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Management Summary 
In this research we consider the ordering process of e-retailers that sell products which require customers 
to be at home to receive the order. E-retailers in this context may offer customers the option to select a 
time window in which their order must be delivered, to increase the customer satisfaction. Based on the 
order details and the customer location an e-retailer determines a set of time windows from which a 
customer can select one. It may occur that no time windows are available for a certain customer. 

The ordering process of an e-retailer can be divided into a booking period, in which customers place 
their orders, and a service period, in which the orders are delivered. During the booking period customers 
request available time windows for their orders to be delivered, and they may or may not confirm their 
order based on the response of an e-retailer. We consider the case of e-retailers that can categorize their 
products into two categories (A, B) and their delivery vehicles into at most three categories (1, 2, 3). The 
main characteristics of these vehicle types are presented in Table i. 

Table i. Main vehicle characteristics for each vehicle type 

Characteristic Vehicle Type 1 Vehicle Type 2 Vehicle Type 3 

Dedication Dedicated to Order Type A Dedicated to Order Type B Non-dedicated 
Capacity Small vehicles Small vehicles Large vehicles 

Costs Cheap vehicles Cheap vehicles Expensive vehicles 

We distinguish between four different use cases, defined by combinations of the three vehicle types that 
are available. The most important use cases are Use Case 2, in which an e-retailer owns vehicles of Vehicle 
Type 1 and Vehicle Type 2, and Use Case 4, in which an e-retailer owns vehicles of all three types. 

The e-retailers that we consider employ a fixed number of drivers, which is typically smaller than the 
number of vehicles the e-retailers own. Therefore, an e-retailer cannot use all its delivery vehicles to deliver 
the customer orders. As the vehicle types differ in their characteristics, not every vehicle type can deliver 
any customer order. This means that if for instance all drivers are assigned to vehicles from Vehicle Type 
2, an e-retailer cannot serve customers of Order Type A. We study this impact of the composition of the 
delivery fleet (determined by the assignment of the available drivers to the vehicle types) on the 
performance with regard to customer satisfaction and route efficiency. The main challenge for e-retailers 
of our context, is to find a proper balance between the customer satisfaction and the efficiency in terms 
of delivery costs. Our aim is to assist ORTEC in finding a good strategy to deal with an unfixed fleet 
composition in operational time slot management (i.e., the assignment of the drivers to the vehicles may 
change during the booking period). Therefore, we formulate the following research question: 

How can ORTEC deal in a proper way with an unfixed fleet composition when implementing 

a strategy for operational time slot management for its clients? 

Methodology 

To work in a structured way to an answer on this research question, we first did a literature review. 
Subsequently, we proposed a formal problem definition and we defined a solution approach. After that, 
we created a simulation model and we defined experiments to obtain insights with regard to our research 
question. Finally, after we carried out our computational experiments we analyzed the results, to respond 
our main research question. 

Solution Strategies 

We distinguish between three solution strategies. The first strategy, the ORTEC Base Strategy (OBS), is 
used as a benchmark and reflects the current approach that ORTEC can use in its software solutions. 
This strategy determines an initial composition of the delivery fleet (i.e., to which vehicles the drivers are 
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assigned) at the start of the booking period. During the booking period drivers cannot be assigned to other 
vehicles anymore, so the fleet composition remains fixed. Therefore, we call OBS a static strategy.  

Our two other strategies, a Myopic Strategy (MYS) and a Balanced Strategy (BAS) do not have this 
restriction and are therefore denominated as dynamic strategies. Both may re-assign drivers to other 
vehicles during the booking period if desired and thus change the fleet composition. MYS tries to do this 
whenever a customer cannot be offered any time window, whereas BAS only tries to change the fleet 
composition if several conditions are met. BAS also rejects unattractive customers, aiming to accept more 
attractive customers instead. 

Results and Conclusions 

We carried out experiments for two scenarios, based on data from an ORTEC client that is similar to an 
e-retailer of our context. The first scenario considers a central depot that is located in the province Utrecht 
of the Netherlands. The customer locations are spread around this depot, mainly in the Dutch provinces 
Utrecht and Noord-Holland. The second scenario considers a central depot located in the Dutch province 
Noord-Brabant. The customer locations are mainly spread over the provinces Noord-Brabant and Limburg 
of the Netherlands.  

For both scenarios we consider a situation where the observed percentage of customers for each order 
type is on average equal to the expected percentage of customers for that order type according to historical 
data (a). We also consider a situation where this is not the case, so the observed ratio of customers of 
each order type does not equal the historical ratio (b). As mentioned, the main challenge in operational 
time slot management lays in finding a balance between customer satisfaction and route efficiency. We 
quantify customer satisfaction by calculating the average percentage of customers that can be served by 
an e-retailer (the larger the better), and the route efficiency by calculating the average delivery costs per 
customer that is served (the less the better). 

Our results strongly indicate that it is worthwhile for ORTEC to implement a dynamic strategy to 
deal with an unfixed fleet composition in operational time slot management, at least in cases similar to 
the scenarios we consider. Furthermore, we see that our smart dynamic strategy (BAS) outperforms our 
myopic dynamic strategy (MYS) for all scenarios that we consider. We performed a benchmark of the 
performance of our strategies against two prophet strategies. These strategies know upfront everything 
about each customer that will arrive during the booking period and may therefore select the most 
attractive customers in order to serve as many customers as possible. Figure i presents the benchmark 
results in terms of customer satisfaction and Figure ii the benchmark results in terms of route efficiency. 

Performance on Customer Satisfaction 

Prophet (No Time Windows) Prophet (First Choice Time Window) BAS MYS 

  
Figure i. Performance benchmark of our strategies against prophet strategies for customer satisfaction 
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Performance on Route Efficiency 

Prophet (No Time Windows) Prophet (First Choice Time Window) BAS MYS 

  
Figure ii. Performance benchmark of our strategies against prophet strategies for route efficiency 

We see that our strategy BAS shows a decent performance, somewhere half the way between the lower 
bound set by the performance of OBS (0%) and the upper bound set by the performance of the prophet 
strategies. At the same time the results show that there is enough space for future improvements of our 
strategy BAS. We must keep in mind that in reality we can probably never attain the performance of the 
prophet strategies, because they use information that will never be available to an e-retailer. However, 
getting closer in performance should be within the bounds of what is possible to achieve. Summarizing, 
BAS seems to be a good starting point for ORTEC in the search for a proper way to deal with an unfixed 
fleet composition in operational time slot management. However, more attention should be paid to tuning 
its parameters and to improving the way in which the strategy handles forecast errors. 

Main Recommendations 

• We propose to increase the dimensions of the scenarios for which we test the performance of our 
strategies. It would be very interesting to know if BAS still shows a good performance when for 
instance more customers arrive during the booking period, more drivers are available, the delivery 
fleet contains more vehicles and other factors are considered at a larger scale. 

• We recommend to investigate how BAS performs in a generalized version of the e-retailer case. 
What happens for instance when we consider more than two order types and more than three 
vehicle types? What is the impact of the driver assignment to the vehicles when drivers have 
different capabilities and cannot drive any vehicle type anymore? It would be interesting for the 
contribution to literature to find an answer to such questions. 

• Another important recommendation is that we propose to spend time to develop a good method 
to tune the parameters of BAS and improve the strategy. Each practical application of the e-
retailer case may require its own parameter tuning. It would be beneficial for ORTEC if a standard 
method could be developed to find the best parameter tuning for each case in a structured way. 

• We propose to study the impact of customer choice behavior in operational time slot management 
in a deeper way. The customer has a vital impact on whether his or her order can be delivered in 
the end. An e-retailer can offer many time windows to a customer, but if in the end the customer 
wants a time window that is not on the list, the customer will not confirm the order. The fact 
that the customer’s behavior has such a large influence, requests further research on this topic. 

• Finally, we recommend ORTEC to study the way in which the algorithms in CVRS are configured 
to solve vehicle routing problems. We now use standard configuration templates, but it may be 
very beneficial for ORTEC to develop a method that can tune the algorithms according to the 
need of a certain client. BAS could also make use of such a template, tailored to the need of 
having a low response time, which is still a problem right now.  
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Abbreviations 

BAS BAlanced Strategy A smart dynamic strategy developed to deal with 
the decision whether to accept a customer order. 

COMTEC COMponent TEChnology A unified technology framework of loosely-coupled 
components, which ORTEC uses to develop 
enterprise-ready solutions and real-time planning 
applications on to sell those to its customers. 

CVRS COMTEC Vehicle Routing Service An ORTEC service that can be used (standalone 
as well as in the cloud) to construct solutions for 
vehicle routing problems. 

KPI Key Performance Indicator An indicator that can for instance be used to 
quantify the performance of a strategy and 
compare it to the performance of other strategies. 

MYS MYopic Strategy A myopic dynamic strategy developed to deal with 
the decision whether to accept a customer order. 

OBS ORTEC Base Strategy A static strategy developed to deal with the 
decision whether to accept a customer order. 

ORD ORTEC Routing and Dispatch An ORTEC product that offers advanced planning 
solutions for dispatch and execution of vehicle 
routes. 

OTS ORTEC Timeslotting Service An ORTEC cloud service that can be used to 
determine which time windows are available to be 
offered to customers. 

TSM Time Slot Management Time slot management encompasses all decisions 
on a strategical, tactical and operational level that 
are necessary to facilitate the process of offering 
time windows and assigning one to a customer 
when an order is placed. 

TSP Traveling Salesman Problem A combinatorial optimization problem in which the 
shortest tour must be determined through a set of 
n points, which all need to be visited once. 

VRP Vehicle Routing Problem A combinatorial optimization problem in which 
optimal routes need to be determined for a set of 
vehicles, given a set of customer orders that need 
to be delivered. 
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1. Introduction 
In this chapter we introduce this research and explain its context. Section 1.1 briefly describes the 
organization where the research takes place. In Section 1.2 we give a description of the case we consider, 
and we explain why it is relevant for practice. Section 1.3 defines the scope and the goal of this research, 
and to conclude we present the research framework in Section 1.4. 

1.1. About ORTEC 
ORTEC started in 1981 as a small company founded by a few Dutch students, who wanted to show the 
world the value of mathematics. Through the years ORTEC became one of the world’s leading suppliers 
of advanced planning and mathematical optimization solutions, as well as a provider of logistics 
consultancy services. The company currently has nineteen offices around the globe, and around 900 
employees, most of which work at the headquarters in Zoetermeer, The Netherlands. 

By optimizing the performance of some of the most iconic businesses in the world, ORTEC gained the 
respect of industry leaders globally. ORTEC offers software solutions for several industries, such as retail, 
consumer goods, food & beverage, transportation, and more. The software solutions address different 
challenges businesses face, in areas such as load assignment, routing, workforce planning and scheduling, 
field services and warehousing. By offering those solutions, ORTEC aims to increase the economic and 
social value of their clients, and simultaneously reduce their environmental impact. This contributes to 
ORTEC’s mission, which is to optimize our world using world class mathematics and engineering (ORTEC 
B.V., 2018). 

1.2. Case Background and Description 
In the past few years, we see a trend that retail e-commerce sales are growing strongly worldwide. Forecasts 
indicate that this trend will continue in the years to come (eMarketer, 2018). This growth in retail e-
commerce sales imposes logistical challenges on e-retailers when fulfilling the online demand. As the 
business is competitive and profit margins are small, e-retailers want to minimize their logistics costs. 
However, at the same time, customers become more and more demanding, which forces e-retailers to 
comply with high service levels and other restrictions to prevent losing their customers. 

In this research, we focus on e-retailers that face demand that requires attended home delivery. In 
attended home delivery customers need to be at home when the product or the service, which they ordered 
online, is delivered to them. Examples of those products and services may include groceries, large electronic 
devices, such as washing machines or dishwashers, but also repairs or installations that need to be 
conducted at people’s homes. 

E-retailers may offer the customer the option to select a time window. This obliges an e-retailer to 
deliver the order to the customer’s location not earlier than the start time of the time window, and not 
later than its end time. The primary objective is to increase customer satisfaction by offering more 
flexibility to a customer. An important side-effect of offering time windows to customers is that e-retailers 
can prevent that customers are not at home when the order is delivered. Reaching those objectives comes 
at a certain cost for an e-retailer, as offering more flexibility to the customer results in more complex 
restrictions when planning the orders in delivery routes. For instance, without offering time windows to 
customers, the distributor can decide himself when to deliver an order to a customer. There are no 
restrictions regarding the sequence in which the orders are delivered. This makes the routes more flexible 
for changes in the route sequence, which may be desirable when unexpected delays happen. However, 
when offering time windows, the routes must of course be formed in such a way that the selected time 
windows are respected as much as possible. This may in practice require additional vehicles compared to 
the case in which the distributor does not have to cope with time restrictions for delivery. Besides that, 
the routes may become less efficient, e.g. because a certain neighborhood must be visited twice in one 
route in different time windows, which may cause detours. 
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Managing this whole process in a profitable way imposes many challenges on e-retailers. Therefore, this 
topic offers many incentives for research, to help e-retailers improve the way in which they deal with the 
process of offering and assigning time windows to their customers. As ORTEC has many (potential) clients 
in retail e-commerce, ORTEC wants to provide software solutions that help these clients to tackle the 
challenges. A specific challenge that arises in practice for ORTEC’s clients has to do with the fact that 
they have a heterogeneous fixed delivery fleet. Having a heterogeneous fleet means that they own a fleet 
consisting of several types of vehicles, which may differ in for instance load capacity, driving speed or 
other factors. ORTEC’s clients need to decide for each day how to use this fleet to deliver customer orders. 
Especially in cases where the clients employ less drivers than the number of vehicles that they own this 
decision becomes complex. The drivers must be assigned to one vehicle each, so some vehicles cannot be 
used for delivery because no driver is assigned to them. The fleet composition that results from the 
assignment of the drivers to the vehicles determines how many vehicles of each type are used to deliver 
the customer orders. The fleet composition can have a large influence on the decision of which time 
windows to offer to customers, as explained in the following sections. This practical challenge serves as 
motivation of our research topic, which is presented in the remainder of this chapter. 

1.2.1. Time Slot Management 

Time slot management encompasses all decisions on a strategical, tactical and operational level that are 
necessary to facilitate the process of offering and assigning a time window to a customer. In this section 
we give insight into some important decisions for the different levels of control in time slot management, 
in the context of e-retailers. In Chapter 2 we present an overview of relevant literature about time slot 
management. 

An example of a strategical decision is the definition of the set of time windows that an e-retailer uses. 
An e-retailer must for instance decide on the number of different time windows to use, the length of each 
time window (different lengths or equal lengths) and on whether the time windows should have overlap 
with each other or not. Those decisions are typically fixed for a longer period of time, which makes them 
important on a strategical level of control. 

An important tactical decision is which time windows to make available in a certain region during a 
certain period. An e-retailer can base this choice on historical data of customer demand for the considered 
region during similar periods in history. For some regions it may not be desirable to offer narrow time 
windows. As an example, we may think of areas with high variations in travel times. If time windows 
would be narrow, the risk of arriving late or early at the customer would be high. This decision may be 
subject to change, but it is not desirable to take this decision for instance every day. Therefore, we consider 
this decision on a tactical level of control. 

An example of an operational decision is which time windows to assign to a customer when an order 
comes in. We distinguish between two ways of taking this decision, which both are applied in practice:  

1) The customer is offered the option to select a time window from a set of available time windows, 
composed by an e-retailer. 

2) The customer is just assigned a time window by an e-retailer, but at least the customer knows 
when to be at home to receive the order. 

The first option imposes more logistical challenges on e-retailers, but in return the customer satisfaction 
will be higher compared to the second option. In our research context the focus is on the first option. An 
e-retailer must then determine which time windows are available for a customer to select from when an 
order comes in. Being available means that an e-retailer has, or expects to have, enough route capacity to 
deliver the order of the customer within the considered time window. The customer location and the order 
quantity (or an estimation of it) serve as inputs here, as well as the planning so far, the remaining route 
capacity and the composition of the delivery fleet. An e-retailer may take several factors into account, 
such as forecasts of future demand or restrictions regarding driver capabilities or fleet composition. After 
deciding which time windows are available, an e-retailer needs to make a choice of whether to present the 
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whole set of available time windows or only a subset. In some cases, it may be desirable to influence 
customer behavior by not offering certain time windows, which are in fact available. A reason for this 
may, among others, be that an e-retailer wants to reduce the risk of ending up with delivery routes that 
are so inefficient, that the profits of increased customer satisfaction do not outweigh the losses due to 
route inefficiency. 

We define the result of all decisions made in time slot management as the time slotting strategy. The 
main focus in this research is on operational decisions in the time slotting strategy. The time slotting 
strategy should contribute to appropriately balancing the route efficiency and the customer satisfaction. 
There are many ways to define these two factors. This subject is addressed in a more detailed way in 
Chapter 2 and Chapter 3. 

1.2.2. The E-Retailer Case 

In this section we describe some characteristics of e-retailers that are similar to typical ORTEC clients in 
the retail e-commerce area. After describing our case, we provide some practical examples of typical 
application contexts, to illustrate the relevance in practice for ORTEC’s clients. 

Cut-off time is 
reached and routes 

are optimized
... Orders are delivered

    

Customer chooses a 
time window and 
confirms order

E-retailer returns 
available time 

windows

Customer submits 
delivery location and 

order details

Customer order

Customer order Customer order

 
Figure 1.1. General overview of ordering and delivery process at an e-retailer 

The e-retailers we consider offer home delivery to their customers. The companies typically own one or 
more central depots, at which a delivery fleet is available. The composition and the size of the delivery 
fleet has been determined after thorough analysis and is fixed. The e-retailers have a heterogeneous fleet, 
which means that vehicle types may differ for instance in load capacity, vehicle speed or so-called 
capabilities. Examples of capabilities (sometimes referred to as skills) could be suitability for refrigerated 
transport, or suitability for accessing restricted areas, such as emission zones where only electric vehicles 
are allowed. The e-retailers in our context employ a fixed number of drivers, that are in most cases capable 
to drive all vehicle types, but the number of drivers is smaller than the number of vehicles in the fleet. 
For that reason, not all vehicles can be used at the same time and the e-retailers must determine how 
many vehicles of each type to use to deliver the customer orders for each day. The e-retailers want to 
achieve a high customer satisfaction, and therefore they offer the customers the possibility to select a time 
window in which the order is to be delivered. When customers want to place an order on the website, 
they first get an overview of the available time windows, based on the delivery location and the order 
details. After selecting a time window, the customers can pay and confirm their order. For every delivery 
day, customers can place orders until a so-called cut-off time. This means that after the cut-off time, the 
e-retailers know all demand details. Then the delivery routes can be optimized, taking into account the 
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restrictions regarding fleet size and composition, vehicle capabilities and the number of drivers that are 
available. Figure 1.1 gives a general schematic overview of the whole ordering process at an e-retailer in 
our context for any delivery day. 

Just as many of ORTEC’s clients do, the e-retailers face some struggles when taking the operational 
decisions for their time slotting strategy. Especially the decision of how to determine the available time 
windows for a certain customer order causes some difficulties. Since the number of drivers is fixed and 
smaller than the number of vehicles available, the e-retailers must decide which vehicles to use and which 
vehicles not to use for delivery. When the customer order is received, the e-retailers do not yet know what 
the ideal composition (given all customer orders that will still arrive after this order) of the delivery fleet 
would be. In other words, they do not know how many vehicles of each type to use to ensure an as efficient 
as possible delivery process. Therefore, the e-retailers need to determine the expected optimal fleet 
composition, for instance based on historical data. The reason that this expectation is required, is that 
the composition of the delivery fleet strongly influences the operational decision regarding which time 
windows to offer to customers. When making this operational decision, the available time windows are, 
among others, based on the capabilities, the speed and the capacity of the vehicles in a given delivery 
fleet. Exchanging a vehicle of a certain type in the delivery fleet for a vehicle of a different type may cause 
that a certain time window cannot be offered anymore to customers from a certain location. This may for 
instance be due to the fact that the new vehicle type cannot reach the location in time, whereas the 
original vehicle type could have reached the location in time.  

Therefore, the e-retailers need to take many different aspects into account when determining the 
operational time slotting strategy. If the e-retailers do not do this in an appropriate way, this may cause 
unnecessary lost sales, which the e-retailers want to prevent. However, the struggle remains how to deal 
with the situation in an appropriate way. The e-retailers could make use of a sophisticated but time-
consuming algorithm to provide the customer with a list of available time windows. However, there are 
restrictions on its running time, because customers will not be satisfied when they need to wait long for a 
response when they request the available time windows. Therefore, it may be better to use a more 
simplified algorithm, which disregards several restrictions but has a short running time. The downside of 
using the simplified algorithm is that it increases the risk of not being able to make efficient routes after 
the cut-off time. Or even worse, some orders may turn out to be unplannable for delivery within the 
selected time windows. If that happens, either expensive extra workforce capacity must be hired, or 
customers are left dissatisfied. Both are undesirable. Many of ORTEC’s clients deal in some way with 
challenges that are similar to the ones the e-retailers we just described face. They want ORTEC’s software 
to provide them with an operational time slotting strategy that helps to appropriately balance route 
efficiency and customer satisfaction. Below we provide two possible examples of applications of the e-
retailer case in practice. 

Online Grocery Store 

An online grocery store called OGS sells several kinds of products. Those products vary from 

food to beverages, personal care to household products, and other products that can be found 

in a regular grocery store as well. OGS delivers the orders to the customers’ homes, within 

the time windows that the customers selected. To this end, OGS owns a delivery fleet, 

composed of a fixed number of vans. Some vans are suitable for refrigerated transport, but 

other vans are not. OGS also employs a fixed number of drivers, smaller than the number of 

vehicles in the fleet, who can drive both types of vans. The fleet is located at a central depot, 

close to the center of a large city. The vans that are suitable for refrigerated transport may 

also be used for transporting products that do not need cooling. OGS does not apply the 

practice of order splitting, which implies that if a customer places an order that contains any 

product that needs refrigerated transport, a van suitable for this type of transport is needed. 

If no such type of van is available, OGS is forced to reject the order of the customer. Rejecting 
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in this case means that OGS is not able to offer the customer any time windows, given the 

vehicles that are available in the fleet and the availability of additional drivers. To prevent 

undesirable rejections of profitable customers, OGS needs to determine an appropriate 

composition of their delivery fleet, to prevent rejecting certain profitable customers. 

Food Delivery Service 

A food delivery service named FDS offers customers the possibility to order food online, and 

have it delivered to their homes at the time they selected. To reach a wide range of customers, 

FDS offers many different types of food. Among others, customers can order Italian food, 

American food, Brazilian food, Japanese food, Chinese food and Dutch food. FDS is located 

in a modern metropolis, close to downtown. To deliver the customer orders, FDS owns a fleet 

of several electric vans, as well as petrol vans. The petrol vans have a larger reach and more 

capacity in comparison to the electric vans. However, the municipality decided that some 

areas in the city center are not accessible for non-electric vehicles anymore, which they call 

emission zones. With this measure the municipality aims to reduce the impact of the emission 

of exhaust gases, which should contribute to a cleaner environment in the city. To serve the 

many customers in these emission zones, FDS needs the electric vehicles. FDS employs a 

limited number of drivers, which is smaller than the number of vehicles they own. Since FDS 

has a good reputation, customer demand is always larger than FDS’ capacity. Customers 

must therefore order in time to be sure that their order can be fulfilled, due to the limited 

delivery capabilities. Based on their location and the order quantity, FDS then offers them 

narrow time windows in which their food can be delivered. FDS wants to be able to serve as 

many customers as possible. Therefore, it is important for FDS to make use of the right 

vehicles, taking into consideration the limitations of the vehicles and the impact of the fleet 

composition on the time windows that can be offered to the customers. 

We can define many use cases of the e-retailer case based on what we observe in practice. We limit our 
analysis in this project to some of the most common use cases of ORTEC’s clients. In Chapter 3 we 
present a more elaborate overview and definition of the use cases of the e-retailer case that we distinguish. 

1.3. Research Scope and Research Goal 
Our research closely relates to the area of vehicle routing. To be more precise, it is in the realm of the 
application of time slot management in the context of vehicle routing with a heterogeneous fleet, time 
windows and some additional restrictions. As mentioned before, the main focus of our research lays on the 
operational decisions in the time slotting strategy. There are many interesting decisions on this level of 
control, but we focus specifically on the influence of the fleet composition (given the limit imposed by the 
number of drivers available) on the decision which time windows to offer to a customer. Several clients of 
ORTEC deal with problems related to this topic, which makes it a relevant topic for practice. Within 
ORTEC not much attention has been paid to this subject yet. We study the impact of several ways to 
deal with an unfixed fleet composition during the ordering process, in the context of the use cases of the 
e-retailer case that we consider as described in Section 1.2 and Chapter 3. 

To measure this impact objectively, we need general measures of the quality of a final solution, which 
we define later in this research (Chapter 3). Important aspects to consider are customer satisfaction and 
route efficiency, as mentioned before. The goal of this research is to provide insights into how ORTEC 
can deal with a fleet composition that is unfixed during the ordering process, given the restrictions imposed 
by the number of drivers that are available. These insights can then be used when ORTEC implements 
strategies for operational time slot management for its clients. As explained in Section 1.2, the decision of 
which time windows to offer to the customers is based on a choice regarding the fleet composition. If the 
fleet composition (that was assumed to be optimal) changes, the resulting time windows that are offered 
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for a certain customer order may change as well. With this research we aim to increase the knowledge 
within ORTEC regarding this topic.  

To attain our research goal, we seek to design several strategies that can be used to determine what 
the ideal fleet composition would be at a certain time during the ordering process. This can for instance 
be based on estimations made with historical data, already known demand and other factors. Those 
strategies should take into account that it is undesirable to have high running times, because this leaves 
customers dissatisfied. We analyze the impact of the strategies that we design for different scenarios and 
different use cases of the e-retailer case. By doing so we seek to provide insights that ORTEC may use to 
configure operational time slotting strategies for clients that are similar to the e-retailers we discussed in 
our case description.  We make use of simulation techniques to evaluate the performance of the strategies 
we design. We formulate our main research question in the following way: 

How can ORTEC deal in a proper way with an unfixed fleet composition when implementing 

a strategy for operational time slot management for its clients? 

In the next section we describe the way in which we aim to reach our goal. We formulate several sets of 
research questions, which guide us to an answer to our main research question as defined above. 

1.4. Research Framework 
To work in a structured way toward our research goal, we define a research framework in this section. To 
find an answer to our main research question, we need to answer several other questions on the way. We 
start exploring what is already known in literature about the relevant aspects of the vehicle routing 
problem for our context. Besides that, we study what has been found in literature about time slot 
management in attended home delivery or similar fields, with a special focus on what is common practice 
for the way in which available time windows are offered to the customers. Finally, we seek to increase our 
knowledge regarding ways to model customer choice behavior. Therefore, we study what is known about 
this subject as well. Besides the substantive knowledge we obtain about these subjects, we also aim to 
obtain more information about how similar studies have been conducted in the past. Our first set of 
research questions is the following: 

1) What can we learn from literature… 
a. …about vehicle routing problems in the context of a heterogeneous fleet and time windows? 
b. …about time slot management in attended home delivery or similar application contexts? 
c. …about the way of measuring the solution quality of vehicle routing problems in the context 

of time slot management in attended home delivery? 
d. …about modeling customer choice behavior in time slot management? 

After obtaining background knowledge, we make the step back to our own context. As the e-retailer case 
is a very general case that can be applied in many contexts, we first need to define the use cases we 
consider. We also need to find out how we can properly model the e-retailer case, so in the end we can 
simulate the performance of different strategies that we design. Therefore, we seek an answer to our second 
set of research questions: 

2) How can we model different use cases of the e-retailer case, to test the performance of the different 
strategies that tell us how to deal with an unfixed fleet composition during the ordering process? 
a. Which use cases of the e-retailer case should we consider? 
b. How can we formally define the problem we are tackling? 
c. How do we measure the quality of a final solution? 
d. Which hypotheses do we put to a test in our simulations? 
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The next step in our research consists of designing the new strategies we want to compare to each other. 
The different strategies should of course be representative for different approaches of solving the problem 
of how to deal with an unfixed fleet composition in operational time slot management. Our third set of 
research questions addresses this topic and is as follows: 

3) Which solution strategies do we design to deal with an unfixed fleet composition during the 
ordering process? 
a. What are the problems for which our solution strategies should come up with a decision? 
b. How can we deal with these problems in the solution strategies that we design? 

After designing the solution strategies, we simulate their performance for different scenarios based on the 
use cases of the e-retailer case. We perform simulation runs to find out whether the hypotheses as defined 
in 2d can be confirmed. Of course, we need input data to define the different scenarios that we consider, 
which we use to run the simulations. We therefore design experiments that we perform to put our 
hypotheses to a test. This results in our fourth set of research questions: 

4) How can we simulate the ordering process from the e-retailer case? 
a. What are the inputs that we need for our simulations and how do we process them? 
b. How can we run our simulations? 
c. Which scenarios are we going to use as input data for our simulations? 
d. Which experiments do we define to validate our hypotheses? 

Finally, after performing all the simulation runs, we analyze the results in order to confirm or reject our 
hypotheses. For that reason, our last set of research questions is the following: 

5) What are the insights that we can obtain from the results of our simulations? 
a. Do the simulation results confirm the hypotheses defined earlier? 
b. What general results do we observe from our experiments? 

Answering these five sets of research questions will give us valuable insights into how ORTEC should deal 
with an unfixed fleet composition when implementing an operational time slotting strategy for a client. 
Figure 1.2 shows a schematic overview of the research framework to give an idea of the research structure 
and to link each part of the research to the corresponding chapter(s) and research questions. 
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Figure 1.2. Schematic overview of the research framework
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2. Literature Review 
In this chapter we present an overview of some relevant findings in literature, which help us better 
understand the context of our problem. In Section 2.1 we investigate the subject of the vehicle routing 
problem. Section 2.2 gives an overview of what is currently known about time slot management in attended 
home delivery. Finally, Section 2.3 presents our findings about modeling customer choice behavior in time 
slot management. 

2.1. The Vehicle Routing Problem 
In this section we give a summarized overview of the vehicle routing problem. More specifically, we first 
present the basic vehicle routing problem in Section 2.1.1. We then take a closer look into some of its 
different variants which arose over the years in Section 2.1.2. Finally, we give insight into different solution 
methods that have been developed, and into measures for solution quality in Section 2.1.3. 

2.1.1. Basic Problem Definition 

The Vehicle Routing Problem (VRP) is an NP-hard combinatorial optimization problem (Lenstra & 
Rinnooy Kan, 1981; Vigo & Toth, 2014), which was introduced many years ago, under the name Truck 

Dispatching Problem (Dantzig & Ramser, 1959). Dantzig & Ramser introduced the problem as a 
generalization of the well-known Traveling Salesman Problem (TSP), which was formulated by Flood 
(1956) a few years earlier. Ever since its introduction, the VRP has been a problem which intrigued many 
researchers, due to its relevance for practice. 

The objective of the classical VRP, as introduced by Dantzig & Ramser, is basically to find the shortest 
route that passes once through a set of n given locations, just as in the TSP. However, the VRP differs 
from the TSP regarding capacity restrictions. In the TSP, the assumption is that one route can cover all 
n points. The VRP takes into account that several carriers may be required to serve all delivery points, 
due to a limited capacity of the individual carriers. Dantzig & Ramser came up with an iterative 
computational procedure to solve their VRP. Their formulation of the problem and a solution method 
paved the way for many others to come up with improved solution methods and different versions of the 
VRP. Clarke & Wright (1964) were the first ones to come up with an improved solution method, which 
resulted in a distance reduction of almost 20% compared to the solution obtained with Dantzig & Ramser’s 
method for their test case. The method Clarke & Wright used became known as the savings algorithm. 
The papers written by Dantzig & Ramser and Clarke & Wright are considered as pioneering papers for 
studies of the VRP (Vigo & Toth, 2014). 

Nowadays the VRP is often represented using graphs (Chang & Chen, 2007; Cordeau, Laporte, 
Savelsbergh, & Vigo, 2007; Eilam Tzoreff, Granot, Granot, & Sošić, 2002; Jiang, Ng, Poh, & Teo, 2014; 
Munari, Dollevoet, & Spliet, 2016). To give an example, the classical VRP is defined on an undirected 
graph G = (V, A). The assumption here is that we have a symmetric problem, in the sense that the 
direction in which we cross an edge does not matter. In case the sequence in the routes does matter, we 
can represent the classical VRP on a directed graph. The vertex set V = {0, 1, …, n} contains nodes 
i ∈ V ∖ {0}, which represent customers with demand q

i
 > 0 (for instance expressed as the weight in kg). 

Vertex 0 represents a depot. The set A consists of the edges (i, j) between each pair of nodes i, j ∈ V ∖ {0}. 
To every edge a travel cost of cij, for instance the distance in km, is associated. At the depot a fleet of m 
identical vehicles is available, which all have capacity Q. The objective of solving the VRP is to find a set 
of m routes with minimized total costs, in such a way that each route starts and ends at the depot. 
Furthermore, all customers must be visited exactly once in one of the routes, in such a way that the total 
demand of all customers visited in a route does not exceed the vehicle capacity. Figure 2.1 shows a 
graphical example of a possible solution to a random instance of the classical VRP. 
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Figure 2.1. Graphical representation of a solution to an instance of the classical VRP 

2.1.2. Variants of the Vehicle Routing Problem 

Over the years many different variants of the classical VRP have been proposed. Dantzig & Ramser (1959) 
considered a homogeneous delivery fleet when they first introduced the VRP, in the sense that all vehicles 
they considered had the same capacity. However, they already mentioned the possibility of considering a 
heterogeneous delivery fleet, in the sense that the carriers have different capacities. This extension is 
relevant for our research, in which we consider vehicles that, by definition, have different characteristics. 
Besides this variation in fleet mix, many other characteristics of the VRP can be varied. Examples are 
variations in fleet size (fixed, unfixed), nature of demand (deterministic, stochastic), restrictions on 
delivery times, type of demand (pickup, delivery, both), service times, vehicle characteristics, travel times, 
and many other features. We briefly discuss a few types of the VRP here, which are relevant for our 
research. There are many other interesting variants, but we do not report extensively on those here. For 
anyone who would like to obtain more knowledge on the different variants, rich literature is available on 
this subject. Braekers, Ramaekers, & Van Nieuwenhuyse (2016) provide a good starting point with their 
state of the art classification and review of the VRP. 

The Heterogeneous Fleet VRP (HVRP) is the first variant of the VRP we consider. The HVRP 
considers a fleet of different types of capacitated vehicles, where each vehicle type has a fixed cost. Those 
vehicles have to serve a set of customers of which the demand is known. The heterogeneity of the fleet 
can be determined by various factors. In most studies we see that the heterogeneity is characterized by 
vehicle capacity and vehicle costs (Koç, Bektaş, Jabali, & Laporte, 2016; Pessoa, Uchoa, & De Aragão, 
2009). Two common variants of the HVRP are the Fleet Size and Mix VRP (FSMVRP) (Golden, Assad, 
Levy, & Gheysens, 1984) and the Heterogeneous Fixed Fleet VRP (HFVRP) (Taillard, 1999). The 
FSMVRP is a special instance of the HFVRP in which the number of vehicles per type is infinite. The 
FSMVRP is studied more extensively in literature, probably because it is easier to solve than the HFVRP. 
The FSMVRP is relevant for strategic decisions regarding fleet dimensioning, so it is generally applied in 
situations where long-term decisions must be taken. The HFVRP is mainly applied in an operational 
context, when a company already owns a delivery fleet corresponding to their strategic decisions. The 
HFVRP is then solved to determine which of the vehicles to use to serve customer demand on an 
operational level (Brandão, 2011; Paraskevopoulos, Repoussis, Tarantilis, Ioannou, & Prastacos, 2008).  



2.1. The Vehicle Routing Problem 

 
 

10 

For us, the most relevant version of the HVRP is the HFVRP, because the fleet dimensioning decisions 
are given as input in the context we consider. In the HFVRP, we deal with a fixed number of different 
vehicle types. The objective is to find out how to make the best use of this fleet to fulfil customer demand. 
Companies need a heterogeneous fleet to be able to cope with different demand characteristics. For some 
customers it may for instance be required to have vehicles with large capacities to fulfil demand, while for 
other customers this may not be the case. Some customer locations may impose access restrictions, or they 
may be out of reach for certain vehicles types, where using a different vehicle type may solve the problem. 
But of course, this may come at a certain additional cost for using that vehicle. These examples illustrate 
the practical applicability of the HFVRP (Li, Golden, & Wasil, 2007). 

The VRP with Time Windows (VRPTW) is another interesting variant of the VRP. It was first 
introduced in some case studies, around 50 years ago (Cook & Russell, 1978; Knight & Hofer, 1968; Pullen 
& Webb, 1967). Later, a more general solution method was proposed (Solomon, 1987), aiming to provide 
a well-performing approach for practical sized problems and benchmarks for future research. The VRPTW 
is essentially equal to the VRP with one additional restriction. This restriction states that the service at 
a customer must not start earlier than the start time of the time window provided by the customer and 
must not start later than the end time of this time window. There are two types of time window 
restrictions. Time window restrictions can be soft, which implies that the service to a customer can start 
before or after the selected time window, but this violation comes at a certain cost (penalty). Hard time 
window restrictions imply that no violations of the selected time windows are allowed. The VRPTW has 
been intensively researched over the years, which resulted in many reviews of this problem (Bräysy & 
Gendreau, 2005a, 2005b; Cordeau et al., 2007; Desrosiers, Dumas, Solomon, & Soumis, 1995; Gendreau & 
Tarantilis, 2010; Kallehauge, Larsen, Madsen, & Solomon, 2005). The reviews provide a formal definition 
of the VRPTW as well as an overview of the many solution techniques that were proposed over the years. 
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Figure 2.2. The effect on route costs for route 1 from Figure 2.1 when adding time window restrictions to VRP  
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It is much more difficult to find an efficient solution in terms of driving time and driving distance for the 
VRPTW compared to the classical VRP. To illustrate the effect, we consider the VRP as presented in 
Figure 2.1. We assign travel costs expressed in hours (cij) to all the edges of the routes, as displayed in 
Figure 2.2. For the classical VRP, the sequence in which the customers are served does not matter, because 
there are no time window restrictions. This gives us a cost of 19 for traveling across all the edges of the 
route. But as soon as we take the time window restrictions into account, we cannot drive the same route 
anymore. The time windows for each customer node as displayed in Figure 2.2 force us to drive the route 
in a different sequence, as displayed by the arrows. Note that the solution to the VRPTW is defined on a 
directed graph instead of on an undirected graph, which is the case for the classical VRP. We see, that 
serving the same customers now implies a route cost of 23. It becomes clear that we can never obtain an 
optimal solution to the VRPTW that is more efficient than an optimal solution to the classical VRP for 
the same instance but without time window restrictions. The best possible result is an optimal solution 
that is just as efficient as an optimal solution to the classical VRP, but in most cases optimal solutions to 
the VRPTW are worse. Therefore, as we already mentioned in Chapter 1, time window restrictions are 
only added because offering time windows to customers increases customer satisfaction. 

For our research, a relevant problem lies in the combination of the HFVRP and the VRPTW. 
Literature on this variant of the VRP, the Heterogeneous Fixed Fleet VRP with Time Windows 
(HFVRPTW) is scarce compared to other variants. The main focus of publications about this variant of 
the VRP, is to provide heuristic techniques that can solve an offline version  of the HFVRPTW (Brandão, 
2011; Jiang et al., 2014; Paraskevopoulos et al., 2008; Yepes & Medina, 2006). The reason for this is that 
exact methods do not provide satisfactory solutions within a reasonable amount of time. Just as in most 
of the literature about solving the VRP variants, the assumption is that the problem is solved only after 
the moment that all customer orders are placed, when the selected time windows are all known. Therefore, 
we call it the offline version of the problem (see Figure 2.3). 

This is an essential difference with the context we consider in this research, in which we deal primarily 
with an online version of the HFVRPTW. Instead of finding a solution given the time windows selected 
by customers, we provide available time windows to a customer, based on the solution we built up until 
the order comes in. In other words, the demand becomes known during the construction of routes, instead 
of constructing routes after all demand has become known. Although the perspective is different, what 
remains the same is that in the end we need to come up with an as good as possible solution of the 
HFVRPTW with the confirmed customer orders and the corresponding time windows as input. Therefore, 
publications about the HFVRPTW may provide valuable insights for the construction of our simulation 
model and the choice of our solution methods. 

2.1.3. Solution Methods 

The main focus of studies of the VRP over the years has been to develop solution techniques that provide 
efficient solutions in a reasonable amount of time. As mentioned before, the VRP (and most of its variants) 
is NP-hard and therefore only small instances can be solved to optimality in polynomial time. For the 
classical VRP, many solution methods have been developed since the introduction of the problem. We see 
that several exact methods have been developed. Those methods make use of branch-and-bound, set 
partitioning, dynamic programming and branch-and-cut algorithms to solve the classical VRP. Besides 
those exact methods, we see two types of heuristics that have been developed, classical heuristics and 
metaheuristics. Classical heuristics include route construction heuristics, two-phase heuristics consisting 
of both a clustering and a routing phase, and route improvement heuristics. Metaheuristics include local 
search heuristics, population search heuristics and learning mechanisms. Metaheuristics are less likely to 
get stuck in local optima than classical heuristics. Cordeau et al. (2007) provide a detailed overview with 
more information about these solutions methods.  

For the HVRP, Koç et al. (2016) provide an overview of the different solution methods that have been 
developed over the years. They point out that we have to distinguish between the FSMVRP and the 
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HFVRP when it comes to solution methods. For the FSMVRP, much more methods were developed, 
including lower bound and exact algorithms, as well as continuous approximation models and heuristics. 
For the HFVRP, they conclude that there is no exact algorithm available yet, but there are several 
heuristics methods that have been published, e.g., tabu search heuristics. 

Cordeau et al. (2007) also provide an overview of solutions methods for the VRPTW, including both 
exact methods and heuristics. The exact methods developed for the VRPTW include algorithms based on 
Lagrangian relaxation, column generation and branch-and-cut. Heuristics for solving the VRPTW include 
both construction and improvement heuristics, as well as metaheuristics, for instance based on tabu search 
or genetic algorithms. Gendreau & Tarantilis (2010) point out that for large instances of the VRPTW it 
is not worthwhile, or even impossible in polynomial time, to make use of exact methods. They provide an 
overview of metaheuristics, parallel and cooperative search methods and hybrid optimization algorithms 
that are used when dealing with large instances of the VRPTW in practice. Another overview of solution 
methods for the VRPTW can be found in the work of Bräysy & Gendreau (2005a, 2005b), where they 
discuss both route construction and local search algorithms, as well as metaheuristics. 

For the HFVRPTW, to our knowledge no exact algorithms exist to solve the problem. Most 
contributions in literature about this problem focus on developing heuristics to solve the HFVRPTW, or 
variants of it (Belfiore & Yoshida Yoshizaki, 200 ; Brandão, 2011; Dell’Amico, Monaci, Pagani, & Vigo, 
2007; Jiang et al., 2014; Koç, Bektaş, Jabali, & Laporte, 2015; Kritikos & Ioannou, 2013; Paraskevopoulos 
et al., 2008; Yepes & Medina, 2006). Those heuristics include for instance tabu search heuristics, scatter 
search heuristics or regret-based heuristics. 

2.2. Time Slot Management in Attended Home Delivery 
In Chapter 1 we already saw how Time Slot Management (TSM) can be defined. In this section we study 
its application in the context of attended home delivery. A pioneering study in the area of TSM in attended 
home delivery is the one of Campbell & Savelsbergh (2005), in which they introduce the Home Delivery 

Problem, which is in some way similar to our e-retailer case. As we have shown in Chapter 1, we can 
distinguish between strategical, tactical and operational levels of control in TSM. In literature we see that 
not always a distinction is made between the strategical and the tactical level, but we do see a clear 
distinction between the operational level and the other two levels. 

At the two highest levels of control, strategical and tactical, we deal with decisions regarding the design 
of time windows, for instance the total number of time windows to use, their length, whether they should 
overlap or not and their pricing (Agatz, Campbell, Fleischmann, & Savelsbergh, 2008; Ehmke & Campbell, 
2014). Several studies have been conducted in which the impact of decisions at these levels of control in 
TSM is investigated (Agatz, Campbell, Fleischmann, & Savelsbergh, 2011; Hernandez, Gendreau, & 
Potvin, 2017; Punakivi & Saranen, 2001). For example, Agatz et al. (2011) consider the tactical problem 
of selecting the set of time slots to offer in each of the zip codes in a service region. Hernandez et al. (2017) 
consider a tactical problem where a time slot combination for delivery service over a given planning 
horizon must be selected in each zone of a geographical area. Our focus is on the operational level of 
control in TSM, therefore we do not look further into the strategical and tactical level here. However, the 
topics are closely related and because the strategical and tactical decisions do strongly influence the 
operational flexibility, it is useful to have an idea about what is known in literature about the impact of 
strategical and tactical decisions in TSM. 

Operational TSM is characterized by two periods in which different decisions must be taken: a so-
called booking period and a service period (Bühler, Klein, & Neugebauer, 2016). During the booking period 
the provider and the customers that place an order agree on a time window for the delivery of the order. 
During the service period the orders are physically delivered. Studies of operational TSM have focused on 
decisions that need to be taken during the booking period. This is because decisions that are to be taken 
for the service period boil down to solving a variant of the VRP, which has already been studied extensively 
over the years. During the booking period the service provider needs to decide among others for each 



Chapter 2. Literature Review 

 
 

13 

customer order which time windows to offer, whether to accept or reject the customer and whether to 
change the pricing of the time windows. Several studies have been carried out to get insight into the 
impact of those decisions. Some focus on the decision about the offering of time windows (Azi, Gendreau, 
& Potvin, 2011; Bent & Van Hentenryck, 2004; Campbell & Savelsbergh, 2005; Cleophas & Ehmke, 2014), 
where others focus on deciding how to price time windows dynamically for each customer to influence 
customer behavior and smoothen demand (Asdemir, Jacob, & Krishnan, 2009; Campbell & Savelsbergh, 
2006; Chen & Chen, 2014; Klein, Neugebauer, Ratkovitch, & Steinhardt, 2017; Yang & Strauss, 2017; 
Yang, Strauss, Currie, & Eglese, 2016). 

A study with an approach similar to ORTEC’s current approach, considers how to solve an online 
capacitated vehicle routing problem with structured time windows (Hungerländer, Maier, Pöcher, Rendl, 
& Truden, 2018). Hungerländer et al. show that for the booking period we deal with an online problem, 
whereas for the service period we deal with an offline problem. Their online problem encompasses two 
steps: an insertion step and an improvement step. The insertion step consists of three parts. First a 
selection of available time windows is offered to a customer when the customer places an order for a 
certain day. From the options the customer selects a time windows which suits best. Finally, the order is 
inserted in the delivery routes for that day, in such a way that the order can be delivered within the 
selected time window. The improvement step takes the routes that have been built up until now and tries 
to rebuild them in a more efficient way, so more capacity is available to serve new customers. The offline 
problem consists of finding a more efficient way to schedule the delivery routes, with schedule built up so 
far as input. The offline problem is solved after the cut-off time. In other words, after all customers have 
placed their orders and no new order can be placed anymore. In Figure 2.3 we show the relation of several 
concepts in operational TSM which we encounter in literature on a timeline. 

Legend

Online customer insertion

Improvement steps for current 
schedule

Online problem Offline problem

Customer insertion
Cut-off 
time

Service period

Final route 
optimization

Offer available time 
windows to customer

Insert customer in a 
route, within the 

selected time window

Try to realize quick 
improvement of 
current schedule

Booking period
 

 
Figure 2.3. Schematic overview of studied concepts in operational TSM on a timeline 
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Another study with an approach that is similar to the set-up of our research project is focusing on 
developing a solution method to address an attended home delivery problem faced by an Italian provider 
of gas, electricity, and water services (Bruck, Cordeau, & Iori, 2017). Although the context is somewhat 
different from our context, many other characteristics are similar. The problem that Bruck et al. consider 
consists of three subproblems. First a so-called “time slot table” is created, with an assignment of resources 
per region for each time window. This assignment is based on expected service times for each region and 
is done offline. The second subproblem is the booking of the time slots, which is an online problem in 
which customers request service and select a time window according to their preference. The final 
subproblem consists of designing a routing plan offline, after all demand has become known. The difference 
with our project is that we build up the routing plan online already. Bruck et al. divide their demand area 
in regions instead, to which they assign resources. In that way, they try to ensure that feasible routes can 
be made for the smaller regions, after customers have booked their time windows based on the resource 
capacity for a time window in their region. By introducing penalties, representing the costs of outsourcing 
the service of the unserved customers, they take into account the possibility that not all customers can be 
served as a consequence of their approach. Bruck et al. use simulation techniques to evaluate the 
performance of their solution methodology, which we also plan to do. 

Therefore, studies such as these of Bruck et al. (2017) and Hungerländer et al. (2018) provide valuable 
insights into how others approach problems similar to the one we are tackling. 

2.2.1. Objectives Used for Measurement of Solution Quality 

In this section we aim to give some insights into what literature tells us about how to compare different 
strategies or solution methodologies with regard to their impact on the solution quality. Our focus is on 
literature that considers problems in the context of TSM in attended home delivery. As mentioned in 
Chapter 1, in TSM we seek to find a proper balance between customer satisfaction and route efficiency. 
We also find these two concepts in literature about the measurement of the solution quality for problems 
in the context of TSM in attended home delivery. 

In papers about the VRP that are not specifically linked to TSM, in most cases route efficiency is 
incorporated in the objective function, either in the form of driving times, or driving distances (Braekers 
et al., 2016). These two are generally assumed to be directly linked to the routing costs. For the 
HFVRPTW we see that besides the variable routing costs that are linked to driving times or distances, 
fixed vehicle costs are incorporated as well. These costs become interesting, due to the fact that the 
HFVRPTW considers a heterogeneous fleet, in which the vehicles have different fixed costs and other 
characteristics (Paraskevopoulos et al., 2008). Dondo & Cerdá (2007) point out that it is indeed important 
to consider both fixed vehicle utilization costs and variable operational costs such as driving times and 
distances. However, our research focusses on the application of the VRP in TSM, for that reason we now 
take a look into which objectives are common to use in this area. We focus specifically on how customer 
satisfaction and route efficiency are incorporated in those objectives. 

We first take a look at the study of Bruck et al. (2017). They minimize routing costs to optimize route 
efficiency, and they do not explicitly optimize customer satisfaction. However, they adopt a certain 
threshold for quality of service to make sure to have a satisfactory performance regarding customer 
satisfaction. This threshold is determined upfront and serves as input to the problem. 

The study of Hungerländer et al. (2018) adopts a somewhat different approach. They report several 
possible measures for quality of solutions, but they leave it to the reader to determine what they think is 
more important and what weights they give to the different performance indicators. At the end of their 
paper they summarize some findings based on the result tables, aiming to give the reader insight into their 
most interesting contributions. 

In other studies of operational TSM in attended home delivery that we cited before, we see different 
ways of dealing with the balance between customer satisfaction and route efficiency. Some studies do not 
make use of an objective function, but they give resulting values for different performance indicators in 
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result tables. These performance indicators give insight into for instance the percentage of served 
customers as an indication of the customer satisfaction, and the costs or profits as an indication for the 
route efficiency (Azi et al., 2011; Campbell & Savelsbergh, 2005; Yang et al., 2016). Other studies either 
focus on optimizing customer satisfaction, for example by maximizing the number of served customers 
(Bent & Van Hentenryck, 2004), or they focus on optimizing route efficiency, for instance by maximizing 
profits or minimizing routing costs (Campbell & Savelsbergh, 2006; Klein et al., 2017). An alternative 
objective is used by Cleophas & Emke (2014), who propose to maximize the overall value of orders given 
the transport capacity. 

For our project the most suitable option seems to be the option in which we evaluate several 
performance indicators for different scenarios. It is then up to the reader to determine which strategy 
performs best in a specific practical realization of our context. In Chapter 3 we present the performance 
indicators that we use in this research. 

2.3. Modeling Customer Choice Behavior in Time Slot Management 
An important aspect for research in the context of TSM in attended home delivery is how to model the 
choice behavior of customers. In real life, every customer chooses for him- or herself and we just receive 
their choice as input. However, when we want to simulate the ordering process, we cannot look inside a 
customer’s head to know which time window he or she would select in any given situation. Therefore, we 
must make assumptions to model the customer choice behavior in a proper way. Several studies that have 
been conducted in the field of TSM in attended home delivery report different methods to model this 
behavior. In this section we aim to get insights into what different methods have been used in literature, 
which enables us to make a well-founded choice of how to model customer choice behavior in our research 
project. 

In their pioneering paper, Campbell & Savelsbergh (2005) use a quite straightforward method to model 
customer choice behavior. They assume that for each customer a so-called “time slot profile” is known, 
that identifies which time windows are acceptable for the customer. This profile is compared to the 
available time windows and if one or more available time windows are in the customer’s profile, the time 
window with the highest expected profit is assigned to the customer. 

In a later publication Campbell & Savelsbergh (2006) use a different approach. In this work they 
consider for each customer a known probability that the customer will select a certain time window for 
delivery, for all time windows. The probabilities for all time windows sum to 1 for each customer. This 
probability may be influenced by incentives in the pricing of time windows. A similar probability-based 
model is used by Yang & Strauss (2017). 

Some other studies do not explicitly model customer choice behavior. In those studies the implicit 
assumption is that a customer only wants to select one time window, which is known, and that the only 
decision to be taken is whether to accept the customer or not (Azi et al., 2011; Bent & Van Hentenryck, 
2004; Cleophas & Ehmke, 2014). 

Studies that focus on dynamic pricing of time windows tend to make use of customer choice modeling 
concepts from the area of revenue management. Asdemir et al. (2009) for instance make use of utility 
models to derive the choice probability for each customer of selecting a certain time window. In their 
study about choice-based demand management and vehicle routing in e-fulfillment, Yang et al. (2016) 
also use this method, which they call the multinomial logit choice model. This model assumes that 
customers are utility maximizers, therefore the customers select the available time window that gives them 
the highest utility. 

There are still many other methods to model customer choice behavior. For instance, Klein et al. 
(2017) use a general nonparametric rank-based choice model. In an extensive review, Nguyen, De Leeuw, 
& Dullaert (2018) give insights into the relation between customer behavior and order fulfillment in online 
retailing. Bruck et al. (2017) use four different simulation techniques. Two of those strategies assume that 
all time windows are equally popular among customers. A third strategy models customer preference by 
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seeking for time windows that are as close as possible to the time window a customer selected in real life. 
The implicit assumption is here that a customer selected the time window that has his or her highest 
preference. A fourth strategy attributes a popularity translated into a choice probability to each time 
window. These choice probabilities are assumed to be equal for all customers.  

We see that there is not really a standard way of modeling customer choice behavior for TSM in 
attended home delivery. All papers that we encountered choose, either implicitly or explicitly, some way 
to deal with customer choice behavior and then focus on other aspects of TSM in attended home delivery. 
Generally, no or very little attention is payed to the impact of the way in which customer choice behavior 
is modeled. 

2.4. Conclusion 
In this chapter we presented an overview of what is known in literature about the VRP (Section 2.1) in 
the context of a heterogeneous fleet and time windows and about TSM in attended home delivery (Section 
2.2). Besides that, we saw what literature tells us about ways of measuring the solution quality of vehicle 
routing problems in the context of TSM in attended home delivery and how customer choice behavior can 
be modeled in this context. The insights we obtained answer our first set of research questions: 

1) What can we learn from literature… 

a. …about vehicle routing problems in the context of a heterogeneous fleet and time windows? 

b. …about time slot management in attended home delivery or similar application contexts? 

c. …about the way of measuring the solution quality of vehicle routing problems in the context 

of time slot management in attended home delivery? 

d. …about modeling customer choice behavior in time slot management? 

We found that in our context we deal with a version of the VRP that combines a heterogeneous fixed 
fleet and time windows, the HFVRPTW (Section 2.1). To solve this problem, usually heuristic techniques 
are used, because exact methods generally do not provide a satisfactory solution within a reasonable 
amount of time. 

In our research we focus on the application of the HFVRPTW in TSM. We solve an offline version of 
the HFVRPTW to determine the final delivery routes at the beginning of the service period. Before this, 
during the booking period, we deal with an online version of the problem. When a customer order comes 
in during this period, we provide the customer with a choice of available time windows. The set of available 
time windows is based on the solution to the HFVRPTW built op until the moment the customer order 
comes in. Therefore, we consider the problem with which we deal during the booking period an online 
version. 

The way in which studies of TSM measure the solution quality of solutions they find differs. Some 
studies focus on optimizing quantified indicators of customer satisfaction, whereas others focus on 
optimizing route efficiency. The option that seems most suitable in our context is evaluating several 
performance indicators for both customer satisfaction and route efficiency for different scenarios. Our 
results can then give insight into which strategy would perform well in different business scenarios, 
depending on which performance indicators are considered as the most important ones. 

Customer choice behavior in TSM is modeled in different ways. Most methods incorporate choice 
probabilities for each time window for each customer in some way. These probabilities then determine 
whether a customer selects a time window to confirm the order or the customer chooses to withdraw the 
order instead. 
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3. Modeling the E-Retailer Case 
In this chapter we present our approach for modeling the e-retailer case (Chapter 1). In Section 3.1, we 
present the use cases of the e-retailer case that we distinguish, and we provide practical examples for each 
of them. Then, in Section 3.2, we explain something about ORTEC’s software solutions that we use in 
our model. Subsequently, in Section 3.3 we provide a formal definition of our problem. Finally, in Section 
3.4 we discuss the hypotheses that we investigate in our computational experiments. 

3.1. Use Cases 
As already mentioned in Chapter 1, the e-retailer case has many applications in practice. There are several 
factors that can vary, such as the number of vehicle types, the number of order types, the driver 
capabilities, the number of central depots or the length of the booking period. These are only a few of the 
many factors of which we can study the impact. We use this section to define some use cases that we 
distinguish among ORTEC’s clients, and therefore are most relevant to us given the scope of this research. 
Within the scope of this research it is not possible to analyze all use cases that we can think of for the e-
retailer case. Therefore, we aim to construct our use cases in such a way that at least most practical 
situations encountered at ORTEC’s clients can be categorized under one of the defined use cases. 

We consider the e-retailer case with three vehicle types (1, 2, 3) for the delivery fleet, two order types 
(A, B) and one central depot for all use cases. For all use cases we consider drivers that can drive all 
vehicle types, so the only restriction that the drivers impose is that we may not use more vehicles than 
drivers that are available. Of course, in practice it may occur that an e-retailer has more than three vehicle 
types. However, in many cases these vehicle types show similar characteristics, for instance with regard 
to vehicle capacity, costs or vehicle speed. Therefore, we believe that for an initial exploration of our 
subject it is a good approximation to consider three vehicle types. In case a specific e-retailer has more 
vehicle types, these types may be categorized in such a way that the categories fit to the three vehicle 
types that we define below. Analogously, in many cases the customer orders can also be classified according 
to two order types in practical situations for ORTEC’s clients that are similar to an e-retailer in our 
context. We restrict our analysis to only one central depot, because having to plan for multiple depots at 
the same time would considerably increase the complexity of the problem. As we are in an initial phase 
of exploring the field of operational TSM, considering multiple depots goes beyond our research scope. 
Also, it would be interesting for only some of the larger e-retailers that ORTEC has as (potential) clients. 
In most cases having one central depot is a realistic representation of reality for ORTEC’s clients. 

We construct the use cases by varying between vehicles that are dedicated and non-dedicated to the 
two order types that we consider. When we speak about a dedicated vehicle type, this means that vehicles 
of this type can only be used to deliver orders of either Order Type A, or Order Type B. Contrarily, 
vehicles of a non-dedicated vehicle type can deliver orders of any order type. Table 3.1 displays the main 
characteristics of the different vehicle types that we consider. 

Table 3.1. Main vehicle characteristics for each vehicle type 

Characteristic Vehicle Type 1 Vehicle Type 2 Vehicle Type 3 

Dedication Dedicated to Order Type A Dedicated to Order Type B Non-dedicated 
Capacity Small vehicles Small vehicles Large vehicles 

Costs Cheap vehicles Cheap vehicles Expensive vehicles 

Given the three vehicle types that we consider, we can distinguish between four combinations of vehicle 
types with which we can deliver all orders both from type A and type B. These combinations form the 
basis of our use cases and are shown in Table 3.2. As explained in Chapter 1, we consider e-retailers that 
employ a fixed number of drivers. As mentioned, we focus especially on cases where an e-retailer owns 
more vehicles than the number of drivers employed. In those cases, an e-retailer has to make a decision of 
how to assign the drivers to the delivery vehicles, to determine the composition of the delivery fleet that 
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is available to deliver customer orders. The vehicles that are available to assign the drivers to are usually 
a result of strategical and tactical decisions that cannot be changed on an operational level. However, the 
decision of how to assign the drivers to the delivery vehicles is taken on an operational level and is not 
fixed until after the booking period. In this research we study the impact of the fleet composition resulting 
from the assignment of the drivers to the delivery vehicles, so the main bottleneck in our context is the 
number of drivers employed by an e-retailer. Therefore, we assume at least for the cheap and small vehicle 
types (Vehicle Type 1 & Vehicle Type 2) that if an e-retailer owns any vehicles of those types, the e-
retailer owns a number that is equal to or greater than the number of drivers that the e-retailer employs. 
In that way we prevent that the number of cheap and small vehicles that is available, resulting from 
earlier decisions on a higher level of control, becomes a bottleneck in our problem. For the expensive 
vehicles (Vehicle Type 3) we do not make this assumption, because in the context of ORTEC’s clients it 
is not realistic to assume that they always have enough large expensive vehicles available. 

Table 3.2. Overview of whether vehicles of each type are available (1) or not (0) for each use case 

Use Case Vehicle Type 1 Vehicle Type 2 Vehicle Type 3 

1 0 0 1 
2 1 1 0 
3a 1 0 1 
3b 0 1 1 
4 1 1 1 

Use Case 3 is split up in 3a and 3b, because both cases are characterized by having one dedicated vehicle 
type and one non-dedicated vehicle type. For our context it does not really make a difference which of the 
two dedicated vehicle types we use, so for that reason we categorized both options under Use Case 3. For 
the sake of completeness, we now briefly discuss the four use cases from Table 3.2. However, in the 
remainder of our research we do not focus on all use cases, as we explain further in this section and in 
Section 3.4. 

3.1.1. Use Case 1 

Use Case 1 is a special use case in the sense that it is the only use case in our context in which we do not 
have a heterogeneous fleet. In this use case we only have vehicles of Vehicle Type 3, that can deliver both 
Order Type A and Order Type B. This basically reduces our use case to a version of the VRP with a 
homogeneous fleet. Instead of making all vehicles available during the booking period, we can just choose 
a number of vehicles equal to the number of drivers and use that subset of the delivery fleet as available 
vehicles. By doing so, we cope in a simple way with the restriction imposed by the number of drivers, 
which is by definition smaller than the number of vehicles in the delivery fleet. ORTEC’s software solutions 
offer plenty of options for solving (rich) VRPs with a homogeneous fleet already. Therefore, this use case 
is not very relevant for us to consider, although it is a very relevant case in practice. Below we provide a 
practical example of this use case from the context of an e-retailer reselling electronics. 

Online Electronics Reseller 

An online electronics reseller called OER sells several kinds of electronic devices. The 

electronic devices can be divided into two categories, large electronic devices and small 

electronic devices. Due to the high value of the products sold, OER requires the customers to 

be at home when their order is delivered. The electronic devices are installed by specialized 

operators, of which OER employs a fixed number. OER owns several vehicles (equipped with 

installation tools) that may be used for the delivery of large electronic devices as well as small 

ones. On a daily basis OER plans the delivery routes, by assigning customer orders to the 

different delivery vehicles while taking into consideration how many operators are available. 
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3.1.2. Use Case 2 

In Use Case 2 we consider the restriction that orders from Order Type A can only be delivered by Vehicle 
Type 1 and orders from Order Type B by Vehicle Type 2. All drivers can drive any vehicle type, which 
implies that we have a restriction on the sum of vehicles that can be used from Vehicle Type 1 and Vehicle 
Type 2. As a practical example of this use case we consider the example of a food delivery service from 
Chapter 1. 

Food Delivery Service 

A food delivery service called FDS offers customers the possibility to order food online, and 

have it delivered to their homes at the time they selected. To reach a wide range of customers, 

FDS offers many different types of food. To deliver the customer orders, FDS owns a fleet of 

several electric vans, as well as petrol vans. The petrol vans have a larger reach compared to 

the electric vans, and they are cheaper to purchase as well. Therefore, FDS prefers to use 

petrol vans whenever that is possible. However, the municipality decided that some areas in 

the city center (which they call emission zones) are not accessible for non-electric vehicles 

anymore. To serve the many customers in these emission zones, FDS needs the electric 

vehicles. FDS employs a limited number of drivers, which is smaller than the number of 

vehicles they own. To facilitate the planning process for the order deliveries, FDS decided to 

split the customer area into two parts. For customers that are located in the emission zones 

and their adjacent districts FDS always uses the electric vehicles to deliver the orders. In all 

other areas FDS uses the petrol vans to deliver the orders to their customers. 

3.1.3. Use Case 3 

Use Case 3 differs from the other use cases in the sense that for the delivery of one order type only non-
dedicated vehicles can be used and for the other order type both dedicated and non-dedicated vehicles 
can be used. To be precise, we either have vehicles of Vehicle Type 1 and Vehicle Type 3, or vehicles of 
Vehicle Type 2 and Vehicle Type 3 available. Vehicles of Vehicle Type 3 offer more flexibility, but on the 
other hand they are more expensive. Therefore, we preferably use as many vehicles from Vehicle Type 1 
or Vehicle Type 2 as possible. Recall the practical example of an online grocery store from Chapter 1 as 
a practical example for this use case. 

Online Grocery Store 

An online grocery store named OGS sells several kinds of products. Those products vary from 

food to beverages, personal care to household products, and other products that can be found 

in a regular grocery store as well. OGS delivers the orders to the homes of the customers, 

within the time windows that the customers selected. To this end, OGS owns a delivery fleet, 

composed of a fixed number of vans as well as a fixed number of small trucks that have a 

larger capacity than the vans. The vans are not suitable for refrigerated transport, but the 

small trucks have a cooling department and can therefore be used for refrigerated transport. 

OGS distinguishes between two order types, namely the orders that contain products that 

require refrigerated transport and the ones that do not contain such products. This implies 

that the first order type must always be delivered with a small truck, because OGS does not 

apply the practice of order splitting. The second order type can be delivered with any of the 

delivery vehicles that OGS owns. OGS employs a fixed number of drivers, smaller than the 

number of vehicles in the fleet, which can drive both vans and trucks. For each day on which 

customer orders must be delivered, OGS tries to make delivery routes that are as efficient as 

possible, while ensuring an as high as possible customer satisfaction. 
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3.1.4. Use Case 4 

Compared to the first three use cases, Use Case 4 introduces the concept of having more than one vehicle 
type that can be used to deliver the orders for all order types. In Use Case 3 we needed the vehicles from 
Vehicle Type 3 to deliver orders from one of the order types. For Use Case 4 we have the choice of using 
only dedicated vehicles (just as in Use Case 2) or using a mix of dedicated and non-dedicated vehicles. An 
important decision for this use case regards whether to increase the fleet capacity for the current fleet 
composition by switching from a smaller vehicle to a larger one. Recall that the number of drivers available 
determines the number of vehicles available in the current fleet composition. Therefore, we do for instance 
not consider exchanging two small vehicles for one larger one, because in our context this is not relevant. 
Use Case 4 is the most complex use case in practice, and therefore the focus of our research is mostly on 
this use case. Below we illustrate this use case with a practical example from the context of an online 
sports store. 

Online Sports Store 

An online sports store named OSS sells many types of sport products, which can be divided 

into two categories. The first category contains general sports products, and the second 

category contains fan products of the local soccer club, which has a huge fan base 

internationally. OSS is one of the main sponsors of this soccer club and therefore OSS owns 

several delivery vans which are covered with advertisements for the club. OSS prefers to use 

these delivery vans to deliver any order that contains a product from their second category 

of products. For the other orders they prefer to use delivery vans that are covered with general 

advertisements of OSS, but do not differ in any other way from the vans with advertisements 

for the soccer club. However, sometimes there is a lot of customer demand and it becomes 

more efficient to use the small trucks that OSS owns, which can be used to deliver products 

from any category. Those trucks have more capacity than the vans, but they are more 

expensive. The drivers OSS employs are all licensed to drive both vans and trucks. OSS 

searches on a daily basis for the optimal composition of their delivery fleet to deliver the 

customer orders in the best way. 

Figure 3.1 gives a visual representation of the configuration of each use case of the e-retailer case. 

Use Case 3

3b3a

Use Case 4Use Case 1 Use Case 2

Figure 3.1. Visualization of the characteristics of each use case 

3.2. ORTEC’s Timeslotting Solution 
In the previous section we already touched on what ORTEC’s software solutions can do. In this section 
we explain how ORTEC’s software solutions can be used during the ordering process of an e-retailer from 
our case. We discuss this before the formal definition of the problem we consider, because in our model 
we make use of ORTEC’s software solutions for several decisions we need to take. Therefore, it is useful 
to know how these decisions are taken in ORTEC’s software solutions. 
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3.3. Formal Problem Definition 
In Chapter 1 we presented an overview of the background and the relevance of our problem in practice, 
as well as a short case description with practical examples. In Section 3.1 we presented different use cases 
of our problem. In this section we formally define the problem we are tackling in this research. We first 
present the problems that we consider our context, in Section 3.3.1. Then we present the entities that we 
use to model our problem in Section 3.3.2. After that, we describe the restrictions for our problem in 
Section 3.3.3. To conclude, in Section 3.3.4 we discuss what the objectives are that we consider when 
trying to find a solution to our problem. We express the objectives in terms of Key Performance Indicators 
(KPIs) that we use to evaluate the impact of the decisions we take based on the strategies we design. 

3.3.1. Main Problems in the E-Retailer Context 

In our context we deal with two main problems. We consider an online problem during the booking period 
and an offline problem at the start of the service period (see Figure 2.3 for an overview of these concepts 
in operational TSM). We consider a booking period of one day and a service period of one day. The online 
problem needs to be solved first and consists of a sequence of decisions, triggered upon each arrival of a 
customer order, as also displayed in Figure 3.3: 

1) Do we accept or reject the customer?
2) In case we accept a customer, which time windows do we offer to the customer?
3) If the customer selects a time window, how do we insert the customer order into a delivery route?
4) Do we call an improvement algorithm to improve the delivery routes built up so far or not?

The first decision in the sequence of the online problem is the decision that we focus on in our research. 
The strategies that we design in Chapter 4 approach this decision in different ways, therefore we discuss 
this decision in more detail in that chapter. For all other decisions, we fix the way in which we take them, 
mainly based on how ORTEC approaches them currently in OTS, as also described in Section 3.2. 
Optimizing the way in which those decisions are now taken in OTS is out of scope for our research. 
Therefore, we discuss those decisions here, as by fixing the way in which they are taken they become part 
of our problem definition. 

This section is marked as confidential for the public version. 
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Figure 3.3. Decisions that must be taken online, triggered by an incoming customer order 

For the second decision, we offer all feasible time windows to the customer and let the customer select 
one of them. We make use of OTS to determine which time windows are available, so for each customer 
we place a time slot request. The time windows that OTS returns are then offered to the customer. 

For the third decision we also make use of OTS. The customers are inserted in the cheapest way into 
our delivery routes, while respecting the time window the customer selected. The cheapest delivery route 
is determined by the taking the delivery route with the smallest amount of additional costs when inserting 
the customer into that delivery route. 

The fourth decision we model by approximating the number of customers after which an improvement 
algorithm (or optimization algorithm) is called. Currently OTS calls this algorithm after a fixed period. If 
we would simulate this in the same way, we would need to perform real-time simulations that consume a 
lot of time. Therefore, we call the optimization algorithm after a fixed number of customers, which saves 
a lot of running time and enables us to do more experiments. We configure the optimization algorithms 
in CVRS to first maximize the number of customers that is served, then minimizing the total delivery 
costs and then minimizing the total distance of the delivery routes. 

The offline problem that we solve is the HFVRPTW (see Chapter 2). As input we use delivery routes 
and customer orders that result from the online problem. We then improve the delivery routes by making 
use of CVRS, which implements ruin and recreate techniques, considering the specific restrictions for our 
context. We configure the algorithms in the same way as ORTEC currently does for clients similar to the 
e-retailers from our context (Section 3.2). The configuration therefore becomes part of our problem 
definition, as we take it as a given input, which we cannot modify. Therefore, we do not elaborate on this 
part of our simulation, neither do we try to improve the solution methods used. This configuration is out 
of scope for our research. 

3.3.2. Model Entities 

In our model of the e-retailer case we consider several entities, which we define in this section. These 
entities formally define our problem and serve as a basis for our simulation model, which we present in 
Chapter 5. The first entity that we consider is a customer. Figure 3.4 shows a graphical representation of 
the customer entity. We have a number of customers that sequentially place requests for available time 
windows during the booking period. Each customer has the following attributes: 

• Id – The customer id is a unique number used to identify a customer. 
• Arrival time – The arrival time represents the percentage of the length of the booking period that 

has elapsed when the customer places a request for available time windows, as a decimal value. 
• Location – The customer location is a combination of a longitude value and a latitude value. 
• Time window preferences – The time window preferences of a customer are represented by an 

ordered list of time windows, in the sequence of the customer’s preference. The length of this list, 
i.e., the number of time windows that a customer is interested in, may differ for each customer 
and is therefore not fixed. 
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• Order quantity – The order quantity is expressed in kilograms and is used as a measure of the 
capacity that is required when delivering the order. 

• Order type – The order type of a customer order is either Order Type A or Order Type B, as we 
consider the e-retailer case with these two order types. An order can never be both of Order Type 
A and Order Type B, so this attribute always has a single value. 

• Time window – The time window can be used to represent the time window that the customer 
selected. This attribute does not necessarily have a value for all customers, because some 
customers may not select a time window and others may not be offered any time windows at all. 
So, this attribute only has a value for customers that are indeed planned in any delivery route. 

• Order duration – The order duration is expressed in seconds and represents the time that is 
required to fulfill the order at the customer’s home. 

OR

Time window 
preferences Order quantity Order typeArrival time Location Time window

CUSTOMER

LongitudeLatitude Start time End timeA B

Order durationId

Time window
Start time

End time  
Figure 3.4. The customer entity 

The second entity that we consider is a driver. Figure 3.5 gives a graphical representation of the driver 
entity. We have a number of drivers, who can drive the vehicles that an e-retailer owns. In our context 
all drivers are always available, we do not consider employee sickness or vacation. The drivers have two 
attributes: 

• Id – The driver id is a unique number used to identify a driver. 
• Skills – The driver skills are expressed as a list containing vehicle types and are used as an 

indication whether a driver can drive a certain vehicle type or not. In our context all drivers can 
always drive all vehicle types, i.e., Vehicle Type 1, Vehicle Type 2 and Vehicle Type 3. 

• Working hours – The maximum number of hours that a driver is allowed to work. In our context 
this number is set to 8 hours. 

DRIVER

Vehicle Type 2 Vehicle Type 3Vehicle Type 1

SkillsId Working hours

 
Figure 3.5. The driver entity 

The third entity that we consider is a vehicle. Figure 3.6 presents a graphical representation of the vehicle 
entity. We have a number of delivery vehicles that can be used to deliver the customer orders that an e-
retailer receives. Due to the nature of our problem, we always have more vehicles available than drivers. 
Therefore, in our context vehicle failures do not really form a problem that need to be considered during 
the booking period. Of course, during the service period an e-retailer needs to find a solution if a delivery 
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vehicle breaks down while serving the customers, but that is out of scope for our research. So, all vehicles 
are considered to be always available for an e-retailer in our context. The vehicles have the following 
attributes: 

• Id – The vehicle id is a unique number used to identify a vehicle. 
• Vehicle type – The vehicle type is a number that indicates of which type from Section 3.1 the 

vehicle is. This can be either Vehicle Type 1, Vehicle Type 2 or Vehicle Type 3. 
• Costs – The costs for using a vehicle are expressed in euros and are categorized as variable costs 

(per hour and per kilometer) and fixed costs (setup costs). 
• Capabilities – The capabilities of a vehicle are used to indicate which order type can be delivered 

with this vehicle. They can be deduced from the vehicle type, but for the sake of clarity we 
consider this as a separate attribute. Vehicles from Vehicle Type 1 can only orders from Order 
Type A, vehicles from Vehicle Type 2 only orders from Order Type B. Vehicles from Vehicle 
Type 3 can deliver both order types. 

• Customers – The list of customers contains all customers of which the orders are planned in this 
vehicle. If this list does not contain any customers, the vehicle is not used for delivery. 

• Route legs – The list of route legs contains all the separate trips that the vehicle has to make to 
deliver the orders. If there are no customers in the list of customers, the list of route legs will also 
be empty. Each leg has a departure location, an arrival location and an associated distance in 
kilometers and a driving time in seconds. The driving time depends on the speed limit of the 
roads that the vehicle takes to go from the departure location to the arrival location. In our 
context we consider the speed limits as imposed for cars, and we use the distance and the driving 
times as provided by ORTEC’s software solutions. If one or more customer orders are planned in 
the vehicle, the first leg always departs at the central depot (our next and last entity) and the 
last leg always arrives at the central depot. 

• Capacity – The capacity of a vehicle is expressed in kilograms. 
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Figure 3.6. The vehicle entity 

The last entity that we consider is a depot. Figure 3.7 shows a graphical representation of the depot entity. 
We have one central depot that we consider for the e-retailer case. In practical applications of the e-
retailer case it is of course possible that an e-retailer has multiple depots, especially when there is a large 
spread of customer locations or there are too many customer orders to serve with only one depot. For 
now, we assume that this is not the case and we consider only one central depot, as we explained earlier 
in Section 3.1. A depot has the following attributes: 

• Id – A unique name that identifies the depot 
• Location – The depot location is expressed as a combination of a longitude value and a latitude 

value. 
• Time windows – The list of time windows of a depot contains all the time windows that an e-

retailer possibly offers to the customers when they want to place an order. 
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Figure 3.7. The depot entity 

3.3.3. Restrictions 

In our problem context we consider some important restrictions that may not be violated by the solutions 
we find: 

• A customer only places an order when at least one of the offered time windows matches a time 

window on the customer’s preference list. 

• Every customer that placed an order must be visited once in one delivery route – This restriction 
prevents for instance the possibility to make use of order splitting. 

• Every customer order must be delivered within the time window selected by the customer – 
Whether a customer order is delivered within the selected time window or not is determined by 
the moment that a delivery vehicle arrives at the customer. 

• Once a customer order is confirmed, the customer cannot be rejected anymore – This restriction 
is essential during the booking period as well as after the booking period when the final delivery 
routes are formed. If we would not consider this restriction, we could simply “throw away” 
customer orders that were accepted in an earlier stage because they cause the delivery routes to 
be inefficient. Therefore, the fleet composition may only be changed if with the new composition 
all confirmed customer orders can still be delivered within their selected time windows. 

• Each vehicle in which one or more customer orders are planned requires exactly one driver – This 
restriction prevents that a driver can be assigned to multiple vehicles, or multiple drivers can be 
assigned to one vehicle. 

• The total number of drivers used to drive vehicles may not exceed the number of drivers employed 

by an e-retailer – If this turns out to be more efficient, the final solution may contain less delivery 
routes than drivers. However, this restriction makes sure that at least not more drivers are 
required than the number of drivers employed. 

• For each vehicle type, the number of vehicles that are used of that vehicle type may not exceed 

the total number of vehicles available from that type. 

• Each vehicle that is used for delivery starts at the central depot – This restriction ensures that 
before delivering any customer orders, a vehicle is loaded with the products that the customers 
ordered. The plan for a vehicle may be split up in trips, in that case the vehicle needs to return 
to the central depot at the end of a trip to load the products that the customers of the next trip 
ordered. 

• The sum of the order quantity for all customer orders planned in a vehicle may not exceed the 

capacity of the vehicle – In case an e-retailer makes use of multiple trips of a vehicle during the 
service period, this restriction holds for each trip. 

• The duration of a delivery route carried out by a vehicle may not exceed the working hours of the 

driver – The duration of a delivery route is defined as the sum of the order durations of all 
customers planned in a vehicle and the driving times for all legs of that vehicle. As mentioned, 
we consider drivers that are all available full-time (i.e., 8 hours per day). 
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3.3.4. Objectives and Performance Indicators 

As we already mentioned several times, one of the most important challenges in TSM is to find a balance 
between customer satisfaction and route efficiency. Ideally our objective would be to maximize both of 
these, but that is an illusion in practice. Therefore, we try to find a satisfying balance between the two. 
As we pointed out in Chapter 2, many different KPIs can be used to quantify both the customer 
satisfaction and the route efficiency. We chose to evaluate our solution quality based on two main KPIs.  

We use the first KPI, the percentage of customers that can be served, as a measure of customer 
satisfaction. Obviously, we want to maximize this percentage, as we assume that the more customers we 
can serve, the higher our customer satisfaction is.  

The second KPI, the delivery costs per customer that is served, is the measure we use to quantify the 
route efficiency. As the revenues are also coming from the customers that are served, we decided to take 
the delivery costs per customer that is served as the main measure for route efficiency. Unlike for the 
percentage of customers that is served, we want to minimize this KPI.  

When designing solution methods for our problem we focus in the first place on serving as many 
customers as possible, and in the second place on keeping the delivery costs per customer that is served 
as low as possible. So, whenever we speak about a better performance in the remainder of this report, we 
refer to a higher percentage of customers served and lower delivery costs per customer served. To calculate 
our two main KPIs and some other KPIs as well, we define the following variables and sets: 

n The number of customers that arrives during the booking period 
C The set of all the customers i ∈ {1, 2, ..., n} that arrive during the booking period 
qi The order quantity in kilograms of customer i 
m The total number of drivers employed by an e-retailer 
V The set of the vehicles v that are used to perform the delivery routes 
qv The capacity in kilograms of vehicle v 
Vj The set of the vehicles of Vehicle Type j ∈ {1, 2, 3} that are used to perform the delivery routes 
Cv The set of all the customers whose orders are planned in vehicle v 
ctv The variable costs per hour for vehicle v 
cdv The variable costs per kilometer for vehicle v 
csv The fixed setup costs for vehicle v 
tv The duration in hours (order duration, driving time) of a delivery route performed by vehicle v 
tvd The driving time in hours of a delivery route performed by vehicle v 
dv The distance in kilometers of a delivery route performed by vehicle v 

The percentage of customers that can be served is then given by Equation (3.1), in which we divide the 
number of customers that can be served by the total number of customers that arrives during the booking 
period: 

∑  |Cv|v ∈V

n
 × 100% (3.1) 

To be able to compute the delivery costs per customer, we first need to compute the duration and the 
total distance of the delivery routes carried out by all vehicles in the set V. The duration tv for a vehicle 
v ∈V is given by the sum of the order durations of all customers planned in that vehicle and the driving 
times for all legs of that vehicle (tvd). The total distance dv for a vehicle v ∈V is given by the sum of the 
distances for all legs of that vehicle. The delivery costs per customer that is served are then given by 
Equation (3.2): 

∑  (ctv × tv + cdv × dv + csv)v ∈V

∑  |Cv|v ∈V

 (3.2) 
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Besides these two main KPIs, we keep track of several other KPIs to obtain more insights into the 
performance of our solution strategies. As measures for route efficiency, we keep track of the following 
KPIs: 

• The total driving time in seconds → ∑  (tvd × 3600)v ∈V  
• The total duration in seconds → ∑  (tv × 3600)v ∈V  
• The total delivery costs → ∑  (ctv × tv + cdv × dv + csv)v ∈V  
• The total number of delivery routes that are formed → |V| 
• The number of vehicles used for delivery routes per vehicle type → |Vj| 

• The average utilization of the vehicles (in terms of load capacity) → 
∑  (∑ (qi qv⁄ )i ∈Cv )v ∈V

|V|
 × 100% 

As measures for customer satisfaction, we keep track of the KPIs below: 
• The number of customers that are served in the delivery routes → ∑  |Cv|v ∈V  
• The average number of time windows offered to customers during the booking period 

• The average response time in seconds when a customer requests available time windows 

Of course, we may keep track of many other KPIs. Nevertheless, most of them are likely to be somehow 
related to the KPIs we selected. To keep the scope of our analysis manageable we select this subset of 
KPIs, which in our opinion (based on what we see in literature) give a good indication of the quality of a 
final solution to our problem. 

3.4. Hypotheses 
The examples provided for the use cases in Section 3.1 already indicate that the e-retailer case has a wide 
range of possible applications. Consequently, we could keep ourselves busy researching many of those. To 
scope our exploration of this subject, we formulate four hypotheses that we investigate in the remainder 
of this research. We first state the hypotheses in this section, and in Chapter 5 we present the scenarios 
for which we test the hypotheses by analyzing computational results of our experiments. 

Each hypothesis is linked to one or more of the use cases that we explained earlier. The hypotheses 
focus on Use Case 2 and Use Case 4, because these two use cases are most relevant in practical applications 
for ORTEC’s clients. As explained in Section 3.1, ORTEC’s software solutions are already able to deal 
with Use Case 1 in a good way, so there is no big need for research on this use case. Investigating Use 
Case 3 may be interesting from a knowledge-gaining point of view but is less relevant for ORTEC’s 
practice. Besides that, preliminary results indicate that strategies for changing the fleet composition can 
have a more significant impact for Use Case 2 and Use Case 4 than for Use Case 3. Therefore, we scope 
our hypotheses to Use Case 2 and Use Case 4. 

Another important consideration on which the hypotheses are based is that in this research we focus 
on cases in which on average more customer orders arrive than can be served with the maximum fleet 
capacity. The maximum fleet capacity is in this case not determined by the total capacity of all vehicles 
that an e-retailer owns, but by the restriction imposed by the number of drivers that is available. In cases 
where on average less customers arrive than can be served with the maximum fleet capacity, the incentive 
to change the fleet composition dynamically during the booking period is less or may even be absent. 

We clarify this with the following example: imagine we have a case with incoming customer orders of 
two types. We have two vehicle types, each of which is dedicated to an order type, just as in Use Case 2. 
The number of vehicles of each type equals the number of drivers that is available, so we have a number 
of vehicles in the fleet equal to twice the number of drivers. If we now assume that typically we can serve 
all customers that want to place an order, there is hardly any need to distinguish between whether a 
vehicle type can deliver a certain order type or not. We can instead just assume that all vehicles can 
deliver any order type, and only after the booking period create a routing plan in which we consider 
whether a vehicle type can deliver an order of a certain type or not. This is due to the fact that, by 
definition, we have more capacity than needed to deliver all orders, so in most cases our strategy is likely 
to be able to make a feasible routing plan. Of course, we could investigate this subject in a deeper way, 
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but we scope our research further to cases in which on average an e-retailer is not able to serve all customer 
demand. These cases have a higher practical relevance given the context of ORTEC’s clients.  

Finally, in our research we consider the performance of three strategies, that can either be static or 
dynamic strategies. A strategy is considered to be static in case the strategy does not change the fleet 
composition during the booking period, i.e., all drivers are assigned to delivery vehicles at the beginning 
of the booking period and not re-assigned after that anymore. A strategy is considered to be dynamic 
when the strategy gives the possibility to re-assign the drivers to other vehicles during the booking period, 
thus changing the fleet composition of the delivery fleet. We consider the following strategies: 

1) A static strategy named ORTEC Base Strategy (OBS) 
2) A myopic dynamic strategy named Myopic Strategy (MYS) 
3) A smart dynamic strategy named Balanced Strategy (BAS), that may decide to reject a customer 

whenever this is expected to be more profitable compared to accepting the customer (i.e., offering 
available time windows to the customer). OBS and MYS, on the contrary, only reject customers 
to whom no available time windows can be offered. 

In Chapter 4 we further explain all characteristics of these strategies, but we introduce them here already 
to keep them in mind when reading the hypotheses. 

3.4.1. Hypothesis 1 

The first hypothesis is quite straightforward. Although we may be stating the obvious here, we need to 
show its correctness by doing computational experiments before we continue with testing other hypotheses. 
The hypothesis sounds as follows: 

In applications of Use Case 2 where forecasts (based on historical data) for the ratio of 

customer orders of Order Type A and Order Type B are not accurate, using a myopic 

dynamic strategy leads to a better performance compared to a static strategy. However, when 

the forecasts are accurate, using a myopic dynamic strategy does not necessarily improve the 

performance. 

For this hypothesis we deliberately consider Use Case 2, because in this use case we filter out the effect 
of having the possibility to increase the capacity of the fleet composition (by re-assigning drivers to larger 
vehicles). In Use Case 4 we have the possibility to re-assign drivers that were assigned to a vehicle of 
either Vehicle Type 1 or Vehicle Type 2 to a vehicle of Vehicle Type 3 with a larger capacity. This effect 
may be a disturbing factor when we want to show only the impact of different ratios between the two 
order types and dealing dynamically with those. Hence, we focus on Use Case 2 for this hypothesis and 
we incorporate Use Case 4 in our other hypotheses. When we speak about different ratios, we refer to 
forecasting a ratio based on historical data that differs from the ratio observed in practice. 

The primary goal we want to attain by investigating this hypothesis is proving the need for strategies 
that are able to dynamically change the fleet composition during the booking period. The objective of this 
possibility to change the fleet composition is to achieve a better performance in terms of customer 
satisfaction and route efficiency. Recall that we quantify those measures by keeping track of the percentage 
of customers that we can serve and the costs per customer that is served. To show the need for dynamic 
strategies, we investigate both the impact of using a dynamic strategy in cases where forecasts with regard 
to the ratio of the order types are accurate and in cases where they are not. 

3.4.2. Hypothesis 2 

The second hypothesis builds further on the first one. It introduces the impact of a dynamic strategy that 
does not only consider changing the fleet composition during the booking period, but also may decide to 
reject a customer order when this order is considered not to be profitable enough: 
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In applications of Use Case 2 and Use Case 4, the performance of the myopic dynamic 

strategy mentioned in the first hypothesis can be improved by introducing a smart dynamic 

strategy. 

For this hypothesis we again consider both cases with accurate forecasts and inaccurate forecasts. 
Considering Use Case 4 introduces the impact of being able to increase or decrease the fleet capacity 
implied by the fleet composition, as explained in Section 3.4.1, by exchanging smaller vehicles for larger 
ones or vice versa. This may be very interesting for practical applications for ORTEC’s clients. Our main 
goal when putting this hypothesis to a test is to see whether we can justify the expectation that a smart 
dynamic strategy shows a better performance compared to a myopic dynamic strategy, by taking into 
account forecasts regarding the remainder of the booking period. 

3.4.3. Hypothesis 3 

The third hypothesis is relevant from a more practical point of view. It introduces the concept of an initial 
fleet composition. The initial fleet composition is determined by the assignment of the drivers to delivery 
vehicles before the start of the booking period. As long as we do not exchange any vehicle yet during the 
booking period, the vehicles in the initial fleet composition determine whether we can offer available time 
windows to the customers that arrive. 

Especially when we have a static strategy that does not change the fleet composition during the booking 
period, the initial fleet composition has a large impact on the result in the end. For instance, if for Use 
Case 4 we have a lot of customer demand and our initial fleet composition does not contain any vehicles 
of Vehicle Type 3, the capacity of the initial fleet composition is not enough to serve all demand. However, 
we cannot make use of the vehicles of Vehicle Type 3 anymore, because our strategy is static.  If the initial 
fleet composition in such cases is not tuned properly according to the customer demand that comes in, 
the performance in the end will be worse compared to when we have a dynamic strategy. The reason for 
this is that a dynamic strategy can correct the bad decisions regarding the initial fleet composition. In 
Chapter 4 we look further into this concept of the initial fleet composition. Our third hypothesis is the 
following: 

In applications of Use Case 4, we achieve a better performance when we use a smart dynamic 

strategy with an initial fleet composition that uses vehicles that are as cheap as possible, 

compared to a static strategy that starts with a composition that has a total fleet capacity 

that is as large as possible and is therefore costlier. 

Recall that in this research we focus on cases in which on average more customer orders arrive than can 
be served with the maximum fleet capacity. The question may then rise why there is a need for a dynamic 
strategy, that makes use of complex algorithms which are difficult to implement. This question is the 
reason that we need to validate our third hypothesis.  

We believe that a smart dynamic strategy with an as cheap as possible initial fleet composition can 
outperform a static strategy with maximized fleet capacity, even though the dynamic strategy is likely to 
end up with a composition with maximum capacity as well. The main challenge for an e-retailer lays in 
the fact that the demand is not known upfront and may have a large fluctuation. On days where demand 
is not sufficient to require the maximum fleet capacity for delivery, the dynamic strategy recognizes this 
and will not use more large and expensive vehicles than required. Using a static strategy with maximized 
fleet capacity for such days would result in higher delivery costs. The reason for this is that the static 
strategy would blindly make available as many large and expensive vehicles as possible.  

Besides this, our smart dynamic strategy also implements smart decision mechanisms regarding 
whether to accept a customer or not. This may result in a better performance as well compared to a static 
strategy that may not reject customers based on whether they are unattractive. So, we may ask ourselves 
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whether it is worthwhile to implement such a strategy. By analyzing this hypothesis, we aim to confirm 
our expectation that there actually is a benefit in implementing a smart dynamic strategy instead of a 
using static strategy with maximized fleet capacity. 

3.4.4. Hypothesis 4 

The last hypothesis that we put to a test is in a different realm compared to the other three. We introduce 
the impact of different distributions of customer arrivals over the booking period. We want to investigate 
if the smart dynamic strategy we design is able to show a stable performance, regardless of how the 
distribution of the customer arrivals over the booking period. Besides that, we want to obtain insights 
into the effect of forecast errors regarding this distribution. Our expectation is that these errors have a 
negative impact on the performance. Therefore, we formulate the following hypothesis: 

In applications of Use Case 4, a smart dynamic strategy achieves a stable performance for 

different distribution patterns of customer arrivals over the booking period, as long as we 

have accurate forecasts of this spread. However, when forecasts are not accurate, the 

performance of a smart dynamic strategy may deteriorate significantly. 

The main purpose of analyzing this hypothesis is to show whether we are able to design a smart dynamic 
strategy that shows a stable performance even when the distributions of the arrival spread are different. 
Besides that, by validating this hypothesis we aim to show the importance of having accurate forecasts 
for the distribution of customer arrivals over the booking period. We distinguish between consistently 
over-forecasting or under-forecasting the percentage of customers that has arrived at a certain point of 
time during the booking period, and having a fluctuating forecast error. In some part of the booking period 
we may then be over-forecasting, and other parts we may be under-forecasting.  

By putting this hypothesis to a test, we aim to provide insights in these issues and study the robustness 
of the smart dynamic strategy we design. In Chapter 5 we provide more details regarding the distributions 
we consider and the experiments we perform with regard to the forecast errors. 

3.5. Conclusion 
In this chapter we defined several practical use cases of the e-retailer case (Section 3.1) and we formally 
defined the problem that we are tackling (Section 3.3). We also gave an overview of what ORTEC’s 
software solutions can already do in the realm of our problem context (Section 3.2). Finally, we stated 
several hypotheses which we investigate in the remainder of this research (Section 3.4). After this, we can 
now answer our second set of research questions: 

2) How can we model different use cases of the e-retailer case, to test the performance of the different 

strategies that tell us how to deal with an unfixed fleet composition during the ordering process? 

a. Which use cases of the e-retailer case should we consider? 

b. How can we formally define the problem we are tackling? 

c. How do we measure the quality of a final solution? 

d. Which hypotheses do we put to a test in our simulations? 

We consider the e-retailer case with customer orders that may be categorized into two order types and 
delivery vehicles that can be categorized into three vehicle types. The first two vehicle types can only be 
used to deliver one order type, and they are small but cheap. The last vehicle type is large and can be 
used to deliver both order types but is expensive. Combining the vehicle types in such a way that we are 
always able to deliver all order types results in four different use cases: in the first use case only the large 
and flexible vehicles are available, in the second use case only the small and dedicated vehicles are 
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available, in the third use case vehicles of one dedicated vehicle type combined with the large and flexible 
vehicles are available and in the fourth use case vehicles of all types are available. 

In our problem we need to deal with several decisions. First, we need to decide whether or not to 
accept a customer. If we accept a customer, we need to decide which time windows to offer to the customer. 
In case the customer selects a time window, we need to decide in which delivery route we plan the customer 
order. Finally, we need to decide whether we call the improvement algorithm for a quick optimization of 
the delivery routes after planning the customer order. The main focus of our solution strategies is on the 
first decision, the other decisions we take in a way based on how ORTEC currently takes them. 

We model the e-retailer case by making use of four entities. The first entity is a customer, which has 
the following attributes: an id, an arrival time, a location, a list with time window preferences, an order 
quantity, an order type, a selected time window and an order duration. The second entity is a driver, 
which has an id, skills and a maximum number of working hours as attributes. The third entity is a 
vehicle, which has the following attributes: an id, a vehicle type, costs, capabilities, a list of customers, a 
list of route legs and a capacity. The last entity we consider is a depot, which has an id, a location and a 
list of all time windows that can possibly be offered to the customers as attributes. We deal with several 
restrictions that all somehow affect these entities. 

Our first objective is to achieve an as high as possible customer satisfaction and our second objective 
is to achieve an as high as possible route efficiency. As a measure of customer satisfaction, we keep track 
of the percentage of customers that are served, which we try to maximize. As a measure of route efficiency, 
we keep track of the delivery costs per customer that is served, which we try to minimize. 

We formulate four hypotheses that we put to a test in the remainder of this research. The first 
hypothesis is formulated to show the need for strategies that can dynamically change the fleet composition 
during the booking period. The second hypothesis is formulated to show that by introducing smart decision 
mechanisms, we can realize improvements in terms of the KPIs we consider. The third hypothesis is 
formulated to show why it is worthwhile to implement smart dynamic strategies in practice and the last 
hypothesis is formulated to analyze the robustness of the strategies we design.
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4. Solution Approach and Strategy Design 
In this chapter we describe our solution approach. We first describe the problems that we need to address 
in our strategies in Section 4.1. Section 4.2 presents the first of three strategies that we consider in this 
research. This first strategy (OBS) is a static strategy that ORTEC could implement without changing 
anything in OTS. Our two other strategies are dynamic and do change the fleet composition during the 
booking period, aiming to increase the number customers served in that way. Our first dynamic strategy 
is the myopic strategy (MYS), which we describe in Section 4.3. Section 4.4 describes our second dynamic 
strategy, which is the balanced strategy (BAS). 

4.1. Decisions 
In Chapter 3 we pointed out that our strategies focus on the decision whether to accept a customer or not 
and Figure 3.3 gives the general context of this decision. In this section we dig further into this decision. 
We focus on the decisions regarding the fleet composition that need to be considered before finally either 
accepting or rejecting a customer. We distinguish between two important types of decision moments for 
our strategies. First, a strategy needs to provide a method to determine the initial fleet composition before 
any customer order comes in (Section 4.1.1). Second, our strategy needs to provide a method that 
determines whether to change the fleet composition or not upon a customer order and whether or not the 
customer order is rejected (Section 4.1.2). 

4.1.1. Initial Fleet Composition 

During the booking period, a route plan is built up by updating preliminary routes each time a customer 
order comes in. Before the booking period, an e-retailer needs to determine an initial composition of the 
delivery fleet based on the number of drivers that are available. Based on this initial composition, time 
windows will be retrieved for incoming customer orders. 

The main question when determining the initial fleet composition is how to assign the available drivers 
to the vehicles that an e-retailer owns. Recall that in our research context, the number of drivers is always 
smaller than the number of vehicles in the delivery fleet. Therefore, by definition, only a subset of all 
available vehicles can be used to deliver the customer orders. Ideally, we want the initial fleet composition 
to be tuned perfectly to the customer orders that will come in during the booking period. However, this 
may turn out to be quite a complicated task for an e-retailer.  

In the context we consider, an e-retailer should consider things such as the expected ratio of the 
demand for each order type. Especially in cases where the initial fleet composition is fixed after the booking 
period starts, the impact of this composition becomes quite large. The strategies we design all provide a 
framework to determine the initial fleet composition at the start of the booking period, based on historical 
customer data. 

To make sure that we can compare the performance of our strategies based on the same starting 
position, we determine the initial fleet composition in the same way for all our strategies. In all cases we 
try to make use of an as cheap as possible initial fleet composition. However, as required for Hypothesis 
3, we also design a method to determine the initial fleet composition in such a way that we maximize the 
available fleet capacity. In Section 4.2 we look further into the methods that we use to determine the 
initial fleet composition for our first strategy. As the other two strategies make use of the same method, 
we refer to Section 4.2 when explaining how these strategies take their decisions. 

It is important to note that the initial fleet composition consists of the vehicles that are made available 
for order delivery. This does not necessarily mean that all vehicles that are available in the initial fleet 
composition or even the final fleet composition, are actually used for the delivery of customer orders. For 
instance, suppose we have a fleet composition consisting of 10 vehicles. At a certain moment during the 
booking period, our routing plan is such that only 5 vehicles are required to deliver all customer orders 
confirmed so far. This means that 5 vehicles are available, but are not used. It also implies that only 5 of 



4.1. Decisions 

 
 

34 

the 10 available drivers need to work. It is important to keep in mind that our strategies do not take the 
decision of which vehicles are actually used for delivery. This decision is taken by OTS and CVRS, as 
explained in Chapter 3. Our strategies only provide OTS and CVRS with the vehicles that are available, 
taking into consideration the restrictions with regard to the number of drivers employed by an e-retailer 
in our context. 

Having said this, we must also be aware of the fact that in case we have an initial fleet composition 
with maximum capacity (Hypothesis 3), OTS and CVRS try to make use of as few vehicles as possible 
when constructing the routing plan. This may solve the problem of ending up with too many vehicles that 
have a low utilization in case we use a static strategy and demand turns out to be less than expected. 
However, it does not solve the problem in case the division of the capacity for each order type in the 
initial fleet composition is an inaccurate representation for the ratio of the actual demand per order type. 
In the latter case, the result will be a poor performance for a static strategy, because customers will have 
to be rejected due to a lack of capacity for their order type. A dynamic strategy does not have this 
problem, because in this case and in general cases it is able to “repair” the initial fleet composition by re-
assigning drivers to other vehicles according to observations during the booking period. In the following 
section about the customer acceptance we look further into the difference between a static and a dynamic 
strategy. 

4.1.2. Customer Acceptance 

The customer acceptance decision is a more complex decision. Currently, OTS is configured in such a way 
that as soon as a feasible time window can be offered, the customer is accepted. Offering a feasible time 
window means that the customer order can be inserted into at least one delivery route, within at least 
one time window, without violating any restrictions. Examples of such restrictions can be the capacity of 
the vehicles or selected time windows of customer orders that are already confirmed. Note that accepting 
a customer does not necessarily mean that the customer also confirms the order by selecting a time 
window. It may occur that we accept a customer, but that the customer is not satisfied with the time 
windows that are offered and decides to not confirm the order. In Chapter 5 we explain in more detail 
how we model the customer choice behavior in our experiments. 

Within our research context we introduce two new concepts with regard to the customer acceptance 
decision. First, we extend the decision by considering to reject unattractive customer orders. This 
consideration is relevant in our context, because we expect that on average more customer orders arrive 
than an e-retailer can deliver even if the largest possible vehicles are used. It may turn out to be beneficial 
to reject some unattractive customer orders, so in the end more customers can be served. Currently OTS 
is configured to not consider rejecting unattractive customer orders, customers are only rejected when no 
feasible time windows can be offered. 

The second extension of the customer acceptance decision is that we consider to change the fleet 
composition. We need to consider several aspects when we take this decision. We may for instance consider 
trying to change the fleet composition upon each customer order, or only try changing the fleet composition 
if a customer order cannot be accepted. We categorize both these options as dynamic strategies. We may 
also choose to not try changing the fleet composition at all, which we categorize as a static strategy.  

Another aspect we need to consider is how to change the fleet composition. We may choose to swap 
one vehicle at a time, but we may also swap multiple vehicles at once. Note that a swap of a vehicle is 
equivalent to re-assigning a driver to another vehicle. For that reason, we speak about swapping vehicles 
and not about adding vehicles. Recall that OTS and CVRS determine whether vehicles are used. Our fleet 
composition only tells the software which vehicles can be used. Therefore, our fleet composition always 
consists of the same number of vehicles as the number of drivers that an e-retailer employs, and we swap 
vehicles instead of only adding vehicles to or removing vehicles from the fleet composition. 

A final aspect that we need to take into consideration is that in case we change the fleet composition, 
we must be able to re-plan all customer orders that are already confirmed so far in the new vehicles. 
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4.2. ORTEC Base Strategy (OBS) 
In this section we describe we describe our static base strategy called ORTEC Base Strategy (OBS). As 
mentioned before, OBS can already be implemented in ORTEC’s software right now and for that reason 
it is called a base strategy. The strategy determines an initial fleet composition, after which customer 
orders can come in. The fleet composition remains unchanged during the entire booking period, so if a 
customer cannot be offered any feasible time window, the customer order is simply rejected. This makes 
the quality of the initial fleet composition important for the performance of this strategy. We explain here 
in detail how we determine the initial fleet composition for OBS. 

To minimize the delivery costs, we prefer to use vehicles that are as cheap as possible. Unfortunately, 
the cheap vehicles are the ones with the smallest capacity in our context. As we explained in Chapter 3 
for Hypothesis 3, this would not be very smart when we make use of a static strategy, given that on 
average we have more customer demand than we can serve. Therefore, we distinguish between two 
methods to determine the initial fleet composition for OBS. The first method constructs an initial fleet 
composition that is as cheap as possible. This method is used in OBS mainly for benchmarking purposes, 
so we can filter out the effect of different initial fleet compositions when we compare the performance of 
the different strategies. As mentioned in Section 4.1, this first method is used for all strategies to have a 
benchmark with the same starting point for all strategies. 

The second method used to determine the initial fleet composition for OBS starts with an initial fleet 
composition that has an as large as possible total capacity. This is a more realistic method from a practical 
point of view, as we expect that on average we are not able to serve all customer demand. 

Both methods rely on historical data of customer orders. We use historical data to estimate the 
expected ratio of the total order quantity for Order Type A and the total order quantity for Order Type 
B. We take the order quantity here to determine the ratio instead of the number of orders, because the 
orders may vary a lot in order quantity. Let Ch

A be the set containing all historical customers (i) that have 
ordered something of an e-retailer in the past with Order Type A, and Ch

B the same set for Order Type 
B. Recall from Chapter 3 that qi stands for the order quantity of customer i. The ratio of the total order 
quantity for Order Type A and Order Type B is then given by Equation (4.1) and Equation (4.2). 

 % Order Type A = 
∑ (qi)i ∈Ch

A
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B
× 100%  (4.1) 
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i
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B

∑ (q
i
)
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i
)

i ∈Ch
B

× 100%  (4.2) 

Based on the calculated ratio, we divide the number of drivers over the order types. Consider for instance 
a case in which we have ten drivers, and a ratio of 56%:44%. Six drivers are then assigned to drive vehicles 
that can deliver Order Type A, and four drivers are assigned to drive vehicles that can deliver Order Type 
B. In case the ratio results in non-integer values for the number of drivers, we round the number of drivers 
to the nearest integer, as also done in the example above. If this results in using one driver more than 
available, we reduce the number drivers assigned to the order type with the smallest percentage with one 
driver. This may for example be the case when the ratio is exactly equal to 45%:55%. The difference 
between the two methods that we use lies in the vehicles that are selected to assign the drivers to. 

The first method selects vehicles that are as cheap as possible. So, first we make a list for each order 
type with all vehicles of vehicle types that can deliver that order type. We then sort this list in such a 
way that it starts with the cheapest vehicle (in terms of setup costs) and ends with the most expensive 
one. As explained in Chapter 3, in our context we always have a number of vehicles equal to the number 
of drivers for the small and cheap vehicle types. In case we have ten drivers, this means that on the list 
for Order Type A the first ten vehicles are of Vehicle Type 1, and on the list for Order Type B the first 
10 vehicles are of Vehicle Type 2. Therefore, for both Use Case 2 and Use Case 4 our initial fleet 
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composition always only consists of small and cheap vehicles when using our first method. Recall from 
Chapter 3 that m stands for the total number of drivers that an e-retailer employs. Let k ∈ {A, B} indicate 
the considered order type, and mk the number of drivers assigned to order type k. Figure 4.1 gives an 
overview of how the first method works. 

Add mk cheapest vehicles 
to fleet composition for 

each order type k
Start

List all suitable vehicles 
per order type k and 

sort lists on setup costs
End

Calculate historical 
percentage of total 
order size for each

order type k

Assign mk drivers to each 
order type k according

 to percentages
 

Figure 4.1. The first method to determine an initial fleet composition, used by all strategies 

The second method starts with adding as many large vehicles to the initial composition as possible. If the 
number of large and flexible vehicles (Vehicle Type 3) that an e-retailer owns is smaller than the number 
of drivers available, the remaining drivers are assigned to an order type according to the ratio as calculated 
with Equation (4.1) and Equation (4.2). Note that for Use Case 2 both methods result in the same initial 
fleet composition, because an e-retailer does not own any large and flexible vehicles in this use case. Figure 
4.2 gives an overview of how the second method works. The symbols m, k, and mk have the same meaning 
as described above. 
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Add at most m vehicles 
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Figure 4.2. The second method to determine an initial fleet composition, used by OBS (Large Initial Fleet) 

4.3. Myopic Strategy (MYS) 
In this section we describe our second strategy which we call Myopic Strategy (MYS). MYS makes use of 
the first method to determine the initial fleet composition, as presented in Figure 4.1. MYS differs from 
OBS when it comes to the decisions regarding customer acceptance. Where OBS rejects customer orders 
whenever no time windows are available to be offered to the customer, MYS does not do this immediately. 
Instead, MYS tries to accept every customer order by attempting to change the fleet composition in case 
no time windows can be offered given the current composition.  

MYS only rejects a customer in case that even after trying to change the fleet composition still no time 
windows are available to be offered to the customer. As we may try to change the fleet composition at 
any time during the booking period, we make the choice to swap only one vehicle at a time. When MYS 
tries to change the fleet composition, this means that we require more capacity for the order type of the 
customer order that would be rejected if we do not change the fleet composition. Table 4.1 presents all 
possible swaps for MYS, categorized per use case and required order type.  

Table 4.1. Possible swaps of vehicle types per use case and required order type for MYS 

Required Order Type Use Case 2 Use Case 4 

A 2 → 1 2 → 1 2 → 3 1 → 3 3 → 1 
B 1 → 2 1 → 2 1 → 3 2 → 3 3 → 2 

MYS always tries all feasible swaps when changing the fleet composition. A swap is considered to be 
feasible if the current fleet composition contains any vehicles of the vehicle type to remove and if there 
are any vehicles without drivers assigned to them of the vehicle type to add. If these conditions are both 
fulfilled, MYS always selects the vehicle v with the lowest utilization) to remove, to maximize the chance 
that the orders planned in the removed vehicle can be planned in other vehicles. The utilization is 
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calculated based on the occupied capacity of a vehicle: ∑ (q
i

qv⁄ )i ∈Cv
. Recall from Chapter 3 that q

i
 

represents the order quantity of customer i and qv the capacity of vehicle v, both in kilograms. Cv is the 
set of customers whose orders are planned in vehicle v. 

After defining all possible new compositions, MYS makes use of CVRS to solve the VRP for each new 
composition. The orders considered in such a VRP are all the orders that are already planned in a delivery 
vehicle and the order of the customer that cannot yet be accepted given the current fleet composition. 
CVRS is configured to maximize the number of planned customer orders, then minimize the delivery costs 
and finally minimize the total distance of the delivery routes. If multiple new compositions result in being 
able to offer one or more time windows to the customer (given that all orders that are already confirmed 
can be re-planned), MYS groups all available time windows for these compositions and offers them to the 
customer. If the customer then selects one of the offered time windows, MYS continues with the cheapest 
composition for which that time window is available. Figure 4.3, which is based on Figure 3.3, presents 
the steps that MYS follows upon a customer arrival. 
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Figure 4.3. Decision steps followed by MYS upon a customer arrival 

We show in Figure 4.3 that when we define feasible swaps, we check whether there is enough free capacity 
to fit the orders that have been unplanned from the removed vehicle and the new customer order after 
swapping two vehicles of a certain type. This step consists of checking whether the total free capacity in 
the new composition (taking into account the orders that were not unplanned) for each order type is 
enough to fit the orders of that type that still need to be planned. This check is not required, but we 
implement this check to keep the response time as low as possible, because all calculations regarding the 
change of the fleet composition are performed while the customer is waiting for available time windows. 

4.4. Balanced Strategy (BAS) 
In this section we present our smart dynamic strategy, called Balanced Strategy (BAS). This strategy 
builds further on MYS with regard to changing the fleet composition. However, BAS implements several 
smart decision mechanisms to be able to serve more customers. Just like MYS, the initial fleet composition 
for BAS is determined as presented in Figure 4.1. Unlike MYS, BAS considers changing the fleet 
composition for each customer order, even before offering any time windows to a customer. Section 4.4.1 
explains how BAS does that. Besides that, BAS considers for each customer order whether the order is 
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unattractive and should be rejected. Section 4.4.2 describes the way in which BAS determines whether a 
customer is attractive or not. Finally, Section 4.4.3 presents a schematic overview of all decision steps 
that BAS follows upon a customer arrival. 

4.4.1. Changing the Fleet Composition 

We first discuss the way in which BAS determines whether to try changing the fleet composition. We 
consider three questions with regard to possible changes of the fleet composition: 

1) Do we want to increase the fleet capacity of the current fleet composition? 
2) Do we want to decrease the fleet capacity of the current fleet composition? 
3) Do we want to change the ratio of the available fleet capacity for the different order types? 

Changing the ratio may be combined with either increasing or decreasing the capacity if desired. When 
increasing the fleet capacity the ratio is changed anyhow, whether this is required or not, because a small 
dedicated vehicle is swapped with a larger non-dedicated one. This decreases the percentage of the fleet 
capacity available for the order type to which the small vehicle was dedicated. Recall that we explained 
in Section 4.1 that when we change the fleet composition, we always swap a vehicle by re-assigning a 
driver to a new vehicle. 

The same holds for decreasing the fleet capacity, because then a large non-dedicated vehicle is swapped 
with a small dedicated one. This increases the percentage of the fleet capacity available for the order type 
to which the new small vehicle is dedicated. Basically, to determine which swap to apply, we first need to 
know whether we want to increase or decrease the fleet capacity. Second, we need to know for which order 
type we want to increase the percentage of the fleet capacity that is available for that type. Table 4.2 
presents all possible swaps for the different types of changes in the fleet composition, per order type for 
which we want to increase the share in the fleet capacity. 

Table 4.2. Possible swaps of vehicle types per change type, required order type and use case for BAS 

Change type 

Order Type A required Order Type B required 

Use Case 2 Use Case 4 Use Case 2 Use Case 4 
Increase capacity – 2 → 3 – 1 → 3 
Decrease capacity – 3 → 1 – 3 → 2 

Change ratio (no change in capacity) 2 → 1 2 → 1 1 → 2 1 → 2 

BAS only tries to change the fleet composition if at least one of the three questions is responded with a 
positive answer. Note that the first two questions will always be responded negatively for Use Case 2. Just 
like MYS, BAS also checks whether a new composition has enough free capacity to fit all unplanned 
orders, before sending a VRP to CVRS to check whether a new composition is feasible or not. 

To respond the three questions we consider, BAS makes use of forecasts. In our context, we assume 
that customer orders arrive according to a certain distribution. We have a distribution for the number of 
customers that arrive during the booking period, as well as a distribution for the spread of the customer 
arrivals over the booking period. Based on the latter, we can calculate a forecast for the cumulative 
percentage of customers that should have arrived at any moment during the booking period, according to 
our expectations. With this forecast, we can for instance estimate the number of customers that should 
have arrived by a certain point in time, and compare this value to the observed number of customers that 
have arrived by that time. 

BAS makes use of this forecast to recognize for instance when we have a booking period in which the 
demand for a certain day deviates from the regular demand. Based on this observation BAS takes action 
with regard to the fleet composition, to improve the performance in terms of customer satisfaction as well 
as route efficiency. Besides the variables and sets that we defined earlier in Chapter 3, we consider the 
following new variables and sets when we determine an answer to the three questions BAS considers: 

E[N] The expected number of customers for the entire booking period. 
t The current time expressed as a percentage of the length of the booking period. 
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Ft 

The expected cumulative percentage of customers that have arrived by time t, expressed as a 
decimal value. This percentage is determined based on the expected distribution of customer 
arrival times. In Chapter 5 we specify this distribution for each scenario that we consider in our 
computational experiments. 

Ct
k 

The set of all customers i ∈ {1, ..., n} that arrived during the booking period with Order Type k 
∈ {A, B} by time t. 

αt 
The absolute weighted difference between the percentage of the fleet capacity available for Order 
Type A and the percentage of the orders that arrive with Order Type A at time t. 

Besides these variables and sets we define a set of parameters for BAS, that can be configured according 
to different scenarios. In the remainder of this chapter we explain the meaning of the parameters and how 
they are used, here we only define them. The parameters that we define can be tuned in such a way that 
they result in a good performance of the strategy in different cases of the e-retailer case in practice. The 
process of tuning these parameters for a specific client of ORTEC should ideally be incorporated into the 
implementation process for OTS. The parameters that we define for BAS are the following: 

p1 
Parameter that indicates the expected cumulative percentage of customers that needs to arrive, 
before BAS considers changing the fleet composition. 

p2 
Parameter that indicates the maximum percentage with which the observed number of customers 
arrived may exceed the expected number. If this parameter is exceeded, BAS tries to change the 
fleet composition in such a way that the fleet capacity increases. 

p3 

Parameter that indicates the maximum absolute percentage that the expected cumulative 
percentage of customers arrived may be below the average utilization of the current fleet 
composition. If this threshold is exceeded, BAS tries to increase the fleet capacity by changing 
the fleet composition. 

p4 
Parameter that indicates the maximum number of customers that may be rejected even though 
it is possible to increase the fleet capacity. When more customers are rejected, BAS changes the 
fleet composition in such a way that the fleet capacity increases. 

p5 
Parameter that indicates the expected cumulative percentage of customers that needs to arrive, 
before BAS tries decreasing the fleet capacity by changing the fleet composition. 

p6 
Parameter that indicates a maximum value for the average utilization of the fleet composition. If 
this value is not exceeded and the expected cumulative percentage of customers arrived exceeds 
p5 BAS tries decreasing the fleet capacity by changing the fleet composition. 

p7 

Parameter that indicates a maximum absolute weighted difference between the percentage of the 
fleet capacity available for Order Type A and the percentage of orders that arrive with Order 
Type A. When this threshold is exceeded, BAS tries to change the ratio of the available fleet 
capacity for the order types according to what the ratio should be. 

p  
Parameter that indicates a threshold for the average utilization of the current fleet composition. 
BAS may only consider rejecting an unattractive customer when this threshold is exceeded. 

p  

Parameter that indicates the minimum percentage point difference between the average utilization 
of the fleet composition at time t and the expected cumulative percentage of customers that have 
arrived by time t. Only if the cumulative percentage of customers arrived is deducted from the 
average utilization and the remainder is exceeds this parameter, BAS may consider rejecting 
unattractive customers. 

p10 
Parameter between 0 and 1 that indicates the maximum score of unattractiveness that a customer 
may have. If a customer has a higher score of unattractiveness, BAS rejects the customer.  

Note that for all parameters that indicate percentages, we express them as a decimal value. 
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For all three questions, BAS only considers them after at least p1 of the expected number of customers 
have arrived (i.e., Ft > p1). This parameter is introduced to prevent taking bad decisions based on only a 
few data observations. Also, in the beginning of the booking period typically most customers can be 
accepted because delivery routes usually do not yet contain many customer orders. The threshold that is 
used can be configured according to the needs of an e-retailer in practice. 

To answer the first question, BAS considers three conditions. If any of them is met, BAS decides to 
try scaling up the fleet capacity. The first condition regards the number of customers that have arrived 
by time t. If this amount exceeds the number of customers that are expected to have arrived by time t 
with a certain percentage, defined by p2, BAS will take action. This condition indicates that we might be 
underestimating the total number of orders that will arrive during the booking period and therefore we 
correct this by increasing the fleet capacity if possible. If Equation (4.3) is satisfied, this means that the 
first condition is met: 

|Ct
A| + |Ct

B|

Ft × E[N]
 > 1 + p2 (4.3) 

Note that the number of customers that have arrived by time t consists of the customers that were 
accepted and have confirmed their orders, as well as the customers that have been rejected or did not 
confirm their orders.  

The second condition for the first question is that the expected cumulative percentage of customers 
that have arrived by time t is at least p3 smaller (in percentage points) than the average utilization at 
time t of the vehicles in the current fleet composition. This is yet another indication for underestimation, 
but with this condition we focus on the fleet capacity instead of the number of customers that have 
arrived. Suppose the expected cumulative percentage of customers that have arrived by time t is smaller 
than the average utilization at that time. This indicates that, if we expect that the customers that will 
still arrive on average have the same order quantity as the customers that arrived now, the current fleet 
capacity will not be sufficient to serve them. In that case it is worthwhile to increase the fleet capacity, 
as far as that is possible. We quantify this condition with Equation (4.4): 

Ft + p3 < 
∑ (∑ (∑ (qi qv⁄ )i ∈Cv

)v ∈Vj
)j ∈ {1, 2, 3}

|V1| + |V2| + |V3|
 (4.4) 

The third condition for the first question is that more than p4 customers were not accepted (either rejected 
of did not select any of the time windows offered) since the last time the fleet composition was changed, 
although the fleet capacity can still be increased. This condition is mainly meant to correct for decisions 
based on bad forecasting. For instance, suppose we are over-forecasting the cumulative percentage of 
customers that have arrived by time t. Both Equation (4.3) and Equation (4.4) may then not be satisfied, 
although we actually need to increase the fleet capacity to be able to serve the customer demand still to 
come. When customers are not accepted, even though we still have the option to increase the capacity of 
our current fleet composition, we are losing customers unnecessarily because of bad forecasting. Therefore, 
we correct our bad forecasts by trying to increase the fleet composition if this condition is satisfied. 

Given our context, in which on average more customer orders arrive than can be delivered, the answer 
to our second question will be mostly negative. Also, whenever the answer to our first question is positive, 
this implies a negative answer to the second question. The answer to our second question is positive if 
both of the following two conditions are met: 

• The expected cumulative percentage of customers that have arrived by time t is larger than p5 
(i.e., Ft > p5). 

• The average utilization at time t of the vehicles used in the current fleet composition is smaller 
than p6 (i.e., right-hand side of Equation (4.4) < p6). 

The idea behind these conditions is that we can use p5 and p6 to configure BAS in such a way, that BAS 
for instance can prevent the software from using an expensive additional vehicle for only a few customer 
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orders. It may in such cases be more desirable to reject those few customers by not making an additional 
vehicle available. If in practical situations it is undesirable to reject customer orders in this way, the 
parameters can be configured such that BAS never decreases the fleet capacity, by setting p6 = 0. 

To answer our third question, we calculate the percentage of vehicles in the fleet that can be used to 
deliver each order type. For vehicles that can deliver multiple order types, we divide the vehicles equally 
over each order type that the vehicles can deliver. As we only consider two order types in our context, it 
is sufficient to calculate the percentage only for Order Type A (denoted by fA) with Equation (4.5): 

fA = 
|V1| + 0.5 × |V3|

|V1| + |V2| + |V3|
 × 100%  (4.5) 

Now that we have the percentage of the fleet that is available for Order Type A, we can compare this 
percentage with the percentage of customers with Order Type A that we expect according to historical 
data (denoted by hA, see Equation (4.6)), as well as the percentage of customers that arrived with Order 
Type A during the booking period by the current time t (denoted by oA, see Equation (4.7)). Recall from 
Section 4.2 that Ch

A is the set of all historical customers (i) with Order Type A, and Ch
B the same set for 

Order Type B. 

hA = 
|Ch

A|

|Ch
A| + |Ch

B|
 (4.6) 

oA = 
|Ct

A|

|Ct
A| + |Ct

B|
  (4.7) 

At the beginning of the booking period, when only few customer orders have come in, we typically rely 
more on our expectations according to historical data. The reason for this is that we do not have much 
information about the realization for this booking period yet. However, as more customer orders come in 
while the time elapses, we obtain more and more observations from reality. Therefore, the more customers 
arrive, the more we want to rely on our observations from reality. 

To clarify the application of this idea with regard to the ratio of capacity that is reserved for each 
order type, we consider a numerical example. We consider two moments in the booking period. Suppose 
that we expect 100 customers to arrive during a certain booking period. Suppose further that at the first 
moment 7 customers have arrived with Order Type A, and 3 with Order Type B. Furthermore, between 
the first and the second moment 3 customers have arrived with Order Type A, and 7 customers with 
Order Type B. The moments are characterized by the following states (the state at the second moment 
depends on the decision taken at the first moment): 

1) Ft = 0.10, oA = 0.70, fA = hA = 0.50 
2) (a) Ft = 0.20, oA = 0.50, fA = 0.60, hA = 0.50 (b) Ft = 0.20, oA = fA = hA = 0.50 

For the first moment, we have several options with regard to the way in which we take a decision. A first 
option is to focus merely on our observations from practice. Those tell us that the current percentage of 
the fleet capacity reserved for Order Type A is 20% (absolute difference) below the percentage of orders 
of Order Type A that we observe in practice. Based on only this information we would change the fleet 
composition and for instance end up in the state of moment 2(a). However, we see that at the second 
moment the percentage of orders of Order Type A that we observe in practice dropped again. This 
percentage now equals the percentage according to our expectations based on historical data. We would 
have been better off if we would not have changed the fleet composition in this case, thus ending up in 
the state of moment 2(b). 

A second option is that we take into account that only a small percentage of the customers has arrived 
at the first moment. Therefore, we may believe that our forecasts based on historical data (that are 
reflected in the fleet composition at the first moment), are still accurate and that relatively more customers 
with Order Type B will arrive in the remainder of the booking period. This would have led to not changing 
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the fleet composition, and ending up in the state of moment 2(b). In this numerical example the second 
option would have been the best one, and we believe that this holds for many cases. Some initial 
experiments do confirm this hypothesis as well. 

To reflect this principle, we define the absolute weighted difference (αt) between the percentage of the 
fleet capacity available for Order Type A and the percentage of the orders that arrive with Order Type 
A, at time t. The term weighted refers to the fact that when only a small percentage of the customers has 
arrived according to our expectations, we consider the historical data to be more reliable to determine the 
percentage of orders with Order Type A when calculating αt. However, the further the booking period 
elapses and the higher the percentage of customers that has arrived according to our expectations, the 
more confidence we have in using our observations in reality to determine the percentage of orders with 
Order Type A when calculating αt. This results in the calculation of αt as shown in Equation (4.8): 

αt = |(1 – Ft) × (hA – fA)+ Ft × (oA – fA)| (4.8) 

If this absolute weighted difference is larger than a certain threshold p7 (i.e., αt > p7), we consider the 
deviation of the ratio of the order types large enough to change the ratio in the fleet composition and give 
a positive answer to our third question. If the observed percentage of Order Type A is larger than the 
percentage of the fleet available for Order Type A (oA > fA), we set Order Type A as the order type for 
which we want to increase the available percentage of the fleet capacity. Otherwise, we set Order Type B 
as the required order type.  

In case α ≤ p7, we give a negative response to our third question. However, when we either want to 
increase or decrease the fleet capacity (only Use Case 4), we still need to provide an order type for which 
we want to increase the available percentage of the fleet capacity. We then select the order type with the 
largest total order quantity of the customer orders of that type that have arrived so far. 

Recall the three questions with regard to possible changes of the fleet composition that we defined 
earlier. We now defined for all three the way in which BAS determines the response. If we finally obtain 
a positive answer to any of the three questions, BAS determines a new fleet composition based on the 
swaps that are defined in Table 4.2. BAS then proceeds in the same way as MYS to check whether the 
new compositions are feasible. However, there is one difference: BAS does not add the order of the customer 
that triggered the decision sequence to the orders that need to be planned when sending a VRP to CVRS. 
Instead, BAS first tries to change the fleet composition if desired, and afterwards determines whether to 
accept or reject the customer order, as described in Section 4.4.2. Note that BAS does use the order details 
of the customer that triggered the decision sequence to respond the three questions regarding a change of 
the fleet composition. 

4.4.2. Customer Rejection 

After changing the fleet composition (or not, in case that turned out not to be desirable), BAS returns to 
the original customer order that triggered the decision sequence to consider whether this customer order 
can be accepted. In our context, on average the customer demand is more than the delivery capacity an 
e-retailer has available. This means that on average, an e-retailer will always reject a number of customers. 
BAS anticipates on this by considering whether or not a customer is attractive enough to serve. If not, 
BAS rejects this customer, aiming to accept multiple future customers (or one more profitable future 
customer) in its place. BAS takes into account a few conditions that must be met before actually 
considering to reject a customer: 

• The fleet capacity cannot be increased anymore, because none of the drivers can be re-assigned 
to a vehicle that has a larger capacity than the vehicle a driver is currently assigned to. The fact 
that the current fleet composition is not a composition with maximized capacity, reflects the 
expectation that at this stage we do not expect that more customer demand will come in than we 
can serve. Therefore, it is no use to reject any customer at this stage. We only want to reject 
customers if we expect that we cannot serve all customer order that will come in. 
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• The average utilization of the current fleet composition must be larger than a certain threshold 
p . This parameter can be used to prevent that BAS starts rejecting customers in a very early 
stage of the booking period, when few customers have arrived yet and actually there is still a lot 
of capacity left in the delivery vehicles. Especially when we have few observations it is difficult to 
make reliable estimations with regard to how demand will develop in the remainder of the booking 
period, so we want to be careful to be too early with rejecting unattractive customers. 

• The expected cumulative percentage of customers that have arrived by the customer’s arrival 
time t is at least p  smaller (in percentage points) than the average utilization, indicating that we 
expect at least p  × 100% more customers to arrive than the average number of customers that 
can be served, given the total capacity of the current fleet composition. This parameter is yet 
another parameter that can be used to prevent BAS from rejecting customers without having a 
strong enough indication that during the current booking period indeed more customer demand 
will arrive than can be served. By configuring this parameter we can play with how large we allow 
the risk of unnecessarily rejecting customers to be. 

If all these conditions are met, BAS needs to determine whether to accept or reject the customer based 
on the customer’s attractivity. There are numerous ways to quantify attractivity. We can for instance 
think of the additional distance to include a customer’s order in the current routing plan, the order 
quantity of the customer’s order or the profitability of the customer’s order. We may even combine several 
factors into one weighted score to determine the attractivity of a customer. The best way in which we can 
determine the attractivity may differ for each practical application of the e-retailer case. 

To have a common way to determine whether a customer is unattractive, we introduce an 
unattractiveness score for each customer. This is a score between 0 and 1, where 0 means that a customer 
is not unattractive, and 1 means that a customer is very unattractive. We define p10 to be the threshold 
of unattractiveness. If a customer’s unattractiveness score exceeds p10, BAS rejects the customer. As 
mentioned, the way in which this score is determined may vary for each practical application of the e-
retailer case. 

Having introduced the method that BAS employs to determine whether a customer should be rejected 
or not, we need to place some side remarks. We emphasized that it is important to take care that customers 
are not rejected too soon. In the end the forecasting measures that we use remain estimations that may 
or may not be correct. Therefore, we should be careful to prevent rejecting customers due to bad 
forecasting, while in the end it turns out that those customers could actually have been served. 

On the other hand, if we are too careful with rejecting customers, this may lead to accepting 
unattractive customers which may not be beneficial at all. It is therefore important to tune the parameters 
that we use in such a way that an equilibrium is found between the two extremes of either rejecting too 
many customers or rejecting to few customers. Also, the parameter tuning should of course be in line with 
the performance metrics that are chosen as optimization criteria in a certain context. We could however 
dedicate a whole thesis on this topic of tuning the parameters in an appropriate way for different 
applications of the e-retailer case. This is out of scope for our research, therefore we only apply a basic 
tuning method for the parameters that BAS uses for our experiments. We provide more details on this 
process in Chapter 5. 

4.4.3. Schematic Overview 

In this section we present a schematic overview of the decision steps followed by BAS. The overview is 
displayed in Figure 4.4, which is an extended version of Figure 3.3. Note that BAS is actually a very 
simple strategy. We could have chosen to not only use simple expected values for our forecasts. Instead, 
we could for instance make use of more complex statistical techniques as sampling, possibly combined 
with dynamic programming techniques. However, we need to keep in mind that the time that we have to 
perform all required calculations is limited, because all calculations are performed while the customer is 
waiting for a response. Also, for the more complex techniques we may need a lot of information which not 
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necessarily is available to an e-retailer (for instance the customers’ time window preferences). This forces 
us then to make more assumptions, which would likely result in a worse performance of the strategy. 
Therefore, we decided to keep our strategies as simple as possible, while still trying to achieve a good 
performance. 

*Decisions in this block are taken based on checking the conditions as described in Section 4.4.1

1

Yes

No

NoNo
Start

Yes Yes

End

Do not change composition

End

Change ratio only

End

Change capacity only

End

Change ratio and capacity

Increase or 
decrease fleet 
capacity?*

Change ratio 
of capacity for 
order types?*

Change ratio 
of capacity for 
order types?*

*Decisions in this block are taken based on checking the conditions as described in Section 4.4.2

2

Yes

NoYes

No
Start

Calculate 
unattractiveness score 

for customer

Is it already
allowed to reject a 

customer?*

Unattractiveness 
score > p10?

End

Accept customer

End

Do not accept customer

No

No

Yes

No

Yes

Yes No

Yes

Customer places order 
and requests available 

time windows

Start
Do we want

to change the fleet 
composition?

Determine swap based 
on how we decided to 
change the current 
fleet composition

Solve VRP for new 
composition without 
new customer order 

with CVRS

1

If no unplanned orders, 
update the current 

schedule with new fleet 
composition

Swap 
feasible? (same checks

as for MYS)

Reject the customer
Decide if the 

improvement algorithm 
should be called

End

Decide in which
delivery route the 
order is planned

Do we want 
to accept this 

customer?

Customer decides if time 

windows are acceptable

Decide which time 
windows can be offered 

to the customer

Did the 
customer select a 

time window?
2

 
Figure 4.4. Schematic overview of decision steps followed by BAS upon a customer arrival 

4.5. Conclusion 
In this chapter we defined our solution approach to solve the problem that we consider in the context of 
the e-retailer case. We described all decisions that our solution strategies should take in Section 4.1. We 
designed three strategies, that all deal with these decisions in different ways. In Section 4.2 we designed a 
static strategy (OBS) that can be implemented directly in ORTEC’s software solutions. In Section 4.3 we 
designed a myopic dynamic strategy (MYS) that can change the fleet composition while customer orders 
arrive during the booking period. Finally, in Section 4.4 we designed a smart dynamic strategy (BAS) 
that implements several smart decision mechanisms to improve MYS. The insights obtained in this chapter 
enable us to answer our third set of research questions: 

3) Which solution strategies do we design to deal with an unfixed fleet composition during the 

ordering process? 

a. What are the problems for which our solution strategies should come up with a decision? 

b. How can we deal with these problems in the solution strategies that we design? 

To find a solution to the problem we consider, our strategies must take decisions for two problems: 
1) We need to determine an initial fleet composition before the start of the booking period.  
2) For each customer order that arrives we must decide whether to accept or reject this order. Note 

that accepting an order does not necessarily mean that the customer confirms the order by 
selecting a time window. 

OBS approaches the first decision in two different ways. The first way consists of calculating the historical 
percentage of the total order quantity for each order type that we consider. Then, according to these 
percentages mk drivers are assigned to each Order Type k. The initial fleet composition is then determined 
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by, for each order type, adding the mk cheapest vehicles (in terms of setup costs) that can deliver Order 
Type k to the fleet composition. This first method is used to benchmark OBS against MYS and BAS.  

As we expect more customer demand than can be served with maximum capacity (given the number 
of drivers available), in practice we would not add the cheapest and smallest vehicles to the initial fleet 
composition. Therefore, the second way in which OBS approaches the first decision consists of first adding 
as many vehicles of Vehicle Type 3 (large and non-dedicated) to the fleet composition. If any drivers are 
then not yet assigned to a vehicle, the first method is followed to assign those remaining drivers to a 
vehicle.  

For the second decision, OBS accepts a customer if at least one time window is available to be offered 
to a customer. Otherwise, OBS rejects the customer. OBS does not try to change the fleet composition 
nor considers any other conditions to reject a customer, besides the one mentioned above. 

MYS approaches the first decision in the same way as the first method for OBS. The second decision 
is approached in a different way. Just as OBS, MYS accepts a customer order if at least one time window 
is available to be offered to the customer. When this is not the case, MYS does not immediately reject 
the customer. Instead, MYS tries at any cost to change the fleet composition in such a way that at least 
one time window is available to be offered to the customer. If this is the case, MYS accepts the customer. 
If after trying to change the fleet composition still no time window is available to be offered to the 
customer, MYS rejects the customer order. 

BAS approaches the first decision in the same way as MYS. For the second decision BAS makes use 
of a different approach. For each customer order BAS considers changing the fleet composition even before 
offering any time windows to the customer by answering three questions: 

1) Do we want to increase the fleet capacity of the current fleet composition? 
2) Do we want to decrease the fleet capacity of the current fleet composition? 
3) Do we want to change the ratio of the available fleet capacity for the different order types? 

If any of these questions can be responded with a positive answer, BAS tries to change the fleet 
composition, in a way that reflects the answers to the questions. To answer these questions, BAS calculates 
different value functions. With the resulting values BAS verifies whether several conditions are met. These 
conditions are used to check whether our fleet composition is suitable to serve the customers that are 
placing orders during the booking period. If that turns out not to be the case, BAS tries to change the 
fleet composition accordingly. 

Besides that, BAS checks several conditions before a customer is accepted. Besides the check if time 
windows are available to be offered, BAS also checks whether the customer is attractive enough to accept 
based on certain conditions. BAS only considers rejecting an unattractive customer when several 
conditions are met. By rejecting unattractive customers BAS aims to serve more customers in the end, as 
we focus especially on cases where we know that on average we are not able to serve all customers that 
arrive during the booking period. 

All conditions that BAS considers when taking its decisions can be configured by tuning the parameters 
that BAS uses. In this way BAS can be tuned according to different practical applications of the e-retailer 
case.  
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5. Simulation Approach 
In this section we present our simulation approach for the ordering process for the e-retailer case. We first 
define the structure for our model in Section 5.1. After that, in Section 5.2 we describe the simulation tool 
that we develop to run our simulations. In Section 5.3 we present the scenarios of the e-retailer case for 
which we carry out computational experiments to put the hypotheses as defined in Chapter 3 to a test. 
Finally, in Section 5.4 we present an overview of the experiments that we carry out. 

5.1. Simulation Model Structure 
Before we develop a simulation model, it is important to know how the simulation model must be 
structured. In this section we design the structure of our simulation model in terms of the inputs and the 
outputs that are required (Section 5.1.1), as well as the way our simulation model processes the inputs to 
obtain the outputs (Section 5.1.2). 

We chose to model the ordering process of the e-retailer case with a discrete-event simulation model, 
as described by (Law, 2015). As mentioned in Chapter 3, this saves us a lot of running time compared to 
real-time simulation. The discrete events that we consider are the sequential arrivals of the customers that 
place a request for available time windows during the booking period. In between those arrivals, the state 
of our system does not change which qualifies our context to be modeled with a discrete event simulation 
model. The current time in our model is represented by the arrival times of the customers, expressed as a 
percentage of the length of the booking period. We deal with a terminating simulation in which we start 
with an empty system (no customer orders arrived), and the cut-off time marks the end of a simulation 
run. Therefore, we do not need a warm-up period for our independent simulation runs. 

5.1.1. Inputs and Outputs 

In this section we define all required inputs for our simulation model, based on the formal problem 
definition from Chapter 3. Also, we define all the required outputs for our simulation that we need for the 
analysis of the results. 

We denominate the set of all required inputs as a scenario. The main elements of a scenario are 
constructed with the four entities we defined in Chapter 3 as building blocks. We distinguish the following 
inputs for our simulation model: 

• Id – A unique name to identify a scenario. 
• Use case – The use case (as defined in Chapter 3) for which we consider the scenario. 
• Strategy – This parameter indicates which strategy our simulation model should apply for the 

input scenario. 
• Customers – A set that contains all historical customers and their attributes that we consider for 

a scenario. Based on the average number of customers and a Poisson distribution (explained 
further in Section 5.3), for each replication we randomly draw a number of customers that try to 
place an order (during the booking period for that replication) from this set. 

• Average number of customers – A parameter that indicates how many customers on average want 
to place an order during the booking period. 

• Drivers – A number of drivers that an e-retailer employs with their attributes. 
• Vehicles – The delivery vehicles that an e-retailer owns. The vehicles are categorized based on 

their vehicle types. 
• Number of vehicles per type – These parameters characterize the delivery fleet of an e-retailer in 

terms of how many vehicles an e-retailer owns of each vehicle type. 
• Depot – A central depot where an e-retailer keeps its inventory with its attributes. 
• Number of customers until optimization - This parameter indicates the number of customers after 

which we call an improvement algorithm from CVRS for intermediate optimization of the delivery 
routes formed so far. 
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• Number of replications – This parameter indicates how many replications of one booking period 
we simulate for the scenario. For an explanation of the concept of a replication (equivalent to a 
simulation run) we refer to Law (2015). 

• Distance matrix – The distance matrix contains the distances in kilometers between all locations 
in the scenario, being the locations of all customers and the location of the central depot. 

• Driving time matrix – Same as the distance matrix, but then for the driving time in seconds. 
The outputs for our simulation model consist of two main elements. The first element is a list of customers 
that arrived during the booking period to place an order. The second element is a schedule that is being 
built up in the simulation during the booking period. Below we explain these two and other outputs of 
our simulation model: 

• List of customers – The list of customers contains for each customer the response time in seconds 
to a request for available time windows, as well as the number of time windows offered to the 
customer. Besides that, the list contains for each confirmed customer order the selected time 
window and in which vehicle the order is planned. 

• Schedule – The schedule consists of the vehicles used to form the final fleet composition and the 
sequence of customer orders that are planned in these vehicles. Based on the list of customers and 
the schedule we calculate the values for all the KPIs that we defined in Chapter 3. 

• Running time – The time in seconds that it takes for our simulation model to run a replication of 
one booking period. 

• Schedule update time – The time in seconds that it on average takes to update the current schedule 
in OTS. In Section 5.1.2 and Section 5.2 we explain when and how the communication with OTS 
and CVRS takes place. 

• Quick optimize time – The time in seconds that it on average takes to perform an intermediate 
optimization of the schedule in CVRS. 

• Final optimize time – The time in seconds that it takes to perform the final optimization of the 
schedule after the end of the booking period. 

• Change fleet time – The time in seconds that we spend on average when we try to change the 
fleet composition. By definition, for scenarios in which the strategy is OBS this measure equals 0. 

Finally, to keep track of the evolution of our KPIs over time and to facilitate the calculations for our 
strategies, we define the system state. This system state is updated every time a customer order arrives 
and consists of the following elements: 

• Customer – All information about the customer order that triggered the update of the system 
state and the system state. 

• Total number of customers arrived – The total number that arrived so far to place an order. 
• Percentage of customers arrived per order type – For each order type the customers that have 

arrived to place an order of the corresponding type divided by the total number of customers 
arrived.  

• Total order quantity – The total quantity of all orders that have been confirmed so far. 
• Percentage of total order quantity per order type – The total order quantity of all orders of an 

order type divided by the total order quantity. 
• Current fleet composition – The fleet composition that is currently used to serve customers. 
• Number of drivers used – The total number of vehicles in which at least one customer order is 

planned. 
• Total fleet capacity – The total capacity of all vehicles in the current fleet composition together. 
• Fleet capacity per order type – The total fleet capacity available for an order type (based on 

Equation (4.5) for Order Type A, analogously for Order Type B). 
• Total delivery costs, total distance, total driving time, delivery costs per customer, percentage of 

customers served – KPIs that are calculated based on the schedule built up so far. 
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5.1.2. Simulation Steps 

In this section we describe in pseudo-code the steps that we follow in our simulation to convert the inputs 
to outputs. Algorithm 5.1 carries out the main simulation process, from the initialization of the simulation 
to the export of the outputs. This algorithm is carried out for every replication and simulates the whole 
ordering process of an e-retailer, from the before the start when the initial fleet composition is determined, 
until after the cut-off time when the delivery routes are optimized. 

Algorithm 5.1. Main simulation process 

1 read all input data of scenario into simulation model ≻ Inputs as defined in Section 5.1.1 
2 initialize all simulation parameters and schedule ≻ Algorithm 5.2 

3 for c = 1 to n do ≻ Let all customers arrive sequentially 

4  ⁞ if strategy = OBS then ≻ Check the strategy that should be applied 

5  ⁞  ⁞ send JSON request for available time windows to OTS ≻ OTS runs cheapest insertion algorithm 

6  ⁞  ⁞ set AT = list of available time windows ≻ Retrieved from OTS response 
7  ⁞  ⁞ set PL = sorted preference list of customer c  
8  ⁞  ⁞ if AT.count > 0 then  
9  ⁞  ⁞  ⁞ if PL contains any time windows from AT then ≻ If not, customer did not select time  
10  ⁞  ⁞  ⁞  ⁞ customer c selects highest ranked time window from PL window, order is not confirmed 
11  ⁞  ⁞  ⁞  ⁞ insert customer c in cheapest way into schedule ≻ Determined by OTS (cheapest insertion) 
12  ⁞  ⁞  ⁞ end if  
13  ⁞  ⁞ else reject customer c  
14  ⁞  ⁞ end if  
15  ⁞ else if strategy = MYS then ≻ Customer is accepted when insertion is feasible 

16  ⁞  ⁞ execute specific simulation steps for MYS ≻ Algorithm 5.3 

17  ⁞ else if strategy = BAS then  
18  ⁞  ⁞ execute specific simulation steps for BAS ≻ Algorithm 5.4 

19  ⁞ end if  
20  ⁞ set x = number of customers between intermediate optimization calls  
21  ⁞ if c mod x = 0 then ≻ After every x customers, call 
22  ⁞  ⁞ send JSON request to CVRS for intermediate optimization improvement algorithm 

23  ⁞  ⁞ convert JSON response CVRS into current schedule  
24  ⁞ end if  
25  ⁞ send JSON request to OTS with current schedule ≻ Keep OTS up-to-date 
26 next c  
27 send JSON request to CVRS to perform final optimization of delivery routes  
28 convert JSON response CVRS into final schedule  
29 send JSON request to OTS to reset the central depot  
30 export all output and KPIs ≻ As defined in Section 5.1.1 

Algorithm 5.1 makes use of different sub-algorithms, which we present below. Algorithm 5.2 shows the 
steps that are followed before the start of every replication, to ensure that the simulation can run properly. 

Algorithm 5.2. Initialization of simulation parameters 

1 send JSON request to initialize the depot in OTS  
2 if strategy = BAS or MYS or OBS then  
3  ⁞ initialize delivery fleet as cheap as possible ≻ As presented in Figure 4.1 
4 else if strategy = OBS (Large Initial Fleet) then  
5  ⁞ initialize delivery fleet with maximum capacity ≻ As presented in Figure 4.2 
6 end if  
7 send JSON request with initial empty schedule to OTS  
8 randomly select the customers that arrive in this replication ≻ Further explanation in Section 5.3 

Algorithm 5.3 carries out all the steps upon a customer arrival as prescribed by MYS (Figure 4.3). 
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Algorithm 5.3. Simulation steps upon a customer arrival for MYS 

1 send JSON request for available time windows to OTS ≻ OTS runs cheapest insertion algorithm 
2 set AT = list of available time windows ≻ Retrieved from OTS response 
3 set PL = sorted preference list of customer c  
4 if AT.count > 0 then  
5  ⁞ if PL contains any time windows from AT then ≻ If not, customer did not select time  
6  ⁞  ⁞ customer c selects first time window in PL window, order is not confirmed 
7  ⁞  ⁞ insert customer c in cheapest way into schedule ≻ Determined by OTS (cheapest insertion) 
8  ⁞ end if  
9 else  
10  ⁞ set FS = list of feasible swaps ≻ Swap defines a new fleet composition 
11  ⁞ set FC = list of feasible compositions ≻ Fleet composition is feasible when  
12  ⁞ send JSON request to initialize a copy of the depot in OTS we have no unplanned orders 
13  ⁞ add feasible swaps (with customer’s order type as required) to FS ≻ See Figure 4.3 for steps to follow 

14  ⁞ for each swap in FS do  
15  ⁞  ⁞ send JSON request to solve VRP for swap with CVRS  
16  ⁞  ⁞ if no unplanned orders in response then ≻ Composition is feasible, all  
17  ⁞  ⁞  ⁞ add swap composition to FC confirmed orders and order of  

18  ⁞  ⁞  ⁞ convert CVRS response into temporary schedule customer c could be planned 

19  ⁞  ⁞  ⁞ send JSON request with temporary schedule to OTS  
20  ⁞  ⁞  ⁞ send JSON request for available time windows to OTS ≻ OTS runs cheapest insertion algorithm 
21  ⁞  ⁞  ⁞ if any, add available time windows to AT ≻ Retrieved from OTS response 
22  ⁞  ⁞  ⁞ send JSON request to OTS to reset copy of the central depot  
23  ⁞  ⁞ end if  
24  ⁞ next swap  
25  ⁞ filter out any duplicate time windows in AT  
26  ⁞ if AT.count > 0 then  
27  ⁞  ⁞ if PL contains any time windows from AT then ≻ If not, customer did not select time  
28  ⁞  ⁞  ⁞ customer c selects highest ranked time window from PL window, order is not confirmed 
29  ⁞  ⁞  ⁞ set cheapest corresponding temporary schedule as current schedule and update schedule in OTS  
30  ⁞  ⁞  ⁞ insert customer c in cheapest way into schedule ≻ Determined by OTS (cheapest insertion) 

31  ⁞  ⁞ end if  
32  ⁞ else reject customer c  
33  ⁞ end if  
34 end if  

Algorithm 5.4 carries out the steps of BAS upon a customer arrival, as discussed in Chapter 4 and 
presented in Figure 4.4. We use the notation of the parameters and variables as introduced in Chapter 4. 

Algorithm 5.4. Simulation steps upon a customer arrival for BAS 

1 set IncreaseCapacity = false ≻ Initialize parameters to check if fleet composition 
2 set DecreaseCapacity = false should be changed, see Chapter 4 for details  

3 set ChangeRatio = false  
4 set ChangeComposition = false  
5 set ReqOrderType = k  
6 set RC = list with customers that could not be served  
7 if Ft > p1 then ≻ First check the expected percentage of customers arrived 
8  ⁞ if (|Ct

A| + |Ct
B|) (Ft × E[N])⁄  > 1 + p2 or ≻ Then check whether to increase capacity, making 

9  ⁞  Ft + p3 < current average utilization or use of Equation (4.3) and Equation (4.4) 

10  ⁞  RC.count > p4 then  
11  ⁞  ⁞ IncreaseCapacity = true ≻ More fleet capacity is required to serve future customers 
12  ⁞ else if Ft > p5 and current average utilization < p6 then ≻ Check whether to decrease capacity 
13  ⁞  ⁞ DecreaseCapacity = true ≻ We expect to need less fleet capacity for serving future customers 
14  ⁞ end if  
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15  ⁞ calculate fA, hA, oA and αt ≻ Now check whether to change the ratio of the available fleet capacity, 
16  ⁞ if αt > p7 then with Equation (4.5), Equation (4.6), Equation (4.7), Equation (4.8) 
17  ⁞  ⁞ ChangeRatio = true  
18  ⁞  ⁞ if oA > fA then ≻ Determine order type for which we require more capacity 

19  ⁞  ⁞  ⁞ ReqOrderType = A  
20  ⁞  ⁞ else ReqOrderType = B  
21  ⁞  ⁞ end if  
22  ⁞ else if IncreaseCapacity or DecreaseCapacity then  
23  ⁞  ⁞ ReqOrderType = order type with largest total order quantity ≻ Based on customers served so far 
24  ⁞ end if  
25  ⁞ if IncreaseCapacity or DecreaseCapacity or ChangeRatio then  

26  ⁞  ⁞ ChangeComposition = true  
27  ⁞  ⁞ RC.clear ≻ Reset the list with rejected customers 
28  ⁞ end if  
29 end if  
30 if ChangeComposition then ≻ Now try changing the fleet composition 
31  ⁞ define new composition based on IncreaseCapacity, DecreaseCapacity, ChangeRatio ≻ Use Table 4.2 
32  ⁞ if enough capacity available for unplanned orders then ≻ Prevent high response time when we know 
33  ⁞  ⁞ send JSON request to CVRS to solve VRP for new composition  that new composition is not feasible 
34  ⁞  ⁞ if no unplanned orders in response then  
35  ⁞  ⁞  ⁞ convert CVRS response into current schedule ≻ Accept changed fleet composition 
36  ⁞  ⁞  ⁞ send JSON request to OTS with current schedule ≻ Keep OTS up-to-date 
37  ⁞  ⁞ end if  
38  ⁞ end if  
39 end if  
40 set RejectCustomer = false ≻ Finally, consider if customer should be rejected 
41 set u = unattractiveness score for customer c ≻ Further explanation of calculation in Section 5.3  
42 if fleet capacity cannot be increased anymore and  ≻ Perform checks as described in Chapter 4 
43  current average utilization > p  and  

44  Ft + p  < current average utilization and u > p10 then  
45  ⁞ RejectCustomer = true  
46 end if  
47 if not RejectCustomer then ≻ If customer is accepted, offer available time windows 
48  ⁞ send JSON request for available time windows to OTS ≻ OTS runs cheapest insertion algorithm 
49  ⁞ set AT = list of available time windows ≻ Retrieved from OTS response 
50  ⁞ set PL = sorted preference list of customer c  
51  ⁞ if AT.count > 0 then  
52  ⁞  ⁞ if PL contains any time windows from AT then ≻ If not, customer did not select time  
53  ⁞  ⁞  ⁞ customer c selects highest ranked time window from PL window, order is not confirmed 
54  ⁞  ⁞  ⁞ insert customer c in cheapest way into schedule ≻ Determined by OTS (cheapest insertion) 
55  ⁞  ⁞ end if  
56  ⁞ else reject customer c  
57  ⁞ end if  
58 else reject customer c  
59 end if  

All these algorithms together make sure that all inputs are converted to outputs, which we use to 
investigate whether the hypotheses as defined in Chapter 3 can be confirmed for our input scenarios. 

5.2. Simulation Tool 
In this section we describe the simulation tool we developed in C# to run our simulation experiments. 
C# is an object-oriented programming language that fits all the needs for running the algorithms we 
presented in Section 5.1. We present the way in which our simulation tool communicates with ORTEC’s 



Chapter 5. Simulation Approach 

51 

software solutions in Section 5.2.1. Subsequently, we briefly describe the different application modes that 
we developed in the tool in Section 5.2.2. 

5.2.1. Communication with OTS and CVRS 

As we already mentioned in the algorithms in Section 5.1, the communication with the cloud interfaces 
ORTEC uses for OTS and CVRS goes by means of JSON requests. JSON is frequently used in cloud 
applications to exchange data between two interfaces. It is a lightweight format and therefore suitable for 
applications where response time is an issue. ORTEC has specified a standard format for communication 
with its cloud services, that contain all the entities that are required to be able to respond the cloud 
request. We implemented these formats in our simulation tool to automate the communication with OTS 
and CVRS. So, our tool converts all entities (customer, driver, vehicle, depot) to entities that are defined 
in OTS and CVRS. After obtaining a response from OTS or CVRS the tool converts this response to the 
corresponding entities in our simulation tool. 

5.2.2. Application Modes 

Figure 5.1 shows the start screen of the application we developed to run our simulations and introduces 
the four application modes: a scenario generator mode, a demo mode, a simulation mode and a solution 
visualizer mode. These application modes can be used for different purposes, as we explain for each 
application mode in the remainder of this section. 

Figure 5.1. Screenshot of the start screen of the simulation tool 

Figure 5.2 presents a visualization of the scenario generator mode of our simulation tool. This application 
mode can be used to construct input files for a scenario. We distinguish between two separate functions 
for this application mode: one to retrieve the coordinates for a set of given addresses and one to consolidate 
all inputs for a scenario from an Excel file into a JSON file that can be read by our simulation tool. To 
retrieve the coordinates linked to an address, the tool makes use of ORTEC’s Maps Service. Whenever an 
address is not recognized, our tool gives the user the option to manually provide the coordinates. When 
constructing an input file for a scenario, the application also uses ORTEC’s Maps Service, to retrieve the 
distance and driving time matrices. In case we already have the distance and driving time matrices 
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available as a JSON file, the tool offers the option to import this JSON file. This can save much time, 
because for some scenarios we may have millions of entries for the distance and driving time matrices. 

Figure 5.2. Screenshot of the scenario generator mode 

Map rights: ©2019 Microsoft Corporation, ©2019 NAVTEQ, ©2019 Image courtesy of NASA, plugin by GMap.NET 

Figure 5.3 shows a screenshot of the demo mode of our simulation tool. This mode, as the name indicates, 
is meant for demonstration purposes of the tool. The user can generate a basic random scenario for Use 
Case 2. Several parameters can be modified, which serve as input for the random distributions that the 
application uses to generate the input for the demo scenario. Another possibility is to import an earlier 
generated scenario. After either importing or generating a scenario, the user can perform a demo simulation 
run to show how the tool works. Instead of running a whole simulation, the user can also just display the 
scenario on a map, to give an idea of how the scenario looks like. 

Figure 5.3. Screenshot of the demo mode 
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Figure 5.4 visualizes the most important application mode of our simulation tool, the simulation mode. 
This application mode can be used to run multiple replications of different scenarios. In the section for 
scenario selection, under inactive scenarios, all available scenarios in the base application folder (a 
designated folder for the application located in the user’s documents) are displayed. By selecting one or 
multiple inactive scenarios and then pressing the button with the arrow to the right, the user can activate 
the selected scenarios. When the user starts the simulation (by pressing the button that displays 
“Running…” in Figure 5.4, but before the start of the simulation displays “Start simulation”), these 
activated scenarios will be simulated. The bottom progress bar indicates how many customers have already 
arrived in the simulation of the current booking period. The middle progress bar indicates how many 
replications have been performed already. The top progress bar indicates the overall progress for all 
activated scenarios. Whenever all replications for a scenario have been performed, the scenario is moved 
to the section with finished scenarios. During the simulation the current scenario and replication is 
displayed on a map. A green marker indicates a confirmed customer order, a red marker a customer order 
that could not be served. The orange marker with the ORTEC plus symbol indicates the location of the 
central depot. The section with simulation output gives the user information about what happens in the 
simulation run and serves for instance for verification purposes. During a replication all algorithms as 
described in Section 5.1 are run and at the end of each replication the results are exported, so the user 
can analyze the results afterwards. 

Figure 5.4. Screenshot of the simulation mode 

Map rights: ©2019 Microsoft Corporation, ©2019 NAVTEQ, ©2019 Image courtesy of NASA, plugin by GMap.NET 

Figure 5.5 displays the last mode, the solution visualizer. For each replication our simulation tool exports 
a JSON file that contains all information that is required to display the solution found for that replication 
on a map. We export for instance all the customers, with for each customer whether they are served or 
not and many other output metrics that were discussed in Section 5.1. We also export the final delivery 
routes that are formed, as well as other solution metrics. The solution visualizer mode enables us to import 
any solution file generated by our simulation tool and visualize the final routing plan that is formed. This 
application mode is quite useful, especially for verification purposes and gaining credibility for our 
simulation model. 
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Figure 5.5. Screenshot of the solution visualizer mode 

Map rights: ©2019 Microsoft Corporation, ©2019 NAVTEQ, ©2019 Image courtesy of NASA, plugin by GMap.NET 

5.3. Scenarios 
In this section we describe the scenarios for which we do computational experiments to put our hypotheses 
to a test. We have two different scenarios that we consider. Section 5.3.1 describes the first scenario in 
terms of the inputs as defined in Section 5.1, Section 5.3.2 presents the second scenario. Section 5.3.3 gives 
a brief motivation for the number of replications we choose to perform. Subsequently, Section 5.3.4 
describes the input distributions we use to determine the number of customers that arrive during the 
booking period for a replication and to determine the arrival times of the customers. Section 5.3.5 presents 
the way in which we model the customer choice behavior. Finally, Section 5.3.6 explains how the 
parameters for the strategy BAS are tuned in our experiments. 

5.3.1. Scenario 1 

The first scenario we consider is based on real data of an ORTEC client that resembles an e-retailer of 
our context. This makes it a perfect test-case to explore how our strategies perform. The data is adapted 
to fit our e-retailer case. For instance, the original client makes use of several depots. We replaced all 
depots by one central depot that is located somewhere around the center of all customer locations. Also, 
the original data lacked a classification of order types. We therefore randomly assigned the orders to either 
Order Type A or Order Type B. Finally, the customers’ time window preferences are obviously not known. 
Section 5.3.5 explains the way in which we modeled this behavior both for Scenario 1 and Scenario 2. The 
central depot for this scenario is located somewhere in the province Utrecht of The Netherlands. The 
customer locations are spread around the depot, and they cover Dutch cities as Utrecht, Amsterdam, 
Amersfoort and Hilversum. Figure 5.6 presents a visualization of the customer and depot locations, 
generated by our simulation tool. The orange marker with the ORTEC plus symbol in the middle 
represents the location of the central depot for this scenario.  

Table 5.1 presents a summary of the characteristics of the customers in this scenario. For Scenario 1 
we distinguish between Scenario 1a and Scenario 1b. The only difference between the two scenarios is that 
for Scenario 1b the percentage of customer orders that arrive of Order Type A is 50% larger than for 
Scenario 1a. For Scenario 1a this percentage equals the percentage from historical data (the whole dataset 
of customers), as computed with Equation (4.1). We make this distinction between Scenario 1a and 
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Scenario 1b to study the effect of our strategies in cases where our expectations with regard to the ratio 
of customer orders of Order Type A and customer orders of Order Type B match reality, and cases where 
they do not match reality. 

Figure 5.6. Customer and depot locations for Scenario 1 

Map rights: ©2019 Microsoft Corporation, ©2019 NAVTEQ, ©2019 Image courtesy of NASA, plugin by GMap.NET 

Due to technical restrictions on the cloud capacity for ORTECs cloud services that is available for 
simulation purposes, we limit the average number of customers that arrive during the booking period to 
100. We discuss the input distribution for the number of customers that arrive in a replication and the 
input distribution used to determine the arrival times of the customers in Section 5.3.4. 

Table 5.1. Characteristics of the customers for Scenario 1 

Characteristic Scenario 1a Scenario 1b 

Expected number of customers 100 100 
Observed average % Order Type A 47.12% 70.68% 
Observed average % Order Type B 52.88% 29.32% 

Historical % Order Type A 47.12% 47.12% 
Historical % Order Type B 52.88% 52.88% 

Average order quantity 62 kilograms 62 kilograms 
Average order duration 638 seconds 638 seconds 

Table 5.2 presents the characteristics of the drivers for Scenario 1, and Table 5.3 the characteristics of the 
different vehicle types. Note that not all vehicle types are used in all use cases. Table 5.4 presents the 
characteristics of the central depot for Scenario 1 and finally Table 5.5 gives some general characteristics 
of the scenario. 

Table 5.2. Characteristics of the drivers for Scenario 1 

Characteristic Driver type 1 

Number of drivers 8 
Driver skills Vehicle Type 1, 2, 3 

Maximum number of working hours 8 
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Table 5.3. Characteristics of the vehicles for Scenario 1 

Characteristic Vehicle Type 1 Vehicle Type 2 Vehicle Type 3 

Number of vehicles 8 8 4 
Costs per hour €20.00 €20.00 €20.00 

Costs per kilometer €0.20 €0.20 €0.26 
Setup costs € 5 .00 € 5 .00 €16 .0 0 
Capabilities Order Type A Order Type B Order Type A, B 
Capacity 500 kilograms 500 kilograms 1000 kilograms 

Table 5.4. Characteristics of the central depot for Scenario 1 

Characteristic Central depot 

Depot latitude 52.1422 
Depot longitude 5.1568 

Available time windows [9:00-11:00], [11:00-13:00], [13:00-15:00], [15:00-17:00] 

Table 5.5. General characteristics for Scenario 1 

Characteristic Scenario 1a Scenario 1b 

Id format Scenario1a_[Use case]_[Strategy] Scenario1b_[Use case]_[Strategy] 
Use case UseCase2, UseCase4 UseCase2, UseCase4 
Strategy OBS, MYS, BAS OBS, MYS, BAS 

Customers until optimization 20 20 
Number of replications 10 10 

For all experiments with Scenario 1 we use a length of the booking period of one weekday. So, customers 
in our context always order for the next day. Our methods do not require this, because we express the 
time as a percentage of the length of the booking period. However, the input distributions that we use 
make more sense in practice when we consider the length of one weekday. 

5.3.2. Scenario 2 

Figure 5.7 displays a visualization of Scenario 2 as generated by our simulation tool. Again, the orange 
marker with the ORTEC plus symbol represents the location of the central depot. 

Figure 5.7. Customer locations and scenario details for Scenario 2 

Map rights: ©2019 Microsoft Corporation, ©2019 NAVTEQ, ©2019 Image courtesy of NASA, plugin by GMap.NET 
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Just as our first scenario, the second scenario we consider is also based on real data of an ORTEC client 
that resembles an e-retailer of our context. We applied the same modifications to this dataset as to the 
dataset for Scenario 1. However, Scenario 2 considers different customers, with a different spread around 
the central depot. The central depot is now located in the province Noord-Brabant of the Netherlands. 
The customer locations are spread over the south of the Dutch provinces Utrecht and Gelderland, as well 
as over the whole provinces Noord-Brabant and Limburg. The locations are now further away from the 
central depot, the average distance from any customer location to the central depot is 47.63 kilometer 
(against 18.08 kilometer for Scenario 1). 

Table 5.6 presents a summary of the characteristics of the customers in this scenario. For Scenario 2 
we again distinguish between Scenario 2a and Scenario 2b, with the same difference as described before. 
Just as for Scenario 1, we limit the average number of customers that arrive during the booking period to 
100 because of the technical restrictions on the cloud capacity for ORTECs cloud services that is available 
for simulation purposes. For Scenario 2 we also discuss the input distribution for the number of customers 
that arrive in a replication and the input distribution used to determine the arrival times of the customers 
in Section 5.3.4. 

Table 5.6. Characteristics of the customers for Scenario 2 

Characteristic Scenario 2a Scenario 2b 

Expected number of customers 100 100 
Observed average % Order Type A 51.55% 77.32% 
Observed average % Order Type B 48.45% 22.68% 

Historical % Order Type A 51.55% 51.55% 
Historical % Order Type B 48.45% 48.45% 

Average order quantity 59 kilograms 59 kilograms 
Average order duration 559 seconds 559 seconds 

Table 5.7 displays the characteristics of the drivers for Scenario 2, and Table 5.8 presents the 
characteristics of the different vehicle types. Again, note that not all vehicle types are used in all use cases. 
In Table 5.9 the characteristics of the central depot for Scenario 2 are shown and Table 5.10 presents 
some general characteristics of the scenario. Just as for the experiments with Scenario 1, we use a length 
of the booking period of one weekday for Scenario 2 as well. 

Table 5.7. Characteristics of the drivers for Scenario 2 

Characteristic Driver type 1 

Number of drivers 8 
Driver skills Vehicle Type 1, 2, 3 

Maximum number of working hours 8 

Table 5.8. Characteristics of the vehicles for Scenario 2 

Characteristic Vehicle Type 1 Vehicle Type 2 Vehicle Type 3 

Number of vehicles 8 8 4 
Costs per hour €20.00 €20.00 €20.00 

Costs per kilometer €0.20 €0.20 €0.26 
Setup costs €92.00 €92.00 €16 .0 0 
Capabilities Order Type A Order Type B Order Type A, B 
Capacity 500 kilograms 500 kilograms 900 kilograms 

Table 5.9. Characteristics of the central depot for Scenario 2 

Characteristic Central depot 

Depot latitude 51.4650 
Depot longitude 5.2774 

Available time windows [9:00-11:00], [11:00-13:00], [13:00-15:00], [15:00-17:00] 
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Table 5.10. General characteristics for Scenario 2 

Characteristic Scenario 2a Scenario 2b 

Id format Scenario2a_[Use case]_[Strategy] Scenario2b_[Use case]_[Strategy] 
Use case UseCase2, UseCase4 UseCase2, UseCase4 
Strategy OBS, MYS, BAS OBS, MYS, BAS 

Customers until optimization 20 20 
Number of replications 10 10 

5.3.3. Number of Replications 

As pointed out by Law (2015), there exist several methods to determine how many independent 
replications we should perform. We carried out the sequential procedure that he explains, to obtain a 
certain precision for the confidence interval of the mean values of our KPIs over the replications we 
perform. We focused on our two main KPIs, the percentage of customers that is served and the costs per 
customer that is served. However, when we use a common relative error of 5% for the real mean, (0.05/(1-
0.05) for the sample mean) we find that after 20 replications we do still not have a relative error below 
this threshold. We can justify this phenomenon, because of the following: over the replications our 
maximum fleet capacity does not change, because we are bound by the number of drivers that is available. 
However, in every replication a different number of customer orders arrives, according to the distribution 
that we explain in Section 5.3.4. But the number of customers that we can serve with maximum fleet 
capacity does not vary that much. Therefore, the percentage of customers that is served is likely to vary 
a lot more over replications, especially when more customers arrive than can be served. This is indeed 
what we observe, the number of customers that are served shows a much lower variance than the 
percentage of customers that is served. 

Preliminary simulation runs indicate that running one replication on average takes around 10 to 15 
minutes. If we would need to perform 20 replications for experiment, we would probably need at least 200 
hours of simulation running time with 60 experiments (Section 5.4). Given that typically we need to 
perform some runs again after changing some parameters for instance, these 200 hours would only be a 
very positive estimation of a lower bound for the real time that is required. We therefore decided to 
restrict the number of replications to 10 replications per experiment which seems plausible to us, given 
the time that we have available for simulation runs. 

5.3.4. Input Distributions for Number of Customers and Customer Arrival Times 

In our simulation model we make use of random distributions for both the number of customers that 
arrive during the booking period and the spread of the customer arrivals over the booking period, which 
we consider to be one day. 

For both scenarios that we consider the average number of customers that arrive during the booking 
period equals 100 customers. In the different replications that we perform, we want to analyze the impact 
of having different amounts of customers arrive during the booking period. Therefore, we make use of a 
Poisson distribution to model the number of customers that arrive during the booking period. A Poisson 
distribution is commonly used to model the number of items in a batch of random size (Law, 2015), which 
describes our case quite well. In case we would use the Poisson(100) distribution, the spread of possible 
realizations would not be very large. For instance, with approximately 95% probability the number of 
customers drawn for a certain booking period lies between 80 and 120 for the Poisson(100) distribution. 
To ensure a somewhat larger spread for our experiments we therefore model the number of customers that 
arrive with a Poisson(50) distribution and we multiply the realization by 2. To get an idea of the impact, 
the probability that a realization is between 80 and 120 is around 85% for this distribution. Figure 5.8 
presents the resulting probability distribution which we use to determine for each replication how many 
customers arrive during the booking period. In Appendix A.1 we validate the implementation of this 
distribution in our simulation tool and we show that the hypothesis that the realizations have the correct 
distribution cannot be rejected at a pre-defined confidence level. 
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Figure 5.8. Probability distribution used to determine how many customers arrive during a booking period 

For the spread of customer arrivals over the booking period of one day, we primarily make use of an 
empirical distribution that reflects common practices among customers of e-retailers during weekdays. 
Figure 5.9 displays the arrival frequency for each hour of the day in case of 100 customers that arrive 
during the booking period of one day.  

 
Figure 5.9. Empirical pattern of average arrival rate per hour, expected number of customers = 100 

We see that from midnight to around 6AM hardly any customers arrive. From 6AM onward more 
customer orders start coming in, due to people that wake up early to go to work and want to place an 
order quickly before they leave. We see the first peek between 8AM and 9AM, when most people are 
awake and still find some time to do a bit of online shopping. The arrival rate then slowly reduces, because 
most potential customers have started working and are busy. The arrival rate then grows to a peek again 
between 12AM and 1PM, because people usually have their lunchbreaks during these hours. After the 
lunch peek the arrival rate drops a bit but starts increasing again after a few hours due to the potential 
customers that arrive home early and do their shopping as soon as they come home. The arrival rate 
reaches its highest peak just after dinner time, when most people have arrived at home and take some 
time to do their shopping after dinner is finished and the dishes are done. Then in the course of the 
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evening the hourly arrival rate drops again, because most customers that wanted to place an order have 
already done so. In Appendix A.2 we validate the implementation in our simulation tool of this empirical 
distribution for the spread of the customer arrivals during the booking period. Besides that, we perform a 
check if the spread of arrival times realized by our simulation tool is statistically valid given the input 
distribution for a certain confidence level. 

For most of the experiments that we carry out to put our hypothesis to a test we make use of the 
empirical distribution of customer arrival times. Only for our fourth hypothesis, we make use of two 
different distributions to analyze the impact of a changing arrival time spread. Figure 5.10 shows the first 
pattern that we consider, which is based on an increasing hourly arrival rate over the booking period and 
100 customers that are expected to arrive during the entire booking period. 

 
Figure 5.10. Pattern for increasing average arrival rate per hour, expected number of customers = 100 

Although we display the spread for a booking period of one day because that is the length of the booking 
period in our experiments, this distribution of the customer arrival spread could very well represent a 
booking period of a longer period. For instance, if people can order their groceries for a certain day already 
50 days in advance, we typically observe an increasing rate of customer orders that arrive as the booking 
period advances. Therefore, we do some experiments with this arrival time distribution for our last 
hypothesis. We validate the implementation of the distribution with increasing arrival rates in Appendix 
A.3. 

The second alternative pattern that we consider is a pattern in which the hourly customer arrival rate 
remains constant over the booking period of one day. This uniform distribution of the customer arrival 
rates over the booking period is again used in experiments for our fourth hypothesis, to show the impact 
of inaccurate forecasting of the spread of customer arrival times. The hourly customer arrival rate when 
100 customers are expected to arrive during the booking period of one day equals 4.1667 for each hour of 
the day. In Appendix A.4 we validate the way in which we implemented this distribution in our simulation 
tool. 

5.3.5. Customer Choice Behavior 

As we already pointed out in Chapter 2, there exist numerous ways to model customer choice behavior. 
Unfortunately, it is very difficult to obtain accurate data on customer choice behavior. We can analyze a 
lot of data of companies similar to an e-retailer in our context, but this only gives us information about 
the final selection of the customers whose orders were confirmed. The data do not give us any information 
about the customers’ preferences, neither do they give us any information about the preferences of the 
customers that did not select a time window at all and did therefore not confirm their order. 
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Due to this lack of information on customer choice behavior, we decided not to distinguish between time 
windows in terms of customer preference. In other words, each time window is on average equally preferred 
by a random customer. In both Scenario 1 and Scenario 2 we consider 4 time windows. For each customer 
we ranked the 4 time windows according to a random score between 0 and 1 assigned to each time window. 
The higher the score, the higher the rank of the time window on the preference list of the customer. This 
method ensures that on average, each time window is equally attractive to customers. 

After ranking the time windows for customers, we distinguish between the number of time windows 
on the preference list of a customer. Not all customers prefer the same number of time windows. Some 
customers may not care when their order is delivered during the day, resulting in 4 time windows on the 
preference list. However, other customers may for instance only be available during the morning part of 
the day, resulting in only 2 time windows on the preference list. This means that if we offer a time window 
in the afternoon to them, they will refuse to confirm their order and withdraw instead. We implemented 
this by for each customer drawing a random length between 1 and 4 time windows for the preference list, 
with an equal probability for each value between 1 and 4 (including both). In this way, time window 
preferences are generated for all customers that arrive during a booking period in our replications. Of 
course, models do exist that are much more advanced when it comes to modeling customer choice behavior. 
However, it is out of scope for our research to dig deeper into this topic. 

5.3.6. Parameter Tuning for BAS 

As mentioned in Chapter 4, we can dedicate a whole thesis to the process of obtaining the best parameter 
tuning for the application of BAS in certain cases. It is a topic that on its own has to do with so many 
aspects, that it is not feasible for us to focus on how to tune the parameters perfectly for our scenarios. 
Besides that, it is also not our core focus to obtain a good parameter tuning for two example cases of the 
e-retailer case. We are more interested in exploring what the benefits can be of the strategy that we design, 
instead of obtaining the best possible results for the scenarios that serve as test-cases. 

However, in order to not just making up some random parameter values, we performed some 
preliminary simulation runs for some of the experiments that we define in Section 5.4. We performed these 
runs for different values for all parameters that BAS uses, thus exploring the spaces with possible values 
for the parameters. Our preliminary results indicated that the configuration as presented in Table 5.11 
overall resulted in the best performance for our scenarios.  

Of course, this is not a guarantee that this configuration is indeed the best possible one for all scenarios 
and all experiments. However, as it would consume a lot of time (which we would still need, to run all 
experiments with 10 replications) to investigate if we could achieve a better performance with different 
parameter configurations, we decided to stick to the configuration from Table 5.11. 

Table 5.11. Parameter values used for BAS in our experiments 

Parameter Value Parameter Value 

p1 0.10 p6 0.70 
p2 0.10 p7 0.10 
p3 0.10 p  0.50 
p4 2 p  0.05 
p5 0.90 p10 0.80 

To calculate the unattractiveness score for a customer, to compare with p10, we need to define a measure 
for this score. In our context, we decided to consider the order quantity of the customer as a measure of 
unattractiveness. As we deal with a fixed maximum fleet capacity given the number of drivers that are 
available, and on average more demand comes in than can be served with this capacity, we can on average 
not serve all customers. It then becomes unattractive to accept large customer orders, because instead of 
those large orders we may accept multiple smaller orders for instance. This results in a better performance 
in terms of the average percentage of customers that can be served, which is the primary objective that 
we maximize. Therefore, we define the unattractiveness score of a customer as the percentage of historical 
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customer orders with a smaller order quantity than this customer. In other words, if more than 80% of 
the historical customer orders has a smaller order quantity, this customer is considered as unattractive. 

5.4. Experiments 
This section presents an overview of the experiments that are performed to validate our hypotheses. We 
characterize experiments based on the scenario, the use case, the strategy and the distribution used for 
the customer arrival times. Section 5.4.1 presents experiments that are linked to analyzing our hypotheses. 
Section 5.4.2 presents some additional experiments, that are mainly intended for benchmarking purposes. 

5.4.1. Hypotheses 

For our first hypothesis we carry out experiments only for Use Case 2 and our strategies MYS and OBS. 
Table 5.12 presents the characteristics of all 8 experiments for this hypothesis. 

Table 5.12. Experiments carried out for Hypothesis 1 

Id Scenario Use Case Strategy Distribution Arrival Times 

Scenario1a_UseCase2_OBS Scenario 1a Use Case 2 OBS Empirical 
Scenario1a_UseCase2_MYS Scenario 1a Use Case 2 MYS Empirical 
Scenario1b_UseCase2_OBS Scenario 1b Use Case 2 OBS Empirical 
Scenario1b_UseCase2_MYS Scenario 1b Use Case 2 MYS Empirical 
Scenario2a_UseCase2_OBS Scenario 2a Use Case 2 OBS Empirical 
Scenario2a_UseCase2_MYS Scenario 2a Use Case 2 MYS Empirical 
Scenario2b_UseCase2_OBS Scenario 2b Use Case 2 OBS Empirical 
Scenario2b_UseCase2_MYS Scenario 2b Use Case 2 MYS Empirical 

For our second hypothesis, we compare the performance of BAS and MYS. However, we also carry out 
experiments for OBS, because the performance of OBS is used as a benchmark to compare both BAS and 
MYS with. We now do not only consider Use Case 2 but also Use Case 4, resulting in the 24 experiments 
as displayed in Table 5.13. The results of 8 experiments (dimmed in the table) are already available after 
doing the experiments for Hypothesis 1, so we need to run 16 new experiments for Hypothesis 2. 

Table 5.13. Experiments carried out for Hypothesis 2 

Id Scenario Use Case Strategy Distribution Arrival Times 

Scenario1a_UseCase2_OBS Scenario 1a Use Case 2 OBS Empirical 
Scenario1a_UseCase2_MYS Scenario 1a Use Case 2 MYS Empirical 
Scenario1a_UseCase2_BAS Scenario 1a Use Case 2 BAS Empirical 
Scenario1b_UseCase2_OBS Scenario 1b Use Case 2 OBS Empirical 
Scenario1b_UseCase2_MYS Scenario 1b Use Case 2 MYS Empirical 
Scenario1b_UseCase2_BAS Scenario 1b Use Case 2 BAS Empirical 
Scenario2a_UseCase2_OBS Scenario 2a Use Case 2 OBS Empirical 
Scenario2a_UseCase2_MYS Scenario 2a Use Case 2 MYS Empirical 
Scenario2a_UseCase2_BAS Scenario 2a Use Case 2 BAS Empirical 
Scenario2b_UseCase2_OBS Scenario 2b Use Case 2 OBS Empirical 
Scenario2b_UseCase2_MYS Scenario 2b Use Case 2 MYS Empirical 
Scenario2b_UseCase2_BAS Scenario 2b Use Case 2 BAS Empirical 
Scenario1a_UseCase4_OBS Scenario 1a Use Case 4 OBS Empirical 
Scenario1a_UseCase4_MYS Scenario 1a Use Case 4 MYS Empirical 
Scenario1a_UseCase4_BAS Scenario 1a Use Case 4 BAS Empirical 
Scenario1b_UseCase4_OBS Scenario 1b Use Case 4 OBS Empirical 
Scenario1b_UseCase4_MYS Scenario 1b Use Case 4 MYS Empirical 
Scenario1b_UseCase4_BAS Scenario 1b Use Case 4 BAS Empirical 
Scenario2a_UseCase4_OBS Scenario 2a Use Case 4 OBS Empirical 
Scenario2a_UseCase4_MYS Scenario 2a Use Case 4 MYS Empirical 
Scenario2a_UseCase4_BAS Scenario 2a Use Case 4 BAS Empirical 
Scenario2b_UseCase4_OBS Scenario 2b Use Case 4 OBS Empirical 
Scenario2b_UseCase4_MYS Scenario 2b Use Case 4 MYS Empirical 
Scenario2b_UseCase4_BAS Scenario 2b Use Case 4 BAS Empirical 
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For Hypothesis 3 we consider the difference between the performance of BAS and OBS (Large Initial 
Fleet). To that end, we need the results of the 12 experiments presented in Table 5.14. We only consider 
Use Case 4 in the experiments for this hypothesis. As we already obtain quite some relevant results from 
the experiments for Hypothesis 1 and Hypothesis 2, we only need to carry out 4 new experiments for 
Hypothesis 3. The experiments that can be re-used are dimmed in the table. 

Table 5.14. Experiments carried out for Hypothesis 3 

Id Scenario Use Case Strategy Distribution Arrival Times 

Scenario1a_UseCase4_OBS Scenario 1a Use Case 4 OBS Empirical 
Scenario1a_UseCase4_OBS(Large) Scenario 1a Use Case 4 OBS (Large Initial Fleet) Empirical 

Scenario1a_UseCase4_BAS Scenario 1a Use Case 4 BAS Empirical 
Scenario1b_UseCase4_OBS Scenario 1b Use Case 4 OBS Empirical 

Scenario1b_UseCase4_OBS(Large) Scenario 1b Use Case 4 OBS (Large Initial Fleet) Empirical 
Scenario1b_UseCase4_BAS Scenario 1b Use Case 4 BAS Empirical 
Scenario2a_UseCase4_OBS Scenario 2a Use Case 4 OBS Empirical 

Scenario2a_UseCase4_OBS(Large) Scenario 2a Use Case 4 OBS (Large Initial Fleet) Empirical 
Scenario2a_UseCase4_BAS Scenario 2a Use Case 4 BAS Empirical 
Scenario2b_UseCase4_OBS Scenario 2b Use Case 4 OBS Empirical 

Scenario2b_UseCase4_OBS(Large) Scenario 2b Use Case 4 OBS (Large Initial Fleet) Empirical 
Scenario2b_UseCase4_BAS Scenario 2b Use Case 4 BAS Empirical 

For Hypothesis 4 we carry out some different experiments. First, we study the impact on the performance 
of BAS of a different distribution for the spread of customer arrivals over the booking period. Just as for 
all experiments as defined until now, we still consider that we can accurately forecast the average spread 
of the customer arrivals. Note that this does not mean that for every replication we know exactly when 
the customers arrive, as for each replication we have random realizations of the theoretical distribution of 
customer arrival times. To study the effect on the performance of BAS when we do not have accurate 
forecasts for the spread of customer arrivals over the booking period, we perform experiments to study 
two types of forecast errors: fixed forecast errors and fluctuating forecast errors. To keep our scope limited, 
we study the effect of forecast errors only for Scenario 1b, which is most relevant for ORTEC’s practice. 

When we consider the fixed forecast errors, we test the performance of BAS for forecasts that were 
10%, 20% or 30% higher and lower than the correct forecasts according to the theoretical distribution of 
arrival times. Figure 5.11 shows the forecasted value of the cumulative percentage of customers that has 
arrived as a function of the time, for a booking period of one day and for all forecast errors we consider. 

 
Figure 5.11. Expected cumulative percentage of customers arrived at a given time with fixed forecast errors 
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To clarify, suppose we are forecasting 20% higher than the correct forecast, and we expect (according to 
the theoretical distribution) that after 50% of the booking period 25% of the customers has arrived. We 
then deliberately use a forecast of 45% for the percentage of customers that has already arrived. 

When we consider fluctuating forecast errors, we compare the performance of BAS without forecast 
errors to two different cases. For the first case we consider customer arrivals spread according to the 
empirical distribution (Section 5.3), but in our forecasts we assume the uniform distribution. The effect 
of this assumption in terms of the forecast for the cumulative percentage of customers that has arrived at 
a given point in time is displayed in Figure 5.12. For the second case we invert the two distributions. The 
uniform distribution is now the actual distribution, whereas the empirical distribution is the assumed one. 

 
Figure 5.12. Expected cumulative percentage of customers arrived at a given time with fluctuating forecast errors 

The resulting 20 experiments for Hypothesis 4 are displayed in Table 5.15. Of those 20 experiments 8 
experiments (dimmed in the table) are carried out for an earlier hypothesis, leaving us with 12 new 
experiments to carry out. Counting up all the experiments we need to perform so far, we conclude that 
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Table 5.15. Experiments carried out for Hypothesis 4 
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Scenario1a_UseCase4_BAS_Increasing Scenario 1a Use Case 4 BAS Increasing None 
Scenario1b_UseCase4_OBS Scenario 1b Use Case 4 OBS Empirical None 
Scenario1b_UseCase4_BAS Scenario 1b Use Case 4 BAS Empirical None 

Scenario1b_UseCase4_BAS_Increasing Scenario 1b Use Case 4 BAS Increasing None 
Scenario2a_UseCase4_OBS Scenario 2a Use Case 4 OBS Empirical None 
Scenario2a_UseCase4_BAS Scenario 2a Use Case 4 BAS Empirical None 

Scenario2a_UseCase4_BAS_Increasing Scenario 2a Use Case 4 BAS Increasing None 
Scenario2b_UseCase4_OBS Scenario 2b Use Case 4 OBS Empirical None 
Scenario2b_UseCase4_BAS Scenario 2b Use Case 4 BAS Empirical None 

Scenario2b_UseCase4_BAS_Increasing Scenario 2b Use Case 4 BAS Increasing None 
Scenario1b_UseCase4_BAS_-30% Scenario 1b Use Case 4 BAS Empirical Fixed, -30% 
Scenario1b_UseCase4_BAS_-20% Scenario 1b Use Case 4 BAS Empirical Fixed, -20% 
Scenario1b_UseCase4_BAS_-10% Scenario 1b Use Case 4 BAS Empirical Fixed, -10% 
Scenario1b_UseCase4_BAS_+10% Scenario 1b Use Case 4 BAS Empirical Fixed, +10% 
Scenario1b_UseCase4_BAS_+20% Scenario 1b Use Case 4 BAS Empirical Fixed, +20% 
Scenario1b_UseCase4_BAS_+30% Scenario 1b Use Case 4 BAS Empirical Fixed, +30% 

Scenario1b_UseCase4_BAS_Empirical Scenario 1b Use Case 4 BAS Empirical Fluctuating, Uniform 
Scenario1b_UseCase4_BAS_Uniform Scenario 1b Use Case 4 BAS Uniform Fluctuating, Empirical 
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5.4.2. Additional Experiments 

For benchmarking purposes, we perform a few additional computational experiments. In these experiments 
we evaluate the performance of two so-called prophet strategies. The strategies are characterized as 
prophet strategies, because they consider information regarding customer orders that will arrive in the 
future and take that information into account when constructing a solution for our problem. Of course, in 
real life this information is not available to an e-retailer. Therefore, the performance of these prophet 
strategies serves as benchmark for the performance of the strategies we designed in this research. The aim 
for both prophet strategies is to accept as many customer orders as possible and then minimizing the total 
delivery costs spent to deliver the customer orders. 

The first prophet strategy does not consider any time window preferences of the customers and assumes 
that each customer would select any time window offered to him or her. This strategy knows upfront all 
customer orders that will arrive during the booking period and the sequence in which they come in. 
Therefore, we basically need to solve the HFVRPTW with all these customer orders, for all possible fleet 
compositions, to find out what the best performance is that we can achieve in terms of the percentage of 
customers served and the costs per customer that is served. We solve the problem with CVRS, configured 
in the same way as the final optimization step for our other strategies at the end of the booking period. 
We cannot guarantee that we obtain the optimal solution for all instances, because CVRS makes use of 
heuristics. However, we believe that it is a good approximation to obtain an upper bound for the 
performance of our strategies. Of course, in real life we can never achieve the performance of this first 
prophet strategy, because in real life the customers do have time window preferences and do not select 
every time window. Also, in practice we never know in which sequence the customers arrive, so we cannot 
reject customer orders based on information regarding the future, of which the prophet strategy does make 
use. 

Our second prophet strategy is similar to the first one, with one main difference: instead of assuming 
that each customer would select any time window offered to him or her, we assume that a customer would 
only choose the first time window of his or her preference list. This strategy gives us an idea of how good 
we could perform in case we offer the highest possible customer satisfaction in terms of time window 
preferences. 

We study the performance of our prophet strategies for Use Case 2 and Use Case 4, which are the use 
cases that we study in our hypotheses. This results in the 16 new experiments that are displayed in Table 
5.16. 

Table 5.16. Experiments carried out for prophet strategies 

Id Scenario Use Case Strategy 

Scenario1a_UseCase2_Prophet(NTW) Scenario 1a Use Case 2 Prophet (No Time Windows) 
Scenario1a_UseCase2_Prophet(FCTW) Scenario 1a Use Case 2 Prophet (First Choice Time Window) 
Scenario1b_UseCase2_Prophet(NTW) Scenario 1b Use Case 2 Prophet (No Time Windows) 
Scenario1b_UseCase2_Prophet(FCTW) Scenario 1b Use Case 2 Prophet (First Choice Time Window) 
Scenario2a_UseCase2_Prophet(NTW) Scenario 2a Use Case 2 Prophet (No Time Windows) 
Scenario2a_UseCase2_Prophet(FCTW) Scenario 2a Use Case 2 Prophet (First Choice Time Window) 
Scenario2b_UseCase2_Prophet(NTW) Scenario 2b Use Case 2 Prophet (No Time Windows) 
Scenario2b_UseCase2_Prophet(FCTW) Scenario 2b Use Case 2 Prophet (First Choice Time Window) 
Scenario1a_UseCase4_Prophet(NTW) Scenario 1a Use Case 4 Prophet (No Time Windows) 
Scenario1a_UseCase4_Prophet(FCTW) Scenario 1a Use Case 4 Prophet (First Choice Time Window) 
Scenario1b_UseCase4_Prophet(NTW) Scenario 1b Use Case 4 Prophet (No Time Windows) 
Scenario1b_UseCase4_Prophet(FCTW) Scenario 1b Use Case 4 Prophet (First Choice Time Window) 
Scenario2a_UseCase4_Prophet(NTW) Scenario 2a Use Case 4 Prophet (No Time Windows) 
Scenario2a_UseCase4_Prophet(FCTW) Scenario 2a Use Case 4 Prophet (First Choice Time Window) 
Scenario2b_UseCase4_Prophet(NTW) Scenario 2b Use Case 4 Prophet (No Time Windows) 
Scenario2b_UseCase4_Prophet(FCTW) Scenario 2b Use Case 4 Prophet (First Choice Time Window) 

Finally, we perform some experiments to study the impact of intermediate optimization calls. The 
intermediate optimization calls consume a lot of time computational time and require a lot of effort in 
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practice in terms of technical implementation. The reason for this is that we must ensure that while the 
optimization calls did not yet return a response, new customers can still be offered time windows. The 
question may therefore rise whether the impact of the intermediate optimization calls on the performance 
justifies these efforts. We test this for Use Case 2 and OBS, resulting in 8 required experiments, as shown 
in Table 5.17. The experiments that can be re-used from earlier hypotheses are dimmed in the table. We 
need to carry out 4 new experiments, bringing our grand total to 60 experiments. 

Table 5.17. Experiments carried out to study the impact of intermediate optimization calls 

Id Scenario Use Case Strategy Dist. Arrival Times 

Scenario1a_UseCase2_OBS Scenario 1a Use Case 2 OBS Empirical 
Scenario1a_UseCase2_OBS(NoOpt) Scenario 1a Use Case 2 OBS (No Intermediate Optimization) Empirical 

Scenario1b_UseCase2_OBS Scenario 1b Use Case 2 OBS Empirical 
Scenario1b_UseCase2_OBS(NoOpt) Scenario 1b Use Case 2 OBS (No Intermediate Optimization) Empirical 

Scenario2a_UseCase2_OBS Scenario 2a Use Case 2 OBS Empirical 
Scenario2a_UseCase2_OBS(NoOpt) Scenario 2a Use Case 2 OBS (No Intermediate Optimization) Empirical 

Scenario2b_UseCase2_OBS Scenario 2b Use Case 2 OBS Empirical 
Scenario2b_UseCase2_OBS(NoOpt) Scenario 2b Use Case 2 OBS (No Intermediate Optimization) Empirical 

5.5. Conclusion 
In this chapter we discussed our simulation approach. We defined the structure of our simulation model 
in Section 5.1 and we presented the simulation tool that we developed to run our simulations in Section 
5.2. Furthermore, in Section 5.3 we defined the scenarios that we consider in our experiments, which we 
presented in Section 5.4. With the insights we obtained in this chapter we can now respond our fourth set 
of research questions: 

4) How can we simulate the ordering process from the e-retailer case? 

a. What are the inputs that we need for our simulations and how do we process them? 

b. How can we run our simulations? 

c. Which scenarios are we going to use as input data for our simulations? 

d. Which experiments do we define to validate our hypotheses? 

We model the ordering process of the e-retailer case with a discrete-event simulation model, in which the 
customer arrivals are considered as the events that trigger a change in the system state. The inputs of our 
simulations are mainly based on the entities that we defined in Chapter 3: customers, drivers, vehicles 
and a central depot. Besides that, we need several parameters that define the settings for our simulation 
runs. The set of all required inputs is called a scenario. The outputs of our simulations are defined in such 
a way that we can use them to calculate all KPIs from Chapter 3. The inputs are processed by several 
algorithms that carry out the simulation runs in such a way that the inputs are converted to the required 
outputs. Each simulation run, or replication, consists of one booking period and the final optimization by 
the end of the booking period. 

To be able to carry out the simulation runs, we developed a simulation tool in C#. All algorithms that 
have been designed to carry out the simulations are implemented in this tool, that consists of four 
application modes: a scenario generator mode, a demo mode, a simulation mode and a solution visualizer 
mode. The tool communicates with ORTEC’s software solutions via JSON requests whenever that is 
required during the simulations. 

We consider two scenarios for which we perform computational experiments. Both scenarios are based 
on real data of an ORTEC client that resembles an e-retailer of our context. For both scenarios we consider 
two cases. The first one (a) represents a situation in which the observed percentage of customers for each 
order type is on average equal to the percentage of customers with that order type according to historical 
data. The second case (b) is a situation in which the observed ratio of customers of each order type does 
not equal the historical ratio. The scenarios differ further in the characteristics of the customers, the 
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delivery fleet and the location of the central depot. For all scenarios we also define the distribution of the 
number of customers that arrive during the booking period and several possible distributions of the 
customer arrival times. Besides that, we also defined the way in which we model customer choice behavior 
for the two scenarios we consider. Finally, we tuned the parameters that we use for our strategy BAS in 
our experiments based on some preliminary results. 

To conclude, we defined all the 40 experiments that are required to validate our hypotheses. Besides 
these 40 experiments, we defined a few additional experiments that allow us to obtain some interesting 
general insights that cannot be directly linked to one of our hypotheses. This results in a grand total of 
60 computational experiments that we need to carry out. 
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6. Analysis of Computational Results 
In this chapter we analyze the results which we obtain from our computational experiments. The structure 
of this chapter is based on the hypotheses we defined in Chapter 3. In Section 6.1, 6.2, 6.3 and 6.4 we 
analyze the computational results of the experiments we performed when investigating the hypotheses. In 
Section 6.5 we report some general results that are not necessarily linked to our hypotheses, but may 
provide valuable insights for practice. More detailed results for all sections are presented in Appendix B. 

6.1. Hypothesis 1 

In applications of Use Case 2 where forecasts (based on historical data) for the ratio of 

customer orders of Order Type A and Order Type B are not accurate, using a myopic 

dynamic strategy leads to a better performance compared to a static strategy. However, when 

the forecasts are accurate, using a myopic dynamic strategy does not necessarily improve the 

performance. 

The goal of investigating our first hypothesis is to show the benefits of using a dynamic strategy that can 
change the fleet composition during the booking period. Recall from Chapter 5 that Scenario 1a and 
Scenario 2a are scenarios in which we have accurate forecasts based on historical data (with regard to the 
ratio of order types of arriving customers). Scenario 1b and Scenario 2b are scenarios in which those 
forecasts are inaccurate. To give an idea of the difference in performance for OBS (the static strategy) 
and MYS (the dynamic strategy), we compare the average percentage of customers that is served (Figure 
6.1) and the average costs per customer that is served (Figure 6.2). In all graphs where the title contains 
that OBS equals 0%, the performance of the strategies in the graph is relative to OBS. For instance, if 
OBS served 80% of the customers and MYS 88%, the graph displays a score of 10% for MYS for this KPI. 
Or if the average costs per customer are €100 for OBS and € 5 for MYS, the graph displays a score of -
5% for MYS. Note that for the average percentage of customers that is served, a strategy outperforms 
OBS whenever the scaled average percentage of customers served for that strategy is positive, because we 
try to maximize this KPI. For the average costs per customer that is served, a strategy outperforms OBS 
whenever the scaled average costs per customer served are negative, as we want to minimize this KPI. 

 
Figure 6.1. MYS compared to OBS for the percentage of customers served 
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What calls attention is that, in the first place, we see our hypothesis confirmed in the scenarios we tested 
it on, looking at the average performance over the replications. When we do not have accurate forecasts 
(Scenario 1b & Scenario 2b), we see that MYS on average demonstrates a better performance compared 
to OBS. What is also interesting, is the fact that when we do have accurate historical forecasts (Scenario 
1a & Scenario 2a), OBS on average outperforms MYS in terms of the percentage of customers that is 
served. The margin however is smaller compared to the margin MYS has when it outperforms OBS. There 
may be several reasons why OBS outperforms MYS. The most likely reason is that MYS tries to accept 
every customer at any cost. Therefore, it may occur that MYS changes the fleet composition to accept a 
customer order that is actually not very profitable to accept. OBS cannot change the fleet composition 
and would reject this customer order. Instead, OBS may be able to accept other customer orders that 
turn out to be more profitable in the end, where MYS may not be able to accept those orders that are 
more profitable anymore. 

 
Figure 6.2. Delivery costs per customer for MYS compared to OBS 

When we look into the average delivery costs per customer, we see that the performance of the strategies 
for this KPI is congruent with their performance for the average percentage of customers served. This 
again confirms our hypothesis that in cases where forecasts with regard to the ratio of order types of the 
customer orders are not very accurate, we can obtain some benefits by making use of a dynamic strategy 
instead of a static one. 

To test whether we have enough statistical evidence to confirm our hypothesis, we apply a paired-t 
approach to compare the performance for the percentage of customers that is served and costs per customer 
that is served. The approach we chose is introduced by Law (2015). This method is a suitable statistical 
method to compare two system configurations in case we have an equal number of observations for the 
system performance for both configurations. Be aware that all notations we use to describe the approach 
are introduced by Law (2015) and do not relate to earlier notations used in this thesis.  

In our case we have 10 replications for each strategy, so we apply the paired-t approach. We have Xij 

with i = MYS, OBS and j = 1, 2, …, n and n = 10, j being observations from system configuration 
(strategy) i. Equation (6.1) shows how the variable for which we construct a 95% confidence interval is 
calculated. This variable reflects the difference in performance between both strategies. 

Zj = XMYSj – XOBSj (6.1) 

To construct a 95% confidence interval, we compute the sample mean E[Z] and the sample variance 
Var[Z], as well as the t-value from the t-distribution with n – 1 degrees of freedom and a probability of 

1.45%

-2.07%

2.26%

-5.38%

-6%

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

Scenario 1a Scenario 1b Scenario 2a Scenario 2b

Scaled Average Costs per Customer Served (OBS = 0%)

MYS



6.1. Hypothesis 1 

 
 

70 

100% – α/2 = 97.5% with α = 2. The 95% confidence interval is given by Equation (6.2), which is a slight 
adaptation of the formula that Law (2015) uses, but gives the same result. 

E[Z] ± tn – 1, 0. 75 × √
Var[Z]

n
 (6.2) 

In Table 6.1 the results are displayed for the comparison of the performance of MYS and OBS in terms 
of the percentage of customers served. Note that these are the real results, and not the scaled ones as 
displayed in the graphs earlier. The sample mean stands for the average percentage point difference 
between the percentage of customers served for MYS and OBS. We also present the values we used for 
the other components of Equation (6.2). In Table 6.2 the results are displayed for the comparison of MYS 
and OBS with regard to the costs per customer served. 

Table 6.1. Statistical comparison of MYS and OBS for the percentage of customers served 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

Sample mean -1.09% 2.71% -1.55% 5.82% 
Sample variance 0.04% 0.23% 0.11% 0.24% 

Degrees of freedom (n – 1) 9 9 9 9 
t-value 2.26 2.26 2.26 2.26 

Confidence interval for difference [-2.52%, 0.35%] [-0.69%, 6.11%] [-3.94%, 0.83%] [2.32%, 9.32%] 

Table 6.2. Statistical comparison of MYS and OBS for the costs per customer served 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

Sample mean €0.31 -€0.44 €0.57 -€1.52 
Sample variance €0.4  €0.43 €0.62 €1.60 

Degrees of freedom (n – 1) 9 9 9 9 
t-value 2.26 2.26 2.26 2.26 

Confidence interval for difference [-€0.19, €0.81] [-€0.91, €0.02] [€0.01, €1.14] [-€2.42, -€0.61] 

In Appendix B.1 we report all data points used to calculate the confidence intervals. The results of our 
statistical comparison indicate that for Scenario 1 for both KPIs we cannot show that MYS or OBS 
performs better, because all confidence intervals contain 0. However, we see that for Scenario 1b, 0 is 
almost out of the bounds of the confidence intervals for both KPIs. This indicates that probably if we 
would do more replications (i.e., the confidence interval gets narrower), we could show that MYS 
significantly outperforms OBS because 0 would not be in the confidence interval anymore. This is already 
the case for both KPIs in Scenario 2b. An interesting observation is that for Scenario 2a, with 
approximately 95% confidence OBS outperforms MYS when it comes to the costs per customer that is 
served. 

Further results from our experiments for Hypothesis 1 can all be found in Appendix B.1. An interesting 
result to consider is the fact that the response time to a customer request for available time windows for 
MYS is much larger (three times as large in the most favorable case) compared to the response time to a 
customer request. This will always be the bottleneck with a dynamic strategy, because changing the fleet 
composition dynamically requires additional computations, which of course come at the cost of a delay. 

Concluding, we see that we have a strong reason to believe that our hypothesis is indeed correct. In 
cases where forecasts based on historical data are not accurate, MYS tends to outperform OBS, whereas 
in cases where the forecasts are quite accurate the performance does not seem to be significantly different 
for both strategies. However, the results call for a better dynamic strategy, because the margins with 
which MYS outperforms OBS are quite small. 
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6.2. Hypothesis 2 

In applications of Use Case 2 and Use Case 4, the performance of the myopic dynamic 

strategy mentioned in the first hypothesis can be improved by introducing a smart dynamic 

strategy. 

For this hypothesis we split the results up according to the two use cases mentioned in the statement. For 
both Use Case 2 (Section 6.2.1) and Use Case 4 (Section 6.2.2) we compare the performance of BAS and 
MYS, to verify whether the hypothesis indeed can be considered as a valid one. Our aim when putting 
this hypothesis to a test is to show that by introducing smarter decision mechanisms we can improve the 
dynamic strategy that we designed for testing the first hypothesis (MYS).  

6.2.1. Use Case 2 

In Section 6.1 we already showed that MYS tends to outperform OBS for Use Case 2. Here we show that 
we can outperform both MYS and OBS by introducing BAS, our smart dynamic strategy. Figure 6.3 
already shows that on average BAS outperforms MYS and OBS by far. In Figure 6.4 we see that also for 
the costs per customer that is served BAS outperforms both MYS and OBS with large margins.  

 
Figure 6.3. BAS and MYS compared to OBS for the percentage of customers served 

 
Figure 6.4. Delivery costs per customer for BAS and MYS compared to OBS 
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On average over all scenarios, BAS relatively scores 12.93% higher with regard to the average percentage 
of customers served than OBS under the same conditions. The average margin with which BAS 
outperforms OBS with regard to the average costs per customer served equals 8.56%. The latter margin 
is not as large as the margin for the average percentage of customers served, but is still large enough to 
state that BAS can be considered to deliver a much better performance than OBS. 

An interesting observation is that the performance of BAS differs much more between situation a and 
situation b for Scenario 2, compared to Scenario 1. A possible explanation of this phenomenon may be the 
influence of the spread of customer locations. In the first place, OBS suffers in situation b from the impact 
caused by the fact that the fleet composition formed with OBS does not have enough capacity for Order 
Type A. This is the case for both Scenario 1 and Scenario 2, and therefore BAS outperforms OBS for all 
possible Scenarios. However, we just mentioned that the difference for Scenario 2b is relatively large. This 
is probably due to the fact that, besides the impact of the bad fleet composition, OBS suffers also from 
the fact that the driving times between customer locations are larger for Scenario 2b. Due to this fact, 
OBS does not only have capacity problems to serve customers with Order Type A, but OBS also can 
serve less customers because more time is lost with driving between locations. This explanation is backed 
up by the fact that the percentage of customers served by OBS deteriorates more from Scenario 2a to 
Scenario 2b compared to from Scenario 1a to Scenario 1b (see Table B.4 and Table B.5 in Appendix 
B.2.1). Similarly, we observe a much larger difference in utilization for OBS in Scenario 2 than in Scenario 
1. This observation indicates that indeed the driving time may be a bottleneck for OBS in Scenario 2b. 

Besides this explanation, we also observe that the deviation in the ratio of order types compared to 
forecasts based on historical data is larger for Scenario 2b compared to 1b. This increases the negative 
impact of the bad initial fleet composition that OBS cannot change. 

Given the large margins that BAS has compared to MYS in terms of performance for both KPIs, there 
seems to be hardly any need to compare the strategies with a paired-t approach. But for the sake of 
completeness, we compute the 95% confidence intervals for the difference between BAS and MYS, as we 
already showed earlier that MYS tends to outperform OBS. The approach we follow is already described 
in Section 6.1. The difference between BAS and MYS is computed with Equation (6.3). The 95% 
confidence intervals are again computed with Equation (6.2). 

Zj = XBASj – XMYSj (6.3) 

In Table 6.3 and Table 6.4 the 95% confidence intervals are displayed for respectively the percentage of 
customers served and the costs per customer served. Note that for the percentage of customers served the 
sample mean again considers a percentage point difference between the performance of BAS and MYS. 

Table 6.3. Statistical comparison of BAS and MYS for the percentage of customers served 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

Sample mean 9.12% 6.30% 4.69% 5.44% 
Sample variance 0.06% 0.13% 0.13% 0.13% 

Degrees of freedom (n – 1) 9 9 9 9 
t-value 2.26 2.26 2.26 2.26 

Confidence interval for difference [7.42%, 10.83%] [3.76%, 8.85%] [2.15%, 7.24%] [2.84%, 8.03%] 

Table 6.4. Statistical comparison of BAS and MYS for the costs per customer served 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

Sample mean -€2.33 -€1.6  -€1.37 -€1.79 
Sample variance €0.70 €0. 7  €0.72 €2.40 

Degrees of freedom (n – 1) 9 9 9 9 
t-value 2.26 2.26 2.26 2.26 

Confidence interval for difference [-€2.93, -€1.73] [-€2.39, -€0.98] [-€1.98, -€0.77] [-€2.90, -€0.69] 

As we already would expect from the averages, we see indeed that BAS performs much better than MYS 
for Use Case 2 according to the 95% confidence intervals. This gives us enough statistical evidence to 
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assume that our hypothesis is indeed valid for Use Case 2. In the next section we look at the difference in 
performance between BAS and MYS for Use Case 4. 
From the remaining results as given in Appendix B.2.1 we observe a few interesting things. First, we see 
that for all scenarios BAS on average offers more time windows to a customer compared to MYS. Also, 
the average response time to a request for available time windows for BAS is always less than the response 
time for MYS. So, from a customer satisfaction point of view, BAS tends to outperform MYS for the 
scenarios we analyzed.  

We see also that BAS has a lower average utilization of the vehicles compared to MYS for all scenarios. 
This indicates that we may have space in terms of fleet capacity to realize even more improvements. 
However, a lower utilization does not necessarily mean that we have space for improvements. It can also 
just be a reflection of the impact of the decisions our strategy takes. In this case for instance, a partial 
explanation for the lower utilization is that BAS rejects customers that are unattractive based on their 
large order quantities. This leads to accepting relatively more customer orders with smaller order 
quantities, that occupy less of the fleet capacity. Therefore, the average utilization of the vehicles is lower. 
Another aspect that may have a large impact on the average utilization is the tuning of the parameters 
for BAS. It may be interesting to investigate if we can tune the parameters differently, such that we are 
able to serve more customers by making use of a larger part of the fleet capacity. 

6.2.2. Use Case 4 

In Use Case 4, besides the effect of a different ratio of order types compared to the expectations, we 
consider the possibility to increase or decrease the fleet capacity for the current fleet composition. We 
may in this use case re-assign drivers from vehicles with less capacity to vehicles with more capacity and 
vice versa. We again compare BAS and MYS to each other, because both outperform OBS by far if we 
start with the same initial fleet composition for all strategies. We see that for both the average percentage 
of customers served (Figure 6.5) and the costs per customer served (Figure 6.6) the differences between 
BAS and MYS are smaller than for Use Case 2, for all scenarios. However, for all scenarios on average 
BAS still outperforms MYS. The cause of the fact that the difference between BAS and MYS in 
performance is smaller for Use Case 4 lays most likely in the fact that we have a higher maximum fleet 
capacity. This reduces the negative impact when MYS accepts an unattractive customer with a large order 
quantity, where BAS would have rejected that customer. As we have more fleet capacity available, MYS 
has more flexibility to still serve future customer orders in such cases for Use Case 4, compared to Use 
Case 2. 

 
Figure 6.5. BAS and MYS compared to OBS for the percentage of customers served 
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Figure 6.6. Delivery costs per customer for BAS and MYS compared to OBS 

What calls attention with regard to the performance of BAS and MYS for the average costs per customer 
served, is the fact that for Scenario 2a both strategies perform slightly worse compared to OBS. This is 
due to the fact that, although OBS was able to serve fewer customers than the other two strategies, OBS 
managed to construct very efficient delivery routes in terms of delivery costs. Therefore, the costs per 
customer that is served are also low for OBS. However, the percentage of customers that is served for 
OBS in Scenario 2a is so low, that we cannot state that OBS shows a good performance for this scenario. 

We again compare the performance for both strategies with a paired-t approach. The difference between 
the performance of BAS and MYS is computed with Equation (6.3) and the 95% confidence intervals are 
determined by using Equation (6.2). Note that the difference is again given in percentage points. The 
performance of both strategies for each replication can be found in Table B.10 in Appendix B.2.2. Also be 
aware that for the comparison of BAS and MYS we do not use the scaled performance of both strategies 
compared to OBS, but the real performance. The results of the comparison are displayed in Table 6.5 and 
Table 6.6. 

Table 6.5. Statistical comparison of BAS and MYS for the percentage of customers served 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

Sample mean 5.00% 3.85% 1.79% 0.66% 
Sample variance 0.09% 0.29% 0.13% 0.17% 

Degrees of freedom (n – 1) 9 9 9 9 
t-value 2.26 2.26 2.26 2.26 

Confidence interval for difference [2.88%, 7.12%] [-0.01%, 7.71%] [-0.78%, 4.36%] [-2.31%, 3.64%] 

Table 6.6. Statistical comparison of BAS and MYS for the costs per customer served 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

Sample mean -€1.27 -€1.02 -€0. 3  -€0. 7  
Sample variance €0.33 €1.11 €1. 6  €2.36 

Degrees of freedom (n – 1) 9 9 9 9 
t-value 2.26 2.26 2.26 2.26 

Confidence interval for difference [-€1.68, -€0.86] [-€1.77, -€0.27] [-€1.93, €0.07] [-€2.07, €0.13] 

We see that for the percentage of customers that is served, only for Scenario 1a we can say with 
approximately 95% confidence that BAS outperforms MYS. However, for both Scenario 1b and Scenario 
2a, 0 is almost out of the bounds of the 95% confidence interval. This indicates that if we would use more 
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replications or reduce our confidence level a little, we would have enough statistical evidence to claim that 
BAS outperforms MYS also for these scenarios.  

An interesting observation is that both for the percentage of customers that is served and for the costs 
per customer served BAS tends to perform better than MYS in Scenario 1 compared to Scenario 2. This 
may be due to the same phenomenon we discussed earlier in Section 6.2.1, namely the fact that the spread 
of the locations in Scenario 2 is quite different from Scenario 1. The average travel times from the depot 
to the customers are higher for Scenario 2, which may cause the time constraints to have more impact on 
whether a customer can be accepted or not, compared to the capacity constraints. As BAS in our 
experiments rejects customers when they are unattractive based on the order quantity and not the 
additional driving time, this may be an explanation for the better performance of BAS compared to MYS 
for Scenario 1.  

Another important observation is that for all scenarios both BAS and MYS show a much better 
performance than OBS, so for sure there is a clear benefit in using a dynamic strategy when we start with 
the same initial fleet composition for all strategies. The fact that we use the same initial fleet composition 
is also the reason that BAS and MYS have such high scores for the scaled (based on OBS’ performance) 
average percentage of customers served. In Section 6.3, where we validate Hypothesis 3, we consider OBS 
with a different initial fleet composition, to obtain insights in how BAS performs compared to that 
strategy. 

From the results in Appendix B.2.2, we observe that BAS again on average offers more time windows 
to a customer than all other strategies and the average response time to a customer is always lower 
compared to MYS. We also observe that the vehicle utilization for BAS, especially for Scenario 2, is quite 
low compared to the other strategies. This supports the explanation above for the smaller difference in 
performance between BAS and MYS for Scenario 2. It seems that BAS on average either rejected too 
many customer orders, or that BAS on average accepted too many customer orders that increased the 
driving time a lot. A solution for this problem may be reconsidering the tuning of the parameters for BAS 
and the criteria that BAS uses to reject a customer. It may in cases similar to Scenario 2 be more beneficial 
to for instance reject customer orders based on the customer location instead of the order quantities. 
Customers that order from locations that require a lot of time to reach, are then considered as unattractive 
instead of customers with large order quantities. This may be an interesting topic for further research. 

Summarizing, we can say that on average BAS outperforms MYS, but for some cases we do not have 
enough statistical evidence to state with confidence that BAS always outperforms MYS in terms of the 
percentage of customers served and the costs per customer served. However, the other effects that we 
observe and the fact that on average BAS performs better than MYS in all cases, give us enough reason 
to state that BAS is a better strategy compared to MYS. These observations confirm our second hypothesis 
for both Use Case 2 and Use Case 4. 

6.3. Hypothesis 3 

In applications of Use Case 4, we achieve a better performance when we use a smart dynamic 

strategy with an initial fleet composition that uses vehicles that are as cheap as possible, 

compared to a static strategy that starts with a composition that has a total fleet capacity 

that is as large as possible and is therefore costlier. 

As explained in Chapter 3, this hypothesis becomes relevant due to the assumption we make that on 
average more customer orders come in than can be served with the maximum capacity. The question 
raises then why we should implement a time-consuming dynamic strategy, if a static strategy potentially 
also may perform a good job. In Figure 6.7 we see our hypothesis confirmed for all scenarios in terms of 
the average percentage of customers that is served. This is, especially for Scenario 1a and Scenario 2a, 
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mainly due to the decision mechanisms implemented for BAS with regard to rejecting customers that are 
not considered to be attractive enough. 

 
Figure 6.7. BAS and OBS (Large Initial Fleet) compared to OBS for the percentage of customers served 

When we look at the costs per customer that is served, we see that BAS on average outperforms OBS 
(Large Initial Fleet) for most of the scenarios we tested. The results are shown in Figure 6.8. Only for 
Scenario 2a we see that BAS does not outperform OBS (Large Initial Fleet) nor the standard OBS, but 
the differences are small. 

 
Figure 6.8. Delivery costs per customer for BAS and OBS (Large Initial Fleet) compared to OBS 
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Initial Fleet), we follow the same paired-t approach as described in Section 6.1. The difference between 
the two strategies is now given by Equation (6.4). The 95% confidence intervals are calculated by making 
use of Equation (6.2), just as before. 

Zj = XBASj – XOBS(Large Initial Fleet)j (6.4) 
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In Table 6.7 we see the resulting 95% confidence intervals for the percentage point difference in 
performance of BAS and OBS (Large Initial Fleet) for the percentage of customers served. Table 6.8 shows 
the 95% confidence intervals for the difference between the two strategies with regard to the costs per 
customer that is served. 

Table 6.7. Statistical comparison of BAS and OBS (Large Initial Fleet) for the percentage of customers served 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

Sample mean 4.15% 3.82% 2.03% 3.74% 
Sample variance 0.16% 0.19% 0.06% 0.18% 

Degrees of freedom (n – 1) 9 9 9 9 
t-value 2.26 2.26 2.26 2.26 

Confidence interval for difference [1.32%, 6.97%] [0.67%, 6.97%] [0.24%, 3.82%] [0.71%, 6.77%] 

Table 6.8. Statistical comparison of BAS and OBS (Large Initial Fleet) for the costs per customer served 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

Sample mean -€0.76 -€0.65 €0.0  -€0.47 
Sample variance €0.45 €0.57 €0.67 €3.0  

Degrees of freedom (n – 1) 9 9 9 9 
t-value 2.26 2.26 2.26 2.26 

Confidence interval for difference [-€1.24, -€0.28] [-€1.19, -€0.11] [-€0.50, €0.67] [-€1.72, €0.79] 

We see that for the percentage of customers that is served, we can say with approximately 95% confidence 
that BAS outperforms OBS (Large Initial Fleet) for all scenarios that we simulated. So, as we use this 
measure to quantify the customer satisfaction, we are confident to say that with regard to customer 
satisfaction our hypothesis cannot be rejected. 

When it comes to the costs per customer served, we see that for Scenario 1a and Scenario 1b we have 
enough statistical evidence to say with approximately 95% confidence that BAS outperforms OBS (Large 
Initial Fleet). For Scenario 2a and Scenario 2b we cannot show that there is a significant difference between 
the two strategies, with 95% confidence. 

However, we can show a significant difference for Scenario 1a and Scenario 1b with regard to the costs 
per customer that is served. The same holds for all scenarios in terms of the percentage of customers that 
is served. Therefore, we are confident to say that the results give us enough reason to believe Hypothesis 
3 is valid. This leads us to the conclusion that in practical applications similar to the scenarios we 
simulated, it is worthwhile to implement a smart dynamic strategy instead of a static strategy with an 
initial fleet composition with maximum fleet capacity. 

6.4. Hypothesis 4 

In applications of Use Case 4, a smart dynamic strategy achieves a stable performance for 

different distribution patterns of customer arrivals over the booking period, as long as we 

have accurate forecasts of this spread. However, when forecasts are not accurate, the 

performance of a smart dynamic strategy may deteriorate significantly. 

For our last hypothesis we again split up the results into different sections. In Section 6.4.1 we compare 
the impact of changing our empirical pattern of customer arrival times to a different pattern in which 
customer arrival rates increase during the whole booking period. In Section 6.4.2 we give insight into what 
the impact is of consistently under-forecasting or over-forecasting the cumulative percentage of customers 
that has arrived at a given point of time. Finally, in Section 6.4.3 we study the impact of having fluctuating 
forecast errors with regard to the cumulative percentage of customers that has arrived at a certain point 
of time. Our main goal in this section is giving insights into the robustness of BAS when expectations 
turn out not to match observations in practice. 
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6.4.1. Comparison of Different Arrival Time Distributions 

Until here, we only studied cases in which the customer arrival times were distributed according to an 
empirical distribution, as explained in Chapter 5. In this section we study the impact of having an 
increasing arrival rate over the booking period of one day (as also explained in Chapter 5) on the results 
for BAS for Use Case 4 in all scenarios. The purpose of this comparison is not pointing out for which 
distribution BAS shows a better performance, but we want to obtain insights into the stability of the 
performance of BAS for different distributions of customer arrival times. Figure 6.9 indicates that the 
differences in performance for both distributions are small when it comes to the average percentage of 
customers served. Figure 6.10 shows the same observations with regard to the costs per customer that is 
served. Only for Scenario 1a we see that the difference is somewhat larger. Note that for OBS the 
distribution of customer arrival times does not make any difference. The only thing that matters for the 
performance of OBS is the sequence in which customers arrive. We used the same sequence for all strategies 
that we consider. 

 
Figure 6.9. BAS (Empirical) and BAS (Increasing) compared to OBS for the percentage of customers served 

 
Figure 6.10. Delivery costs per customer for BAS (Empirical) and BAS (Increasing) compared to OBS 
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We now want to know if we indeed have enough statistical evidence to state that the performance of BAS 
is not significantly different when the distribution of customer arrival times changes, provided that we 
can accurately forecast this distribution. To that end, we again use a paired-t approach to compare the 
performance of BAS in both cases. The difference between the two cases is now given by Equation (6.5). 
The 95% confidence intervals are again computed with Equation (6.2), just as before. 

Zj = XBAS(Empirical)j – XBAS(Increasing)j (6.5) 

In Table 6.9 we see the resulting 95% confidence intervals for the percentage point difference in 
performance between BAS with an empirical distribution of arrival times and BAS with an increasing 
arrival rate over the booking period, with regard to the percentage of customers served. Table 6.10 shows 
the 95% confidence intervals for the difference between the two cases when it comes to the costs per 
customer that is served. 

Table 6.9. Statistical comparison of BAS (Empirical) and BAS (Increasing) for percentage of customers served 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

Sample mean 1.16% 1.28% 0.33% 0.86% 
Sample variance 0.03% 0.05% 0.03% 0.12% 

Degrees of freedom (n – 1) 9 9 9 9 
t-value 2.26 2.26 2.26 2.26 

Confidence interval for difference [-0.16%, 2.48%] [-0.30%, 2.86%] [-1.01%, 1.66%] [-1.57%, 3.28%] 

Table 6.10. Statistical comparison of BAS (Empirical) and BAS (Increasing) for costs per customer served 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

Sample mean -€0.60 -€0.03 -€0.12 -€0.36 
Sample variance €0.40 €0.30 €0.37 €1.50 

Degrees of freedom (n – 1) 9 9 9 9 
t-value 2.26 2.26 2.26 2.26 

Confidence interval for difference [-€1.06, -€0.15] [-€0.42, €0.37] [-€0.56, €0.32] [-€1.24, €0.52] 

From the 95% confidence intervals that we computed we can conclude that for both KPIs for almost all 
scenarios we are not able to show a significant difference in performance for the different arrival time 
distributions. Only for Scenario 1a we find that BAS’ performance slightly deteriorates in terms of the 
costs per customer served when arrival times are distributed with increasing arrival rates.  

Nevertheless, we are confident to say that, if we have accurate forecasts of the arrival time distribution, 
the performance of BAS does not change significantly when this distribution changes, as Hypothesis 4 
states. So, for cases that are similar to the scenarios that we simulated, we conclude that the performance 
of BAS is stable, regardless of the distribution of customer arrival times. However, we do not know yet 
what happens to BAS’ performance when we are not able to accurately forecast the arrival time 
distribution. Therefore, in Section 6.4.2 and Section 6.4.3 we study the impact on the performance of BAS 
when we do not have accurate forecasts. 

6.4.2. Impact of Fixed Forecast Errors 

In this section, we study the impact of fixed forecast errors for the cumulative percentage of customers 
arrived at a given point in time on the results of BAS for Scenario 1b and Use Case 4, as described in 
Chapter 5. We may not always be able to accurately forecast this measure, and it is important to know 
what happens in such cases. Figure 6.11 and Figure 6.12 display the results for the average percentage of 
customers that is served and the average costs per customer that is served. Instead of taking the 
performance of OBS as a base, we now take the performance of BAS with no standard forecast error as a 
base for the performance of BAS with different forecast error values. 
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Figure 6.11. Impact of different fixed forecast error values on percentage of customers served (BAS, Scenario 1b)  

 
Figure 6.12. Impact of different forecast error values on the delivery costs per customer (BAS, Scenario 1b) 

From the average results we see that apparently over-forecasting gives worse results compared to under-
forecasting the cumulative percentage of customers arrived at a given point in the booking period in this 
scenario. This is most likely due to the fact that when our forecasts are too high, BAS only increases the 
fleet capacity after (unnecessarily) rejecting a few customers in case we are not using the maximum 
capacity of the fleet yet. In case our forecasts are too low, the only thing that happens is that we assume 
to require more fleet capacity than we actually need. This does not really seem to be a problem, as in our 
context on average enough customers arrive to fill up the maximum capacity of the delivery fleet. 

An interesting observation from the results is the fact that for a fixed forecast error of -10%, we see 
that the performance for both the average percentage of customers served and the average costs per 
customer served is better compared to the performance of BAS without forecast errors. This is again a 
strong indication that the tuning of the parameters for BAS is very important. If we would have changed 
some thresholds for the cumulative percentage of customers arrived with 10%, we would have obtained 
better results for BAS in this scenario. This observation therefore emphasizes the need for further research 
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and analysis with regard to the parameter tuning process when ORTEC would consider implementing 
BAS in its software solutions. 

Although we observe significant differences in the results (see Appendix B.4.2) when we have forecast 
errors, the differences are relatively small. Also, for most of the forecast error values BAS on average still 
outperforms MYS, OBS and OBS (Large Initial Fleet) and in the cases where we do not outperform them 
(+20% and +30%) the margins are relatively small.  

This gives us enough reason to believe that, although it is a simple strategy, BAS has potential to 
perform quite well even in cases where forecasts are not very accurate. Moreover, in practice it seems a 
plausible assumption that e-retailers from the context that we study are capable of producing forecasts 
with small forecast errors. In many applications of the e-retailer case customers tend to have patterns for 
the time of the booking period in which they place their orders. E-retailers nowadays have access to lots 
of data and can use historical data to find those patterns. If for some reason during a certain booking 
period the distribution follows a completely different pattern, BAS may show a worse performance for 
that case. We argue however that what really matters in our application context is that on average we 
have a good and stable performance. As long as the average performance is good, it does not necessarily 
matter that we have some outliers with a worse performance, as we saw for Scenario 1b. 

6.4.3. Impact of Fluctuating Forecast Errors 

In this section, we study the impact of having fluctuating forecast errors for the expected cumulative 
percentage of customers that arrived by a given time. The purpose of investigating this impact is to get 
an idea how sensitive the performance of BAS is to sometimes over-estimating the hourly arrival rate and 
other times under-estimating this rate. As mentioned in Chapter 5, we focus on Scenario 1b and Use Case 
4. We carry out two experiments. In the first one, we determine our forecasts based on the uniform 
distribution for the customer arrival times, whereas the customers actually arrive according to the 
empirical distribution. In the second experiment we exchange the distributions, the forecasted one is now 
the empirical distribution and the real one the uniform distribution.  

To clarify the effect of the fluctuating forecast errors during the booking period, we take a look at the 
hourly arrival rate. Figure 6.13 gives insight into how the forecast errors for the hourly arrival rate 
(expected total number of customers = 100) develop over the booking period of one day. We see that for 
the first experiment, in the first hours of the booking period we are mostly over-forecasting the arrival 
rate. For the later hours, we are mostly under-forecasting the arrival rate. For the second experiment 
exactly the contrary is the case. 

 
Figure 6.13. Fluctuating forecast error values for the hourly arrival rates for both experiments (BAS, Scenario 1b)  
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On average, the forecast errors are equal to 0. However, the forecast errors show a lot of variance. We 
now have a better idea of what the variance in our forecasts, that we deliberately created, looks like. Note 
that there is a direct relation between the cumulative percentage of customers arrived and the hourly 
arrival rate. If we divide the hourly arrival rate by the expected total number of customers for each hour 
of the booking period, and we aggregate the results over the hours, we obtain the cumulative distribution 
function that gives us the cumulative percentage of customer arrived by a certain time. The forecast error 
for the cumulative percentage of customers arrived can be obtained from Figure 5.12. Figure 6.14 and 
Figure 6.15 display the results for the average percentage of customers that is served and the average 
costs per customer that is served. Instead of taking the performance of OBS as a base, we again take the 
performance of BAS with no forecast error as a base, to compare the results of our experiments to. 

 
Figure 6.14. Impact of fluctuating forecast error values on percentage of customers served (BAS, Scenario 1b)  

 
Figure 6.15. Impact of fluctuating forecast error values on delivery costs per customer (BAS, Scenario 1b)  
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with our results regarding the fixed forecast errors. We stated in Section 6.4.2 that the performance of 
BAS is more sensitive to over-forecasting than to under-forecasting of the cumulative percentage of 
customers arrived. If we look at Figure 5.12, we see that for our first experiment we are over-forecasting 
most of the time, because we assume a uniform distribution where the real distribution is an empirical 
one. Analogously, for our second experiment we are under-forecasting most of the time.  

The reason that BAS’s performance is sensitive to over-forecasting the cumulative percentage of 
customers arrived, is that BAS the wrong forecast prevents BAS from increasing the fleet capacity in 
time. In situations of over-forecasting, most of the times the reason for increasing the fleet capacity will 
be that more customers were rejected than the configured threshold (p4) instead of detecting that the 
utilization is too high or that more customers have arrived than expected. 

The results we obtained again warn us that it is important to further develop BAS in such a way that 
the strategy can deal better with forecast errors, especially in situations of over-forecasting the cumulative 
percentage of customers arrived by a certain time. One way to improve the performance of BAS is to give 
more attention to the tuning of its parameters.  

We see that our observations in this section confirm our hypothesis. We can indeed achieve a stable 
performance in different situations, as long as our forecasts are accurate. However, when we have to deal 
with inaccurate forecasts there is a danger of the performance to deteriorate significantly. 

6.5. General Results 
In this section we highlight some observations from our results that cannot be directly categorized under 
one of our hypotheses, but that provide interesting insights. We first perform a benchmark to evaluate 
how much the strategies we designed can still be improved for the different scenarios we consider (Section 
6.5.1). After that, we present some insights with regard to the impact of intermediate optimization calls 
on the total delivery costs for our scenarios (Section 6.5.2). 

6.5.1. Prophet Benchmark 

To get an idea of how good our strategies actually perform and if we could do better, we benchmark them 
against the two prophet strategies that we introduced in Chapter 5. Below we present the results of our 
comparisons of the different strategies in terms of the average percentage of customers that is served for 
Use Case 2 (Figure 6.16) and Use Case 4 (Figure 6.18). We do the same for the results of our comparisons 
for the average costs per customer that is served for Use Case 2 (Figure 6.17) and Use Case 4 (Figure 
6.19). 

 
Figure 6.16. Benchmark of different strategies for the average percentage of customers served (Use Case 2) 
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Figure 6.17. Benchmark of different strategies for the average costs per customer that is served (Use Case 2) 

We see that BAS shows quite a decent overall performance for Use Case 2 compared to the prophet 
strategies, although we could do better. We have to take into account that the prophet benchmarks can 
probably never be achieved in reality, due to the many unknown factors in real-life. BAS in most cases 
achieves a performance somewhere in the middle between the prophet strategies and OBS, and increases 
the customer satisfaction as well as the route efficiency of an e-retailer significantly compared to OBS. 
However, we see that there is still space to improve BAS. The prophet strategy that only considers the 
first preference time windows for instance has less flexibility in the sense of customer satisfaction compared 
to BAS, because in reality customers would not only select their first preference time window. They may 
just as well select a second or third preference time window. This additional flexibility may compensate 
at least for a part of the difference in performance between BAS and our second prophet strategy. 

We see again that it could be worthwhile spending some time to find out how the parameters of BAS 
should be tuned for different applications in practice of the e-retailer case. There is for sure space to 
improve BAS, as we have shown with the performance of the prophet strategies. We therefore recommend 
to do further research in the field of parameter tuning for BAS. 

 
Figure 6.18. Benchmark of different strategies for the average percentage of customers served (Use Case 4) 
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Figure 6.19. Benchmark of different strategies for the average costs per customer that is served (Use Case 4) 

For Use Case 4 we see the same phenomenon as we saw for Use Case 2. We see that the results of the 
prophet strategy with no time windows, as may be expected, are always the best for both KPIs for all 
scenarios. The prophet strategy with the first preference time window already has a worse performance 
on average. Again, BAS in some cases approaches the performance of this second prophet strategy. We 
think that, although it may be difficult given that we need to have a low response time to customer 
requests, BAS can still be improved by for instance tuning the parameters used in a better way. 

In Appendix B.5 we present some additional results for the benchmark of our strategies against the 
prophet strategies. An interesting observation to highlight here is that the prophet strategies structurally 
have a higher utilization compared to BAS. This again is an indication that there is space for improvement 
for BAS, at least in terms of available vehicle capacity.  

Summarizing, we obtained an upper bound (prophet strategies) and we have a lower bound (OBS 
performance) for the performance of BAS. Currently we are somewhere in between at least for the scenarios 
we considered, but we are confident that more improvements can be made in further research. 

6.5.2. Impact of Intermediate Optimization Calls 

In this section we study the impact of intermediate optimization calls for Use Case 2 and OBS. We 
investigate whether it is really worthwhile to put efforts in the technical implementation of these 
intermediate optimization calls. Figure 6.20 and Figure 6.21 show that on average the performance for 
OBS without intermediate optimization calls is indeed worse compared to OBS with intermediate 
optimization calls. Especially for Scenario 2, we see quite a large difference both in terms of the percentage 
of customers that is served as well as in terms of the costs per customer that is served.  

In Appendix B.6 we present additional results of the comparison of the two strategies. We also give 
the resulting 95% confidence intervals obtained with the paired-t approach. In most cases, we see that 
OBS significantly outperforms OBS (NoOpt) with 95% confidence. The intermediate optimization calls 
are primarily intended to reduce the total delivery costs. This is due to the fact that we optimize the 
delivery routes for a given set of customer orders. We do not accept any optimization response in which 
not all customers are served, but we do also not add any customer orders. Therefore, before and after an 
optimization call the number of customers that is served remains equal. However, because the routes are 
typically more efficient, it becomes easier to accept new customers, which is the indirect effect of the 
intermediate optimization calls. We see this confirmed in Figure 6.20, because for all scenarios that we 
consider the average percentage of customers served is higher for OBS compared to OBS (NoOpt). 
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Figure 6.20. OBS (NoOpt) compared to OBS for the percentage of customers served 

 
Figure 6.21. Delivery costs per customer for OBS (NoOpt) compared to OBS 
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lower for OBS with intermediate optimization calls, even though we know that more customers have been 
served on average. The results of our analyzes give us enough confidence to say that indeed implementing 
intermediate optimization calls is worthwhile, even when they take a lot of time and effort to implement. 

Total Costs Against Cumulative Percentage of Customers Arrived for OBS, Scenario 2a 

With intermediate optimization Without intermediate optimization
 

  

  

  

  

  
Figure 6.22. Comparison of the development of the total costs against the cumulative percentage of customers that 

arrived for OBS with and without intermediate optimization calls (Scenario 2a, Use Case 2) 
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6.6. Conclusion 
In this chapter we analyzed the results of our computational experiments. In Section 6.1, Section 6.2, 
Section 6.3 and Section 6.4 we investigated whether or not our results confirm the four hypotheses that 
we formulated in Chapter 3. In Section 6.5 we analyzed some results of our computational experiments 
that are not directly related to one of the hypotheses we formulated but may give ORTEC interesting 
insights which may be useful in practice. We are now able to answer our fifth set of research questions: 

5) What are the insights that we can obtain from the results of our simulations? 

a. Do the simulation results confirm the hypotheses defined earlier? 

b. What general results do we observe from our experiments? 

Our first hypothesis is formulated to investigate if there are any benefits in using a myopic dynamic 
strategy (MYS) that can change the fleet composition during the booking period, compared to a static 
strategy (OBS) that cannot. Our results show that, in cases where forecasts (based on historical data) for 
the ratio of customer orders with the different order types are not accurate, MYS on average shows a 
better performance than OBS. In cases where the forecasts are accurate, we cannot show that there is a 
significant difference between the performance of MYS and OBS for Use Case 2. The results therefore give 
us reason to believe that our first hypothesis is indeed valid. 

Our second hypothesis is formulated to investigate if we can improve a myopic dynamic strategy 
(MYS) by implementing smarter decision mechanisms for our smart dynamic strategy (BAS). The results 
that we obtained for both Use Case 2 and Use Case 4 support this hypothesis. Especially for Use Case 2, 
where we only have small vehicles, the margins with which BAS outperforms MYS are quite large for all 
our scenarios. Other interesting results are that the average response time to a customer request of 
available time windows for BAS is lower than for MYS in all our scenarios, and the average number of 
time windows offered to a customer always higher. This shows that, in terms of customer satisfaction, 
BAS does a much better job than MYS, and not only on our main KPIs. 

Our third hypothesis is formulated to investigate whether it is worthwhile to put much effort in 
implementing a smart dynamic strategy (BAS) when we know that on average more customers arrive 
than can be served anyway. In such cases we may just prefer to start with an initial fleet composition 
that maximizes the fleet capacity and use a static strategy (OBS (Large Initial Fleet)) during the booking 
period. However, our results indicate that, for the scenarios we study, this turns out not to be true. For 
all scenarios we see that BAS outperforms OBS (Large Initial Fleet) in terms of customer satisfaction. 
Also, in terms of route efficiency BAS outperforms OBS (Large Initial Fleet) in most cases. For this 
reason, we are strongly inclined to consider our third hypothesis as a valid one. 

Our last hypothesis is formulated to investigate the robustness of the performance of our smart dynamic 
strategy (BAS) with regard to changing input distributions for the spread of customer arrivals over the 
booking period and with regard to forecast errors. As we expected, we cannot find a significant difference 
in performance when we change the spread of customer arrivals from an empirical pattern to a pattern 
with an increasing average arrival frequency over the booking period, given that we have accurate forecasts 
of the new distribution. Furthermore, we see that, if forecast errors with regard to the cumulative 
percentage of customers that have arrived at a certain time are not too large, BAS on average still shows 
a better performance than OBS (Large Initial Fleet) and MYS. If the forecast errors become too large 
though, the results are worse. Although the margins are quite small, this shows us the importance of 
tuning the parameters for BAS in such a way that forecast errors can be corrected by the strategy. 
Especially in situations where BAS is over-forecasting the cumulative percentage of customers that have 
arrived, the performance may deteriorate significantly, both for fixed forecast errors and fluctuating 
forecast errors. These results give us reason to believe that our fourth hypothesis is a valid one as well. 

After obtaining all results for the validation of our hypotheses, we performed a benchmark of the 
performance of our strategies against two prophet strategies. These strategies know upfront everything 
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about each customer that will arrive during the booking period and may therefore select the most 
attractive customers in order to serve as many customers as possible. We see that our strategy BAS shows 
a decent performance, somewhere half the way between the lower bound set by the performance of OBS 
and the upper bound set by the performance of the prophet strategies. At the same time this shows that 
there is enough space for future improvements of our strategy BAS. 

Besides the benchmark result, we also show the impact of intermediate optimization calls. If we would 
not make use of intermediate optimization of the delivery routes, we see this directly back in higher costs 
per customer that is served, and indirectly also in a lower percentage of customers that is served. This 
confirms the importance of making use of intermediate optimization calls and justifies their 
implementation in ORTEC’s software solutions. 
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7. Conclusions and Recommendations 
After analyzing all results, we now come back to our main research question as formulated in Chapter 1: 

How can ORTEC deal in a proper way with an unfixed fleet composition when implementing 

a strategy for operational time slot management for its clients? 

In this chapter we respond this research question in Section 7.1, by summarizing the responses to our five 
sets of research questions as found in the previous five chapters. In Section 7.2 we reflect on the 
contribution of our research to literature as well as on the contribution of our research for practical 
applications. Finally, we conclude this chapter with recommendations for further research in Section 7.3. 

7.1. Main Findings 
In our search for a proper way to deal with an unfixed fleet composition when implementing a strategy 
for operational TSM for ORTEC’s clients, similar to an e-retailer of our context, we found that not much 
research has been done on this specific topic. However, there are many publications that provide insights 
into several related topics, such as the vehicle routing problem, TSM in attended home delivery and the 
modeling of customer behavior. We find that our e-retailer case is a version of the HFVRPTW with an 
online component (during the booking period) and an offline component (after the booking period ends). 
Literature unfortunately does not provide much insights on how to deal with an unfixed fleet composition 
in a strategy for operational time slot management, in the context of the e-retailer case. Therefore, to 
obtain these insights, we depend on the results of the computational experiments for the scenarios of the 
e-retailer case that we consider. We did experiments for the e-retailer case with two different order types, 
one central depot and three different vehicle types. Of the three vehicle types, two types are small vehicles 
and are dedicated to the delivery of one order type each. The third vehicle type is large and can deliver 
any order type, but is more expensive. Our experiments consider use cases with either e-retailers that only 
own vehicles of the first two vehicle types (Use Case 2), or of all vehicle types (Use Case 4). Also, we only 
studied cases in which on average more customer demand comes in during the booking period than can 
be served with the maximum possible capacity of the fleet composition (given the number of drivers that 
is available to drive a delivery vehicle). 

In our context we distinguish between dealing in a static way with an unfixed fleet composition in a 
strategy for TSM, or in a dynamic way. Although the fleet composition is unfixed during the booking 
period, a static strategy fixes the fleet composition after determining an initial fleet composition at the 
start of the booking period. A dynamic strategy does not fix the fleet composition until the final 
optimization of the delivery routes after the booking period ends. We designed three strategies that 
ORTEC may implement to deal with an unfixed fleet composition. The first strategy (OBS) is a static 
strategy and can be implemented without making any changes to the present software solutions. The 
second strategy (MYS) is a myopic dynamic strategy. This strategy tries to change the fleet composition 
when a customer order cannot be accepted with the current composition. In this way MYS aims to be 
able to accept the customer order in the end. The third strategy we designed (BAS) is the strategy that 
shows the best performance in terms of the average percentage of customers that can be served and the 
average costs per customer that is served. BAS may change the fleet composition during the booking 
period and may also reject customers if they are considered to be unattractive. When taking decisions 
with regard to changing the fleet composition or rejecting customers, BAS tries to find a balance between 
forecasts based on historical data and observed data from customer orders that have already arrived 
during the booking period. 

We tested the performance of the strategies for two different scenarios with different spreads of 
customer locations around the central depot and different customers. For both scenarios we consider two 
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cases. The first one (a) is a situation in which the observed percentage of customers for each order type 
is on average equal to the percentage of customers with that order type according to historical data. For 
the second case (b) the observed ratio of customers of each order type does not equal the historical ratio. 
For all scenarios and for all use cases BAS on average shows the best performance of our three strategies. 
Especially for measures of customer satisfaction BAS outperforms MYS and OBS in most cases, whereas 
this generally does not go at the cost of the measures for route efficiency that we consider.  

To get insight into how good the performance of our strategies actually is, we benchmarked all our 
strategies against two so-called prophet strategies. These prophet strategies make use of information that 
is normally not available to an e-retailer, such as the time window preferences of customers and the 
sequence in which customer orders come in. The strategies know all details of customer orders that will 
arrive during the booking period upfront and they solve the HFVRPTW for all these customer orders. 
The aim is to accept as many customers as possible and then minimizing the total delivery costs. The first 
prophet strategy pretends as if each customer is indifferent with regard to the time window preferences, 
so each customer would select any time window. For the second prophet strategy a customer may only be 
accepted when the first preference time window is available for that customer. The prophet strategies 
both determine the optimal composition for which most customers can be accepted against minimum 
costs. The results of the benchmark are re-displayed in Figure 7.1 and Figure 7.2. 

Performance on Customer Satisfaction 

Prophet (No Time Windows) Prophet (First Choice Time Window) BAS MYS 

  
Figure 7.1. Performance benchmark of our strategies against prophet strategies for customer satisfaction 

Performance on Route Efficiency 

Prophet (No Time Windows) Prophet (First Choice Time Window) BAS MYS 

  
Figure 7.2. Performance benchmark of our strategies against prophet strategies for route efficiency 
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We see that BAS in all cases performs reasonable compared to the prophet strategies, and much better 
than OBS and MYS. The results we obtained give us confidence that ORTEC can indeed achieve a good 
performance in terms of customer satisfaction and route efficiency when implementing BAS as a strategy 
for operational TSM for their clients. Of course, we need to ask ourselves if the results we obtained for 
our case studies are useful and trustworthy for ORTEC to rely on when we consider practical cases that 
are different from our scenarios. We address this consideration in Section 7.2. Also, the prophet 
benchmarks show that we have enough opportunities to further improve BAS. Our results show that 
especially in terms of sensitivity of the performance to forecast errors BAS can and should be improved. 
It is therefore vital to do further research on how we can make BAS perform even better, for instance by 
introducing a better way of tuning its parameters, and obtain even more satisfying results. 

7.2. Contribution to Literature and Practice 
As we stated before, our research is in a realm of literature in which few contributions have been published. 
This has to do with the fact that time slot management is a relatively new field of research compared to 
for instance the VRP. Our findings present an interesting strategy for operational time slot management. 
Although the strategy we designed is still in a phase of initial development, we are confident that the 
strategy can be further developed in such a way that we can use the strategy in a broader context for 
other problems in literature. This is a challenge for the further research intended to improve our strategy.  

We believe that the problem we consider can be generalized in such a way that it becomes a very 
interesting problem for literature, to which little attention has been paid so far. Our findings may be 
considered as yet another incentive to do more research in the realm of operational time slot management. 
Especially in an era in which online shopping becomes more and more dominant, good strategies for 
operational time slot management may make the difference for e-retailers. The results that we obtained 
in this research underline once more the importance of operational time slot management for e-retailers 
that are similar to the ones from our context. 

Our focus has been quite a practical one, because we did research in the context of ORTEC’s software 
solutions. ORTEC has many (potential) clients that resemble e-retailers from our context and that 
struggle with operational time slot management. Therefore, our findings are promising for ORTEC, 
because they indicate that ORTEC can improve the performance of their clients by implementing a 
strategy like BAS. Of course, before implementing the strategy in its software solutions, ORTEC should 
first intensively study the case of each client and perform simulations with data that is specific for that 
client.  

It is important to experiment with BAS in different scenarios than the ones we considered, as we also 
point out in our recommendations for further research. This will create a stronger support for an eventual 
implementation of the strategy in ORTEC’s software solutions. However, we feel confident to say based 
on our results so far, that it is really worthwhile for ORTEC to consider a potential implementation of 
BAS in the software solutions offered to ORTEC’s clients. The benefit of this research lays in the fact 
that we used OTS and CVRS to implement our strategies. If ORTEC desires to start using BAS in the 
future, the fact that BAS already interacts with ORTEC’s cloud services makes the implementation much 
easier. We believe that this is an important contribution for practice of our research. 

7.3. Recommendations 
In this section we discuss some recommendations for further research that we distinguish. During the 
process of this research, we observed many issues that can possibly be improved. It would be too much to 
state all of them here, therefore we made a selection of the most important recommendations. 

7.3.1. Increase of dimensions 

Our first recommendation is to study more scenarios of the e-retailer case. We propose to consider data 
from different clients of ORTEC, to obtain insights into the impact on the performance of our strategies. 
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It would be beneficial to study cases in which more customers arrive during the booking period than the 
100 that we limited ourselves to. Due to technical limitations it was not possible to perform experiments 
with more customer orders, but before we can possible implement our strategies in ORTEC’s software 
solutions it is a must to test them on larger instances. 

Besides considering more customers arriving during the booking period, we may also consider a larger 
delivery fleet and more drivers available to drive the delivery vehicles. It would be interesting as well to 
study what happens when we have customer locations that are spread across a larger region than the 
regions we considered, or a smaller region of only one city for instance. 

Another factor that may be worthwhile to increase is the number of time windows that is available. 
We restricted ourselves to 4 time windows of equal length, but there exist practical cases in which more 
time windows with different lengths are offered by an e-retailer. This may change the decisions taken by 
BAS as well as the customer choice behavior. 

7.3.2. Generalization of the context 

We also recommend to investigate how BAS performs in a generalized version of the e-retailer case. So 
far, we considered the e-retailer case with two order types, three vehicle types and one central depot only. 
It would be very useful to obtain insights into the performance of BAS when we have more order types, 
vehicle types and maybe even multiple depots. 

Another interesting aspect is the influence of the driver assignment in our problem context. We now 
considered drivers that all have equal capabilities and an equal number of working hours on a day. In 
practice, situations may occur where not all drivers can drive any vehicle type, and some drivers work 
only half a day for instance. This makes the driver assignment much more complex, and it would be 
interesting to see if we can reach a satisfactory performance with BAS for such cases. 

Besides the above considerations, it would also be useful to study how BAS performs in Use Case 3 
and in different use cases that we did not consider in this research, to get a more complete overview of 
how valuable BAS is as a strategy.  

The generalization of all these factors allows us to reconstruct many more practical cases than the ones 
we could reconstruct so far. However, in order for our strategies to keep working for all cases that we can 
construct, a generalization of the strategies is required as well. Although it may require some effort, we 
believe that a generalization of the context would not only contribute to ORTEC’s practice, but also to 
the literature that is available on topics related to operational time slot management. 

7.3.3. Parameter tuning and improvement of BAS 

As we mentioned several times already, it is very important for ORTEC to spend time to develop a good 
method to tune the parameters that BAS uses, if ORTEC indeed wants to implement BAS. The 
parameters that BAS uses need to be configured differently for each practical application of the e-retailer 
case. Our experiments with the prophet strategies already indicated that there is space to improve BAS. 

It would also be interesting to investigate if there is a method that can tune the parameters of BAS 
online, during the booking period, by applying machine learning techniques. Such a method would ideally 
keep track of the development of our KPIs over the booking period, and recognize certain patterns in this 
development. By for instance learning offline which decisions are the best to take when a certain pattern 
occurs, we can save a lot of time to take these decisions when we recognize the pattern online. To create 
a decision framework for BAS offline, we could make use of historical datasets, divided in training sets 
and verifications sets. This approach is completely different from the way that BAS is designed now, 
because currently we fix the parameters during the whole booking period. Therefore, implementing a 
method that tunes the parameters online, based on information obtained offline, requires a lot of effort. It 
would probably give sufficient research content to write a whole new thesis about. However, we believe it 
may be beneficial to explore the possibilities for designing such a method, because it may significantly 
improve the performance of BAS. 
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Another recommendation is to study cases in which BAS does not reject customers based on their order 
quantity, but for instance based on their location (distant customers may be unattractive). In cases where 
we have data about the order values, it may also be interesting to investigate the performance for BAS 
when the unattractiveness of customers is determined based on the ratio of the order value and the order 
quantity (the lower the ratio the less attractive the customer). These are just two examples of different 
criteria that BAS can use to determine whether a customer is unattractive. We have already seen that in 
Scenario 2 the first example (rejecting based on location) might have resulted in a better performance for 
BAS, so we believe it is worthwhile studying this aspect in a deeper way. 

A final recommendation regarding BAS, is that we propose to investigate whether BAS could be used 
on a strategical/tactical level of control, for fleet dimensioning decisions. We could for instance use the 
limit imposed by the number of drivers to set the maximum amount of delivery vehicles that an e-retailer 
wants to acquire. If we set the number of vehicles for each vehicle type equal to the number of drivers, 
BAS may add as many vehicles of a vehicle type as necessary. Starting with an as cheap as possible initial 
fleet, we make sure that the final composition consists of the required vehicles to ensure a good 
performance, without having overcapacity in the delivery fleet. If an e-retailer then studies the results for 
different realizations of its ordering process, the average number of vehicles used by BAS per vehicle type 
may be a good starting point to base strategical/tactical fleet dimensioning decisions on. 

7.3.4. Customer choice behavior 

As we have little information about customer choice behavior, we just assumed a simple uniform 
distribution to model customer preferences. However, in practice much more complex models may be 
required to accurately model customer preferences. We believe that for studies in the field of operational 
time slot management the customer choice behavior is an element with an essential influence on the 
performance of different strategies for operational time slot management. An e-retailer may do as much 
as possible to offer an as high as possible number of time windows to each customer, but as soon as the 
list with offered time windows does not contain any of the customer’s preferences the e-retailer loses the 
customer anyway. Therefore, we propose to study the impact of the customer choice behavior in a deeper 
way, before considering to implement any strategy for operational time slot management. 

7.3.5. General recommendations 

Nowadays, we see that topics like same-day delivery and stochastic customers that arrive during the 
service period become more and more relevant in practice. Literature on these topics starts to emerge, and 
these topics also give a whole new dimension to operational time slot management. It may for most 
ORTEC clients that are similar to the e-retailers of our context not yet be a relevant topic in their 
practice, but developing a strategy for operational time slot that can deal with customers that request 
same-day delivery during the service period would give a huge competitive advantage for ORTEC clients. 
It may therefore be worthwhile for ORTEC to do research on these topics and how we can for instance 
incorporate them into BAS. 

Another general remark that we want to conclude with, is that we recommend that ORTEC 
investigates how the way in which optimization algorithms in CVRS are configured can be improved for 
individual clients. This holds for intermediate optimization calls as well as for the final optimization of 
routes at the end of the booking period. Currently, not much attention is paid to the configuration for 
different clients, and most clients use standard templates. It can however be very beneficial to tune the 
configuration of the optimization algorithms differently for different clients, tailored to their practical 
needs. Also, to reduce the time that BAS spends verify whether a new fleet composition is feasible it could 
be beneficial to configure CVRS algorithms in a different way, without decreasing the performance of 
BAS. This will lead to a higher customer satisfaction, because the average response time to a customer 
request will decrease. 



References 

 
 

95 

References 
Agatz, N., Campbell, A., Fleischmann, M., & Savelsbergh, M. (2011). Time Slot Management in Attended 

Home Delivery. Transportation Science, 45(3), 435–449. https://doi.org/10.1287/trsc.1100.0346 

Agatz, N., Campbell, A. M., Fleischmann, M., & Savelsbergh, M. (2008). Challenges and opportunities in 
attended home delivery. In The vehicle routing problem: Latest advances and new challenges (pp. 
379–396). Boston, MA: Springer. 

Asdemir, K., Jacob, V. S., & Krishnan, R. (2009). Dynamic pricing of multiple home delivery options. 
European Journal of Operational Research, 196(1), 246–257. 
https://doi.org/10.1016/J.EJOR.2008.03.005 

Azi, N., Gendreau, M., & Potvin, J. Y. (2011). A dynamic vehicle routing problem with multiple delivery 
routes. Annals of Operations Research, 199(1), 103–112. https://doi.org/10.1007/s10479-011-0991-
3 

Belfiore, P., & Yoshida Yoshizaki, H. T. (2009). Scatter search for a real-life heterogeneous fleet vehicle 
routing problem with time windows and split deliveries in Brazil. European Journal of Operational 

Research, 199(3), 750–758. https://doi.org/10.1016/j.ejor.2008.08.003 

Bent, R. W., & Van Hentenryck, P. (2004). Scenario-Based Planning for Partially Dynamic Vehicle 
Routing with Stochastic Customers. Operations Research, 52(6), 977–987. 
https://doi.org/10.1287/opre.1040.0124 

Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the 
art classification and review. Computers and Industrial Engineering, 99, 300–313. 
https://doi.org/10.1016/j.cie.2015.12.007 

Brandão, J. (2011). A tabu search algorithm for the heterogeneous fixed fleet vehicle routing problem. 
Computers & Operations Research, 38(1), 140–151. https://doi.org/10.1016/J.COR.2010.04.008 

Bräysy, O., & Gendreau, M. (2005a). Vehicle routing problem with time windows, Part I: Route 
construction and local search algorithms. Transportation Science, 39(1), 104–118. 

Bräysy, O., & Gendreau, M. (2005b). Vehicle routing problem with time windows, Part II: Metaheuristics. 
Transportation Science, 39(1), 119–139. 

Bruck, B. P., Cordeau, J.-F., & Iori, M. (2017). A practical time slot management and routing problem 
for attended home services. Omega. https://doi.org/10.1016/J.OMEGA.2017.11.003 

Bühler, D., Klein, R., & Neugebauer, M. (2016). Model-based delivery cost approximation in attended 
home services. Computers & Industrial Engineering, 98, 78–90. 
https://doi.org/10.1016/J.CIE.2016.05.014 

Campbell, A. M., & Savelsbergh, M. (2006). Incentive Schemes for Attended Home Delivery Services. 
Transportation Science, 40(3), 327–341. https://doi.org/10.1287/trsc.1050.0136 

Campbell, A. M., & Savelsbergh, M. W. P. (2005). Decision Support for Consumer Direct Grocery 
Initiatives. Transportation Science, 39(3), 313–327. https://doi.org/10.1287/trsc.1040.0105 

Chang, Y., & Chen, L. (2007). Solve the Vehicle Routing Problem With Time Windows Via a Genetic 
Algorithm. Discrete and Continuous Dynamical Systems Supplement, 240–249. 

Chen, C. F., & Chen, Y. C. (2014). A Dynamic Pricing Model for Time Slot Management in Attended 



References 

 
 

96 

Home Delivery Logistics. Transport Research Arena, Paris. 

Clarke, G., & Wright, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery 
Points. Operations Research, 12(4), 568–581. https://doi.org/10.1287/opre.12.4.568 

Cleophas, C., & Ehmke, J. F. (2014). When Are Deliveries Profitable? Business and Information Systems 

Engineering, 6(3), 153–163. https://doi.org/10.1007/s12599-014-0321-9 

Cook, T. M., & Russell, R. A. (1978). A simulation and statistical analysis of stochastic vehicle routing 
with timing constraints. Decision Sciences, 9(4), 673–687. 

Cordeau, J. F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007). Chapter 6 Vehicle Routing. 
Handbooks in Operations Research and Management Science, 14(C), 367–428. 
https://doi.org/10.1016/S0927-0507(06)14006-2 

Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science. 
https://doi.org/10.1287/mnsc.6.1.80 

Dell’Amico, M., Monaci, M., Pagani, C., & Vigo, D. (2007). Heuristic Approaches for the Fleet Size and 
Mix Vehicle Routing Problem with Time Windows. Transportation Science, 41(4), 516–526. 
https://doi.org/10.1287/trsc.1070.0190 

Desrosiers, J., Dumas, Y., Solomon, M. M., & Soumis, F. (1995). Time Constrained Routing and 
Scheduling. Handbooks in Operations Research and Management Science. 
https://doi.org/10.1016/S0927-0507(05)80106-9 

Dondo, R., & Cerdá, J. (2007). A cluster-based optimization approach for the multi-depot heterogeneous 
fleet vehicle routing problem with time windows. European Journal of Operational Research, 176(3), 
1478–1507. https://doi.org/10.1016/j.ejor.2004.07.077 

Ehmke, J. F., & Campbell, A. M. (2014). Customer acceptance mechanisms for home deliveries in 
metropolitan areas. European Journal of Operational Research, 233(1), 193–207. 
https://doi.org/10.1016/J.EJOR.2013.08.028 

Eilam Tzoreff, T., Granot, D., Granot, F., & Sošić, G. (2002). The vehicle routing problem with pickups 
and deliveries on some special graphs. Discrete Applied Mathematics. 
https://doi.org/10.1016/S0166-218X(00)00283-3 

eMarketer. (2018). Retail Ecommerce Sales Worldwide, 2016-2021. Retrieved March 22, 2018, from 
https://www.emarketer.com/Chart/Retail-Ecommerce-Sales-Worldwide-2016-2021-trillions-change-
of-total-retail-sales/215138 

Flood, M. M. (1956). The Traveling-Salesman Problem. Operations Research, 4(1), 61–75. Retrieved from 
http://www.jstor.org/stable/167517 

Gendreau, M., & Tarantilis, C. (2010). Solving large-scale vehicle routing problems with time windows: 
The state-of-the-art. Cirrelt, (4). Retrieved from 
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2010-04.pdf 

Golden, B., Assad, A., Levy, L., & Gheysens, F. (1984). The fleet size and mix vehicle routing problem. 
Computers & Operations Research, 11(1), 49–66. https://doi.org/10.1016/0305-0548(84)90007-8 

Hernandez, F., Gendreau, M., & Potvin, J. Y. (2017). Heuristics for tactical time slot management: a 
periodic vehicle routing problem view. International Transactions in Operational Research. 
https://doi.org/10.1111/itor.12403 



References 

 
 

97 

Hungerländer, P., Maier, K., Pöcher, J., Rendl, A., & Truden, C. (2018). Solving an On-line Capacitated 
Vehicle Routing Problem with Structured Time Windows. In A. Fink, A. Fügenschuh, & M. Geiger 
(Eds.), Operations Research Proceedings 2016 (pp. 127–132). Springer, Cham. 
https://doi.org/10.1007/978-3-319-55702-1_18 

Jiang, J., Ng, K. M., Poh, K. L., & Teo, K. M. (2014). Vehicle routing problem with a heterogeneous fleet 
and time windows. Expert Systems with Applications, 41(8), 3748–3760. 
https://doi.org/10.1016/j.eswa.2013.11.029 

Kallehauge, B., Larsen, J., Madsen, O. B. G., & Solomon, M. M. (2005). Vehicle routing problem with 
time windows. In Column generation (pp. 67–98). Springer. 

Klein, R., Neugebauer, M., Ratkovitch, D., & Steinhardt, C. (2017). Differentiated Time Slot Pricing 
under Routing Considerations in Attended Home Delivery. Transportation Science. 
https://doi.org/https://doi.org/10.1287/trsc.2017.0738 

Knight, K. W., & Hofer, J. P. (1968). Vehicle scheduling with timed and connected calls: A case study. 
Journal of the Operational Research Society, 19(3), 299–310. 

Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2015). A hybrid evolutionary algorithm for heterogeneous 
fleet vehicle routing problems with time windows. Computers and Operations Research, 64, 11–27. 
https://doi.org/10.1016/j.cor.2015.05.004 

Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2016). Thirty years of heterogeneous vehicle routing. 
European Journal of Operational Research, 249(1), 1–21. https://doi.org/10.1016/j.ejor.2015.07.020 

Kritikos, M. N., & Ioannou, G. (2013). The heterogeneous fleet vehicle routing problem with overloads 
and time windows. International Journal of Production Economics, 144(1), 68–75. 
https://doi.org/10.1016/j.ijpe.2013.01.020 

Law, A. M. (2015). Simulation Modeling and Analysis (5th ed.). New York, NY: McGraw-Hill Education. 

Lenstra, J. K., & Rinnooy Kan, A. H. G. (1981). Complexity of vehicle routing and scheduling problems. 
Networks. https://doi.org/10.1002/net.3230110211 

Li, F., Golden, B., & Wasil, E. (2007). A record-to-record travel algorithm for solving the heterogeneous 
fleet vehicle routing problem. Computers and Operations Research, 34(9), 2734–2742. 
https://doi.org/10.1016/j.cor.2005.10.015 

Munari, P., Dollevoet, T., & Spliet, R. (2016). A generalized formulation for vehicle routing problems, 
(1), 1–19. Retrieved from http://arxiv.org/abs/1606.01935 

Nguyen, D. H., De Leeuw, S., & Dullaert, W. E. H. (2018). Consumer Behaviour and Order Fulfilment in 
Online Retailing: A Systematic Review. International Journal of Management Reviews, 20(2), 255–
276. https://doi.org/10.1111/ijmr.12129 

ORTEC B.V. (2018). ORTEC - Optimize Your World Corporate Website. Retrieved March 22, 2018, 
from https://www.ortec.com/ 

Paraskevopoulos, D. C., Repoussis, P. P., Tarantilis, C. D., Ioannou, G., & Prastacos, G. P. (2008). A 
reactive variable neighborhood tabu search for the heterogeneous fleet vehicle routing problem with 
time windows. Journal of Heuristics, 14(5), 425–455. https://doi.org/10.1007/s10732-007-9045-z 

Pessoa, A., Uchoa, E., & De Aragão, M. P. (2009). A robust branch-cut-and-price algorithm for the 
heterogeneous fleet vehicle routing problem. Networks. https://doi.org/10.1002/net.20330 



References 

 
 

98 

Pullen, H. G. M., & Webb, M. H. J. (1967). A computer application to a transport scheduling problem. 
The Computer Journal, 10(1), 10–13. https://doi.org/10.1093/comjnl/10.1.10 

Punakivi, M., & Saranen, J. (2001). Identifying the success factors in e-grocery home delivery. 
International Journal of Retail & Distribution Management, 29(4), 156–163. 
https://doi.org/10.1108/09590550110387953 

Solomon, M. M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with Time Window 
Constraints. Operations Research, 35(2), 254–265. https://doi.org/10.1287/opre.35.2.254 

Taillard, E. D. (1999). A heuristic column generation method for the heterogeneous fleet VRP. RAIRO - 

Operations Research. https://doi.org/10.1051/ro:1999101 

Vigo, D., & Toth, P. (2014). Vehicle Routing; Problems, Methods, and Applications. MOS-SIAM Series 

on Optimization. https://doi.org/doi:10.1137/1.9781611973594 

Yang, X., & Strauss, A. K. (2017). An approximate dynamic programming approach to attended home 
delivery management. European Journal of Operational Research, 263(3), 935–945. 
https://doi.org/10.1016/J.EJOR.2017.06.034 

Yang, X., Strauss, A. K., Currie, C. S. M., & Eglese, R. (2016). Choice-Based Demand Management and 
Vehicle Routing in E-Fulfillment. Transportation Science, 50(2), 473–488. 
https://doi.org/10.1287/trsc.2014.0549 

Yepes, V., & Medina, J. (2006). Economic Heuristic Optimization for Heterogeneous Fleet VRPHESTW. 
Journal of Transportation Engineering, 132, 303–311. https://doi.org/10.1061/(ASCE)0733-
947X(2006)132:4(303) 

The icons that are used in Figure 1.1, Figure 2.3, Figure 3.2, Figure 4.3 and Figure 4.4 are adapted 
versions from: 

• Icons created by Freepik from www.flaticon.com 
• Icons created by Smashicons from www.flaticon.com 
• Optimize by H Alberto Gongora from the Noun Project 
• Delivery Car by BomSymbols from the Noun Project 
• Courier service by Symbolon from the Noun Project 
• Bicycle by PictoBike from the Noun Project 

https://www.flaticon.com/authors/freepik
http://www.flaticon.com/
https://www.flaticon.com/authors/smashicons
http://www.flaticon.com/


Appendix A. Validation of Distributions 

 

A.1 

Appendix A. Validation of Distributions 
In this appendix we validate the distributions (Chapter 5) we use in our simulation tool for determining 
the number of customers in a simulation run (Section A.1) and determining the spread of the customer 
arrivals over the booking period, which is one day in our case. For the latter we distinguish between a 
spread according to an empirical distribution (Section A.2) according to a common pattern in practice 
which we use in most of our experiments, a spread with an increasing arrival rate over the booking period 
(Section A.3) and an uniform spread over the booking period (Section A.4). For each distribution we first 
perform a visual test in which we the expected and observed densities, as well as comparing the expected 
cumulative distribution with the observed cumulative distribution. Subsequently, we perform a chi-square 
goodness-of-fit test, according to the method introduced by Law (2015). 

A.1. Distribution of Number of Customers 
For the distribution of the number of customers that arrive during the booking period we deal with a 
practical restriction with regard to the load for ORTEC’s servers. We cannot make a lot of requests with 
many customers in parallel, so we limited the average number of customers to 100. We model the number 
of customers that arrive during the booking period with a Poisson random variable N = 2 × X where 
X ~ Poisson(50). We define N as X multiplied by 2 so we have a somewhat larger spread compared to for 
instance the case in which N = Y ~ Poisson(100), as shown in Equation (A.1): 

Var[2X] = 22 × Var[X] = 4 × λX = 200 > 100  = λY = Var[Y] (A.1) 

We performed a validation test for the first 100 realizations of the number of customers in our simulation 
tool, which are displayed in Table A.1. 

Table A.1. The first 100 values that our simulation tool generates for the number of customer arrivals per day 

1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 

116 108 104 96 82 82 108 110 66 98 
102 86 94 74 96 96 88 120 102 86 
126 110 66 108 102 130 90 94 106 120 
114 102 84 84 124 108 112 98 88 114 
120 88 92 108 80 96 80 100 112 106 
112 110 96 72 80 102 106 90 130 120 
104 96 82 56 96 102 98 110 78 84 
98 108 96 98 102 114 104 78 150 110 
108 114 88 96 108 102 114 78 110 116 
100 104 120 94 70 100 86 88 88 96 

A.1.1. Visual Validation 

To perform a visual test whether the data generated by the simulation tool is distributed according the 
distribution we would expect, we divided the data into bins and we created a histogram in which we 
compare the expected densities with the observed densities according to the data generated by the 
simulation tool, as shown in Figure A.1. At first glance, we see that in general the pattern generated by 
the simulation tool resembles the expected pattern. However, for some bins we see a large difference 
between the expected density and the observed density according to the data generated by the simulation 
tool. Figure A.2 shows the same deviations when we look at the observed cumulative distribution function 
according to the generated data compared to the theoretical expectations. For some bins there are 
deviations, for which other bins compensate again. To test whether these deviations are significant, we 
perform a chi-square goodness-of-fit test in Section A.1.2. 



A.1. Distribution of Number of Customers 

 
 

A.2 

 
Figure A.1. Observed probability density per bin for the simulation tool compared to expected probability density 

 
Figure A.2. Observed cumulative probability per bin for the simulation tool compared to theoretical expectations 

A.1.2. Chi-Square Goodness-of-Fit Test 

As mentioned, for the chi-square goodness-of-fit test we make use of the method proposed by Law (2015). 
This method basically determines the bounds of each bin in such a way, that the expected frequency for 
each bin is equal. However, when we deal with discrete data types, as is our case, Law (2015) points out 
that this may not be possible. In that case we should try to set the bounds for each bin in such a way 
that the expected frequency is approximately equal. Table A.2 shows the bins that we set, the expected 
frequency for each bin, the observed frequency for each bin and the mean square error for each bin. The 
lower bounds for the bins are inclusive bounds, and the upper bounds are exclusive bounds. This is an 
important observation for determining the expected frequencies, because for discrete probability 
distributions, unlike continuous probability distributions, P(N) ≤ n ≠ P(N) < n. Therefore, we need to 
take into account that upper bounds are exclusive and lower bounds inclusive when we calculate the 
expected frequencies. 
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Table A.2. Expected frequencies and observed frequencies used for the chi-square goodness-of-fit test 

Bin Expected frequency Observed frequency Mean square error 

[0, 78) 4.74 6 0.3367 
[78, 84) 6.49 9 0.9690 
[84, 88) 6.75 6 0.0835 
[88, 90) 4.12 6 0.8530 
[90, 92) 4.58 2 1.4555 
[92, 94) 4.98 1 3.1819 
[94, 96) 5.30 3 0.9975 
[96, 98) 5.52 10 3.6363 
[98, 100) 5.63 5 0.0710 
[100, 102) 5.63 3 1.2304 
[102, 104) 5.52 8 1.1119 
[104, 106) 5.31 4 0.3230 
[106, 108) 5.01 3 0.8058 
[108, 110) 4.64 8 2.4369 
[110, 112) 4.22 6 0.7545 
[112, 114) 3.76 3 0.1553 
[114, 118) 6.15 7 0.1177 
[118, 122) 4.42 5 0.0753 
[122, 128) 4.03 2 1.0238 
[12 , ∞) 3.18 3 0.0107 

 
To calculate the expected frequencies in a bin i we make use of Equation (A.2), in which λ stands for the 
total number of realizations, which equals 100 in our case because we perform 100 draws. λi stands for the 
expected number of realizations of N in bin i. Finally, UBi and LBi respectively represent the upper bound 
and the lower bound of bin i. 

E[λi] = λ × (P(N < UBi) – P(N ≥ LBi)) (A.2) 

Observe that for the first bin, we use a lower bound of 0, because it is impossible that a negative number 
of customers arrive during the booking period and therefore N will never be negative. For the last bin, we 
use infinity as the upper bound, which makes P(N < UBi) equal to 1. The results of the calculations are 
displayed in the column for expected frequencies of Table A.2. 

Following the procedure for the chi-square goodness-of-fit test as described by Law (2015), we calculate 
the mean square error for bin i by making use of Equation (A.3), in which Oi stands of the observed 
number of realizations in bin i. 

(Oi – E[λi])2

E[λi]
 (A.3) 

The test statistic is computed by taking the sum of the mean square error over all bins. Its value in this 
case turns out to be 19.6297. The critical value is taken from a chi-square distribution with 9 degrees of 
freedom and a confidence level of 5% is used: χ , 0. 5

2  = 30.1435 > 1 .62 7. Therefore, with 95% confidence 
we do not reject the hypothesis that the data generated by our simulation tool is distributed according to 
the distribution described earlier (N = 2 × X where X ~ Poisson(50)). 

A.2. Empirical Customer Arrival Rates 
In this section we validate the implementation of the empirical distribution of customer arrival times in 
our simulation tool. Just as for the distribution of the number of customers, we consider 100 replications. 
In each replication the number of customers equals the corresponding value from Table A.1. We generate 
arrival times according to the empirical distribution for all the customers in a replication for each of the 
100 replications. After obtaining all data, we validate the output of our simulation tool against the 
theoretical expectations. First, we carry out a quick visual test. After that, we perform a chi-square 
goodness-of-fit test. 
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A.2.1. Visual Validation 

The first step for a visual validation of the realizations generated by our simulation tool is dividing the 
data into bins of equal size. Our data consists of arrival times of customers expressed as percentages of 
the length of the booking period, which is 24 hours in our case. For each replication we divided the arrival 
times over 24 bins with a length of one hour. The observed frequencies we divided by the number of 
customers that arrived in total in the corresponding replication to obtain the probability density per bin. 
The next step consists of taking the average of the obtained densities over all replication for each bin, so 
we can construct the average probability density function according to the data generated by our 
simulation tool. As we deal with continuous data (describing time) here, we speak of a probability density 
function and we display this function as a line in Figure A.3. We can see that the function generated by 
our simulation tool matches quite well with the theoretical expectations with regard to the probability 
density function. Figure A.4 shows the same in terms of the cumulative distribution function. 

 
Figure A.3. Observed probability density function for the simulation tool compared to expected probability density 

 
Figure A.4. Observed cumulative probability function for the simulation tool compared to theoretical expectations 
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A.2.2. Chi-Square Goodness-of-Fit Test 

We make use of the same approach to carry out the chi-square goodness-of-fit test as in Appendix A.1. 
We changed the bounds for the 24 bins formed before in such a way that the expected frequency for each 
bin is equal. As we deal with an empirical distribution, this is somewhat more complex because we do not 
have a formula that defines the cumulative distribution function. We only have the cumulative probability 
defined for each hour of the day, as displayed in Figure A.4. We therefore first determine the density for 
a bin, which equals 100% divided by 24, the number of bins. We then can accumulate the density over 
the bins, so we obtain the desired cumulative probability at the upper bound of the bin. The upper bound 
can then be determined by comparing this cumulative probability to the values of the cumulative 
distribution function that are already available. By making use of linear interpolation we retrieve the 
upper bound for a bin. The lower bound for a bin equals the upper bound of the previous bin (or 0 for the 
first bin), because we deal with a continuous distribution. In that case it does not matter whether the 
upper and lower bounds of the bins are inclusive or exclusive. 

We then compare the expected frequency in each bin to the average observed frequency in each bin. 
The average is again determined over the arrival times for the first 100 replications. The average number 
of customers that arrived over the first 100 replications equals 99.38, so the expected frequencies are equal 
to 99.38/24 which equals 4.14. Our test statistic is again computed by taking the sum of the mean square 
error (Equation (A.3)) over all bins. Its value in this case turns out to be 0.2426, as follows from Table 
A.3. This is much lower than the critical value from a chi-square distribution with 23 degrees of freedom 
and a confidence level of 5%: χ23, 0. 5

2  = 35.1725 > 0.2426. Based on the test results, we can state with 
confidence that the data generated by our simulation tool on average indeed is distributed according to 
the empirical distribution that we would expect. 

Table A.3. Expected frequencies and observed frequencies used for the chi-square goodness-of-fit test 

Bin Expected frequency Observed frequency Mean square error 

0:00-7:00 4.14 4.15 0.00002 
7:00-8:04 4.14 4.17 0.00021 
8:04-8:51 4.14 4.15 0.00002 
8:51-9:55 4.14 4.28 0.00468 
9:55-11:21 4.14 4.33 0.00864 
11:21-12:09 4.14 3.94 0.00974 
12:09-12:42 4.14 4.35 0.01057 
12:42-13:22 4.14 4.15 0.00002 
13:22-14:14 4.14 4.50 0.03115 
14:14-15:14 4.14 4.23 0.00192 
15:14-16:01 4.14 4.27 0.00403 
16:01-16:43 4.14 4.00 0.00479 
16:43-17:19 4.14 3.74 0.03880 
17:19-17:52 4.14 4.27 0.00403 
17:52-18:19 4.14 3.95 0.00879 
18:19-18:45 4.14 4.18 0.00037 
18:45-19:09 4.14 3.90 0.01401 
19:09-19:31 4.14 3.63 0.06302 
19:31-19:53 4.14 4.05 0.00199 
19:53-20:19 4.14 3.94 0.00974 
20:19-20:47 4.14 4.33 0.00864 
20:47-21:22 4.14 4.32 0.00775 
21:22-22:05 4.14 4.32 0.00775 
22:05-24:00 4.14 4.23 0.00192 
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A.3. Increasing Customer Arrival Rates 
In this section we validate the implementation of the distribution of the spread of customer arrival times 
with increasing customer arrival rates over the booking period. We follow the same procedure as described 
in Section A.2. 

A.3.1. Visual Validation 

In the same way as we did for the empirical distribution in Section A.2, we again compare the probability 
density function and the cumulative distribution function as generated by our simulation tool over 100 
replications to the expected functions according to the theoretical distribution. The theoretical function 
used for the cumulative distribution function equals (x 24⁄ )

2= x2
576⁄ . We consider this function on the 

interval of 0 ≤ x ≤ 24 in which x equals the time in hours. The probability density function can then be 
derived and equals x 2  ⁄ . As we see in Figure A.5 and Figure A.6, our simulation tool seems to do quite 
a good job when considering the average over the first 100 replications. 

 
Figure A.5. Observed probability density function for the simulation tool compared to expected probability density 

 
Figure A.6. Observed cumulative probability function for the simulation tool compared to theoretical expectations 
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A.3.2. Chi-Square Goodness-of-Fit Test 

Just as we did in Section A.2, we again determine the bounds of the bins in such a way that the expected 
frequency is equal to 99.38/24 for each of the 24 bins. We determine the cumulative density for each bin 
in the same way as before. Given this cumulative density y

i
 we can determine the upper bound in hours 

(xi) for a bin i by calculating the inverse of the cumulative distribution function: xi = √576y
i
. The results 

of the test are displayed in Table A.4. Our test statistic sums up to 0.2720 in this case. The critical value 
we use here is the same as in Section A.2, because we have the same number of bins and we use the same 
confidence level: χ23, 0. 5

2  = 35.1725 > 0.2720. This confirms that we cannot reject the hypothesis that the 
data generated by our simulation tool is distributed according to the expected distribution. 

Table A.4. Expected frequencies and observed frequencies used for the chi-square goodness-of-fit test 

Bin Expected frequency Observed frequency Mean square error 

0:00-4:53 4.14 4.13 0.00003 
4:53-6:55 4.14 4.18 0.00037 
6:55-8:29 4.14 4.23 0.00192 
8:29-9:47 4.14 4.33 0.00864 
9:47-10:57 4.14 4.28 0.00468 
10:57-12:00 4.14 4.00 0.00479 
12:00-12:57 4.14 4.40 0.01622 
12:57-13:51 4.14 4.38 0.01381 
13:51-14:41 4.14 3.94 0.00974 
14:41-15:29 4.14 4.49 0.02944 
15:29-16:14 4.14 4.08 0.00089 
16:14-16:58 4.14 4.02 0.00353 
16:58-17:39 4.14 3.85 0.02043 
17:39-18:19 4.14 4.16 0.00009 
18:19-18:58 4.14 4.24 0.00237 
18:58-19:35 4.14 3.91 0.01287 
19:35-20:11 4.14 3.91 0.01287 
20:11-20:47 4.14 3.82 0.02486 
20:47-21:21 4.14 3.71 0.04483 
21:21-21:54 4.14 4.29 0.00537 
21:54-22:26 4.14 4.24 0.00237 
22:26-22:58 4.14 4.17 0.00021 
22:58-23:29 4.14 4.59 0.04872 
23:29-23:59 4.14 4.03 0.00297 

A.4. Uniform Customer Arrival Rates 
In this section we validate the implementation of a uniform distribution of customer arrival times over 
the booking period. We follow the same procedure as described in Section A.2. 

A.4.1. Visual Validation 

Just as described in Section A.2, we first compare the probability density function as observed from the 
data generated by our simulation tool with the expected probability density function according to the 
theoretical distribution. The theoretical cumulative probability function is given by x 24⁄ , resulting in a 
probability density function that equals 1 24⁄ . Figure A.7 shows the result after 100 replications, which 
shows some distortions of the density function generated by the simulation tool compared to the expected 
density function. The distortions are quite small however, and we see in Figure A.8 that the cumulative 
distribution generated by the simulation tool over 100 replications hardly shows any deviations from the 
expected cumulative distribution function according to the uniform distribution. These results support 
the assumption that the data generated by the simulation tool indeed has the same distribution as 
expected. To put this to a statistical test, we perform a chi-square goodness-of-fit test in the next section. 
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Figure A.7. Observed probability density function for the simulation tool compared to expected probability density 

 
Figure A.8. Observed cumulative probability function for the simulation tool compared to theoretical expectations 

A.4.2. Chi-Square Goodness-of-Fit Test 

The chi-square goodness-of-fit test was carried out in the same way as before. The expected frequencies 
for each bin are based on a total average of 99.38 customers that arrive during the booking period. As we 
deal with a uniform distribution, to obtain an equal expected frequency for each bin it suffices to have 
bins of equal length. We therefore again use 24 bins, each with a length of one hour. The results of the 
chi-square goodness-of-fit test are displayed in Table A.5.  

Our test statistic is again computed by taking the sum of the mean square error (Equation (A.3)) over 
all bins. Its value in this case turns out to be 0.2720. This is much lower than the critical value from a 
chi-square distribution with 23 degrees of freedom and a confidence level of 5%: 
χ23, 0. 5

2  = 35.1725 > 0.2720. Based on the test results, we can state with confidence that the data generated 
by our simulation tool on average indeed is distributed according to the uniform distribution that we 
would expect. 
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Table A.5. Expected frequencies and observed frequencies used for the chi-square goodness-of-fit test 

Bin Expected frequency Observed frequency Mean square error 

0:00-1:00 4.14 4.13 0.00003 
1:00-2:00 4.14 4.18 0.00037 
2:00-3:00 4.14 4.23 0.00192 
3:00-4:00 4.14 4.33 0.00864 
4:00-5:00 4.14 4.28 0.00468 
5:00-6:00 4.14 4.00 0.00479 
6:00-7:00 4.14 4.40 0.01622 
7:00-8:00 4.14 4.38 0.01381 
8:00-9:00 4.14 3.94 0.00974 
9:00-10:00 4.14 4.49 0.02944 
10:00-11:00 4.14 4.08 0.00089 
11:00-12:00 4.14 4.02 0.00353 
12:00-13:00 4.14 3.85 0.02043 
13:00-14:00 4.14 4.16 0.00009 
14:00-15:00 4.14 4.24 0.00237 
15:00-16:00 4.14 3.91 0.01287 
16:00-17:00 4.14 3.91 0.01287 
17:00-18:00 4.14 3.82 0.02486 
18:00-19:00 4.14 3.71 0.04483 
19:00-20:00 4.14 4.29 0.00537 
20:00-21:00 4.14 4.24 0.00237 
21:00-22:00 4.14 4.17 0.00021 
22:00-23:00 4.14 4.59 0.04872 
23:00-24:00 4.14 4.03 0.00297 
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Appendix B. Computational Results 
In this appendix we provide additional results which were not included in the main report. The results 
are categorized based on the hypotheses as defined in Chapter 3. 

B.1. Hypothesis 1 
Table B.1 presents the results of the comparisons we did for Hypothesis 1. Whenever we distinguish a 
better performance for one of the strategies on a certain KPI, we show the result for that strategy and 
KPI in bold. For the KPIs where it is not straightforward whether it is better to have a higher or a lower 
score, we leave it to the reader to judge which result is best. 

Table B.1. Results Hypothesis 1 per scenario and strategy 

KPI 

Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

MYS OBS MYS OBS MYS OBS MYS OBS 

Customers served (% of total) 0.5964 0.6072 0.6333 0.6062 0.6772 0.6927 0.6479 0.5896 
Costs per customer (€) 21.67 21.36 21.06 21.50 25.88 25.31 26.71 28.23 

Total driving time (seconds) 57655 58390 62870 61263 106184 106201 102458 98284 

Total duration (seconds) 98515 99736 104726 101625 145490 146179 140684 133462 

Total distance (km) 901.92 907.88 957.70 945.16 1850.01 1842.07 1817.14 1738.38 

Total costs (€) 1407.69 1415.66 1453.35 1425.12 1914.29 1916.52 1881.01 1815.93 

Number of delivery routes 8 8 8 7.9 8 8 8 7.9 
Number vehicles used of type 1 3.6 4 5 4 3.6 4 5.6 4 
Number vehicles used of type 2 4.4 4 3 3.9 4.4 4 2.4 3.9 

Average utilization (%) 0.9868 0.9872 0.9828 0.9580 0.9584 0.9612 0.9588 0.8836 
Number of customers served 65.2 66.4 69.4 66.6 74.2 75.9 70.7 64.6 

Time windows offered 2.36 2.41 2.50 2.40 2.49 2.55 2.37 2.19 
Response time (seconds) 0.3673 0.1364 0.7212 0.1397 0.8505 0.1947 1.4088 0.1783 

Running time (seconds) 348 320 401 324 412 358 471 309 

Schedule update time (seconds) 0.1284 0.1390 0.1573 0.1274 0.1468 0.1733 0.1583 0.1373 

Quick optimize time (seconds) 46 45 48 46 46 49 46 42 

Final optimize time (seconds) 57 56 59 59 62 67 58 56 

Change fleet time (seconds) 0.4973 0 1.6097 0 2.2228 0 3.7944 0 

Table B.2 presents the data that we used for the paired-t approach to compare the percentage of customers 
that are served for both MYS and OBS. 

Table B.2. Data used for comparing the percentage of customers served for MYS and OBS 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 
 MYS OBS Diff MYS OBS Diff MYS OBS Diff MYS OBS Diff 

Replication 1 50.00% 54.31% -4.31% 61.21% 60.34% 0.86% 63.79% 63.79% 0.00% 57.76% 54.31% 3.45% 

Replication 2 58.82% 59.80% -0.98% 65.69% 62.75% 2.94% 67.65% 76.47% -8.82% 72.55% 66.67% 5.88% 

Replication 3 49.21% 50.79% -1.59% 53.97% 52.38% 1.59% 64.29% 65.08% -0.79% 58.73% 56.35% 2.38% 

Replication 4 64.04% 64.91% -0.88% 64.04% 63.16% 0.88% 57.89% 64.04% -6.14% 55.26% 49.12% 6.14% 

Replication 5 55.00% 53.33% 1.67% 60.00% 61.67% -1.67% 63.33% 65.00% -1.67% 56.67% 57.50% -0.83% 

Replication 6 62.50% 64.29% -1.79% 75.00% 70.54% 4.46% 69.64% 69.64% 0.00% 59.82% 58.04% 1.79% 

Replication 7 60.58% 64.42% -3.85% 63.46% 57.69% 5.77% 72.12% 73.08% -0.96% 71.15% 58.65% 12.50% 

Replication 8 70.41% 70.41% 0.00% 71.43% 57.14% 14.29% 69.39% 69.39% 0.00% 71.43% 56.12% 15.31% 

Replication 9 64.81% 62.96% 1.85% 55.56% 55.56% 0.00% 74.07% 72.22% 1.85% 68.52% 63.89% 4.63% 

Replication 10 61.00% 62.00% -1.00% 63.00% 65.00% -2.00% 75.00% 74.00% 1.00% 76.00% 69.00% 7.00% 

Mean 59.64% 60.72% -1.09% 63.33% 60.62% 2.71% 67.72% 69.27% -1.55% 64.79% 58.96% 5.82% 

Variance 0.44% 0.38% 0.04% 0.41% 0.27% 0.23% 0.29% 0.21% 0.11% 0.61% 0.36% 0.24% 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI 54.89% 56.33% -2.52% 58.74% 56.90% -0.69% 63.86% 65.98% -3.94% 59.19% 54.69% 2.32% 

Upper bound CI 64.39% 65.12% 0.35% 67.93% 64.35% 6.11% 71.58% 72.56% 0.83% 70.39% 63.24% 9.32% 
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Table B.3 presents the data that we used for the paired-t approach to compare the average delivery costs 
per customer served for both MYS and OBS. 

Table B.3. Data used for comparing the costs per customer served for MYS and OBS 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 
 MYS OBS Diff MYS OBS Diff MYS OBS Diff MYS OBS Diff 

Replication 1 €23. 4 €22.21 €1.73 €20.15 €20.73 -€0.58 €25.41 €25.41 €0.00 €2 . 1 €2 .73 €0.08 

Replication 2 €23.32 €22. 7 €0.45 €22.27 €23.0  -€0.81 €26.37 €24.   €1.39 €25.35 €27.04 -€1.69 

Replication 3 €21.54 €20. 0 €0.64 €22.11 €22.41 -€0.30 €23. 3 €23.22 €0.61 €24.   €26.17 -€1.28 

Replication 4 €1 . 7 €20.11 -€0.14 €20.15 €20.0  €0.07 €2 .31 €26.76 €1.55 €30.22 €31. 4 -€1.62 

Replication 5 €21. 5 €21.   -€0.14 €20.74 €20.72 €0.02 €26.3  €24.50 €1.89 €27. 4 €27. 2 €0.12 

Replication 6 €21.1  €21.1  -€0.01 €1 .12 €1 .10 -€0.98 €25.6  €25.27 €0.42 €2 .06 €2 .00 -€0.94 

Replication 7 €22.0  €20. 4 €1.25 €21.40 €22.65 -€1.25 €25.47 €24.   €0.49 €24.55 €2 .1  -€3.63 

Replication 8 €21.36 €21.6  -€0.32 €20.26 €21.56 -€1.30 €27. 5 €2 .01 -€0.16 €25. 6 €2 .44 -€3.48 

Replication 9 €1 .56 €1 . 0 -€0.24 €22. 2 €22. 4 -€0.02 €23.70 €23. 1 -€0.11 €25.64 €27.42 -€1.78 

Replication 10 €21.90 €22.03 -€0.13 €22.55 €21. 4 €0.71 €25. 1 €26.17 -€0.36 €24.72 €25.6  -€0.96 

Mean €21.67 €21.36 €0.31 €21.06 €21.50 -€0.44 €25.   €25.31 €0.57 €26.71 €2 .23 -€1.52 

Variance €1.76 €0. 4 €0.49 €2.12 €1.73 €0.43 €2.1  €1. 6 €0.62 €4.53 €3.37 €1.60 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI €20.72 €20.67 -€0.19 €20.02 €20.56 -€0.91 €24. 3 €24.31 €0.01 €25.1  €26. 2 -€2.42 

Upper bound CI €22.62 €22.06 €0.81 €22.10 €22.44 €0.02 €26. 4 €26.31 €1.14 €2 .24 €2 .55 -€0.61 

B.2. Hypothesis 2 
In this section we present the results for Hypothesis 2, split up in Use Case 2 and Use Case 4. 

B.2.1. Use Case 2 

Table B.4 and Table B.5 present the results of the comparisons we did for Hypothesis 2 and Use Case 2. 
Whenever we distinguish a better performance for one of the strategies on a certain KPI, we show the 
result for that strategy and KPI in bold. For the KPIs where it is not straightforward whether it is better 
to have a higher or a lower score, we leave it to the reader to judge which result is best. 

Table B.4. Results Hypothesis 2 per scenario and strategy for Use Case 2 

KPI 

Scenario 1a Scenario 1b 

BAS MYS OBS BAS MYS OBS 

Customers served (% of total) 0.6876 0.5964 0.6072 0.6964 0.6333 0.6062 
Costs per customer (€) 19.34 21.67 21.36 19.37 21.06 21.50 

Total driving time (seconds) 61218 57655 58390 64253 62870 61263 

Total duration (seconds) 105774 98515 99736 108449 104726 101625 

Total distance (km) 921.27 901.92 907.88 952.31 957.70 945.16 

Total costs (€) 1451.89 1407.69 1415.66 1472.96 1453.35 1425.12 

Number of delivery routes 8 8 8 8 8 7.9 
Number vehicles used of type 1 3.8 3.6 4 4.8 5 4 
Number vehicles used of type 2 4.2 4.4 4 3.2 3 3.9 

Average utilization (%) 0.9778 0.9868 0.9872 0.9672 0.9828 0.9580 
Number of customers served 75.2 65.2 66.4 76.3 69.4 66.6 

Time windows offered 2.73 2.36 2.41 2.77 2.50 2.40 
Response time (seconds) 0.2374 0.3673 0.1364 0.9833 0.7212 0.1397 

Running time (seconds) 363 348 320 445 401 324 

Schedule update time (seconds) 0.1420 0.1284 0.1390 0.1260 0.1573 0.1274 
Quick optimize time (seconds) 49 46 45 49 48 46 

Final optimize time (seconds) 68 57 56 69 59 59 

Change fleet time (seconds) 9.6602 0.4973 0 32.7721 1.6097 0 
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Table B.5. Results Hypothesis 2 per scenario and strategy for Use Case 2 (continued) 

KPI 

Scenario 2a Scenario 2b 

BAS MYS OBS BAS MYS OBS 

Customers served (% of total) 0.7241 0.6772 0.6927 0.7022 0.6479 0.5896 
Costs per customer (€) 24.51 25.88 25.31 24.92 26.71 28.23 

Total driving time (seconds) 108665 106184 106201 105229 102458 98284 

Total duration (seconds) 149369 145490 146179 145255 140684 133462 

Total distance (km) 1876.21 1850.01 1842.07 1837.58 1817.14 1738.38 

Total costs (€) 1941.07 1914.29 1916.52 1910.49 1881.01 1815.93 

Number of delivery routes 8 8 8 8 8 7.9 
Number vehicles used of type 1 4 3.6 4 5.3 5.6 4 
Number vehicles used of type 2 4 4.4 4 2.7 2.4 3.9 

Average utilization (%) 0.9271 0.9584 0.9612 0.9283 0.9588 0.8836 
Number of customers served 79.4 74.2 75.9 76.8 70.7 64.6 

Time windows offered 2.70 2.49 2.55 2.56 2.37 2.19 
Response time (seconds) 0.2025 0.8505 0.1947 0.8287 1.4088 0.1783 

Running time (seconds) 375 412 358 436 471 309 

Schedule update time (seconds) 0.1436 0.1468 0.1733 0.1506 0.1583 0.1373 

Quick optimize time (seconds) 50 46 49 50 46 42 

Final optimize time (seconds) 76 62 67 69 58 56 

Change fleet time (seconds) 0.0135 2.2228 0 36.9009 3.7944 0 

Table B.6 presents the data that we used for the paired-t approach to compare the percentage of customers 
that are served for both BAS and MYS. 

Table B.6. Data used for comparing the percentage of customers served for BAS and MYS for Use Case 2 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 
 BAS MYS Diff BAS MYS Diff BAS MYS Diff BAS MYS Diff 

Replication 1 62.93% 50.00% 12.93% 68.10% 61.21% 6.90% 69.83% 63.79% 6.03% 63.79% 57.76% 6.03% 

Replication 2 71.57% 58.82% 12.75% 70.59% 65.69% 4.90% 77.45% 67.65% 9.80% 77.45% 72.55% 4.90% 

Replication 3 55.56% 49.21% 6.35% 61.11% 53.97% 7.14% 65.87% 64.29% 1.59% 63.49% 58.73% 4.76% 

Replication 4 74.56% 64.04% 10.53% 70.18% 64.04% 6.14% 67.54% 57.89% 9.65% 62.28% 55.26% 7.02% 

Replication 5 61.67% 55.00% 6.67% 65.83% 60.00% 5.83% 71.67% 63.33% 8.33% 67.50% 56.67% 10.83% 

Replication 6 70.54% 62.50% 8.04% 77.68% 75.00% 2.68% 70.54% 69.64% 0.89% 66.07% 59.82% 6.25% 

Replication 7 69.23% 60.58% 8.65% 65.38% 63.46% 1.92% 74.04% 72.12% 1.92% 69.23% 71.15% -1.92% 

Replication 8 77.55% 70.41% 7.14% 76.53% 71.43% 5.10% 72.45% 69.39% 3.06% 78.57% 71.43% 7.14% 

Replication 9 75.00% 64.81% 10.19% 62.96% 55.56% 7.41% 78.70% 74.07% 4.63% 76.85% 68.52% 8.33% 

Replication 10 69.00% 61.00% 8.00% 78.00% 63.00% 15.00% 76.00% 75.00% 1.00% 77.00% 76.00% 1.00% 

Mean 68.76% 59.64% 9.12% 69.64% 63.33% 6.30% 72.41% 67.72% 4.69% 70.22% 64.79% 5.44% 

Variance 0.47% 0.44% 0.06% 0.37% 0.41% 0.13% 0.18% 0.29% 0.13% 0.43% 0.61% 0.13% 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI 63.87% 54.89% 7.42% 65.27% 58.74% 3.76% 69.41% 63.86% 2.15% 65.53% 59.19% 2.84% 

Upper bound CI 73.65% 64.39% 10.83% 74.00% 67.93% 8.85% 75.40% 71.58% 7.24% 74.92% 70.39% 8.03% 
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Table B.7 presents the data that we used for the paired-t approach to compare the average delivery costs 
per customer served for both BAS and MYS. 

Table B.7. Data used for comparing the costs per customer served for BAS and MYS for Use Case 2 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 
 BAS MYS Diff BAS MYS Diff BAS MYS Diff BAS MYS Diff 

Replication 1 €1 . 4 €23. 4 -€4.00 €1 .66 €20.15 -€1.49 €23.37 €25.41 -€2.04 €26.57 €2 . 1 -€3.24 

Replication 2 €1 .64 €23.32 -€3.68 €20.53 €22.27 -€1.74 €24.56 €26.37 -€1.81 €23.5  €25.35 -€1.76 

Replication 3 €1 .51 €21.54 -€2.03 €1 . 4 €22.11 -€2.27 €22.61 €23. 3 -€1.22 €23. 7 €24.   -€0.92 

Replication 4 €1 .32 €1 . 7 -€1.65 €1 .1  €20.15 -€0.96 €25.5  €2 .31 -€2.73 €26.11 €30.22 -€4.11 

Replication 5 €20.23 €21. 5 -€1.62 €1 .17 €20.74 -€1.57 €24.02 €26.3  -€2.37 €24.1  €27. 4 -€3.76 

Replication 6 €19.39 €21.1  -€1.79 €17.10 €1 .12 -€1.02 €25.32 €25.6  -€0.37 €26.55 €2 .06 -€1.51 

Replication 7 €1 . 0 €22.0  -€2.29 €21.16 €21.40 -€0.24 €25.20 €25.47 -€0.27 €25.57 €24.55 €1.02 

Replication 8 €1 .62 €21.36 -€1.74 €1 .10 €20.26 -€1.16 €26.71 €27. 5 -€1.14 €24.70 €25. 6 -€1.26 

Replication 9 €17.41 €1 .56 -€2.15 €20.13 €22. 2 -€2.69 €22.43 €23.70 -€1.27 €23. 6 €25.64 -€1.68 

Replication 10 €1 .5  €21. 0 -€2.32 €1 . 6 €22.55 -€3.69 €25.2  €25. 1 -€0.52 €24.01 €24.72 -€0.71 

Mean €1 .34 €21.67 -€2.33 €1 .37 €21.06 -€1.68 €24.51 €25.   -€1.37 €24. 2 €26.71 -€1.79 

Variance €0.71 €1.76 €0.70 €1.27 €2.12 €0.97 €1. 1 €2.1  €0.72 €1.36 €4.53 €2.40 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI €1 .74 €20.72 -€2.93 €1 .57 €20.02 -€2.39 €23.52 €24. 3 -€1.98 €24.0  €25.1  -€2.90 

Upper bound CI €1 . 5 €22.62 -€1.73 €20.1  €22.10 -€0.98 €25.50 €26. 4 -€0.77 €25.76 €2 .24 -€0.69 

B.2.2. Use Case 4 

Table B.8 and Table B.9 present the results of the comparisons we did for Hypothesis 2 and Use Case 4. 
Whenever we distinguish a better performance for one of the strategies on a certain KPI, we show the 
result for that strategy and KPI in bold. For the KPIs where it is not straightforward whether it is better 
to have a higher or a lower score, we leave it to the reader to judge which result is best. 

Table B.8. Results Hypothesis 2 per scenario and strategy for Use Case 4 

KPI 

Scenario 1a Scenario 1b 

BAS MYS OBS BAS MYS OBS 

Customers served (% of total) 0.9068 0.8568 0.6072 0.9253 0.8868 0.6062 
Costs per customer (€) 19.92 21.19 21.36 20.10 21.12 21.50 

Total driving time (seconds) 69903 71031 58390 76147 76855 61263 

Total duration (seconds) 131919 131127 99736 137989 137347 101625 

Total distance (km) 994.44 1039.20 907.88 1086.24 1134.02 945.16 

Total costs (€) 1977.66 1984.76 1415.66 2034.67 2040.94 1425.12 

Number of delivery routes 8 8 8 8 8 7.9 
Number vehicles used of type 1 1.7 2.1 4 2.9 2.7 4 
Number vehicles used of type 2 2.3 1.9 4 1.1 1.3 3.9 
Number vehicles used of type 3 4 4 0 4 4 0 

Average utilization (%) 0.9607 0.9723 0.9872 0.9436 0.9666 0.9580 
Number of customers served 99.5 93.8 66.4 101.6 97.0 66.6 

Time windows offered 3.59 3.34 2.41 3.64 3.42 2.40 
Response time (seconds) 1.5658 6.0713 0.1493 2.3487 5.2489 0.1003 

Running time (seconds) 600 982 320 668 865 330 

Schedule update time (seconds) 0.1722 0.2019 0.1653 0.1628 0.1573 0.1495 

Quick optimize time (seconds) 61 45 45 58 43 46 
Final optimize time (seconds) 94 64 55 95 49 63 
Change fleet time (seconds) 11.7177 36.0852 0 12.4940 46.9158 0 
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Table B.9. Results Hypothesis 2 per scenario and strategy for Use Case 4 (continued) 

KPI 

Scenario 2a Scenario 2b 

BAS MYS OBS BAS MYS OBS 

Customers served (% of total) 0.8740 0.8560 0.6927 0.8678 0.8612 0.5906 
Costs per customer (€) 25.35 26.28 25.31 24.55 25.52 28.22 

Total driving time (seconds) 116955 119377 106201 106304 113068 98475 

Total duration (seconds) 167925 170347 146179 157304 164356 133707 

Total distance (km) 1954.42 2027.42 1842.07 1768.16 1916.89 1741.61 

Total costs (€) 2424.53 2460.47 1916.52 2328.85 2403.37 1817.93 

Number of delivery routes 8 8 8 8 8 7.9 
Number vehicles used of type 1 2.1 1.6 4 3.3 3.2 4 
Number vehicles used of type 2 1.9 2.4 4 0.7 0.8 3.9 
Number vehicles used of type 3 4 4 0 4 4 0 

Average utilization (%) 0.8997 0.9313 0.9612 0.8913 0.9290 0.8852 
Number of customers served 95.9 93.7 75.9 95.1 94.2 64.7 

Time windows offered 3.27 3.10 2.55 3.25 3.13 2.19 
Response time (seconds) 1.5681 11.3494 0.1495 3.3232 8.7187 0.1862 

Running time (seconds) 641 1535 342 790 1254 314 

Schedule update time (seconds) 0.1507 0.2051 0.1748 0.1566 0.1790 0.1431 

Quick optimize time (seconds) 66 41 47 62 41 43 
Final optimize time (seconds) 108 53 63 91 52 55 
Change fleet time (seconds) 2.6599 67.7509 0 4.7538 64.7018 0 

Table B.10 presents the data that we used for the paired-t approach to compare the percentage of 
customers that are served for both BAS and MYS. 

Table B.10. Data used for comparing the percentage of customers served for BAS and MYS for Use Case 4 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 
 BAS MYS Diff BAS MYS Diff BAS MYS Diff BAS MYS Diff 

Replication 1 84.48% 77.59% 6.90% 88.79% 81.90% 6.90% 84.48% 79.31% 5.17% 81.90% 86.21% -4.31% 

Replication 2 91.18% 85.29% 5.88% 89.22% 92.16% -2.94% 89.22% 85.29% 3.92% 94.12% 93.14% 0.98% 

Replication 3 83.33% 73.81% 9.52% 84.13% 69.84% 14.29% 83.33% 76.19% 7.14% 82.54% 75.40% 7.14% 

Replication 4 92.98% 86.84% 6.14% 95.61% 93.86% 1.75% 81.58% 79.82% 1.75% 82.46% 79.82% 2.63% 

Replication 5 86.67% 80.00% 6.67% 92.50% 84.17% 8.33% 85.83% 80.83% 5.00% 80.83% 78.33% 2.50% 

Replication 6 95.54% 89.29% 6.25% 99.11% 98.21% 0.89% 84.82% 85.71% -0.89% 83.93% 83.93% 0.00% 

Replication 7 92.31% 88.46% 3.85% 94.23% 92.31% 1.92% 90.38% 93.27% -2.88% 90.38% 93.27% -2.88% 

Replication 8 91.84% 92.86% -1.02% 95.92% 98.98% -3.06% 89.80% 92.86% -3.06% 94.90% 93.88% 1.02% 

Replication 9 93.52% 91.67% 1.85% 89.81% 82.41% 7.41% 93.52% 90.74% 2.78% 90.74% 85.19% 5.56% 

Replication 10 95.00% 91.00% 4.00% 96.00% 93.00% 3.00% 91.00% 92.00% -1.00% 86.00% 92.00% -6.00% 

Mean 90.68% 85.68% 5.00% 92.53% 88.68% 3.85% 87.40% 85.60% 1.79% 86.78% 86.12% 0.66% 

Variance 0.19% 0.42% 0.09% 0.20% 0.81% 0.29% 0.15% 0.40% 0.13% 0.28% 0.46% 0.17% 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI 87.59% 81.05% 2.88% 89.31% 82.25% -0.01% 84.61% 81.06% -0.78% 82.99% 81.25% -2.31% 

Upper bound CI 93.78% 90.31% 7.12% 95.75% 95.12% 7.71% 90.18% 90.15% 4.36% 90.57% 90.98% 3.64% 

 
  



Appendix B. Computational Results 

 
 

B.6 

Table B.11 presents the data that we used for the paired-t approach to compare the average delivery costs 
per customer served for both BAS and MYS. 

Table B.11. Data used for comparing the costs per customer served for BAS and MYS for Use Case 4 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 
 BAS MYS Diff BAS MYS Diff BAS MYS Diff BAS MYS Diff 

Replication 1 €1 .   €21. 0 -€2.02 €1 .61 €20.73 -€1.12 €24.30 €24.70 -€0.40 €24.1  €25.66 -€1.48 

Replication 2 €20.66 €22.27 -€1.61 €22.27 €22.21 €0.06 €26.06 €2 .54 -€2.48 €24.30 €25.33 -€1.03 

Replication 3 €1 .67 €20.7  -€2.11 €20.26 €23.25 -€2.99 €22.7  €26.1  -€3.41 €21. 2 €24. 2 -€3.10 

Replication 4 €1 .53 €20.56 -€1.03 €1 . 5 €1 . 0 -€0.95 €27.10 €26. 3 €0.27 €24.70 €25.1  -€0.49 

Replication 5 €20.2  €21.16 -€0.88 €1 . 1 €20.66 -€1.85 €24.27 €26.5  -€2.32 €24.02 €26.6  -€2.66 

Replication 6 €1 .20 €20.63 -€1.43 €1 .40 €1 . 7 -€0.57 €25.76 €25.12 €0.64 €24.52 €26.15 -€1.63 

Replication 7 €20.46 €21.43 -€0.97 €21.25 €20. 5 €0.40 €25.4  €25.77 -€0.29 €24.73 €24.14 €0.59 

Replication 8 €21.74 €21.   -€0.14 €20.31 €20. 2 -€0.61 €27.27 €26.62 €0.65 €25.2  €26.15 -€0.86 

Replication 9 €1 .70 €1 .   -€1.29 €1 . 3 €22.14 -€2.21 €24.3  €25.2  -€0.89 €24.23 €25.50 -€1.27 

Replication 10 €20.03 €21.26 -€1.23 €21.2  €21.65 -€0.36 €26.0  €27.20 -€1.11 €27.6  €25.44 €2.25 

Mean €1 . 2 €21.1  -€1.27 €20.10 €21.12 -€1.02 €25.35 €26.2  -€0.93 €24.55 €25.52 -€0.97 

Variance €0.   €0.50 €0.33 €1.54 €1.54 €1.11 €1.   €1.2  €1.96 €2.06 €0.51 €2.36 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI €1 .24 €20.6  -€1.68 €1 .21 €20.23 -€1.77 €24.34 €25.47 -€1.93 €23.52 €25.01 -€2.07 

Upper bound CI €20.5  €21.6  -€0.86 €20.   €22.01 -€0.27 €26.36 €27.10 €0.07 €25.57 €26.03 €0.13 

B.3. Hypothesis 3 
Table B.12 and Table B.13 present the results of the comparisons we did for Hypothesis 3. Whenever we 
distinguish a better performance for one of the strategies on a certain KPI, we show the result for that 
strategy and KPI in bold. For the KPIs where it is not straightforward whether it is better to have a 
higher or a lower score, we leave it to the reader to judge which result is best. 

Table B.12. Results Hypothesis 3 per scenario and strategy 

KPI 

Scenario 1a Scenario 1b 

BAS OBS (Large) OBS BAS OBS (Large) OBS 

Customers served (% of total) 0.9068 0.8654 0.6072 0.9253 0.8872 0.6062 
Costs per customer (€) 19.92 20.67 21.36 20.10 20.75 21.50 

Total driving time (seconds) 69903 68011 58390 76147 74992 61263 

Total duration (seconds) 131919 128533 99736 137989 135454 101625 

Total distance (km) 994.44 976.85 907.88 1086.24 1089.48 945.16 

Total costs (€) 1977.66 1953.29 1415.66 2034.67 2013.27 1425.12 

Number of delivery routes 8 8 8 8 7.9 7.9 
Number vehicles used of type 1 1.7 2 4 2.9 2 4 
Number vehicles used of type 2 2.3 2 4 1.1 1.9 3.9 
Number vehicles used of type 3 4 4 0 4 4 0 

Average utilization (%) 0.9607 0.9806 0.9872 0.9436 0.9544 0.9580 
Number of customers served 99.5 94.7 66.4 101.6 97.3 66.6 

Time windows offered 3.59 3.44 2.41 3.64 3.49 2.40 
Response time (seconds) 1.5658 0.1765 0.1493 2.3487 0.1953 0.1003 

Running time (seconds) 600 459 320 668 526 330 

Schedule update time (seconds) 0.1722 0.2017 0.1653 0.1628 0.2186 0.1495 

Quick optimize time (seconds) 61 64 45 58 74 46 

Final optimize time (seconds) 94 88 55 95 97 63 

Change fleet time (seconds) 11.7177 0 0 12.4940 0 0 
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Table B.13. Results Hypothesis 3 per scenario and strategy (continued) 

KPI 

Scenario 2a Scenario 2b 

BAS OBS (Large) OBS BAS OBS (Large) OBS 

Customers served (% of total) 0.8740 0.8537 0.6927 0.8678 0.8304 0.5906 
Costs per customer (€) 25.35 25.27 25.31 24.55 25.02 28.22 

Total driving time (seconds) 116955 110411 106201 106304 105099 98475 

Total duration (seconds) 167925 160817 146179 157304 154557 133707 

Total distance (km) 1954.42 1819.75 1842.07 1768.16 1768.27 1741.61 

Total costs (€) 2424.53 2358.31 1916.52 2328.85 2276.00 1817.93 

Number of delivery routes 8 8 8 8 7.6 7.9 
Number vehicles used of type 1 2.1 2 4 3.3 2 4 
Number vehicles used of type 2 1.9 2 4 0.7 1.6 3.9 
Number vehicles used of type 3 4 4 0 4 4 0 

Average utilization (%) 0.8997 0.9158 0.9612 0.8913 0.8789 0.8852 
Number of customers served 95.9 93.6 75.9 95.1 91.1 64.7 

Time windows offered 3.27 3.20 2.55 3.25 3.13 2.19 
Response time (seconds) 1.5681 0.1981 0.1495 3.3232 0.2247 0.1862 

Running time (seconds) 641 545 342 790 494 314 

Schedule update time (seconds) 0.1507 0.2031 0.1748 0.1566 0.1687 0.1431 

Quick optimize time (seconds) 66 75 47 62 67 43 

Final optimize time (seconds) 108 110 63 91 102 55 

Change fleet time (seconds) 2.6599 0 0 4.7538 0 0 

Table B.14 presents the data that we used for the paired-t approach to compare the percentage of 
customers that are served for both BAS and OBS (Large Initial Fleet). 

Table B.14. Data used for comparing the percentage of customers served for BAS and OBS (Large Initial Fleet) 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 
 BAS MYS Diff BAS MYS Diff BAS MYS Diff BAS MYS Diff 

Replication 1 84.48% 73.28% 11.21% 88.79% 82.76% 6.03% 84.48% 79.31% 5.17% 81.90% 80.17% 1.72% 

Replication 2 91.18% 87.25% 3.92% 89.22% 94.12% -4.90% 89.22% 84.31% 4.90% 94.12% 86.27% 7.84% 

Replication 3 83.33% 75.40% 7.94% 84.13% 77.78% 6.35% 83.33% 81.75% 1.59% 82.54% 78.57% 3.97% 

Replication 4 92.98% 89.47% 3.51% 95.61% 96.49% -0.88% 81.58% 80.70% 0.88% 82.46% 78.07% 4.39% 

Replication 5 86.67% 79.17% 7.50% 92.50% 84.17% 8.33% 85.83% 80.00% 5.83% 80.83% 79.17% 1.67% 

Replication 6 95.54% 92.86% 2.68% 99.11% 99.11% 0.00% 84.82% 83.04% 1.79% 83.93% 80.36% 3.57% 

Replication 7 92.31% 90.38% 1.92% 94.23% 88.46% 5.77% 90.38% 90.38% 0.00% 90.38% 87.50% 2.88% 

Replication 8 91.84% 94.90% -3.06% 95.92% 89.80% 6.12% 89.80% 87.76% 2.04% 94.90% 81.63% 13.27% 

Replication 9 93.52% 91.67% 1.85% 89.81% 81.48% 8.33% 93.52% 94.44% -0.93% 90.74% 91.67% -0.93% 

Replication 10 95.00% 91.00% 4.00% 96.00% 93.00% 3.00% 91.00% 92.00% -1.00% 86.00% 87.00% -1.00% 

Mean 90.68% 86.54% 4.15% 92.53% 88.72% 3.82% 87.40% 85.37% 2.03% 86.78% 83.04% 3.74% 

Variance 0.19% 0.59% 0.16% 0.20% 0.49% 0.19% 0.15% 0.29% 0.06% 0.28% 0.22% 0.18% 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI 87.59% 81.03% 1.32% 89.31% 83.68% 0.67% 84.61% 81.49% 0.24% 82.99% 79.69% 0.71% 

Upper bound CI 93.78% 92.05% 6.97% 95.75% 93.75% 6.97% 90.18% 89.24% 3.82% 90.57% 86.39% 6.77% 
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Table B.15 presents the data that we used for the paired-t approach to compare the average delivery costs 
per customer served for both BAS and OBS (Large Initial Fleet). 

Table B.15. Data used for comparing the costs per customer served for BAS and OBS (Large Initial Fleet) 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 
 BAS MYS Diff BAS MYS Diff BAS MYS Diff BAS MYS Diff 

Replication 1 €1 .61 €20.31 -€0.70 €24.30 €24.57 -€0.27 €24.1  €26.0  -€1.90 €1 .61 €20.31 -€0.70 

Replication 2 €22.27 €21. 7 €0.30 €26.06 €26.13 -€0.07 €24.30 €25.03 -€0.73 €22.27 €21. 7 €0.30 

Replication 3 €20.26 €21.60 -€1.34 €22.7  €23.30 -€0.52 €21. 2 €24.32 -€2.50 €20.26 €21.60 -€1.34 

Replication 4 €1 . 5 €1 . 6 -€1.01 €27.10 €25.76 €1.34 €24.70 €25.   -€1.18 €1 . 5 €1 . 6 -€1.01 

Replication 5 €1 . 1 €20.52 -€1.71 €24.27 €25.26 -€0.99 €24.02 €24.53 -€0.51 €1 . 1 €20.52 -€1.71 

Replication 6 €1 .40 €1 .62 -€0.22 €25.76 €26.16 -€0.40 €24.52 €26.51 -€1.99 €1 .40 €1 .62 -€0.22 

Replication 7 €21.25 €20.74 €0.51 €25.4  €24.73 €0.75 €24.73 €23.43 €1.30 €21.25 €20.74 €0.51 

Replication 8 €20.31 €20. 7 -€0.66 €27.27 €27. 4 -€0.67 €25.2  €26.33 -€1.04 €20.31 €20. 7 -€0.66 

Replication 9 €1 . 3 €21.44 -€1.51 €24.3  €23.13 €1.26 €24.23 €23.66 €0.57 €1 . 3 €21.44 -€1.51 

Replication 10 €21.2  €21.44 -€0.15 €26.0  €25.67 €0.42 €27.6  €24.40 €3.29 €21.2  €21.44 -€0.15 

Mean €20.10 €20.75 -€0.65 €25.35 €25.27 €0.08 €24.55 €25.02 -€0.47 €20.10 €20.75 -€0.65 

Variance €1.54 €0.   €0.57 €1.   €2.03 €0.67 €2.06 €1.25 €3.08 €1.54 €0.   €0.57 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI €1 .21 €20.04 -€1.19 €24.34 €24.24 -€0.50 €23.52 €24.22 -€1.72 €1 .21 €20.04 -€1.19 

Upper bound CI €20.99 €21.45 -€0.11 €26.36 €26.2  €0.67 €25.57 €25. 2 €0.79 €20.   €21.45 -€0.11 

B.4. Hypothesis 4 
In this section we present the results that we used to put Hypothesis 4 to a test. The results are split into 
two sections. In the first section we present the results used to compare an increasing arrival rate pattern 
to the empirical arrival rate pattern that is more representative for practice. In the second section we give 
the results used to analyze the impact of forecast errors on the performance of BAS. 

B.4.1. Comparison of Different Arrival Time Distributions 

Table B.16 and Table B.17 present the results of the comparisons we did for Hypothesis 4 with regard to 
a changing arrival rate pattern. In all cases the strategy we consider is BAS. Whenever we distinguish a 
better performance for one of the arrival time distributions on a certain KPI, we show the result for that 
distribution and KPI in bold. For the KPIs where it is not straightforward whether it is better to have a 
higher or a lower score, we leave it to the reader to judge which result is best. 

Table B.16. Results Hypothesis 4 per scenario, strategy and arrival time distribution 

KPI 

Scenario 1a Scenario 1b 

BAS (Empirical) BAS (Increasing) OBS BAS (Empirical) BAS (Increasing) OBS 

Customers served (% of total) 0.9068 0.8953 0.6072 0.9253 0.9125 0.6062 
Costs per customer (€) 19.92 20.52 21.36 20.10 20.13 21.50 

Total driving time (seconds) 69903 72985 58390 76147 74439 61263 

Total duration (seconds) 131919 134887 99736 137989 135615 101625 

Total distance (km) 994.44 1059.71 907.88 1086.24 1063.66 945.16 

Total costs (€) 1977.66 2010.01 1415.66 2034.67 2008.57 1425.12 

Number of delivery routes 8 8 8 8 7.9 7.9 
Number vehicles used of type 1 1.7 1.8 4 2.9 3 4 
Number vehicles used of type 2 2.3 2.2 4 1.1 0.9 3.9 
Number vehicles used of type 3 4 4 0 4 4 0 

Average utilization (%) 0.9607 0.9679 0.9872 0.9436 0.9471 0.9580 
Number of customers served 99.5 98.2 66.4 101.6 100.1 66.6 

Time windows offered 3.59 3.53 2.41 3.64 3.59 2.40 
Response time (seconds) 1.5658 2.3452 0.1493 2.3487 3.5686 0.1003 

Running time (seconds) 600 740 320 668 875 330 

Schedule update time (seconds) 0.1722 0.2720 0.1653 0.1628 0.2318 0.1495 

Quick optimize time (seconds) 61 71 45 58 70 46 

Final optimize time (seconds) 94 88 55 95 98 63 

Change fleet time (seconds) 11.7177 16.3804 0 12.4940 20.4181 0 
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Table B.17. Results Hypothesis 4 per scenario, strategy and arrival time distribution (continued) 

KPI 

Scenario 2a Scenario 2b 

BAS (Empirical) BAS (Increasing) OBS BAS (Empirical) BAS (Increasing) OBS 

Customers served (% of total) 0.8740 0.8707 0.6927 0.8678 0.8592 0.5906 
Costs per customer (€) 25.35 25.47 25.31 24.55 24.91 28.22 

Total driving time (seconds) 116955 116348 106201 106304 107500 98475 

Total duration (seconds) 167925 167414 146179 157304 158080 133707 

Total distance (km) 1954.42 1970.30 1842.07 1768.16 1797.83 1741.61 

Total costs (€) 2424.53 2426.59 1916.52 2328.85 2339.89 1817.93 

Number of delivery routes 8 8 8 8 8 7.9 
Number vehicles used of type 1 2.1 2.1 4 3.3 3.7 4 
Number vehicles used of type 2 1.9 1.9 4 0.7 0.3 3.9 
Number vehicles used of type 3 4 4 0 4 4 0 

Average utilization (%) 0.8997 0.9167 0.9612 0.8913 0.8994 0.8852 
Number of customers served 95.9 95.5 75.9 95.1 94.0 64.7 

Time windows offered 3.27 3.26 2.55 3.25 3.26 2.19 
Response time (seconds) 1.5681 2.1304 0.1495 3.3232 4.3260 0.1862 

Running time (seconds) 641 817 342 790 940 314 

Schedule update time (seconds) 0.1507 0.2696 0.1748 0.1566 0.2048 0.1431 

Quick optimize time (seconds) 66 83 47 62 62 43 

Final optimize time (seconds) 108 118 63 91 79 55 

Change fleet time (seconds) 2.6599 4.6397 0 4.7538 9.2231 0 

Table B.18 presents the data that we used for the paired-t approach to compare the percentage of 
customers that are served for BAS with an empirical arrival rate pattern and an increasing arrival rate 
pattern. 

Table B.18. Data used to compare the percentage of customers served for BAS (Empirical) and BAS (Increasing) 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 
 BAS (E) BAS (I) Diff BAS (E) BAS (I) Diff BAS (E) BAS (I) Diff BAS (E) BAS (I) Diff 

Replication 1 84.48% 83.62% 0.86% 88.79% 88.79% 0.00% 84.48% 81.90% 2.59% 81.90% 79.31% 2.59% 

Replication 2 91.18% 91.18% 0.00% 89.22% 90.20% -0.98% 89.22% 89.22% 0.00% 94.12% 90.20% 3.92% 

Replication 3 83.33% 81.75% 1.59% 84.13% 80.16% 3.97% 83.33% 83.33% 0.00% 82.54% 76.19% 6.35% 

Replication 4 92.98% 93.86% -0.88% 95.61% 96.49% -0.88% 81.58% 83.33% -1.75% 82.46% 79.82% 2.63% 

Replication 5 86.67% 85.00% 1.67% 92.50% 86.67% 5.83% 85.83% 81.67% 4.17% 80.83% 81.67% -0.83% 

Replication 6 95.54% 91.96% 3.57% 99.11% 99.11% 0.00% 84.82% 85.71% -0.89% 83.93% 82.14% 1.79% 

Replication 7 92.31% 91.35% 0.96% 94.23% 93.27% 0.96% 90.38% 90.38% 0.00% 90.38% 91.35% -0.96% 

Replication 8 91.84% 93.88% -2.04% 95.92% 93.88% 2.04% 89.80% 88.78% 1.02% 94.90% 94.90% 0.00% 

Replication 9 93.52% 91.67% 1.85% 89.81% 87.96% 1.85% 93.52% 95.37% -1.85% 90.74% 91.67% -0.93% 

Replication 10 95.00% 91.00% 4.00% 96.00% 96.00% 0.00% 91.00% 91.00% 0.00% 86.00% 92.00% -6.00% 

Mean 90.68% 89.53% 1.16% 92.53% 91.25% 1.28% 87.40% 87.07% 0.33% 86.78% 85.92% 0.86% 

Variance 0.19% 0.19% 0.03% 0.20% 0.32% 0.05% 0.15% 0.21% 0.03% 0.28% 0.45% 0.12% 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI 87.59% 86.40% -0.16% 89.31% 87.23% -0.30% 84.61% 83.79% -1.01% 82.99% 81.12% -1.57% 

Upper bound CI 93.78% 92.66% 2.48% 95.75% 95.28% 2.86% 90.18% 90.34% 1.66% 90.57% 90.73% 3.28% 
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Table B.19 presents the data that we used for the paired-t approach to compare the average delivery costs 
per customer served for BAS with an empirical arrival rate pattern and an increasing arrival rate pattern. 

Table B.19. Data used for comparing the costs per customer served for BAS (Empirical) and BAS (Increasing) 

 Scenario 1a Scenario 1b Scenario 2a Scenario 2b 
 BAS (E) BAS (I) Diff BAS (E) BAS (I) Diff BAS (E) BAS (I) Diff BAS (E) BAS (I) Diff 

Replication 1 €1 .   €20.71 -€0.83 €1 .61 €1 .   -€0.38 €24.30 €25.32 -€1.02 €24.1  €25.44 -€1.26 

Replication 2 €20.66 €22.10 -€1.44 €22.27 €22.55 -€0.28 €26.06 €26.06 €0.00 €24.30 €24.   -€0.58 

Replication 3 €1 .67 €1 .23 -€0.56 €20.26 €20. 6 -€0.70 €22.7  €23.12 -€0.34 €21. 2 €23. 1 -€1.99 

Replication 4 €1 .53 €1 . 4 €0.69 €1 . 5 €1 .   -€0.04 €27.10 €26.15 €0.95 €24.70 €24.47 €0.23 

Replication 5 €20.2  €1 .   €0.29 €1 . 1 €1 .45 -€0.64 €24.27 €25.23 -€0.96 €24.02 €24.61 -€0.59 

Replication 6 €1 .20 €20.2  -€1.08 €18.40 €17.   €0.52 €25.76 €26.05 -€0.29 €24.52 €26.14 -€1.62 

Replication 7 €20.46 €21.22 -€0.76 €21.25 €21.07 €0.18 €25.4  €25.17 €0.31 €24.73 €23.44 €1.29 

Replication 8 €21.74 €22.6  -€0.95 €20.31 €1 .54 €0.77 €27.27 €27.56 -€0.29 €25.2  €26.3  -€1.09 

Replication 9 €1 .70 €1 .43 -€0.73 €1 . 3 €20.35 -€0.42 €24.3  €23. 0 €0.49 €24.23 €23. 6 €0.27 

Replication 10 €20.03 €20.6  -€0.66 €21.2  €20.57 €0.72 €26.0  €26.14 -€0.05 €27.6  €25. 6 €1.73 

Mean €1 . 2 €20.52 -€0.60 €20.10 €20.13 -€0.03 €25.35 €25.47 -€0.12 €24.55 €24. 1 -€0.36 

Variance €0.   €1.53 €0.40 €1.54 €1.6  €0.30 €1.   €1.57 €0.37 €2.06 €1.07 €1.50 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI €1 .24 €1 .63 -€1.06 €1 .21 €1 .20 -€0.42 €24.34 €24.57 -€0.56 €23.52 €24.17 -€1.24 

Upper bound CI €20.5  €21.40 -€0.15 €20.   €21.05 €0.37 €26.36 €26.37 €0.32 €25.57 €25.65 €0.52 

B.4.2. Impact of Fixed Forecast Errors 

Table B.20 presents the results of the comparisons we did for Hypothesis 4 with regard to the impact of 
fixed forecast errors. In all cases the strategy we consider is BAS. Whenever we distinguish a better 
performance for one of the forecast error values on a certain KPI, we show the corresponding result in 
bold. For the KPIs where it is not straightforward whether it is better to have a higher or a lower score, 
we leave it to the reader to judge which result is best. 

Table B.20. Results Hypothesis 4 for different fixed forecast error values (BAS, Scenario 1b) 

KPI 

Scenario 1b 

-30% -20% -10% Expected +10% +20% +30% 

Customers served (% of total) 0.9021 0.9065 0.9298 0.9253 0.8907 0.8775 0.8856 
Costs per customer (€) 19.52 19.54 19.63 20.10 20.64 20.85 20.31 

Total driving time (seconds) 71584 70500 73469 76147 75411 74944 71893 
Total duration (seconds) 129664 129150 134897 137989 135747 133960 131209 

Total distance (km) 994.03 987.47 1036.90 1086.24 1093.73 1103.01 1024.55 
Total costs (€) 1929.70 1938.63 1998.75 2034.67 2010.83 1998.89 1965.15 

Number of delivery routes 7.5 7.7 7.9 8 7.8 7.8 7.9 
Number vehicles used of type 1 2.3 2.7 2.8 2.9 2.9 2.9 3.2 
Number vehicles used of type 2 1.2 1 1.1 1.1 0.9 0.9 0.8 
Number vehicles used of type 3 4 4 4 4 4 4 3.9 

Average utilization (%) 0.8173 0.8396 0.9169 0.9436 0.9393 0.9196 0.9369 
Number of customers served 99.1 99.6 102.1 101.6 97.7 96.2 97.1 

Time windows offered 3.59 3.61 3.70 3.64 3.49 3.43 3.41 
Response time (seconds) 2.1947 2.0324 2.5249 2.3487 3.1777 3.8989 4.1781 
Running time (seconds) 786 683 757 668 674 716 767 

Schedule update time (seconds) 0.2066 0.1298 0.1827 0.1628 0.1687 0.1902 0.2142 
Quick optimize time (seconds) 71 65 67 58 47 42 45 
Final optimize time (seconds) 119 110 109 95 66 50 56 
Change fleet time (seconds) 2.3720 2.1796 2.4133 12.4940 29.9544 40.6213 42.1502 
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Table B.21 and Table B.22 present the results of the comparison of the percentage of customers served 
using a paired-t approach. We compare the performance for each different forecast error value to the base 
case where we have no standard forecast error. Table B.23 and Table B.24 present the results of the 
comparison in terms of the average delivery costs per customer served. The differences between two cases 
are computed with Equation (B.1), in which  j ∈ {-30%, -20%, -10%, 0%, +10%, +20%, +30%}. The 95% 
confidence intervals are computed with Equation (6.2). 

Zj = XBAS0% – XBASj, j ≠ 0%  (B.1) 

Table B.21. Comparison percentage of customers served for different fixed forecast errors (BAS, Scenario 1b) - I 

 Expected -30% Expected -20% Expected -10% 
 0% -30% Diff 0% -20% Diff 0% -10% Diff 

Replication 1 88.79% 87.93% 0.86% 88.79% 88.79% 0.00% 88.79% 90.52% -1.72% 

Replication 2 89.22% 89.22% 0.00% 89.22% 90.20% -0.98% 89.22% 93.14% -3.92% 

Replication 3 84.13% 84.92% -0.79% 84.13% 84.92% -0.79% 84.13% 85.71% -1.59% 

Replication 4 95.61% 92.98% 2.63% 95.61% 93.86% 1.75% 95.61% 95.61% 0.00% 

Replication 5 92.50% 88.33% 4.17% 92.50% 89.17% 3.33% 92.50% 91.67% 0.83% 

Replication 6 99.11% 94.64% 4.46% 99.11% 96.43% 2.68% 99.11% 98.21% 0.89% 

Replication 7 94.23% 91.35% 2.88% 94.23% 92.31% 1.92% 94.23% 94.23% 0.00% 

Replication 8 95.92% 93.88% 2.04% 95.92% 93.88% 2.04% 95.92% 95.92% 0.00% 

Replication 9 89.81% 88.89% 0.93% 89.81% 87.96% 1.85% 89.81% 89.81% 0.00% 

Replication 10 96.00% 90.00% 6.00% 96.00% 89.00% 7.00% 96.00% 95.00% 1.00% 

Mean 92.53% 90.21% 2.32% 92.53% 90.65% 1.88% 92.53% 92.98% -0.45% 

Variance 0.20% 0.09% 0.05% 0.20% 0.12% 0.05% 0.20% 0.13% 0.02% 

n 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI 89.31% 88.06% 0.79% 89.31% 88.20% 0.23% 89.31% 90.38% -1.55% 

Upper bound CI 95.75% 92.37% 3.85% 95.75% 93.10% 3.53% 95.75% 95.59% 0.65% 

Table B.22. Comparison percentage of customers served for different fixed forecast errors (BAS, Scenario 1b) - II 

 Expected +10% Expected +20% Expected +30% 
 0% -30% Diff 0% -20% Diff 0% -10% Diff 

Replication 1 88.79% 81.90% 6.90% 88.79% 88.79% 0.00% 88.79% 86.21% 2.59% 

Replication 2 89.22% 91.18% -1.96% 89.22% 89.22% 0.00% 89.22% 89.22% 0.00% 

Replication 3 84.13% 80.95% 3.17% 84.13% 73.02% 11.11% 84.13% 75.40% 8.73% 

Replication 4 95.61% 93.86% 1.75% 95.61% 92.98% 2.63% 95.61% 91.23% 4.39% 

Replication 5 92.50% 85.00% 7.50% 92.50% 85.00% 7.50% 92.50% 89.17% 3.33% 

Replication 6 99.11% 96.43% 2.68% 99.11% 93.75% 5.36% 99.11% 93.75% 5.36% 

Replication 7 94.23% 94.23% 0.00% 94.23% 89.42% 4.81% 94.23% 92.31% 1.92% 

Replication 8 95.92% 92.86% 3.06% 95.92% 91.84% 4.08% 95.92% 93.88% 2.04% 

Replication 9 89.81% 83.33% 6.48% 89.81% 81.48% 8.33% 89.81% 82.41% 7.41% 

Replication 10 96.00% 91.00% 5.00% 96.00% 92.00% 4.00% 96.00% 92.00% 4.00% 

Mean 92.53% 89.07% 3.46% 92.53% 87.75% 4.78% 92.53% 88.56% 3.98% 

Variance 0.20% 0.33% 0.09% 0.20% 0.41% 0.12% 0.20% 0.34% 0.07% 

n 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI 89.31% 84.99% 1.26% 89.31% 83.17% 2.26% 89.31% 84.39% 2.09% 

Upper bound CI 95.75% 93.16% 5.65% 95.75% 92.32% 7.30% 95.75% 92.72% 5.86% 
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Table B.23. Comparison costs per customer served for different fixed forecast errors (BAS, Scenario 1b) - I 

 Expected -30% Expected -20% Expected -10% 
 0% -30% Diff 0% -20% Diff 0% -10% Diff 

Replication 1 €1 .61 €17. 6 €1.65 €1 .61 €1 . 0 €0.71 €1 .61 €1 .67 €0.94 

Replication 2 €22.27 €20. 7 €1.40 €22.27 €22.24 €0.03 €22.27 €22.24 €0.03 

Replication 3 €20.26 €1 .63 €0.63 €20.26 €1 .27 €0.99 €20.26 €1 .   €0.37 

Replication 4 €1 . 5 €1 .1  -€0.34 €1 . 5 €1 .56 €0.29 €1 . 5 €1 .42 €0.43 

Replication 5 €1 . 1 €1 .77 €0.04 €1 . 1 €1 .62 €0.19 €1 . 1 €1 .52 €0.29 

Replication 6 €1 .40 €1 .0  €0.32 €1 .40 €17. 0 €0.50 €1 .40 €1 .7  -€0.38 

Replication 7 €21.25 €20.44 €0.81 €21.25 €1 . 2 €1.33 €21.25 €20.33 €0.92 

Replication 8 €20.31 €20.42 -€0.11 €20.31 €1 .27 €1.04 €20.31 €1 .7  €1.53 

Replication 9 €1 . 3 €1 .54 €0.39 €1 . 3 €1 . 1 €1.02 €1 . 3 €1 .72 €0.21 

Replication 10 €21.2  €20.32 €0.97 €21.2  €21.7  -€0.49 €21.2  €20. 2 €0.37 

Mean €20.10 €1 .52 €0.58 €20.10 €1 .54 €0.56 €20.10 €1 .63 €0.47 

Variance €1.54 €1.03 €0.42 €1.54 €1.   €0.32 €1.54 €1.57 €0.29 

n 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI €1 .21 €1 .7  €0.11 €1 .21 €1 .53 €0.16 €1 .21 €1 .73 €0.09 

Upper bound CI €20.   €20.25 €1.04 €20.   €20.55 €0.96 €20.   €20.52 €0.85 

Table B.24. Comparison costs per customer served for different fixed forecast errors (BAS, Scenario 1b) – II 

 Expected +10% Expected +20% Expected +30% 
 0% -30% Diff 0% -20% Diff 0% -10% Diff 

Replication 1 €1 .61 €21.54 -€1.93 €1 .61 €1 .   -€0.28 €1 .61 €1 .74 -€0.13 

Replication 2 €22.27 €21.77 €0.50 €22.27 €22.1  €0.09 €22.27 €22.0  €0.19 

Replication 3 €20.26 €20. 0 -€0.64 €20.26 €22.75 -€2.49 €20.26 €21.4  -€1.23 

Replication 4 €1 . 5 €1 . 0 -€1.05 €1 . 5 €20.20 -€1.35 €1 . 5 €1 .16 -€0.31 

Replication 5 €1 . 1 €1 . 7 -€1.16 €1 . 1 €20.02 -€1.21 €1 . 1 €1 .25 -€0.44 

Replication 6 €1 .40 €17. 0 €0.60 €1 .40 €17.77 €0.63 €1 .40 €17.71 €0.69 

Replication 7 €21.25 €20.7  €0.46 €21.25 €22.0  -€0.84 €21.25 €20.32 €0.93 

Replication 8 €20.31 €20.57 -€0.26 €20.31 €20.0  €0.22 €20.31 €1 .56 €0.75 

Replication 9 €1 . 3 €21.02 -€1.09 €1 . 3 €22.06 -€2.13 €19.93 €22.2  -€2.36 

Replication 10 €21.2  €22.15 -€0.86 €21.2  €21.47 -€0.18 €21.2  €21.53 -€0.24 

Mean €20.10 €20.64 -€0.54 €20.10 €20. 5 -€0.75 €20.10 €20.31 -€0.22 

Variance €1.54 €1.52 €0.72 €1.54 €2.32 €1.07 €1.54 €2.23 €0.99 

n 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI €1 .21 €1 .76 -€1.15 €1 .21 €1 .76 -€1.49 €1 .21 €1 .25 -€0.93 

Upper bound CI €20.   €21.52 €0.06 €20.   €21. 4 -€0.01 €20.   €21.3  €0.50 

B.4.3. Impact of Fluctuating Forecast Errors 

Table B.25 presents the results of the comparisons we did for Hypothesis 4 with regard to the impact of 
fluctuating forecast errors. In all cases the strategy we consider is BAS. Whenever we distinguish a better 
performance for one of the forecast error values on a certain KPI, we show the corresponding result in 
bold. For the KPIs where it is not straightforward whether it is better to have a higher or a lower score, 
we leave it to the reader to judge which result is best. Note that the experiment in which we forecast a 
uniform distribution of customer arrival times whereas the real distribution is an empirical one, is 
abbreviated with BAS(R=E,F=U). The experiment where the distributions are exchanged is abbreviated 
with BAS(R=U,F=E). The base case, where we do not have a forecast error, is abbreviated with 
BAS(NoError). 
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Table B.25. Results Hypothesis 4 for different fluctuating forecast error experiments (BAS, Scenario 1b) 

KPI 

Scenario 1b 

BAS(R=E,F=U) BAS(R=U,F=E) BAS(NoError) 

Customers served (% of total) 0.8944 0.9225 0.9253 

Costs per customer (€) 20.66 20.03 20.10 
Total driving time (seconds) 76780 74942 76147 

Total duration (seconds) 137128 136802 137989 
Total distance (km) 1119.58 1065.19 1086.24 

Total costs (€) 2020.72 2022.43 2034.67 
Number of delivery routes 7.8 8 8 

Number vehicles used of type 1 2.7 2.9 2.9 
Number vehicles used of type 2 1.1 1.1 1.1 
Number vehicles used of type 3 4 4 4 

Average utilization (%) 0.9248 0.9537 0.9436 
Number of customers served 98.1 101.3 101.6 

Time windows offered 3.48 3.63 3.64 

Response time (seconds) 3.4355 2.4648 2.3487 

Running time (seconds) 646 714 668 
Schedule update time (seconds) 0.1397 0.1687 0.1628 
Quick optimize time (seconds) 40 62 58 
Final optimize time (seconds) 45 103 95 
Change fleet time (seconds) 23.3162 11.4593 12.4940 

Table B.26 presents the results of the comparison of the percentage of customers served using a paired-t 
approach. We compare the performance for each experiment with fluctuating forecast error values to the 
base case where we have no forecast error. Table B.27 presents the results of the comparison in terms of 
the average delivery costs per customer served. The differences in performance between two experiments 
are computed with Equation (B.2), in which  j ∈ {(R=E,F=U), (R=U,F=E), (NoError)}. The 95% 
confidence intervals are computed with Equation (6.2). 

Zj = XBAS(NoError) – XBASj, j ≠ (NoError)  (B.2) 

Table B.26. Comparison percentage customers served fluctuating forecast error experiments (BAS, Scenario 1b) 

 Reality Empirical, Forecast Uniform Reality Uniform, Forecast Empirical 
 BAS(NoError) BAS(R=E,F=U) Diff BAS(NoError) BAS(R=U,F=E) Diff 

Replication 1 88.79% 89.66% -0.86% 88.79% 88.79% 0.00% 

Replication 2 89.22% 89.22% 0.00% 89.22% 89.22% 0.00% 

Replication 3 84.13% 78.57% 5.56% 84.13% 84.13% 0.00% 

Replication 4 95.61% 92.11% 3.51% 95.61% 95.61% 0.00% 

Replication 5 92.50% 85.83% 6.67% 92.50% 92.50% 0.00% 

Replication 6 99.11% 94.64% 4.46% 99.11% 98.21% 0.89% 

Replication 7 94.23% 92.31% 1.92% 94.23% 94.23% 0.00% 

Replication 8 95.92% 91.84% 4.08% 95.92% 94.90% 1.02% 

Replication 9 89.81% 84.26% 5.56% 89.81% 88.89% 0.93% 

Replication 10 96.00% 96.00% 0.00% 96.00% 96.00% 0.00% 

Mean 92.53% 89.44% 3.09% 92.53% 92.25% 0.28% 

Variance 0.20% 0.28% 0.07% 0.20% 0.19% 0.00% 

n 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI 89.31% 85.68% 1.18% 89.31% 89.14% -0.04% 

Upper bound CI 95.75% 93.21% 5.00% 95.75% 95.36% 0.61% 
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Table B.27. Comparison costs per customer served fluctuating forecast error experiments (BAS, Scenario 1b) 

 Reality Empirical, Forecast Uniform Reality Uniform, Forecast Empirical 
 BAS(NoError) BAS(R=E,F=U) Diff BAS(NoError) BAS(R=U,F=E) Diff 

Replication 1 €1 .61 €20.02 -€0.41 €1 .61 €1 .61 €0.00 

Replication 2 €22.27 €22.30 -€0.03 €22.27 €22.27 €0.00 

Replication 3 €20.26 €21. 1 -€1.65 €20.26 €20.26 €0.00 

Replication 4 €1 . 5 €1 .30 -€0.45 €1 . 5 €1 . 5 €0.00 

Replication 5 €1 . 1 €1 .64 -€0.83 €1 . 1 €1 . 1 €0.00 

Replication 6 €1 .40 €17. 2 €0.48 €1 .40 €1 .31 €0.09 

Replication 7 €21.25 €21.   -€0.63 €21.25 €20.   €0.37 

Replication 8 €20.31 €20.57 -€0.26 €20.31 €20.5  -€0.27 

Replication 9 €1 . 3 €21.70 -€1.77 €1 . 3 €20.05 -€0.12 

Replication 10 €21.2  €21.37 -€0.08 €21.2  €20.72 €0.57 

Mean €20.10 €20.66 -€0.56 €20.10 €20.03 €0.06 

Variance €1.54 €2.02 €0.49 €1.54 €1.40 €0.06 

n 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI €1 .21 €1 .65 -€1.07 €1 .21 €1 .1  -€0.11 

Upper bound CI €20.   €21.6  -€0.06 €20.   €20.   €0.24 

B.5. Prophet Benchmark 
In this section we present the results used for the benchmark of our strategies against prophet strategies. 
In Section B.5.1 we do so for Use Case 2, and in Section B.5.2 for Use Case 4. 

B.5.1. Use Case 2 

Table B.28, Table B.29, Table B.30 and Table B.31 present the results of the comparisons we did for the 
prophet benchmark for Use Case 2. A better performance for one of the strategies on a certain KPI, is 
shown in bold. 

Table B.28. Results prophet benchmark per scenario and strategy for Use Case 2 

KPI 

Scenario 1a 

Prophet (NTW) Prophet (FCTW) BAS MYS OBS 

Customers served (% of total) 0.7843 0.7797 0.6876 0.5964 0.6072 
Costs per customer (€) 16.12 17.38 19.34 21.67 21.36 

Total driving time (seconds) 52751 63408 61218 57655 58390 
Total duration (seconds) 100283 110958 105774 98515 99736 

Total distance (km) 732.18 934.66 921.27 901.92 907.88 
Total costs (€) 1383.56 1483.37 1451.89 1407.69 1415.66 

Number of delivery routes 8 8 8 8 8 
Number vehicles used of type 1 3.1 3.4 3.8 3.6 4 
Number vehicles used of type 2 5.1 4.6 4.2 4.4 4 

Average utilization (%) 0.9830 0.9813 0.9778 0.9868 0.9872 
Number of customers served 86.0 85.5 75.2 65.2 66.4 

Table B.29. Results prophet benchmark per scenario and strategy for Use Case 2 (continued) 

KPI 

Scenario 1b 

Prophet (NTW) Prophet (FCTW) BAS MYS OBS 

Customers served (% of total) 0.8093 0.8065 0.6964 0.6333 0.6062 
Costs per customer (€) 15.92 17.04 19.37 21.06 21.50 

Total driving time (seconds) 55397 65357 64253 62870 61263 
Total duration (seconds) 104069 113969 108449 104726 101625 

Total distance (km) 753.67 946.82 952.31 957.70 945.16 
Total costs (€) 1408.90 1502.53 1472.96 1453.35 1425.12 

Number of delivery routes 8 8 8 8 7.9 
Number vehicles used of type 1 5.4 5.5 4.8 5 4 
Number vehicles used of type 2 2.6 2.5 3.2 3 3.9 

Average utilization (%) 0.9822 0.9797 0.9672 0.9828 0.9580 
Number of customers served 88.8 88.5 76.3 69.4 66.6 
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Table B.30. Results prophet benchmark per scenario and strategy for Use Case 2 (continued) 

KPI 

Scenario 3a 

Prophet (NTW) Prophet (FCTW) BAS MYS OBS 

Customers served (% of total) 0.8368 0.8169 0.7241 0.6772 0.6927 
Costs per customer (€) 20.52 23.12 24.51 25.88 25.31 

Total driving time (seconds) 100615 119880 108665 106184 106201 
Total duration (seconds) 146149 164424 149369 145490 146179 

Total distance (km) 1657.18 2088.07 1876.21 1850.01 1842.07 
Total costs (€) 1879.38 2067.08 1941.07 1914.29 1916.52 

Number of delivery routes 8 8 8 8 8 
Number vehicles used of type 1 4.1 3.9 4 3.6 4 
Number vehicles used of type 2 3.9 4.1 4 4.4 4 

Average utilization (%) 0.9849 0.9754 0.9271 0.9584 0.9612 
Number of customers served 91.7 89.5 79.4 74.2 75.9 

Table B.31. Results prophet benchmark per scenario and strategy for Use Case 2 (continued) 

KPI 

Scenario 3b 

Prophet (NTW) Prophet (FCTW) BAS MYS OBS 

Customers served (% of total) 0.8280 0.8106 0.7022 0.6479 0.5896 
Costs per customer (€) 20.38 22.81 24.92 26.71 28.23 

Total driving time (seconds) 96771 114462 105229 102458 98284 
Total duration (seconds) 142017 159228 145255 140684 133462 

Total distance (km) 1610.11 2014.11 1837.58 1817.14 1738.38 
Total costs (€) 1847.00 2023.42 1910.49 1881.01 1815.93 

Number of delivery routes 8 8 8 8 7.9 
Number vehicles used of type 1 5.9 6 5.3 5.6 4 
Number vehicles used of type 2 2.1 2 2.7 2.4 3.9 

Average utilization (%) 0.9837 0.9784 0.9283 0.9588 0.8836 
Number of customers served 90.7 88.8 76.8 70.7 64.6 

B.5.2. Use Case 4 

Table B.32, Table B.33, Table B.34 and Table B.35 present the results of the comparisons for the prophet 
benchmark for Use Case 4. We show a better performance for a strategy on a certain KPI in bold. 

Table B.32. Results prophet benchmark per scenario and strategy for Use Case 4 

KPI 

Scenario 1a 

Prophet (NTW) Prophet (FCTW) BAS MYS OBS 

Customers served (% of total) 0.9491 0.9491 0.9068 0.8568 0.6072 
Costs per customer (€) 17.60 19.25 19.92 21.19 21.36 

Total driving time (seconds) 54067 71571 69903 71031 58390 
Total duration (seconds) 117145 134511 131919 131127 99736 

Total distance (km) 695.47 1011.70 994.44 1039.20 907.88 
Total costs (€) 1828.99 2001.43 1977.66 1984.76 1415.66 

Number of delivery routes 8 8 8 8 8 
Number vehicles used of type 1 1.7 1.5 1.7 2.1 4 
Number vehicles used of type 2 2.3 2.5 2.3 1.9 4 
Number vehicles used of type 3 4 4 4 4 0 

Average utilization (%) 0.9752 0.9747 0.9607 0.9723 0.9872 
Number of customers served 104.2 104.2 99.5 93.8 66.4 

Table B.33. Results prophet benchmark per scenario and strategy for Use Case 4 (continued) 

KPI 

Scenario 1b 

Prophet (NTW) Prophet (FCTW) BAS MYS OBS 

Customers served (% of total) 0.9651 0.9643 0.9253 0.8868 0.6062 
Costs per customer (€) 17.50 19.20 20.10 21.12 21.50 

Total driving time (seconds) 56635 74683 76147 76855 61263 
Total duration (seconds) 119995 137959 137989 137347 101625 

Total distance (km) 716.38 1046.14 1086.24 1134.02 945.16 
Total costs (€) 1849.75 2027.86 2034.67 2040.94 1425.12 

Number of delivery routes 8 8 8 8 7.9 
Number vehicles used of type 1 3.2 3.1 2.9 2.7 4 
Number vehicles used of type 2 0.8 0.9 1.1 1.3 3.9 
Number vehicles used of type 3 4 4 4 4 0 

Average utilization (%) 0.9732 0.9730 0.9436 0.9666 0.9580 
Number of customers served 106.0 105.9 101.6 97.0 66.6 
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Table B.34. Results prophet benchmark per scenario and strategy for Use Case 4 (continued) 

KPI 

Scenario 3a 

Prophet (NTW) Prophet (FCTW) BAS MYS OBS 

Customers served (% of total) 0.9622 0.9395 0.8740 0.8560 0.6927 
Costs per customer (€) 20.90 24.52 25.35 26.28 25.31 

Total driving time (seconds) 92873 125793 116955 119377 106201 
Total duration (seconds) 148661 179841 167925 170347 146179 

Total distance (km) 1418.38 2135.56 1954.42 2027.42 1842.07 
Total costs (€) 2203.01 2523.16 2424.53 2460.47 1916.52 

Number of delivery routes 8 8 8 8 8 
Number vehicles used of type 1 2.4 1.6 2.1 1.6 4 
Number vehicles used of type 2 1.6 2.5 1.9 2.4 4 
Number vehicles used of type 3 4 3.9 4 4 0 

Average utilization (%) 0.9697 0.9471 0.8997 0.9313 0.9612 
Number of customers served 105.6 103.1 95.9 93.7 75.9 

Table B.35. Results prophet benchmark per scenario and strategy for Use Case 4 (continued) 

KPI 

Scenario 3b 

Prophet (NTW) Prophet (FCTW) BAS MYS OBS 

Customers served (% of total) 0.9564 0.9330 0.8678 0.8612 0.5906 
Costs per customer (€) 20.88 24.24 24.55 25.52 28.22 

Total driving time (seconds) 90150 119202 106304 113068 98475 
Total duration (seconds) 145902 173526 157304 164356 133707 

Total distance (km) 1404.56 2026.84 1768.16 1916.89 1741.61 
Total costs (€) 2186.83 2476.32 2328.85 2403.37 1817.93 

Number of delivery routes 8 8 8 8 7.9 
Number vehicles used of type 1 3 3.4 3.3 3.2 4 
Number vehicles used of type 2 1 0.6 0.7 0.8 3.9 
Number vehicles used of type 3 4 4 4 4 0 

Average utilization (%) 0.9734 0.9517 0.8913 0.9290 0.8852 
Number of customers served 104.9 102.3 95.1 94.2 64.7 

B.6. Impact of Intermediate Optimization Calls 
Table B.36 presents the results of the comparisons we did between simulations with and without 
intermediate optimization calls for Use Case 2. Whenever we distinguish a better performance for one of 
the strategies on a certain KPI, we show the result for that strategy and KPI in bold. For the KPIs where 
it is not straightforward whether it is better to have a higher or a lower score, we leave it to the reader 
to judge which result is best. 

Table B.36. Results impact of intermediate optimization calls per scenario and strategy 

KPI 

Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

OBS (NoOpt) OBS OBS (NoOpt) OBS OBS (NoOpt) OBS OBS (NoOpt) OBS 

Customers served (% of total) 0.5905 0.6072 0.6045 0.6062 0.6247 0.6927 0.5512 0.5896 

Costs per customer (€) 22.26 21.36 21.92 21.50 26.92 25.31 29.25 28.23 

Total driving time (seconds) 59994 58390 63359 61263 98970 106201 93400 98284 
Total duration (seconds) 100662 99736 103637 101625 135558 146179 126292 133462 

Total distance (km) 955.89 907.88 990.37 945.16 1733.65 1842.07 1676.70 1738.38 
Total costs (€) 1430.41 1415.66 1445.34 1425.12 1835.83 1916.52 1754.56 1815.93 

Number of delivery routes 8 8 7.9 7.9 8 8 7.8 7.9 
Number vehicles used of type 1 4 4 4 4 4 4 4 4 
Number vehicles used of type 2 4 4 3.9 3.9 4 4 3.8 3.9 

Average utilization (%) 0.9874 0.9872 0.9566 0.9580 0.9020 0.9612 0.8281 0.8836 
Number of customers served 64.5 66.4 66.5 66.6 68.6 75.9 60.4 64.6 

Time windows offered 2.34 2.41 2.38 2.40 2.25 2.55 1.99 2.19 

Response time (seconds) 0.2063 0.1364 0.1805 0.1397 0.2247 0.1947 0.2077 0.1783 

Running time (seconds) 120 320 111 324 115 358 103 309 
Schedule update time (seconds) 0.1546 0.1390 0.1169 0.1274 0.1123 0.1733 0.1054 0.1373 
Quick optimize time (seconds) 0 45 0 46 0 49 0 42 
Final optimize time (seconds) 79 56 75 59 75 67 66 56 

Change fleet time (seconds) 0 0 0 0 0 0 0 0 

Table B.37 presents the data that we used for the paired-t approach to compare the percentage of 
customers that are served both in cases with and without intermediate optimization calls. 



B.6. Impact of Intermediate Optimization Calls 

B.17 

Table B.37. Data used for comparing the percentage of customers served for OBS (NoOpt) and OBS 

Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

OBS (NoOpt) OBS Diff OBS (NoOpt) OBS Diff OBS (NoOpt) OBS Diff OBS (NoOpt) OBS Diff 

Replication 1 54.31% 54.31% 0.00% 61.21% 60.34% 0.86% 58.62% 63.79% -5.17% 47.41% 54.31% -6.90% 

Replication 2 57.84% 59.80% -1.96% 61.76% 62.75% -0.98% 60.78% 76.47% -15.69% 57.84% 66.67% -8.82% 

Replication 3 44.44% 50.79% -6.35% 52.38% 52.38% 0.00% 61.90% 65.08% -3.17% 53.17% 56.35% -3.17% 

Replication 4 63.16% 64.91% -1.75% 64.04% 63.16% 0.88% 58.77% 64.04% -5.26% 45.61% 49.12% -3.51% 

Replication 5 53.33% 53.33% 0.00% 62.50% 61.67% 0.83% 61.67% 65.00% -3.33% 53.33% 57.50% -4.17% 

Replication 6 62.50% 64.29% -1.79% 74.11% 70.54% 3.57% 59.82% 69.64% -9.82% 59.82% 58.04% 1.79% 

Replication 7 63.46% 64.42% -0.96% 56.73% 57.69% -0.96% 70.19% 73.08% -2.88% 61.54% 58.65% 2.88% 

Replication 8 69.39% 70.41% -1.02% 57.14% 57.14% 0.00% 60.20% 69.39% -9.18% 51.02% 56.12% -5.10% 

Replication 9 61.11% 62.96% -1.85% 54.63% 55.56% -0.93% 65.74% 72.22% -6.48% 57.41% 63.89% -6.48% 

Replication 10 61.00% 62.00% -1.00% 60.00% 65.00% -5.00% 67.00% 74.00% -7.00% 64.00% 69.00% -5.00% 

Mean 59.05% 60.72% -1.67% 60.45% 60.62% -0.17% 62.47% 69.27% -6.80% 55.12% 58.96% -3.85% 

Variance 0.48% 0.38% 0.03% 0.37% 0.27% 0.05% 0.15% 0.21% 0.15% 0.36% 0.36% 0.14% 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI 54.09% 56.33% -2.95% 56.12% 56.90% -1.73% 59.70% 65.98% -9.62% 50.80% 54.69% -6.48% 

Upper bound CI 64.02% 65.12% -0.38% 64.78% 64.35% 1.38% 65.24% 72.56% -3.98% 59.44% 63.24% -1.22% 

Table B.38 presents the data that we used for the paired-t approach to compare the average delivery costs 

per customer served both in cases with and without intermediate optimization calls. 

Table B.38. Data used for comparing the costs per customer served for OBS (NoOpt) and OBS 

Scenario 1a Scenario 1b Scenario 2a Scenario 2b 

OBS (NoOpt) OBS Diff OBS (NoOpt) OBS Diff OBS (NoOpt) OBS Diff OBS (NoOpt) OBS Diff 

Replication 1 €23.24 €22.21 €1.03 €20.50 €20.73 -€0.23 €27.07 €25.41 €1.66 €34.01 €2 .73 €4.28 

Replication 2 €24.31 €22. 7 €1.44 €23. 3 €23.0  €0.75 €2 .33 €24.   €3.35 €27.5  €27.04 €0.54 

Replication 3 €23.93 €20. 0 €3.03 €22.60 €22.41 €0.19 €23.56 €23.22 €0.34 €26.75 €26.17 €0.58 

Replication 4 €20.12 €20.11 €0.01 €20.34 €20.0  €0.26 €2 .27 €26.76 €1.51 €33.74 €31. 4 €1.90 

Replication 5 €22. 3 €21.   €0.94 €20. 4 €20.72 €0.12 €24.71 €24.50 €0.21 €2 .30 €27.82 €1.48 

Replication 6 €21.14 €21.1  -€0.05 €1 .55 €1 .10 -€0.55 €27.27 €25.27 €2.00 €2 . 4 €2 .00 -€0.06 

Replication 7 €21.3  €20. 4 €0.55 €22.   €22.65 €0.33 €25. 3 €24.   €0.95 €25.47 €2 .1  -€2.71 

Replication 8 €22.4  €21.6  €0.81 €21.53 €21.56 -€0.03 €31.25 €2 .01 €3.24 €30. 7 €2 .44 €1.53 

Replication 9 €20.77 €1 . 0 €0.97 €23. 6 €22. 4 €1.02 €25.55 €23. 1 €1.74 €2 .22 €27.42 €0.80 

Replication 10 €22.27 €22.03 €0.24 €24.13 €21. 4 €2.29 €27.22 €26.17 €1.05 €27.4  €25.6  €1.80 

Mean €22.26 €21.36 €0.90 €21. 2 €21.50 €0.42 €26. 2 €25.31 €1.61 €2 .25 €2 .23 €1.01 

Variance €1. 2 €0. 4 €0.79 €3.45 €1.73 €0.63 €4.65 €1. 6 €1.13 € .16 €3.37 €3.11 

n 10 10 10 10 10 10 10 10 10 10 10 10 

α 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

t-value 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26 

Lower bound CI €21.27 €20.67 €0.26 €20.5  €20.56 -€0.15 €25.37 €24.31 €0.84 €27.20 €26. 2 -€0.25 

Upper bound CI €23.25 €22.06 €1.53 €23.25 €22.44 €0.98 €2 .46 €26.31 €2.37 €31.2  €2 .55 €2.28 
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