create a
revenue increase which is higher then this chosen penalty.
So ideally we want a solution to satisfy the constraint of Equation 12 for each subgroup Sh. If this is not
possible, a penalty shall be given for this subgroup Sh and locations `j , `k ∈ {L(Cx)|(`j , `k) /∈ E(Bx)}, using
a binary variable that is defined as follows:

PenSub(Sh, `j , `k) =

1,
If the locations `j and `k, for which y(Sh, `j) = 1 and y(Sh, `k) = 1,
are not connected in Bx via locations that are also assigned to subgroup Sh

0, Otherwise.

Using this variable we can add a penalty to the objective function of the ILP, which looks as follows:

max
∑

pi∈P (Cx),`j∈L(Cx)

w(pi, `j)x(pi, `j)−
∑

Sh∈S(Cx),`j ,`k∈{L(Cx)|(`j ,`k)/∈E(Bx)}

MsubPenSub(Sh, `j , `k).

To force PenSub(Sh, `j , `k) to the correct binary value, we will adapt the constraint of Equation 12 as follows:

Connectivity constraint regarding subgroups with a penalty included.

y(Sh, `j) + y(Sh, `k)−
∑

lr∈P (`j ,`k)

y(Sh, lr) ≤ 1 + PenSub(Sh, `j , `k)
∀Sh ∈ S(Cx),
`j , `k ∈ {L(Cx)|(`j , `k) /∈ E(Bx)}. (18)

The binary variable PenSub(Sh, `j , `k) on the right-hand side of the constraint of Equation 18 can be used
to force this constraint to be satisfied. Since we want to maximize the objective function, we would like to
minimize the number that PenSub(Sh, `j , `k) = 1 occurs and ideally there does not occur a penalty regarding
subgroups at all.
Therefore, the case that PenSub(Sh, `j , `k) = 1 will only occur if there is a subgroup Sh ∈ S(Cx) for which
it is impossible to assign to locations that form a connected subgraph in Bx.

Besides subgroups we want the locations assigned to a group Rd ∈ R(Cx) to form a connected subgraph
in Ux. Comparable to the situation for subgroups, it might occur that there is no solution for which the
constraint of Equation 17 is always satisfied. Therefore we will introduce a binary variable like is done for
the subgroups in order to allow a solution which violates the constraint of Equation 17 against a significant
high penalty Mgroup.
To achieve this, we define the binary variable that indicates whether a group Rd with locations `j , `k ∈
{L(Cx)|(`j , `k) /∈ E(Ux)} violates the constraint of Equation 17:

PenGroup(Rd, `j , `k) =

1,
If the locations `j and `k, for which z(Rd, `j) = 1 and z(Rd, `k) = 1,
are not connected in Ux via locations that are also assigned to group Rd

0, Otherwise.

The constraint of Equation 17 will be adjusted similarly as is done for the constraint of Equation 12 regarding
subgroups to determine whether each PenGroup(Rd, `j , `k) is set to one or zero.

Connectivity constraint regarding groups with a penalty included.∑
tm∈T (`j ,`k)

γ(tm, Rd) ≥ 1−
[
1−z(Rd, `j)

]
−
[
1−z(Rd, `k)

]
− PenGroup(Rd, `j , `k)

∀Rd ∈ R(Cx),
`j , `k ∈ {L(Cx)|(`j , `k) /∈ E(Ux)}.

(19)
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Similarly to the case regarding subgroups, PenGroup(Rd, `j , `k) is only set to one if it is not possible to assign
locations to a group Rd such that these locations form a connected subgraph in Ux. If PenGroup(Rd, `j , `k) =
1, a penalty Mgroup will be subtracted from the objective function. We want to minimze the number of
penalties regarding subgroups and groups since we want to maximize the objective function.
Including these penalties regarding subgroups and groups, the final version of the ILP looks as follows:

max
[∑

pi∈P (Cx),`j∈L(Cx)
w(pi, `j)x(pi, `j)−

∑
Sh∈S(Cx),`j ,`k∈{L(Cx)|(`j ,`k)/∈E(Bx)}MsubPenSub(Sh, `j , `k)

−
∑
Rd∈R(Cx),`j ,`k∈{L(Cx)|(`j ,`k)/∈E(Ux)}MgroupPenGroup(Rd, `j , `k)

]

subject to ∑
`j∈L(Cx)

x(pi, `j) = 1 ∀pi ∈ P (Cx) (Eq. 8)

∑
pi∈P (Cx)

x(pi, `j) ≤ A(`j) ∀`j ∈ L(Cx) (Eq. 9)

y(Sh, `j) ≥ x(pi, `j) ∀Sh ∈ S(Cx), pi ∈ Sh, `j ∈ L(Cx) (Eq. 10)

y(Sh, `j) ≤
∑
pi∈Sh

x(pi, `j) ∀Sh ∈ S(Cx), `j ∈ L(Cx) (Eq. 11)

y(Sh, `j) + y(Sh, `k)−
∑
lr∈P (`j ,`k)

y(Sh, lr) ≤
1 + PenSub(Sh, `j , `k)

∀Sh ∈ S(Cx),
`j , `k ∈ {L(Cx)|(`j , `k) /∈ E(Bx)} (Eq. 18)

z(Rd, `j) ≥ y(Sh, `j) ∀Rd ∈ R(Cx), Sh ∈ Rd, `j ∈ L(Cx)(Eq. 13)

z(Rd, `j) ≤
∑

Sh∈Rd

y(Sh, `j) ∀Rd ∈ R(Cx), `j ∈ L(Cx) (Eq. 14)

γ(tm, Rd) ≤ z(Rd, `j) ∀Rd ∈ R(Cx), tm ∈ T, `j ∈ tm (Eq. 15)

γ(tm, Rd) ≥
∑
`j∈tm

[
z(Rd, `j)− 1

]
+ 1 ∀Rd ∈ R(Cx), tm ∈ T (Eq. 16)

∑
tm∈T (`j ,`k)

γ(tm, Rd) ≥
1−

[
1− z(Rd, `j)

]
−
[
1− z(Rd, `k)

]
− PenGroup(Rd, `j , `k)

∀Rd ∈ R(Cx),
`j , `k ∈ {L(Cx)|(`j , `k) /∈ E(Ux)} (Eq. 19)

x(pi, `j), y(Sh, `j), z(Rd, `j), γ(tm, Rd),
P enSub(Sh, `j , `k), P enGroup(Rd, `j , `k) ∈ {0, 1}.

With this ILP, we constructed a model to obtain a revenue maximizing assignment for each category Cx.
By combining the assignments of each category, the revenue maximizing assignment of the store is obtained.
In Section 5 we will compare the revenues between the revenue maximizing assignment and the historical
assignments for each category.
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5 Computational results of the categorized assignment problem

This section provides the revenue maximizing solution of each category Cx, obtained by using the ILP which
is outlined in Section 4.2.2. These expected weekly revenues will be compared to the historical average
weekly revenue of each category in order to determine whether the approach to assign products to loca-
tions according to this research might be profitable for the store. Furthermore the feasibility of the revenue
maximizing assignment of one category will be explained in detail to obtain a deeper understanding of the
feasibility constraints of the ILP.

The ILP described in Section 4.2.2 was implemented in the program AIMMS. For computing the revenue
maximizing assignments we use a windows machine with an intel Core i5-7200U @2.5 GHz CPU and a
CPLEX 12.8.0 solver within AIMMS.

To obtain some insight into the size of the input for each category, we will provide an overview of the
number of locations, products, subgroups, groups and paths. This is illustrated in Table 5:

Number of locations:
|L(Cx)|

Number of products:
|P (Cx)|

Number of subgroups:
|S(Cx)|

Number of groups:
|R(Cx)|

Number of paths in Ux:
|T (Cx)|

Category C1 18 359 58 14 349
Category C2 19 597 72 10 956
Category C3 8 192 10 4 157
Category C4 11 126 11 5 300
Category C5 7 183 23 6 18
Category C6 8 192 34 8 11

Table 5: Overview of number of locations, products, subgroups, groups and paths per category.

Besides these sets, the input for the ILP further contains the connectivity graphs Bx and Ux, the location
capacities A(`j) for all `j ∈ L(Cx) and the expected weekly revenues w(pi, `j) for all pi ∈ P (Cx), `j ∈ L(Cx).
The graphs can be directly obtained from the physical positions of the locations L(Cx), which is described
in Section 3.2.2. This section also clarifies how the location capacities are obtained. The expected weekly
revenues w(pi, `j) equal Y (pi, `j) ∀pi ∈ P (Cx), `j ∈ L(Cx), as already mentioned at the beginning of Section
4.2.2.
As last we set the value for the penalties Msub = Mgroup =

∑
pi∈P (Cx)

∑
`j∈L(Cx)

max(w(pi, `j)). In this
way, it is never attractive to allow a penalty in order to create a revenue increase.

Given these sets as input for each category, the corresponding revenue maximizing assignment can be
computed. These revenues are depicted in Table 6 together with the violations if they are applicable.
Furthermore the historical average weekly revenue for each category is depicted in order to compare with
the expected weekly revenue of the revenue maximizing assignment of the corresponding category. Note that
the expected weekly revenue is the revenue without the subtraction of the penalties, so it only consists of∑
pi∈P (Cx),`j∈L(Cx)

w(pi, `j)x(pi, `j) for each category Cx.

Expected weekly revenue of
the revenue maximizing
assignment

Number of violations
regarding subgroups

Number of violations
regarding groups

Historical average
weekly revenue

Category C1 e1290,31 0 3 violations regarding group R6 e845,58
Category C2 e1681,17 0 0 e615,20
Category C3 e553,56 1 violation regarding subgroup S2 0 e398,20
Category C4 e587,03 0 0 e436,78
Category C5 e175,79 0 0 e133,94
Category C6 e1207,64 0 1 violation regarding group R3 e884,26

Table 6: Weekly revenue for all categories.

In Table 6 we can see that the expected weekly revenue of the revenue maximizing assignment of every
category is higher than the historical average weekly revenue of each corresponding category. In Section 5.2
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we will visualize this comparison and provide the expected increase in revenue for each category.
Furthermore Table 6 shows the violations that have occurred in the revenue maximizing solution of each
category. It appears that for categories C1, C3 and C6 there does not exist a feasible solution to the CA-
problem where the locations allocated to each subgroup or each group form a connected subgraph in Bx or
Ux respectively. Therefore the revenue maximizing assignments of these categories include one or several
violations.

To obtain a better understanding of the violation occurrences within a revenue maximizing assignment
and the feasibility of such an assignment in general, Section 5.1 visualizes the solution for category C3 in
detail.

5.1 The revenue maximizing solution of Category C3

This subsection provides the solution of category C3 in detail to acquire a better understanding of the fea-
sibility of a solution together with the penalties that may occur.
Category C3 is taken as example since this category has a relative small number of locations that can be
easily illustrated and the solution has one violation regarding subgroups to illustrate.

The input for category C3 are the sets L(C3), P (C3), S(C3), R(C3), T (C3) for which the size is shown in
Table 5. The connectivity graphs B3 and U3 are as follows:

7 6 5

2 3
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Figure 16: The graph B3 = (L(C3), Ẽ).

7 6 5

2 3
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Figure 17: The graph U3 = (L(C3), E).

The location capacities A(`j) for all `j ∈ L(C3) are as follows:

A(l1)
A(l2)
A(l3)
A(l4)
A(l5)
A(l6)
A(l7)
A(l8)


=



1
35
22
19
51
33
34
12


The expected weekly revenues w(pi, `j) are included in Appendix B.
With these inputs, the ILP computed the revenue maximizing solution from which the revenue is depicted
in Table 6. The assignment of subgroups and groups to locations is included in Appendix B, illustrated as
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the ouput of AIMMS. To visualize the assignment of subgroups to locations and to illustrate the violation
regarding subgroup S2 ∈ S(C3), we will present the locations allocated to every subgroup in Figure 18.

7

Subgroup S1

7 6 5

2

Subgroup S2

3

4

Subgroup S3

7

Subgroup S4

7

Subgroup S5

7

Subgroup S6

3

4

Subgroup S7

2

Subgroup S8

7 6 5

Subgroup S9

4

Subgroup S10

Figure 18: The locations allocated to every subgroup of Category C3, illustrated as subgraph of B3.

Every subfigure within Figure 18 represents the locations a subgroup is assigned to. It can be observed
that only the locations assigned to subgroup S2 do not form a connected subgraph in B3 and induce the
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violation within the revenue maximizing assignment of category C3. This violation occurs because it appears
that there is no feasible solution for category C3 for which the locations allocated to every subgroup and
group, form a connected subgraph in graph B3 and graph U3 respectively. Therefore the ILP determined
that it would minimize the number of violations regarding subgroups and groups if subgroup S2 is allocated
to location `2. This is the only location that is isolated from the other allocated locations {`5, `6, `7} of
subgroup S2, which are connected in B3.

We can also illustrate the locations allocated to every group and confirm that they all form a connected
subgraph in U3. This is done in Figure 19.

7 6 5
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Group R1

7

2 3

4

Group R2

7 6 5

2

Group R3

3

4

Group R4

Figure 19: The locations allocated to every group of category C3, illustrated as subgraph of U3.

As can be seen, the locations assigned to every group truly form a connected subgraph in U3.
Thus, Figure 18 and 19 illustrate the feasibility of the revenue maximizing assignment regarding the connec-
tivity of the locations assigned to each subgroup or group.
Furthermore the number of products assigned to each location does not exceed its capacity. This is visualized
in Table 7.

Number of assigned products Location capacity

`1 0 1
`2 34 35
`3 22 22
`4 18 19
`5 51 51
`6 33 33
`7 34 34
`8 0 12

Table 7: Number of products assigned to each location together with its capacity.

Observe that location `1 and `8 are not allocated to any product, which is also illustrated in Figure 18 and
Figure 19. As can be seen in graph B3 and U3 of Figure 16 and Figure 17 respectively, location `1 and `8 are
isolated. Location `1 only has a capacity of one so it is not attractive to allocate a product to this location
since the other products of its group will be allocated to locations that are not connected to location `1 in
graph B3 and U3. This would cause many violations within the assignment of category C3.
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On the other hand, location `8 has a capacity of twelve and we can observe that the expected revenues on
location `8, depicted in Table 9, are attractive to choose. However, since location `8 is isolated from the
other locations in graph B3 and U3, it would induce many violations to allocate products to location `8.
For that reason there are no products assigned to location `1 and `8 in the revenue maximizing assignment
of category C3, where only one violation is included.

5.2 Comparison between historical average weekly revenue and expected weekly
revenue of the optimal solution

To obtain a better representation of the difference between the expected weekly revenue of the revenue
maximizing solution created by the ILP and the historical average weekly revenue of each category, consider
the visualization of Table 6 in Figure 20.

Figure 20: Comparison between the historical average weekly revenue and the expected weekly revenue of
the optimal solution for each category.

For every category there is an increase in revenue between the average weekly revenue and the expected
weekly revenue of the revenue maximizing solution. These expected increases are given in the following
table:

Expected increase in revenue in %

Category C1 52 %
Category C2 173 %
Category C3 39 %
Category C4 34 %
Category C5 31 %
Category C6 37 %

Table 8: Expected increase in revenue per category.

We can observe that category C2 has the highest expected increase in revenue and category C5 the lowest
expected increase in revenue. Section 6 provides possible reasons for this.
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Finally, we are interested in the total revenue of the whole store. Therefore we illustrate the revenues
of Figure 20 together so we can see the difference of the average historical revenue and the expected revenue
of the revenue maximizing assignment for the entire store. This is illustrated in Figure 21.

Figure 21: Comparison between the historical average weekly revenue and the expected weekly revenue of
the optimal solution over all categories.

It can be observed that the revenue of the store is expected to increase with 66% if the store will assign the
products of each category according to the revenue maximizing solution of the corresponding category.
Section 6 explains which conclusions can be drawn from these computational results.
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6 Conclusion

This section will draw conclusions from the computational results presented in Section 5.

The main conclusion can be drawn from Figure 21. Using the revenue maximizing assignment, the rev-
enue of the store is expected to increase with 66% compared to the average weekly revenue over all weeks
W .
A part of this percentage is induced by the uncertainty that is included in the estimated expected weekly
revenues w(pi, `j). But since these expected weekly revenues are all based on the same historical data from
which the average weekly revenues for each category are formed, a big part of the 66% is caused by assign-
ing the products of each category to the locations of the corresponding category according to the revenue
maximizing assignment.

Furthermore Figure 20 illustrates that Category C2 induces the highest contribution to the expected weekly
revenue increase of the store. Category C2 also has the highest absolute and relative increase in revenue in
comparison to the other categories.
A reason for this might be that Category C2 has more products to assign in comparison to the other cate-
gories, which can be seen in Table 5. Therefore Category C2 also has more products to assign to the location
which contributes to the maximizing revenue of the store and may the absolute revenue be higher as for other
categories. Furthermore the graph U2 has more edges in comparison to other categories, so the locations
L(C2) are positioned in such a way that many of these locations are in close proximity to each other within
the store. This can also be seen in the number of paths of T2, which is significant more as for the other
categories. Therefore products of category C2 are probably more often assigned to the location with the
highest expected weekly revenue while the assignment still remains feasible.
The categories C3 up to C6 contributes the least to the expected increase in revenue of the store. It can be
observed that these categories contain less products to assign and their corresponding locations induce less
paths in U3 up to U6 respectively.

Even though we realize that there is uncertainty in the expected weekly revenue of each category, regarding
the expected weekly revenue increase of 66%, it can be concluded that it is interesting for this store to
experiment with the store layout according to the revenue maximizing assignments of each category.
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7 Discussion and further research

There are several topics for which discussion and further research is applicable. We will first discuss the top-
ics regarding the estimation of the expected weekly revenues after which we will discuss the topics regarding
the revenue maximizing assignment of the CA-problem.

In the previous section we showed that the revenue of the store is expected to increase with 66% if the
assignment of product P to locations L is executed according to the revenue maximizing assignment of each
category. As stated, it is disputable which part of the 66% is caused by the optimization and which part is
induced by the uncertainty of the expected weekly revenues. In the scope of this research, the influence of
the uncertainty is not investigated. Thus, we know that there is a large potential to increase the revenue of
the store, but the actual increase might be lower than 66 % due to the uncertainty included in the expected
weekly revenues.

The uncertainty included in the estimated expected weekly revenues is caused by the quality and features of
the available sales data.
Most of the weeks, products were not sold and when they did get sold, the quantity varied a lot. Therefore it
is hard to fit a distribution through the available sales data and we decided to estimate the expected weekly
revenue by taking the average.
However, if we would have had more available sales data that consisted of several years and where products
were sold more often on different locations within the store, the sales data might satisfy the assumptions
for a certain distribution such as a Poisson distribution. In that case it might be more reasonable to use
a Poisson regression to predict the expected weekly revenues in stead of the simple approach of taking the
average.

Furthermore, the only features within the Poisson regression we were able to use were the locations and
products. Therefore the influence of a location to the expected weekly sales of the product is mainly based
on the weekly sales of the products that were sold on this location. It would be interesting to do more
research dedicated to the influence of the location itself in stead of using the products on this location. This
could be done by combining the sales data of several stores for which the physical locations within these
stores are comparable to each other. In that case there would be more data of locations within a store.

Besides that, the weekly sales of a product on a location might be influenced by other factors like weather,
discount or holiday periods. Therefore it would be interesting to include features like this within the Poisson
regression and investigate what influence they have on the expected weekly sales of products on locations.
If we would have sales data of several years and more data of external factors, we could even model the ex-
pected revenue of a product on a location in a particular week. With that, a revenue maximizing assignment
of the store can be computed per week.

For predicting the expected weekly revenue of products on its non-historical locations, we used the ap-
proach of taking a weighted average of the expected weekly sales on historical locations that are in close

proximity to this non-historical location. This is illustrated in Equation 6. The weights d
(i)
k,j used in the

weighted average are based on the expertise of a data expert in the field of retail. It would be interesting
to determine these weights by a more quantitative approach, such as computing the correlations between
locations.

As final remark about this topic, be aware of the fact that predicting the expected weekly revenues of
products on locations within a store could be a research on its own. The main focus of this research is
on the construction of the ILP by which the revenue maximizing assignment of each category is computed.
Therefore it was sufficient to predict the expected weekly sales of products on locations by intuitive methods,
such that we have the input for the categorized assignment problem.

Regarding the categorized assignment problem, there are a few topics to discuss for which further research
is applicable.
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The edges in the connectivity graphs Bx and Ux are defined by the scenario’s described in Section 3.2.2.
These scenario’s illustrate when locations are in close proximity to each other and are determined together
with a data expert in the field of retail. However, it might be interesting to investigate other ways to define
close proximity and thereby the edges of connectivity graphs Bx and Ux. Furthermore it might be interesting
to assign weights to the edges in graphs Bx and Ux that can represent distance or the correlations which are
discussed earlier in this section.

Within the revenue maximizing assignment of a category, the violations regarding the constraint that prod-
ucts of a subgroup or group are positioned in close proximity to each other, are minimized. This has its
consequences regarding the expected revenue of the assignment.
When the uncertainty included in the estimated expected weekly revenues is reduced significantly, it might
be interesting to investigate the influence of the constraints regarding this close proximity on the expected
revenue of the revenue maximizing solution of each category. This can be done by comparing the revenue
maximizing assignment with and without the constraints regarding the close proximity of allocated locations.

This research focuses on which product to assign to which physical location within the store. Here we
neglect the quantity of each product that will be assigned to this location, although it might be interesting
to add this to the problem.
Furthermore it would be interesting to determine on which height within a location a product contributes
the most to the expected revenue of the store. However, this information should then be inserted in the
historical sales data, which is missing now.

Finally, the running-time of computing the revenue maximizing assignment via the ILP took several hours
for category C1 and C2. If a category would consist of significant more locations and paths, it could be
that computing the revenue maximizing assignment takes too long. However, the dual version of checking
connectivity by paths, is checking connectivity by cuts. If the number of locations and paths increase sig-
nificant, it might be more running-time efficient to have an ILP formulation that uses cuts in stead of paths
to ensure that the locations allocated to each subgroup or group form a connected subgraph in graph Bx
or graph Ux respectively. Therefore it would be interesting to set up such an ILP, implement it in AIMMS
and investigate whether it reduces the running-time for instances with significant more locations and edges
within Ux comparing to the ILP which uses paths to check connectivity.
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Appendices

A Proof that Poisson regression with interaction is the same as
taking the average

Let W be the time set, P the set of products, L the set of locations.
The log-likelihood of the vectors of parameters α, β, µ is given by:

`(α, β, µ) =
∑

wt∈W, pi∈P, lj∈L

(Qt(pi, lj)(αi + βj + µi,j)− eαi+βj+µi,j ).

Hence:

∂

∂µi,j
`(α, β, µ) =

∑
wt∈W

(Qt(pi, lj)− eαi+βj+µi,j ) := 0

⇐⇒ eαi+βj+µi,j =
1

|W |
∑
wt∈W

Qt(pi, lj).

Now:

∂

∂βj
`(α, β, µ) =

∑
wt∈W, pi∈P

(Qt(pi, lj)− eαi+βj+µi,j ) =
∑
pi∈P

(
∑
wt∈W

(Qt(pi, lj))− |W |eαi+βj+µi,j ) := 0

⇐= eαi+βj+µi,j =
1

|W |
∑
wt∈W

Qt(pi, lj).

The same holds for αi.

B Input and output for the revenue maximizing assignment of
category C3

This appendix consists of the expected weekly revenues that are used as input for category C3, illustrated
in Table 9. Furthermore, the locations that are allocated to each subgroup and group of Category C3 are
illustrated in Figure 22 and Figure 23 respectively.
In Table 9, the first row corresponds with the first product of P (C3), the second row with the second product
of P (C3), and so on.

Table 9: The expected weekly revenues w(pi, `j) in euro of products pi ∈ P (C3) on locations `j ∈ L(C3).

Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8
0,28 0,28 0,28 0,28 0,28 0,28 0,28 0,28
0,64 0,64 0,64 0,64 0,64 0,64 0,64 0,64
3,58 3,58 3,63 0,58 3,58 0,58 3,58 3,58
4,79 4,79 4,86 0,77 4,79 0,77 4,79 4,79
1,96 1,96 1,99 0,32 1,96 0,32 1,96 1,96
3,24 3,24 3,29 0,52 3,24 0,52 3,24 3,24
3,87 3,87 3,93 0,62 3,87 0,62 3,87 3,87
3,34 3,34 3,39 0,54 3,34 0,54 3,34 3,34
3,09 3,09 3,13 0,50 3,09 0,50 3,09 3,09
3,16 3,16 3,21 0,51 3,16 0,51 3,16 3,16
3,23 3,23 3,28 0,52 3,23 0,52 3,23 3,23
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Table 9 – continued from previous page
Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8

3,01 3,01 3,06 0,49 3,01 0,49 3,01 3,01
2,64 2,64 2,68 0,43 2,64 0,43 2,64 2,64
2,79 2,79 2,83 0,45 2,79 0,45 2,79 2,79
3,83 3,83 3,89 0,62 3,83 0,62 3,83 3,83
2,16 2,16 2,19 0,35 2,16 0,35 2,16 2,16
5,05 5,05 5,12 0,81 5,05 0,81 5,05 5,05
4,51 4,51 4,57 0,73 4,51 0,73 4,51 4,51
3,75 3,75 3,80 0,60 3,75 0,60 3,75 3,75
3,51 3,51 3,56 0,57 3,51 0,57 3,51 3,51
1,48 1,48 1,51 0,24 1,48 0,24 1,48 1,48
5,28 5,28 5,36 0,85 5,28 0,85 5,28 5,28
1,66 1,66 1,69 0,27 1,66 0,27 1,66 1,66
1,25 1,25 1,27 0,20 1,25 0,20 1,25 1,25
6,29 6,29 6,38 1,01 6,29 1,01 6,29 6,29
2,45 2,45 2,48 0,39 2,45 0,39 2,45 2,45
3,54 3,54 3,59 0,57 3,54 0,57 3,54 3,54
2,74 2,74 2,78 0,44 2,74 0,44 2,74 2,74
3,61 3,61 3,66 0,58 3,61 0,58 3,61 3,61
2,65 2,65 2,68 0,43 2,65 0,43 2,65 2,65
8,14 8,14 8,26 1,31 8,14 1,31 8,14 8,14
1,55 1,55 1,57 0,25 1,55 0,25 1,55 1,55
0,80 0,80 0,82 0,13 0,80 0,13 0,80 0,80
1,17 1,17 1,18 0,19 1,17 0,19 1,17 1,17
3,27 3,27 3,31 0,53 3,27 0,53 3,27 3,27
10,72 10,72 10,87 1,73 10,72 1,73 10,72 10,72
2,11 2,11 2,14 0,34 2,11 0,34 2,11 2,11
7,99 7,99 8,11 1,29 7,99 1,29 7,99 7,99
5,11 5,11 5,19 0,82 5,11 0,82 5,11 5,11
7,47 7,47 7,58 1,21 7,47 1,21 7,47 7,47
7,01 7,01 7,12 1,13 7,01 1,13 7,01 7,01
2,48 2,48 2,52 0,40 2,48 0,40 2,48 2,48
3,97 3,97 4,03 0,64 3,97 0,64 3,97 3,97
5,53 5,53 5,61 0,89 5,53 0,89 5,53 5,53
4,88 4,88 4,95 0,79 4,88 0,79 4,88 4,88
4,41 4,41 4,48 0,71 4,41 0,71 4,41 4,41
3,57 3,57 3,62 0,58 3,57 0,58 3,57 3,57
3,50 3,50 3,55 0,56 3,50 0,56 3,50 3,50
4,69 4,69 4,76 0,76 4,69 0,76 4,69 4,69
3,28 3,28 3,33 0,53 3,28 0,53 3,28 3,28
3,48 3,48 3,54 0,56 3,48 0,56 3,48 3,48
6,97 6,97 7,07 1,12 6,97 1,12 6,97 6,97
4,52 4,52 4,59 0,73 4,52 0,73 4,52 4,52
2,44 2,44 2,48 0,39 2,44 0,39 2,44 2,44
4,84 4,84 4,91 0,78 4,84 0,78 4,84 4,84
5,83 5,83 5,92 0,94 5,83 0,94 5,83 5,83
5,78 5,78 5,87 0,93 5,78 0,93 5,78 5,78
4,21 4,21 4,27 0,68 4,21 0,68 4,21 4,21
2,98 2,98 3,03 0,48 2,98 0,48 2,98 2,98
4,80 4,80 4,87 0,77 4,80 0,77 4,80 4,80
1,15 1,15 1,15 1,15 1,15 1,15 1,14 1,36
5,73 5,73 5,73 5,73 5,73 5,73 5,70 6,78
5,39 5,39 5,39 5,39 5,39 5,39 5,36 6,37
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Table 9 – continued from previous page
Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8

6,68 6,68 6,68 6,68 6,68 6,68 6,64 7,90
2,86 2,86 2,86 2,86 2,86 2,86 2,85 3,39
7,66 7,66 7,66 7,66 7,66 7,66 7,61 9,06
4,27 4,27 4,27 4,27 4,27 4,27 4,24 5,05
3,44 3,44 3,44 3,44 3,44 3,44 3,42 4,07
3,91 3,91 3,91 3,91 3,91 3,91 3,89 4,63
3,42 3,42 3,42 3,42 3,42 3,42 3,40 4,05
8,13 8,13 8,13 8,13 8,13 8,13 8,08 9,62
8,12 8,12 8,12 8,12 8,12 8,12 8,07 9,60
5,91 5,91 5,91 5,91 5,91 5,91 5,87 6,98
5,76 5,76 5,76 5,76 5,76 5,76 5,73 6,81
3,84 3,84 3,84 3,84 3,84 3,84 3,82 4,54
3,64 3,64 3,64 3,64 3,64 3,64 3,62 4,30
4,30 4,30 4,30 4,30 4,30 4,30 4,27 5,08
9,32 9,32 9,32 9,32 9,32 9,32 9,26 11,02
3,41 3,41 3,41 3,41 3,41 3,41 3,39 4,03
3,16 3,16 3,16 3,16 3,16 3,16 3,14 3,73
5,59 5,59 5,59 5,59 5,59 5,59 5,55 6,61
12,39 12,39 12,39 12,39 12,39 12,39 12,32 14,66
5,61 5,61 5,61 5,61 5,61 5,61 5,58 6,64
5,75 5,75 5,75 5,75 5,75 5,75 5,71 6,80
3,86 3,86 3,86 3,86 3,86 3,86 3,83 4,56
7,96 7,96 7,96 7,96 7,96 7,96 7,91 9,41
9,26 9,26 9,26 9,26 9,26 9,26 9,20 10,95
3,91 3,91 3,91 3,91 3,91 3,91 3,89 4,63
4,96 4,96 4,96 4,96 4,96 4,96 4,93 5,87
3,95 3,95 3,95 3,95 3,95 3,95 3,93 4,67
0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55
0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55
0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55
0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55
0,69 0,69 0,69 0,69 0,69 0,69 0,69 0,69
0,69 0,69 0,69 0,69 0,69 0,69 0,69 0,69
0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55
0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55
0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,26
0,69 0,69 0,69 0,69 0,69 0,69 0,69 0,69
0,18 0,18 0,18 0,18 0,18 0,18 0,18 0,18
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55
0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,55
0,57 0,57 0,57 0,57 0,57 0,57 0,57 0,57
0,57 0,57 0,57 0,57 0,57 0,57 0,57 0,57
0,56 0,56 0,56 0,56 0,56 0,56 0,56 0,56
0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22
0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45
0,24 0,24 0,24 0,24 0,24 0,24 0,24 0,24
0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02
0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22
0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48
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Table 9 – continued from previous page
Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8

0,28 0,28 0,28 0,28 0,28 0,28 0,28 0,28
0,62 0,62 0,62 0,62 0,62 0,62 0,62 0,62
0,73 0,73 0,73 0,73 0,73 0,73 0,73 0,73
0,76 0,76 0,76 0,76 0,76 0,76 0,76 0,76
0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04
0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22
0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40
5,45 5,45 5,45 5,45 5,45 5,45 3,33 6,06
7,90 7,90 7,90 7,90 7,90 7,90 4,82 8,78
19,33 19,33 19,33 19,33 19,33 19,33 11,80 21,49
15,46 15,46 15,46 15,46 15,46 15,46 9,44 17,19
12,38 12,38 12,38 12,38 12,38 12,38 7,56 13,76
4,04 4,04 4,04 4,04 4,04 4,04 2,47 4,49
4,15 4,15 4,15 4,15 4,15 4,15 2,53 4,61
7,40 7,40 7,40 7,40 7,40 7,40 4,52 8,23
4,93 4,93 4,93 4,93 4,93 4,93 3,01 5,48
5,40 5,40 5,40 5,40 5,40 5,40 3,29 6,00
7,19 7,19 7,19 7,19 7,19 7,19 4,39 8,00
4,36 4,36 4,36 4,36 4,36 4,36 2,66 4,85
37,38 37,38 37,38 37,38 37,38 37,38 22,83 41,56
43,45 43,45 43,45 43,45 43,45 43,45 26,53 48,30
5,37 5,37 5,37 5,37 5,37 5,37 3,28 5,97
7,80 7,80 7,80 7,80 7,80 7,80 4,76 8,67
27,65 27,65 27,65 27,65 27,65 27,65 16,88 30,73
7,92 7,92 7,92 7,92 7,92 7,92 4,84 8,81
15,99 15,99 15,99 15,99 15,99 15,99 9,76 17,77
7,32 7,32 7,32 7,32 7,32 7,32 4,47 8,14
7,32 7,32 7,32 7,32 7,32 7,32 4,47 8,14
15,99 15,99 15,99 15,99 15,99 15,99 9,76 17,77
5,98 5,98 5,98 5,98 5,98 5,98 3,65 6,64
2,10 2,10 2,10 2,10 2,10 2,10 1,28 2,33
6,35 6,35 6,35 6,35 6,35 6,35 3,88 7,06
7,76 7,76 7,76 7,76 7,76 7,76 4,74 8,63
8,10 8,10 8,10 8,10 8,10 8,10 4,94 9,00
8,05 8,05 8,05 8,05 8,05 8,05 4,91 8,94
9,23 9,23 9,23 9,23 9,23 9,23 5,63 10,26
4,97 4,97 4,97 4,97 4,97 4,97 3,03 5,52
11,85 11,85 11,85 11,85 11,85 11,85 7,24 13,17
28,26 11,04 37,29 11,04 37,29 28,26 28,26 28,26
24,08 9,40 31,76 9,40 31,76 24,08 24,08 24,08
27,50 10,74 36,28 10,74 36,28 27,50 27,50 27,50
27,23 10,63 35,92 10,63 35,92 27,23 27,23 27,23
22,71 8,87 29,97 8,87 29,97 22,71 22,71 22,71
46,33 18,09 61,12 18,09 61,12 46,33 46,33 46,33
47,12 18,40 62,17 18,40 62,17 47,12 47,12 47,12
5,72 2,23 7,54 2,23 7,54 5,72 5,72 5,72
7,63 2,98 10,06 2,98 10,06 7,63 7,63 7,63
5,62 2,19 7,41 2,19 7,41 5,62 5,62 5,62
8,16 3,18 10,76 3,18 10,76 8,16 8,16 8,16
5,75 2,25 7,58 2,25 7,58 5,75 5,75 5,75
7,81 3,05 10,30 3,05 10,30 7,81 7,81 7,81
5,57 2,17 7,34 2,17 7,34 5,57 5,57 5,57
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Table 9 – continued from previous page
Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Location 7 Location 8

7,39 2,89 9,75 2,89 9,75 7,39 7,39 7,39
6,06 2,37 8,00 2,37 8,00 6,06 6,06 6,06
8,42 3,29 11,11 3,29 11,11 8,42 8,42 8,42
5,52 2,15 7,28 2,15 7,28 5,52 5,52 5,52
6,80 2,65 8,97 2,65 8,97 6,80 6,80 6,80
6,03 2,36 7,96 2,36 7,96 6,03 6,03 6,03
6,31 2,47 8,33 2,47 8,33 6,31 6,31 6,31
5,88 2,30 7,76 2,30 7,76 5,88 5,88 5,88
5,38 2,10 7,10 2,10 7,10 5,38 5,38 5,38
5,88 2,30 7,76 2,30 7,76 5,88 5,88 5,88
5,67 2,21 7,48 2,21 7,48 5,67 5,67 5,67
5,90 2,30 7,78 2,30 7,78 5,90 5,90 5,90
5,52 2,15 7,28 2,15 7,28 5,52 5,52 5,52
4,59 1,79 6,05 1,79 6,05 4,59 4,59 4,59
7,19 2,81 9,49 2,81 9,49 7,19 7,19 7,19
6,95 2,71 9,16 2,71 9,16 6,95 6,95 6,95
3,74 1,46 4,93 1,46 4,93 3,74 3,74 3,74
4,85 1,89 6,40 1,89 6,40 4,85 4,85 4,85
15,17 15,17 15,17 15,17 15,17 15,17 15,17 15,17
1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98
30,59 30,59 30,59 30,59 30,59 30,59 30,59 30,59
7,69 7,69 7,69 7,69 7,69 7,69 7,69 7,69
6,35 6,35 6,35 6,35 6,35 6,35 6,35 6,35
9,53 9,53 9,53 9,53 9,53 9,53 9,53 9,53
0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
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Figure 22 is the output of AIMMS where is illustrated which locations are allocated to each subgroup. The
columns represent the locations and the rows represent the subgroups of category C3.

Figure 22: The locations assigned to each subgroup of category C3.

Figure 23 is the output of AIMMS where is illustrated which locations are allocated to each group. The
columns represent the locations and the rows represent the groups of category C3.

Figure 23: The locations assigned to each group of category C3.
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