
The Post-Quantum Signal Protocol

Secure Chat in a Quantum World

Ines Duits

February 5, 2019
Final version 1.3

Services and Cybersecurity (SCS)

Cyber Security and Robustness (CSR)

Thesis

The Post-Quantum Signal Protocol
Secure Chat in a Quantum World

Ines Duits

Graduation committee dr. M.H. Everts
M.P.P. van Heesch, MSc
T. Attema, MSc
dr. A. Peter

February 5, 2019

Ines Duits
The Post-Quantum Signal Protocol
Secure Chat in a Quantum World
Thesis, February 5, 2019
Graduation committee: dr. M.H. Everts, M.P.P. van Heesch, MSc, T. Attema, MSc, dr. A.
Peter

University of Twente
Services and Cybersecurity (SCS)
Drienerlolaan 5
7522 NB Enschede

TNO
Cyber Security and Robustness (CSR)
Anna van Buerenplein 1
2595 DA Den Haag

Abstract

The Signal Protocol provides end-to-end encryption, forward secrecy, backward
secrecy, authentication and deniability for chat applications like WhatsApp, Skype,
Facebook private Messenger, Google Allo and Signal. The Signal Protocol does
this by using the ECDH Curve25519 key exchanges and SHA-512 key deriva-
tion. However, the ECDH key exchange is not quantum-safe; in a world were
adversaries would have a quantum computer, they could get the key and read
along. A post-quantum Signal Protocol requires a substitute for the ECDH key
exchanges. Therefore, we look at post-quantum cryptography, which is secure
against a quantum computer.

We test 10 different post-quantum key exchange mechanisms (KEMs) and the
post-quantum supersingular isogeny based Diffie-Hellman (SIDH). Each post-
quantum algorithm has different versions, which results in 44 different algorithms.
In this thesis we analyse those 44 post-quantum algorithms and see how they
affect the performance of Signal Protocol in terms of run time (CPU cycles),
storage space requirements, bandwidth and energy efficiency. Additionally we
analyse different versions of a partially post-quantum Signal Protocol. These
partially post-quantum Signal Protocols are easier to implement and already are
a safety measure against quantum attacks that might happen in the future.

The Signal Protocol is explained in 3 different phase: the initial setup, the first
message and the message exchange. To investigate whether a post-quantum
Signal Protocol is possible in practice, a likely scenario was described for each
phase. For each scenario we looked at the influence the post-quantum algorithms
would have on an average user, with a minimal phone in 2018. Based on our
analysis, a quantum-safe Signal Protocol using both kyper512 and SIDH503
would result in the lowest overhead with less than 0.02 seconds per message
extra delay. However, using the KEM kyper512 requires a small change to the
Signal Protocol. A complete SIDH503 Signal Protocol would be the easiest to
implement, because SIDH is a perfect plug and play with ECDH, but it will take
0.03 seconds more delay per message.

v

We conclude that it is feasible to have different post-quantum Signal Protocols
considering the state of 2018.

vi

Contents

1 Introduction 1

1.1 Outline of this thesis . 3

1.2 Related work . 4

2 Preliminaries 7

2.1 Introduction to cryptography . 7

2.1.1 Encryption . 7

2.1.2 Symmetric key encryption scheme 8

2.1.3 Public key encryption scheme 8

2.1.4 Key exchange . 9

2.1.5 Key derivation function 11

2.1.6 Signature schemes . 11

2.2 Security . 12

2.2.1 Passive and active attacks 12

2.2.2 n-bits security level . 12

2.2.3 Security properties . 13

2.3 Quantum computers . 14

2.4 Post-quantum cryptography . 16

2.4.1 NIST submissions . 16

2.4.2 NIST Security level . 18

2.4.3 Hybrid encryption scheme 19

2.4.4 Universal Composablility framework 19

3 The Signal Protocol 21

3.1 Introduction to the Signal Protocol 21

3.2 Building towards the Signal Protocol 22

3.2.1 End-to-end encryption . 22

3.2.2 Forward secrecy and backward secrecy in the DH ratchet . 23

3.2.3 Authentication in X3DH 24

3.2.4 Uploading to a server . 26

3.2.5 Creating the Double Ratchet for efficiency 28

3.3 The Signal Protocol in a nutshell 30

3.3.1 Phase 1 - Initial setup . 31

3.3.2 Phase 2 - The first message 31

vii

3.3.3 Phase 3 - Message exchange and key update 31
3.4 More implementation choices . 33

3.4.1 Sending multiple message 33
3.4.2 Out of order messages in the sesame algorithm 34

4 A Post-Quantum Signal Protocol 35
4.1 The Post-Quantum Signal Protocol 35
4.2 Challenges with Post-Quantum cryptography 37
4.3 Hybrid Post-Quantum Signal Protocol 39
4.4 Partially hybrid post-quantum Signal Protocol 40

4.4.1 Current key . 41
4.4.2 Post-quantum X3DH . 41
4.4.3 Post-quantum Double Ratchet 42
4.4.4 Extra key exchange . 42
4.4.5 Combining the different hybrid blocks 44

5 Method 47
5.1 Research questions . 47
5.2 The scenarios . 48
5.3 The post-quantum cryptographic algorithms 49

5.3.1 Substitutes for ECDH . 50
5.3.2 Supersingular isogeny based Diffie-Hellman and ECDH . . 52
5.3.3 The post-quantum KEMs 53
5.3.4 The security level of post-quantum cryptography 53

5.4 Code and test machine . 55
5.5 An average WhatsApp user . 56

6 Experimental results 59
6.1 The initial scenario . 59

6.1.1 CPU cycles . 59
6.1.2 Key storage . 60
6.1.3 Network load . 61
6.1.4 The post-quantum initialisation phase 61

6.2 The X3DH scenario . 62
6.2.1 CPU cycles . 62
6.2.2 Key storage . 63
6.2.3 Bandwidth and network utilisation 64
6.2.4 A post-quantum X3DH scenario 65

6.3 The Double Ratchet Scenario . 65
6.3.1 CPU Cycles . 66
6.3.2 Energy consumption . 69
6.3.3 Key Storage . 69
6.3.4 Network load . 71

viii

6.3.5 The post-quantum Double Ratchet scenario 74
6.4 A post-quantum Signal Protocol 76

6.4.1 The level 1 post-quantum Signal Protocols 77
6.4.2 ECDH in all three scenarios 79
6.4.3 The post-quantum level 3 and 5 Signal Protocols 80

7 Conclusions 83
7.1 Conclusion . 83
7.2 Future research . 84

Appendices 87

A Key Storage in the Signal Protocol 89

B The pseudocode 91
B.1 Initial scenario . 91
B.2 The X3DH scenario . 91
B.3 The Double Ratchet scenario . 92

C X3DH Test Data 95

D Key Length 97

E Double Ratchet Test Data 99

F Energy consumption 107

Bibliography 111

ix

1Introduction

Throughout history, humans have been communicating in all kinds of ways:
talking, writing, yodelling, smoke signals, light signals, doves, art etc. In the
current digital era, a lot of the communication happens online. Almost 3.2
Billion people use social media in 2018 [Cha18] to communicate about their lives.
WhatsApp is used by almost half of those users and Facebook Messenger is used by
almost one third of them. However, in this world of digital communication there
is a need to keep your data private, secure and confidential. Some people should
be able to read the messages, while others should not. Cryptography can be used
to keep communication secure, even when the communication is over an insecure
channel; in which an adversary can observe all the messages. While cryptography
started out as a way to hide the content of a message, nowadays cryptography
can also be used for, among other things, authentication pseudorandom number
generations and checking the integrity of a message [BR05].

To keep communications secure, users and computers have to follow certain
security protocols. A protocol is just a collection of steps for the user to follow.
A simple example is a symmetric encryption scheme or a Diffie-Hellman key
exchange (which will be explained in more detail in Section 2.1). More complex
protocols are combinations of these simpler cryptographic primitives. Open
Whisper Systems’ Signal Protocol is a more complex protocol which provides end-
to-end encryption between two chatting users [Sig]. The protocol is used in chat
applications like WhatsApp [Mar16c], Facebook private messaging [Mar16a],
Google Allo [Mar16b], Skype [Lun18] and Signal [Sig].

The Signal Protocol combines a lot of cryptographic primitives like Elliptic Curve
Diffie-Hellman (ECDH) key exchanges, symmetric encryption and key derivation
functions. Most cryptographic primitives are based on mathematical principles
which theoretically could be calculated and broken. However, these calculations
are computational hard to perform. Current cryptographic primitives are strong
enough so that an adversary with limited computational power cannot break
them.

Unfortunately, with the rise of quantum computers the above statement is not
true anymore and the security of some cryptographic primitives are threatened.

1

In the nineties Shor [Sho94] and Grover [Gro96] introduced quantum algorithms
which theoretically are able to break the cryptographic principles in a lot of
cryptography primitives. Elliptic Curve Diffie-Hellman and RSA are broken by
these algorithms (why and how is explained in Section 2.3).

A lot of research has been performed in the field of quantum computers. Not only
to improve the algorithms by Shor and Grover, but also to actually build quantum
computers. Currently, quantum computers are not a threat to cryptography yet.
However, in the future they might be. To anticipate on the threat of quantum
computers, alternative for the broken cryptography are needed. Post-quantum
cryptography is the subset of cryptography that is quantum-safe. The National
Institute of Standards and Technology (NIST) is currently working on finding
different standards for post-quantum cryptography. With this initiative, 69 post-
quantum algorithms are analysed, tested and sometimes already implemented.
Not all post-quantum algorithms are newly developed, some already exist but
are not used that frequently. New cryptography requires research before it can
be safely implemented into actual systems and protocols, because undiscovered
bugs might form a problem.

This standardisation process needs do be done immediately, since it is the first
step towards secure post-quantum cryptography. The standards should be imple-
mented as well and that process is taking time. The theorem of Mosca [Mos15]
explains when to worry about quantum computers breaking the encryption of
our data. A problem occurs if the time it takes to make our system quantum-safe,
y, plus the time the data should stay secure, x, are bigger than the time it takes
to build a quantum computer, z.

Fig. 1.1.: The theorem of Mosca show in an image, in which x is the time that the data
needs to stay secure, y is the time it takes to make the system quantum secure
and z the time which it will take to make a quantum computer.

There will be a leak of data if x + y > z, as shown in Figure 1.1. In that
case, our data could be broken by quantum computers. Therefore, research to
the implementation of post-quantum cryptography in actual protocols is very
useful.

In this thesis, a post-quantum Signal Protocol is created, where the problems
that are encountered when implementing post-quantum cryptography in the
protocol are identified. Even though it might seem easy to just substitute the
current cryptography with a post-quantum version, it is not that simple. Post-
quantum algorithms are sometimes slower in run time and require bigger keys.

2 Chapter 1 Introduction

Thereby, they are not always a perfect plug and play for current standards. In
the Signal Protocol an alternative for ECDH should be found, and there are not
many alternatives that can maintain the security properties the Signal Protocol
has. However, different possible post-quantum Signal Protocols are evaluated.

The remainder of the introduction will discuss the contribution of this thesis in
this research area (Section 1.1), give an overview of contents (Section 1.1) and
provide an overview of related works (Section 1.2).

1.1 Outline of this thesis

In this thesis, we explain that it is possible to have a post-quantum Signal Protocol,
considering an average user in 2018. The challenges faced when using post-
quantum cryptography, how it affect the Signal Protocol and if the effects are
manageable in a chat application are discussed as well.

The contribution of this thesis therefor consists of:

• An analysis of the different building blocks in the Signal Protocol and how
making them quantum-safe would would affect the Signal Protocol.

• An analysis of which building blocks should be substituted for post-quantum
ones to create a post-quantum Signal Protocol.

• A simple implementation of different post-quantum algorithms in the Signal
Protocol.

• An evaluation of the different post-quantum algorithms in the Signal Proto-
col and how they will affect the protocol and the user.

• An overview of the three most suitable post-quantum Signal Protocols for
an average user in 2018.

We motivate and introduce this thesis in the above section. In Section 2 the pre-
liminaries can be found. In the preliminaries, cryptography, symmetric and public
key encryption are introduced. The difference in security level of cryptography in
a classical and a quantum computer is discussed, and post-quantum cryptography
is introduced. In Section 3 the Signal Protocol is introduced. The security claims
of the Signal Protocol (end-to-end encryption, forward and backward secrecy, de-
niability and authentication) are analysed for every part of the Signal Protocol. In
Section 4, the necessary changes for Signal Protocol to make it quantum-safe are
summarised and the corresponding challenges when creating that post-quantum
Signal Protocol are discussed. The possible solutions to those challenges are
introduced in the form of partially post-quantum Signal Protocols, which are

1.1 Outline of this thesis 3

useful in the transitional period from classical to quantum computers. In Section
5 explains how the different post-quantum Signal Protocols are implemented and
analysed. Three scenarios for the Signal Protocol, the post-quantum algorithms
and an average user are described. In Section 6 we describe the results for each
scenario. Also, per scenario the best three post-quantum algorithms are chosen
and those best algorithms are combined in possible best post-quantum Signal
Protocols for an average user. Section 7 consists of the conclusion, a discussion
and possible future research on this matter.

1.2 Related work

Signal is not the only secure chat that uses the Signal Protocol, WhatsApp
[Mar16c], Facebook private messaging [Mar16a], Google Allo [Mar16b], Crytocat
[Cry], Wire [Wir] and more also use it.

Wire, an encrypted instant messaging client, already looked into the possibilities
of a post-quantum Signal Protocol. They created a transitional post-quantum
Signal Protocol using the post-quantum algorithm NewHope [RA18]. While this
is a great start, Wire’s version is not yet a complete post-quantum Signal Protocol,
as will be explained in Section 4.

There are also chat alternatives that do not use the Signal Protocol like Telegram
[Tel], Threema [Thr], Wickr Me [Wic] and PQChat. PQChat was a promising ex-
ample of a post-quantum chat application; however, it does not exist anymore.

There is not much research on post-quantum chat protocols; however, there is
a lot of research into post-quantum protocols. De Vries [Vri16] implemented a
post-quantum OpenVPN with which he achieved 128-bit security against quan-
tum attacks. Bos et al. [Bos+16b] implemented the Lattice-based post-quantum
algorithm: Ring Learning With Errors Problem (RLWE) into the Transport Layer
Security (TLS) using OpenSSL, creating a 128-bit security level. Stabila and
Mosca [SM17] reviewed two lattice based post-quantum key exchanges: BCNS15
and Frodo and integrated them in TLS and analysed how they perform. In Transi-
tioning to a Quantum-Resistant Public Key Infrastructure, Bindel et al. [Bin+17]
not only look at post-quantum cryptography into the TLS protocol, but also how
post-quantum cryptography influence other protocols, namely certificates (X.509)
and email (S/MIME). Kampanakis et al. [Kam+18] also reviewed the possibilities
of a post-quantum X.509 certificate.

4 Chapter 1 Introduction

In contrast to implementing the post-quantum algorithms into protocols, there is
also a lot of research going on into creating and analysing the actual post-quantum
cryptography [Che+16]. An example of this is the initiative of National Institute
of Standards and Technology (NIST) which started the process of standardising
post-quantum cryptography [NIS16], in which 69 different post-quantum algo-
rithms are analysed and evaluated to find new cryptographic standards which are
quantum-safe. There are a lot of papers introducing and analysing post-quantum
cryptography, including but not limited to Frodo [Bos+16a], New Hope [Alk+15],
SIDH [RS06; Cos+16].

1.2 Related work 5

2Preliminaries

This section gives the preliminaries for this thesis. Concepts about cryptography,
security, quantum computers, and post-quantum cryptography among others, are
introduced.

In Section 2.1 the cryptographic primitives used in this thesis are explained, like
symmetric and public key encryption, Diffie-Hellman and signature schemes. In
Section 2.2 different terms to explain the security of cryptography are introduced.
Terms like, n-bits security, Universal Composability framework, security properties
and attacks like CPA, CCA and Man-in-the-middle are introduced. In Section
2.3 quantum computers and how they threat the current used cryptography are
explained. Section 2.4 introduces post-quantum cryptography, cryptography
which is secure against quantum computers.

2.1 Introduction to cryptography

In the following sections a brief introduction to cryptographic primitives like
encryption, symmetric key encryption, public-key encryption, key exchange,
Diffie-Hellman, signature schemes and functions is given. For a more detailed
explanation on all the cryptographic primitives refer to Menezes’ Handbook of
Applied Cryptography [Men+96].

2.1.1 Encryption

In cryptography when a plaintext is encrypted with a key, the resulting text is
a ciphertext. If the message is revealed again the ciphertext is decrypted. The
simplest way to encrypt messages is with a symmetric key encryption scheme, as
explained in Section 2.1.2.

The current keys are the key which are used to encrypt, or decrypt, the current
message.

7

2.1.2 Symmetric key encryption scheme

Symmetric encryption schemes are schemes in which both parties agreed on the
shared symmetric key and then use that key to encrypt and decrypt messages to
and from each other. On the left on Figure 2.1, the symmetric encryption scheme
is shown.

Fig. 2.1.: The symmetric encryption scheme (left); in which two users first secretly agree
on a symmetric key, then they use that key to encrypt and decrypt messages.
The public key encryption scheme (right); in which Alice only needs Bob’s
public key to send him an encrypted messages, Bob decrypts the message with
his secret key.

Alice and Bob agree on a key K. When Alice wants to send Bob a message, she
encrypts the message m with K, into the ciphertext c:

c = E(m)K .

Alice sends Bob the ciphertext, and Bob decrypts the ciphertext using the K, to
get the message m:

m = D(c)K

Symmetric encryption is faster to use then public key encryption schemes (Section
2.1.3). However, the parties have to find a way to safely communicate the key.
And without a way to do this securely, they will have a key distribution problem.

2.1.3 Public key encryption scheme

In Public key encryption schemes (also called asymmetric encryption schemes) two
parties do not have to agree on a key safely before they can communicate securely,

8 Chapter 2 Preliminaries

because they do not publicly share a secret key. In public key encryption each
party has two keys: a public one, A and a secret one, a, (also called private key).
The public key is public, everybody can use it to encrypt a message that only the
owner of the private key can decrypt. The public key encryption scheme can be
seen on the right of Figure 2.1 right. If Alice wants to send Bob a message, she
can encrypt the message using Bob’s public key, B:

c = E(m)B.

If Bob wants to decrypt the ciphertext he received from Alice, he uses his private
key, b, to decrypt it

m = D(c)b.

A few examples of a public key encryption are Diffie-Hellman (DH), ElGamal and
RSA [Par13].

Most usually known public key encryption schemes are less efficient than sym-
metric schemes, and this makes them less practical for applications which need
efficiency.

2.1.4 Key exchange

In this section, we look at how public key encryption schemes can be used in
combination with symmetric encryption schemes (Section 2.1.2), to solve the key
distribution problem encountered when using symmetric encryption.

Some public key encryption schemes can be used as a key exchange protocol
(KEX). KEXs have the ability to create a shared secret between two users. That
shared secret, SS, could then be used as the current key K in a symmetric
encryption scheme to encrypt the message. To create a shared secret between
Alice and Bob, Alice uses her own private key and Bob’s public key to calculate
the shared secret, SS:

SS = f(a, B)

Bob, in his turn will use Alice’s public key and his own private key to generate
the same shared secret:

SS = f(A, b)

The function f they use depends on the key exchange scheme they use. Both
shared secrets are the same if the key exchange was successful and can be used
as input for a symmetric key. In this way Alice and Bob solve the key distribution
problem they had with symmetric encryption. This combination of public key
encryption and symmetric encryption can be seen in Figure 2.2.

2.1 Introduction to cryptography 9

Fig. 2.2.: The combination between a symmetric encryption scheme and the public key
encryption scheme. The public and private keys from the DH key pair are used
to create a shared secret, which is in turn used to create a symmetric key. This
key can be used to encrypt and decrypt he message.

Elliptic Curve Diffie-Hellman (ECDH), can be used as public encryption schemes
and as KEX.

Another way to use public key encryption to agree on a shared secret is to use a
key encapsulation mechanism (KEM). Most public key encryption schemes can
be used as a KEM. If Alice and Bob want to agree on a key, Alice will create a
shared secret herself. She uses Bob’s public key to encapsulate that shared secret,
and send it to Bob. Bob uses his private key to decapsulate the shared secret.
In Section 5.3.1 we explain KEMs in more detail, and see how they could be
implemented in the Signal Protocol.

An advantage of public keys for key exchanges is that it can be used non-
interactively. This means that only one party needs to be online to agree on
a key. A user can just upload his public keys to a server, where they will be stored
until someone else needs them.

10 Chapter 2 Preliminaries

2.1.5 Key derivation function

Alice and Bob can use a key derivation function (KDF) to generate an actual key
from their created shared secret, SS1. A key derivation function can be used to
deviate new keys from old keys and other secret inputs [Kra10]. A KDF is one
way, the old key can not be deviated from the new generated key.

Cryptographic hash functions are an example of possible key derivation functions.
A hash function maps input data to a hash value, v, with a fixed size. For example,
a hash function which maps all integer inputs, x, to a value between zero and
nine, can have the following formula:

v(x) = hash10(x) = x mod 10.

Cryptographic hash functions are one-way and are collision resistant, which make
them useful to use in security context. The one-way property makes it significantly
hard to revert the hash value back to its original data, otherwise an adversary
will be able to easily calculate an input message with the same hash value. A
low collision rate means that two different input messages will map with a very
small chance to the same hash value. Otherwise an adversary will be able to find
another message with the same hash.

2.1.6 Signature schemes

Alice and Bob can communicate securely using the symmetric and public encryp-
tion scheme, but they need a way to authenticate each other to be sure they are
communicating with each other. A way to authenticate the message is to sign it.
A digital signature can be compared to a hand written signature. It is a way Alice
can be sure the message is from Bob, by checking Bob’s signature.

Public key encryption schemes can be used to create digital signatures. Alice
will sign her message with her private key, a, and Bob can later verify this
signature with Alice public key, A. Signing the whole message might give a big
data overhead, that is why often only the footprint of a message is signed. The
footprint of a message could be created by using a cryptographic hash function.
For more detail on how cryptographic hash functions can be used to create a
digital signature refer to [PS96].

1Using the created shared secret directly as key might be unwise because of forward secrecy.
Forward secrecy will be explained in Section 2.2.3

2.1 Introduction to cryptography 11

2.2 Security

In this section, we first explain the difference between an active and a passive
attack (Section 2.2.1). We then explain the n-bit security level, which is used
to describe how strong cryptography is (Section 2.2.2). In Section 2.2.3 some
security properties which could be used to describe the security of cryptographic
primitives and protocols are explained.

2.2.1 Passive and active attacks

Two different attacks can be distinguished; a passive attack and an active attack.
In a passive attack an adversary is only listening to the communication between
two victim: Alice and Bob. The adversary can store all the messages, use all the
public data available and use any computational power. However, he cannot
interact with Alice and Bob, or change or interfere with the data they send to
each other.

A passive quantum attack is the reason why some people already worry about
the security of their data regarding quantum computers. Adversaries could store
their non quantum-safe encrypted data now and decrypt it in the future, when
quantum computers are available. The question that is asked is how long you
want your data to stay secure, see the theory of Mosca in Section 1.

In an active attack an adversary can interfere in the communication actively. An
example of this is a man-in-the-middle attack. In a man-in-the-middle attack
Eve impersonates Alice towards Bob and vice versa. The attacker, Eve, stands
between the public key exchange of Bob and Alice. When Alice sends her public
key to Bob, Eve intercepts the key and keeps it, sending her own public key to
Bob and creating a shared secret between her and Alice. For Bob she does the
same, if Bob sends his public key to Alice, Eve intercepts it and sends her own
public key to Alice, creating a shared secret between her and Bob. Alice and Bob
think they have received each others keys and create a shared secret with each
other. However, they both created a shared secret with Eve, and Eve with them.
Eve intercepts all the messages between Alice and Bob.

2.2.2 n-bits security level

To define how strong a encryption scheme is the term n bit security level is often
used [Len04]. In Table 2.2 we see an overview of the security level of some
encryption algorithms.

12 Chapter 2 Preliminaries

Algorithm Key length (B) Security level
SHA-1 160 61
AES-128 128 128
AES-192 192 192
AES-256 256 256
SHA-256 256 128
RSA-1024 1024 80
RSA-2048 2048 112
ECDH curve25519 32 < 128
ECC-256 256 128
ECC-384 384 256

Tab. 2.1.: The table shows the security level for a few cryptographic schemes. Data
based on [Cam+15][BK04][Lan+16]. These values are against a classical
computer, in Section 2.3 we will see the security levels against a quantum
computer.

Cryptographic hash functions, like AES (Advanced Encryption Standard) and SHA
(Secure Hash Algorithm), can be broken by the following brute force attacks:

• Preimage attack: given the hash, h, find the message, m, such that h =
HASH(m).

• Collision attack: find m1 and m2, such that m1 6= m2, while HASH(m1) =
HASH(m2).

The preimage attack will make you try each possibility, trying 2n different values.
While the collision attack will only take you 2

n
2 tries.

Public key encryption algorithms, like RSA and ECC, have in general a security
level that is signification lower than their key length, because they’re based on
mathematical principles with certain structures that allow for better attacks than
trying all (or half of the) possible keys.

2.2.3 Security properties

There are different security properties which describe a security requirement
which could make your chat more secure, we define properties which are present
in the Signal Protocol. The current key, mentioned in both forward and backward
secrecy, is the key that is used in the encryption or decryption of the current
message. In the Signal Protocol the current keys are all the keys a user has, on
his phone, on a certain moment.

2.2 Security 13

End-to-end encryption If a protocol provides end-to-end encryption it means
that no one, no server that hosts the messages or any third-party adversary,
can read the messages send between the sender and the receiver [Erm+16].

Forward secrecy If a protocol has forward secrecy it means that if the current
keys at moment x are leaked, an adversary cannot read the messages prior
to message x [Bor+04]. See Figure 2.3.

Backward secrecy If a protocol has backward secrecy it means that if the
current keys at moment x are leaked, an adversary cannot read the mes-
sages that are send after message x [Erm+16] (also called Future secrecy
[Fro+14] or in combination with forward secrecy: Post-Compromise Security
[CG+17]). See Figure 2.3.

Deniability If a protocol provides deniable communication it means that both
parties cannot prove using cryptography that the other party participated
in the conversation [Fro+14].

Authentication It the protocol has authentication it means that both parties can
be sure with whom they communicate. Authentication, on first look, seem
to contradict with the deniability requirement; however, we will see there
are ways in which Bob is sure he talks to Alice without being able to proof
to a third party that it is indeed Alice he talked to to prevent for example a
man-in-the-middle attack.

Fig. 2.3.: The properties forward and backward secrecy explained when the key is leaked
at point x. The green (ticker line) is encrypted data that is still encrypted after
a key compromise.

2.3 Quantum computers

Quantum computers threaten currently used cryptography. This section explains
which cryptography they break and how they do that.

14 Chapter 2 Preliminaries

In 1994 Peter W. Shor created a quantum algorithm which solves prime factorisa-
tion and discrete logarithm problems in polynomial-time which is asymptotically
faster than classical algorithms [Sho94], which means that it speeds up calcula-
tions needed to break certain cryptographic algorithms. In 1996, Grover created
a quantum algorithm [Gro96] which improves the search process in unsorted
data, resulting in a quadratic speed-up compared to conventional state-of-the-art
algorithms [RP00].

The cryptography affected by quantum computers makes up for most of the public
key ciphers like RSA, DSA (Digital Signing Algorithm), DH (Diffie-Hellman) and
ECC (Elliptic Curve Cryptography), like ECDH and ECDHA, and other variations
on these schemes [Cam+15]. RSA depend strongly on factorisation being NP
hard (verifiable in polynomial time) for a computer to make it a secure algorithm.
However, this assumption fails in the case of quantum computers. EC algorithms
are based on discrete logarithm problems for elliptic curves. Both factorisation
and discrete logarithms problems can be solved quicker using Shor’s quantum
algorithm [Sho94] in comparison to algorithms on a classical computer. A
quantum computer exploiting Shor’s algorithm can break these cryptographic
schemes in a reasonable amount of time. There are various encryption algorithms
that stay secure, as far as we know, when adversaries can use quantum computers.
For example, symmetric ciphers, like AES (Advanced Encryption Standard), can
be made quantum-safe by doubling the key size [Cam+15] and most hash
functions stay quantum secure but it is required to create hashes twice the size
[Bra+98].

Table 2.2 shows different cryptographic algorithms and their n-bit security level
(see Section 2.2.2) for conventional computers and quantum computers for a few
cryptographic schemes.

Algorithm Key Length Security Level (in bits)
(in bits) Conventional Computing Quantum Computing

RSA-1024 1024 80 -
RSA-2048 2048 112 -
ECC-256 256 128 -
ECC-384 384 256 -
ECDH curve25519 32 < 128 -
AES-128 128 128 64
AES-192 192 192 96
AES-256 256 256 128
SHA-256 256 128 851

3
Tab. 2.2.: The table shows the security level for a few conventional cryptographic

schemes [Cam+15; BK04; Lan+16]. Some algorithms can be broken in non
exponential time by a quantum computer, those are indicated by “-”.

2.3 Quantum computers 15

2.4 Post-quantum cryptography

Post-quantum cryptography is a subset of cryptography in which the algorithms
can withstand a quantum attack. Some cryptography currently used is quantum-
safe while other new post-quantum algorithms are especially designed to be
quantum-safe: secure even when adversaries can use quantum computers. Most
symmetric encryption schemes are currently considered to be quantum-safe
[Ber+08], if one uses sufficiently large key sizes. The same is said for most hash
functions [Ber09]. Of course we can never be sure if cryptography will stay
secure forever; however, cryptography is tested and analysed to make a reliable
assumptions about its security.

In Section 2.4.1 we explain on which post-quantum algorithms we focus: those
submitted to the NIST standardisation process; why we do that and explain them
in more detail. Section 2.4.2 describes the security level of the submitted post-
quantum cryptographic schemes. In Section 2.4.3 we introduce hybrid encryption
schemes, which is currently the advised way to implement post-quantum cryp-
tography. In Section 2.4.4 we introduce the Universal Composablitity framework,
which could be used to explain the security of such a hybrid scheme.

2.4.1 NIST submissions

The National Institute of Standards and Technology (NIST) is currently in the
process of creating standards for post-quantum cryptography and in this process
they are testing and analysing 69 different post-quantum algorithms [Che+16].
The submissions give a good overview of post-quantum cryptography [NIS16;
RF18].

There are different types of post-quantum cryptography, and the most common
discussed types are:

• Lattice-based
• Code-based
• Isogeny-based
• Multivariate
• Hash-based

We focus on the first three. The multivariate and hash-based types are out of the
scope of this paper because in this thesis we focus on the NIST submissions. The
multivariate and hash-based submissions were mostly signature schemes [RF18];

16 Chapter 2 Preliminaries

no hashed-based KEM (Section 2.1.4) or encryption scheme were submitted and
only two multivariate KEM submission: DME [Lue+17] and CFPKM [Cha+17].
Thereby the library we used (as will be explained in Section 5.3.3) to test the
post-quantum algorithms did not have the multivariate algorithm implemented.

Thereby we choose to focus on key exchange schemes and not on signature
schemes, because for passive quantum attacks the key which was exchanged or
agreed upon should stay secret. If we keep using non post-quantum cryptography
for key exchange, the encryption keys could retroactively be calculated using
quantum computers (see the theorem of Mosca in Section 1). The authentication
should be quantum-safe as well, but are not threatened by passive quantum
attacks. If an attacker could fake a non quantum-safe signature created in the
past, we could only strongly advice to not use those non quantum-safe signatures
anymore as soon as the first threatening quantum computer is used.

In the next sections, we explain the lattice-based, code-based and isogeny-based
cryptography in more detail. For a complete overview of post-quantum cryptogra-
phy refer to Bernstein’s Introduction to Post-Quantum Cryptography [Ber+08].

Lattice-based

Lattice-based cryptography is based on the presumably hard to solve mathe-
matical problem for lattices: finding the shortest vector in a high dimensional
lattice.

Intuitively a lattice is a set of points in space s. The basic idea for cryptography
is to use this well formed lattice based space s as a secret key, and a scrambled
version p of this base as a public key. The sender will map the message to a
point on the well formed lattice base, then add an error in such a way that the
point is still closer to the original point than any other point in the lattice. The
receiver can then, because he knows the well formed base, decrypt it by finding
the closest vector to the received point. It is assumed hard for an adversary, who
is not aware of the well formed base, to find the closest vector point based on
only the scrambled base.

Examples of lattice-based cryptographic schemes, based on the (R-)LWE hard
problem, are NTRU for encryption and signing, frodo [Bos+16a] for key exchange
and NewHope [Alk+15] for key exchange and digital signatures.

2.4 Post-quantum cryptography 17

Code-based

Code-based cryptography is using error correcting codes, which were originally
developed to improve communication by correcting the noise over noisy or
unreliable channels, by adding control bits to verify and correct the data.

The message is converted into a code and a certain secret error is added. Because
the receiver knows the code parameters, he can retrieve the original code. The
adversary should not be able to distinguish the code from a random code. To
achieve this, the public key is a scrambled version of a generator matrix, which
was used to encrypt the message. This scramble principle is similar to what we
say with lattice-based cryptography as well (Section 2.4.1). It is assumed hard
for an adversary to decode a random linear code.

Examples of code-based cryptography are McEliece [McE78] and Niederreiter
variant on that using Goppa codes [Din+11].

Isogeny-based

Elliptic Curve cryptography is based on computations on points on specific elliptic
curves. The supersingular isogeny cryptography is based on finding the operation
between specific elliptic curves. Those operations, that map a curve onto another
curve with certain properties, are called isogenies. It is assumed hard to find the
isogeny between two specific elliptic curves, unless you have more information
about those curves. That information will become part of the secret key, while
the public information is defined by two elliptic curves.

Examples of an Isogeny-based algorithm are Supersingular Isogeny Key Exchange
(SIKE) and SuperSingulair Isogeny Diffie Hellman (SIDH). For more details about
side and SIKE refer to Rostovtsev et al. [RS06] and Costello et al. [Cos+16].

2.4.2 NIST Security level

The post-quantum cryptographic algorithms can be categorised on their security
strength. All the submissions for the standardisation process of NIST (see Section
2.4.1) are categorised in 5 different security strengths. In this thesis we focus on
number 1, 3 and 5, and those are formulated [NIS16] as:

18 Chapter 2 Preliminaries

1 Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for key
search on a block cipher with a 128-bit key (e.g. AES128).

3 Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for key
search on a block cipher with a 192-bit key (e.g. AES192).

5 Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for key
search on a block cipher with a 256-bit key (e.g. AES 256).

All three security levels; 128 bits, 192 bits and 256 bits, are assumed “not known
to be insecure” until 2030 and beyond [Bar16]. Starting from 2030 a 112-bits
security level “shall not be used for cryptographic protection”.

We focus mostly on the 128 bit secure post-quantum cryptography, because it
is assumed secure until at least 2030. While the 192 bits security level (NIST
level 3) and 256 bits security level (NIST level 5) are assumed too high standards
for decades, it is still important to research them. There may be reasons, yet
unthinkable, for which we need higher security standards. It would be a waste to
not at least acknowledge their existences.

2.4.3 Hybrid encryption scheme

Currently the new developed post-quantum cryptography is very new and less
analysed, and therefore might have undiscovered vulnerabilities. To mitigate
the risk of post-quantum cryptography a hybrid encryption scheme can be used.
In a hybrid encryption scheme two or more different encryption schemes are
combined. In this thesis we mean “A combination of a a not post-quantum encryp-
tion scheme and a post-quantum encryption scheme” when talked about hybrid
encryption. If the post-quantum scheme is broken in a hybrid encryption scheme,
at least we can still rely on the security of the non post-quantum algorithm.

For the transitional period, from classical to quantum computers, these hybrid
schemes are very useful. Hybrid schemes would also protect you against a passive
quantum attack.

2.4.4 Universal Composablility framework

When combining encryption schemes into hybrid schemes, or combining crypto-
graphic primitives in new protocols the security of the primitives or the encryption

2.4 Post-quantum cryptography 19

schemes might be influenced. Cannetti [Can01] introduced the Universal Com-
posablility (UC) framework, which can be used to make statements about the
security of the schemes or primitive in the UC frameworks. The UC framework
allows for security analysis of complex protocols by analysing the security of the
simpler building blocks: the cryptographic primitives. Cryptographic primitives
that are proven secure in the UC framework remain secure when they are com-
posed with and in other protocols. Examples of primitives that are proven to be
secure in the UC framework, by Ralf Küsters and Daniel Raush [KR17], are:

• DH key exchanges (based on the DDH assumption)
• Symmetric encryption
• Public key encryption

Protocols which combine these UC secure primitives together can be sure that
the primitives keep there security. The UC framework can in that way also
help in proving that the whole protocol is secure in the UC framework. The
UC framework is out of the scope of this thesis, for more information refer to
Cannetti [Can01] and Küsters [KR17]. Refer to the works of Vajda [Vaj17] and
Unruh [Unr10] for more detail about post-quantum cryptography in the UC
framework.

20 Chapter 2 Preliminaries

3The Signal Protocol

As indicated in the introduction (Section 1), we are working towards creating
a post-quantum Signal Protocol. To understand how to create a post-quantum
version we first introduce the Signal Protocol in this section. In Section 3.1 we
give a brief introduction on the Signal Protocol and its security properties. In
Section 3.2 we describe all the building blocks required for the Signal Protocol,
and explain their function. In Section 3.3 we give a summary of the complete
protocol, showing all the building blocks which were introduced in Section 3.2.
In Section 3.4 we add a few other building blocks that are used in the Signal
Protocol. These building blocks are not necessary to understand the basic working
of the Signal Protocol.

3.1 Introduction to the Signal Protocol

The Signal Protocol is a protocol that allows users to update the key used for
encryption. The protocol can be used to provide end-to-end encryption for voice
calls, video calls, and instant messaging conversations. In the communication
between Alice and Bob, the Signal Protocol can be split in three phases:

1. Key generation: occurs before there is any communication between Alice
and Bob.

2. Key agreement: the first message from Alice to Bob in which they agree on
the initial key.

3. Key renewal: during normal chat, the key is updated every message, after
initial contact was made.

The Signal Protocol has two major parts: the Extended Triple Diffie-Hellman
(X3DH) protocol and the Double Ratchet algorithm. The first two phases are
done by the X3DH protocol, the normal chat phase is done by the Double Ratchet
algorithm. Those protocols are, in their turn, created out of cryptographic
primitives. The major cryptographic primitives used are:

• DH key exchange (using Curve25519)
• Symmetric encryption

21

• Key derivation function (KDF) (using SHA-512)
• Public signature schemes (using Curve25519)

These primitives, combined in both the X3DH and Double Ratchet give the Signal
Protocol its desirable security properties [Fro+14]:

• End-to-end encryption
• Forward secrecy
• Backward secrecy
• Authentication
• Deniability

which are defined in Section 2.2.3. And because the Signal Protocol is used for
chat application it means that the protocol has to have the property:

• Non-interactive: no interaction is needed to communicate or choose keys

As was explained in Section 2.1.4.

In the next section, we see how the building blocks with these properties are
implemented in the Signal Protocol.

3.2 Building towards the Signal Protocol

In this section, we add the building blocks and cryptographic primitives of the
Signal Protocol one by one, to eventually create the Signal Protocol. We explain
per block or primitive which security properties it adds. We start building the
Signal Protocol from a simple unsecured chat.

3.2.1 End-to-end encryption

The very first security property the Signal protocol should have is end-to-end
encryption. This is achieved by adding symmetric encryption as explained in
Section 2.1. To solve the key distribution problem they use public key encryption
to generate a shared secret between the two of them, which they can use as input
for a key derivation function to create a symmetric key. The complete buildup
to this basic end-to-end chat was explained in Section 2.1. The resulting chat
between Alice and Bob is shown in Figure 2.2.

22 Chapter 3 The Signal Protocol

3.2.2 Forward secrecy and backward secrecy in the DH
ratchet

A protocol with only end-to-end encryption has a single point of failure. Namely,
when a key is leaked, all current, previous and future messages are revealed.
Ideally this scenario should leak as little information as possible. Hence, we
want forward and backward secrecy (See section 2.2.3), so that if an attacker
gets the key at point x he cannot read previous and future messages. Forward
and backward secrecy can be implemented by using one-time keys, which are
used one time and deleted. Leaking a one-time key will only compromise the
information that has been encrypted with that key.

The Diffie-Hellman Ratchet (DH ratchet) [PM16a] makes it possible to have every
message encrypted with another symmetric key. These symmetric keys are, in
turn, generated by DH key exchanges. For every key exchange either Alice or Bob
renews its DH public-private key-pair. The symmetric keys are thus only used
once and every DH key-pair is only used twice.

The DH ratchet is shown in Figure 3.1, and shows how Alice sends the first
message to Bob, Bob replies, after which Alice replies again.

Fig. 3.1.: The DH ratchet at work, in which Alice sends first message to Bob (using B1
and her private a1), Bob replies to her (using his private b2 and Alice public
A1) and Alice responds again (using B2 and a2). The figure is an adaptation
of an image from [PM16a].

Alice will start by sending the first message to Bob. After she receives Bob’s public
key, B1 she takes the following steps:

• Generate a new DH key pair, (A1, a1).

3.2 Building towards the Signal Protocol 23

• Create a symmetric shared secret between her and Bob, DH(B1, a1).
• Encrypt the message with the symmetric shared secret.
• Send Bob the encrypted message alongside her public key, A1.

Note that for the first message Alice still needs to receive Bob’s public key, we
see later that Bob does not have to be online for this (see Section 3.2.4). Bob
receives the message and decrypts it by following the steps:

• Create the symmetric shared secret, DH(A1, b1).
• Decrypt the message.

Bob can send Alice a reply by taking the following steps:

• Generate a new DH key pair, (B2, b2).
• Create a new symmetric shared secret, DH(A1, b2).
• Encrypt the message with the symmetric shared secret.
• Send Alice the encrypted message and his public key, B2.

The communication continues in this way, so that the key is updated after every
message.

In Figure 3.1 the forward and backward secrecy in the DH ratchet can be seen.
For example, when Bob’s second DH private key b2 leaks, the shared secrets, for
both the second and third messages, are no longer secret. An attacker only has
to observe the public keys of Alice and create the same shared secrets. However,
knowing b2 will not help in discovering either the shared secret used to encrypt
message 1 or message 4, 5 and onward, because a different key pair is used for
those shared secrets.

3.2.3 Authentication in X3DH

At this stage, there is nothing in place to prevent an attacker to impersonate
Alice and/or Bob and execute, for example, a man-in-the-middle attack. To
prevent such impersonations from happening, a form of authentication [PM16b]
is needed. This way, Alice and Bob are sure that they exchange encryption keys
with each other. The authentication issue boils down to the need of verifying
each others DH public keys by bounding a key to an identity.

Authentication can be done by verifying each others long-term public key, how-
ever, one-time keys are required to keep the forward and backward secrecy. In
the next paragraph, we explain how the identity key and the one-time key can

24 Chapter 3 The Signal Protocol

be combined in the Extended Triple Diffie-Hellman Protocol (X3DH) to ensure
authentication, deniability and forward secrecy. We end with a paragraph on how
to confirm someone’s identity key. In Section 3.2.4 we explain how the X3DH
protocol is used in a non-interactive. This involves some small adjustments to
the X3DH protocol, introduced in this section.

Combining long-term and one-time keys in X3DH The Extended Triple Diffie-
Hellman protocol (X3DH) combines the long-term identity key (IK) with the
one-time key (OTK), to generate an initial shared secret, which has forward
secrecy, authentication and deniability. Alice and Bob will initiate their secure
chat with one identity key and one one-time key. In Table 3.1 we see a quick
overview of the keys that Alice and Bob both need during the X3DH, and their
purpose.

Key pair Name Type Purpose
IK Identity Key Long-term Authentication
OTK One-Time Key One-time Forward secrecy

Tab. 3.1.: The keys both Alice and Bob needs to communicate with each other.

The four keys are combined in the Extended Triple Diffie-Hellman (X3DH) in
three different DH shared secrets which can be seen in Figure 3.2, and are later
combined to the initial shared key, Kinit, with a key derivation function (see
Section 2.1.5).

Fig. 3.2.: Alice creates the 3 shared secrets between her private keys and Bob’s public
key. Bob will create the same shared secrets, but he will use his private keys
and Alice’s public keys.

The four keys are combined in such a fashion to provide forward secrecy, authen-
tication and deniability. The purpose of each of the DH shared secrets is given in
Table 3.2.

There is no shared secret between the identity keys, because that would result in
a secret without any forward secrecy. The shared secret between both one-time
keys (DH3) does not involve any authentication. The leak of authentication
could have been solved by signing (see Section 2.1) the one-time keys, however,
that would result in losing the deniability claim: a user cannot deny that it was

3.2 Building towards the Signal Protocol 25

Secret Alice Bob Main purpose
DH1 IKa OTKB Authentication of Alice, forward secrecy for Bob
DH2 OTKa IKB Authentication of Bob, forward secrecy for Alice
DH3 OTKa OTKB Forward secrecy, however, no authentication

Tab. 3.2.: The three DH secrets that are generated in the X3DH protocol, between which
keys they are created and their main purpose.

him who sent the key to initiate communication because he signed it. There are
possibilities for deniable signatures, but they are complex to compute and thus
not suitable for chat [Mar13].

Deniability Doing the triple handshake as in Figure 3.2 allows both users to
authenticate each other using their private identity key to create shared secrets
DH1 and DH2, and still have deniability. Alice can never publish a cryptographic
proof that it was Bob, and not herself, who created the shared secrets.

The initial shared key, that Alice and Bob can use to send each other messages,
will be a concatenation of the three DH shared secrets which is put through a
KDF, as described by the formula:

Kinit = KDF (DH1||DH2||DH3)

Verifying the identity key The verification of the identity keys (ID) for both
parties should be done before the protocol starts, otherwise there is no guaranteed
authentication. Eve could create a fake identity key for Bob and Alice may
communicate with Eve instead of Bob, without knowing it. The long-term
identity key could be verified in real life or using a public key infrastructure, in
which we use certificates to verify that someone is who he says he is. The Signal
Protocol uses the first “real life verifying” option, and uses a so called “security
code” in the application with which users can verify each others identities.

3.2.4 Uploading to a server

The public keys needed in the X3DH protocol are uploaded in advance to a
trusted server, so when Alice needs Bob’s keys, she can just contact the server.

In the initial phase of the protocol, before users are able to send each other
messages, each user has to generate several Diffie-Hellman key pairs and upload
the public part of those keys to the server. A user will generate one identity key

26 Chapter 3 The Signal Protocol

pair, IK, one signed pre-key pair, SPK and 100 one-time pre-key pairs, OTK ’s,
as can be seen in Table 3.3.

Key pair Type Number of keys on server Signed
IK Long-term 1 No
SPK Short-term 1 Yes, with IK

OTK One-time 100 No
Tab. 3.3.: The table shows per users which keys are uploaded to the server, how many,

what type, and which one are signed.

The public Diffie-Hellman keys on the server are grouped in pre-key bundles, each
bundle containing the public identity key IK, the public signed pre-key SPK,
one public one-time pre-key OTK and the signature of the SPK. Every time the
server is almost out of OTK ’s, the user has to generate 100 new OTK and one
new SPK pair, of which he uploads the public keys to the server. If there are no
new OTK keys the protocol can run without the OTK.

Using a pre-key bundle and thus both a SPK and an OTK does not make
major changes in how the X3DH protocol works. When Alice receives Bob’s
pre-key bundle, both the SPK and the OTK are involved in the creation of the
encryption key for messages, by creating four DH shared secrets as can be seen
in Figure 3.3.

Fig. 3.3.: The figure shows schematically how Alice (left) and Bob (right) create the four
shared secrets between them, using both OTK and SPK, if Alice initiated
contact. If there is no OTK available DH4 is not created.

Note that the difference compared to Figure 3.2 is that SPK now creates the
third shared secret (DH3) and the OTK is involved in generating the fourth
DH shared secret (DH4). The four DH secrets are again concatenated and put
through a KDF:

Kinit = KDF (DH1||DH2||DH3||DH4)

The other major difference is that Alice’s OTK is called an ephemeral key (EK),
because that key is the only key that is created during run time and not in the

3.2 Building towards the Signal Protocol 27

initialisation phase. If the server would ran out of OTK ’s the protocol will run
without the OTK and without the fourth DH shared secret.

3.2.5 Creating the Double Ratchet for efficiency

In Section 3.2.3 and 3.2.4 we saw that the X3DH protocol provides a deniable and
non-interactive way of authentication. However, having to do the X3DH protocol
every time a message is sent is inefficient. To maintain the authentication of the
X3DH protocol, but keep the number of generated DH shared secrets low, the
symmetric ratchet is used. The symmetric ratchet is combined with the DH ratchet,
into the Double Ratchet to have both a new encryption key for each message and
authentication.

The symmetric ratchet The symmetric ratchet uses a chain of key derivation
functions (see Section 2.1.5), so that the next key will be obtained from the
current key [CG+16], as can be seen in Figure 3.4.

Fig. 3.4.: The symmetric ratchet in which a lot of KDF functions are chained. The figure
is taken from [PM16a].

The KDF will output a message key, which is used to encrypt or decrypt a message,
and a new chain key, which is used as input for the next KDF. The output is split,
so that if an adversary gets hold on a message key, he can still not use that as an
input to the KDF to generate future message keys.

The symmetric ratchet has two input values, the chain key and a constant value.
The chain key is obtained from the previous KDF output. For the initial chain

28 Chapter 3 The Signal Protocol

key the key created in the X3DH protocol is used. Therefore the authentication
flows through the rest of the keys created by the symmetric ratchet. The one-way
property of the KDF gives the symmetric ratchet it’s forward secrecy for all those
keys.

The constant input to the KDF will be the symmetric shared secret created by the
DH ratchet. In this way the symmetric ratchet and the DH ratchet are combined
into the Double Ratchet.

The Double Ratchet algorithm The Double Ratchet algorithm combines the
symmetric ratchet and the DH ratchet.

To have forward secrecy, backward secrecy, authentication and deniability, the DH
ratchet and the symmetric ratchet are combined into the Double Ratchet Protocol.
The symmetric ratchet will not only use the chain key as input but also the DH
shared secret created with the DH ratchet. The resulting Double Ratchet for Alice,
can be seen in Figure 3.5. When Alice wants to send Bob a message using the

Fig. 3.5.: The figure shows from Alice view, how the DH ratchet and the symmetric
ratchet are combined into the Double Ratchet. The figure is an adaptation of
an image from [PM16a].

Double Ratchet algorithm, she puts the initial key, Kinit, obtained from the X3DH
protocol, in the symmetric ratchet as RKinit. The other input to the symmetric
ratchet is the first DH shared secret she created with Bob using the DH ratchet.
To keep the Double Ratchet non-interactive she does not need to ask for a DH
key from Bob, but she will uses his SPK in combination with her new generated
private key a1, to create the shared secret DH1. The KDF outputs a message key
K1 and a new root chain key RK1. The message key K1, she uses to encrypt the
message to Bob, after which Alice sends both the encrypted message and her
public key, A1, for the DH ratchet to Bob.

3.2 Building towards the Signal Protocol 29

When Alice receives a reply from Bob, she needs the chain key RK1 she receives
from the symmetric ratchet. To decrypt the message, Alice uses her old private
DH key, a1 and the new DH key Bob just sent her, B1, to create a shared secret
DH2. She puts DH2 and the RK1 into the symmetric ratchet, to get the message
key K2 which she uses to decrypt the message from Bob.

When Alice wants to reply again to Bob, she first generate a new DH key pair,
(A2, a2), generates a new DH shared secret (DH3), put this together with RK2

into the symmetric ratchet and receives a new sending key K3. They will again
continue to use the Double Ratchet in this fashion to communicate.

We summarise the utility of the Double Ratchet algorithm. The Double Ratchet is
used to update the message key every message. The message keys have forward
and backward secrecy, because of the combination of the symmetric ratchet and
the DH ratchet. Because the Double Ratchet get’s an initial chain key from the
X3DH protocol, the authentication flows through the rest of the keys.

3.3 The Signal Protocol in a nutshell

All the building blocks from Section 3.2 can be combined into the Signal Protocol.
The Signal Protocol then has end-to-end encryption, forward and backward
secrecy, authentication, deniability and is non-interactive. Both the X3DH and
Double Ratchet together give the Signal Protocol its end-to-end encryption and
forward and backward secrecy. The X3DH protocol is responsible for making
the Signal Protocol non-interactive, deniable and authenticated, while these
properties of course flow trough the rest of the Signal Protocol.

The Signal Protocol will roughly consists of 3 phases (in the case that Alice
initiates the contact):

1. Initial setup: uploading the keys to the server.
2. The first message: the first message from Alice to Bob.
3. Message exchange and key update: during normal chat, renew the key for

all messages, after initial contact was made.

The first two phase are done by the X3DH protocol, the message exchange and key
update phase is done by the Double Ratchet algorithm. We explain each phase in
the following three sections.

30 Chapter 3 The Signal Protocol

3.3.1 Phase 1 - Initial setup

The first phase in the Signal Protocol is the same as the initial phase of the
X3DH protocol as described in Section 3.2.4. Alice and Bob both upload 100 key
bundles to the server, containing the public identity key IK, the public signed
pre-key SPK, one public one-time pre-key OTK and the signature of the SPK.
This phase is shown in Figure 3.6.

Fig. 3.6.: Phase 1 of the Signal Protocol. In phase 1 the users upload their pre-key
bundles to the server.

3.3.2 Phase 2 - The first message

In phase 2, Alice request the pre-key bundle from Bob and will use this to send
him the first message, as can be seen in Figure 3.7. She will follow the steps from
the X3DH protocol, to create the initial key, Kinit. She puts Kinit in the Double
Ratchet, together with the shared secret created between her new generated
private key a1 and Bob’s SPK, to create the first sending key, K1, and the root
key for the chain, RK1. She uses K1 to encrypt a message to Bob and sends Bob
the keys he need to decrypt the message: IKA, EKA and A1, together with the
encrypted message. Bob will decrypt the message, as soon as he appears online,
following the same X3DH as Alice.

3.3.3 Phase 3 - Message exchange and key update

In the third phase Alice and Bob just have a normal chat conversation. For Bob
to reply to Alice he will follow the steps:

• Bob creates a new DH key pair (B1, b1).
• He generates the shared secret between his new generated private key b1

and Alice’s public key A1.
• He puts his chain key, RK1, and the shared secret in the KDF.
• The KDF will output a new chain key RK2 and the encryption key, K2 for

Bob.
• Bob encrypts the message with K2.

3.3 The Signal Protocol in a nutshell 31

Fig. 3.7.: Phase 2 and 3 of the Signal Protocol. In Phase 2 Alice initiates the first contact
between her and Bob, by following the X3DH protocol and sending him a
message. Phase 3 of the Signal Protocol in which Bob replies on the Alice
initial message and they continue chatting using the Double Ratchet of the
Signal Protocol. The figure is an adaptation of an image from [PM16a].

• Bob sends Alice both the encrypted message and his new public key B1.

Alice receives the message from Bob and his public key. She can decrypt the
message by taking the following steps, as can be seen in Figure 3.7:

• Alice creates the same shared secret with a1 and B1.
• She put both that shared secret and the RK1 into the KDF.
• The KDF outputs the decryption key K2 and the new root key RK2.

Alice does not have to reply immediately, but when she does she can take the
following steps to send a rely to Bob, as can be seen in Figure 3.7:

• Alice generates a new DH key pair (A2, a2).
• She create a shared secret between her a2 and Bob’s B1

• She puts both the shared secret and the RK2 in the KDF.
• The KDF outputs the encryption key K3 and chain key RK3.
• She encrypts the message with K3.

32 Chapter 3 The Signal Protocol

• Alice sends both the encrypted message and A2 to Bob

3.4 More implementation choices

In this section, we describe two other implementation choices in the Signal
Protocol that make it a better chat application. In Section 3.4.1 we explain how
the Signal Protocol handles multiple messages and how the key can be updated,
even when no new public key is received. In Section 3.4.2 we describe the Sesame
protocol, a part of the Signal Protocol that acts on situations which could happen
during chatting like: out of order messages, accidentally deleted encrypt/decrypt
keys and multiple devices.

3.4.1 Sending multiple message

People usually send multiple messages to a user before that user replies. However,
for simplicity we assume these multiple messages to be one message, as can be
seen in Figure 3.8. The Signal Protocol will, however, create a new key for each
messages, but not with a Double Ratchet step.

Fig. 3.8.: While we see multiple messages in chats, for simplicity we can assume those
messages are one and encrypted with the same key until the other party
responses.

The Signal Protocol will generate a new key for each of these messages, but
because key renewal requires interaction the Double Ratchet cannot be used
for this. Instead the Signal Protocol will use KDF functions to update the key
for each message. Actually three chains are used in the Signal Protocol: a root
chain, a sending chain and a receiving chain. The encryption and decryption
keys (called sending and receiving keys), Kx, from the root chain as described

3.4 More implementation choices 33

in Section 3.2.5, are used as input keys for the sending chain and the receiving
chain. Those sending and receiving chain keys will be put again through a KDF
function, creating a respectively sending chain key and sending key or receiving
chain key and receiving key.

Simply only using a KDF instead of three chains will result in forward secrecy,
but splitting the output of the KDF into a chain key and a sending/receiving key
will prevent an adversary to directly use an obtained sending/receiving key to
generate all the future encryption keys for that message series himself. As soon
as the receiving party replies, the Signal Protocol will start a new Double Ratchet
step, and a new DH key will be used to update the root chain key.

3.4.2 Out of order messages in the sesame algorithm

Syncing keys and messages during a chat could be a problem; a lot of things
could go wrong, luckily the Sesame algorithm, which is also a part of the Signal
Protocol, manages message encryption sessions in an asynchronous setting, to
handle the problems that may occur in the practical context of using the Signal
protocol [PM17]. Some problems that could occur are:

• Users have multiple devices and add and remove devices. These devices
need new keys or their keys need to become invalid.

• Users delete all their keys or sessions. What happens to already encrypted
messages?

• Users initiate new sessions at the same time, something the Double Ratchet
does not cover. Which key is chosen as the main key?

• Messages get lost or arrive out-of-order. How to make sure which encryption
key belongs to which decryption key, and vice versa.

• Adversaries compromise devices or interfere with the communication.

The Sesame algorithm makes it possible that everything still works, by making
sure that every device is keeping track of "active" sessions for every device it
is communication with and making sure that these active sessions are kept up-
to-date. The working of this algorithm is out of scope for this paper, for more
details about this algorithms refer to the paper by Perrin et al. about the Sesame
algorithm [PM17].

34 Chapter 3 The Signal Protocol

4A Post-Quantum Signal Protocol

In the previous section we analysed how the Signal Protocol works and which
security properties it has. In this section, we analyse which part of the Signal
Protocol is not quantum-safe and we discuss how to create a post-quantum Signal
Protocol theoretically.

In Section 4.1 we explain which part of the Signal Protocol should be substituted
for a post-quantum alternative, to create a post-quantum Signal Protocol. In
Section 4.2 we see the challenges which we might face with the post-quantum
substitutes. In Section 4.3 we introduce the hybrid post-quantum Signal Protocol,
which deals with part of these challenges and in Section 4.4 we elaborate on
possible partially hybrid post-quantum Signal Protocol.

4.1 The Post-Quantum Signal Protocol

In this section, we discuss how to create a post-quantum Signal Protocol, by
analysing which parts of the Signal Protocol need to be substitute by a post-
quantum alternative. We can see the not quantum-safe Signal Protocol in Figure
4.1.

The Signal Protocol consist of two major parts: the initial X3DH key exchange and
the Double Ratchet for message exchange and the key update. The cryptographic
primitives used in the protocol are: key exchanges, key derivation functions
(KDFs), signature schemes and symmetric encryption. Each primitive uses a
specific algorithm in the Signal Protocol, these algorithms are shown in Table
4.1.

As explained in Section 2.3, only ECDH Curve25519 is directly threatened by
quantum computers, while AES and SHA only need to adjust their parameter
sets. Every ECDH key exchange in the Signal Protocol will need a post-quantum
substitute, so those the Curve25519 based signature scheme for the signed-pre-
key. The symmetric encryption scheme AES could need a larger key, and the KDF
function based on SHA-512 might need a higher standard as well. However, this
is out of the scope for this thesis, as explained in Section 2.4.1. In this thesis we

35

Fig. 4.1.: The Signal Protocol with the X3DH and Double Ratchet algorithm, which
both use the ECDH, which is not a quantum-safe solution. The figure is an
adaptation from [PM16a; PM16b].

Part in Signal Protocol Cryptographic primitives Algorithm used
X3DH Key exchange ECDH, with Curve25519

KDF HKDF, with SHA-512
Signature XEdDSA, with Curve25519

Double Ratchet Key exchange ECDH, with Curve25519
KDF HKDF, with SHA-512
Encryption AES-256 in CBC mode

Tab. 4.1.: The different cryptographic primitives in each part of the Signal Protocol and
the algorithm they use [PM16a; PM16b].

focus solely on finding a post-quantum substitute for the ECDH key exchanges in
the Signal Protocol. The post-quantum Signal Protocol, with an alternative for
every ECDH key exchange, can be seen in Figure 4.2.

The post-quantum Signal Protocol has all the security properties: end-to-end
encryption, authentication, forward secrecy, backward secrecy and deniability, in
a quantum world. However, as we will see in the next two sections, implementing
it like this might be not so easy and unwise to do because of security reasons.

36 Chapter 4 A Post-Quantum Signal Protocol

Fig. 4.2.: The post-quantum Signal Protocol with the X3DH and Double Ratchet algo-
rithm, both with a post-quantum DH alternative.

4.2 Challenges with Post-Quantum
cryptography

For the post-quantum Signal Protocol an alternative post-quantum ECDH is
needed. Unfortunately, there are a lot of different possible post-quantum algo-
rithms and challenges when implementing them, such as:

• Their novelty
• Their larger key size
• Their computational difficulty
• A different way of key exchange

These challenges do not limit themselves to applications in only the Signal Proto-
col, however, in this thesis we focus on the Signal Protocol. Not all challenges
apply to all post-quantum algorithms.

Novel algorithms Most post-quantum algorithms are still in development and
thus have a higher chance of containing undiscovered vulnerabilities. The Na-
tional Institute of Standards and Technology (NIST) is currently in the process
of standardising (multiple) post-quantum algorithms (see Section 2.4.1). In this
standardisation process 69 post-quantum algorithms are analysed, vulnerabilities

4.2 Challenges with Post-Quantum cryptography 37

are found and the algorithms are improved, and this will lead to less undiscovered
vulnerabilities.

Large key sizes Most post-quantum algorithms use keys with a larger size than
the current used keys for a Elliptic Curve Diffie-Hellman key. An increased key
size might leaves challenges for storing the private keys on the mobile phone or
the public keys on the server, and overhead when sending the keys to other users
and the server.

For some algorithms the public keys are small, but the private keys are relatively
large, or vise versa. Somehow, either the user has to store large private keys, or
the large public keys have to be send to and stored on the server.

Computational difficulty Most post-quantum algorithms require more difficult
computational. This computational difficulty results in longer tun times, higher
CPU usages and more energy consumption.

The Signal Protocol mostly is used on a mobile phone, and the process capacity of
a mobile phone might be different than the capacity on which the post-quantum
algorithms were tested. The CPU capacity might be lower then on a computer,
resulting in a longer run time. A longer run time might cause a higher energy
consumption, which influences the battery life of a mobile phone. A longer run
time might also increase the time a user has to wait, which influence the user
experience. In a chat application the delay should be kept as small as possible. In
Section 5.5 we will look into how people chat and which delays are noticeable by
the user.

Different way of key exchange Some post-quantum public key encryption schemes,
like some lattice-based schemes, require interaction during key exchanges. This
means that having the public key of Bob, will not allow Alice to create a shared
secret. Using a interactive key exchange, Alice generates a shared secret with an
error. To resolve the error, she has to have an interaction with Bob to make sure
they both created the same shared secret. This would mean that both chatting
parties should be online when they agree on a shared secret or key. These post-
quantum algorithms are not optimal for the non-inter-activeness of the protocol
and thus should either not be used, or should be worked around. The last option
is possible for the Double Ratchet, in which new key material could be send one
message before the key is actually needed. For the X3DH protocol this is not a
solution, and a non-interactive key exchange is required.

38 Chapter 4 A Post-Quantum Signal Protocol

A lot of post-quantum submissions in the standardisation process of NIST (Section
5.3.4) are key encapsulation mechanisms (KEMs) (Section 2.1.4). However, these
KEMs are not a perfect plug-and-play for ECDH, as we will explain in Section
5.3.1. Because the shared secret is not created by using both parties key material,
one user decides on the shared secret and the other one receives this secret, they
are not suitable to implement in a post-quantum X3DH protocol.

4.3 Hybrid Post-Quantum Signal Protocol

In this section, we explain how a hybrid post-quantum Signal Protocol will look,
and that it solves the first challenge named in the previous section: the novelty
of post-quantum algorithms. A hybrid post-quantum Signal Protocol has both
ECDH and a post-quantum algorithm, as explained in Section 2.4.3. In this way
there are less security risks, if the post-quantum algorithm holds undiscovered
vulnerabilities. In the Hybrid post-quantum Signal Protocol, when the post-
quantum algorithm turns out to be not secure against a classical or quantum
computer, your data is at least as secure as it was with ECDH.

In a fully hybrid Signal Protocol we run a X3DH protocol and a post-quantum
X3DH protocol simultaneously and put both outputs in a KDF function to generate
one key. For the Double Ratchet we run the Double Ratchet as it is with ECDH,
together with a post-quantum Double Ratchet, the output is again put in a
KDF function to get one key, which can be put in the root chain. This hybrid
post-quantum Signal Protocol can be seen in Figure 4.3.

The Signal Protocol is secure in a classical world, however, adding post-quantum
building blocks might deteriorate the security of the ECDH Signal Protocol. The
security of the Signal Protocol can be described by using the Universally Compos-
ability Security Framework, see Section 2.4.4. The cryptographic primitives that
create the Signal Protocol are:

• ECDH key exchanges
• Key derivation functions
• Symmetric encryption
• Signing of the SPK

Ralf Küsters and Daniel Raush [KR17] proved that all these primitives fall in the
Universally Composability framework, and thus that they remain secure when
combined in the Signal Protocol. Adding post-quantum blocks to the Signal
Protocol, will again not remove the security the initial blocks had in the UC

4.3 Hybrid Post-Quantum Signal Protocol 39

Fig. 4.3.: The hybrid Signal Protocol, which both uses a post-quantum algorithm and the
ECDH. The shared secrets created by both are combined with in the symmetric
ratchet.

framework. More research is done about fitting post-quantum protocols in the
UC framework, however, analysing and explaining that research is out of the
scope of this thesis. See the work of Vajda [Vaj17] and Unruh [Unr10] for more
details about the UC framework.

4.4 Partially hybrid post-quantum Signal
Protocol

In this section, we look at how to create a partially hybrid post-quantum Signal
Protocol. This protocol might solve two challenges post-quantum algorithms have,
namely: large key sized and computational difficultly, as discussed in Section
4.2. Because of the challenges it might not yet be possible to implement the
hybrid post-quantum Signal Protocols. Implementing a partially hybrid Signal
Protocol is a solution for the transitional period, to have security against a passive
quantum attack right away (see Section 2.4.3).

There are different partially hybrid post-quantum Signal Protocols possible. In
these partially hybrid post-quantum Signal Protocols only some ECDH key ex-
changes are substituted for the post-quantum alternative. Roughly, we see two
mayor parts which could be made post-quantum: the X3DH protocol and the Dou-

40 Chapter 4 A Post-Quantum Signal Protocol

ble Ratchet. As an alternative for a post-quantum X3DH, we will evaluate a third
option in which one building block is added: a post-quantum key exchange.

We elaborate on the influence these three options have on the security properties
of the Signal Protocol (Section 3.1) in Section 4.4.2, 4.4.3 and 4.4.4. We then
combine the three options in other possible partially hybrid post-quantum Signal
Protocols, and again look at the impact on the security properties (Section 4.4.5).
To understand the impact of the partially hybrid post-quantum Signal Protocols
on the security properties, we have to define the current key, which we do first.

4.4.1 Current key

The current keys are the keys the user has on his phone at a certain moment
x. For example, in Figure 4.1, if Alice’s current keys are leaked right after the
second root key, RK2, then she leaks:

• her private identity key IKa,
• her current private Double Ratchet key a1,
• the root key RK2,
• the key which which messages are encrypted (not shown in the image).

The keys Alice generates after moment x are not leaked.

With this definition we can look at the impact the partially hybrid post-quantum
Signal Protocol have on the forward and backward secrecy.

4.4.2 Post-quantum X3DH

The Signal Protocol with a post-quantum X3DH can be seen in Figure 4.4. This
partially post-quantum Signal Protocol will have, in a quantum world, authenti-
cation, forward secrecy and deniability. Authentication and deniability due to
of structure of the X3DH, and forward secrecy because of the KDFs applied to
every used key (see Section 3.2.3). Even though, an adversary can break all the
ECDH key exchanges, there is still end-to-end encryption due to the post-quantum
keys.

There is no backward secrecy in a quantum world. Once the current keys are
leaked, the adversary can use the root chain key and a quantum computer to
compute all ECDH shared secret to obtain all future encryption keys.

4.4 Partially hybrid post-quantum Signal Protocol 41

Fig. 4.4.: The Signal Protocol with a Hybrid X3DH protocol.

4.4.3 Post-quantum Double Ratchet

The Signal Protocol with a post-quantum Double Ratchet algorithm can be seen
in Figure 4.5. A post-quantum Double Ratchet will have backward secrecy and
forward secrecy. Backward secrecy, because you get a new post-quantum key
every message. Even when the current keys are leaked, the new post-quantum
keys can not be derived from those leaked keys.

Because of the ECDH X3DH, some properties are not present in this version of a
partially hybrid post-quantum Signal Protocol. The root chain is initialised with
an by ECDH keys created initial key, which result in no authentication and no
deniability. There is also no forward secrecy until the first post-quantum Double
Ratchet key is created.

4.4.4 Extra key exchange

The Signal Protocol with an extra key exchange can be seen in Figure 4.6. This
exchange can either be an identity key (PQ ID) or an one-time key (PQ OTK),
both with their own benefit.

42 Chapter 4 A Post-Quantum Signal Protocol

Fig. 4.5.: The Signal Protocol with a hybrid Double Ratchet algorithm.

Extra PQ DH - ID Only adding a post-quantum identity key, instead of a complete
post-quantum X3DH protocol, will result in a partially hyrbid post-quantum
Signal Protocol with authentication. All the other keys (in the X3DH and Double
Ratchet) could be compromised, and there is no guarantee that the other keys are
created by the authenticated user. There is no forward or backward secrecy if the
current keys are leaked. The post-quantum identity key will be used long term,
and thus if a phone is compromised the post-quantum identity key is obtained
and an adversary with a quantum computer can obtain all the other keys in the
protocol.

Extra PQ DH - OTK Adding a post-quantum one-time key will give forward
secrecy and deniability. Deniability because there is no authentication and
thus you can deny any involvement in the communication. If the phone is
compromised and the current keys are leaked, there is still forward secrecy
because of the key derivation function, which is still secure in a quantum world.
There is no way to go from the current key to a previous key. However, because
the ECDH keys can be obtained by an adversary with a quantum computer, there
is no backward secrecy after the current keys are leaked.

4.4 Partially hybrid post-quantum Signal Protocol 43

Fig. 4.6.: The Signal Protocol with an extra post-quantum key exchange.

4.4.5 Combining the different hybrid blocks

These four partially Signal Protocols can be combined into other partially Hybrid
Signal Protocols. We create a total of nine different partially hybrid post-quantum
protocols and their security properties in a quantum world, as seen in Table 4.2.
Protocol 1 is the trivial hybrid post-quantum Signal Protocol as elaborated in
Section 4.3.

Not all possible combinations are shown, because some combinations are not
useful. For example, having a post-quantum X3DH and an extra PQ Diffie-
Hellman key exchange would add no extra security benefit, so this combination
is not shown in the table.

All partially hybrid post-quantum Signal Protocols, from Table 4.2, are not a
perfect alternative for the Signal Protocol with ECDH in a Quantum world. Each
partially protocol miss a certain security property. There is no authentication
in a quantum world if there is not a post-quantum identity key involved in the
protocol. The protocol has no forward secrecy if there is not at least one post-
quantum one-time key. There is no backward secrecy secrecy if there are no
new post-quantum keys introduced after a current key leak. Adding an extra
post-quantum identity key, will result in no deniability in a quantum world. All

44 Chapter 4 A Post-Quantum Signal Protocol

Hyb
rid

X3D
H

Hyb
rid

DR

Ex
tra

ID

Ex
tra

OTK

Aut
he

nt
ica

tio
n

Fo
rw

ar
d se

cre
cy

Bac
kw

ar
d se

cre
cy

Den
iab

ilit
y

1 Hybrid p. p.q. Signal Protocol
√ √ √ √ √ √

2 Hybrid X3DH
√ √ √ √

3 Hybrid DR
√ √ √ √

4 Extra ID
√ √

5 Extra OTK
√ √ √

6 Extra ID and OTK
√ √ √ √

7 Hybrid DR and extra ID
√ √ √ √ √

8 Hybrid DR and extra OTK
√ √ √ √ √

9 Hybrid DR and extra ID and OTK
√ √ √ √ √ √

Tab. 4.2.: Different versions of a partially post-quantum Signal Protocol. Each ver-
sion can have a hybrid post-quantum X3DH, a hybrid post-quantum Double
Ratchet or/and an extra post-quantum DH key exchange, either ID or OTK.
The nine partially protocols either have a certain building block and a certain
security property, indicated by

√
, or not, indicated by the lack of the symbol.

the partially hybrid post-quantum Signal Protocols have end-to-end encryption,
because no adversary or server can read the messages send between Alice and
Bob. At least one post-quantum key will prevent an adversary, with a quantum
computer, from doing that.

Although these partially hybrid post-quantum Signal Protocols miss some security
properties in a quantum world, they might be useful for the transitional period.

A simple and easy to implement solution for the transitional period would be
protocol 3 or 4, in which we only add one post-quantum key exchange in the
beginning of the protocol. A passive quantum attacker can never use a quantum
computer to decrypt all the messages in such a protocol, unless he steals the
key or the post-quantum algorithm turns out to be not secure. Wire, a chat
application which has the Signal Protocol implemented, created a partially hybrid
post-quantum Signal Protocol like protocol 4, with NewHope [RA18].

The protocol with a hybrid post-quantum X3DH would be also a nice option
for the transitional period. The extra computational work is only needed in
the beginning of the protocol and only the 102 private post-quantum keys need
storage: one identity key, one signed-pre-key and hundred one-time-keys.

The choice for a hybrid post-quantum Double Ratchet, and no hybrid post-
quantum X3DH, is rather odd. This will result in a protocol in which you might

4.4 Partially hybrid post-quantum Signal Protocol 45

have to do an expensive post-quantum calculation every message, but have no
authentication. As we will see in Section 6, the computational power to create a
new shared secret each message, has more impact then the few secrets you might
have to do when initiate the first contact with a new user.

We conclude that the best solution for the transitional period would be a partially
hybrid post-quantum Signal Protocol in which at least one initial key exchange is
done with a post-quantum algorithm.

The Signal Protocol with only ECDH was already vulnerable in a Quantum world.
Making a partially hybrid protocol from it did not deteriorate the security of
the Signal Protocol, even when the post-quantum algorithm turns out to be not
secure. In a classical world the ECDH key exchanges were secure in the UC
framework and still are when the protocol is made hybrid (See Section 4.3).

46 Chapter 4 A Post-Quantum Signal Protocol

5Method

Section 3 explained how the Signal Protocol works and the reason behind the
design choices, which mainly have to do with security properties. In Section
4 the parts of the protocol that should and could be substituted with a post-
quantum algorithm, and the possible challenges which are faced doing that, were
described.

In this section, the previous obtained information is used to create a method to
test if a post-quantum Signal Protocol is possible. In Section 5.1 the research
questions are restated. In Section 5.2 three scenario’s, for each phase of the Signal
Protocol one, are created to test the research questions. Section 5.3 describes the
post-quantum algorithms that will be tested and compared in the Signal Protocol.
In Section 5.4 the created code and the machine which is used for testing is
described. Section 5.5 defines the average chat user with his minimal phone.
This information is used to place the results from the tested method in context
for an average user in 2018.

5.1 Research questions

The main question in this thesis is: “Considering the status of 2018, is it possible to
have a usable post-quantum Signal Protocol implemented in a chat application?”
This main question can be divided in the following sub questions, which can be
tested:

1. How many CPU cycles does [algorithm] need to add a contact (doing one
X3DH key exchange).

2. How many CPU cycles does [algorithm] need to send and receive a message
(doing one Double Ratchet step).

3. How much storage space does [algorithm] require?
4. How much does the bandwidth increase when sending the keys of [algo-

rithm]?
5. How much energy does the algorithm use?

47

And with every question the sub part: "And is this feasible for an average user,
with a minimal phone and bandwidth?", should be added.

5.2 The scenarios

To answer the research questions the Signal Protocol is tested with different PQ
algorithms. Three different scenarios of the protocol, one scenario per phase in
the Signal Protocol: the initial scenario, in which users upload keys; the X3DH
Scenario, used to add a new contact; and the Double Ratchet Scenario, used
during normal chatting, are tested. The initial scenario is based on the event in
which a user has to create and upload keys to the server. The X3DH scenario is
based on the use case "Alice wants to make contact with Bob, but they never had
contact before", which translates to a scenario in which "Alice’s phone follows the
X3DH steps to initiate contact with Bob’s phone". The DR scenario is based on
the case "Alice is sending message to and receiving message from Bob, after the
initial contact was made", which translate to the scenario in which "Alice’s phones
encrypts and decrypts ciphertext to send and receive shared secrets which can be
used to encrypt and decrypt messages to and from Bob". Both scenarios are done
for the initiating user, Alice, and explained in the following sub-sections.

The initial scenario In the initial scenario Alice will create her 100 pre-key
bundles and uploads them to the server. She will:

• Create her IK

• Create her SPK

• Create 100 OTK ’s
• Send the bundles to the server

Note that Alice only has to create one identity key; however, for this scenario we
assume she will create a new IK every time she follow this scenario.

The X3DH scenario In the X3DH scenarios Alice wants to initiate contact with
one or more contacts. She will take the following steps:

• Receive the pre-key bundle from the contact
• Create one EK per contact
• Create the DH1, DH2 and DH3 shared secret per contact
• Send her public EK and IK to her contact.

48 Chapter 5 Method

The prerequisites are that Alice uploaded her own pre-key bundles and has the
pre-key bundle for every user she wants initiate contact with. The variable in the
X3DH scenario is the number of contacts, which may vary.

The Double Ratchet scenario In the Double Ratchet scenario Alice is chatting
with one contact (Bob), in which they send each other x messages. With ECDH
and SIDH she takes the following steps, sending message i and receiving message
i + 1:

• Send message i

Create a new key pair Ai

Generate s shared secret SSi, between Bi and Ai.
Send the public Ai key to Bob

• Receive message i + 1, with B1+1

Generate s shared secret SSi+1, between B1+1 and Ai.

If a key encapsulation mechanism (KEM) is used the steps are defined different:

• Send message i

Encapsulate a shared secret SSi, with Bi, in a ciphertext Ci

Create a new key pair Ai+1

Sends the public Ai+1 key to Bob, together with the ciphertext Ci

• Receive message i + 1, with Ci+1 (and B1+1)
Decapsulate new shared secret SSi+1 from received ciphertext Ci+1

For more details about why a KEM works different and how the algorithm should
work will be explained in Section 5.3.1.

A prerequisite is that Alice already has received a public key from Bob Bi. Note
that it is assumed that for every message Alice sends, she will receive a message
back from Bob, see Section 3.4.1 for more details on how multiple message
from the same user are encrypted with the Signal Protocol. The Double Ratchet
scenario only depends on the number of messages, which may vary.

5.3 The post-quantum cryptographic algorithms

This section explains which post-quantum algorithms are tested in the Signal
Protocol and why. There are 11 different post-quantum algorithms tested: SIDH,
and 10 key encapsulation mechanism (KEMs): Big Quake, BIKE, Frodo, Crystal-
Kyber, Leda, Lima, New Hope, Saber, SIKE and Titanium. The parameters of most

5.3 The post-quantum cryptographic algorithms 49

post-quantum algorithms can be changed to change the security level of that
algorithm. All post-quantum algorithms are compared with each other and with
ECDH Curve25519, which is currenlty used in the Signal Protocol.

First, it is explain why mostly post-quantum KEMs were chosen to substitute
ECDH and why KEMs are not the perfect solution (Section 5.3.1). Then both sihd
(Section 5.3.2) and the KEMs (Section 5.3.3) are described in more detail. In
Section 5.3.4 the security level of the post-quantum algorithms is given.

5.3.1 Substitutes for ECDH

For a post-quantum Signal Protocol a perfect post-quantum plug and play substi-
tute for ECDH is needed. Supersingular Isogeny Diffie-Hellman, SIDH, is such an
algorithm (as we will see in Section 5.3.2). Unfortunately there are not a lot of
other algorithms who can substitute Diffie-Hellman directly like that. Instead, a
KEMs in used in this thesis, and this section explains how KEMs work and why
they are a good substitute for ECDH in the Double Ratchet algorithm but not for
ECDH in the X3DH protocol.

Key encapsulation mechanisms (KEMs) are not perfect plug and play substitutes
for ECDH; however, they can do most of the things ECDH can do. KEMs are
currently well studied and researched because NIST [Che+16] is working on
finding post-quantum standard KEMs. Where SIDH and likewise algorithms are
more scarce or require interaction.

In a KEM both parties have a public/private key pair, like in ECDH. However,
Alice will not create the shared secret using Bob’s public key and her private key.
Alice generates a shared secret herself, not using either her private or Bob’s public
key, and will use Bob’s public key to encapsulate the shared secret in a ciphertext.
She will then send Bob the ciphertext. Bob can decapsulate the shared secret
with his private key.

KEMs in the Double Ratchet algorithm The basics of the Double Ratchet with a
KEM can be seen in Figure 5.1, the symmetric chains are excluded in the image,
for simplicity.

Instead of sending the public key and the encrypted message (as we saw in
Section 3.2.2 in Figure 3.1), Bob and Alice also have to send the ciphertext which
encapsulates the shared secret when using a KEM. In Figure 5.1, Bob does not
need Alice’s public key, A1, to get the shared secret, he only needs his private key
to encapsulate it. He needs Alice’s A1 to encapsulate a new shared secret that he

50 Chapter 5 Method

Fig. 5.1.: The simplified Double Ratchet working with a KEM. The symmetric chains
are not shown for simplicity. Alice encapsulates the shared secret she used to
encrypt the message, in a ciphertext, and sends both the encrypted message,
the ciphertext and her new public key to Bob.

used to encrypt message 2, so that Alice on her term can decapsulate the shared
secret.

KEMs in the X3DH protocol No interaction is needed to use a KEM. Bob can
upload his public keys to a server, so Alice can request them when she needs his
key, like with ECDH. However, because of the way the X3DH generates three or
four shared secrets there is both authentication and deniability. Using a KEM to
try to do the same won’t result in authentication or deniability.

When using a KEM in the X3DH how can Bob be sure that the key he received
from Alice is from Alice? If she just send the ciphertext, there is no way of authen-
tication: Alice can cryptographically deny that it was her who sent the ciphertext,
anyone could have sent Bob a ciphertext. Alice could sign the ciphertext, with her
private identity key, so Bob can check that it is hers. However, then Bob can proof
that the ciphertext came from Alice: and there will be no deniability. Other users
can do the same, when the intercept the ciphertext with signature. Alice could
sign the shared secret directly with her private identity key; however, that would
still allow Bob to proof to others that is was indeed Alice who made contact
with him. Again this will lose the deniability. Or Alice could not sign anything,
but then this would result in no authentication. There is another solution, Alice
and Bob could use deniable MAC signatures. However, for the Signal protocol
they specifically did chose to not use deniable MAC signatures ECDH [Mar13].
Analysing this further is out of the scope for this thesis.

Interactive key exchanges Another option, instead of KEMs, could be to use an
interactive key exchange (IKE). In an IKE, there are again public/private key
pairs involved and the key is created based on one party’s public and the other
parties private key. However, another interaction step is needed before both

5.3 The post-quantum cryptographic algorithms 51

shared secrets are the same. This makes the key exchange interactive. Dodis et
al. [Dod+09] showed that it is impossible to have a deniable key exchange if
the key exchange is interactive. We can thus conclude that the post-quantum
Signal Protocol should have a non-interactive key exchange (NIKE) for the X3DH
protocol. For the Double Ratchet an IKE could be possible because there is no
direct authentication needed; the Double Ratchet gets its authentication and
its deniability form the X3DH. To implement an IKE in the Double Ratchet, the
shared secret for message i should be done during message i− 1, as is now done
for the KEM public key. Analysing this further is out of the scope of this thesis.

We will not change how the X3DH protocol works, because this is out of the
scope of this thesis, and this results in only one post-quantum algorithm suitable
to substitute ECDH: SIDH.

5.3.2 Supersingular isogeny based Diffie-Hellman and
ECDH

Supersingular isogeny Diffie-Hellman (SIDH) is a perfect substitute for ECDH (as
explained in Section 5.3.1). There are two different versions of SIDH, SIDH503
and SIDH751. They differ in security level for each given in the NIST competition
(see Section 5.3.4). The SIDH algorithms are tested in the X3DH scenario and
Double Ratchet scenario.

In Table 5.1 information about the security level and the length of the public key,
secret key and shared secret of ECDH and its post-quantum substituted SIDH is
given. The SIDH implementation used in this thesis is created by Microsoft1.

Public Key (B) Secret Key (B) Shared Secret (B) Q-Security level
ECDH 32 32 32 0
SIDH503 378 32 126 1
SIDH751 564 48 188 3

Tab. 5.1.: The different algorithms used in the X3DH key exchange and their key lengths in Bytes

To compare the post-quantum algorithms to the normal Signal Protocol, both
scenarios are run with Curve25519 which is the default ECDH cryptography
in the Signal Protocol for both X3DH and Double Ratchet. The original open
source code of the Signal Protocol was used [Sig18], to have an accurate baseline
measurement.

1https://github.com/Microsoft/PQCrypto-SIDH

52 Chapter 5 Method

https://github.com/Microsoft/PQCrypto-SIDH

5.3.3 The post-quantum KEMs

There are 10 different post-quantum KEMs tested for the Double Ratchet, these
10 algorithms can have different security levels (see Section 5.3.4) resulting
in 42 different post-quantum algorithms and the ECDH. In Table 5.2 those 43
algorithms and their type: lattices-based, code-based and isogeny-based, are
shown.

The Double Ratchet was tested with different post-quantum Key encapsulation
mechanisms (KEMs). The Open Quantum Safe2 library was used for this because
it contains ten different post-quantum KEM’s: Big Quake, BIKE, Frodo, Crystal-
Kyber, Leda, Lima, New Hope, Saber, SIKE and Titanium. The OQS library has
different versions available for each KEM, which differ mainly in security level
and results in a total of 45 different versions of these algorithms. The Open
Quantum Safe library was chosen because it provides a nice set of different
post-quantum algorithms in one implementation.

Most algorithms have one version for each security level; however, Bike [Ara+17],
LEDAkem [Bal+17], LIMA [Sma17], and Frodo [Bos+16a] have multiple. BIKE
has 3 different versions, version 1, bike1, is based on a variation of McEliece,
version 2, bike2, on Niederreiter’s framework and version 3 follows the work of
Ouroboros. Each version has its own advantages and disadvantages. LEDAkem
has 3 versions with different parameter values, which result in a different balance
between performance and public key size. The two different versions of LIMA
are either based on a "two power" or a "safe prime". Frodo has two different
versions because they use either AES or cSHAKE, the AES version is quicker
on hardware with specific AES acceleration, while cSHAKE is faster when that
hardware acceleration is not available. For more details about each of these four
algorithms refer to their documentation (Bike [Ara+17], LEDAkem [Bal+17],
LIMA [Sma17], and Frodo [Bos+16a]).

5.3.4 The security level of post-quantum cryptography

The post-quantum cryptographic algorithms can be categorised on their security
strength, see Section 2.4.2). ECDH Curve25517, is not secure against a quantum
computer; however, ECDH Curve25517, has an almost 128 bit level security
against classical computers [PM16b]. The post-quantum cryptography used are
submissions for the standardisation process of NIST (see Section 2.4.1). The
post-quantum algorithms with NIST security level 1, have a 128 bit level security

2https://openquantumsafe.org/

5.3 The post-quantum cryptographic algorithms 53

https://openquantumsafe.org/

Algorithm name Public key Secret key Security Level Type
Length (B) Length (B)

ECDH 32 32 0 DH
SIKE503 378 434 1 Isogeny
light_saber 672 1568 1 Lattice
kyper512 736 1632 1 Lattice
newhope512 928 1888 1 Lattice
ledac1n02 3480 24 1 Codes
ledac1n03 4688 24 1 Codes
bike1_l1 2542 2542 1 Codes
bike2_l1 2542 2542 1 Codes
bike3_l1 2758 2758 1 Codes
ledac1n04 6408 24 1 Codes
lima_p_1018 6109 9163 1 Lattice
frodo640aes 9616 19872 1 Lattice
frodo640cshake 9616 19872 1 Lattice
titanium_std 16352 16384 1 Lattice
bigquake1 25482 14772 1 Codes
SIKE751 564 644 3 Isogeny
saber_saber 992 2304 3 Lattice
kyper768 1088 2400 3 Lattice
ledac3n02 7200 32 3 Codes
bike1_l3 4964 4964 3 Codes
bike2_l3 4964 4964 3 Codes
ledac3n03 10384 32 3 Codes
bike3_ 5422 5422 3 Codes
ledac3n04 13152 32 3 Codes
lima_p_1024 6145 9217 3 Lattice
lima_p_1822 14577 21865 3 Lattice
titanium_med 18272 18304 3 Lattice
frodo976aes 15632 31272 3 Lattice
frodo976cshake 15632 31272 3 Lattice
bigquake3 84132 30860 3 Codes
fire_saber 1312 3040 5 Lattice
kyper1024 1440 3168 5 Lattice
newhope1024 1824 3680 5 Lattice
ledac5n02 12384 40 5 Codes
bike1_l5 8188 8188 5 Codes
bike2_l5 8188 8188 5 Codes
bike3_l5 9034 9034 5 Codes
ledac5n03 18016 40 5 Codes
ledac5n04 22704 40 5 Codes
titanium_hi 20512 20544 5 Lattice
titanium_uper 26912 26944 5 Lattice
bigquake5 149800 41804 5 Codes

Tab. 5.2.: The different tested post-quantum KEMs and their public and private key
length, security level and type.

54 Chapter 5 Method

against a quantum computer, and are relatively as strong against a quantum
computer as ECDH Curve25517 is against a classical computer. The level 3 (198
bits) and 5 (256 bits) PQ algorithms have a relatively higher level of security,
and although they may be slower than ECDH Curve25517, they are also more
secure.

Currently a 256 bit security against quantum computers is assumed high. We eval-
uate these post-quantum algorithms anyway, to see if they can be implemented
in the Signal Protocol, and at what cost.

5.4 Code and test machine

In this section, we explain on which machine and how the scenarios were tested.
To determine the effect post-quantum cryptography has on the Signal Protocol,
we created a C program which implements the basics of the three scenarios:
the Extended Triple Diffie-Hellman protocol (X3DH) and the Double Ratchet
algorithm (DR), and test them against the different post-quantum algorithms.
The pseudo code can be found in the Appendix B.

The test machine The machine used for testing has the following specifica-
tions:

• Type: Dell latitude 7280
• RAM: 8GB (7,89 GB usable)
• Processor: Inter Core i5-73000 CPU @ 2.60 GHz 2.71 GHz, dual core
• Operating system: Windows 64x
• Windows subsystem: Linux Ubuntu

The code was ran on the Windows subsystem, Linux Ubuntu, and cannot be put
on GitHub because this thesis was written in collaboration with TNO.

The code was tested on only one core, and the time an algorithm takes is directly
related to the number of CPU cycles the algorithm needs. On the used machine
an average 2713460729 CPU cycles take 1 second.

How the scenarios were tested We kept track of the number of CPU cycles in
each scenario and the values shown in this theses are the average of that. We did
multiple iterations, trying to have minimal background noise. We also tested the
CPU cycles for each number of messages or contacts (depending on the scenario)

5.4 Code and test machine 55

to check if the algorithms would perform linearly, which they did. In Section 6
we explain more about this linearity.

5.5 An average WhatsApp user

In this section, we describe the average user and his minimal phone, because the
Signal Protocol is used in chat applications on mobile phones. This information
is useful to put the results, that we will get after testing the three scenarios with
different post-quantum algorithms, in context.

In the following paragraphs we look into how people chat; how many messages
people send, how quick they respond and how many contacts they have, which
phones are used in the year 2018 and at the current available bandwidth. We
end with a paragraph in which we summarise the average user and his minimal
phone.

Average WhatsApp user WhatsApp is the most used chat application in 2018
with 1500 million active monthly users in October 20183. A study on WhatsApp
user patterns by Rosenfeld et al. [Ros+18] showed the following data:

• Users send 145 messages a day (we round this up to 150).
• Users have 97 groups (we round this up to 100).
• Messages are on average 5.66 words long.
• Almost 60% of the messages get a response within 1 minute.

Users, on average, send and receive 145 messages a day, 38 of which are sent,
107 are received. The number between sent and received differs because people
are in group chats. Whatsapp users, on average, are in 97 groups in which
they chat, including two person groups. Because 71.5% of these groups are two
person groups, we assume for simplicity that all groups are with two users. Most
messages get a quick response, 58.8% of the responses are within the minute, and
another 9.8% of the responses within 5 minutes. While 20.8% of the messages
do not receive a response within an hour. The study also found that 99% of the
message contained only text, and the remaining 1% could consists of files or
links.

Type speed Different studies were done on the type speed of an average user on
a normal keyboard or phone, to name a few: Ratatype [Rat], Anderson [And+09]
and Roebers [Roe+03]. The type speed differs, reaching from 28 word per minute

3https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/

56 Chapter 5 Method

https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/

(WPM) to 65 WPM. If the average user has the highest type speed, he would be
able, in combination with the study by Rosenfeld et al. [Ros+18] to type almost
12 messages per minute, one message every 5 seconds.

Average phones To see how the CPU cycles need for the post-quantum algo-
rithms in Signal will react to the nowadays used mobile phones, we picked a few
phones, both more expensive and less expensive phones to give an overview of
what is on the current market. An overview of the specifications of these phones
can be seen in Table 5.3.

Storage (GB) CPU (GHz) Battery (mAh)
Phone name Min Max Min Max
Samsung Galaxy S9 64 256 1.7 2.8 3000
Apple iPhone X 64 256 2.4 2.4 2716
Huawei Mate 20 128 128 1.8 2.6 4000
SAMSUNG Galaxy J4 Plus 32 32+ 1.4 1.4 3300
MOTOROLA E5 Play 16GB 16 16+ 1.4 1.4 2100
HUAWEI Y6 2018 16GB 16 16+ 1.4 1.4 3000
Minimal Phone 16 128+ 1.4 1.4 2100

Tab. 5.3.: Common used smart phones used in 2018 and their specifications. The
difference in min and max value of storage space and CPU speed is because
of different versions.

We define the minimal phone as the combination of those 6 phones but with the
lowest specifications: 16GB storage and 1.4 GHz CPU, which means that the
processor will do 1400000000 CPU cycles per second, where the tested computer
had 2.6 GHz. All the times we will see in Section 6 are directly dependent on the
number of CPU cycles.

All phones with a low storage space could extend it with a at least 32GB card for
30 euros, and we could thus assume 48GB available storage space. The minimal
Phone would than cost 130 euro, which is a low cost for a smart phone.

The battery life of the minimal phone is 2100 mAh. Battery life depends on usage,
battery type and other aspects we cannot explicate in this thesis. For mobile
phones and other mobile devices the voltage is typically 5V. We will assume that
a our user has the minimal phone, which will have one hour of 2100 mA and
5V.

Average bandwidth To compare the increase in bandwidth for the current Signal
Protocol (as described in Section 3) and a post-quantum version it is useful to to
see how much bandwidth is available. A study by Open Signal [Ope17] showed

5.5 An average WhatsApp user 57

that the average mobile networks speed differs per country, but for example in
Ireland it is 12 Mbps and the Netherlands 26 Mbps, while the lowest measured
average speed is Costa Rica with 3 Mbps. We assume a lower than average
maximum of 8 Mbps, which is 1 MBps, that is available.

Acceptable delay time In a chat conversation users might have to wait for a
message to be encrypted, decrypted or sent. How much delay is acceptable?
Considering no other delay, the average user will type a message in 5 seconds,
wait for another 5 seconds while the other user responds and then starts typing
a new replay. There are, of course, less optimal cases in which users type very
short messages: with one character or emoticon. We might not be able to answer
where this specific threshold is in this thesis, finding this value is out of the scope
of this paper. We can, however, make an assumption.

In Website Response Times [Nie10] Nielsen explains that a delay of 0.1 seconds
will give the feeling of instantaneous response, while a delay of 1 second will
give users a sense of delay but is not experienced as annoying by users. Waiting
between 1 and 10 seconds keeps the users attention; however, gives them a strong
sense of delay and annoyance. We will assume that for an active chat a delay of
maximum 1 second should be fine, and for things that should be done not that
often even, up until 10 seconds are acceptable.

Average user Concluding from the rest of the data we define the average user
with a minimal phone. The average user:

• has 100 contacts,
• sends 150 messages per day,
• has a phone with 1400000000 CPU cycles per second and 48 GB storage

space,
• has a bandwidth of 1 MBps,
• does not want to wait more than 1 second.

58 Chapter 5 Method

6Experimental results

The Signal Protocol consists of three phases and for each phase a scenario
was created (Section 5). In this section, we evaluate different post-quantum
algorithms in each scenario and look at the impact they have on the number CPU
cycles, storage space, bandwidth, network utilisation and energy usages for the
average user. Recall that the average user has a minimal phone, 100 contacts,
sends 150 message a day and is fine with a delay of 0.1 second during chatting
(see Section 5.5). Different post-quantum algorithms are compared to ECDH
Curve 25519 which is the default algorithm in the current Signal Protocol.

The initial scenario is evaluated in Section 6.1, the X3DH scenario in 6.2 and
the Double Ratchet scenario in 6.3. We combine the results obtained in these
three scenarios in Section 6.4, to create different possible post-quantum Signal
Protocols. We explain which post-quantum Signal Protocols are best for a real
world implementation.

6.1 The initial scenario

In this section, we look at the initial scenario and how much CPU cycles (Section
6.1.1), key storage (Section 6.1.2) and network load (Section 6.1.3) the initial
Scenario uses with SIDH503 and SIDH751 in comparison to ECDH.

In the initial scenario Alice has to create 100 pre-key bundles, so that if she
is offline other users can still make contact with her, as was described in 5.2.
Creating the 100 pre-key bundles results in creating 100 OTK, one IK and one
SPK key pairs at the same time, storing the private keys locally and sending the
public keys to the server. The initial scenario is tested with ECDH, SIDH503 and
SIDH751, as was explained in Section 5.3.

6.1.1 CPU cycles

In this section, we evaluate the average CPU cycles the initial scenario needs with
the following algorithms ECDH, SIDH503 and SIDH751. The initial scenario was
executed 1000 times, meaning: we created 1000 key pairs, observed the CPU

59

cycles per creating, took the average for one key pair creation and calculated the
time it would take to do that many CPU cycles on the minimal phone.

In Table 6.1 we see one key exchange in the initial scenario for each algorithm;
the average number of CPU cycles, the standard deviation that goes with it and
the time it takes. The factor compares the CPU cycles between each algorithm
and ECDH.

Initial scenario 1 key pair creation
Algorithm Average CPU cycles Standard deviation Time (s) Factor
ECDH 166561 49893 0.00012 1
SIDH503 7125660 386574 0.00509 42.8
SIDH751 19162022 1014579 0.01369 115

Tab. 6.1.: The number of CPU cycles and the time it takes to create the 100 pre-key
bundles that Alice has to upload to the server. The standard deviation (in CPU
cycles) is given, and the factor which compares both SIDH503 and SIDH751
to ECDH.

We see that SIDH503 and SIDH751 take a factor 43 and 115 more than ECDH.
A pre-key bundle consists of 102 keys, so we will multiply the numbers of CPU
cycles for 1 key pair creating from the table with 102. Creating a pre-key bundle
for ECDH will take 0.012 seconds, for SIDH503 this will take half a second, while
for SIDH701 this takes 1.4 seconds.

We see that this means a high increase in time and CPU cycles for SIDH, in
comparison to ECDH. However, both a SIDH503 and SIDH751 pre-key bundle
is created within no more than 1.5 seconds of extra time than it would have
taken with ECDH. The key bundle creation is not done that often, only when 100
contacts made contact with a user, the user has to reupload 101 new keys (the
identity key only has to be uploaded once). We expect the average user is not
annoyed by this delay, because it is within 10 seconds (see Section 5.5).

The standard deviation of CPU cycles of the key creations is small for SIDH503
and SIDH751. However, for the standard deviation f ECDH a distortion is seen. It
is relatively big as can be seen in Table 6.1. we assume that the big distortion
could be the result of other processes still running while we did the test. On a
small average number of CPU cycles a small distortion has more influence than
with a bigger average number, like with SIDH.

6.1.2 Key storage

In this section, we evaluate how much key storage is needed to store the keys
in the initial scenario for both ECDH and SIDH. Storing the keys for the initial

60 Chapter 6 Experimental results

scenario requires storage space for 102 private keys for the user. The number of
bytes that need storage for 102 private keys can be seen in Table 6.2.

Algorithm 102 private keys only Factor 102 public keys Factor
ECDH 3264 B 3.19 KB 1 3264 B 3.19 KB 1
SIDH503 3264 B 3.19 KB 1 38556 B 37.65 KB 11.813
SIDH751 4896 B 4.78 KB 1.50 57528 B 56.18 KB 17.625

Tab. 6.2.: The different algorithms in the X3DH key exchange and the storage space
they require to store the 102 private keys, for the user, and 102 public keys,
for the server and as network utilisation.

This results in a maximum storage of 4.78 KB for 102 private keys for SIDH751,
a factor 1.5 compared to the default ECDH, while SIDH503 requires the same
storage space as ECDH. On the minimal phone (as described in Section 5.5) this
increase of storage space is not a problem.

The private parts of those keys are the only keys a user needs to store, all public
keys are available on the server. For the server this would mean that it would
need to store 102 public keys per users. Because the public keys are bigger than
the private keys, the server needs to store 38 KB for SIDH503, a factor 11.8 larger
than ECDH, and 56 KB for SIDH751, a 17.6 factor larger. We will not go into
detail about the server and it’s storage space in this thesis.

6.1.3 Network load

In this section, we look at the bandwidth and the network utilisation required to
send the key bundles created in the initial scenario to the server. Uploading the
created 102 public keys to the server, all at once, will require network utilisation
as can be seen in Table 6.2. For security level 1 SIDH503 that will require 38
KB, a factor 11.8 increase in data size when sending 102 keys in comparison to
ECDH, and with SIDH751 this will be 56 KB, a factor 17.6 more.

For the bandwidth of the average user this means that will take 0.039 second for
Level 1 SIDH503 and 0.058 second for Level 3 SIDH751, in comparison with only
0.003 seconds for ECDH. This is a small increase in bandwidth especially when
there is a bandwidth of 1 MBps. The average user will not find this increase in
time annoying because it is still below the 0.1 seconds.

6.1.4 The post-quantum initialisation phase

In this section, we give an overview of the previous 3 sections about the CPU
cycles needed, the storage space required and the bandwidth needed for the

6.1 The initial scenario 61

initial scenario. In Table 6.3 we see how many CPU cycles, time and storage
space is needed to create 102 pre-keys.

Initial scenario Creating and generating Network load
CPU Time User storage Time Size

ECDH 16989244 0.012 s 3.2 KB 0.003 s 3.2 KB
SIDH503 726817369 0.519 s 3.2 KB 0.039 s 37.7 KB
SIDH751 1954526273 1.369 s 4.8 KB 0.058 s 56.2 KB

Tab. 6.3.: The values for an average user in the initial scenario for ECDH, SIDH503 and
SIDH751. The number of CPU cycles, time (s), storage space (KB), bandwidth
time (s) and network utilisation (KB) are shown.

The creating and uploading of 100 pre-key bundles is not done that often, and it
is not crucial to create and upload a new bundle within a millisecond. It should
be done of course, but it could be done in the background when the user is not
using their phone. Therefore we could argue that the increase in storage and
network utilisation is very small when ECDH is substituted with either SIDH503 or
SIDH751 in the initial scenario. The total waiting time, to create and upload 100
pre-key bundles will still be within 1.5 seconds (for SIDH751). The average user
will experience a small delay. To lower the delay for the user, two things could
be done. The first time pre-key bundles are uploaded is should be done during
the account set-up. Secondly, the other times 100 new bundles are uploaded, it
could be done during a moment the user is inactive.

6.2 The X3DH scenario

In this section, we look at the X3DH scenario and how much CPU cycles (Section
6.2.1), key storage (Section 6.2.2) and network load (Section 6.2.3) the X3DH
Scenario uses with SIDH503 and SIDH751 instead of ECDH.

In the X3DH scenario Alice is going to send the first message to Bob. She has
received the pre-key bundle from Bob and will use the X3DH protocol and initiate
the Double Ratchet chain to do so. To do that Alice generates one ephemeral
key pair and three shared secrets, created as described in Section 5.2. The X3DH
scenario is tested with ECDH, SIDH503 and SIDH751 (as was explained in Section
5.3).

6.2.1 CPU cycles

In this section, we evaluate the average number of CPU cycles the X3DH scenario
needs with both ECDH and SIDH. The X3DH scenario was executed 1000 times,

62 Chapter 6 Experimental results

which means we created one EK key pair and three shared secrets 1000 times.
For every iteration we measured the number of CPU cycles. We took the average
number of CPU cycles for one X3DH scenario and calculated the time it would
take to do one scenario on the minimal phone.

The number of CPU cycles needed for one contact; to create one key pair and
three shared secrets, can be seen in Table 6.4.

X3DH scenario 1 contact (creating: 1 key pair and 3 shared secrets)
Algorithm Average CPU cycles Standard deviation CPU cycles Time (ms) Factor
ECDH 591010.82 51696 0.0004 1.00
SIDH503 23227464 508919.78 0.0166 39.30
SIDH751 64376866 3915170.33 0.0460 108.93

Tab. 6.4.: The number of CPU cycles needed to generate the shared secrets for one
contact, following the X3DH scenario. The factor is the ratio between SIDH
and ECDH. The time is the time it would take to add that many contacts on
the minimal phone.

We see that SIDH751 needs almost a factor 109 more CPU cycles than ECDH,
while SIDH503 needs a factor 39 more. For our average user it would roughly
take 0.017 seconds to add one new contact with SIDH503 and 0.046 seconds with
SIDH751, as can be seen in Table 6.4. For an average user this delay is acceptable
because it is below 0.1 second

To get the number of CPU cycles and time it takes for an average user to initiate
contact with 100 contacts at the same time, we multiply the time and CPU cycles
with 100. Hundred contacts is the number of contacts an average user had. It
would take 1.7 and 4.6 seconds for SIDH503 and SIDH751 respectively, where it
would only take 0.04 seconds with ECDH. The standard deviation is a lot smaller
for ECDH in this scenario than it was with the initial scenario.

We assumed that both the initial scenario and the X3DH scenario was linear, and
when this assumption was tested we found that it was. The complete data table
for this linearity can be found in the Appendix C, Table C.1 and figure C.1.

6.2.2 Key storage

In this section, we evaluate how much storage space is required for the X3DH
scenario. The key pair, EK, is used to generate the shared secret and then the
public part of EK is send to Bob. After that the key does not have to be stored.
The created shared secrets are put in a key derivation function, to derive the
message key, and are not needed after that. In the initial scenario, therefore, no
storage space required for the used keys.

6.2 The X3DH scenario 63

There are, of course, keys that need storage: the message keys and chain keys.
In this thesis we focus on the post-quantum algorithms. Therefore, we excluded
the storage space needed for the symmetric message keys and the CPU cycles
for to create those as well. Both in our post-quantum Signal Protocol, and the
Signal Protocol with ECDH the same KDF function is used, namely SHA-512. So
whether we use a post-quantum algorithm or ECDH the shared secrets and the
symmetric message key will have the same length. Therefore, we will not take
the size of those into account here.

Note that for the first Double Ratchet step a key should be stored, namely the
key pair A1. However, this key is excluded from the X3DH scenario because it is
already included in the Double Ratchet scenario.

6.2.3 Bandwidth and network utilisation

In this section, we look at the bandwidth and network utilisation needed for the
X3DH scenario, in which the first message is sent. The created public key EK

should be send to the other users, together with the public identity key of Alice,
IK. The three shared secrets are obviously not shared over the network. In Table
6.5 the size of one public key is shown, together with the network utilisation and
the bandwidth for 200 public keys.

Algorithm 1 public key 200 public keys sec Factor
ECDH 32 B 6400 B 0.006 1
SIDH503 378 B 75600 B 0.072 11.8
SIDH751 564 B 112800 B 0.108 17.6

Tab. 6.5.: The different algorithms in the X3DH key exchange and the storage space
they require to store the 102 private keys, for the user, and 102 public keys,
for the server.

If a user would send all his 100 contacts the first message at once, this would
result in sending 200 keys. The network utilisation for 200 keys with ECDH is
6.3 KB and it would take 0.006 seconds to send that data. SIDH will require a
factor 11.8 more for SIDH503 and 17.6 for SIDH751 in comparison to ECDH. This
results in a network utilisation of 73.8 KB for SIDH503 and 110.2 KB for SIDH751,
as can be seen in Table. Sending this data over a 1 MBps connection will result in
a bandwidth of 0.072 and 0.108 seconds in total. Again for an average user this
delay is acceptable because it is below 0.1 second

64 Chapter 6 Experimental results

6.2.4 A post-quantum X3DH scenario

In this section, we summarise the previous three sections, to see how much CPU
cycles are needed, storage space is required and bandwidth is needed for the
X3DH scenario. The overview can be seen in Table 6.6.

X3DH scenario Creating and generating Network load
CPU Time Storage Time Size

ECDH 59101082 0.04 s 0 KB 0.006 s 6.3 KB
SIDH503 2322746441 1.66 s 0 KB 0.072 s 73.8 KB
SIDH751 6437686648 4.60 s 0 KB 0.108 s 110.2 KB

Tab. 6.6.: The values for an average user in the X3DH scenario, with ECDH and SIDH.
The number of CPU cycles, time (s), storage space (KB), bandwidth (s) and
network utilisation (KB) are shown.

Remember that the average user has 100 contacts, and that the table shows what
would happen if the user would send them all a first message at once (follow
the X3DH scenario 100 times). In most cases the X3DH scenario would not be
done for 100 contacts at the same time. However, there is a case: if you lost your
phone on new years eve, instantly bought a new one, and want to send all your
contacts a first message wishing them a happy new year. In that specific case the
Table shows, for an average user, what the impact will be on CPU cycles, time
and network load for all three algorithms.

In that worst case scenario it would take SIDH503 only 1.7 seconds to create the
keys and shared secrets and another 0.07 seconds to send them. For SIDH751
this will be a bit longer: 4.6 seconds to create the keys and shared secrets, and
0.1 second to send them. It is below 10 seconds which we define as fine, but
annoying for the user. Luckily this worst case scenario will not happen daily.

In a better case, in which a user maybe initiate the first message with a few
users at the time, the extra delay, using SIDH instead of ECDH, is not that big.
For example it will take less than half a second for SIDH751 and less than 0.2
seconds for SIDH503 to send ten contacts a first message. In this case the average
user will have to wait less than a 1 second, which we defined as a doable but
noticeable delay for an average user. Again this first message is only sent once to
each contact the user has, not daily or weekly.

6.3 The Double Ratchet Scenario

In this section, we see the differences between each post-quantum algorithm and
ECDH in the Double Ratchet scenario in terms of CPU cycles needed (Section

6.3 The Double Ratchet Scenario 65

6.3.1), energy consumption (Section 6.3.2), storage space (Section 6.3.3) and
network load (Section 6.3.4). In the Double Ratchet Scenario Alice is sending and
receiving one message to and from Bob, as described in Section 5.2. To do that
there is one new key pair created for Alice, and two shared secrets are generates
between Alice and Bob. If a KEM is used, instead of ECDH or SIDH, Alice will
encapsulate one shared secret and decapsulate the other one, as was explained
in Section 5.3.1. The Double Ratchet scenario is tested with 10 different KEMs,
SIDH and ECDH as was explained in Section 5.3.2 and 5.3.3.

6.3.1 CPU Cycles

In this section, we evaluate the average number of CPU cycles needed to send
and receive one message in the Double Ratchet scenario. We tested the different
algorithms 1000 times for one message in the Double Ratchet scenario and took
the average number of CPU cycles. The average number of CPU cycles, and the
standard deviation for all the algorithms with security level 1 can be seen in
Figure 6.1.

0 1 2 3 4 5 6 7 8 9
·108

ECDH
newhope512

kyper512
light_saber

lima_sp_1018
titanium_std

bike1_l1
bike3_l1
SIDH503
bike2_l1

frodo640cshake
frodo640aes

ledac1n03
ledac1n04
ledac1n02

SIKE503
bigquake1

Below average
Above average

Fig. 6.1.: The different level 1 post-quantum algorithms in the Double Ratchet scenario.
The average number of CPU cycles for sending 1 message are indicated with
the orange square. The standard deviation is indicated with the two with
boxes left and right form the average.

In Table 6.7 the average number of CPU cycles and the time it takes to send 1
and 150 messages is shown for all security levels. The average user sends 150
messages per day, to get the average number of CPU cycles for 150 messages, we
multiplied the average of 1 message with 150.

66 Chapter 6 Experimental results

SL Algorithm 1 message 150 messages Factor
CPU cycles Time (ms) CPU cycles Time (s)

ECDH 389050 0.28 56669413 0.02 1.00
1 newhope512 455169 0.33 68275377 0.05 1.2
1 kyper512 605986 0.43 90897841 0.06 1.5
1 light_saber 2064936 1.47 309740338 0.22 5.3
1 lima_sp_1018 4134622 2.95 620193249 0.44 10.6
1 titanium_std 4324690 3.09 648703464 0.46 11.1
1 bike1_l1 5582535 3.99 837380225 0.60 14.3
1 bike3_l1 5812725 4.15 871908748 0.62 14.9
1 bike2_l1 18110468 12.94 2716570176 1.94 46.3
1 SIDH503 18801852 13.43 2820277835 2.01 48.1
1 frodo640cshake 31095974 22.21 4664396051 3.33 79.5
1 frodo640aes 119130540 85.09 17869580955 12.76 304.5
1 ledac1n03 121304036 86.65 18195605430 13.00 310.1
1 ledac1n04 123992725 88.57 18598908780 13.28 316.9
1 ledac1n02 174901610 124.93 26235241560 18.74 447.1
1 SIKE503 378372971 270.27 56755945695 40.54 967.1
1 bigquake1 838627044 599.02 125794056540 89.85 2143.5
3 kyper768 851649 0.61 127747344 0.09 2.3
3 lima_2p_1024 1741608 1.24 261241173 0.19 4.6
3 saber_saber 3678476 2.63 551771453 0.39 9.7
3 titanium_med 5194122 3.71 779118233 0.56 13.7
3 lima_sp_1822 8154292 5.82 1223143776 0.87 21.6
3 bike1_l3 17268806 12.33 2590320837 1.85 45.7
3 bike3_l3 19563389 13.97 2934508419 2.10 51.8
3 SIDH751 51986181 37.13 7797927150 5.57 132.9
3 frodo976cshake 63773556 45.55 9566033448 6.83 168.8
3 bike2_l3 64711221 46.22 9706683080 6.93 171.3
3 frodo976aes 274384652 195.99 41157697773 29.40 726.3
3 ledac3n04 354120036 252.94 53118005360 37.94 937.3
3 ledac3n03 431532989 308.24 64729948335 46.24 1142.2
3 ledac3n02 672597927 480.43 100889689026 72.06 1780.3
3 SIKE751 1296655543 926.18 194498331384 138.93 3432.2
3 bigquake3 7639230018 5456.59 1145884502750 818.49 20220.5
5 newhope1024 882603 0.63 132390467 0.09 2.3
5 kyper1024 1277892 0.91 191683860 0.14 3.4
5 titanium_hi 5620445 4.01 843066720 0.60 14.9
5 fire_saber 5782534 4.13 867380136 0.62 15.3
5 titanium_super 7876282 5.63 1181442266 0.84 20.8
5 bike1_l5 39619721 28.30 5942958219 4.24 104.9
5 bike3_l5 44419807 31.73 6662971059 4.76 117.6
5 bike2_l5 191978514 137.13 28796777063 20.57 508.2
5 ledac5n04 998907868 713.51 149836180158 107.03 2644.0
5 ledac5n03 1193232407 852.31 178984860975 127.85 3158.4
5 ledac5n02 1951035846 1393.60 292655376953 209.04 5164.3
5 bigquake5 15324179943 10945.84 2298626991441 1641.88 40562.0

Tab. 6.7.: The number of CPU cycles and the time each algorithm takes on the minimal
phone, for both 1 and 150 messages for each algorithm. The algorithms are
ordered per security level (SL) and ECDH is at the top of the table. The factor
compares the CPU cycles of the post-quantum algorithms to that of ECDH.

6.3 The Double Ratchet Scenario 67

There is a large variation between the different algorithms in the average number
of CPU cycles. For security level 1, there are seven algorithms which will take
less than a factor 15 in comparison to ECDH, three take a factor less than 100,
and the remaining six algorithms take a factor raining between 300 and 2144 in
comparison to ECDH.

The quickest level 1 algorithm, newhope512, takes only 0.33 ms per message,
resulting in a total delay of 0.05 second per day for the average user. This is only
an increase of 1.2 in comparison to ECDH. While the slowest level 1 algorithm,
bigquake1, takes 0.6 second for each message, resulting in a delay of 1.5 minute
per day, an increase of a factor 2144.

For part of the algorithms, both level 1, 3 and 5, the increase in time it takes to
create the keys needed to send one message and receive the other are low. Take
for example level 3 kyper768 and level 5 newhope1024, they both only take a
factor 2.3 more time than ECDH. There are also algorithms, like bigquake5, that
will take more than 10 seconds per message.

The question that remains is: how much delay will go unnoticed and which
extra delay is still acceptable. We defined that for our average user a delay of
0.1 seconds feels like like no noticeable delay, while a delay of 1 second will be
noticed but not found annoying. Thirteen of the security level 1 algorithms take
less than 0.1 seconds to send one message, ten of the level 3 algorithms and seven
of the level 5 algorithms. There are of course more factors we should take into
account, like bandwidth and the time it takes to do a key derivation function.

In Table 6.7 the CPU cycles for one message and 150 messages in the Double
Ratchet scenario are given. Since the number of CPU cycles are linearly dependent
on the number of messages, the CPU cycles for 150 messages where calculated
by multiplying the value for 1 message by 150. The linear relationship between
the number of CPU cycles and the number of messages can be explained by the
definition of the Double Ratchet scenario, for each message certain operation
should be done (see Section 5.2). However, this assumption was also tested and
is shown in Figure E.2 for security level 3. Except for some outliers all the linear
expected value was within a 5 percent variance of the measured data as shown in
Table 6.7. The complete list of all the tested number of messages, ranging from 1
until 325, and all algorithms, can be found in the Appendix E in Table E.1, E.2
and E.3.

68 Chapter 6 Experimental results

6.3.2 Energy consumption

In this section, we look at the energy consumption the algorithms need in the
Double Ratchet scenario.

Banerjee et al. [BH18] collected the run time and energy consumption data in
their paper for all the Algorithms in the NIST competition. In Table 6.8 we see an
overview of this, in which the energy consumption of the KEMs that we evaluate
in this these are shown. The complete overview can be seen in Appendix F.

In the table we see that bigquake is the most energy consuming KEMs in each
security level. For security level 1, bigquake consumes a factor 524 more energy
than the most energy efficient KEM: light_saber, which only uses at total 2292
mJ for 150 messages. The energy efficiency of light_saber is a close match with
kyper512, which uses 2520 mJ and newhope512 with 2811 mJ. For security level
3 kyper and saber are again in the top two of most energy efficient, however,
kyber768 uses only 3983 mJ, while saber_saber uses 4172 mJ. Bigquake3 needs
2760 times more energy than kyber768. Looking at the energy efficiency in the
level 5 KEMs, we can confirm that the three most efficient KEMs are: kyper_1024,
newhope_1024 and fire_saber with 5432, 5710 and 6311 mJ, respectively. On this
level bigquake5 even uses 3890 times more energy than the most efficient one.

Unfortunately we do not have test results for ECDH, SIDH503 and SIDH751, so we
had to make an assumption about these values. We did this by taking the worst
energy consumption of all the tested algorithms in [BH18] (which was 83.11
Watts), and multiplied them with the run time we found in Section 6.3. If we
compare the run time in Banerjee’s Energy Consumption of Candidate Algorithms
for NIST PQC Standards [BH18], we see that our run time on the minimal phone
is sometimes double the number that Banerjee et al. found. However, when
assuming the energy values of ECDH, SIDH503 and SIDH751 we decided to not
compensate for that.

Another problem we encountered with the data from Banerjee et al. [BH18] was
that the different versions of bike, ledakem, lima, and frodo, where not tested and
that it was not always clear which version they used. For simplicity we assumed
that the energy consumption is the same for all versions of that KEM.

6.3.3 Key Storage

In this section, we evaluate on the number of bytes that need storage in the
Double Ratchet scenario. For the Double Ratchet scenario for every contact one

6.3 The Double Ratchet Scenario 69

Algorithm 1 DR scenario 150 DR scenario
Time (ms) Energy (mJ) Time (ms) Energy (mJ)

L1
light_saber 0.57 15.30 86 2295
kyper512 0.64 16.80 95 2520
newhope512 0.69 18.74 104 2811
lima 1.26 33.31 189 4997
frodo640 1.42 36.76 212 5514
bike_l1 1.46 37.52 219 5628
titanium_std 1.91 50.07 287 7511
ledac1 44.26 1177.76 6639 176664
SIKE503 115.73 3110.01 17360 466502
bigquake1 303.90 8011.21 45585 1201682
L3
kyper768 1.00 26.55 149 3983
saber_saber 1.04 27.81 156 4172
titanium_med 2.17 57.32 326 8598
lima 2.64 70.63 396 10595
frodo976 2.80 73.48 420 11022
bike_l3 8.52 223.16 1278 33474
ledac3 126.55 3361.80 18983 504270
SIKE751 378.82 10227.89 56823 1534184
bigquake3 2767.40 73280.46 415110 10992069
L5
kyper1024 1.40 36.21 209 5432
newhope1024 1.40 38.07 210 5710
fire_saber 1.56 42.07 234 6311
titanium_hi 2.96 78.13 444 11720
bike_l5 7.87 205.78 1181 30867
ledac5 176231.58 9705.73 26434737 1455860
bigquake5 5190.20 137231.25 778530 20584688
Calculated (see text)
ECDH 0.14 11.64 21 1745
SIDH503 13.43 1116.17 2015 167425
sid751 37.13 3085.87 5570 462881

Tab. 6.8.: The energy consumption (in mJ) and time (in ms) each KEM takes for sending
one message and 150 messages in the Double Ratchet Scenario. This means
doing one encapsulation, one key creating and one decapsulation. The data
is taken from [BH18] and the last 3 rows are calculated using that data as
well.

70 Chapter 6 Experimental results

key pair has to be stored. An average user will have 100 contacts and thus have
to store 100 key pairs. The number of bytes that need storage for the Double
Ratchet scenario on the minimal phone of the average user can be seen in Table
6.9. For more information on which keys need to be stored and until when, see
Appendix A.

The level 1 algorithm that requires the least storage space is SIDH503 and only
needs a factor 6.4 more storage space than ECDH, to store 0.04 MB. The biggest
level 1 algorithm, bigquake1, will require 629 more space than ECDH, to store
almost 4 MB of public key material. The storage also requires storing the 3 chain
keys, however, the length of these values only depends on the key derivation
function (KDF) used. As already explained in Section 6.2.2, the default KDF used
is SHA-512, which means that the lengths for the chain keys are a constant factor.
We will not consider them in this thesis.

For security level 3 and 5 the storage requirements are higher, but there are still
feasible options. For the smallest level 3 algorithm, SIDH751, only 0.06 MB is
required, a factor 9.6 more than ECDH. While for level 5 algorithm fire_saber is
the smallest algorithm with a space of 0.42 MB, a factor 68. The worst case, level
5 bigquake5, requires a total storage space of 18 MB, that is almost a factor 3000
more than ECDH, while the worst case level 3 bigquake3 only requires 11 MB.

The storage space required for all the algorithms will be no problem for the
average user. Especially since two third of the level 1 algorithms, and half of
the level 3 algorithms do not require more than one MB more data to be stored.
Even bigquake5, which requires the most storage space of them all, 18 MB, will
be fine for the minimal phone.

6.3.4 Network load

In this section, we evaluate on how much bandwidth and network utilisation is
needed for an average user in the Double Ratchet scenario. The average user will
send and receive 150 messages a day, resulting in 150 public keys being send
from Alice to Bob. If a KEM is used, instead of ECDH or SIDH, both the public key
and the ciphertext, which encapsulates the shared secret, should be included in
the total size for the network utilisation (see Section 5.3.3). The total number of
bytes for all those 150 public keys (and ciphertexts) can be seen in Table 6.10.

Sending 150 ECDH public keys will cost no more than 0.005 MB. The lowest level
1 algorithm, SIDH503, will multiply this number with a factor 11.8, resulting
in 0.05 MB of data. While the worst case level 1, bigquake1, will take almost

6.3 The Double Ratchet Scenario 71

1 key pair 100 key pairs
Algorithm name Bytes Bytes MB Factor SL
ECDH 64 6400 0.01 1.00 0
SIDH503 410 41000 0.04 6.41 1
SIKE503 812 81200 0.08 12.69 1
light_saber 2240 224000 0.21 35.00 1
kyper512 2368 236800 0.23 37.00 1
newhope512 2816 281600 0.27 44.00 1
ledac1n02 3504 350400 0.33 54.75 1
ledac1n03 4712 471200 0.45 73.63 1
bike1_l1 5084 508400 0.48 79.44 1
bike2_l1 5084 508400 0.48 79.44 1
bike3_l1 5516 551600 0.53 86.19 1
ledac1n04 6432 643200 0.61 100.50 1
lima_sp_1018 15272 1527200 1.46 238.63 1
frodo640aes 29488 2948800 2.81 460.75 1
frodo640cshake 29488 2948800 2.81 460.75 1
titanium_std 32736 3273600 3.12 511.50 1
bigquake1 40254 4025400 3.84 628.97 1
SIDH751 612 61200 0.06 9.56 3
SIKE751 1208 120800 0.12 18.88 3
saber_saber 3296 329600 0.31 51.50 3
kyper768 3488 348800 0.33 54.50 3
ledac3n02 7232 723200 0.69 113.00 3
bike1_l3 9928 992800 0.95 155.13 3
bike2_l3 9928 992800 0.95 155.13 3
ledac3n03 10416 1041600 0.99 162.75 3
bike3_l3 10844 1084400 1.03 169.44 3
ledac3n04 13184 1318400 1.26 206.00 3
lima_2p_1024 15362 1536200 1.47 240.03 3
lima_sp_1822 36442 3644200 3.48 569.41 3
titanium_med 36576 3657600 3.49 571.50 3
frodo976aes 46904 4690400 4.47 732.88 3
frodo976cshake 46904 4690400 4.47 732.88 3
bigquake3 114992 11499200 10.97 1796.75 3
fire_saber 4352 435200 0.42 68.00 5
kyper1024 4608 460800 0.44 72.00 5
newhope1024 5504 550400 0.52 86.00 5
ledac5n02 12424 1242400 1.18 194.13 5
bike1_l5 16376 1637600 1.56 255.88 5
bike2_l5 16376 1637600 1.56 255.88 5
bike3_l5 18068 1806800 1.72 282.31 5
ledac5n03 18056 1805600 1.72 282.13 5
ledac5n04 22744 2274400 2.17 355.38 5
titanium_hi 41056 4105600 3.92 641.50 5
titanium_super 53856 5385600 5.14 841.50 5
bigquake5 191604 19160400 18.27 2993.81 5

Tab. 6.9.: The number of bytes needed to store one key pair and hundred key pairs, the
number the average user needs, for each post-quantum KEM.

72 Chapter 6 Experimental results

1 public key & ciphertext 150 messages Factor SL
Algorithm name Size (B) Time (ms) Size (MB)
ECDH 32 0.03 0.005 1.0 -
SIDH503 378 0.36 0.054 11.8 1
SIKE503 780 0.74 0.112 24.4 1
light_saber 1408 1.34 0.201 44.0 1
kyper512 1536 1.46 0.220 48.0 1
newhope512 2048 1.95 0.293 64.0 1
bike1_l1 5084 4.85 0.727 158.9 1
bike2_l1 5084 4.85 0.727 158.9 1
bike3_l1 5516 5.26 0.789 172.4 1
ledac1n02 6960 6.64 0.996 217.5 1
ledac1n03 7032 6.71 1.006 219.8 1
ledac1n04 8544 8.15 1.222 267.0 1
lima_sp_1018 10318 9.84 1.476 322.4 1
frodo640aes 19352 18.46 2.768 604.8 1
frodo640cshake 19352 18.46 2.768 604.8 1
titanium_std 19904 18.98 2.847 622.0 1
bigquake1 25683 24.49 3.674 802.6 1
SIDH751 564 0.54 0.081 17.6 3
SIKE751 1160 1.11 0.166 36.3 3
saber_saber 2080 1.98 0.298 65.0 3
kyper768 2240 2.14 0.320 70.0 3
bike1_l3 9928 9.47 1.420 310.3 3
bike2_l3 9928 9.47 1.420 310.3 3
lima_2p_1024 10372 9.89 1.484 324.1 3
bike3_l3 10844 10.34 1.551 338.9 3
ledac3n02 14400 13.73 2.060 450.0 3
ledac3n03 15576 14.85 2.228 486.8 3
ledac3n04 17536 16.72 2.509 548.0 3
titanium_med 22816 21.76 3.264 713.0 3
lima_sp_1822 23404 22.32 3.348 731.4 3
frodo976aes 31400 29.95 4.492 981.3 3
frodo976cshake 31400 29.95 4.492 981.3 3
bigquake3 84538 80.62 12.093 2641.8 3
fire_saber 2784 2.66 0.398 87.0 5
kyper1024 2944 2.81 0.421 92.0 5
newhope1024 4032 3.85 0.577 126.0 5
bike1_l5 16376 15.62 2.343 511.8 5
bike2_l5 16376 15.62 2.343 511.8 5
bike3_l5 18068 17.23 2.585 564.6 5
ledac5n02 24768 23.62 3.543 774.0 5
titanium_hi 26560 25.33 3.799 830.0 5
ledac5n03 27024 25.77 3.866 844.5 5
ledac5n04 30272 28.87 4.330 946.0 5
titanium_super 35264 33.63 5.045 1102.0 5
bigquake5 150292 143.33 21.499 4696.6 5

Tab. 6.10.: The bandwidth and network utilisation needed to send and receive one
message. The network utilisation depends on the size of the public key and
the ciphertext (if we are using a KEM). The factor compares the algorithm
to ECDH.

6.3 The Double Ratchet Scenario 73

3.7 MB, a factor 802.6 more. For level 3, SIDH751 is the smallest with 0.08 MB,
a factor 17.6 more than ECDH, closely followed by SIKE751 with 83 KB and a
factor of almost 36.3, while the worst case bigquake3 sends 12 MB, a factor 2642
more. The smallest level 5 algorithm, fire_saber, will need 0.4 MB, a factor 87
more than ECDH. The worst case level 5 KEM is again bigquake5 with 21.5 MB,
and a factor of 4697.

With an bandwidth of 1 MBps there are nine level 1 algorithms, four level 3 and
three level 5 that will take less than a second extra delay to send all 150 public
keys and ciphertexts at once. Even better; all algorithms, except one, will take
less than 0.1 second to send one message. For the average as described in Section
5.5 this was not annoying. However, if we would combine this delay with the
delay of creating the keys, it might be a problem.

Another factor that might influence the delay during chatting is the maximum
transmission unit (MTU). For most networks a MTU is 1500 bytes. If a message
is larger than this, it will be split in multiple packages, resulting in increased data
overhead, less efficiency and package delay [Mur+12]. As Table 6.10 shows,
only SIDH and SIKE meet this restriction or the data should be split over multiple
packages, with its own disadvantages. Unfortunately, researching this any further
is out of the scope of this thesis.

6.3.5 The post-quantum Double Ratchet scenario

In this section, we give an summary of the results we obtained for the Double
Ratchet scenario. The Double Ratchet scenario was evaluated with 15 different
128-bit secure post-quantum algorithms. In Table 6.11 we see the overview of
the CPU cycles, time, energy consumption, storage space and bandwidth needed
for an average user (Section 5.5). The CPU cycles and time are obtained by
multiplying the values for 1 Double Ratchet step by 150 (Section 6.3.1), the
energy consumption is obtained by multiplying the values for 1 Double Ratchet
step by 150 (Section 6.3.2), the storage space is calculated by multiplying the
values with 100 (Section 6.3.3) and bandwidth (Section 6.3.4) needed for an
average user.

We can conclude that bigquake1 is the worst post-quantum candidate for the
Double Ratchet scenario because it has the highest value for each category. With
that said, it is also the worst case code-based KEM. The best code-based KEM is
not that easy to determine; while the bike algorithms have a lower number of
CPU cycles, time, energy usages and a smaller bandwidth size and time, the leda
algorithms have a lower storage space. Because the higher storage space of the

74 Chapter 6 Experimental results

KEM Level 1 Creating and generating Network load Type
Average CPU Time Energy Storage Time Size

cycles (s) (mJ) (KB) (s) (KB)
newhope512 68275377 0.05 2811 275.0 0.29 300.00 L
kyper512 90897841 0.06 2520 231.3 0.22 225.00 L
light_saber 309740338 0.22 2295 218.8 0.20 206.25 L
lima_sp_1018 620193249 0.44 4997 1491.4 1.48 1511.43 L
titanium_std 648703464 0.46 7511 3196.9 2.85 2915.63 L
frodo640cshake 4664396051 3.33 5514 2879.7 2.77 2834.77 L
frodo640aes 17869580955 12.76 5514 2879.7 2.77 2834.77 L
ledac1n03 18195605430 13.00 176664 460.2 1.01 1030.08 C
ledac1n04 18598908780 13.28 176664 628.1 1.22 1251.56 C
ledac1n02 26235241560 18.74 176664 342.2 1.00 1019.53 C
bike1_l1 837380225 0.60 5628 496.5 0.73 744.73 C
bike3_l1 871908748 0.62 5628 538.7 0.79 808.01 C
bike2_l1 2716570176 1.94 5628 496.5 0.73 744.73 C
bigquake1 125794056540 89.85 1201682 3931.1 3.67 3762.16 C
SIKE503 56755945695 40.54 466502 79.3 0.11 114.26 I
SIDH503 2820277835 2.01 167425 40.0 0.05 55.37 I

Tab. 6.11.: The 16 different level 1 KEMs (and SIDH503) and the impact they have
on an average user in the Double Ratchet scenario. The types of the KEMs
are either lattice-based (L), code-based (C) or isogeny-based (I). The bold
numbers indicates the lowest value in that column.

bike algorithm is still very small for the minimal phone, we could conclude that
bike1_l1 is the best option for a code-based KEM in the Double Ratchet scenario
case.

There is only one isogeny-based KEM: SIKE503. While SIKE503 is the second
worst algorithm in terms of CPU cycles needed, run time and energy efficiency, it
is the best level 1 post-quantum algorithm in terms of storage space, bandwidth
time and size!

There are seven lattice-based algorithms, the top 3 consist of newhope512,
kyper512 and light_saber. The newhope512 algorithms is the overall quickest
in terms of CPU cycles and time, light_saber is the overall most energy efficient
and kyper512 is the second best in each of these categories. All fail to match
the low value for storage space, bandwidth space and bandwidth time of the
isogeny-based SIKE503. However, these algorithms are the second, third and
fourth best in the overall level 1 KEMS. Depending on the most important cri-
teria for the lattice-based KEM in this scenario, select newhope512 for the best
performance and run time, and light_saber for the most energy efficient, lowest
storage requirement and best bandwidth. The worst case lattice-based algorithms

6.3 The Double Ratchet Scenario 75

are frodo640aes, with a run time of almost 13 seconds, and light_saber, with the
second overall slowest bandwidth time of 2.3 seconds.

In Table 6.12 and 6.13 similar results can be seen but for Security level 3 and 5.
For Level 3 kyper768 seems promising looking at the average CPU cycles, time
and energy, while SIDH751 is best for storage space and bandwidth. For level 5
newhope1024 is best for creation time, while kyper1024 is most energy efficient.
For the most optimal bandwidth and least storage space fire_saber is the best
choice.

KEM Level 3 Creating and generating Network load Type
Average CPU Time Energy Storage Time Size

cycles (s) (mJ) (KB) (s) (KB)
kyper768 127747344 0.31 3983 340.6 0.32 328.13 L
lima_2p_1024 261241173 0.64 10595 1500.2 1.48 1519.34 L
saber_saber 551771453 1.36 4172 321.9 0.30 304.69 L
titanium_med 779118233 1.91 8598 3571.9 3.26 3342.19 L
lima_sp_1822 1223143776 3.01 10595 3558.8 3.35 3428.32 L
frodo976aes 9706683080 101.12 11022 4580.5 4.49 4599.61 L
frodo976cshake 7797927150 23.50 11022 4580.5 4.49 4599.61 L
bike1_l3 2590320837 6.36 33474 969.5 1.42 1454.30 C
bike3_l3 2934508419 7.21 33474 1059.0 1.55 1588.48 C
bike2_l3 9566033448 23.85 33474 969.5 1.42 1454.30 C
bigquake3 1145884502750 2815.31 10992069 11229.7 12.09 12383.50 C
ledac3n04 41157697773 130.50 504270 1287.5 2.51 2568.75 C
ledac3n03 53118005360 159.03 504270 1017.2 2.23 2281.64 C
ledac3n02 64729948335 247.87 504270 706.3 2.06 2109.38 C
SIDH751 100889689026 72.06 462881 59.8 0.08 82.62 I
SIKE751 194498331384 477.86 1534184 118.0 0.17 169.92 I

Tab. 6.12.: The 16 different level 3 KEMs (and SIDH751) and the impact they have
on an average user in the Double Ratchet scenario. The types of the KEMs
are either lattice-based (L), code-based (C) or isogeny-based (I). The bold
numbers indicates the lowest value in that column.

6.4 A post-quantum Signal Protocol

This section the three different scenarios are combined together into different
post-quantum Signal Protocols. We evaluate the post-quantum Signal Protocols
for the average user, as described in Section 5.5.

The three most suitable level 1 post-quantum Signal Protocols, for our analysis,
are given and compared with each other (Section 6.4.1). The focus on level
1 post-quantum cryptography was explained in Section 5.3.4. To compare the
level 1 post-quantum Signal Protocols with the Signal Protocol using ECDH, we

76 Chapter 6 Experimental results

KEM Level 5 Creating and generating Network load Type
Average CPU Time Energy Storage Time Size

cycles (s) (mJ) (KB) (s) (KB)
newhope1024 132390467 0.33 5710 537.5 0.58 590.63 L
kyper1024 191683860 0.47 5432 450.0 0.42 431.25 L
titanium_hi 843066720 2.07 11720 4009.4 3.80 3890.63 L
fire_saber 867380136 2.13 6311 425.0 0.40 407.81 L
titanium_super 1181442266 2.90 11720 5259.4 5.04 5165.63 L
bike1_l5 5942958219 14.60 30867 1599.2 2.34 2398.83 C
bike3_l5 6662971059 16.37 30867 1764.5 2.58 2646.68 C
bike2_l5 28796777063 70.75 30867 1599.2 2.34 2398.83 C
ledac5n04 149836180158 368.13 30867 2221.1 4.33 4434.38 C
ledac5n03 178984860975 439.75 30867 1763.3 3.87 3958.59 C
ledac5n02 292655376953 719.02 1455860 1213.3 3.54 3628.13 C
bigquake5 2298626991441 5647.47 20584688 18711.3 21.50 22015.43 C

Tab. 6.13.: The 12 different level 5 KEMs and the impact they have on an average user
in the Double Ratchet scenario. The types of the KEMs are either lattice-
based (L) or code-based (C). The bold numbers indicates the lowest value
in that column.

evaluated its impact as well in Section 6.4.2. We then have a quick look at the
level 3 post-quantum Signal Protocol and level 5 post-quantum Signal Protocol
(section 6.4.3).

6.4.1 The level 1 post-quantum Signal Protocols

In this section, we look at the three most suitable level 1 post-quantum Signal
Protocols according to our analysis. The resulting three most suitable post-
quantum Signal Protocols can be seen in Table 6.14.

Level 1 quantum Creating and generating Network load Total
-safe Signal CPU Time (s) Energy* (mJ) Storage (KB) Time (s) Size (KB) Time

L kyper512 + SIDH503 3140461651 2.24 2701 234.5 0.26 336.5 2.5
C bike1_l1 + SIDH503 3886944035 2.78 5809 499.7 0.77 856.3 3.5
I Full SIDH503 5869841645 4.19 167606 43.2 0.09 166.9 4.3

Tab. 6.14.: The resulting best post-quantum Signal Protocol of level 1 and their impact
they have in terms of CPU cycles, time (s), energy (mJ), storage space (KB),
bandwidth (s) and network utilisation (KB). The total time indicates the
total time it takes for both creating and sending the created keys.

These three most suitable post-quantum Signal protocols are created by looking
at each scenario individually. For the initial and the X3DH scenario there is only
one level 1 option: SIDH503, while for the Double Ratchet scenario there are
multiple (as explained in Section 5.3.1). For the Double Ratchet scenario we look

6.4 A post-quantum Signal Protocol 77

at Table 6.11 in Section 6.3, and see that there is not one single best suitable
algorithm. Some algorithms perform better, while others require less storage
space or bandwidth.

We therefore decided to choose a most suitable per type cryptography, resulting
in one full isogeny based post-quantum Signal Protocol, one isogeny-/code-
based post-quantum Signal Protocol and one isogeny-/lattice-based post-quantum
Signal Protocol.

For the fully isogeny based post-quantum Signal Protocol we compare the only
two level 1 isogeny candidates: SIDH503 and SIKE503. We can conclude that
SIDH503 is the most suitable because SIDH503 requires less storage space and
less CPU cycles then SIKE503. That is actually a good match, because SIDH503
is a perfect plug and play substitute for ECDH and could directly replace ECDH
(without the minor changes that the KEMs need to make the algorithm work with
them, as was explained in Section 5.3.1).

For the most suitable isogeny-/code-based Signal Protocol we compared the
different code-based algorithms. The level 1 bike algorithms are the better
options for CPU time, bandwidth and network utilisation. Except leda1n02 and
leda1n03, which required less storage space than the bike algorithms. However,
the difference is small and leda1n02 and leda1n03 needs more time to create the
keys, 13 seconds in total. We conclude that Bike1_l1 was the most suitable for
our analysis. Compared to Bike2_l1 it needed a bit less time to create the keys
but has a equal storage space and bandwidth requirements, while bike3_l1 needs
a bit more in all three categories.

For the isogeny-/lattice-based Signal Protocol the most suitable algorithm is
harder to find, because there are more lattice-based candidates. Especially
because newhope512, kyper512 and light_saber are on some fields a close match
in the Double Ratchet scenario. While newhope512 is the fasted with creating
keys, light_saber uses the least energy. In the end, the decisive factor was the total
time it would take to both create and send the keys, because the required storage
space and energy consumption differ very little. This results in kyper512 being
the most suitable algorithm for the isogeny-/lattice-based Signal Protocol. The
energy consumption of the SIDH keys is estimated(*) and therefore is very high
in comparison to the other algorithms, see Section 6.3.2 for how this number
was estimated.

We see a big difference in run time in the three different level 1 post-quantum
Signal Protocols. This difference can be explained because SIDH503 takes double
the CPU cycles and time to generate the keys and shared secrets needed for the

78 Chapter 6 Experimental results

Double Ratchet scenario, compared to bike1_l1 and kyber512. The difference in
required storage space is explained by SIDH503 which require less storage space
than their lattice and code based competitor. Because bike requests the most
bandwidth, we see that the isogeny-/code based version is slow on that front.

We conclude that the initialisation of the quantum-safe Signal Protocols, varying
in the post-quantum algorithms used, are feasible for the average user. There is
no most suitable combination of post-quantum algorithms. A balance between a
low run time and a low network load would be optimal. Especially because the
higher storage space requirements of some post-quantum algorithms, although
high in comparison to others, are not a problem for the minimal phone. The
complete isogeny based post-quantum Signal Protocol was most easy to imple-
ment (as explained in Section 5.3.1) and therefore, although being the more slow
combination, is a good option.

However, because the isogeny-/lattice-based with kyper512 is performing fastest,
as can be seen in Table 6.14, we could say that that one is the winner for the
fastest level 1 post-quantum Signal Protocol. It only needs 2.5 seconds to both
create and send the 150 keys an average user needs during the day.

Again it is important to note that these post-quantum Signal Protocols should be
implemented in a hybrid form with ECDH, as described in Section 4.3. In the
next section, we see that ECDH has a small impact on the performance, storage
space and network load of the Signal Protocol. Thereby, we can conclude that a
hybrid Signal Protocol, with both ECDH and one of the three mentioned, most
suitable, post-quantum Signal Protocols, is feasible.

6.4.2 ECDH in all three scenarios

In this section, we look at the Signal Protocol with ECDH and how it scores in
the different categories. The current Signal Protocol, with ECDH, has a 128-bit
security level for classical computers. In Table 6.15 we see what the Signal
Protocol, as it is with ECDH, requires from an average user with a minimal
phone. Table 6.15 shows that currently an average user has to wait 0.047 seconds
to create and generate keys and shared secrets, only has to store 12.5 KB on
information and has to send 14 KB data over the internet which can be done in
0.0145 second. The estimated energy consumption(*) of the execution of one
ECDH key exchange is a total of 6.17 mJ (see Section 6.3.2 for how this number
was estimated).

6.4 A post-quantum Signal Protocol 79

ECDH Creating and generating Network load
CPU Time Energy* Storage Time Size

S. Init 16989244 0.012 s 1 mJ 3.2 KB 0.0033 sec 3.2 KB
S. X3DH 59101082 0.040 s 3.51 mJ 0 KB 0.0064 sec 6.2 KB
S. DR 56669413 0.022 s 1.66 mJ 6.2 KB 0.0048 sec 4.69 KB
Total 132759738 0.047 s 6.17 mJ 9.4 KB 0.0145 sec 14.09 KB

Tab. 6.15.: The three different scenarios with ECDH and the impact they have on
the Signal Protocol for an average user in terms of CPU cycles, time (s),
estimated(*) energy (mJ) (calculated using 83.11 Watt), storage space (KB),
bandwidth (s) and network utilisation (KB).

6.4.3 The post-quantum level 3 and 5 Signal Protocols

For a average user with a minimal phone we can conclude that it also possible,
next to a level 1 post-quantum Signal Protocol, to have a level 3 post-quantum
signal Protocol. For the best level 3 post-quantum Signal Protocol we need
SIDH768 for both the initial scenario and the X3DH scenario because that was the
only option for those scenarios as explained in Section 5.3.1. Again we consider
three possible best post-quantum Signal Protocols with a security level of 3: one
full isogeny based, one isogeny-/code-based and one isogeny-/lattice-based. The
resulting three post-quantum Signal Protocols can be seen in Table 6.16.

Level 3 quantum Creating and generating Network load Total
-safe Signal CPU Time (s) Energy (mJ) Storage (KB) Time (s) Size (KB) Time (s)

L kyper768 + SIDH751 8519960265 6.28 4479 345.4 0.38 494.5 6.7
C bike1_l3 + SIDH751 10982533758 12.33 33970 974.3 1.48 1620.7 13.8
I SIDH751 109281901947 78.03 463377 64.6 0.14 249.0 78.2

Tab. 6.16.: The three most suitable post-quantum Signal Protocol of level 3 and their
impact they have in terms of CPU cycles, time (s), energy (mJ), storage
space (KB), bandwidth (s) and network utilisation (KB). The total time
indicates the total time it takes for both creating and sending the created
keys.

We consider kyper768 most suitable for a level 3 isogeny-/lattice-based Signal
Protocol. It needs only 0.63 seconds for the complete Double Ratchet scenario
and, in combination with SIDH503 in the other two scenarios, will only take 6.7
seconds in total. It was also the most energy efficient lattice-based algorithm
and second best on storage space, only saber_saber requires less storage. For the
isogeny-/code-based Signal Protocol the bike1_l3 easily won as best code-based
candidate for the Double Ratchet level 3 categories. Resulting in a protocol that
only needs 13.8 seconds to send all 150 messages, and need less than one MB
of storage space. The fully isogeny based Signal Protocol is using only SIDH751,
which will give it the largest run- and bandwidth time of the three winning

80 Chapter 6 Experimental results

protocols, namely 78.2 seconds; however, it requires the least total storage space:
only 65 KB is needed to store all the keys for an average user with this protocol.

For a level 5 post-quantum Signal Protocol we did not test an algorithm that
was suitable for the initial and X3DH scenarios. Unfortunately SIDH was not
submitted to the NIST standardisation process and there was no suitable code
for SIDH964. There is, however, a SIKE964 version, uploaded to the NIST
standardisation process; however, that one was unfortunately not available in the
library we used. We decided to not look into possible post-quantum protocols for
the initial and X3DH scenario, for security level 5, because of the high security
level as mentioned in 2.4.2.

However, we can see looking at Table 6.13 for the Double Ratchet scenario, we
see that kyper1024 only needs 0.89 seconds to create and send 150 keys, while
newhope1024 is a close second.

6.4 A post-quantum Signal Protocol 81

7Conclusions

In this section, we conclude on the work in this thesis and look at future work
that might be of added value.

7.1 Conclusion

In this thesis we analyse that it is feasible to have a post-quantum Signal Protocol
considering the status of 2018. We describe the whole protocol and distinguish
two main parts: the extend triple Diffie-Hellman Protocol (X3DH) which is used
to send the first message, and the Double Ratchet algorithm, which is used to
update the encryption key while users are chatting. The Signal Protocol uses
ECDH key exchanges which are not secure in a quantum world. Therefore, both
the X3DH protocol and the Double Ratchet algorithm need a substitute for the
ECDH key exchange.

For the transitional period, from classical to quantum computers, we look into
different ways to make a partially hybrid post-quantum Signal Protocol. The
most simple solution for the transition period would be to add at least one
post-quantum initial key exchange, next to the ECDH X3DH protocol. This could
enable the Signal Protocol to have passive quantum security.

In the case that quantum computers take over the world, the whole Signal
Protocol and all its ECDH key exchanges should be substituted for an post-
quantum alternative. To create a complete post-quantum Signal Protocol we
divided the Signal Protocol in three different phases, the initial setup phase, the
first message phase and the message exchange and key update phase. For each
phase we created a scenario and those three scenarios were tested with different
post-quantum alternatives for the ECDH.

For a quantum-safe Signal Protocol with 128-bit security we determined the
three best suitable options. The most suitable post-quantum Signal Protocol
used a combination between a isogeny-based algorithm, SIDH503, for the initial
and X3DH scenario, and a lattice-based KEM, kyper512, for the Double Ratchet
scenario. Based on our analysis it is concluded that this combination allows

83

an average chat user to create 100 key bundles, upload them, initiate contact
with 100 contacts and send 150 messages, all at once, in 2.5 seconds. However,
key encapsulation mechanisms are not an easy plug-and-play substitute for
ECDH key exchanges. The post-quantum Signal Protocol that is most easy
to implement, uses only the isogeny- based algorithm SIDH503 for all three
scenarios. This requires the least storage space, 43 KB, for keys but has a run time
of 4.5 seconds. The last post-quantum Signal Protocol combines the code-based
algorithm bike1_l1 and the isogeny-based SIKE503. It results in a faster code than
the fully isogeny based: only 3.5 seconds; however, requires a higher network
utilisation.

We showed that it is feasible to create a post-quantum Signal Protocol which is
128-bit secure against quantum computers. We also showed that a 198-bit and
256-bit secure post-quantum is possible; however, this requires a higher amount
of CPU cycles, storage space and bandwidth.

All these quantum-safe Signal Protocols should be implemented as a hybrid form
between ECDH and a post-quantum algorithm, because of the risks that might
come with new post-quantum algorithms.

Overall we are positive that a post-quantum Signal Protocol is a feasible for an
average user in 2018, and hope that more research could be done to the complete
impact a post-quantum algorithm has on the Signal Protocol.

7.2 Future research

There are many interesting topics which could be researched in the future, in this
section we name a few.

The different post-quantum Signal Protocols we found give a nice idea on which
properties are important for the post-quantum algorithms in a chat application.
Quick performance and low bandwidth are important because of the speed with
which users use chat applications. We only implemented and tested a simple
version of the Signal Protocol (see Section 5.4). An interesting research could be
implementing all the post-quantum cryptography into the actual Signal Protocol
code. The implementation of these different post-quantum algorithms in the
protocol, would provide good insight on the impact of a (hybrid) post-quantum
Signal Protocol in the real world. In Section 5.5, we defined an average user
and a minimal phone based on a lot of assumptions. Testing the post-quantum
Signal Protocols on actual phones and testing them with actual users, could give

84 Chapter 7 Conclusions

insight in how post-quantum algorithms influence the actual performance and
user chat experience. In the real world the network aspects could be tested as
well. It would give an idea of the influence the post-quantum Signal Protocol
has on the network utilisation and bandwidth, and how that influences the chat
experience. Another user related process is the use of video chats, they require a
fast post-quantum algorithms so that each frame could be encrypted. Looking
into how feasible it is to have post-quantum video chat in the Signal Protocol, or
just in general, might be an interesting topic as well.

The different post-quantum Signal Protocols created in this thesis were only
evaluated with eleven different post-quantum algorithms (see Section 5.3.3). In
the future it would be nice to have it tested with all the NIST applications. Maybe
even more potential new post-quantum cryptography could be tested. In that
way an overview of the advantages and disadvantages of each post-quantum
algorithm could be created for the Signal Protocol. Thereby only code-based,
isogeny-based and lattice-based KEMs and SIDH were tested (Section 5.3.3).
Multivariate KEMs and KEMs based on other mathematics were excluded (see
Section 2.4). However, testing these KEMs as well might be useful, because if for
example, one type of cryptography is not secure at all, post-quantum algorithms
based on other mathematical principles would be needed.

In this thesis mostly KEMs were studied; however, we conclude that for the
X3DH protocol it was not possible to just simply substitute ECDH with a KEM
to create the shared secrets in the way ECDH did (section 5.3.1). To use a KEM
in the Double Ratchet algorithm small but feasible changes were required as
was explained in Section 5.3.1. It is interesting to analyse and compare how
interactive key exchanges, non-interactive key exchanges and key encapsulation
mechanisms are different, to get a clear overview of which security properties
can be created using which method. How could certain ways of creating keys be
used to get certain properties in the Signal Protocol?

Another thing, which we did not consider in this thesis, is a post-quantum
signature scheme to substitute the ECDH signature used in the Signal Protocol.
For the transitional period, a post-quantum signature is not yet the highest priority.
However, as soon as quantum computers are there and the signatures are still
created with ECDH, adversaries could fake the signatures and that would be a
problem. Future research in post-quantum signatures is, therefore, important.

On the other hand more research could be done to analyse and test the post-
quantum algorithms. A lot of the post-quantum algorithms are newly developed
and might have flaws. More verification can be done to the post-quantum algo-
rithms, to see if they are indeed quantum safe and secure to use. There could be

7.2 Future research 85

ways to improve the mathematical problems on which the cryptography is based.
Will these problems still be hard to solve in the future? The implementation of
the post-quantum algorithms could be analysed and improved as well. Although
the algorithm might be mathematically correct, the implementation might have
bugs which makes it easier for an adversary to break the cryptography. In this
way, these post-quantum algorithms are improved in time and perform better.

Better post-quantum algorithms are not only an addition for a post-quantum
Signal Protocol, but could also be used in other protocols where quantum-safe
standards are useful. While there is already research going on about some
post-quantum protocols, like quantum-safe VPN and TLS, as we saw in Section
1.2, many more possibilities could be studied. Do all the protocols have the
same bottlenecks or do they differ? While in the Signal Protocol speed and high
performance are essential to maintain a good chat experience, maybe setting
up a VPN does not have to be done within one second? Creating an overview
of which properties of certain post-quantum algorithms are useful for certain
applications.

On the other hand, more security protocols can be researched. The Signal Protocol
is not the only security protocol for chat applications. The Signal Protocol is very
strong in secure communication between two parties; however, is very weak in
group communication [CG+18]: “an adversary who compromises a single group
member can intercept communications indefinitely”. In the current Signal Protocol
there is no backward secrecy at all in group chats. There are other protocols that
might be added to the Signal Protocol as a solution to this problem. For example,
the Provably authenticated group Diffie-Hellman key exchange by Bresson et al.
[Bre+01] and the Asynchronous Ratcheting Tree by Cohn Gordon et al. [CG+18].
Analysing these other options further and creating post-quantum versions of them
could give interesting insights both in how we can create more secure protocols
and how we could create new secure protocols with post-quantum cryptography
in mind.

86 Chapter 7 Conclusions

Appendices

87

A
Key Storage in the Signal
Protocol

The Figure A.1 shows how long certain keys need to be stored. In Figure A.2 we
see how the Signal Protocol handels keys using KEM’s.

Fig. A.1.: The table shows how the Signal Protocol works and until which phase which
key has to be stored.

89

Fig. A.2.: The table shows how the Signal Protocol works using a KEM.

90 Chapter A Key Storage in the Signal Protocol

BThe pseudocode

In Section 5.4 more about the code and the testing machine is explained. In
Section 5.2 the tested scenarios are explained.

B.1 Initial scenario

void test_initial{int num_iterations, char algorithm_name}{
long long cpu_cycles1, cpu_cycles2;

for(int i = 0; i < num_iterations; i++){
\\Start cpu count
cpu_cycles1 = get_current_cpu_cycles();

\\Create 1 key pair
char public_key;
char private_key;
create_keypair(public_key, private_key, algorithm_name);

\\Stop cpu count
cpu_cycles2 = get_current_cpu_cycles();

}

}

B.2 The X3DH scenario

void test_X3DH{int num_iterations, char algorithm_name}{
long long cpu_cycles1, cpu_cycles2;

for(int i = 0; i < num_iterations; i++){
char public_key_A_ID;
char private_key_A_ID;
create_keypair(public_key_A_ID, private_key_A_ID,

91

algorithm_name);

\\Create Bobs key pair
char public_key_B_ID;
char private_key_B_ID;
create_keypair(public_key_B_ID, private_key_B_ID,

algorithm_name);

\\Create Bobs key pair
char public_key_B_OTK;
char private_key_B_OTK;
create_keypair(public_key_B_OTK, private_key_B_OTK,

algorithm_name);

\\Start cpu count
cpu_cycles1 = get_current_cpu_cycles();

\\Create 1 key pair
char public_key_EK;
char private_key_EK;
create_keypair(public_key_EK, private_key_EK, algorithm_name);

DH1 = create_sharedsecret(private_key_A_ID, public_key_B_OTK,
algorithm_name);

DH2 = create_sharedsecret(private_key_A_EK, public_key_B_ID,
algorithm_name);

DH3 = create_sharedsecret(private_key_A_EK, public_key_B_OTK,
algorithm_name);

\\Stop cpu count
cpu_cycles2 = get_current_cpu_cycles();

}

}

B.3 The Double Ratchet scenario

For the Double Ratchet scenario there were two versions, the Double Ratchet was
tested with ECDH and SIDH with this version:

92 Chapter B The pseudocode

void test_DoubleRatchet_DH{int num_iterations, char algorithm_name}{
long long cpu_cycles1, cpu_cycles2;

for(int i = 0; i < num_iterations; i++){

\\Create Bobs key pair
char public_key_B;
char private_key_B;
create_keypair(public_key_B, private_key_B, algorithm_name);

\\Create Bobs key pair
char public_key_B_2;
char private_key_B_2;
create_keypair(public_key_B_2, private_key_B_2,

algorithm_name);

\\Start cpu count
cpu_cycles1 = get_current_cpu_cycles();

\\Send the message to Bob
char public_key_A;
char private_key_A;
create_keypair(public_key_A, private_key_A,

algorithm_name);
create_sharedsecret(private_key_A, public_key_B,

algorithm_name);

\\Receive the message from Bob
create_sharedsecret(private_key_A, public_key_B_2,

algorithm_name);

\\
cpu_cycles2 = get_current_cpu_cycles();

}

}

B.3 The Double Ratchet scenario 93

And the KEMs were tested with this version:

void test_DoubleRatchet_KEM{int num_iterations, char algorithm_name}{
long long cpu_cycles1, cpu_cycles2;

for(int i = 0; i < num_iterations; i++){
\\Create Bobs key pair
char public_key_B;
char private_key_B;
create_keypair(public_key_B, private_key_B, algorithm_name);

\\Create Bobs key pair
char public_key_B_2;
char private_key_B_2;
create_keypair(public_key_B_2, private_key_B_2,

algorithm_name);

\\Start cpu count
cpu_cycles1 = get_current_cpu_cycles();

char sharedsecret_1;

char ciphertext = encapsulate_sharedsecret(sharedsecret_1,
public_key_B, algorithm_name);

\\Create Alice key pair
char public_key_A;
char private_key_A;
create_keypair(public_key_A, private_key_A, algorithm_name);

\\Receive the message from Bob, with the ciphertext
char ciphertext_2;

char sharedsecret_2 = decapsulate(cipthertext_2,
private_key_A, algorithm_name);

\\
cpu_cycles2 = get_current_cpu_cycles();

}

}

94 Chapter B The pseudocode

CX3DH Test Data

See Section 6.2 for the summarised table. Table C.1 shows the average CPU cycles
for doing the cryptography needed when adding a certain amount of contacts,
for 3 algorithms (SIDH751, SIDH503 and ECDH). The linearity was tested and
plotted, and can be seen in figure C.1.

Cont SIDH751 SIDH503 ECDH
1 83567283 30133473 679939 Cont SIDH751 SIDH503 ECDH

10 680366060 232227097 5557722 260 16632655162 5842552021 129683434
20 1332070091 455872654 10438749 270 17244126075 6098668864 134737126
30 1951150754 680095940 15392181 280 17890176419 6307419484 139845008
40 2564098700 906906227 20417156 290 18530601899 6563716267 144584805
50 3205637906 1137790524 25554646 300 19355518396 6771537925 149875313
60 3852971420 1364670170 30649292 310 19788645041 6983563041 157214630
70 4504027573 1613295048 35683448 320 20425313060 7213726112 161330887
80 5122590055 1805749814 40319481 330 21066868476 7507860165 166620143
90 5751838412 2027165389 45466344 340 21694613310 7779888071 169159411

100 6420367724 2260764536 50414970 350 22325270307 7910077554 174476855
110 7100736999 2486478669 55379370 360 23022970827 8112598505 178895424
120 7735735220 2720569616 61426901 370 23637074328 8330918809 183867674
130 8309076003 2928711709 65358253 380 24268582877 8612243039 188791723
140 8963331992 3152432045 70296151 390 24902459876 8815071000 193874536
150 9586021133 3396685999 75208963 400 25548353800 9023688029 199425809
160 10242919351 3606263805 80326056 410 26158264434 9232482224 205024158
170 10856420873 3888985300 85258254 420 26828444790 9480242685 208869453
180 11519303921 4053359292 90143522 430 27509798028 9712084454 216664835
190 12164096661 4322296247 95261916 440 28101676182 9913199567 219009620
200 12773440441 4510613420 100477391 450 28737468678 10139611376 223473302
210 13506417350 4726261361 104965424 460 29406985758 10361967302 229245124
220 14078716723 4984485263 110331562 470 29999127991 10577559703 233349209
230 14688881071 5186619974 114843983 480 30674354189 10806468465 238363537
240 15371179359 5499775724 119753220 490 31275050111 11056956753 243487883
250 15969344054 5649177721 124915078 500 32221219431 11445783788 249004246

Tab. C.1.: The table shows the average number of CPU cycles per algorithm (SIDH751,
SIDH503 and ECDH) for the cryptography that needs to be done for the
initial scenario and the X3DH scenario for the given number of contacts
(ranging from 1 to 500). Ten iterations were done per value and the average
value is shown.

95

0 50 100 150 200 250 3000

0.5

1

1.5

2
·1010

Number of contacts

N
um

be
r

of
C

PU
cy

cl
es

CPU cycles for the X3DH scenario

ECDH
SIDH503
SIDH751

Fig. C.1.: The average number of CPU cycles per X3DH key exchange (and thus contact),
shown for the 3 different algorithms: ECDH, SIDH503 and SIDH751.

96 Chapter C X3DH Test Data

DKey Length

The ten post-quantum KEM’s from the Open Quantum Safe library, have different
versions resulting in 45 different algorithms. In Table D.1 we see, per algorihm
how much bytes is needed for the keys, shared secrets and the cipher text.

97

Algorithm name Public key Secret key SS Ciphertext SL Alternative name
ECDH Curve25519 32 32 32 32 - -
bigquake1 25482 14772 32 201 1 BIG_QUAKE_1
bike1_l1 2542 2542 32 2542 1 BIKE_1_64
bike2_l1 2542 2542 32 2542 1 BIKE_2_64
bike3_l1 2758 2758 32 2758 1 BIKE_3_64
frodo640aes 9616 19872 16 9736 1 FrodoKEM-640
frodo640cshake 9616 19872 16 9736 1 FrodoKEM-640
kyper512 736 1632 32 800 1 kyber512
ledac1n02 3480 24 32 3480 1 128SL_N02
ledac1n03 4688 24 32 2344 1 128SL_N03
ledac1n04 6408 24 32 2136 1 128SL_N04
light_saber 672 1568 32 736 1 light_saber
lima_sp_1018 6109 9163 32 4209 1 CPA.LIMA-sp1018
newhope512 928 1888 32 1120 1 newhope512cca
SIKE503 378 434 16 402 1 SIKEp503
titanium_std 16352 16384 32 3552 1 Titanium_CCA_std
lima_sp_1306 10449 15673 32 6763 2 CPA.LIMA-sp1306
bigquake3 84132 30860 32 406 3 S
bike1_l3 4964 4964 32 4964 3 BIKE_1_96
bike2_l3 4964 4964 32 4964 3 BIKE_2_96
bike3_l3 5422 5422 32 5422 3 BIKE_3_96
frodo976aes 15632 31272 24 15768 3 FrodoKEM-976
frodo976cshake 15632 31272 24 15768 3 FrodoKEM-976
kyper768 1088 2400 32 1152 3 kyber768
ledac3n02 7200 32 48 7200 3 192SL_N02
ledac3n03 10384 32 48 5192 3 192SL_N03
ledac3n04 13152 32 48 4384 3 256SL_N02
lima_2p_1024 6145 9217 32 4227 3 CCA.LIMA-2p1024
lima_sp_1822 14577 21865 32 8827 3 CCA.LIMA-sp1822
saber_saber 992 2304 32 1088 3 saber
SIKE751 564 644 24 596 3 SIKEp751
titanium_med 18272 18304 32 4544 3 Titanium_CCA_med
lima_2p_2048 12289 18433 32 7299 4 CCA.LIMA-2p2048
lima_sp_2062 16497 24745 32 9787 4 CPA.LIMA-sp2062
bigquake5 149800 41804 32 492 5 BIG_QUAKE_5
bike1_l5 8188 8188 32 8188 5 BIKE_1_128
bike2_l5 8188 8188 32 8188 5 BIKE_2_128
bike3_l5 9034 9034 32 9034 5 BIKE_3_128
fire_saber 1312 3040 32 1472 5 fire_saber
kyper1024 1440 3168 32 1504 5 kyber1024
ledac5n02 12384 40 64 12384 5 192SL_N04
ledac5n03 18016 40 64 9008 5 256SL_N03
ledac5n04 22704 40 64 7568 5 256SL_N04
newhope1024 1824 3680 32 2208 5 newhope1024cca
titanium_hi 20512 20544 32 6048 5 Titanium_CCA_hi
titanium_super 26912 26944 32 8352 5 Titanium_CCA_super

Tab. D.1.: The different algorithms present in the OQS library, and their security level
(SL).

98 Chapter D Key Length

E
Double Ratchet Test Data

See Section 6.3.1 for the summary of this data. In Table E.1, E.2, E.3 and E.4
the average number of CPU cycles are show, for 1 until 325 message (increasing
per 25) being encrypted and then decrypted again for the different KEMs. The
KEM’s are ordered on security level and their type is given, either coded-based,
lattice-based or isogeny-based. For the lower numbers of messages more then
100 iterations were done, while for 325 message, only 4 iterations were done,
after which the obtained values were averaged.

In Figure E.1, E.2 and E.3 the data from Table E.2, E.3 and E.4 is plotted to show
the linearity of the KEMs. There is one figure for each security level.

0 50 100 150 200 250 3000

0.5

1

1.5

2

2.5

3 ·1011

Number of key exchanges

N
um

be
r

of
C

PU
cy

cl
es

Number of Average CPU cycles for KEMs of security level 1 for 10 iterations

bigquake1
SIKE503

ledac1n02
ledac1n04
ledac1n03

frodo640aes
frodo640cshake

bike2_l1
bike3_l1
bike1_l1

titanium_std
lima_sp_1018

light_saber
kyper512

newhope512
ECDH

Fig. E.1.: The number of CPU cycles per number of key exchanges (and thus messages),
for each KEM of level 1.

99

1 25 50 75
ECDH 389050 13362355 19334261 29014648

C bigquake1 834231666 22823222149 41796855935 62285400232
I SIKE503 372782930 11055943102 18944663056 27756562552
C ledac1n02 177123815 4482333117 8962827601 12966031353
C ledac1n04 123756915 3206962031 6304551854 9299127105
C ledac1n03 120279046 3096878653 6605683749 9014544366
L frodo640aes 119080004 3373293602 5931194493 8904175804
L frodo640cshake 29389299 1434437605 1460993564 2180946233
C bike2_l1 18025702 469436897 913150690 1342954537
C bike3_l1 5940347 148479057 294630539 424136655
C bike1_l1 5460934 167047688 278444245 415363185
L titanium_std 4288115 112981473 221548306 321061833
L lima_sp_1018 3905126 122268237 202018538 294615804
L light_saber 1962361 73123720 121182536 148183651
L kyper512 583665 23746115 29159819 47965206
L newhope512 442904 20179302 22197515 33348406
C bigquake3 8417432756 202270636364 377925876612 562020487666
I SIKE751 1276956863 35076394418 65034543091 95435292172
C ledac3n02 654206583 22088545529 33204889154 49311717864
C ledac3n03 422621959 13207302620 21471913253 31652596130
C ledac3n04 348409429 10610768271 17632410215 26189554916
L frodo976aes 271680254 7731228917 13687032617 20354744190
C bike2_l3 64570687 1666033437 3267103153 4809670342
L frodo976cshake 62843060 1910481240 3108297526 4632574867
C bike3_l3 19787679 508901124 995113294 1460409576
C bike1_l3 16870580 443832473 877448639 1282483418
L lima_sp_1822 7976238 278536033 405268040 593104888
L titanium_med 5184965 136832692 263201275 387703343
L saber_saber 3592772 114557231 197781939 269506867
L lima_2p_1024 1720591 57787441 86862571 127899858
L kyper768 822522 27236761 41665516 62794261
C bigquake5 18047996001 405917090909 755861946279 1134781808250
C ledac5n02 1920286857 57906208425 97712032108 143417102225
C ledac5n03 1156916049 39062485551 58498497083 86570031118
C ledac5n04 979677004 30790867442 50325425678 73398209884
C bike2_l5 191981230 4942877634 9737754390 14323301914
C bike3_l5 45179547 1178254298 2230835600 3328946029
C bike1_l5 39239959 1038799637 2026972901 2947181565
L titanium_super 7850349 205872617 396707554 585597005
L fire_saber 5768648 185423920 290891627 424419431
L titanium_hi 5656494 147433194 285308423 419717244
L kyper1024 1229283 39879330 61186928 90346480
L newhope1024 903408 26955226 44814413 65227557

Tab. E.1.: The Table shows the average number of CPU cycles, per number of messages
(1 till 75), for each KEM’s implemented in the Double Ratchet. The algorithms
are ordered on Security Level (level I first), and the type of KEM is given: C
for code-based, L for lattice-based and I for isogeny-based.

100 Chapter E Double Ratchet Test Data

100 125 150 175
ECDH 37950933 47761483 56669413 66133716

C bigquake1 82288100894 104229333326 124928183606 145675072028
I SIKE503 37019856979 46465790332 55532065583 67246553662
C ledac1n02 17684586280 21673744621 26033470745 30160237673
C ledac1n04 12309552030 15376002672 18416112069 21692315982
C ledac1n03 12046775772 15253547276 17895325430 20998566337
L frodo640aes 11760238239 14650327227 17619079184 20562764958
L frodo640cshake 2914464745 3647892101 4336706720 5061698120
C bike2_l1 1885932971 2247602336 2717081857 3136309895
C bike3_l1 564864950 689378004 834723586 997202310
C bike1_l1 553565597 689378004 827883240 957511120
L titanium_std 455236568 537350542 639030656 746297768
L lima_sp_1018 390683315 487491148 582855403 692388494
L light_saber 195733336 243401284 292061032 366101307
L kyper512 62299215 71268431 85256138 99326652
L newhope512 42040117 53119280 63689198 74439358
C bigquake3 740433797153 978980137022 1114068459117 1308287872878
I SIKE751 127976882723 177400051323 190706106565 223905870950
C ledac3n02 65314202800 82156717362 98392659249 114608111055
C ledac3n03 43126664133 52876892550 63508441926 73810919035
C ledac3n04 34786349619 43392441087 52174877853 60939589625
L frodo976aes 27375357327 33757436986 40635712987 47418520395
C bike2_l3 6475597557 8041308462 9604373468 11255983292
L frodo976cshake 7341678253 7692982633 9223701264 10812556657
C bike3_l3 1951586624 2437351737 2895108517 3427402954
C bike1_l3 1751187472 2142157528 2603001492 2987227851
L lima_sp_1822 790514277 986558243 1192900925 1379318644
L titanium_med 524505037 647686562 770360112 904647270
L saber_saber 358167844 447922642 536599800 625951933
L lima_2p_1024 170714644 211359468 253517794 294952550
L kyper768 103900272 102248768 122481387 141759505
C bigquake5 1486588880556 1880906275798 2235068400000 2652761719137
C ledac5n02 193859771062 239122756584 286297867702 335001435021
C ledac5n03 115605878231 144342118864 173002543694 202020646560
C ledac5n04 97892615693 121961938821 146616807162 170678634738
C bike2_l5 19143759888 23843421747 28573912710 33556163120
C bike3_l5 4492464165 5542571888 6544074120 7597846053
C bike1_l5 4023711470 4939826109 5871789625 6824088508
L titanium_super 812283260 977925722 1192019933 1364789322
L fire_saber 562174190 702705890 847850570 983540969
L titanium_hi 568901535 698507263 833725243 972340501
L kyper1024 123443296 150597900 186149137 209766773
L newhope1024 87590044 107308182 129216145 151651279

Tab. E.2.: The Table shows the average number of CPU cycles, per number of messages
(100 till 175), for each KEM’s implemented in the Double Ratchet. The
algorithms are ordered on Security Level (level I first), and the type of KEM
is given: C for code-based, L for lattice-based and I for isogeny-based.

101

200 225 250
ECDH 75164538 85906621 93656910

C bigquake1 165165003465 186870945657 212981595848
I SIKE503 75887664491 83839679266 93019602117
C ledac1n02 35540192967 38968101164 43499384482
C ledac1n04 25025912519 27811541457 30827227554
C ledac1n03 24150352404 27098706586 30217164973
L frodo640aes 23457039911 26564079300 29384814202
L frodo640cshake 5778193189 6504182448 7242020447
C bike2_l1 3619249633 4025129535 4499146066
C bike3_l1 1401286212 1301216174 1424319125
C bike1_l1 1091442981 1231373610 1374062369
L titanium_std 856907681 957724727 1084474047
L lima_sp_1018 818710702 1086410305 997291145
L light_saber 388976115 438030908 487250194
L kyper512 113823057 126994690 141145479
L newhope512 84507813 95367002 105967956
C bigquake3 1531120660558 1703233884129 1859835174001
I SIKE751 255149228447 287383562769 319136665311
C ledac3n02 132059141235 147779124047 162512978983
C ledac3n03 85348151066 95239723310 105705570673
C ledac3n04 69683276175 78378042519 87020755930
L frodo976aes 54222048538 61526621684 67673270299
C bike2_l3 13132905115 14359715725 16022315769
L frodo976cshake 12352416340 13867785566 15637868706
C bike3_l3 3933495339 4333180957 4849085888
C bike1_l3 3401973749 3897751474 4447763335
L lima_sp_1822 1578031697 1775868964 1966810717
L titanium_med 1028301032 1158589649 1285182048
L saber_saber 714298948 805861883 894090280
L lima_2p_1024 339336187 379510279 421303722
L kyper768 161711276 182419039 202078351
C bigquake5 2982893226304 3424594217878 3748770729140
C ledac5n02 382499256850 430041237687 478850163104
C ledac5n03 230805579658 259188059712 289338851021
C ledac5n04 195951213014 220762255797 244493385055
C bike2_l5 38511988405 42837890971 47909920720
C bike3_l5 8900109370 9882973530 10917118419
C bike1_l5 8011124757 8894841684 9733810196
L titanium_super 1556600692 1751969440 1945774702
L fire_saber 1125274788 1263462459 1413714503
L titanium_hi 1115932856 1250792845 1398350979
L kyper1024 238858490 267661795 299174863
L newhope1024 171264995 194632458 213841034

Tab. E.3.: The Table shows the average number of CPU cycles, per number of messages
(200 till 275), for each KEM’s implemented in the Double Ratchet. The
algorithms are ordered on Security Level (level I first), and the type of KEM
is given: C for code-based, L for lattice-based and I for isogeny-based.

102 Chapter E Double Ratchet Test Data

275 300 325
ECDH 104234159 113016745 121830106

C bigquake1 229110075962 249572675522 270362402987
I SIKE503 102119512840 111393332464 120257533285
C ledac1n02 47579398950 51796865554 56345136730
C ledac1n04 33827015792 36992332328 39841495134
C ledac1n03 32749426426 35944787289 38688228225
L frodo640aes 32500766850 35273290866 38367308639
L frodo640cshake 8142468295 8660004161 9383510723
C bike2_l1 4930803530 5363911508 5819548347
C bike3_l1 1568061027 1703174710 1838816956
C bike1_l1 1508117523 1638879236 1784562391
L titanium_std 1172974910 1275394867 1382839459
L lima_sp_1018 1077968261 1315059550 1383418029
L light_saber 534960038 583804829 632684106
L kyper512 156720674 169870363 183370135
L newhope512 116903774 126549810 136882631
C bigquake3 2107901634661 2244037086541 2417841508290
I SIKE751 349381800551 381747825977 415243731587
C ledac3n02 180763604772 196721394057 213063821223
C ledac3n03 116235252051 126596135136 137187494537
C ledac3n04 95881553486 104490510679 113791646540
L frodo976aes 74893813184 81119747087 88283781788
C bike2_l3 18100208289 19315047613 20819948176
L frodo976cshake 17031262746 18509171912 20091037476
C bike3_l3 5337290762 5758410568 6351584647
C bike1_l3 4706450273 5101499431 5581768120
L lima_sp_1822 2195935899 2365892921 2559438250
L titanium_med 1417340130 1546952370 1674511484
L saber_saber 983682874 1072177763 1161831261
L lima_2p_1024 462906528 506071082 551019888
L kyper768 222152759 242980846 263753947
C bigquake5 4131849087495 4468917949161 4869369826887
C ledac5n02 526775455898 574366191522 639495819162
C ledac5n03 327913937979 364024680799 381514679178
C ledac5n04 270186576469 293441275010 318936861707
C bike2_l5 52704700169 57222188187 62029125850
C bike3_l5 12036617646 13434310643 14174023075
C bike1_l5 10785734396 11705781217 12801602848
L titanium_super 2156599905 2332051708 2528638334
L fire_saber 1550773815 1686262766 1826656626
L titanium_hi 1534313270 1669677662 1807478768
L kyper1024 328069491 404540317 531944996
L newhope1024 235820480 257132636 277904840

Tab. E.4.: The Table shows the average number of CPU cycles, per number of messages
(300 till 350), for each KEM’s implemented in the Double Ratchet. The
algorithms are ordered on Security Level (level I first), and the type of KEM
is given: C for code-based, L for lattice-based and I for isogeny-based.

103

0 50 100 150 200 250 3000

0.5

1

1.5

2

2.5

3 ·1011

Number of key exchanges

N
um

be
r

of
C

PU
cy

cl
es

Number of Average CPU cycles for KEMs of security level 3 for 10 iterations

bigquake3
SIKE751

ledac3n02
ledac3n03
ledac3n04

frodo976aes
bike2_l3

frodo976cshake
bike3_l3
bike1_l3

lima_sp_1822
titanium_med
saber_saber

lima_2p_1024
kyper768

ECDH

Fig. E.2.: The number of CPU cycles per number of key exchanges (and thus messages),
for each KEM of level 3. We plotted the slowest algorithms on purpose out
of the graph, so that some other algorithms could be better distinguish. The
complete data set can be found in the Appendix.

104 Chapter E Double Ratchet Test Data

0 50 100 150 200 250 3000

0.5

1

1.5

2

2.5

3 ·1011

Number of key exchanges

N
um

be
r

of
C

PU
cy

cl
es

Number of Average CPU cycles for KEMs of security level 5 for 10 iterations

bigquake5
ledac5n02
ledac5n03
ledac5n04
bike2_l5
bike3_l5
bike1_l5

titanium_super
fire_saber

titanium_hi
kyper1024

newhope1024
ECDH

Fig. E.3.: The number of CPU cycles per number of key exchanges (and thus messages),
for each KEM of level 5.

105

FEnergy consumption

In Table F.1, F.2 and F.3 the run time, in milliseconds, an their energy consump-
tion, in milli Joule, are shown for different post-quantum KEM algorithms for one
such senario in security Level I, III and V. The data is taken from [BH18]. The
tables show only the NIST PQC candidates for Key Encapsulation Mechanisms. A
big difference between runtime and energy consumption can be seen. The worst
case PQ KEM for a security level I is CFPKM, and runs for half a second, with an
energy consumption of 14,6 Joule. While the best level I case PQ KEM, Lepton,
only runs 0.05 millisecond with an energy consumption of 1.3 milli Joule. For
Security Level III and V the worst case KEM PQ is BIGQUAKE, having relatively
2.8 and 5.2 seconds, and 73 and 137 Joule. While the best case PQ KEM still is
Lepton with 0.15 milliseconds and 4.2 Joule for both security levels.

107

Scheme Type Time (mili s) Energy (mili J)
Lepton ? 0.0484 1.31
Rlizard KEM ? 0.09 2.43
NewHope CPA Lattices 0.414 11.05
NTRUEncrypt KEM Lattices 0.47 12.71
SABER Lattices 0.57 15.3
Round2-u KEM Lattices 0.61 16.44
CRYSTALSKyber Lattices 0.636 16.8
Quroboros-R Codes 0.69 18.23
NewHope CCA Lattices 0.69 18.74
LIMA CPA Lattices 0.925 24.38
EMBLEM Lattices 1.927 27.17
LAKE Codes 1.2 31.55
LIMA CCA Lattices 1.26 33.31
FRODO Lattices 1.415 36.76
BIKE Code 1.459 37.52
HQC Codes 1.48 38.62
Titanium CCA Lattices 1.91 50.07
RQC Codes 2.39 63.99
Lizard KEM Lattices 3.17 83.68
DING Lattices 4.76 128.12
LOCKER Codes 5.16 138.43
LOTUS KEM Codes 10.22 273.63
Round2-n KEM Lattices 10.56 293.66
Ramstake Lattices 15.61 422.97
NTS-KEM Codes 16.76 451.24
LEDA KEM Codes 44.263 1177.76
NTRU-HRSS-KEM Lattices 58.55 1585.64
SIKE Isogeny 115.73 3110.01
Old Manhattan Lattices 148.47 3997.76
BIGQUAKE Code 303.9 8011.21
RLCE-KEM Codes? 395.32 10613.23
CFPKM ? 547 14557.49

Tab. F.1.: The runtime, in milliseconds, and the energy consumption in milli Joule,
for one key creation, encapsulation and decapsulation of the post-quantum
KEM algorithm for Security Level I are shown. All algorithms are from the
NIST competition. The table is created using table 7, 8 and 9 (table with key
generation, key encapsulation and key decapsulation representatively) from
[BH18].

108 Chapter F Energy consumption

Scheme Type Time (mili s) Energy (mili J)
Lepton ? 0.1546 4.14
Rlizard KEM ? 0.21 5.71
KINDI-KEM Lattices 0.28 7.55
CRYSTALSKyber Lattices 0.995 26.55
SABER Lattices 1.04 27.81
Quroboros-R Codes 1.11 29.01
NTRUEncrypt KEM Lattices 1.12 29.32
LAKE Codes 1.61 42.15
LIMA CPA Lattices 1.98 52.16
Titanium CCA Lattices 2.17 57.32
LIMA CCA Lattices 2.64 70.63
FRODO Lattices 2.803 73.48
HQC Codes 3.17 84.17
Round2-u KEM Lattices 5.29 142.95
LOCKER Codes 5.61 149.69
RQC Codes 5.86 155.82
BIKE Code 8.52 223.16
DAGS Code 11.4056 301.446
Lizard KEM Lattices 11.66 310.02
Round2-n KEM Lattices 15.54 425.28
LOTUS KEM Codes 18.47 500.92
DME Multivariance 26.5 681.98
NTS-KEM Codes 45.46 1208.33
Ramstake Lattices 69.16 1869.06
LEDA KEM Codes 126.552 3361.8
QC-MDPC Codes 164.88 4429.46
Old Manhattan Lattices 285.8 7762.45
SIKE Isogeny 378.82 10227.89
CFPKM ? 1484 39675.46
BIGQUAKE Code 2767.4 73280.46

Tab. F.2.: The runtime, in milliseconds, and the energy consumption in milli Joule,
per post-quantum KEM algorithm for Security Level III are shown. All
algorithms are from the NIST competition. The table is created using table 7,
8 and 9 (table with key generation, key encapsulation and key decapsulation
representatively) from [BH18].

109

Scheme Type Time (mili s) Energy (mili J)
Lepton ? 0.155 4.15
Rlizard KEM 0.297 7.76
NewHope CPA Lattices 0.78 21.03
Round2-u KEM Lattices 1.16 31.18
Three Bears Lattices 1.2 31.89
CRYSTALSKyber Lattices 1.395 36.21
NewHope CCA Lattices 1.4 38.065
Quroboros-R Codes 1.52 40.64
SABER Lattices 1.56 42.07
LAKE Codes 1.84 48.81
Hila5 Lattices 2.54 68.24
Titanium CCA Lattices 2.96 78.13
LIMA CPA Lattices 3.44 91.79
HQC Codes 4.54 119.66
LIMA CCA Lattices 5.02 134.11
LOCKER Codes 6.51 174.43
Lizard KEM Lattices 7.28 194.98
RQC Codes 7.36 198.96
BIKE Code 7.87 205.78
DING Lattices 9.37 252.71
NTRU Prime Lattices 18.64 506.45
Round2-n KEM Lattices 21.93 599.68
LOTUS KEM Codes 27.06 725.7
Mersenne-756839 Lattices 33.43 901.68
NTS-KEM Codes 88.9 2394.98
DME Multivariance 100.547 2598.96
DAGS Code 107.926 2894.493
NTRUEncrypt KEM Lattices 210.72 5724.48
LEDA KEM Codes 365.619 9705.73
Old Manhattan Lattices 548.86 14857.18
Classic McEliece Code 1019.23 28091.42
RLCE-KEM Codes? 3891.64 104212.54
BIGQUAKE Code 5190.2 137231.25

Tab. F.3.: The runtime, in milliseconds, and the energy consumption in milli Joule,
per post-quantum KEM algorithm for Security Level V are shown. All algo-
rithms are from the NIST competition. The table is created using table 7, 8
and 9 (table with key generation, key encapsulation and key decapsulation
representatively) from [BH18].

110 Chapter F Energy consumption

Bibliography

[Alk+15] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - a new hope. Cryptology ePrint Archive, Report
2015/1092. https://eprint.iacr.org/2015/1092. 2015 (cit. on pp. 5,
17).

[And+09] Allison M Anderson, Gary A Mirka, Sharon MB Joines, and David B Kaber.
„Analysis of alternative keyboards using learning curves“. In: Human factors
51.1 (2009), pp. 35–45 (cit. on p. 56).

[Ara+17] N Aragon, PSLM Barreto, S Bettaieb, et al. BIKE—bit flipping key encapsula-
tion. 2017 (cit. on p. 53).

[Bal+17] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. „Design of LEDAkem and LEDApkc instances with tight pa-
rameters and bounded decryption failure rate (V1.0)“. In: NIST submission
(2017) (cit. on p. 53).

[Bar16] Elaine Barker. NIST Special Publication (SP) 800-57 Part 1 Revision 4. https:
//csrc.nist.gov/publications/detail/sp/800- 57- part- 1/rev-
4/final. 2016 (cit. on p. 19).

[Ber+08] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post Quantum
Cryptography. 1st. Physical copy from Andreas Peter. Springer Publishing
Company, Incorporated, 2008. ISBN: 3540887016, 9783540887010 (cit. on
pp. 16, 17).

[Ber09] Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum comput-
ers make SHARCS obsolete? http://cr.yp.to/hash/collisioncost-
20090823.pdf. 2009 (cit. on p. 16).

[BH18] Tanushree Banerjee and M. Anwar Hasan. „Energy Consumption of Candi-
date Algorithms for NIST PQC Standards“. In: online, 2018 (cit. on pp. 69,
70, 107–110).

[Bin+17] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila. Tran-
sitioning to a Quantum-Resistant Public Key Infrastructure. Cryptology ePrint
Archive, Report 2017/460. https://eprint.iacr.org/2017/460. 2017
(cit. on p. 4).

111

https://eprint.iacr.org/2015/1092
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-4/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-4/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-4/final
http://cr.yp.to/hash/collisioncost-20090823.pdf
http://cr.yp.to/hash/collisioncost-20090823.pdf
https://eprint.iacr.org/2017/460

[BK04] Mihir Bellare and Tadayoshi Kohno. „Hash Function Balance and Its Impact
on Birthday Attacks“. In: Advances in Cryptology - EUROCRYPT 2004. Ed. by
Christian Cachin and Jan L. Camenisch. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 401–418. ISBN: 978-3-540-24676-3 (cit. on pp. 13,
15).

[Bor+04] Nikita Borisov, Ian Goldberg, and Eric Brewer. „Off-the-record Communica-
tion, or, Why Not to Use PGP“. In: Proceedings of the 2004 ACM Workshop
on Privacy in the Electronic Society. WPES ’04. Washington DC, USA, 2004,
pp. 77–84. ISBN: 1-58113-968-3. URL: https://otr.cypherpunks.ca/otr-
wpes.pdf (cit. on p. 14).

[Bos+16a] Joppe Bos, Craig Costello, Léo Ducas, et al. Frodo: Take off the ring! Practical,
Quantum-Secure Key Exchange from LWE. Cryptology ePrint Archive, Report
2016/659. https://eprint.iacr.org/2016/659. 2016 (cit. on pp. 5, 17,
53).

[Bos+16b] Joppe Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with errors
problem. https://s3.amazonaws.com/files.douglas.stebila.ca/
files/research/papers/SP-BCNS15-full.pdf. 2016 (cit. on p. 4).

[BR05] Mihir Bellare and Phillip Rogaway. „Introduction to modern cryptography“.
In: Ucsd Cse 207 (2005), p. 207 (cit. on p. 1).

[Bra+98] Gilles Brassard, Peter HØyer, and Alain Tapp. „Quantum cryptanalysis of
hash and claw-free functions“. In: LATIN’98: Theoretical Informatics. Ed. by
Cláudio L. Lucchesi and Arnaldo V. Moura. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 163–169. ISBN: 978-3-540-69715-2 (cit. on
p. 15).

[Bre+01] Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques
Quisquater. „Provably authenticated group Diffie-Hellman key exchange“.
In: Proceedings of the 8th ACM conference on Computer and Communications
Security. ACM. 2001, pp. 255–264 (cit. on p. 86).

[Cam+15] Matthew Campagna, Lidong Chen, O Dagdelen, et al. „Quantum safe cryp-
tography and security: an introduction, benefits, enablers and challengers“.
In: European Telecommunications Standards Institute (ETSI), ISBN 979-10
(2015), pp. 92620–03 (cit. on pp. 13, 15).

[Can01] Ran Canetti. „Universally composable security: A new paradigm for crypto-
graphic protocols“. In: Foundations of Computer Science, 2001. Proceedings.
42nd IEEE Symposium on. IEEE. 2001, pp. 136–145 (cit. on p. 20).

[CG+16] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. „On Post-Compromise
Security“. In: (2016). https://eprint.iacr.org/2016/221 (cit. on p. 28).

[CG+17] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling†, Luke Garratt, and
Douglas Stebila. „A Formal Security Analysis of the Signal Messaging Pro-
tocol“. In: (2017). https://eprint.iacr.org/2016/1013.pdf (cit. on
p. 14).

112 Bibliography

https://otr.cypherpunks.ca/otr-wpes.pdf
https://otr.cypherpunks.ca/otr-wpes.pdf
https://eprint.iacr.org/2016/659
https://s3.amazonaws.com/files.douglas.stebila.ca/files/research/papers/SP-BCNS15-full.pdf
https://s3.amazonaws.com/files.douglas.stebila.ca/files/research/papers/SP-BCNS15-full.pdf
https://eprint.iacr.org/2016/221
https://eprint.iacr.org/2016/1013.pdf

[CG+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin
Milner. „On ends-to-ends encryption: Asynchronous group messaging with
strong security guarantees“. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM. 2018, pp. 1802–1819
(cit. on p. 86).

[Cha+17] Olive Chakraborty, Jean-Charles Faugère, and Ludovic Perret. „CFPKM:
A Key Encapsulation Mechanism based on Solving System of non-linear
multivariate Polynomials 20171129“. PhD thesis. UPMC-Paris 6 Sorbonne
Universités; INRIA Paris; CNRS, 2017 (cit. on p. 17).

[Cha18] Dave Chaffey. Global social media research summary 2018. Visited January
2019 https : / / www . smartinsights . com / social - media - marketing /
social-media-strategy/new-global-social-media-research/. Visi-
tied jan 2019. 2018 (cit. on p. 1).

[Che+16] Lily Chen, Stephen Jordan, Yi-Kai Liu, et al. Report on Post-Quantum Cryp-
tography. NISTIR 8105. https://nvlpubs.nist.gov/nistpubs/ir/2016/
NIST.IR.8105.pdf. 2016 (cit. on pp. 5, 16, 50).

[Cos+16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms
for supersingular isogeny Diffie-Hellman. Cryptology ePrint Archive, Report
2016/413. https://eprint.iacr.org/2016/413. 2016 (cit. on pp. 5, 18).

[Cry] Cryptocat. Chat with your friends, securely. Visited September 2018 https:
//crypto.cat/ (cit. on p. 4).

[Din+11] Hang Dinh, Cristopher Moore, and Alexander Russell. „McEliece and Nieder-
reiter Cryptosystems That Resist Quantum Fourier Sampling Attacks“. In:
(2011). URL: https://www.iacr.org/archive/crypto2011/68410758/
68410758.pdf (cit. on p. 18).

[Dod+09] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. „Compos-
ability and On-Line Deniability of Authentication“. In: Theory of Cryptography.
Ed. by Omer Reingold. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 146–162. ISBN: 978-3-642-00457-5 (cit. on p. 52).

[Erm+16] Ksenia Ermoshina, Francesca Musiani, and Harry Halpin. „End-to-End En-
crypted Messaging Protocols: An Overview“. In: Internet Science. Ed. by
Franco Bagnoli, Anna Satsiou, Ioannis Stavrakakis, et al. Cham: Springer
International Publishing, 2016, pp. 244–254. ISBN: 978-3-319-45982-0 (cit.
on p. 14).

[Fro+14] Tilman Frosch, Christian Mainka, Christoph Bader, et al. How Secure is
TextSecure? Cryptology ePrint Archive, Report 2014/904. https://eprint.
iacr.org/2014/904. 2014 (cit. on pp. 14, 22).

[Gro96] Lov K. Grover. „A Fast Quantum Mechanical Algorithm for Database Search“.
In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing. STOC ’96. Philadelphia, Pennsylvania, USA: ACM, 1996, pp. 212–
219. ISBN: 0-89791-785-5. URL: http://doi.acm.org/10.1145/237814.
237866 (cit. on pp. 2, 15).

[Kam+18] Panos Kampanakis, Peter Panburana, Ellie Daw, and Daniel Van Geest. The
Viability of Post-quantum X.509 Certificates. Cryptology ePrint Archive, Report
2018/063. https://eprint.iacr.org/2018/063. 2018 (cit. on p. 4).

Bibliography 113

https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/
https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://eprint.iacr.org/2016/413
https://crypto.cat/
https://crypto.cat/
https://www.iacr.org/archive/crypto2011/68410758/68410758.pdf
https://www.iacr.org/archive/crypto2011/68410758/68410758.pdf
https://eprint.iacr.org/2014/904
https://eprint.iacr.org/2014/904
http://doi.acm.org/10.1145/237814.237866
http://doi.acm.org/10.1145/237814.237866
https://eprint.iacr.org/2018/063

[KR17] Ralf Küsters and Daniel Rausch. „A Framework for Universally Composable
Diffie-Hellman Key Exchange“. In: Security and Privacy (SP), 2017 IEEE
Symposium on. IEEE. 2017, pp. 881–900 (cit. on pp. 20, 39).

[Kra10] Hugo Krawczyk. „Cryptographic extraction and key derivation: The HKDF
scheme“. In: Annual Cryptology Conference. Springer. 2010, pp. 631–648
(cit. on p. 11).

[Lan+16] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. http:
//www.ietf.org/rfc/rfc7748.txt. 2016 (cit. on pp. 13, 15).

[Len04] Arjen K Lenstra. „Key Length. Contribution to The Handbook of Information
Security“. In: (2004) (cit. on p. 12).

[Lue+17] I Luengo, M Avendaño, and M Marco. „DME: A public key, signature and
KEM system based on double exponentiation with matrix exponents“. In:
preprint (2017) (cit. on p. 17).

[Lun18] Joshua Lund. Signal partners with Microsoft to bring end-to-end encryption to
Skype. Visited July 2018 https://signal.org/blog/skype-partnership/.
2018 (cit. on p. 1).

[Mar13] Moxie Marlinspike. Simplifying OTR deniability. https://signal.org/
blog/simplifying-otr-deniability/. Blog. 2013 (cit. on pp. 26, 51).

[Mar16a] Moxie Marlinspike. Facebook Messenger deploys Signal Protocol for end-to-
end encryption. Visited July 2018 https://signal.org/blog/facebook-
messenger/. 2016 (cit. on pp. 1, 4).

[Mar16b] Moxie Marlinspike. Open Whisper Systems partners with Google on end-to-end
encryption for Allo. Visited July 2018 https://signal.org/blog/allo/.
2016 (cit. on pp. 1, 4).

[Mar16c] Moxie Marlinspike. WhatsApp’s Signal Protocol integration is now complete.
Visited July 2018 https://signal.org/blog/whatsapp-complete/. 2016
(cit. on pp. 1, 4).

[McE78] R. J. McEliece. „A Public-Key Cryptosystem Based On Algebraic Coding
Theory“. In: The Deep Space Network Progress Report (Feb. 1978), pp. 114–
116. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/
19780016269.pdf\#page=123 (cit. on p. 18).

[Men+96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook
of Applied Cryptography. 1st. Boca Raton, FL, USA: CRC Press, Inc., 1996.
ISBN: 0849385237 (cit. on p. 7).

[Mos15] Michelle Mosca. „Cybersecurity in an era with quantum computers: will we
be ready?“ In: (2015) (cit. on p. 2).

[Mur+12] David Murray, Terry Koziniec, Kevin Lee, and Michael Dixon. „Large MTUs
and internet performance“. In: High Performance Switching and Routing
(HPSR), 2012 IEEE 13th International Conference on. IEEE. 2012, pp. 82–87
(cit. on p. 74).

[Nie10] Jakob Nielsen. Website Response Times. Visited January 2019 https://www.
nngroup.com/articles/website- response- times/. Visitied jan 2019.
2010 (cit. on p. 58).

114 Bibliography

http://www.ietf.org/rfc/rfc7748.txt
http://www.ietf.org/rfc/rfc7748.txt
https://signal.org/blog/skype-partnership/
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/facebook-messenger/
https://signal.org/blog/facebook-messenger/
https://signal.org/blog/allo/
https://signal.org/blog/whatsapp-complete/
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780016269.pdf\#page=123
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780016269.pdf\#page=123
https://www.nngroup.com/articles/website-response-times/
https://www.nngroup.com/articles/website-response-times/

[NIS16] NIST. Submission Requirements and Evaluation Criteria for the Post-Quantum
Cryptography Standardization Process. NISTIR. https://csrc.nist.gov/
CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-
for-proposals-final-dec-2016.pdf. 2016 (cit. on pp. 5, 16, 18).

[Ope17] OpenSignal. Global State of Mobile Networks (February 2017). Visited in
December 2018, https://opensignal.com/reports/2017/02/global-
state-of-the-mobile-network. 2017 (cit. on p. 57).

[Par13] Gómez J.L. Pardo. „Chapter 7: Introduction to Public-Key Cryptography: The
Diffie–Hellman Protocol“. In: (2013). URL: https://link.springer.com/
chapter/10.1007/978-3-642-32166-5_7 (cit. on p. 9).

[PM16a] Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorihm. Internet-
Draft. Revision 1. Signal, Nov. 2016. URL: https://signal.org/docs/
specifications/doubleratchet/ (cit. on pp. 23, 28, 29, 32, 36).

[PM16b] Trevor Perrin and Moxie Marlinspike. The X3DH Key Agreement Protocol.
Internet-Draft. Revision 1. Signal, Nov. 2016. URL: https://signal.org/
docs/specifications/x3dh/ (cit. on pp. 24, 36, 53).

[PM17] Trevor Perrin and Moxie Marlinspike. The Sesame Algorithm: Session Manage-
ment for Asynchronous Message Encryption. Internet-Draft. Revision 2. Signal,
Apr. 2017. URL: https://signal.org/docs/specifications/sesame/
(cit. on p. 34).

[PS96] David Pointcheval and Jacques Stern. „Security proofs for signature schemes“.
In: International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 1996, pp. 387–398 (cit. on p. 11).

[RA18] Raphael Robert and J. P. Aumason. Wire and post-quantum resistance. https:
//blog.wire.com/blog/post-quantum-resistance-wire/. 2018 (cit. on
pp. 4, 45).

[Rat] Ratatype. Average typing speed infographic. Visited in December 2018, https:
//www.ratatype.com/learn/average-typing-speed/ (cit. on p. 56).

[RF18] Marco Baldi Vincent Dupaquis Jacob Alperin-Sheiff Ryo Fujita Daniel Bern-
stein. Total number of PQ NIST proposals by field. Visited October 2018,
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-
forum/1lDNio0sKq4. 2018 (cit. on p. 16).

[Roe+03] Helena Roeber, John Bacus, and Carlo Tomasi. „Typing in thin air: the
canesta projection keyboard-a new method of interaction with electronic
devices“. In: CHI’03 extended abstracts on Human factors in computing systems.
ACM. 2003, pp. 712–713 (cit. on p. 56).

[Ros+18] Avi Rosenfeld, Sigal Sina, David Sarne, Or Avidov, and Sarit Kraus. A Study
of WhatsApp Usage Patterns and Prediction Models without Message Content.
https://arxiv.org/abs/1802.03393. 2018 (cit. on pp. 56, 57).

[RP00] Eleanor Rieffel and Wolfgang Polak. „An Introduction to Quantum Comput-
ing for Non-physicists“. In: ACM Comput. Surv. 32.3 (Sept. 2000), pp. 300–
335. ISSN: 0360-0300. URL: http :/ / doi. acm .org / 10. 1145 /367701 .
367709 (cit. on p. 15).

Bibliography 115

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://opensignal.com/reports/2017/02/global-state-of-the-mobile-network
https://opensignal.com/reports/2017/02/global-state-of-the-mobile-network
https://link.springer.com/chapter/10.1007/978-3-642-32166-5_7
https://link.springer.com/chapter/10.1007/978-3-642-32166-5_7
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/sesame/
https://blog.wire.com/blog/post-quantum-resistance-wire/
https://blog.wire.com/blog/post-quantum-resistance-wire/
https://www.ratatype.com/learn/average-typing-speed/
https://www.ratatype.com/learn/average-typing-speed/
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/1lDNio0sKq4
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/1lDNio0sKq4
https://arxiv.org/abs/1802.03393
http://doi.acm.org/10.1145/367701.367709
http://doi.acm.org/10.1145/367701.367709

[RS06] Alexander Rostovtsev and Anton Stolbunov. PUBLIC-KEY CRYPTOSYSTEM
BASED ON ISOGENIES. Cryptology ePrint Archive, Report 2006/145. https:
//eprint.iacr.org/2006/145. 2006 (cit. on pp. 5, 18).

[Sho94] Peter W. Shor. Algorithms for Quantum Computation: Discrete Logarithms
and Factoring. http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.47.3862&rep=rep1&type=pdf. 1994 (cit. on pp. 2, 15).

[Sig] Signal. TECHNICAL INFORMATION. Visited September 2018 https : / /
signal.org/docs/ (cit. on p. 1).

[Sig18] Signal. Curve25519. https://github.com/signalapp/libsignal-protocol-
c/tree/master/src/curve25519. Commit e5eb4017c1f45d50fca77d2396283a01104860fa.
2018 (cit. on p. 52).

[SM17] Douglas Stebila and Michele Mosca. „Post-Quantum Key Exchange for the
Internet and the Open Quantum Safe Project“. In: (2017). https://eprint.
iacr.org/2016/1017.pdf (cit. on p. 4).

[Sma17] Nigel P. Smart. LIMA 1.1 A PQC Encryption Scheme. 2017 (cit. on p. 53).

[Tel] Telegram. Telegram, a new era of messaging. Visited September 2018 https:
//telegram.org/ (cit. on p. 4).

[Thr] Threema. The messenger that puts security and privacy first. Visited September
2018 https://threema.ch/en/ (cit. on p. 4).

[Unr10] Dominique Unruh. „Universally composable quantum multi-party computa-
tion“. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 2010, pp. 486–505 (cit. on pp. 20, 40).

[Vaj17] István Vajda. „On Classical Cryptographic Protocols in Post-Quantum World“.
In: International Journal of Computer Network and Information Security 9.8
(2017), p. 1 (cit. on pp. 20, 40).

[Vri16] Simon and de Vries. Achieving 128-bit Security against Quantum Attacks in
OpenVPN. 2016 (cit. on p. 4).

[Wic] WickrMe. The messenger that puts security and privacy first. Visited September
2018 https://wickr.com/ (cit. on p. 4).

[Wir] Wire. The most secure collaboration platform. Visited September 2018 https:
//wire.com/en/ (cit. on p. 4).

116 Bibliography

https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.3862&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.3862&rep=rep1&type=pdf
https://signal.org/docs/
https://signal.org/docs/
https://github.com/signalapp/libsignal-protocol-c/tree/master/src/curve25519
https://github.com/signalapp/libsignal-protocol-c/tree/master/src/curve25519
https://eprint.iacr.org/2016/1017.pdf
https://eprint.iacr.org/2016/1017.pdf
https://telegram.org/
https://telegram.org/
https://threema.ch/en/
https://wickr.com/
https://wire.com/en/
https://wire.com/en/

	Cover
	Titlepage
	Abstract
	1 Introduction
	1.1 Outline of this thesis
	1.2 Related work

	2 Preliminaries
	2.1 Introduction to cryptography
	2.1.1 Encryption
	2.1.2 Symmetric key encryption scheme
	2.1.3 Public key encryption scheme
	2.1.4 Key exchange
	2.1.5 Key derivation function
	2.1.6 Signature schemes

	2.2 Security
	2.2.1 Passive and active attacks
	2.2.2 n-bits security level
	2.2.3 Security properties

	2.3 Quantum computers
	2.4 Post-quantum cryptography
	2.4.1 NIST submissions
	2.4.2 NIST Security level
	2.4.3 Hybrid encryption scheme
	2.4.4 Universal Composablility framework

	3 The Signal Protocol
	3.1 Introduction to the Signal Protocol
	3.2 Building towards the Signal Protocol
	3.2.1 End-to-end encryption
	3.2.2 Forward secrecy and backward secrecy in the DH ratchet
	3.2.3 Authentication in X3DH
	3.2.4 Uploading to a server
	3.2.5 Creating the Double Ratchet for efficiency

	3.3 The Signal Protocol in a nutshell
	3.3.1 Phase 1 - Initial setup
	3.3.2 Phase 2 - The first message
	3.3.3 Phase 3 - Message exchange and key update

	3.4 More implementation choices
	3.4.1 Sending multiple message
	3.4.2 Out of order messages in the sesame algorithm

	4 A Post-Quantum Signal Protocol
	4.1 The Post-Quantum Signal Protocol
	4.2 Challenges with Post-Quantum cryptography
	4.3 Hybrid Post-Quantum Signal Protocol
	4.4 Partially hybrid post-quantum Signal Protocol
	4.4.1 Current key
	4.4.2 Post-quantum X3DH
	4.4.3 Post-quantum Double Ratchet
	4.4.4 Extra key exchange
	4.4.5 Combining the different hybrid blocks

	5 Method
	5.1 Research questions
	5.2 The scenarios
	5.3 The post-quantum cryptographic algorithms
	5.3.1 Substitutes for ECDH
	5.3.2 Supersingular isogeny based Diffie-Hellman and ECDH
	5.3.3 The post-quantum KEMs
	5.3.4 The security level of post-quantum cryptography

	5.4 Code and test machine
	5.5 An average WhatsApp user

	6 Experimental results
	6.1 The initial scenario
	6.1.1 CPU cycles
	6.1.2 Key storage
	6.1.3 Network load
	6.1.4 The post-quantum initialisation phase

	6.2 The X3DH scenario
	6.2.1 CPU cycles
	6.2.2 Key storage
	6.2.3 Bandwidth and network utilisation
	6.2.4 A post-quantum X3DH scenario

	6.3 The Double Ratchet Scenario
	6.3.1 CPU Cycles
	6.3.2 Energy consumption
	6.3.3 Key Storage
	6.3.4 Network load
	6.3.5 The post-quantum Double Ratchet scenario

	6.4 A post-quantum Signal Protocol
	6.4.1 The level 1 post-quantum Signal Protocols
	6.4.2 ECDH in all three scenarios
	6.4.3 The post-quantum level 3 and 5 Signal Protocols

	7 Conclusions
	7.1 Conclusion
	7.2 Future research

	Appendices
	A Key Storage in the Signal Protocol
	B The pseudocode
	B.1 Initial scenario
	B.2 The X3DH scenario
	B.3 The Double Ratchet scenario

	C X3DH Test Data
	D Key Length
	E Double Ratchet Test Data
	F Energy consumption
	Bibliography

