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Summary

Many physical situations can be modeled as an linear time-invariant (LTI) system. These mod-
els can become very complex, consisting of many parameters, making the order of the model
(the size of the state vector) very large. Models of high order can on one hand be very realistic,
but on the other hand very heavy, which makes simulation expensive. This motivates us to
find accurate lower-order approximations, where they should still be a realistic image of the
modelled process.

Another aspect of realistic models is the positive realness of a system. An LTI system that
is postive-real (PR), which is equivalent to passivity in the case of LTI-systems, loses energy
when there is no input, something that happens in nature as well. This brings us to the idea
that if we approximate a physical system, the approximation should at least be positive-real to
follow nature’s law.

In this report, we will start by showing how to find the nearest positive-real system to a given
non-PR one. This is being done for descriptor systems (system described by Eẋ = Ax + Bu
and y = Cx+Du). We will state the problem of finding the nearest PR-system and reformulate
this problem to an equivalent problem, which has a simple convex set of solutions. Then we
will formulate an algorithm to find the nearest PR-system.

The second part of this report is about model reduction. We first describe truncation and
residualization for standard input/state/output LTI systems (E = I). Since truncation and
residualization strongly depend on the initial realization, we present a way to balance the sys-
tem in order to improve the model reduction techniques. This results in balanced truncation
and balanced residualization, and we will give an upper bound for the error between the original
and the reduced system.

Before we can combine the two previous parts to finding the nearest positive-real system of
reduced order, we have to generalize model reduction for standard systems to descriptor sys-
tems. In order to do so, we will generalize classical resulsts, such as Lyapunov equations,
Controllability and Observability Gramians and balanced realizations. We will conclude this
part with an algorithm that gives a balanced truncation for descriptor systems.

Next follows a chapter about the implementation in MATLAB. That chapter will cover the
most important MATLAB functions. Finally, the results will be presented via a numerical
example. We will discuss the results, argue about the combination of finding the nearest PR
system and model reduction and conclude with future research topics.
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1 Introduction

Consider the following m-input m-output linear time-invariant (LTI) system Σ of the form

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1.1)

for t ∈ [t0,∞), with A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m given matrices. Σ
is called a descriptor system if E is not invertible and is called a standard system if E = I.
Sometimes we will use the matrix quituple (E,A,B,C,D) to refer to system (1.1).

Definition 1.1. The system (1.1) is called passive (equivalent to positive-real (PR) for LTI-
systems) if there exists a nonnegative scalar valued function V : X → R, called the storage
function, such that V (0) = 0 and the dissipation inequality

V (x(t1))− V (x(t0)) ≤
∫ t1

t0

u(t)Ty(t)dt

holds for all u(t), t0 and t1 ≥ t0.

The restriction to systems (1.1) with the same number of inputs and outputs is necessary to
have positive-real systems [1], which follows directly from the fact that Definition 1.1 requires
u(t) and y(t) to have the same size. Some authors use the energy function instead of the storage
function. The energy function is denoted by E(t) := V (x(t)). Note that the E in the energy
function is a different E than in (1.1). The difference can be distinguished by looking at the
context. Using the energy function instead of the storage function, we can rewrite equation
(1.1) into the following:

E(t1)− E(t0) ≤
∫ t1

t0

u(t)Ty(t)dt.

This must still hold for all u(t), t0, t1 ≥ t0 and x(t0).

Lemma 1.1. The system (1.1) is passive if and only if there exists a nonnegative function
V (x(t)) : X → R, called the storage function, such that

d

dt
V (x(t)) ≤ u(t)Ty(t)

holds for all u(t).

Proof. ”⇒” Suppose the system of the form (1.1) is passive. Then, by Definition 1.1,

V (x(t1))− V (x(t0)) ≤
∫ t1

t0

u(t)Ty(t)dt

holds for any t0 and t1 (such that t0 ≤ t1) and u(t). The left side can also be written as an
integral: ∫ t1

t0

d

dt
V (x(t))dt = V (x(t1))− V (x(t0)) ≤

∫ t1

t0

u(t)Ty(t)dt,

⇒ d

dt
V (x(t)) ≤ u(t)Ty(t).

The last step follows from the fact that the inequality holds for every t0, t1 and u(t).
”⇐” Suppose we have for a system of the form (1.1)

d

dt
V (x(t)) ≤ u(t)Ty(t),
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for any u(t). Integrating both sides from t0 to t1 yields

V (x(t1))− V (x(t0)) =

∫ t1

t0

d

dt
V (x(t))dt ≤

∫ t1

t0

u(t)Ty(t)dt.

Hence, by Definition 1.1, the system is passive.

Note that if the input function would be u(t) = 0 for all t ∈ [t0,∞), we have Ė(t) =
V̇ (x(t)) ≤ 0, hence the system is dissipative.

The goal of this report is, for a given system Σ (1.1) which is not necessarily positve-real,
to find the nearest PR system of lower order Σa. By model order, we mean the dimension of
the state vector x(t) (sometimes called the McMillan degree). This goal consists of two different
sub-goals: finding the nearest postive-real system on one side and reducing the order of the
system at the other side. The two sub-goals will be discussed in different chapters.

In this report we will start with solving the problem of finding the nearest PR system in Chapter
2. In Chapter 3 we will discuss model reduction of standard systems, which we will expand
to model reduction of descriptor systems in Chapter 4. The implementation in MATLAB will
be shown in Chapter 5 and Chapter 6 covers the results of a numerical experiment. We will
concluse this report with a conclusion and a discussion.

4



2 Finding the nearest positive-real system

This chapter is a summary of [2], together with some extra theory. Therefore the outline is
roughly the same as the outline in [2]. We assume that the reader has knowledge about norms,
inner products and inner product spaces.

The goal of this chapter is, for a given system (1.1) with (E,A,B,C,D) which is not positive-
real, to find the nearest positive-real (PR) system. The distance is given in terms of the
Frobenius norm.

Definition 2.1. For a given matrix A ∈ Rn×n the Frobenius norm is given as

||A||2F := tr(ATA) =
∑
i,j

a2
i,j , (2.1)

where tr(A) is the trace of the matrix A.

In [2] the closest PR system to a non PR system is computed using the set of linear port-
Hamiltonian (PH) systems. This is used to work with a simpler feasible set (the original one
is neither open nor closed, unbounded and highly nonconvex, which will be shown later in this
section).

In Section 2.1, we introduce the notations and definitions that are used throughout this chap-
ter. Moreover, we state our problem in a more technical way. In Section 2.2 a summary of
key results reported in [2] is given. These results will be used in Section 2.3 to reformulate the
problem of finding the nearest positive-real system with a simpler feasible set. This chapter
will be concluded by giving an algorithmical approach to the nearest PR system problem in
Section 2.4.

2.1 Notation, preliminaries and (sub-)problem definition

This section contains notations and definitions used throughout the rest of the chapter. More-
over, we will introduce a more formal way of the problem that will be tackled in this section.
In the following, we will write A � 0 (resp. A � 0) if A is symmetric positive definite (resp.
semi-definite). The real part of s ∈ C is denoted by Re(s).

2.1.1 Positive-real systems

Definition 2.2. The system (1.1) is called regular if the matrix pair (E,A) is regular, that is,
if det(λE − A) 6= 0 for some λ ∈ C, otherwise it is called singular. For a regular matrix pair
(E,A) the roots of the polynomial det(λE − A) are called the finite eigenvalues of the pencil
λE −A or of the pair (E,A). A regular pair (E,A) has ∞ as an eigenvalue (with multiplicity
n∞) if E is singular.

Example 2.1. Consider the following matrix pair (E,A):

(E,A) =

([
1 0
0 0

]
,

[
1 0
0 1

])
.

This matrix pair is regular, since for λ = 2 we get det(2 · E − A) =

[
1 0
0 −1

]
= −1. However,

if the second diagonal term of A would be zero, the matrix pair (E,A) is singular, since the
determinant is zero for every λ ∈ C.
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Definition 2.3. The regular matrix pair (E,A) is said to be stable (resp. asymptotically stable)
if all the finite eigenvalues of λE−A are in the closed (resp. open) left half of the complex plane
and those on the imaginary axis are semisimple. A dynamical system in the form of (1.1) is
called (asymptotically) stable if the matrix pair (E,A) is (asymptotically) stable.

If the system (1.1) is regular, it can be described by its transfer function G(s) : C →
(C ∪∞)m×m, given by:

G(s) := C(Es−A)−1B +D, s ∈ C. (2.2)

The transfer function can be obtained by taking the Laplace transform with x0 = 0 of

Eẋ(t)−Ax(t) = Bu(t),

which results in
(Es−A)X(s) = BU(s),

⇒
Y (s) = C(Es−A)−1BU(s) +DU(s),

Y (s) =
(
C(Es−A)−1B +D

)
U(s).

Hence, if we write Y (s) = G(s)U(s), we have obtained the transfer function as in (2.2).

Definition 2.4. Any representation of G(s) in the form (2.2) is called a realization of G(s).
A realization is called minimal if the matrices A and E are of smallest possible dimension, or
equivalently, the system is called minimal if it is both controllable and observable (see [3] for
standard systems and [4] for descriptor systems).

Definition 2.5. The system (1.1) is said to be

1. Positive real (PR) if its transfer function G(s) satisfies

(a) G(s) has no pole in Re(s) > 0, and

(b) G(s) +G∗(s) � 0 for all s such that Re(s) > 0

2. strictly positive real (SPR) if G(s) satisfies

(a) G(s) has no pole in Re(s) ≥ 0, and

(b) G(iω) +G∗(iω) � 0 for ω ∈ [0,∞)

Note that (a) in Definition 2.5 of PR (resp. SPR) is equivalent to (1.1) being stable (resp.
asymptotically stable). System (1.1) with transfer function G(s) is called passive if and only if
it is PR [5]. Furthermore, SPR =⇒ PR.

2.1.2 Nearest positive-real system problem

We can now define our nearest system problem:

Problem. For a given system (E,A,B,C,D) as in (1.1) and a given set D, find the nearest
system (Ẽ, Ã, B̃, C̃, D̃) ∈ D to (E,A,B,C,D), that is, solve

inf
(Ẽ,Ã,B̃,C̃,D̃)∈D

F(Ẽ, Ã, B̃, C̃, D̃), (2.3)

where F(Ẽ, Ã, B̃, C̃, D̃) := ||A− Ã||2F + ||B − B̃||2F + · · ·+ ||E − Ẽ||2F.

We consider the problem Nearest PR-system (P): D := S, where S is the set of all PR-

systems (Ẽ, Ã, B̃, C̃, D̃). This problem is challenging since S is unbounded, highly nonconvex
[6] and neither open nor closed. See pages 5 and 6 of [2] for an example.
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2.1.3 Port-Hamiltonian systems

A linear time-invariant input-state-output system is called a port-Hamiltonian (PH) system if
it can be written as

Mẋ(t) = (J −R)Qx(t) + (F − L)u(t),

y(t) = (F + L)TQx(t) + (S +N)u(t),
(2.4)

where the following must hold:

� The matrix Q ∈ Rn×n is invertible, M ∈ Rn×n, and QTM = MTQ � 0. The function
x→ 1

2x
TQTMx is the Hamiltonian and describes the energy of the system.

� The matrix JT = −J ∈ Rn×n is the structure matrix and describes how the energy
remains in the system.

� The matrix R ∈ Rn×n with R � 0 is the dissipation matrix and describes the energy
dissipation/loss in the system.

� The matrices F ± L ∈ Rn×m are the port matrices describing the way in which energy
enters and/or leaves the system.

� The matrix S + N , with 0 � S ∈ Rm×m and NT = −N ∈ Rm×m, describes the direct
feed-through from input to output.

� The matrices L,R and S satisfy

K =

[
R L
LT S

]
� 0.

Moreover, the Hamiltonian H(x) = 1
2x

TQTMx defines an energy function (see (1.1)) and sat-
isfies

H(x(t1))−H(x(t0)) ≤
∫ t1

t0

u(t)Ty(t)dt,

which guarantees the passivity of the system. Regular PH systems are always stable [7, Lemma
2]: the matrix pair (E,A) = (M, (J −R)Q) is a so-called dissipative Hamiltonian matrix pair.

2.2 Key results for positive-real systems

In this section, we give some important results from [2] regarding the link between PR- and PH
systems. For the proofs of the following theorems we refer to [2].

The positive realness of a system (1.1) can be characterized in terms of solutions X to the
following linear matrix inequalities (LMIs):[

ATX +XTA XTB − CT

BTX − C −D −DT

]
� 0 and ETX = XTE � 0. (2.5)

Theorem 2.1 ([2], Theorem 1). Consider a system (E,A,B,C,D) in the form (1.1). If the
LMIs (2.5) have a solution X ∈ Rn×n, then (E,A,B,C,D) is PR.

Note that the proof of Theorem 2.1 is not given in [2], but in [1]. The converse of Theorem
2.1 is true under some additional assumptions. In fact, the positive real lemma for standard
systems [8] proves that if a system is PR and minimal, then the existence of a solution to the
LMIs (2.5) is also necessary. Similarly, with an additional condition, the positive real lemma for
descriptor systems [1] proves that the existence of a solution to the LMIs (2.5) is also necessary
for positive realness.
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Theorem 2.2 ([2], Theorem 2). Every PH system (2.4) is PR.

Definition 2.6. A system (E,A,B,C,D) is said to admit a port-Hamiltonian form (PH form)
if there exists a PH system as defined in (2.4) such that

E = M, A = (J −R)Q, B = F − L, C = (F + L)TQ, and D = S +N.

Theorem 2.3 ([2], Theorem 5). Let Σ = (E,A,B,C,D) be a system in the form (1.1). If the
LMIs (2.5) have an invertible solution X ∈ Rn×n, then Σ admits a PH form.

Corollary 2.1 ([2], Corollary 1). If the system (E,A,B,C,D) is minimal and PR, then it
admits a PH form.

Proof. If the system is minimal and PR, the extended positive real lemma for minimal PR
systems [1] guarantees the existence of an invertible solution X of the LMIs (2.5). Then, by
Theorem 2.3 the system admits a PH form.

2.3 Reformulation of the nearest PR system problem

In this section the nearest PR system problem will be reformulated such that it can be solved
using the results of the previous section. Define the following set:

� The set SPH containing all systems (E,A,B,C,D) in PH form, that is,

SPH := {(E,A,B,C,D) | (E,A,B,C,D) admits a PH form}

=

{
(M, (J −R)Q,F − L, (F + L)TQ,S +N) | JT = −J,NT = −N,

MTQ � 0, Q invertible,K =

[
R L
LT S

]
� 0

}
.

By Theorem 2.2, every system in PH form is PR but the converse is not known, hence
SPH ⊆ S.

The set SPH is neither closed (due to the constraint that Q is invertible) nor open (due to the
constraint ETQ � 0). Since we want to work with a set onto which projection is easy (and
possible), we work with the closure SPH of SPH which is equal to the set SPH except that Q can
be singular.

Theorem 2.4 ([2], Theorem 7). Let (E,A,B,C,D) be a system in the form (1.1) and F be
defined as in (2.3). Then

inf
(M,(J−R)Q,F−P,(F+P )TQ,S+N)∈SPH

F(M, (J −R)Q,F − L, (F + L)TQ,S +N) (2.6)

is an upper bound for the infimum of (P) (See (2.3)). Moreover, every feasible solution of (2.6)
is a PR system.

Proof. This follows directly from the fact that SPH ⊆ S (the proof of Theorem 2.2 does not
require Q to be invertible).

We will refer to the problem (2.6) as (PPH). The solution of (2.6) lies in SPH. Since SPH ⊆ S,
the solution lies also in S and is therefore feasible for (P). The solution of (2.3) might be in S,
while not in SPH, so the infimum of (P) can be lower than the infimum of (PPH). Hence (2.6)
is an upper bound for the infimum of (P).
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2.4 Algorithmic solution to the nearest PH system problem

In this section we discuss the algorithm from [2] to tackle (2.6). The standard (E = In and no
perturbation in E) and general systems will be analyzed seperately. The main results are from
[9]. Before we give an algorithm for the nearest PH system problem, we will simplify (2.6).
First, define the following two sets: the set of all symmetric matrices

R := {R ∈ Rn×n | RT = R}

and the set of all skew-symmetric matrices

J := {J ∈ Rn×n | JT = −J}.

2.4.1 Standard systems

For standard systems we have M = E = In and (2.6) can therefore be simplified as follows

inf
J,R,Q,F,P,S,N

||A− (J −R)Q||2F + ||B − (F − L)||2F + ||C − (F + L)TQ||2F

+ ||D − (S +N)||2F,

such that JT = −J, Q � 0, NT = −N and

[
R L
LT S

]
� 0.

(2.7)

Denote PJ(Z) as the projection of Z onto the set of skew-symmetric matrices. For a given
square matrix Z, PJ(Z) is given by (see Appendix A)

PJ(Z) =
Z − ZT

2
, (2.8)

which gives

min
JT=−J

||Z − J ||2F = ||Z − PJ(Z)||2F =

∣∣∣∣∣∣∣∣Z − Z − ZT

2

∣∣∣∣∣∣∣∣2
F

=

∣∣∣∣∣∣∣∣Z + ZT

2

∣∣∣∣∣∣∣∣2
F

. (2.9)

Equation (2.9) implies that the optimal N̂ in (2.7) for ||D − (S + N)||2F is given by D−DT

2 .
This makes sense: since S is symmetric, the closest skew-symmetric matrix to D − S is the
skew-symmetric part of D. Substituting D−DT

2 in (2.7) gives

min
NT=−N

||D − (S +N)||2F =

∣∣∣∣∣∣∣∣D − S − PJ(D − S)

∣∣∣∣∣∣∣∣2
F

=

∣∣∣∣∣∣∣∣D − S − D −DT

2

∣∣∣∣∣∣∣∣2
F

=

∣∣∣∣∣∣∣∣D +DT

2
− S

∣∣∣∣∣∣∣∣2
F

.

Hence, equation (2.7) can be simplified to

inf
J,R,Q,F,P,S

||A− (J −R)Q||2F + ||B − (F − L)||2F + ||C − (F + L)TQ||2F +

∣∣∣∣∣∣∣∣D +DT

2
− S

∣∣∣∣∣∣∣∣2
F

,

such that JT = −J, Q � 0 and

[
R L
LT S

]
� 0.

(2.10)
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Similarly as with the projection on skew-symmetric matrices, P�(Z) denotes the projection of
Z onto the cone of positive semidefinite matrices. For a given square matrix Z, P�(Z) is given
by (see Appendix A)

P�(Z) = U (max(Γ, 0))UT, (2.11)

where UΓUT is an eigenvalue decomposition of the symmetric matrix Z+ZT

2 with unitary matrix
U . Using equation (2.11) gives

min
R�0
||Z −R||2F = ||Z − P�(Z)||2F = ||PJ(Z)||2F +

∑
λ∈Λ(Γ),λ<0

λ2.

In Appendix A we prove why this is true. In order to simplify the description of the algorithm,
define G := {G ∈ Rn×n | G = J −R, JT = −J,R � 0}. Projection of a square matrix Z on G is
equivalent to project seperately on the set of skew-symmetric matrices and the set of positive
semi-definite matrices. This is shown in the following lemma.

Lemma 2.1 ([9], Lemma 7). Let Z ∈ Rn×n, then

min
G∈G
||Z −G||2F = ||Z − (PJ(Z)− P�(−Z))||2F,

where PJ(Z) and P�(−Z) are defined as in (2.8) and (2.11), respectively.

Proof.
min
G∈G
||Z −G||2F = min

JT=−J,R�0
||Z − (J −R)||2F

= min
R�0

(
min

JT=−J
||(Z +R)− J ||2F

)
= min

R�0

∣∣∣∣∣∣∣∣Z + ZT

2
− (−R)

∣∣∣∣∣∣∣∣2
F

=

∣∣∣∣∣∣∣∣Z + ZT

2
+ P�(−Z + ZT

2
)

∣∣∣∣∣∣∣∣2
F

=

∣∣∣∣∣∣∣∣Z + ZT

2
+ P�(−Z)

∣∣∣∣∣∣∣∣2
F

,

(2.12)

where the third equality follows from (2.9) and the last equality holds since P�(Z) = P�(ZT).
Using (2.8) in (2.12) leads to∣∣∣∣∣∣∣∣Z + ZT

2
+ P�(−Z)

∣∣∣∣∣∣∣∣2
F

= ||Z − PJ(Z) + P�(−Z)||2F

= ||Z − (PJ(Z)− P�(−Z))||2F.

In [2] a fast projected gradient method (FGM) is developed to solve (2.10). FGM is in
general much faster than the standard projected gradient method, even in the nonconvex case,
while being relatively simple to implement. They use the following:

� Compute the gradient: all the terms in the objective function are of the form f(X) =
||AX −B||2F whose gradient is ∇Xf(X) = 2AT(AX −B) (see Appendix B).

� Project onto the feasible set: the projection onto the set of skew-symmetric matrices
{J : J = −JT} is given in (2.8), while projection onto the set of positive semidefinite
matrices {R : R � 0} is given in (2.11).

See [2] for a pseudocode for their FGM (Algorithm 1) and the parameter settings.
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2.4.2 General systems

Similarly as for standard systems in (2.10), (2.6) can be simplified to

inf
J,R,Q,M,F,P,S

||A− (J −R)Q||2F + ||B − (F − L)||2F + ||C − (F + L)TQ||2F+∣∣∣∣∣∣∣∣D −DT

2
+ S

∣∣∣∣∣∣∣∣2
F

+ ||E −M ||2F,

such that JT = −J, MTQ � 0 and

[
R L
LT S

]
� 0.

(2.13)

In this case, the coupling constraint MTQ � 0 makes the projection on the feasible domain
of (2.13) difficult, see [7, Example 3] for an example. Following the strategy used in [7], we
introduce a new variable Z := MTQ so that MT = ZQ−1. In this way, the feasible set becomes
simpler:

inf
J,R,Q,Z,F,P,S

||A− (J −R)Q||2F + ||B − (F − L)||2F + ||C − (F + L)TQ||2F+∣∣∣∣∣∣∣∣D −DT

2
+ S

∣∣∣∣∣∣∣∣2
F

+ ||ET − ZQ−1||2F,

such that JT = −J, Z � 0 and

[
R L
LT S

]
� 0,

for which Algorithm 1 has been developed in [2]. The gradient of ||ET − ZQ−1||2F with respect
to Q is given in [7, Appendix A].

2.4.3 Initializations

Since we are dealing with a non-convex optimization problem, it is very important that good
initial points will be chosen. In this section, two initializations are proposed.

Standard initialization
The standard initialization uses Q = In and L = 0. For these values of Q and L, the optimal
solutions for the other variables are given explicitly:

J = (A−AT)/2, R = P�
(
(−A−AT)/2

)
, S = P�

(
(DT +D)/2

)
, F = (B + CT)/2

and Z = P�(ET) = P�(E) for general systems. P�(X) stands for the projection of a matrix X
on the cone of positive semidefinite matrices, see (2.11). This initialization has the advantage
that is very simple to compute while working well in many cases.

LMI-based initializations
Now we will give a initialization that uses the knowledge about the LMIs (2.5). By Theorem
2.2, we know that every PH system is PR. By Theorem 2.3 we also know that if a system does
not admit a PH form, the LMIs (2.5) will not have a solution. However, since we are looking
for a system that does admit a PH form (and hence that will admit a solution to the LMIs),
it makes sense to initialize ‘close’ to the LMIs. There are multiple ways to relax the LMIs and
the following is proposed in [2]:

min
δ,X

δ2

such that

[
ATX +XTA XTB − CT

BTX − C −D −DT

]
+ δIn+m � 0,

ETX + δIn � 0.

(2.14)
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Denote (δ∗, X∗) as an optimal solution of (2.14). By Theorem 2.3, if δ∗ = 0 and X∗ is invert-
ible, then the system (E,A,B,C,D) admits a PH form that can be constructed explicitly [2].
Moreover, as long as X∗ is invertible, the matrices (J, L,R,Q, S,N,Z) can be constructed and
projected onto the feasible set SPH to obtain an initial system in PH form. We will refer to this
initialization as ’LMIs + formula’. For a given Q = X∗, it is possible to compute the matrices
(J, L,R, S,N) in order to obtain a better initial point, by solving a semidefinite program:

min
J,R,S,N,P

||A− (J −R)Q||2F + ||B − (F − L)||2F + ||C − (F + L)TQ||2F +

∣∣∣∣∣∣∣∣D −DT

2
+ S

∣∣∣∣∣∣∣∣
F

,

such that JT = −J and

[
R L
LT S

]
� 0,

while taking Z = P�(MTQ) (as Q = X∗ can be ill-conditioned). We will refer to this initial-
ization as ’LMIs + solve’. By construction, it provides an initial point with smaller objective
function value than ’LMIs + formula’, at the cost of solving another program. Check [2] for
additional remarks.
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3 Model reduction of standard systems

The information given in this chapter is based on Chapter 11 of [10]. That chapter discusses
model reduction, but the information is given in a concise way, that is why this chapter is more
detailed. The outline of this chapter is roughly the same as Chapter 11 of [10].

Consider the following high-order m-input m-output causal linear time-invariant (LTI) system
Σ of the form

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(3.1)

for t ∈ [t0,∞), with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m given matrices. We give
the following problem: find a low-order approximation Σa such that the difference Σ − Σa is
small. By model order, we mean the dimension of the state vector x(t) in a minimal realization
(sometimes called the McMillan degree) and by difference we mean the ∞-norm (H∞ or L∞)
of Σ− Σa. The definition of the H∞-norm, given in (3.3), is only for stable systems. Since the
error Σ − Σa may be unstable and the L∞-norm is defined for all rational functions without
poles on the imaginary axis, we will use the L∞-norm instead.

Two methods for tackling this problem will be given: Section 3.2 covers truncation and residu-
alization of standard systems. In order to obtain better realizations, balanced realizations will
be discussed in Section 3.3. Section 3.4 extends truncation and residualization with the ideas
of balanced realizations to balanced truncation and balanced residualization. But first, we will
give some background information on the L∞-norm and the H∞-norm in Section 3.1.

3.1 Two system norms: the L∞- and H∞-norm

Recall that system Σ as in (3.1) has the transfer function

G(s) = C(sI −A)−1B +D

and impulse response
h(t) = CeAtB1(t) +Dδ(t).

3.1.1 The L2- and H2-norm

Before we can talk about norms of a system, we first need to have an idea about the norm of a
signal. Therefore, we start with the definition of the L2 signal norm, which is the square root
of the energy of the signal:

Definition 3.1. Let z(t) : R → Cn×m be a signal. The L2-norm of the signal z(t) is defined
as the square root of the sum of energies of all its entries,

||z(t)||L2 :=

√√√√∫ ∞
−∞

n∑
i=1

m∑
i=1

|zij(t)|2 dt.

The H2 system norm is based on the L2 signal norm: the H2-norm of system Σ is the
L2-norm of the impulse response h(t) of the system Σ:
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Definition 3.2. Let Σ be the system defined as in (3.1). The H2-norm of the system Σ with
impulse response h(t) is defined as

||Σ||H2 :=

√∫ ∞
0

tr (h∗(t)h(t)) dt,

where h∗(t) is the complex conjugate of h(t).

For causal systems as in (3.1) we can compute the H2-norm without having to solve the
integral. This follows from the following two lemmas. Note that we must have D = 0, otherwise
the impulse response would have a delta function, which has infinite H2-norm.

Lemma 3.1 ([11], Lemma 2.5.1). If G(s) = C(sI − A)−1B and if A is asymptotically stable,
then

ATP + PA+ CTC = 0

has a unique symmetric solution P ∈ Rn×n and

||Σ||H2 =
√

tr(BTPB).

Lemma 3.2 ([11], Lemma 2.5.2). If G(s) = C(sI − A)−1B and if A is asymptotically stable,
then

AQ+QAT +BBT = 0

has a unique symmetric solution Q ∈ Rn×n and

||Σ||H2 =
√

tr(CQCT).

3.1.2 The L∞- and H∞-norm

We can extend the ideas of the previous section to the L∞- and H∞-norm. Consider the class
of harmonic input signals. It is known that the output signal is again harmonic and therefore
the maximal power gain over all harmonic systems can be defined as:

Definition 3.3. Suppose the frequency response G(iω) of system Σ is defined for all real ω.
The L∞-norm of the system Σ is defined as

||Σ||L∞ := sup
ω∈R

σ̄(G(iω)), (3.2)

where σ̄(G(iω)) is the maximum singular value of G(iω).

The following theorem holds for the whole class of signals with finite L2-norm.

Theorem 3.1 ([11], Theorem 2.6.3). Let Σ be the system defined as in (3.1) with transfer
function G(s) and impulse response h(t). Define y(t) :=

∫ t
−∞ h(t− τ)u(τ)dτ . If

sup
0<||u(t)||L2

<∞

||y(t)||L2
||u(t)||L2

is finite, then the frequency response G(iω) exists for all ω ∈ R and the equality

sup
0<||u(t)||L2

<∞

||y(t)||L2
||u(t)||L2

= ||G||L∞ .

holds.
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Now we can finally give a definition for the H∞-norm of a system Σ.

Definition 3.4. Let Σ be a causal LTI-system with finite L2-gain. Suppose its transfer function
G(s) is defined for every s ∈ C in the open right halfplane (ORHP) and analytic on the ORHP.
The H∞-norm is defined as

||Σ||H∞ := sup
Re(s)>0

σ̄(G(s)). (3.3)

3.2 Truncation and residualization

In this section, we assume that the system Σ of (1.1) is a minimal realization of a stable system

with transfer function G(s). We partition the state vector x ∈ Rn into

[
x1

x2

]
, where x1 ∈ Rk

contains the states we want to keep and x2 ∈ Rn−k contains the states we want to remove.
Partitioning the matrices A,B and C in the appropriate way, we obtain:

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t),

ẋ2(t) = A21x1(t) +A22x2(t) +B2u(t),

y(t) = C1x1(t) + C2x2(t) +Du(t).

(3.4)

3.2.1 Truncation

The k’th-order truncation of the realization Σ = (A,B,C,D) is given by Σk = (A11, B1, C1, D).
The truncated model Σk is equal to Σ at infinite frequency:

G(s) = C(sI −A)−1B +D,

Gk(s) = C1(sI −A11)−1B1 +D,

=⇒ G(∞) = Gk(∞) = D.

Apart from this, there is little to say about the relationship between Σ and Σk. If, however, A
is in Jordan form, then it is easy to order the states so that x2 corresponds to high-frequency
or fast modes. For simplicity, assume that A has been diagonalized so that

A =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 , B =


bT1
bT2
...
bTn

 and C =
[
c1 c2 . . . cn

]
.

Then, if the λi’s are ordered such that |λ1| < |λ2| < · · · < |λn|, the fastest modes are removed
from the model after truncation. The difference between Σ and Σk following a k’th-order model
truncation is given by

G(s)−Gk(s) = C(Is−A)−1B +D −
(
C1(sI −A11)−1B1 +D

)
= C(Is−A)−1B − C1(sI −A11)−1B1

=

n∑
i=1

cib
T
i

s− λi
−

k∑
i=1

cib
T
i

s− λi

=
n∑

i=k+1

cib
T
i

s− λi
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and therefore, by following the definition of the L∞-norm (3.2),

||Σ− Σk||L∞ = sup
ω∈R

σ̄
(
G(iω)−Gk(iω)

)
= sup

ω∈R

∣∣∣∣∣σ̄
(

n∑
i=k+1

cib
T
i

iω − λi

)∣∣∣∣∣
≤ sup

ω∈R

n∑
i=k+1

∣∣∣∣ σ̄(cib
T
i )

iω − λi

∣∣∣∣ = sup
ω∈R

n∑
i=k+1

σ̄(cib
T
i )

|iω − λi|

= sup
ω∈R

n∑
i=k+1

σ̄(cib
T
i )√

Re(−λi)2 + Im(ω − λi)2

≤
n∑

i=k+1

σ̄(cib
T
i )

|Re(λi)|
.

(3.5)

Note that, from (3.5) it follows that the error depends on the residues cib
T
i as well as on the λi’s.

Therefore the distance of λi from the imaginary axis is by itself not a very reliable indicator of
whether the associated mode should be included in the truncated model or not.
An advantage of model truncation is that the poles of Σk are a subset of the poles of Σ, so any
physical interpretation of the original model can also be found in the truncated model.

3.2.2 Residualization

Consider the partitioned system in (3.4). Where in truncation, we discard all the states and
dynamics associated with x2, in residualization we instead simply set ẋ2 = 0 (i.e. we residualize
x2) in the state-space equations. If we assume A22 to be invertible, we can solve ẋ2 = 0 in terms
of x1 and u:

ẋ2(t) = A21x1(t) +A22x2(t) +B2u(t) = 0,

=⇒ A22x2(t) = −A21x1(t)−B2u(t),

=⇒ x2(t) = −A−1
22 A21x1(t)−A−1

22 B2u(t).

Substituting x2 back in the state-space equations gives

ẋ1(t) = A11x1(t) +A12x2(t) +B1u1(t)

= A11x1(t) +A12

(
−A−1

22 A21x1(t)−A−1
22 B2u(t)

)
+B1u1(t)

=
(
A11 −A12A

−1
22 A21

)
x1(t) +

(
B1 −A12A

−1
22 B2

)
u(t),

y(t) = C1x1(t) + C2x2(t) +Du(t)

= C1x1(t) + C2

(
−A−1

22 A21x1(t)−A−1
22 B2u(t)

)
+Du(t)

=
(
C1 − C2A

−1
22 A21

)
x1(t) +

(
D − C2A

−1
22 B2

)
u(t).

If we define
Ar := A11 −A12A

−1
22 A21,

Br := B1 −A12A
−1
22 B2,

Cr := C1 − C2A
−1
22 A21,

Dr := D − C2A
−1
22 B2,

(3.6)

we obtain the residualized model Σr = (Ar, Br, Cr, Dr). Again, similar as in Section 3.2.1, as-
sume that (A,B,C,D) has been put in Jordan form, with the eigenvalues ordered such that x2

contains the fast modes. Model reduction by residualization is then equivalent to singular pertu-
bational approximation [12], where the derivatives of the fastest states are allowed to approach
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zero with some parameter ε. An important property of residualization is that it preserves the
steady-state gain of the system: Gr(0) = G(0). This is a very strong difference with truncation,
which retains the system properties at infinite frequency. Therefore, truncation is preferred if
we want accuracy at high frequencies and residualization if we want accuracy at low frequencies.

Both methods highly depend on the original realization. A possible realization is the balanced
realization which will be considered next.

3.3 Balanced realizations

A balanced realization is an asymptotically stable minimal realization in which the Controlla-
bility and Observability Gramians are equal and diagonal. More formally:

Definition 3.5. Let (A,B,C,D) be a minimal realization of a stable, rational transfer function
G(s), then (A,B,C,D) is called balanced if the solutions to the following Lyapunov equations

AP + PAT +BBT = 0,

ATQ+QA+ CTC = 0
(3.7)

are P = Q = diag(σ1, σ2, . . . , σn) =: S, where σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

Any minimal realization of a stable transfer function can be balanced, see Subsection 3.3.1.
The matrices P and Q are the Controllability and Observability Gramians, which are the
solutions of (3.7) and can also be defined by

P :=

∫ ∞
0

eAtBBTeA
Ttdt,

Q :=

∫ ∞
0

eA
TtCTCeAtdt.

(3.8)

If the system Σ is balanced, then P = Q = S and from now on we will simply call S the Gramian
of G(s). Note that the symbol S is also used for the direct feed-through in port-Hamiltonian
systems. However, it will be made clear in the context whether we are talking about the system
or about the direct feed-through. The σi’s are the ordered Hankel singular values of G(s). More
on the Hankel singular values can be found in Subsection 3.3.2.

The Hankel singular values provide useful information about the contribution of the states
on the input-output behaviour of the system. If σi is small, state xi has a small role in the
input-output behaviour, see Section 3.4 for more details.

3.3.1 Balancing the system

Example 3.1. Suppose the system (3.1) has the realization A =

[
−1 − 4

α
4α −2

]
, B =

[
1

2α

]
,

C =
[
−1 2

α

]
and D = 0, where α is a nonzero real number. It has transfer function

G(s) =
3s+ 18

s2 + 3s+ 18
.

It is easy to check that the Controllability Gramian of the realization is given by

P =

[
1
2 0
0 α2

]
.
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Since the last diagonal term of P can be made arbitrarily small by making α small, the con-
trollability of the last state can be made arbitrarily weak. If we would remove this state, we
get A = −1, B = 1 and C = −1 with transfer function

G(s) =
−1

s+ 1
,

which is not close to the original one at all. To get a better understanding of the problem, we
check the Observability Gramian as well:

Q =

[
1
2 0
0 1

α2

]
.

Now we can see that if we make α small, the last diagonal term of Q becomes large and therefore
the last state becomes very observable (i.e. contributes more and more to the output).

This example shows that P or Q alone cannot give an accurate indication of the impact of
the states on the system. This motivates the introduction of a balanced realization, where P
and Q are equal. We will now explain how to find a realization such that it is balanced.

Suppose we do the state transformation by the nonsingular T ∈ Rn×n, i.e. x̂(t) = Tx(t).
The realization is as follows {

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

=⇒

{
T−1 ˙̂x(t) = AT−1x̂(t) +Bu(t),

y(t) = CT−1x̂(t) +Du(t),

=⇒

{
˙̂x(t) = TAT−1x̂(t) + TBu(t),

y(t) = CT−1x̂(t) +Du(t),

which gives the transformed system

˙̂x(t) = Âx̂(t) + B̂u(t),

y(t) = Ĉx̂(t) + D̂u(t),
(3.9)

with Â = TAT−1, B̂ = TB, Ĉ = CT−1 and D̂ = D. Then the Gramians are transformed to
P̂ = TPTT and Q̂ = T−TQT−1. To see this for P̂ , substitute (3.9) and P̂ = TPTT into (3.7)
to get

ÂP̂ + P̂ ÂT + B̂B̂T = TAT−1TPTT + TPTTT−TATTT + TBBTTT

= TAPTT + TPATTT + TBBTTT

= T
(
AP + PAT +BBT

)
TT = 0.

(3.10)

The last part is zero since P is the solution of (3.7), so P̂ is the Controllability Gramian of the
transformed realization. The same can be shown for Q̂. Note that P̂ Q̂ = TPQT−1 and there-
fore the eigenvalues of the product of the Gramians are invariant under a state transformation.

Now consider another, similar state transformation with nonsingular T ∈ Rn×n such that T
gives the eigenvector decomposition

PQ = T−1ΛT, Λ = diag(λ1, λ2, . . . , λn).
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Then the columns of T−1 are eigenvectors of PQ corresponding to the eigenvalues {λi}. The
only thing left is to make sure that the new realization is balanced. If the system (3.1) is a
minimal realization, a balanced realization obtained by the state transformation x̂(t) = Tx(t)
can be found by the following simplified procedure [13]:

1. Compute the Controllability and Observability Gramians P > 0, Q > 0,

2. Find a matrix R such that P = RTR,

3. Diagonalize RQRT to get RQRT = US2UT,

4. Let T−1 = RTUS−
1
2 . Then TPTT = S = T−TQT−1 and thus (Â, B̂, Ĉ, D̂) =

(TAT−1, TB,CT−1, D) is balanced.

In step 4, S = diag(σ1, σ2, . . . , σn) and S2 = Λ. Assuming σ1 ≥ σ2 ≥ · · · ≥ σn and assume that
σr � σr+1 for some r, then the balanced realization implies that the states corresponding to
the singular values σr+1, . . . , σn are less controllable and observable than the others. Therefore,
removing the ones which are less controllable and observable will not lead to a large loss in the
information about the system.

3.3.2 Hankel norm and singular values

The Hankel norm of a stable system Σ is obtained when one applies an input u(t) up to t = 0,
measures the output y(t) for t > 0 and selects u(t) such that the ratio of the L2-norm is maximal.

Definition 3.6. Let Σ be a stable system with input signal u(t) and output signal y(t). The
Hankel norm is defined as

||Σ||H := max
u(t),u(t)=0,t>0

√∫∞
0 ||y(τ)||22dτ√∫ 0
−∞ ||u(τ)||22dτ

.

It can be shown [13, Theorem 8.1] that the Hankel norm is equal to

||Σ||H = max
i

√
λi(PQ),

where P and Q are as defined in (3.8). The corresponding Hankel singular values are the
positive square roots of the eigenvalues of PQ,

σi :=
√
λi(PQ).

If these σi’s are ordered such that σ1 ≥ σ2 ≥ · · · ≥ σn, the Hankel- and H∞-norm are closely
related as follows [13]:

||Σ||H = σ1 ≤ ||Σ||H∞ ≤ 2
n∑
i=1

σi. (3.11)

3.4 Balanced truncation and balanced residualization

Let (A,B,C,D) be a balanced realization of Σ, partitioned as in (3.4) together with the appro-
priate partitioning of S,

S =

[
S1 0
0 S2

]
,

where S1 = diag(σ1, σ2, . . . , σk), S2 = diag(σk+1, σk+2, . . . , σn) and σk ≥ σk+1.
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3.4.1 Balanced truncation

The reduced order model given by (A11, B1, C1, D) in equation (3.4) is called a balanced tuncation
of the system Σ, if Σ is a balanced realization. A balanced truncation is also a balanced
realization [14] and from (3.11) it follows that the H∞-norm of the error between Σ and Σk is
bounded by twice the sum of the last n− k Hankel singular values (i.e. twice the trace of Σk).

||Σ− Σk||L∞ ≤ 2

n∑
i=k+1

σi. (3.12)

A precise statement of the bound on the approximation error is given in Theorem 3.2 below.

3.4.2 Balanced residualization

The difference between balanced residualization and balanced truncation is the same as the
difference between residualization and truncation. Where in balanced truncation the last n− k
states are discarded, in balanced residualization the derivatives of these last n−k states are set to
zero. In this way the balanced residualization of the balanced system Σ is Σr = (Ar, Br, Cr, Dr),
where Ar, Br, Cr, Dr are defined as in (3.6).

It is shown in [12] that balanced residualization has the same error bound (3.12) as balanced
truncation. A precise statement of the error bound is given in the following theorem:

Theorem 3.2 ([10], Theorem 11.1). Let G(s) be a stable rational transfer function with Hankel
singular values σ1 > σ2 > · · · > σN where each σi has multiplicity ri and let Gka(s) be obtained
by truncating or residualizing the balanced realization of G(s) to the first (r1 + r2 + · · · + rk)
states. Then

||G(s)−Gka(s)||L∞ ≤ 2
N∑

i=k+1

σi.

20



4 Model reduction of descriptor systems

In Chapter 3 we have introduced model reduction for standard systems. In this chapter we
will generealize balanced truncation of standard systems to balanced truncation of descriptor
systems. In order to do so, we will have to reshape classical system analysis results, such
as Lyapunov equations, Controllability and Observability Gramians and balanced realizations.
Recall the LTI-system Σ (1.1):

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(4.1)

with E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m given. Σ is called a descripor
system if E is not invertible and a strandard system if E = I. The results in this chapter when
Σ would be a standard system are the same as the results in Chapter 3.

System (4.1) can also be described by its transfer function

G(s) = C(Es−A)−1B +D,

with s ∈ C.

In this chapter we are interested in finding an approximation Σa for Σ given in (4.1) with
reduced order k:

Eaẋ(t) = Aax(t) +Bau(t),

y(t) = Cax(t) +Dau(t),

with Ea, Aa ∈ Rk×k, Ba ∈ Rk×m, Ca ∈ Rm×k and Da ∈ Rm×m. Note that the input is the
same in both systems. In [15] an extension of the well-known balanced truncation to descriptor
systems (4.1) is given, which is closely related to the two Lyapunov equations (3.7). This chapter
is based on the results of [15]. We start in Section 4.1 with generalizing the classical system
analysis results to the notion of descriptor systems. These results will be used in Section 4.2 to
introduce balanced realizations. When we know how to create balanced realizations of descriptor
systems, we can truncate the system in Section 4.3 to obtain a balanced truncation, and present
an algorithm.

4.1 Classical results of standard systems extended to descriptor systems

We refer to Definitions 2.2 – 2.4 for the notion of regular and singular systems, the (finite)
eigenvalues of the matrix pencil λE −A, (asymptotically) stability, and (minimal) realizations.

We assume in this chapter that the pencil λE−A is regular. In this case λE−A can be reduced
to the Weierstrass canonical form [16], that is, there exist nonsingular matrices W,T ∈ Rn×n

such that

E = W

[
Inf

0

0 N

]
T and A = W

[
J 0
0 In∞

]
T, (4.2)

where J ∈ Cnf×nf is a matrix in Jordan canonical form associated with the nf finite eigenvalues
(including the multiplicity) of the pencil λE − A and N ∈ Cn∞×n∞ is a nilpotent matrix in
Jordan canonical form corresponding to the n∞ eigenvalues (including the multiplicity) of ∞.
If nf < n and N has degree of nilpotency ν (Nν = 0 and N i 6= for i < ν), then ν is called the
index of the pencil λE −A. We discuss now the generalization to the regular pencil case of the
notion of invariant subspace of a matrix.
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Definition 4.1. Let λE −A be a regular matrix pencil, with E,A ∈ Rn×n. The linear spaces
V,W ⊂ Rn are called deflating subspaces of λE −A if we have

Ev ∈ W and Av ∈ W

for all v ∈ V and
span
v∈V
{Ev,Av} =W.

Moreover, V is called the right deflating subspace and W is called the left deflating subspace of
λE −A.

We refer to [17] for more information about deflating subspaces. The matrices

Pr := T−1

[
Inf

0

0 0

]
T and Pl := W

[
Inf

0

0 0

]
W−1, (4.3)

with W and T as in (4.2), are the spectral projections onto the right and left deflating subspaces
of λE −A corresponding to the finite eigenvalues [18].

Consider the LTI system (4.1). If the pencil λE − A is regular, u(t) is sufficiently smooth
and the initial solution x0 is consistent (i.e. if (4.1) together with x0 has at least one solution),
then (4.1) has a unique continuously differentiable solution x(t), see [4], given by

x(t) = F(t)Ex0 +

∫ t

0
F(t− τ)Bu(τ)dτ +

v−1∑
k=0

F−k−1Bu
(k)(t). (4.4)

Here

F(t) := T−1

[
etJ 0
0 0

]
W−1 (4.5)

is the fundamental solution matrix of the descriptor system (4.1) and the matrices Fk have the
form

Fk := T−1

[
0 0
0 −N−k−1

]
W−1, k = −1,−2, . . . . (4.6)

Note that Fk = 0 for k < −ν, sinceNν = 0. Two realizations (E,A,B,C,D) and (Ẽ, Ã, B̃, C̃, D̃)
are called equivalent if there exist invertible matrices W̃ and T̃ such that

Ẽ = W̃ET̃ ,

Ã = W̃AT̃ ,

B̃ = W̃B,

C̃ = CT̃ ,

D̃ = D.

(4.7)

4.1.1 Controllability and Observability Gramians

We can split descriptor systems into two parts: the proper and improper part. The proper
part, associated with the finite eigenvalues, behaves as standard systems, where the improper
part, associated with the infinite eigenvalues, has a different behaviour. This explains the two
different terms in the solution x(t) in (4.4). Therefore, the Controllability and Observability
Gramians of the proper and improper parts are also different. They are given in this subsection.
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Proper part
Assume that the pencil λE −A is asymptotically stable. Then the integrals

Pp :=

∫ ∞
0
F(t)BBTFT(t)dt

and

Qp :=

∫ ∞
0
FT(t)CTCF(t)dt

exist, where F(t) is given in (4.5). The matrix Pp is called the proper Controllability Gramian
and the matrix Qp is called the proper Observability Gramian of the descriptor system (4.1),
see [18] and [19].

If E = I, then Pp and Qp are the usual Controllability and Observability Gramians for standard
systems. Pp and Qp are the unique symmetric, positive semidefinite solutions of the projected
generalized continuous-time Lyapunov equations

EPpA
T +APpE

T = −PlBBTPT
l ,

Pp = PrPp
(4.8)

and
ETQpA+ATQpE = −PT

r C
TCPr,

Qp = QpPl
respectivily, where Pr and Pl are given in (4.3), see [18].

Proposition 4.1. If λE −A is in Weierstrass canonical form (4.2) and if the matrices

W−1B =

[
Bp
Bi

]
and CT−1 =

[
Cp Ci

]
(4.9)

are partitioned in blocks conformally the proper and improper parts of E and A (such that the
dimensions agree), then

Pp = T−1

[
Gp 0
0 0

]
T−T, Qp = W−T

[
Hp 0
0 0

]
W−1, (4.10)

where Gp and Hp satisfy the standard continuous-time Lyapunov equations

JGp +GpJ
T = −BpBT

p ,

JTHp +HpJ = −CT
p Cp.

(4.11)

Proof. We only provide the part of the proof for Pp. The proof for Qp is similar.

Suppose that Pp is the solution of (4.8). We want to show that Pp is of the form (4.10),
where Gp has to satisfy (4.11). From the second equation of (4.8) and (4.3) we have

Pp = PrPp,

Pp = T−1

[
Inf

0

0 0

]
TPp,

TPp =

[
Inf

0

0 0

]
TPp,
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which means that the matrix TPp must be of the form

TPp =

[
Gp1 Gp2
0 0

]
.

Multiplying the left and right side of the equation by TT gives

TPpT
T =

[
Gp1 Gp2
0 0

]
TT

=

[
Gp1 Gp2
0 0

] [
TT

1 TT
3

TT
2 TT

4

]
=

[
Gp1T

T
1 +Gp2T

T
2 Gp1T

T
3 +Gp2T

T
4

0 0

]
.

The matrix TPpT
T is again symmetric, hence Gp1T

T
3 + Gp2T

T
4 = 0 and if we write Gp :=

Gp1T
T
1 +Gp2T

T
2 , we get

TPpT
T =

[
Gp 0
0 0

]
,

=⇒ P = T−1

[
Gp 0
0 0

]
T−T.

(4.12)

Substituting (4.12) in the left-hand side of the first equation of (4.8) and using the Weierstrass
canonical form for E and A (4.2) gives

EPpA
T +APpE

T = W

[
Iq 0
0 N

]
TT−1

[
Gp 0
0 0

]
T−TTT

[
J 0
0 In−q

]T

WT

+W

[
J 0
0 In−q

]
TT−1

[
Gp 0
0 0

]
T−TTT

[
Iq 0
0 N

]T

WT

= W

([
Iq 0
0 N

] [
Gp 0
0 0

] [
J 0
0 In−q

]T

+

[
J 0
0 In−q

] [
Gp 0
0 0

] [
Iq 0
0 N

]T
)
WT

= W

[
GpJ

T + JGp 0
0 0

]
WT.

(4.13)
Writing out the right-hand side of the first equation of (4.8) with Pl defined in (4.3) gives

EPpA
T +APpE

T = −W
[
BpB

T
p 0

0 0

]
WT.

Now evaluate the right-hand side of (4.8). Equation (4.3) with the right-hand side of (4.8) gives

−PlBBTPT
l = −W

[
Iq 0
0 0

]
W−1BBTW−T

[
Iq 0
0 0

]T

WT.

Equation (4.9) for W−1B gives

−PlBBTPT
l = −W

[
Iq 0
0 0

] [
Bp
Bi

] (
W−1B

)T [Iq 0
0 0

]T

WT

= −W
[
Bp 0
0 0

] [
Bp
Bi

]T [
Iq 0
0 0

]T

WT

= −W
[
BpB

T
p 0

0 0

]
WT,
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Equations (4.12) and (4.13) must equal eachother, which gives that Gp must satisfy

JGp +GpJ
T = −BpBT

p .

Hence, we conclude that

Pp = T−1

[
Gp 0
0 0

]
T−T,

where Gp satisfies the standard continuous-time Lyapunov equation

JGp +GpJ
T = −BpBT

p .

Improper part
The improper Controllability Gramian of the descriptor system (4.1) is defined by

Pi :=
−1∑

k=−ν
FkBBTFT

k ,

and the improper Observability Gramian of the descriptor system (4.1) is defined by

Qi :=
−1∑

k=−ν
FT
k C

TCFk,

where Fk are defined in (4.6). Pi and Qi are the unique symmetric, positive semidefinite
solutions of the projected generalized discrete-time Lyapunov equations

APiA
T − EPiET = (I − Pl)BBT(I − Pl)T,

PrPi = 0

and
ATQiA− ETQiE = (I − Pr)TCTC(I − Pr),

QiPl = 0,

respectively, where Pr and Pl are given in (4.3), see [20].

Proposition 4.2. If λE−A is in Weierstrass canonical form (4.2) and if the matrices W−1B
and CT−1 are partitioned as in (4.11), then

Pi = T−1

[
0 0
0 Gi

]
T−T, Qi = W−T

[
0 0
0 Hi

]
W−1,

where Gi and Hi satisfy the standard discrete-time Lyapunov equations

Gi −NGiNT = BiB
T
i ,

Hi −NTHiN = CT
i Ci.

Proof. The outline of this proof is the same as in proposition 4.1 and is therefore omitted.
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4.1.2 Hankel singular values

For standard systems the Controllability and Observability Gramians are not system invariant,
but the product of both Gramians is system invariant. The same holds for the proper and
improper Controllability and Observability Gramians: under the system equivalence transfor-
mation (W̃ , T̃ ), see (4.7), the Controllability Gramians are transformed to

P̃p = T̃−1PpT̃
−T,

P̃i = T̃−1PiT̃
−T,

whereas the Observability Gramians are transformed to

Q̃p = W̃−TQpW̃
−1,

Q̃i = W̃−TQiW̃
−1.

To see why this is true, follow the same steps as in (3.10). So we can conclude that the Gramians
of a descriptor system are not system invariant. However, it follows from

P̃pẼ
TQ̃pẼ = T̃−1PpT̃

−TT̃TETW̃TW̃−TQpW̃
−1W̃ET̃

= T̃−1PpE
TQpET̃ ,

P̃iÃ
TQ̃iÃ = T̃−1PiT̃

−TT̃TATW̃TW̃−TQiW̃
−1W̃AT̃

= T̃−1PiA
TQiAT̃

that the spectra of the matrices PpE
TQpE and PiA

TQiA are system invariant. These matrices
play the same role for descriptor systems as the product of the Gramians for standard state
space systems.

Theorem 4.1 ([15], Theorem 2.6). Let λE − A be asymptotically stable. Then the matrices
PpE

TQpE and PiA
TQiA have real, non-negative eigenvalues.

Definition 4.2. Let nf and n∞ be the dimensions of the deflating subspaces of the asymp-
totically stable pencil λE −A corresponding to the finite and infinite eigenvalues, respectively.
The square roots of the nf largest eigenvalues of the matrix PpE

TQpE, denoted by ςj , are
called the proper Hankel singular values of the descriptor system (4.1). The square roots of the
n∞ largest eigenvalues of the matrix PiA

TQiA, denoted by θj , are called the improper Hankel
singular values of the descriptor system (4.1).

We assume that the proper and improper Hankel singular values are ordered decreasingly,
i.e.

ς1 ≥ ς2 ≥ ς3 ≥ · · · ≥ ςnf
, θ1 ≥ θ2 ≥ θ3 ≥ · · · ≥ θn∞ .

The proper and improper Hankel singular values form the set of Hankel singular values of the
descriptor system (4.1). For E = I, the proper Hankel singular values are the classical Hankel
singular values of standard state space systems [21], [22].

Since the proper and improper Controllability and Observability Gramians are symmetric and
positive semidefinite, there exist Cholesky factorizations

Pp = RpR
T
p , Qp = LT

p Lp,

Pi = RiR
T
i , Qi = LT

i Li,
(4.14)

where RT
p , Lp, R

T
i , Li ∈ Rn×n are upper triangular matrices. The following lemma gives a

connection between the proper and improper Hankel singular values of system (4.1) and the
standard singular values of the matrices LpERp and LiARi.
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Lemma 4.1 ([15], Lemma 2.8). Suppose the pencil λE−A is asymptotically stable. Consider the
Cholesky factorizations (4.14) of the proper and improper Gramians of system (4.1). Then the
proper Hankel singular values of system (4.1) are the nf largest singular values of the matrix
LpERp and the improper Hankel singular values of system (4.1) are the n∞ largest singular
values of the matrix LiARi.

4.2 Balanced realizations

In Section 3.3 we explained how to find a balanced realization for standard state space systems.
In this section we extend this to descriptor systems. We refer the reader to Definition 2.4 for
the definition of realization and minimal realization.

Definition 4.3. A realization (E,A,B,C,D) of the transfer function G(s) is called balanced if
the solutions to the generalized Lyapunov equations, Pp, Qp, Pi and Qi, satisfy

Pp = Qp =

[
S 0
0 0

]
and Pi = Qi =

[
0 0
0 Θ

]
(4.15)

with S = diag(ς1, ς2, . . . , ςnf
) and Θ = diag(θ1, θ2, . . . , θn∞).

We will now show that for a minimal realization (E,A,B,C,D) with the pencil λE − A
being asymptotically stable, there exists a system equivalence transformation (WT

b , Tb) such
that the realization

Σb = (WT
b ETb,W

T
b ATb,W

T
b B,CTb, D) (4.16)

is balanced.
Consider the Cholesky factorizations (4.14) of the Gramians. We may assume without loss of
generality that the matrices RT

p , Lp, R
T
i and Li have full row rank. If (E,A,B,C,D) is minimal,

it follows from Lemma 4.1 that ςj = σj(LpERp) > 0, j = 1, 2, . . . , nf , and θj = σj(LiARi) >
0, j = 1, 2, . . . , n∞ [15]. Hence, the matrices LpERp and LiARi are nonsingular. Let

LpERp = UpSV
T
p , LiARi = UiΘV

T
i (4.17)

be singular value decompositions of LpERp and LiARi, where Up, Vp ∈ Rn×nf and Ui, Vi ∈
Rn×n∞ are orthogonal, S = diag(ς1, ς2, . . . , ςnf

) and Θ = diag(θ1, θ2, . . . , θn∞) are nonsingular.
Consider the matrices

Wb =
[
LT
p UpS

− 1
2 LT

i UiΘ
− 1

2

]
∈ Rn×n, W ′b =

[
ERpVpS

− 1
2 ARiViΘ

− 1
2

]
∈ Rn×n

and

Tb =
[
RpVpS

− 1
2 RT

i ViΘ
− 1

2

]
∈ Rn×n, T ′b =

[
ETLT

p UpS
− 1

2 ATLT
i UiΘ

− 1
2

]
∈ Rn×n. (4.18)

From [15] it follows that
LpERi = 0 and LiARp = 0. (4.19)

Then

(T ′b)
TTb =

[
S−

1
2UT

p LpERpVpS
− 1

2 S−
1
2UT

p LpERiViΘ
− 1

2

Θ−
1
2UT

i LiARpVpS
− 1

2 Θ−
1
2UT

i LiARiViΘ
− 1

2

]
= In,

i.e., the matrices Tb and T ′b are nonsingular and (T ′b)
T = T−1

b . In the same way, we can show
that the matrices Wb and W ′b are nonsingular and (W ′b)

T = W−1
b . Using equations (4.14) and
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(4.17)–(4.19), we obtain that the Controllability Gramian of the transformed system (4.16) has
the form of (4.15):

T−1
b PpT

−T
b = (T ′b)

TRpR
T
p T
′
b

=

[
S−

1
2UT

p LpE

Θ−
1
2UT

i LiA

]
RpR

T
p

[
ETLT

p UpS
− 1

2 ATLT
i UiΘ

− 1
2

]
=

[
S−

1
2UT

p LpERpR
T
p E

TLT
p UpS

− 1
2 S−

1
2UT

p LpERpR
T
pA

TLT
i UiΘ

− 1
2

Θ−
1
2UT

i LiARpR
T
p E

TLT
p UpS

− 1
2 Θ−

1
2UT

i LiARpR
T
pA

TLT
i UiΘ

− 1
2

]

Using LpERp = UpSV
T
p (4.17) twice for the top-left part and LiARp = 0 (4.19) for the other

three elements gives

T−1
b PpT

−T
b =

[
S−

1
2UT

p UpSV
T
p VpSU

T
p UpS

− 1
2 0

0 0

]

=

[
S 0
0 0

]
The same can be shown for W−1

b QpW
−T
b , T−1

b PiT
−T
b and W−1

b QiW
−T
b :

T−1
b PpT

−T
b =

[
S 0
0 0

]
= W−1

b QpW
−T
b ,

T−1
b PiT

−T
b =

[
0 0
0 Θ

]
= W−1

b QiW
−T
b ,

so the system equivalence transformation (WT
b , Tb) gives the desired balanced realization. Sum-

marizing this leads to the following simplified procedure to find a balanced realization of a
descriptor system:

1. Compute the proper and improper Controllability and Observability Gramians Pp, Pi, Qp
and Qi,

2. Find Cholesky factorizations such that

Pp = RpR
T
p , Qp = LT

p Lp,

Pi = RiR
T
i , Qi = LT

i Li,

where RT
p , Lp, R

T
i , Li ∈ Rn×n are upper triangular matrices,

3. Compute singular value decompositions of LpERp and LiARi to get

LpERp = UpSV
T
p , LiARi = UiΘV

T
i ,

4. Let
Wb =

[
LT
p UpS

− 1
2 LT

i UiΘ
− 1

2

]
, W−1

b =
[
ERpVpS

− 1
2 ARiViΘ

− 1
2

]
,

Tb =
[
RpVpS

− 1
2 RT

i ViΘ
− 1

2

]
, T−1

b =
[
ETLT

p UpS
− 1

2 ATLT
i UiΘ

− 1
2

]
,

then

T−1
b PpT

−T
b =

[
S 0
0 0

]
= W−1

b QpW
−T
b ,

T−1
b PiT

−T
b =

[
0 0
0 Θ

]
= W−1

b QiW
−T
b .

28



Hence, the system equivalence transformation (WT
b , Tb) gives the balanced realization

(Ê, Â, B̂, Ĉ, D̂) = (WT
b ETb,W

T
b ATb,W

T
b B,CTb, D)

with proper and improper Controllabilty and Observability Gramians

P̂p = T−1
b PpT

−T
b , Q̂p = W−1

b QpW
−T
b ,

P̂i = T−1
b PiT

−T
b , Q̂i = W−1

b QiW
−T
b .

4.3 Balanced truncation of descriptor systems

If the descriptor system (4.1) is not minimal, then it has states that are uncontrollable and/or
unobservable. These states correspond to the zero proper and improper Hankel singular values
and can be truncated without changing the input-output relation in the system. Note that the
number of nonzero improper Hankel singular values of (4.1) is equal to rank(PiA

TQiA) which
can in turn be estimated [15] as

rank(PiA
TQiA) ≤ min(νm, νp, n∞).

This estimate shows that if the index ν of λE − A times the number of inputs or the number
of outputs is much smaller than the dimension n∞ of the deflating subspace of λE − A cor-
responding to the infinite eigenvalues, then the order of system (4.1) can be reduced significantly.

For the balanced system (4.16), Pp and ETQpE are equal and, hence, they have the same
invariant subspaces. In this case the truncation of the states related to the small proper Hankel
singular values does not change system properties essentially. Unfortunately, this does not hold
for the improper Hankel singular values. If we truncate the states that correspond to the small
nonzero improper Hankel singular values, then the pencil of the reduced-order system may have
finite eigenvalues in the closed right half-plane, see the following example from [23]:

Example 4.1. Consider the descriptor system

Eẋ(t) = x(t) +Bu(t),

y(t) = Cx(t),

where

E =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 ,

B =


0.1
0.2
1.8
2.5
3.0

 , CT =


0.1
0.3
1.2
1.8
2.8

 .
By applying the balanced truncation technique [24] (note that this technique is different than
our presented balanced truncation) to the discrete system

x(k + 1) = Nx(k) +Bu(k),

y(k) = Cx(k),
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one can obtain the following third-order approximation [25]: 0.5147 0.2445 −0.0459
−0.2445 0.2614 0.4158
−0.0459 −0.4158 −0.5659

 ẋa(t) = xa(t) +

3.9400
0.6512
0.1733

u(t),

y(t) =
[
3.9400 −0.6512 0.1733

]
xr(t).

We obtain that det(Ek) = −0.0309, so we can conclude that the approximation has no improper
part. Moreover, the three generalized eigenvalues are 2.759 + 1.667i, 2.759− 1.667i and −3.118,
which shows that the approximated system is unstable. Hence, in this case the approximation
is inaccurate.

Let (E,A,B,C,D) be a realization (not necessarily minimal) of the transfer function G(s).
Assume that the pencil λE − A is asymptotically stable. Consider the Cholesky factorizations
(4.14). Let

LpERp =
[
U1 U2

] [S1 0
0 S2

] [
V1 V2

]T
,

LiARi = U3Θ3V
T

3

(4.20)

be singular value decompositions of LpERp and LiARi, where
[
U1 U2

]
,
[
V1 V2

]
, U3 and V3

have orthonormal columns. Note that the matrices LpERp and LiARi are not necessarily of
full rank, therefore we define rp = rank(LpERp) ≤ nf and k∞ = rank(LiARi) ≤ n∞. Then
S1 = diag(ς1, ς2, . . . , ςkf ) and S2 = diag(ςkf+1, ςkf+2, . . . , ςrp) and Θ3 = diag(θ1, θ2, . . . , θk∞).

The new system balanced truncation is now given by the remaining k = kf + k∞ states, which
can be computed [15] as

(Ẽ, Ã, B̃, C̃, D̃) =
(
WT
k ETk,W

T
k ATk,W

T
k B,CTk, D

)
, (4.21)

where
Wk :=

[
LT
p U1S

− 1
2

1 LT
i U3Θ

− 1
2

3

]
∈ Rn×k,

Tk :=
[
RpV1S

− 1
2

1 RiV3Θ
− 1

2
3

]
∈ Rn×k.

(4.22)

For model reduction of standard systems one can obtain an upper bound for the L∞-norm of
the error system, see Theorem 3.2. The same can be said regarding the error of model reduction
of descriptor systems.

Theorem 4.2 ([25]). Let G(s) be a stable rational transfer function with proper Hankel singular
values ς1 > ς2 > · · · > ςkf > ςkf+1 > · · · > ςrp and improper Hankel singular values θ1 > θ2 >

· · · > θk∞ and let Gka(s) be obtained by truncating the balanced realization of G(s) to the first
kf proper states, where kf = k − k∞. Then

||G(s)−Gka(s)||L∞ ≤ 2(ςkf+1 + ςkf+2 + · · ·+ ςrp).

4.3.1 Algorithm

As shown in the previous section, we have to compute the Cholesky factors of the proper and
improper Controllability and Observability Gramians. For that we need system (4.1) to be in
Weierstrass canonical form. Unfortunately, it is not very straightforward to find this canonical
form. But the Cholesky factors can be computed using the generalized Schur-Hammerling
method [18], [26].
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Let the pencil λE − A be in generalized real Schur form (which can, for example, be done by
the QZ-algorithm [27])

E = V

[
Ef Eu
0 E∞

]
UT and A = V

[
Af Au
0 A∞

]
UT, (4.23)

where U, V ∈ Rn×n are orthogonal, Ef ∈ Rnf×nf is upper triangular nonsingular, E∞ ∈
Rn∞×n∞ is upper triangular nilpotent, Af ∈ Rnf×nf is upper quasi-triangular1 and A∞ ∈
Rn∞×n∞ is upper triangular nonsingular and Eu, Au ∈ Rnf×n∞ , and let the matrices

V TB =

[
Bu
B∞

]
and CU =

[
Cf Cu

]
, (4.24)

be partitioned conformally to E and A. Then one can show [18], [26] that the Cholesky factors
of the Gramians of system (4.1) have the form

Rp = U

[
Rf
0

]
, Ri = U

[
Y R∞
R∞

]
,

Lp =
[
Lf −LfZ

]
V T, Li =

[
0 L∞

]
V T,

(4.25)

where (Y,Z) ∈ Rnf×n∞ ×Rnf×n∞ is the solution of the generalized Sylvester equation

EfY − ZE∞ = −Eu,
AfY − ZA∞ = −Au,

(4.26)

the matrices RT
f , Lf ∈ Rnf×nf are the upper triangular Cholesky factors of the solutions Xpc =

RfR
T
f and Xpo = LT

f Lf of the generalized continuous-time Lyapunov equations

EfXpcA
T
f +AfXpcE

T
f = −(Bu − ZB∞)(Bu − ZB∞)T, (4.27)

ET
f XpoAf +AT

fXpoEf = −CT
f Cf , (4.28)

while RT
∞, L∞ ∈ Rn∞×n∞ are the upper triangular Cholesky factors of the solutions Xic =

R∞R
T
∞ and Xio = LT

∞L∞ of the generalized discrete-time Lyapunov equations

A∞XicA
T
∞ − E∞XicE

T
∞ = B∞B

T
∞, (4.29)

AT
∞XioA∞ − ET

∞XioE∞ = (CfY + Cu)T(CfY + Cu). (4.30)

Please note that solving the generalized Sylvester equation (4.26) is not in any way straightfor-
ward. To solve the generalized Sylvester equation, we use the generalized Schur method [28].
Check Appendix C for an overview of the generalized Schur method.

From (4.23) and (4.25) it follows that

LpERp =
[
Lf −LfZ

]
V TV

[
Ef Eu
0 E∞

]
UTU

[
Rf
0

]
=
[
LfEf LfEu − LfZE∞

] [Rf
0

]
= LfEfRf

1Upper quasi-triangular means that the matrix has either 1×1 or 2×2 blocks on its diagonal, where the 2×2
blocks correspond to pairs of conjugate complex eigenvalues of the matrix pencil λE - A.
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and in the same way, LiARi = L∞A∞R∞. Since the proper and improper Hankel singular
values of (4.1) are the singular values of LpERp and LiARi, respectivily (Lemma 4.1), they can
be computed from the singular value decompositions of the matrices LfEfRf and L∞A∞R∞.

Furthermore, it follows from (4.22) and (4.25) that the projection matrix Wk can be rewritten
as

Wk =
[
LT
p U1S

− 1
2

1 LT
i U3Θ

− 1
2

3

]
=
[
LT
p LT

i

] [U1S
− 1

2
1 0

0 U3Θ
− 1

2
3

]

= V

[
LT
f 0

−ZTLT
f LT∞

][
U1S

− 1
2

1 0

0 U3Θ
− 1

2
3

]

= V

[
Wf 0

−ZTWf W∞

]
,

with Wf = LT
f U1S

− 1
2

1 ∈ Rnf×kf and W∞ = LT
∞U3Θ

− 1
2

3 ∈ Rn∞×k∞ . In the same way,

Tk = U

[
Tf Y T∞
0 T∞

]
,

with Tf = RfV1S
− 1

2
1 ∈ Rnf×kf and T∞ = R∞V3Θ

− 1
2

3 ∈ Rn∞×k∞ . After applying the given
system equivalence transformation (WT

k , Tk) we obtain the k’th-order realization (4.21) with
matrices

Ẽ =

[
Ikf 0

0 WT
∞E∞T∞

]
, Ã =

[
WT
f AfTf 0

0 Ik∞

]
B̃ =

[
WT
f (Bu − ZB∞)

WT
∞B∞

]
, C̃ =

[
CfTf (CfY + Cu)T∞

]
, D̃ = D.

(4.31)

All computations stated above can be summarized by the Generalized Square Root (GSR)
method :

Algorithm 4.1 ([15], Algorithm 3.1). Generalized Square Root (GSR) method.

Imput: (E,A,B,C,D) such that λE −A is asymptotically stable.
Output: A k’th-order realization (Ẽ, Ã, B̃, C̃, D̃)

1. Compute the generalized Schur form (4.23).

2. Compute the matrices (4.24).

3. Solve the generalized Sylvester equation (4.26).

4. Compute the Cholesky factors Rf and Lf of the solutions Xpc = RfR
T
f and Xpo = LT

f Lf
of (4.27) and (4.28), respectively.

5. Compute the Cholesky factors R∞ and L∞ of the solutions Xic = R∞R
T
∞ and Xio =

LT
∞L∞ of (4.29) and (4.30), respectively.
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6. Compute the “thin”2 singular value decomposition

LfEfRf =
[
U1 U2

] [S1 0
0 S2

] [
V1 V2

]T
,

where the matrices
[
U1 U2

]
and

[
V1 V2

]T
have orthogonal columns, S1 = diag(ς1, ς2, . . . , ςkf )

and S2 = diag(ςkf+1, ςkf+2, . . . , ςrf ) with rf = rank(LfEfRf ) and ς1 ≥ ς2 ≥ · · · ≥ ςkf >
ςkf+1 ≥ ςkf+2 ≥ · · · ≥ ςrf .

7. Compute the “thin” singular value decomposition L∞A∞R∞ = U3Θ3V
T

3 , where U3 and
V3 have orthonormal columns and Θ3 = diag(θ1, θ2, . . . , θk∞) with k∞ = rank(L∞A∞R∞).

8. Compute Wf = LT
f U1S

− 1
2

1 ,W∞ = LT
∞U3Θ

− 1
2

3 , Tf = RfV1S
− 1

2
1 and T∞ = R∞V3Θ

− 1
2

3 .

9. Compute the k’th-order system (Ẽ, Ã, B̃, C̃, D̃) as in (4.31).

2The SVD of matrix A might have σi = 0 for some i, the thin SVD of matrix A is given by the SVD of matrix
A without those σi.
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5 Implementation in MATLAB

In this chapter we will discuss how we implemented the algorithms in MATLAB, in order to
test them and discuss the result. The result of our numerical example will be discussed in
Chapter 6. We will show the implementations in MATLAB in the same order of the chapters
of this report: we start with the fast projected gradient method (FGM) for finding the nearest
positive-real system in Section 5.1, Section 5.2 briefly discusses model reduction for standard
systems and we will conclude this chapter with the implementation of the Generalized Square
Root (GSR) method in Section 5.3 for model reduction of descriptor systems.

Please not that not all MATLAB functions are given explicitly in order to save space. For
the full content, please contact the author or his supervisor.

5.1 Finding the nearest positive-real system

The authors of [2] have made their code available online. All examples in that paper can be
run directly from their code. Therefore, we have not adjusted the provided code in our im-
plementation. We mainly use two functions: stablePassiveFGM.m, which is FGM of [2],
and getsystem.m. The last function is used for obtaining the system matrices out of the
MATLAB structure sys (the state-space structure).

The function pos real.m returns the nearest positive-real system to a given system, follow-
ing some possible preferences, given via the input variable properties. Our implementation
starts with setting the options used in the FGM. The options maxiter, timemax, standard and
initialization are straightforward, display is for displaying the evoluition of the objective func-
tion and the option weight is for setting the weights in the objective function. When the options
are set, the function forms the system in MATLAB style and applies FGM to reach the nearest
positive-real system. The variables e and t from the function stablePassiveFGM contain
error and time information. In MATLAB, this looks as follows:

1 function [E_pr,A_pr,B_pr,C_pr,D_pr,e,t] = pos_real(E,A,B,C,D,properties)
2 %returns a positive-real system as close to the original system as possible,
3 %following given properties.
4
5 %% Getting the defined system properties
6 sort_system = properties{1,1};
7 sort_reduction = properties{1,2};
8
9 %% Options, they have to be changed inside this function

10 options.maxiter = Inf;
11 timemax = 5;
12 options.timemax = timemax;
13 options.display = 0;
14 weight = ones(5,1);
15 options.weight = weight;
16
17 %sort system
18 switch sort_system
19 case 'standard'
20 options.standard = 1; %Could be switched off if you want to allow
21 %peturbations in E=I
22 case 'descriptor'
23 options.standard = 0;
24 end
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25
26 %Initialization
27 options.init = 1; % standard initialization
28
29 %% Forming Matlab sys from matrices
30 sys.E = E_k;
31 ... %the others are the same
32
33 %% Running the algorithms
34 [PHform,e,t] = stablePassiveFGM(sys,options);
35 sysf_pr = getsystem(PHform);
36
37 %% Plotting the results
38
39 %% Obtaining the PR system
40 E_pr = sysf_pr.E;
41 ... %the others are the same

5.2 Model reduction of standard systems

Since model reduction of standard systems is commonly used, MATLAB has its own functions
to apply model reduction to standard systems. We work with both descriptor and standard
systems and therefore we use the variable properties to tell MATLAB if it has to deal with
a standard or a descriptor system. We let MATLAB do the rest, which looks as follows:

1 function [E_k,A_k,B_k,C_k,D_k] = mod_red(E,A,B,C,D,k,properties)
2 %This function gives a k'th-order approximation of a given (descriptor) system. The
3 %user can choose which model reduction is used for standard systems, for descriptor
4 %systems the GSR-method is used.
5
6 %% Getting the defined system properties
7 sort_system = properties{1,1};
8 sort_reduction = properties{1,2};
9

10 %% Model reduction
11 switch sort_system
12 case 'standard'
13 E_k = eye(k); %for standard systems E = I;
14 switch sort_reduction
15 case 'truncation'
16 [A_k,B_k,C_k,D_k] = truncation(A,B,C,D,k);
17 case 'residualization'
18 [A_k,B_k,C_k,D_k] = residualization(A,B,C,D,k);
19 end
20 case 'descriptor'
21 [E_k,A_k,B_k,C_k,D_k] = gsr(E,A,B,C,D,k);
22 end

The functions truncation.m and residualization.m both use the MATLAB function
balred.m. The only difference is that truncation.m executes balanced truncation (which is
given as an option in balredOptions) and residualization.m executes balanced resid-
ualization (choose Truncate for truncation and MatchDC for residualization). They both are
in the same form.
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1 function [A_k,B_k,C_k,D_k] = truncation(A,B,C,D,k)
2 %This function gives the k'th-order approximation to a given standard system,
3 %using the balanced truncation technique.
4
5 %% Forming Matlab sys from matrices
6 sys.A = A;
7 sys.B = B;
8 sys.C = C;
9 sys.D = D;

10
11 %% Options for the balanced reduction method
12 opt = balredOptions('StateElimMethod','Truncate');
13
14 %% Using matlabs balanced truncation
15 ksys = balred(sys,k,opt);
16
17 %% Returning from Matlab sys to matrices
18 A_k = ksys.A;
19 B_k = ksys.B;
20 C_k = ksys.C;
21 D_k = ksys.D;

5.3 Model reduction of descriptor systems

The most challenging MATLAB function to make was the GSR method. It involves many
matrix manipulations and it required to implement an advanced version of the Schur method
to solve the generalized Sylvester equation. The result is the function gsr.m, which is stated
below. The structure of this function follows the structure of the GSR method as can be found
in Algorithm 4.1. We have omitted the matrix multiplications to improve readability.

1 function [E_k,A_k,B_k,C_k,D_k] = gsr(E,A,B,C,D,k)
2 %% Step 0: Use given properties and do initial settings
3 %Calculate amount of finite and infinite eigenvalues
4 n = size(E,1);
5 m = size(B,2);
6 p = size(C,1);
7 lambda = eig(A,E);
8 n_f = n;
9 for i = 1:n %Number of finite eigenvalues (including multiplicity)

10 if lambda(i) == inf
11 n_f = n_f - 1;
12 end
13 end
14
15 %% Step 1: Compute the generalized Schur form (4.24)
16 [A_s,E_s,V_s,U_s] = qz(A,E,'real');
17 %Makes the desired partition as well
18
19 %% Step 2: Compute the matrices (4.25)
20
21 %% Step 3: Solve the generalized Sylvester equation (4.27)
22 [Y,Z] = own_sylvester(E_f,E_inf,-E_u,A_f,A_inf,-A_u);
23
24 %% Step 4: Compute the Cholesky factors of the solutions of (4.28) and (4.29)
25 %solve (4.28)
26 B_1 = B_u - Z*B_inf;
27 Q_1 = B_1*B_1';
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28 X_pc = lyap(A_f,Q_1,[],E_f);
29 %solve (4.29)
30 Q_2 = C_f'*C_f;
31 X_po = lyap(A_f',Q_2,[],E_f');
32 %compute the Cholesky factors R_f of X_pc and L_f of X_po
33 R_f = chol(X_pc,'lower');
34 L_f = chol(X_po,'upper');
35
36 %% Step 5: Compute the Cholesky factors of the solutions of (4.30) and (4.31)
37 %solve (4.30)
38 Q_3 = -B_inf*B_inf';
39 X_ic = dlyap(A_inf,Q_3,[],E_inf);
40 %solve (4.31)
41 C_1 = C_f*Y + C_u;
42 Q_4 = -C_1'*C_1;
43 X_io = dlyap(A_inf',Q_4,[],E_inf');
44 %compute the Cholesky factors R_inf of X_ic L_inf of X_io
45 R_inf = chol(X_ic,'lower');
46 L_inf = chol(X_io,'upper');
47
48 %% Step 6: Compute the thin SVD of L_f*E_f*R_f
49 Q_svd1 = L_f*E_f*R_f;
50 [U,S,V] = svd(Q_svd1,'econ');
51 %computing U_1, U_2, etc, will be done in the next step, when we know the
52 %desired sizes
53
54 %% Step 7: Compute the thin SVD of L_inf*A_inf*R_inf
55 Q_svd2 = L_inf*A_inf*R_inf;
56 [U_3,O_3,V_3] = svd(Q_svd2,'econ');
57 k_inf = size(O_3,1);
58 k_f = k - k_inf;
59 %compute U_1, U_2, S_1, S_2, V_1 and V_2:
60
61 %% Step 8: Compute W_f, W_inf, T_f and T_inf
62
63 %% Step 9: Compute the k'th-order system as in (4.32)

On line 22 we use the function own sylvester.m. This function is as follows:

1 function [R,L] = own_sylvester(A,B,C,D,E,F)
2 %This function solves the generalized Sylvester equation
3 % AR - LB = C;
4 % DR - LE = F;
5 %for given matrices A,B,C,D,E and F and returns the solution (R,L).
6 %It makes use of the generelized Schur method.
7
8 %% Step 1: Transform (A,D) and (B,E) into the generalized Schur form
9 %Gives unitary matrices P,Q,U,V such that

10 %A_t = P*A*Q; D_t = P*D*Q;
11 %B_t = U*B*V; E_t = U*E*V;
12 [A_t,D_t,P,Q] = qz(A,D,'real');
13 [B_t,E_t,U,V] = qz(B,E,'real');
14 m = size(A_t,1);
15 n = size(B_t,1);
16
17 %% Step 2: Modify the right-hand sides (C,F)
18 C_t = P*C*V;
19 F_t = P*F*V;
20
21 %% Step 2.1: determine amount of blocks p and q
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22 %returns amount of p blocks in A_t, q blocks in B_t, together with partiotioning
23 %blocksize_p and blocksize_q, which contain information about the size and
24 %whereabouts of the blokcs in A_t, B_t respectively.
25
26 %% Step 2.2: Make the partition
27
28 %% Step 3: solve the partitioned system for L_1 and R_1
29
30 %% Step 3.5: transform partition of solution back to matrix form
31
32 %% Step 4: transform solution back
33 L = P'*L_1*U;
34 R = Q*R_1*V';

Steps 2.1 and 2.2 follow the algorithm of Appendix C. The function makes use of the cell struc-
ture of MATLAB, where blocks Aij , Bij , Cij , Dij , Eij and Fij are placed in the corresponding
cells at position (i, j). The partitioning of these matrices (steps 2.1 and 2.2) into the cells has
been omitted below. Step 3 then solves the blocks Lij and Rij by using the GS-algorithm, see
Algorithm C.1. The solutions L1 and R1 can then be found in the calculated blocks of step 3,
this is being done in step 3.5. Step 4 concludes the function by transforming L1 and R1 back
to respectively L and R.

5.4 Finding the nearest positive-real system of reduced order

Combining the functions pos real.m from Section 5.1, mod red.m from Section 5.2 and
gsr.m from Section 5.3 gives us the function mod red pos real.m. This function first calcu-
lates the k’th-order approximation of a given system (the given system can be both a standard
or a descriptor system) and then finds the nearest positive-real system to the k’th-order ap-
proximation.

1 function [E_pr,A_pr,B_pr,C_pr,D_pr] = mod_red_pos_real(E,A,B,C,D,k,properties)
2 %This function returns a positive-real, reduced system. The user can choose
3 %which model reduction is used for standard systems, for descriptor systems
4 %the GSR-method is used. This function first calculates the reduced-order
5 %system and then makes it positive-real.
6
7 %% Model reduction
8 [E_k,A_k,B_k,C_k,D_k] = mod_red(E,A,B,C,D,k);
9

10 %% Making system positive-real
11 %For making positive-real, we should have an m-input, m-output model
12 if size(B_k,2) == size(C_k,1)
13 [E_pr,A_pr,B_pr,C_pr,D_pr,e,t] = pos_real(E,A,B,C,D,properties)
14 else
15 disp('There should be m-input, m-output to achieve positive-realness')
16 end
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Figure 1: Sketch of the truck of Example 6.1.

6 Numerical experiment

In this chapter we discuss a numerical example to show the effects of the presented algorithms.
We illustrate the effects by showing the frequency responses of the original model and its
approximations, the norm of the error between the original model and its approximations. The
error between the k’th-order approximation and the positive-real variant of the approximation
is measured in terms of the Frobenius norm.

Example 6.1. This example is based on Example 4.1 from [15], which is a linearized model
of a truck [29]. See Figure 1 for a sketch of this truck. Note that this sketch is a simplified
version of the actual model. In fact, we also model the engine and the driver’s seat. The red
connection stands for a fixed rotation point between the loading area and the chassis of the
truck, the green squares are spring-damper blocks. We model the translation of all seven parts
together with four parts that can rotate as well, which leads to a state vector of size eleven.
The truck is modeled by the following linearized equations:

ṗ(t) = v(t),

Mv̇(t) = Kp(t)−Dv(t)−GTλ(t) +B2u(t),

0 = Gp(t),

where p(t) ∈ R11 is the position vector, v(t) ∈ R11 is the velocity vector, λ(t) ∈ R is the
Lagrange multiplier, M is the positive definite mass matrix, K is the positive definite stiffness
matrix, D is the positive semi-definite damping matrix, G contains the constraint information

and B2 is the input matrix. If we take x(t) =
[
p(t) v(t) λ(t)

]T
as state vector and output

y(t) = BT
2 v(t) we obtain the descriptor systemI11 0 0

0 M 0
0 0 0

 ẋ(t) =

 0 I11 0
K D −GT

G 0 0

x(t) +

 0
B2

0

u(t),

y(t) =
[
0 BT

2 0
]
x(t),

(6.1)
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ς1 = 1.209× 10−3 ς6 = 6.629× 10−6 ς11 = 1.209× 10−6 ς16 = 1.469× 10−8

ς2 = 1.207× 10−3 ς7 = 5.125× 10−6 ς12 = 4.596× 10−7 ς17 = 1.158× 10−8

ς3 = 1.561× 10−5 ς8 = 3.758× 10−6 ς13 = 2.553× 10−7 ς18 = 3.769× 10−9

ς4 = 1.414× 10−5 ς9 = 2.365× 10−6 ς14 = 1.195× 10−7 ς19 = 9.073× 10−13

ς5 = 6.850× 10−6 ς10 = 1.547× 10−6 ς15 = 3.455× 10−8 ς20 = 2.150× 10−13

Table 1: Proper Hankel singular values of descriptor system (6.1).

where x(t) ∈ R23×23, u(t) ∈ R and y(t) ∈ R. We have chosen y(t) in this way because we want
the system to be positive-real. This system has 20 finite eigenvalues with negative real part
(nf = 20), and 3 infinite eigenvalues (n∞ = 3). Following the original example, we approximate
system (6.1) by a model of order kf + k∞ = 15, with k∞ = 3. Since we have changed the
model slightly compared to the original model, the proper Hankel singular values have changed
as well. They are shown in Table 1.

Figure 2 shows the frequency responses of the original model and its 15’th-order approximation
for frequencies in the rance ω ∈ [10−4, 105] rad/sec. We see that the frequency respsonse of
the approximated system only differs slighty at very low frequency. Therefore we can say that
the approximation is accurate. Theorem 4.2 gives ||G(s)−Gk(s)||L∞ ≤ 8.989× 10−7. This er-
ror bound is shown in Figure 3, together with the absolute approximation error |G(iω)−Gk(iω)|.

After we have found the 15’th-order approximation of system (6.1), we apply FGM with stan-
dard initialization to find the nearest positive-real system to this approximated system. Figure 4
shows the frequency responses of the full-order system, its 15’th-order approximation (Σk) and
the nearest positive-real system and Figure 5 compares the errors between the original system
and both approximations. As shown in Figure 4, the frequency response of the nearest-positive
real system to the lower order approximation differs from the original system and its approxi-
mation for frequencies lower than 10−1 rad/sec and higher than 10−2 rad/sec. Also, as can be
expected, the error between the positive-real system and the original model is higher than the
error bound.

Interpretation
In the original example of [15] the approximated system gives 12 finite eigenvalues and 3 eigen-
values of ∞. Due to the fact that we have changed the output of the system, the improper
Hankel singular values in Θ3 (4.20) are so small (the smallest in the order 10−36), that Θ3 is
almost singular. Our approximated system gives 12 finite eigenvalues, 1 eigenvalue of ∞ and 2
eigenvalues of ‘almost’∞ (in the order of 1012). Since they are positive, the system is not stable
and therefore, by Definition 2.5, Σk is not positive-real, where you expect that a reduced-order
approximation of a positive-real system is still positive-real. However, if you consider the two
very large eigenvalues to be infinite, then the approximated system is positive-real.
FGM did not change the proper part of Σk, nor does it change Bk or Ck, and only changed Ek
and Ak of the improper part as follows:

Ek =

−0.02 −0.02 ε
0.02 0.02 ε
ε ε ε

 , Ak =

1 0 0
0 1 0
0 0 1

 ,
EPR =

−0, 029 −0, 028 ε
0, 028 0, 027 ε
ε ε ε

 , APR =

1 0 0
0 1 0
0 0 0

 ,
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Figure 2: Frequency responses of the full-order system and the 15’th-order approximation com-
puted by the GSR method.

where the ε denote almost zero (they are all different). The generalized eigenvalues of (EPR, APR)
are λ1 = ∞, λ2 = −0.7 and λ3 = −438.6, so ΣPR is asymptotically stable. This also explains
the error between the original system and the positive-real approximation, and the different
frequency response.

Unfortunately, we have to conclude that, for this example, the k’th-order positive-real ap-
proximation is less accurate than the regular k’th-order approximation, because the error of
the PR approximation is higher and the frequency response differs more. This is mainly due
to the fact that the k’th-order approximation is theoretically non-PR, but in practice it is PR.
Therefore FGM changes the approximation to make it theoretically PR as well, which explains
that ΣPR less accurate than Σk.
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Figure 3: The error bound and the error of the approximated system.
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Figure 4: Frequency responses of the full-order system, the 15’th-order approximation computed
by the GSR method and the nearest positive-real system computed by FGM.
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Figure 5: The error bound and the error of the approximated systems.

7 Conclusion

The goal of this report was, for a given LTI system Σ which is not necessarilty positive-real, to
find the nearest positive-real system of lower order (Σa). In our journey to this joint problem,
we have split the goal into two sub-goals: finding the nearest positive-real system and model
reduction. This conclusion preserves that structure.

Nearest positive-real system
Using the results of [2], we have implemented FGM to find the nearest positive-real system to
a given non-positive-real system, where the system can possibly be a descriptor system. Here
we use the fact that every port-Hamiltonian system is positive-real (Theorem 2.2), since finding
the nearest port-Hamiltonian system is easier than finding the nearest positive-real system.

Model reduction
Model reduction for standard systems is a well-studied subject, therefore we have only in-
vestigated the subject and use the available MATLAB functions for balanced truncation and
balanced residualization.
However, model reduction for descriptor systems is much more complicated. We have studied
the results of [15] and implemented the GSR method in MATLAB. This also involved imple-
menting the Generalized Schur Method for solving generalized Sylvester equations.

Finding the nearest positive-real system of reduced order
Combining the above methods yields a method that solves our problem in a consecutive way.
For a given (descriptor) system, we first use the appropriate model reduction method (bal-
anced truncation or balanced residualization for standard systems and balanced truncation for
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descriptor systems) and then we find the nearest positive-real system for the lower order ap-
proximation. Unfortunately, our numerical example did not show any improvement in the last
step, mainly due to the fact that the original given system was already positive-real and because
the improper Hankel singular values, used in the GSR, were to small.

8 Discussion and recommendations

Of course, as always in research projects, there are still some remarks that have to be made
concerning this final project. This chapter contains the discussion and recommendations.

8.1 Discussion

Better methods
The main articles used for this project, [2] for finding the nearest positive-real system and [15]
on model reduction for descriptor systems, both provide enhanced methods that have better
perfomance in some cases. Due to the lack of time and/or technical knowledge, we have decided
to focus ourselves on the easier understandable methods.

Where we have focussed on finding the nearest positive-real system, the authors of [2] have also
considered strict positive-real systems (roughly means assymptotically stable) and extended
positive-real systems (also preferable behaviour in infinite frequency). We have not studied the
provided theory, but since the authors made their MATLAB functions publicly available, the
FGM we have used can still find these systems. The same can be said about initializations:
we have used the standard initialization in our numerical example, where the authors provide
smart LMI-based initializations as well.

For model reduction of descriptor systems, we have used the GSR method, given by [15]. Also
provided in the same paper is the Generalized Square Root Balancing Free (GSRBF) method.
The authors show in their numerical examples that the GSRBF method gives systems with fre-
quency response that coincide better with the original system and has a lower error throughout
the frequency interval. The systems given by the GSRBF method are generally not balanced,
where the GSR method gives balanced approximations.

Numerical examples
Unfortunately, to fully understand the technical aspects of this research topic, as well as the
implementation in MATLAB, took more time than we expected when we started this project.
Therefore, for mainly time-based reasons, we have chosen to show our results with only one
numerical example. We are aware of the fact that this might not give a full image of the per-
formance of our method.

Numerical boundaries of MATLAB
As already quickly said in Chapter 6 and Chapter 7 , Θ3 (see (4.20)) in our numerical exam-
ple consisted of three very small improper Hankel singular values (the smallest in the order
10−36). Since we have to invert this Θ3, the result has been influenced by the numerical bound-
aries of MATLAB. We believe that is the reason why the lower order approximation of a given
positive-real system was not positive-real anymore. We think that the results can be improved
by choosing a different application than MATLAB, or by manually forcing the improper part
of the approximation to be positive-real.
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Lack of technical knowledge
In order to have a really good feeling about the results and the used methods, you should have
a decent understanding of descriptor systems. We can say that we started with little knowlegde
about the behaviour of descriptor systems and gained knowledge during this project, but it is
still hard to interpretate the things that happen with descriptor systems.

Literature
Our main library for the literature overview were citations in papers and Google Scholar. We
realize that this not give a full overview of the available contents on this topic, we could have
missed recent literature that does not have many citations yet.

8.2 Recommendations

Research would not be research if a project provided less questions than answers. Here we have
given a summary of the open problems that came up during the period of this project.

Joint method versus consecutive method
Our method consists of two independent methods, applied consecutively. Since they are inde-
pendent and consecutively, they could cancel each others effect or end up in local optima. It
could be possible to obtain an improved method by developing a theory of finding the nearest
positive-real system and reducing the order at the same time. The problem could be rewritten
in a new setting, where only one different norm plays a role.

More numerical examples
As already mentioned in Section 8.1, we have only shown one numerical example and therefore
our conclusion is based on only one example. The knowledge of our method could be improved
a lot by applying it to more numerical examples, for example a non-positive-real system of high
order, or systems of lower order.

Better implementation in MATLAB
We have not put our focus point on the implementation in MATLAB. We have used the ba-
sic computational tricks (such as computing a matrix inverse in a smart way), but strongly
depend on the smartness of MATLAB. Our algorithm could be improved on this point. More-
over, in [15], T. Stykel uses the GUPTRI (generalized upper triangular) method to calculate
the generalized Schur form (4.23), where we use the QZ algorithm of MATLAB. Next to this,
T. Stykel calculates the Cholesky factors of the solutions of (4.27) – (4.30) without comput-
ing the solutions themself, but we just calculate first the solutions and then the Cholesky factors.

A whole different point of view
Many descriptor systems from real physical problems occur when one uses a Lagrange multi-
plier to model the system. In our case, (6.1), the Lagrange multiplier translates the physical
aspects of the truck to the linearized model. The equation 0 = Gp(t) gives that some positions
cannot move freely with respect to eachother, they are coupled (the Truck cannot be extended
or pressed together). The singularity of our system, which is also called a differential-algebraic
equation (DAE), is defined by how many times you should differentiate the DAE in order to
obtain a ordinary differential equation (ODE). In our case, the index is 3 (we have 3 generalized
eigenvalues of ∞).

What would we lose if we differentiate the equation 0 = Gp(t) such that we obtain an ODE?
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This could be a whole different approach to modelling descriptor systems.
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9 Notations

Symbol Dimension Definition

δ(t) R Dirac delta function
λi R Eigenvalue such that Ax = λx

Λ(A) - The set of all eigenvalues of the matrix A
ρ(A) R Spectral radius of A: ρ(A) := max |λi|
σj R Hankel singular value: σj :=

√
λj(PQ)

ςj R Proper Hankel singular value: ςj := λj(PpE
TQpE)

σ̄(A) R The maximum singular value of the matrix A
Σ -1 The system: Σ := (E,A,B,C,D)
Σa -1 The approximated system: Σa := (Ea, Aa, Ba, Ca, Da)
θj R Improper Hankel singular value: θj := λj(PiA

TQiA)
Θ Rn−q×n−q Contains the improper Hankel singular values: Θ := diag(θj)
∇X - The gradient of a function with respect to the matrix X

Symbol Dimension Definition

A Rn×n State matrix
B Rn×m Input matrix
C Rm×n Observation matrix
D Rm×m Feedthrough matrix
E Rn×n System matrix
E(t) R Energy of system at time t
F Rn×m F ± P are the port matrices

Fk Rn×n Fk := T−1

[
0 0
0 −N−k−1

]
W−1, k = −1,−2, . . .

F(t) Rn×n Fundamental solution matirx F(t) := T−1

[
etJ 0
0 0

]
W−1

F(. . . ) R Optimization goal in P, function which gives distance

from (E,A,B,C,D) to (Ẽ, Ã, B̃, C̃, D̃)
Gi Rn−q×n−q Solution Lyapunov equation: Gi −NGiNT = BiB

T
i

Gp Rq×q Solution Lyapunov equation: JGp +GpJ
T = −BpBT

p

G(s) Cm×m Transfer function of system Σ
G - G := {G ∈ Rn×n | G = J −R, JT = −J,R � 0}
h(t) Rn×n Impulse response of system Σ
Hi Rn−q×n−q Solution Lyapunov equation: Hi −NTHiN = CT

i Ci
Hp Rq×q Solution Lyapunov equation: JTHp +HpJ = −CT

p Cp
H(x) R H(x) = 1

2x
TQTEx is the Hamiltonian function

J Rn×n Structure matrix s.t. JT = −J
J - J := {J ∈ Rn×n | JT = −J}

K R(n+m)×(n+m) K =

[
R P
PT S

]
� 0

L Rn×n F ± L are the port matrices

M Rn×m Projection of E on feasible set: M := Ẽ
nf N Number of finite eigenvalues of the pencil λE −A
n∞ N Number of infinite eigenvalues of the pencil λE −A
N Rm×m Describes the direct feed-through from u(t) to y(t) s.t. NT = N
P Rn×n Controllability Gramian

1Note that the dimension of the matrix-quintuple (E,A,B,C,D) has been neglected.
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Symbol Dimension Definition

Pi Rn×n Improper Controllability Gramian. Pi = T−1

[
0 0
0 Gi

]
T−T

Pp Rn×n Proper Controllability Gramian. Pp = T−1

[
Gp 0
0 0

]
T−T

Pl Rn×n Pl := W

[
Iq 0
0 0

]
W−1

Pr Rn×n Pr := T−1

[
Iq 0
0 0

]
T

PS(X) Rn×n The projection of a matrix X on the linear subspace
of skew-symmetric matrices

P�(X) Rn×n The projection of a matrix X on the cone of p.s.d. matrices
PPR - Nearest PR-system problem
PPH - Nearest PH-system problem
Q Rn×n Invertible matrix which describes energy s.t. QTE = ETQ � 0
Q Rn×n Observability Gramian

Qi Rn×n Improper Observability Gramian. Qi = W−T

[
0 0
0 Hi

]
W−1

Qp Rn×n Proper Observability Gramian. Qp = W−T

[
Hp 0
0 0

]
W−1

R Rn×n Dissipation matrix s.t. R � 0
R - R := {R ∈ Rn×n | RT = R}
s C Derivative function
S Rm×m Describes the direct feed-through from input to output s.t. S � 0
S Rn×n Contains the (proper) Hankel singular values: Σ := diag(σj)

SPR - 1 The set of all PR-systems
SPH - 1 The set of all PH-systems
T Rn×n State transform. x̂(t) = Tx(t) or part of system transform. (W,T )
u(t) Rm Input at time t
U(s) Cm Laplace transform of u(t)
V (x(t)) R Storagefunction for state x(t)
W Rn×n Part of system equivalence transformation (W,T )
x0 Rn Initial state x0 := x(0)
x(t) Rn State at time t
X(s) Cn Laplace transform of x(t)
y(t) Rm Output at time t
Y (s) Cm Laplace transform of y(t)
Z Rm×n M := MTQ

ẋ(t) Rn d
dtx(t)
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Symbol Dimension Definition

M11 Rk×k Truncated realization (partitioned) of matrix M
Mr Rn×n Residualized realization of matrix M

M̂ Rn×n Balanced realization of matrix M

M̃ Rk×k k’th-order realization of matrix M
||A||F R ||A||F := tr(ATA)

||Σ||H R ||Σ||H =
√
ρ(PQ)

||Σ||H2 R ||Σ||H2 =
√

tr(BTPB)
||Σ||H∞ R ||Σ||H∞ := sup

Re(s)>0
σ̄(G(s))

〈A,B〉F R 〈A,B〉F := tr(ATB)
W⊥ - W⊥ := {A ∈ Rn×n | 〈A,B〉F = 0 for all B ∈W}

Im(ω) R Imaginary part of complex ω: Im(a+ bi) = b
Re(ω) R Real part of complex ω: Re(a+ bi) = a
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A Used projections in the Fast projected Gradient Method

In this appendix, both the projection on the linear subspace of skew-symmetric matrices and
the projection on the cone of positive semi-defnite matrices will be derived.

A.1 Projection on the linear subspace of skew-symmetric matrices

Definition A.1. Let W be a nonempty subset of an inner product space V . We define W⊥ to
be the set of all vectors in V that are orthogonal to every vector in W , that is, W⊥ := {x ∈ V :
〈x, y〉 = 0 for all y ∈W}. The set W⊥ is called the orthogonal complement of W .

Now, define V := Rn×n as inner product space of all square matrices with inner product
〈A,B〉F := tr(ATB). Let J be the linear subspace containing all skew-symmetric matrices. We
first show that J⊥ is given by the linear subspace containing all symmetric matrices:

Denote the linear subspace containing all symmetric matrices by R. Taking J ∈ J and R ∈ R,
we have RT = R and JT = −J . Now,

〈R, J〉F = tr(RTJ) = tr(RJ) = tr(JTR) = −tr(JR) = −tr(RJ)

=⇒ tr(RJ) = −tr(RJ) =⇒ 〈R, J〉F = tr(RJ) = 0.
(A.1)

From this we can conclude that J⊥ ⊇ R. Take Z ∈ V . It can be checked easily that the
symmetric part of Z is given by Z+ZT

2 and the skew-symmetric part by Z−ZT

2 . Since for any

square matrix Z ∈ V you can write Z = Z+ZT

2 + Z−ZT

2 ,

V = J + R. (A.2)

Moreover, from [30, Theorem 6.6] we have that

V = J + J⊥. (A.3)

Since the only matrix that is both skew-symmetric and symmetric is the zero-matrix (J ∩R =
{0}), and since the only element in both J and J⊥ is the zero-matrix (J ∩ J⊥ = {0}), we have,
together with Equations (A.2) and (A.3):

J⊥ = R.

Hence J⊥ is given by the linear subspace containing all symmetric matrices. By [30, Theorem

6.6] there exist unique J ∈ J and R ∈ R such that Z = J + R. In specific: J = Z−ZT

2 and

R = Z+ZT

2 . Moreover, by the Corollary of [30, Theorem 6.6], Z−ZT

2 is the unique ”closest”
solution to (2.9). This gives

PJ(Z) =
Z − ZT

2
. (A.4)

A.2 Projection on the cone of positive semidefinite matrices

The following theory is from [31].

Theorem A.1 ([31], Theorem 2.1). Let Z ∈ Rn×n, and let A = Z+ZT

2 and B = Z−ZT

2
be the symmetric and skew-symmetric parts of Z respectively. Let A = UΓUT be a spectral
decomposition of A [UTU = I,Γ = diag(λi)]. Then the projection on the cone of positive
semidefinite matrices is given by

P�(Z) = U (max(Γ, 0))UT,
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and
min
R�0
||Z −R||2F = ||PJ(Z)||2F +

∑
λi∈Λ(Γ),λi<0

λ2
i ,

where PJ(Z) is given in (A.4).

Proof. Let R ∈ Rn×n be positive semidefinite. From (A.1) follows that ||R+J ||2F = ||R||2F+||J ||2F
if RT = R and JT = −J , so we have

||Z −R||2F = ||A+B −R||2F = ||A−R||2F + ||B||2F (A.5)

and so the problem reduces to that of approximating A. Let A = UΓUT be a spectral decom-
position of A, and let X = UTRU (note that since R is positive semidefinite, X is positive
semidefinite as well). Then

||A−R||2F = ||UΓUT − UXUT||2F = ||U(Γ−X)UT||2F
= tr

[(
U(Γ−X)UT

)T(
U(Γ−X)UT

)]
= tr

[
U(Γ−X)T(Γ−X)UT

]
= tr

[
(Γ−X)UTU(Γ−X)T

]
= tr

[
(Γ−X)(Γ−X)T

]
= ||Γ−X||2F.

(A.6)

Following the definition of the Frobenius-norm (2.1) and the fact that Γ is a diagonal matrix,
we get

||Γ−X||2F =
∑
i 6=j

x2
ij +

∑
i

(λi − xii)2

≥
∑
i

(λi − xii)2

≥
∑
λi<0

(λi − xii)2

≥
∑
λi<0

λ2
i ,

(A.7)

since xii ≥ 0 because X is positive semidefinite. This lower bound is attained, uniquely, for the
matrix X = diag(di), where

di =

{
λi, λi ≥ 0

0 λi < 0
. (A.8)

Chosing X like this leads to the first inequality becoming an equality, since xij = 0 for i 6= j.
The second inequality becomes an equality because for all i such that λi ≥ 0:

(λi − xii) = (λi − di) = (λi − λi) = 0

and the third since xii = 0 for λi < 0. To create X = diag(di), with di as in (A.8), choose

R = Udiag(di)U
T.

Note that diag(di) = max(Γ, 0), which leads to

P�(Z) = U(max(Γ, 0))UT. (A.9)

53



Moreover, substituting (A.4) in (A.5) gives

min
R�0
||Z −R||2F = ||Z − P�(Z)||2F = ||A− P�(Z)||2F + ||PJ(Z)||2F

and equations (A.6) and (A.7), together with X = UT(P�(Z))U , where P�(Z) is given in (A.9),
give

min
R�0
||Z −R||2F = ||PJ(Z)||2F + ||A− P�(Z)||2F

= ||PJ(Z)||2F +
∑

λi∈Λ(Γ),λi<0

λ2
i .

B Gradient of f with respect to X

In this section, we will show how the gradient of f(X) = ||AX −B||2F with respect to X can be
found. First, start with the definition of the gradient with respect to a matrix.

Definition B.1. The gradient with respect to a matrix of a function f(X) : Rn×m → R is a
function ∇Xf(X) such that

lim
||dX||F→0

|f(X + dX)− f(X)− 〈∇Xf(X),dX〉F|
||dX||F

= 0. (B.1)

Equation (B.1) gives

f(X + dX)− f(X)− 〈∇Xf(X), dX〉F → 0 as dX → 0.

Substituting f(X) = ||AX−B||2F into this formula gives an expression for the gradient of f(X)
(note that the three different trace functions were taken into one in the first line):

tr
[(
A(X + dX)−B

)T(
A(X + dX)−B

)
−
(
AX −B

)T(
AX −B

)
− (dX)T∇Xf(X)

]
=tr

[
(AdX)T(AX −B) + (AX −B)T(AdX) + (AdX)T(AdX)− (dX)T∇Xf(X)

]
=tr

[
2(AdX)T(AX −B)

]
+ tr

[
(AdX)T(AdX)

]
− tr

[
(dX)T∇Xf(X)

]
The second term goes to zero if ||dX|| goes to zero. Hence taking the limit as in (B.1) gives

tr
[
(dX)T2AT(AX −B)

] ∣∣∣
||dX||→0

= tr
[
(dX)T∇Xf(X)

] ∣∣∣
||dX||→0

,

=⇒ ∇Xf(X) = 2AT(AX −B).
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C The generalized Schur method for solving generalized Sylvester
equations

In this appendix, our goal is to solve the generalized Sylvester equation

AR− LB = C,

DR− LE = F,
(C.1)

where L,R ∈ Rm×n are unknown, A,D ∈ Rm×m, B,E ∈ Rn×n and C,F ∈ Rm×n are known.
The following theory is based on the results of [28] and is a generalization of the Schur method for
solving the Sylvester equation AX + XB = C. We refer to [32, Appendix A] for more details
about the history and relation between the Sylvester equation and the generalized Sylvester
equation. The generalized Sylvester equation (C.1) can be formulated in terms of a block-
diagonalizing equivalence transformation P−1 (M − λN)Q of the matrix pencil

M − λN =

[
A −C
0 B

]
− λ

[
D −F
0 E

]
.

Solving (C.1) is equivalent to solving the following equation for L and R:[
I −L
0 I

]
(M − λN)

[
I R
0 I

]
=

[
A 0
0 B

]
− λ

[
D 0
0 E

]
. (C.2)

One can show that (C.1) has a unique solution if and only if the regular pencils A − λD and
B − λE have disjoint spectra [17]. If they have common spectra of if they are singular, the
generalized Sylvester equation will not in general have a solution.

C.1 Algorithm

In this section, we present a generalization of the Schur method [33] for solving AX+XB = C.
This method is based on the equivalence between (C.1) and

PTAQQTRV − PTLUUTBV = PTCV,

PTDQQTRV − PTLUUTEV = PTFV,
(C.3)

where the matrices P,Q,U and V are all unitary. The solution of (C.3) involves the following
four steps, which will be clarified later on.

1. Transform (A,D) and (B,E) via the QZ-algorithm into the simpler form, which gives A1

and B1 upper quasi-triangular (see (4.23)) and C1 and D1 upper triangular

(A1, D1) := (PTAQ,PTDQ),

(B1, E1) := (UTBV,UTEV ).

2. Modify the right-hand sides (C,F ):

C1 := PTCV,

F1 := PTFV.

3. Solve the transformed system for L1 and R1:

A1R1 − L1B1 = C1,

D1R1 − L1E1 = F1.
(C.4)
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4. Transform the solution back to the original system:

L := PL1U
T, R := QR1V

T

Step 1 and Step 2 are straightforward to follow. Step 3 is a bit more complex to perform.
Before we can dig into solving (C.4), note that, as mentioned in Section 4.3.1 for (4.23), the
QZ-algorithm gives A1 and B1 upper quasi-triangular matrices and D1 and E1 upper triangular.
Upper quasi-triangular means that the matrix has either 1× 1 or 2× 2 blocks on its diagonal,
where in this case the 2× 2 blocks correspond to pairs of complex conjugate eigenvalues of the
matrix pencils A− λD and B − λE (See also [34]).

Assume that A1 consists of p2 blocks Aij , where the p diagonal blocks are either 1 × 1 or
2× 2. In the same way, B1 has q2 blocks, where the q Bii blocks are 1× 1 or 2× 2. Moreover,
assume that C1, D1, E1, F1, L1 and R1 are partitioned consistently with A1 and B1. Then the
solution (L1, R1) of (C.4) can be computed by the GS-algorithm as follows:

Algorithm C.1. GS-algorithm.

1 %The GS-algorithm
2
3 for j = 1:q
4 for i = p:1
5 %Solve the subsystem:
6 A_ii*R_ij - L_ij*B_jj = C_ij;
7 D_ii*R_ij - L_ij*E_jj = F_ij;
8 %Substitute R_ij and L_ij into remaining equations
9 for k = 1:i-1 %block-column j

10 C_kj = C_kj - A_ki*R_ij;
11 F_kj = F_kj - D_ki*R_ij;
12 end
13 for k = j+1:q %block-row i
14 C_ik = C_ik + L_ij*B_jk;
15 F_ik = F_ik + L_ij*E_jk;
16 end
17 end
18 end

We have written the pseudo-code of the GS-algorithm in Matlab style for readibility pur-
poses. Solving the subsystem in the above algorithm corresponds with following the upper
quasi-triangular structure of (C.4). In each new subsystem, there are enough zero- and already
solved blocks of (L1, R1) to solve the current subsystem.
The steps after solving the subsystem in the GS-algorithm can be associated with ‘moving’ the
known parts of the equation to the right-hand side.

By looking carefully at (C.3) one can see that L and R have been transformed to L1 and
R1 as

L1 := PTLU, R1 := QTRV

and therefore L and R can be found as stated in step 4.
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