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Twin primes:

classical results and new developments

Sam van Dijk∗

February, 2019

Abstract

While the notion of prime numbers has existed for millennia, twin primes have only
been around for little over a century. Although it is not known whether there are
in�nitely many twin primes, the prime gap was very recently shown to be no greater
than 246. The fact that the summed reciprocals of twin primes converge to approx-
imately 1.9 has also been demonstrated. It has further been established that there
do exist in�nitely many primes p for which p+ 2 is the product of no more than two
primes. A criterion for twin primes does exist but it is neither su�cient to show the
existence of an in�nite number of them, nor feasible as a computational tool.

Keywords: Prime numbers, Twin primes, Sieve theory.

1 Introduction

This thesis comprises a review of several historic landmarks in the theory of twin primes.
To mention them by name, Brun's theorem, the k-tuple conjecture, Chen's theorem and
the bounds for the prime gap established by Zhang and Maynard will be explored in further
detail. A large proportion of earlier research on twin primes led only to conjectural results.
In addition, many of the proven results on twin primes display a heavy internal reliance on
the theory of regular primes. Because of this, the theory of twin primes will be explored by
in each case �rst observing the analogous result for the prime numbers themselves. Special
attention is also devoted to the development of sieve techniques, from which almost all
extant results on twin primes derive. The thesis is structured chronologically, with each
chapter representing a subsequent development in the bodies of prime and twin prime
theory. It begins therefore, as it must, by looking at the origins of prime numbers and twin
primes themselves.
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2 Humble beginnings

Before stating the de�nitions of prime numbers and twin primes some historical context
is provided. The notion of prime numbers is perhaps as old as the concept of division
itself, dating back at least several thousand years. The Elements, written by Euclid circa
300 BC, provides a now-famous proof of the in�nitude of primes. Appendix A contains a
translation of this proof. Both this and his proof of the fundamental theorem of arithmetic
clearly show that by Euclid's time the notion of prime numbers was already understood
to some extent. It might therefore surprise the reader that the idea of twin primes would
not appear for another two millennia. During all this time the issue of whether 1 is prime,
or if it even quali�ed as a number to begin with, would stay unresolved. According to
Caldwell and Xiong in [4], the number one would not widely be considered as such until
the introduction of decimals and the real number system to Europe by Simon Stevin in his
1585 publication De Thiende. Two hundred years thereafter, in 1798, Carl Friedrich Gauss
wrote the Disquisitiones Arithmeticae. It is argued in [4] that this work laid a foundation
for modern number theory which consolidated the de�nition of prime numbers as it is
known today. A fair proposition, given the fact that Gauss had stated and proved modern
forms of both the fundamental theorem of arithmetic and the Chinese remainder theorem
in this work. The idea of one as a prime number would however not completely vanish
until well into the 20th century, with the 1921 third edition printing of A Course of Pure
Mathematics by G.H. Hardy still counting 1 amongst the primes in several cases.

2.1 Preliminaries

The contemporary de�nitions of primes and twin primes are now ready to be set forth.

De�nition 2.1 (Prime numbers). Any natural number with exactly two distinct positive
divisors is prime or, equivalently, a prime number.

De�nition 2.2 (Twin primes). A twin prime is any prime number p such that p + 2 is
also prime.

The pair {p, p+ 2} is a twin prime pair if p is a twin prime. By grace of these de�nitions
both primes and twin primes are individual numbers rather than one of the two referring
to numbers and the other to number sets. This choice was made for ease of reference
moreso than any other reason. The (obvious) exclusion of the number one from the primes
by de�nition 2.1 must also be duly noted by the reader. Each positive integer is then
either a unit, a composite number, or a prime.1 The notation P identi�es the set of
prime numbers and P2 similarly corresponds to the set of twin primes. Table 1 below
contains the twenty smallest twin prime pairs. The largest currently known twin prime is
2996863034895 ∗ 21290000 − 1, a number over 3 ∗ 106 digits in length. This record is taken
from The Prime Pages at https://primes.utm.edu.

1If convenient, such a partitioning could easily be extended to include the number zero. In order to

achieve this the unit partition should be replaced by an identity partition containing the identities 0 and

1 both.
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Twin prime pairs

3 5 149 151
5 7 179 181
11 13 191 193
17 19 197 199
29 31 227 229
41 43 239 241
59 61 269 271
71 73 281 283
101 103 311 313
137 139 347 349

Table 1: Twenty twins

The following pair of analogous statements about the cardinality of P and P2 are further
presented.

Theorem 2.3 (The in�nitude of primes). There are in�nitely many primes.

Conjecture 2.4 (The twin prime conjecture). There are in�nitely many twin primes.

As is shown in appendix A the �rst of these statements has long since been proved. The
latter remains undecided to date. The twin prime conjecture has occupied the minds of
many great thinkers since its conception, as will soon become evident from this thesis.
Even so, it can not be stated for precisely how long it has been an open problem as it
was originally part of a more general conjecture. The circumstances of that origin are
elucidated in the remainder of this section.

2.2 The origins of twin primes and the twin prime conjecture

The origin of the twin prime conjecture can be attributed to Alphonse de Polignac only
with some reservations. Although he was in fact the �rst to present some form of it
in writing the circumstances of this event are at best described as dubious, at worst as
downright shameful. De Polignac, born in 1826, was a nobleman whose father had brie�y
served as prime minister of France at the end of the Bourbon Restoration. In the october
1849 issue of Comptes rendus, a publication of the still-renowned École Polytechnique, he
o�ered a pair of statements as theorems in a research paper on prime numbers. The �rst
of these is known today as Polignac's conjecture.

Conjecture 2.5 (Polignac's conjecture). For any even positive integer n there exist in-
�nitely many primes p such that p+ n is the �rst prime subsequent to p.

The twin prime conjecture corresponds to the case n = 2 of this conjecture. His second
claim was the strictly false proposition that all odd numbers can be expressed as the sum
of a prime and a power of two. He goes so far as to insist this statement had been veri�ed
for numbers up to 3 million. This claim, falsi�able by the fourth Mersenne prime2, had
in fact already been discredited by Euler 100 years prior. He would acknowledge his error
within months, blaming subordinates for faulty calculations [8]. He had made no speci�c

2The reader is invited to con�rm that the fourth Mersenne prime 27 − 1 = 127 cannot be written as a

sum 2k + p. To those readers who consider this too trivial an excercise, I propose de Polignac's claim may

alternatively be falsi�ed by a composite number.
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mention of twin primes and had furthermore presented his conjecture (as a theorem) along-
side a known falsehood. This casts, to say the least, some doubt on his academic credibility.

Thirty years later, in 1879, James Whitbread Lee Glaisher would at last do the twin
prime conjecture justice. As editor of the Quarterly Journal of Mathematics he authored
an article introducing the notion of "prime-pairs". Though without naming it as such, he
also states the twin prime conjecture explicitly in this article. An image of the original
text containing this statement may be found in [8] by Dunham. Dunham further asserts
there that twin primes were to replace prime-pairs within decades through translations of
the term into German and French. He notes that by the time of Viggo Brun, whose work
is discussed in section 3, twin primes had become the standard terminology.

3 Reciprocal primes

The �rst major theorem published on the topic of twin primes was in some ways a dis-
heartening result. It was �rst established in 1919 by Viggo Brun. In [3] he managed to
show that the sum of reciprocals of twin prime pairs is convergent. Considering the fact
that the summed reciprocals of primes∑

p∈P

1

p
=∞ (1)

diverge, this is remarkable indeed. The result established by Brun was somewhat disheart-
ening in the sense that the twin prime conjecture would have followed directly from the
divergence of the summed reciprocals.3 A proof of his theorem which is both clear and
concise can be found in [21] and section 3.3 will treat this result in further detail. The
value of the sum∑

p∈P2

(
1

p
+

1

p+ 2
) = B (2)

is known as Brun's constant. The explicit bound B < 2.4 is demonstrated in [18] and its
value was computed in [24] to be approximately 1.9 by Thomas Nicely. Nicely's calculation
is mentioned in section 7 as it turned out to reveal the existence of the Pentium FDIV
bug. Brun established his result with the aid of a most ingenious method known as Brun's
sieve. This method was based on a re�nement of the sieve of Erathosthenes that has been
around for several millennia. There had been virtually no interest in sieves up to this
point, but Brun's sieve would mark the beginning of an entire �eld of study nowadays
known as sieve theory. Like most modern sieves it utilizes the fundamental theorem of
arithmetic alongside the Chinese remainder theorem in order to allow a sum to be turned
into a product for which meaningful bounds can be obtained. The Riemann zeta function
ζ(s) is used in [3] to achieve that transformation. This zeta function is the analytical
continuation of a remarkably simple sum

∞∑
n=1

1

ns
= ζ(s), Re(s) > 1

which even more remarkably transforms into an equally simple product (see (4)). While
Riemann was �rst to elaborate on the possibility of analytical continuation, it was Euler

3Note that while divergence would imply the twin prime conjecture, convergence does not disprove it.
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who �rst studied its most basic form. The key signi�cance of zeta functions to applications
in sieve theory rests on the ability to transform sums into products. When a sum counts
(or bounds) the number of members in a set, its product equivalent can then be anal-
ysed to assess the magnitude of the set. This is often advantageous as such products are
more suitable than sums for the application of techniques involving integration. A general
method by which to achieve such transformations is therefore now explained before the
reader's attention is turned towards proofs of the equations 1 and 2.

3.1 Euler products

The idea of expressing a series as an in�nite product instead of an in�nite sum is intro-
duced in order to assist the reader's comprehension of Brun's sieve. The aforementioned
divergence of the reciprocals of primes proved in section 3.2 was in fact �rst proved by
Leonhard Euler in [12] through use of just such an idea. The idea of these so-called Euler
products is again crucial in proving the prime number theorem discussed in section 4.1. It
additionally pervades the original derivation of the so-called Hardy-Littlewood conjectures
treated there. More modern research often relies upon it as an elementary tool. The reader
is referred to [19] for a more in-depth explanation of generalized Euler products. Although
the details of its application in many of the sources used (such as [16],[25],[31], and [9] to
name a few) had to be omitted here, it must be stressed that its importance cannot be
overstated. The method, in technical terms, consists of replacing a Dirichlet L-series

∞∑
n=1

χk(n)

ns
,

wherein the Dirichlet character χk(n) is a totally multiplicative4 complex function modulo
k, with an in�nite product

∏
p∈P

∞∑
n=1

an(p)znp

of power series. This product must be carried out over all primes. The prime terms of the
L-series are used as the variables zp for each of the power series. Since most would prefer
the variable of a power series to be a plain number rather than containing a function, the
Dirichlet character χk occuring in the terms of the L-series ought to be taken out. This
is easily achieved by simply eliminating it from the variable and instead setting it to form
the coe�cients an(p) of the power series. The coe�cients of each power series are then
given by the Dirichlet character of the corresponding prime.5 By grace of unique prime
factorization such a product of power series at prime indices covers every natural number's
term from the original L-series exactly once. The equality

∞∑
n=1

χk(n)

ns
=
∏
p∈P

∞∑
n=1

χk(pn)

psn
=
∏
p∈P

1

1− χk(p)p−s
(3)

is thus obtained whenever s is chosen such that the power series are convergent. Whilst I
managed to arrive at this equation through a personal investigation of the subject matter,

4The totally multiplicative quality amounts to the statement ∀a, b : χk(ab) = χk(a)χk(b), allowing for

assertion of the fact that χk(a
n) = χn

k (a).
5More speci�cally: the nth coe�cient in the sum of the power series for a given prime is the Dirichlet

character of the nth power of that prime, which is equivalent to the nth power of that prime's Dirichlet

character.
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Wuthrich asserts its validity in [29] with greater detail. Note that setting χk(n) = 1
in equation 3 turns the middle expression's power series into simple geometric series. An
extremely elegant but algebraically simplistic analog of this method allowed Euler to arrive
in [12] at the product formula

∏
p∈P

1

1− 1
ps

=

∞∑
n=1

1

ns
(4)

for the much-renowned Riemann zeta function. This particular equation would come to
be known as Euler's product. Equation 1 and several other equally impressive results are
subsequently demonstrated in [12] by what e�ectively amounts to algebraic manipulations
involving this type of product. Much later works (e.g. [19],[28]) would come to invoke
the name `Euler products' for all algebraic transformations of this general type. It must
be noted that Euler's product is certainly the most prevalent of all Euler products and
arguably the most important. A general notion of Euler products has nevertheless been
presented here (as equation 3) because of its profound connections to sieve theory and its
tremendous potential as an analytical tool.

3.2 Divergence of the summed prime reciprocals

Despite Euler's extraordinary genius his notation occasionally lacks �nesse by modern
standards (or perhaps it is us, mere mortals, who lack the master's understanding). In
particular several ultimately inconsequential liberties were taken with regard to the values
of divergent series and the relative magnitude of in�nitesimal terms. The reader is referred
to [2] for further insights into the speci�c technicalities that are omitted in Euler's work.
These are inconsequential in the sense that any potential gaps in the proof have long since
been closed, some even by Euler's own subsequent publications. They however remain
of consequence to the intricacy and length of a formal proof for equation 1 derived from
the immensely powerful result titled 'Theorem 19' in [12]. Luckily a brief and remarkably
simple proof of equation 1 instead attributable to Paul Erdõs can yet be provided here.
The proof is by contradiction. Assume the summed reciprocals of primes to converge.
Then for some k we must have

∞∑
n=k+1

1

pn
<

1

2
.

Now consider the function Sk(x) which counts those integers smaller than x whose only
prime factors are amongst the �rst k primes. By writing each of these integers as nm2

with n squarefree it is quickly observed that

Sk(x) < 2k
√
x

since m2 ≤ nm2 < x and the number of possible choices for n is at most 2k, the number of
combinations of the �rst k primes. The number of positive integers smaller than x which
are divisible by the prime p is at most x

p , so the number of integers smaller than x divisible
by any prime other than the �rst k primes is then at most

∞∑
n=k+1

x

pn
<
x

2
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by assumption. However, the number of such integers must additionally equal x − Sk(x)
since every integer except 1 has a prime divisor. Now x− Sk(x) < x

2 gives

x

2
< Sk(x) < 2k

√
x .

Setting x to be at least 22k+2 then gives the contradiction 22k+1 < 22k+1 so the assumption
must be false and the sum

∑
p∈P

1
p therefore diverges.

Erdõs was extremely proli�c throughout the twentieth century and the precise provenance
of this proof could hence not be ascertained. In addition to this and many other contribu-
tions Erdõs was involved in the development of an elementary proof of the prime number
theorem from section 4.1 by way of events which [13] extensively documents.

3.3 Brun's sieve

Brun did not show the convergence of equation 2 directly. Rather, he demonstrated an
upper bound for the twin prime counting function which was in turn used to establish
convergence. The twin prime counting function is the function π2 de�ned as

π2(x) =
∑
p∈P2
p≤x

1 +
∑
p∈P2

(p+2)≤x

1 for x ∈ N .

It counts the number of members of twin prime pairs not exceeding x in magnitude. The
bound Brun established is sometimes known as Brun's theorem.6

Theorem 3.1 (Brun's theorem). There exists a positive constant C so that the number
π2(x) of members of twin prime pairs not exceeding x satis�es

π2(x) < C ∗ x ∗
( log log x

log x

)2
, ∀x ≥ 3 .

The proof of Brun's theorem e�ectively consists of three steps. For the �rst step, the goal
is to separate a suitable remainder from the twin prime counting function. In the second
step the magnitude of this remainder is analysed. An upper bound for π2(x) is thus con-
structed. The third step consists of identifying a choice of variables that allows the upper
bound to be conveniently expressed in terms of the argument of the twin prime counting
function alone. In this three-step approach the reasoning of [26] is followed closely. As an-
other less lengthy alternative to Brun's original paper [3], a somewhat di�erent approach
is o�ered in [21]. The only shortcoming of the proof in [21] is that it fails to analyse
the size of a particular error term. This is however not a total loss as understanding of
the proof is signi�cantly facilitated by the omission, and said error term can in fact be
analysed with the aid of the prime number theorem. In one further alternative, slides
10− 13 in a talk given by Sun [27] also demonstrate the idea behind the proof succinctly.
A rudimentary outline of the proof for Brun's theorem now follows. It is intended not
only to shed light on the inner workings of Brun's sieve itself, but also to hopefully provide
some insight into the way in which bounds can be obtained by sieving techniques in general.

As previously mentioned the proof begins by separating a suitable remainder from π2(x),
the twin prime counting function. This is achieved by separating it into a `head' (H) and a
`tail' (T ) segment, with the cut-o� point y < x to be determined later. The `head' segment

6In other cases, the name �Brun's theorem� might be used to refer to equation 2 directly.
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simply counts all primes smaller than some chosen number. Of course not all of these are
twin primes, but overcounting in the `head' is of minor importance as the proof instead
rests on clever analysis of the `tail' and an appropriate choice for the cut-o� point. The
`tail' segment counts all odd numbers n < x for which the product n(n+ 2) is not divisible
by any of the odd primes smaller than the chosen cut-o�. The reader should convince
theirself at this point that the two segments

H(y) + T (x, y) ≥ π2(x)

have together accounted at least for every twin prime no greater than x. The `tail' is then
written as all of the odd numbers smaller than x minus an alternating sum

T (x, y) =
⌈x

2

⌉
+

H(y)∑
i=1

(−1)i
(H(y)

i )∑
j=1

D(x, i, j) (5)

where D(x, i, j) counts the amount of odd numbers k < x for which k(k+ 2) is divisible by
some product of precisely i speci�c primes all smaller than H(y), and j is an index for the
combinations of such primes. The point of the alternating sum is to exclude precisely those
odd numbers for which n(n + 2) is divisible by any prime smaller than the chosen cut-
o�. This is achieved by the principle of inclusion-exclusion through alternate subtraction
and addition of the odd numbers for which n(n+ 2) is divisible by some individual prime
(smaller than the cut-o�), some product of two primes, et cetera until the product of all
primes up to the cut-o� is reached. Also by the principle of inclusion-exclusion, whenever
this alternating sum is truncated at an even number of terms l it remains assured that

T (x, y) ≤
⌈x

2

⌉
+

l∑
i=1

(−1)i
(H(y)

i )∑
j=1

D(x, i, j)

and thus no more than the required amount of odd numbers has been eliminated. Subse-
quently the Chinese remainder theorem allows the establishment of values for the individual
terms D(x, i, j) occuring inside the alternating sum. It is vital that the sum be truncated
at an even number of terms not only because this is required by the inclusion-exclusion
principle, but also since the remainder theorem would not otherwise permit for such eval-
uation. Together, these methods make it possible to write the `tail' segment in a fashion
that can be feasibly evaluated. Performing this evaluation is the second step of the proof.
Here the method of Euler products is utilized, alongside a bound on the value of speci�c
partial sums known as Mertens' second theorem, in order to simplify the expression de-
rived in step one. This eliminates the most problematic terms from the original expression
for the `tail'. The remaining terms can be analysed with the aid of bounds on the prime
counting function developed from the prime number theorem treated in the next chapter.
This produces an expression now devoid of summations, although it still contains the cho-
sen cut-o� point y as an argument. The third step of choosing a suitable function of x as
a value for the cut-o� point is then comparatively simple. An appropriate choice for the
cut-o� point always takes the form y = x1/c log log(x) wherein the speci�c value of c hinges
on the trunctation point l chosen for the alternating sum in step one, and on the degree of
care observed with regard to the establishment of bounds on the summands in step two.

To arrive at equation 2 from Brun's theorem is a fairly straightforward endeavour. It
is achieved here in a fashion taken from [27]. By Brun's theorem a constant C̃ exists such
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that

π2(x) < C ∗ x ∗
( log log x

log x

)2
≤ C̃ x

(log x)1.5
∀x ≥ 3 .

Let tn be the n-th twin prime. Then

n = π2(tn) < C̃
tn

(log tn)1.5
and so

1

tn
<

C̃

n(log n)1.5
.

By now summing over all twin primes it is seen that

∑
p∈P2

1

p
=
∞∑
n=1

1

tn
<
∞∑
n=1

C̃

n(log n)1.5
<∞

since
∑

1/n(log n)1+ε converges for ε > 0. Because

2
∑
p∈P2

1

p
>
∑
p∈P2

(
1

p
+

1

p+ 2
)

equation 2 follows directly from this observation.
With this conclusion, the exploration of reciprocal sums has been completed. The up-
coming chapter deals with the notion of prime number distributions, beginning with an
important result that permeates throughout the crevices of number-theoretic results.

4 The prime number theorem

Knowledge of the distribution (or density function) of primes is arguably one of the most
basic tools available in contemporary number theory. Although perhaps to a slightly lesser
extent than the Riemann zeta function, it underpins many �ndings in this �eld of study.

4.1 On the density function of prime numbers

No concrete theorems have yet been con�rmed for the distribution of twin primes, but the
distribution of prime numbers is well-established. This establishment originated with a
theorem on the asymptotic distribution of primes known as the prime number theorem.

Theorem 4.1 (Prime number theorem). The value of the prime counting function π(x)
asymptotically approaches x

log x as x approaches in�nity.

This theorem can be stated as

lim
x→∞

π(x)

x/ log x
= 1 (notation: π(x) ∼ x

log x
) .

There can be no such thing as the original prime number theorem given that Jacques
Hadamard [15] discovered it independently of Charles-Jean de la Vallée Poussin [7]. In
an interesting display of synchronicity, [13] notes that it was also �rst conjectured inde-
pendently by two (much-renowned) mathematicians, Legendre and Gauss. A short proof
of the prime number theorem reccommended to the reader is pro�ered in [30]. Although
providing some extremely valuable insight into the distribution of the primes, as an ap-
proximation to π(x) it leaves much to be desired. For instance, describing its asymptotic
behavior fails to provide any lower or upper bounds on the prime counting function. It
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is therefore unsurprising that many re�nements to the prime number theorem have since
been devised. Strict lower and upper bounds on π(x) are due to Dusart, who showed in
[10] that

π(x) ≥ x

log x

(
1 +

1

log x
+

1.8

log2 x

)
, x ≥ 32299 ,

π(x) ≤ x

log x

(
1 +

1

log x
+

2.51

log2 x

)
, x ≥ 355991 ,

basing that result in part on earlier e�orts by Chebyshev. The continued re�nement of
these bounds to increasingly tight derivate forms

x

a+ log x
< π(x) <

x

A+ log x
, ∀x ≥ x0

for real numbers a,A, x0 is a work that remains ongoing. The most notable improvement
of the prime number theorem is perhaps its approximation

π(x) ∼ Li(x) =

∫ x

2

dt

log t
(6)

by the o�set logarithmic integral Li(x). This was �rst speculated by Gauss before the
prime number theorem was ever even proved. Modern methods have since revealed this
approximation to be much more accurate than the original x/ log x. This is to say that the
deviation π(x)−(x/ log x) is O(x/ log2 x), whereas it is O(x/ec

√
log x) in the approximation

by Li(x) (See pages 36-43 of Dusart's thesis [9] for the derivation, but be forewarned said
pages are of exceeding complexity). Whilst these error terms are the result of modern (and
ongoing) investigations, in [5] Chebyshev had already demonstrated prior to the prime
number theorem's advent that Li(x) would be a better approximation of π(x) than any
rational function of x/ log x. Accuracy remains nevertheless a relative term: the di�erence
|π(x)− Li(x)| does in fact still grow arbitrarily large, as Littlewood demonstrates in [20].
Riemann had postulated that Li(x) − 1

2Li(
√
x) or any like expansion over some �nite

number of further terms might be an even better approximation, but Edwards' book [11]
on the zeta function remarks that such a notion was later disproved by Littlewood. It
was additionally Littlewood who, in collaboration with Hardy, contrived the `best guess'
currently available on the density of twin primes. This is to be the topic of the following
section.

4.2 On the density function of twin primes

In analogy to the prime number theorem, a conjecture known as the k-tuple conjecture
(originally called Theorem X in [16]) �rst posed by Littlewood and Hardy is the closest
any have come to describing the density function of the twin primes. It rests on a rather
complicated hypothesis which is here omitted from consideration. The notion of admissible
sets must however be introduced.

De�nition 4.2 (Admissible set). Let H be a set of k integers. When there exists no prime
p such that {h mod p |h ∈ H} contains all congruence classes modulo p, H is said to be
admissible.

Sophisticated sieves like those later employed by Selberg and Zhang would come to utilize
this very same notion of admissible H. The k-tuple conjecture is also commonly known
as the �rst Hardy-Littlewood conjecture in honor of its creators. The conjecture does not
make an explicit assertion about the density of twin primes but rather considers the density
of all prime constellations. It is stated as follows:

10



Conjecture 4.3 (k-tuple conjecture). For every admissible H there exist in�nitely many
primes p such that the set {p + h |h ∈ H} consists wholly of primes. Moreover, the
asymptotic density of the function πH(x) counting the number of such primes below x can
be expressed in terms of the members of H by the formula

πH(x) ∼ 2k−1
∫ x

2

dt

logk t

∏
q∈P\2

1− r(H,q)
q(

1− 1
q

)k
where r(H, q) counts the amount of distinct residues modulo q of the members of H.

It is easy to derive (by the Chinese remainder theorem) that for inadmissible H, the
existence of in�nitely many prime sequences {p+h |h ∈ H} can be ruled out. At a glance,
the k-tuple conjecture might therefore appear to be just a wild guess much like Polignac's
conjecture from earlier in this text (which is simply a weaker form for the case k = 2 of the
k-tuple conjecture). Closer inspection of the hypothesis on which it rests and the fashion in
which that was arrived at however reveals this not to be the case. The k-tuple conjecture
is commonly believed to be true, despite the fact that a proof has thus far eluded the
mathematical community. The special case H = {0, 2} allows for a result of particular
interest. It is sometimes referred to as the strong twin prime conjecture, and states that

π2(x) ∼ 2Π2

∫ x

2

dt

log2 t

wherein the twin primes constant

Π2 =
∏

p∈P\2

p(p− 2)

(p− 1)2
≈ 0.66

arises from the right-hand term of the k-tuple conjecture. Note in particular the similarity
of this expression to equation 6 up to the power of the logarithm. Although unproven,
this statement provides the clearest insight into the distribution of twin primes currently
available.

5 A criterion for twin primes

In spite of the apparent lack of fully proven results on twin primes a rock-solid criterion for
twin primes does in fact exist. Like many of the results on twin primes it relates strongly
to an analogous theorem on prime numbers. This result is known as Wilson's theorem.

Theorem 5.1 (Wilson's Theorem). A strictly positive number n is prime if and only if
(n− 1)! ≡ −1 mod n.

This was subsequently used by Clement in [6] to arrive at a neccesary and su�cient con-
dition for twin primes. Since

(p− 1)! + 1 ≡ 0 mod p and

(p+ 1)! + 1 ≡ 0 mod (p+ 2)

both hold whenever p is a twin prime, some simple modular arithmetic can be used to
derive the following criterion for twin primes: p is a twin prime if and only if

4
(
(p− 1)! + 1

)
+ p ≡ 0 mod p(p+ 2) .
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Sadly, this criterion is rendered computationally ine�ective by the appearance of the fac-
torial. The term on the left-hand side is simply too large to be of any use in establishing
whether a number p is a twin prime or not. With some additional e�ort, it can be de-
rived from this criterion that all twin prime pairs excepting the �rst one are of the form
6n − 1, 6n + 1 for some n ∈ N. This is of somewhat greater utility both for the purpose
of applying sieving techniques as well as to any exhaustive search for twin primes up to a
given number.

6 Modern methods

Advancements in the �elds of modular arithmetic and group theory at large have enabled
several leaps of progress in the late 20th and early 21st centuries. A notable example
is that of Selberg's sieve. Some notation must be introduced to express this idea. The
notation used below was taken from [27]. Let (a,b) denote the greatest common divisor of
a and b. In this notation (a, b) = 1 means a and b are coprime. Let A be a �nite sequence
of integers and P ⊆ P any set of primes. Then

S(A,P, z) =
∑
a∈A

(a,Pz)=1

1 where Pz =
∏
p∈P
p≤z

p

is the amount of numbers in A coprime to all primes from P smaller than z. Roughly
speaking, the purpose of the Selberg sieve technique is to derive an upper bound for
S(A,P, z) based on general functions f which satisfy certain properties. The properties
which are neccesary for such f are omitted here for the sake of convenience (They are made
explicit on slide 17 of [27]). Letting |A| denote the number of members of A, the bound is
given by

S(A,P, z) ≤ |A|
F

+
∑
i≤z2
i|Pz

R(A, f, i) where F =
∑
n≤z

p|n⇒p∈P

f(n) (7)

and R represents a positive remainder term that depends only on the set A and the values
i and f(i). This inequality can be observed by relying on Möbius inversion in order to
separate a squared sum from S(A,P, z) and applying the Cauchy-Schwartz inequality to
the separated term in order to establish the equation. Omitting further discourse on
Möbius transforms, it is remarked here merely that for squarefree m =

∏
k pk, the sign of

the Möbius function µ given by

µ(m) = µ(papb · · · pk) =


0, if ∃p ∈ P : p2|m ,

−1, if k is odd and m squarefree,

1, if k is even and m squarefree

corresponds precisely to the sign of the alternating sum obtained for T in equation 5. Using
the Cauchy-Schwartz inequality unfortunately implies that this technique can only provide
upper bounds. The sifting technique proposed however does not explicitly require use of
Cauchy-Schwarz inequality, it is merely used by Selberg to conveniently arrive at the bound
that equation 7 expresses. Reference [27] outlines only the particular application of Sel-
berg's sieve treated here; a more detailed investigation of Selberg's sieve method within the
wider context of sieve theory can be read back in [28]. Through use of clever constructions
for A and f , the Cauchy-Schwartz argument can be omitted to derive a broad spectrum
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of statements about the occurence of numbers �tting certain predicates in speci�c intervals.

This is precisely what was subsequently done by Chen Jingrun to arrive at a phenom-
enal result. Let m be an even �xed integer. Chen attempted to count the number of
primes p whose di�erence m − p could be expressed as a product

∏
i pi of no more than

k primes. He then established that for k = 2 and su�ciently large m, this number of
primes is bounded below by one. The number one is used here in place of Chen's more
sophisticated expression but the essence of the result remains unchanged. See [25] for a
translated version of Chen's proof attributable to Ross. The truth of the proposition that

∃n0 ∈ N : ∀n ∈ N : 2n ≥ n0 ⇒ (2n = pa + pb ∨ 2n = pa + pbpc for some pa, pb, pc ∈ P)

is a direct consequence of that result. This statement comes remarkably close to the
Goldbach conjecture. The constructed bound further implies the conclusion that p+ 2 can
be written as a product of no more than two primes for in�nitely many distinct p. These
conjoined facts carry Chen's name by way of the following theorem:

Theorem 6.1 (Chen's theorem).

(i) Large even numbers can be written as p+ n, where p ∈ P and either n ∈ P
or n = papb for pa, pb ∈ P.

(ii) There are in�nitely many primes p such that either (p+ 2) ∈ P
or (p+ 2) = papb for pa, pb ∈ P.

In a sense it can be argued that Chen's theorem is, simultaneously, the closest proven
proximate to both the Goldbach and twin prime conjectures.

Yet another major breakthrough in the �eld arrived in 2013, when hitherto unknown
mathematician Zhang Yitang managed to prove in [31] the existence of a bound on the
prime gap. To see what is meant by this, �rst recall the de�nition (for arbitrary sequences
ak) of the limit inferior:

lim inf
n→∞

an = lim
n→∞

(
inf
m≥n

am
)

= sup
n≥0

inf
m≥n

am .

The prime gap lim infn→∞(pn−1 − pn) therefore represents the minimal distance occuring
in between consecutive primes of arbitrary magnitude. Note also that the prime gap rep-
resents a speci�c distance between prime numbers which must occur on an in�nite number
of distinct occasions. Zhang discovered that the prime gap was bounded by building on a
result of Goldston, Pintz and Yildirim [14] who had previously managed to establish the
similar but far less e�ectual bound

lim inf
n→∞

(pn−1 − pn)√
log pn(log log pn)2

<∞ .

Zhang used a slightly di�erent approach developed by Motohashi and Pintz [23] combined
with a strengthened version of the older Bombieri-Vinogradov theorem (published �rst by
Barban [1]). The mentioned theorem and methods are conveniently compiled in [27] should
the reader seek to investigate them more closely. Furthermore, he was able to arrive at
a new bound for the partial sums of exponential functions that contain inverse values of
modular residues. These techniques allowed Zhang to conclude his main result

lim inf
n→∞

(pn−1 − pn) < 7 ∗ 107 .
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He proceeded to state about his result that to �replace the right-hand side... by a value
as small as possible is an open problem that will not be discussed in this paper�. This
took mathematicians from all over the world by storm and a �urry of activities was set o�
to improve Zhang's bound. Terence Tao announced a collaborative project �Polymath8a�
and the bound was eventually reduced to 4680. But the race was not yet run. James
Maynard had been working in the meantime to revive Goldston, Pintz, and Yildirim's
original approach and his e�orts eventually proved successful, culminating in the 2015
publication of his work [22] in which a bound of 600 was obtained. The preprint of this
article provoked another Polymath collaboration whereby the bound was further lowered
to 246 in april 2014, where it continues to stand today. Publication of this latest Polymath
bound is still pending.

7 Twin primes in practice

Although mathematicians have always been fascinated by primes, in centuries past these
numbers have had little to no bearing on day-to-day existence. With the advent of RSA
encryption, prime numbers have �nally found their way into practical application. Sadly
there is nothing to suggest that twin primes are of particular use to a secure and simple
RSA encryption-decryption process. Outside of the RSA method, prime numbers still re-
side in relative obscurity from a pragmatic perspective. Thus it seems that twin primes,
for now, must still wait their turn.

The two most obvious applications for twin primes that spring to mind could hardly be
considered immediately practical by any stretch of the imagination. These are applications
towards either the Goldbach conjecture or the Riemann hypothesis. Both equally famous
statements, the Goldbach conjecture asserts that all even numbers greater than 2 can be
written as the sum of two primes. The Riemann hypothesis is the statement that all non-
trivial complex roots of the Riemann zeta function ζ(s) lie on the critical line Re(s) = 1

2 .
On top of the fact that both of these assertions lack immediate pragmatic merit, it is also
unlikely that either of these statements would de�nitively follow from a result on twin
primes. For the case of the Goldbach hypothesis, Chen's theorem is de�nitively the closest
one could hope to obtain by existing methods in sieve theory (Tao explicitly states this in
[28]). For the case of the Riemann Hypothesis, while it is possible that new insight into
twin primes could reveal more information about the nature of some of the complex roots,
it seems impossible that it could achieve this for all roots, given the simple fact that not
every prime is a twin prime. Because of the nature of this relationship it has traditionally
been the case that insight into the zeta function allowed for conclusions about twin primes
(as was the case for Brun in [3]) rather than the other way around.

Only one clear-cut case where the study of twin primes did indeed foster an entirely
pragmatic bene�cial e�ect readily presents itself. This concerns the curious case of the
Pentium FDIV bug. In an attempt to calculate Brun's constant starting in 1993, Thomas
Nicely employed a then-common pentium processor to calculate Brun's constant through
an enumeration of the terms of its sum up to 1.6 ∗ 1015. To his great surprise, his inititial
�ndings resulted in a contradiction. Laborious investigation of the computation revealed
that it was not his method, but in fact the pentium chip itself that was at fault. For
speci�c large integers, the FDIV division algorithm of the processor would return incorrect
values. A considerable amount of media attention was given to this discovery, and Intel
was soon forced to o�er replacements for the defective chips to all customers. Although
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the majority of owners would ostensibly decline to take Intel up on this o�er, the company
still wrote o� a loss of 475 million dollar in the month after the recall. While this was by
no means an intended result, it arguably still represents the greatest practical impact that
research on twin primes has ever produced up to this point.

8 Discussion

While Chen's theorem and a prime gap of 246 are both still a far cry from proof of the twin
prime conjecture, it can safely be stated that the theory of twin primes has developed quite
far in its now nearly 150-year old existence. Unfortunately, it was asserted through the
Polymath project that the methods of Zhang and Maynard would never yield a bound below
6, even if they were to be shown to hold true in the most general setting imaginable. The
method of Chen has already likewise been stretched to its limit. It is therefore unlikely that
the twin prime conjecture is to be proven any time soon. Nonetheless this investigation
has hopefully succeeded to provide some insight on not just the twin prime conjecture,
but also into the nature of the sieve process that drives all these results. Several truly
historic results and memorable pieces of literature have passed the review. In that regard,
this author wishes to mention that Euler's [12] is in his mind an exceptionally insightful
publication containing a great number of groundbreaking results. There remains a single
case relating to the twin prime conjecture which I was unable to research due to time
constraints. This concerns the 2004 publication by Arensdorf of a �awed proof for the twin
prime conjecture that was later retracted. While it would be highly unlikely for a 15-year
old retracted piece of research to be able to shed new light on an old and open problem, it
does warrant mention as a piece of potentially signi�cant literature that was deliberately
omitted from these considerations.
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A Euclid's proof of the in�nitude of primes

From Book IX of Euclid's Elements

Proposition 20:
Prime numbers are more than any assigned multitude of prime numbers.

Let A,B, and C be the assigned prime numbers.
I say that there are more primes than A, B, and C.
Take the least number DE measured by A, B, and C.
Add the unit DF to DE. Then EF is either prime or not.
First, let it be prime. Then the prime numbers A, B, C, and EF have been
found which are more than A, B, and C.
Next, let EF not be prime. Therefore it is measured by some prime number.
(book VII, proposition 31: any composite number is measured by some prime number)

Let it be measured by the prime number G.
I say that G is not the same with any of the numbers A, B, and C.
If possible, let it be so. Now A, B, and C measure DE, therefore G also mea-
sures DE. But it also measures EF . Therefore G, being a number, measures
the remainder, the unit DF , which is absurd.
Therefore G is not the same with any one of the numbers A, B, and C. And
by hypothesis it is prime. Therefore the prime numbers A, B, C, and G have
been found which are more than the assigned multitude of A, B, and C.
Therefore, prime numbers are more than any assigned multitude of prime num-
bers.

The English translation is by David E. Joyce of the Clark University Department of Mathe-
matics and Computer Science [17]. A modern statement of the proof is as follows: assume
there exist only �nitely many primes p. Observe that for the product of these primes
we have that 1 +

∏
p is not divisible by any of the p. This contradicts the assumption
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that all primes have been included and proves the in�nitude of primes by contradiction.

It is of interest to note that the ancient Greeks spoke of measurement rather than di-
vision, and of the unit rather than the number one. This anumerical (rather geometrical)
inclination might go some length towards explaining why twin primes were apparently
never considered in Euclid's era. It also warrants mentioning that Euclid must rely on the
well-ordering principle for several proofs in the Elements, but never states it as an axiom.

B The fundamental theorem of arithmetic and the Chinese

remainder theorem

Due to their ubiquity in the �eld of number theory the fundamental theorem of arithmetic
and Chinese remainder theorem are here presented.

Theorem B.1 (Fundamental theorem of arithmetic). Every integer greater than 1 is either
a prime or a product of primes. Moreover, the product is unique up to the ordering of the
primes. This is to say that if

p1p2 · · · pi = n = q1q2 · · · qj

for primes p1 through pi and q1 through qj, then i = j and the products on the left and
right can be reordered so that pk = qk for all k ≤ i = j.

Theorem B.2 (Chinese remainder theorem). For two coprime positive integers n and m,
there exists a unique k < nm for every pair of integers {a, b}such that the congruences

k ≡ a mod n and

k ≡ b mod m

both hold true simultaneously.

The Chinese remainder theorem can naturally be extended to any greater number of
positive integers and congruences provided that the integers in question are all pairwise
coprime.
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