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Abstract

De facto standard for frequency references is the crystal-based oscillator. While hav-
ing decent frequency stability (±1ppm/OC), it is let down by its cost and size. These
are the reasons for switching to the LC-based cross-coupled CMOS-design which
has the advantages of being cheaper and smaller, enabling on-chip implementation.
However, in the 1 GHz frequency region the problem arises with the quality factor
of inductors where QL << QC and therefore RL >> RC . Variances in temperature
will affect the resistances the most and RL will therefore have the most influence in
varying oscillation frequency as function of temperature. All the cross-coupled con-
figurations suffer from these variations of RL so it would be interesting to investigate
various LC-architectures (like the Hartley or Clapp) to check how they are affected
by RL variations. The common-gate Colpitts oscillator was found out to be less af-
fected by the parasitic resistance RL and better temperature stable (±10ppm/OC)
than the widely-used cross-coupled LC-oscillator (±50ppm/OC).

In this report, the frequency stability as a result of temperature variations of var-
ious common-gate oscillator designs in the 1 GHz region are calculated and sim-
ulated and compared to the common-gate Colpitts oscillator frequency stability in
order to find a better performing configuration. The configurations that are tested
include Hartley, Clapp and a cross-coupled LC-oscillator with extra capacitor. Fur-
thermore, adaptations to the Colpitts design are calculated where one design has
a parallel capacitor added to the inductor to tune the inductor and the other one a
series resistance added to the capacitors in order to tune the QC .

Results show that the Hartley, Clapp and cross-coupled +Ca are not better per-
forming than the original Colpitts in terms of frequency stability. Both the adapted
Colpitts designs however show significant improvement in the simulations when
tuned right (±100ppm ∆100OC).
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Chapter 1

Introduction

In this section the motivation is given containing the background information as well
as a problem definition. The goal of the research is formulated in the research
question.

1.1 Motivation

De facto standard for frequency references is the crystal-based (XO) oscillator [1].
While having having decent frequency stability (±1ppm/OC), it is let down by its
cost and size. Considering these pitfalls, the trend is to use a CMOS-based cross-
coupled LC-oscillator which are low in cost and fully chip-integrable. The oscillation
frequency of the cross-coupled type design [2] contains however a large contribution
of parasitic resistance coming from the inductive impedance in the 1 GHz range,
since QL << QC and therefore RL >> RC [1]. Variances in temperature will affect
the resistances the most and RL will therefore have the most influence in varying
oscillation frequency as function of temperature. This causes the cross-coupled
stability to be set at (±50ppm/OC) [3]. Because of this deviation caused by the
large influence of RL, other LC oscillator configurations can be explored that may be
less affected by RL. The Colpitts oscillator was found out to be less affected by the
parasitic resistance RL [4].

The Colpitts configuration [4] already has good prospects of being used as funda-
mental for a temperature stable oscillator in the range of 1 GHz (±10ppm/OC). Pos-
sibly with temperature stability that can compete with the temperature stability per-
formance from XO (±1ppm/OC) and silicon MEMS resonators (±20ppm/OC) [1] [2].
Especially cost, size, and in some degree jitter are factors at which the LC-based
oscillator scores well in comparison [1] [5]. However, there are more LC-based con-
figurations available with structures comparable to the Colpitts structure like Hartley
or Clapp oscillators. Suspicion would assume that systems which are less reliant
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CHAPTER 1. INTRODUCTION 2

on inductive components, and which will therefore less dependent on the RL term,
would probably have good prospects. However, the fundamentals for oscillation still
need to be satisfied[1]. By comparing the results of the other LC-configurations to
the results of the Colpitts, it can be determined how stable the new configuration
is compared to the Colpitts. Furthermore, simulations need to be done in order to
confirm the performance of the new systems.

1.2 Research question

The goal of this report is to find an oscillator configuration among the listed LC-
oscillator configurations that can achieve better temperature stability than the Col-
pitts oscillator in the 1 GHz frequency region. If none of the listed solutions provide
a stability performance increase over the Colpitts, the Colpitts would enhance its
position. Eventual successful attempts will be confirmed by further calculations and
simulations. Both successful and unsuccessful attempts will be evaluated and doc-
umented.



Chapter 2

LC oscillators

This chapter will represent the various LC oscillators of which the oscillation frequen-
cies and temperature stabilities are calculated and simulated. In the comparison
chapter, the different configurations are compared side by side in order to gather
knowledge how the configurations perform with respect to the Colpitts oscillator in
terms of frequency stability.

2.1 LC-oscillator configuration

All oscillator configurations are based on the Colpitts common-gate structure as
used by Alexander Delke [4], shown in Figure B.1. The same common-gate config-
uration is used as basis for the other LC-oscillators which can be derived by filling in
the corresponding impedances in Figure B.1 where (a) includes the MOSFET driver
which is assumed linear and ideal in (b) which is used for the derivations (except for
the cross-coupled (+Ca) configuration where the simplified schematic is B.2). The
corresponding configurations will be placed in Appendix B and will be referred to if
needed in during calculations in section 2.2.

(a) (b)

Figure 2.1: The common-gate configuration
3



CHAPTER 2. LC OSCILLATORS 4

2.2 Calculations for ω and stability

Before deriving the temperature coefficients of the circuits, the oscillation frequen-
cies need to be determined. For every oscillating circuit, the Barkhausen criteria [4]
need to be met. The oscillation frequency of the oscillator can therefore be de-
rived from the criterion Im(AB) = 0 which states that the total reactive power of the
closed-loop oscillator circuit needs to be 0. For the common-gate configuration of
Figure 2.1 it is derived in [4] that equation 2.1 needs to be met.∑

X = −(
1

QB

+
1

QD

)
∑

R (2.1)

The
∑

X term is the sum of all reactances in the circuit whereas the
∑

R is the
sum of all resistances and QB and QD are the quality factors of the corresponding
impedances defined by Q = X

R
1.

For every configuration, the equation 2.1 can be filled in which will therefore be
used as starting point for the oscillation frequency calculation of a certain config-
uration. During derivations, the assumption ω ≈ ω0 (2.2) is sometimes made for
simplification purposes where ω0 is the product of purely reactive components.

ωO =

√
1

LtotCtot
(2.2)

After having determined the oscillation frequency of a circuit, the frequency deviation
over temperature as a result of the temperature coefficients of present components.
For every component, the influence on frequency is determined. For a certain com-
ponent A it is done according to equation 2.3 [1].

fTC,A =
∂ω

∂A

∂A

∂T

1

ω
(2.3)

The ∂ω
∂A

is component and system independent whereas ∂A
∂T

= ∂
∂T

Aconst(1+aTC,AT ) =

aTC,AA [1]2 which is the variation of the component value over temperature. Since
the system only contains inductors and capacitors with their corresponding parasitic
resistances, the total frequency deviation of a circuit with respect to temperature is
the sum of all individual components contributing to the frequency deviation as can
be seen in equation 2.4.

fTC,tot = fTC,RL
+ fTC,RC

+ fTC,L + fTC,C (2.4)

For all derivations, the parameters of table B.1 were taken into account as well
as RL >> RC [1] for the given frequency range.

1X is the imaginary part and R the real part of the respective impedance
2assumed constant with first order temperature dependency
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2.2.1 Hartley

Starting with the Hartley configuration as seen in Appendix B.3, the oscillation fre-
quency is derived first following the derivation steps in Appendix A equation A.1,
where L = LB + LD and RL = RB + RD.

ω ≈
√

1

LC

√
L− 2CR2

L

L
(2.5)

What immediately stands out is the presence of a R2
L term. Based on the oscilla-

tion frequency of equation 2.5, the various fTC ’s are derived in the Appendix A A.2
derivation where the fTC,tot is given in equation 2.6.

fTC,tot = −2aTC,RL

Q2
L

− aTC,RC

QLQC

− aTC,L
2
− aTC,C

2
(2.6)

What stands out here is that all temperature coefficients seem to have a negative
effect on the total fTC .

2.2.2 Clapp

Moving over to the Clapp configuration as seen in Appendix B.4, the oscillation fre-
quency is derived following the derivation steps in Appendix A equation A.3, where
C = Cseries = CACBCD

CACB+CACD+CBCD
, RA ≈ RL and RC ≈ RB + RD.

ω ≈
√

1

LC

√
L + 2CRCRL

L
(2.7)

Based on the oscillation frequency of equation 2.7, the various fTC ’s are derived in
Appendix A derivation A.4 where the fTC,tot is given in equation 2.8. During simplifi-
cations, it is assumed that all capacitors have the same QC term. Therefore, terms
like CBRB can be written as CRC .

fTC,tot =
aTC,RL

QLQC

+
aTC,RC

QLQC

− aTC,L
2
− aTC,C

2
(2.8)

Both the calculated oscillation frequency and the fTC appear to describe the same
system as the Colpitts common-gate following Alexander’s derivations [4]. It can
therefore be assumed that the Clapp and the Colpitts configuration will have the
same temperature dependent oscillation frequency.

2.2.3 Cross-coupled (+Ca)

The ordinary cross-coupled oscillator only includes a ZB and a ZD. In this case, an
extra impedance ZA is added instead of the usual short (Appendix Figures B.2, B.5).
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The oscillation frequency is derived in Appendix A derivation A.5 and represented in
equation 2.9. Here it is assumed that C = CACD

CA+CD
and RC = RA + RD

ω ≈
√

1

LC

√
L− CR2

L

L
(2.9)

The fTC ’s are derived in Appendix A, derivation A.6. The fTC,tot is given in equation
2.10. Like with the Clapp derivations, it was assumed that all capacitors share the
same QC , making it possible to write terms like CBRB as CRC .

fTC,tot = −aTC,RL

Q2
L

+
aTC,RC

Q2
C

− aTC,L
2
− aTC,C

2
(2.10)

Also for the cross-coupled (+Ca) it seems that the oscillation frequency as well as
the fTC appears to be similar to the standard cross-coupled design [2]. It might be
assumed that the oscillation frequency of both systems will have the same temper-
ature dependency.

2.2.4 Colpitts (+Ca)

In this section, a tuned variant of the original Colpitts is derived. This is done by
adding a capacitor CA parallel to the inductor LA as seen in Appendix B.6. Since
QL << QC , the resistance of capacitor CA can be neglected and the new impedance
ZA is shown in equation 2.11.

ZA ≈
RL + jωL

1 + RLjωCA − ω2LCA
(2.11)

Also the new RA and XA can be derived as RA = Re{ZA} and XA = Im{ZA} which
is done in Appendix A derivation A.7 and A.8 where C = CBCD

CB+CD
.

RA ≈ RL
C2

(CA − C)2
XA ≈ ωL

C

(C − CA)
(2.12)

These new terms (2.12) can be written into inductor parameters with a scalar in front
defined by equations 2.13.

Ar =
C2

(CA − C)2
AX =

C

(C − CA)
(2.13)

This translates to RA = ARRL and XA = AXωL which helps deriving the oscillation
frequency and frequency deviation since both RA and XA are written as the inductor
components of the standard Colpitts configuration with an extra scalar. The other
thing to take into account is that the ω0 changes as well. This is due to the new
definition of XA where the new ω0 is given in equation 2.14 as a result of derivation
A.9.

ω0 =

√
1

AXLC
(2.14)
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With the use of all new determined parameters, the extended oscillation frequency
(2.15) can be determined as done in Appendix A derivation A.10, where RC = RB +

RD

ω =

√
1

AXLC

√
AXL + 2CRCARRL

AXL
(2.15)

Corresponding to 2.15, the fTC values are derived in Appendix A A.11 resulting in
2.16. It can be noted that only the positive fTC,RL

and fTC,RC
are affected by AX and

AR, giving the opportunity to compensate for the negative coefficients by tuning AX

and AR

fTC,tot =
ARaTC,RL

AXQLQC

+
ARaTC,RC

AXQLQC

− aTC,L
2
− aTC,C

2
(2.16)

However, a mismatch was discovered when comparing the calculated and simulated
fTC values. The problem was traced down to the definition of AX . The RL terms in
the derivation of XA (A.8) fell out during simplification. Therefore, a new AX was
defined (derived in Appendix A A.12) and introduced as component susceptible to
temperature changes due to RL, influencing the temperature dependent oscillation
frequency.

fTC,AX
=

∂ω

∂T

1

ω
=

∂ω

∂AX

∂AX

∂RL

∂RL

∂T

1

ω
(2.17)

The additional fTC,AX
as defined by 2.17 is derived in Appendix A A.13 resulting in

equation 2.18.

fTC,AX
=

2aTC,RL
CAC

3R2
L(CA − C)(2C2

A − 2CAC + C2)

L(C2
A − CAC + C2)3

(2.18)

Now the total frequency deviation results in equation 2.19.

fTC,tot =
ARaTC,RL

AXQLQC

+
ARaTC,RC

AXQLQC

− aTC,L
2
− aTC,C

2
+ fTC,AX

(2.19)

2.2.5 Colpitts with tuned Q-factor

The last configuration is basically the same as the original common-gate Colpitts
(Figure B.1). Whereas the fTC is given by 2.22, it can be rewritten in a form for
QL or QC where fTC = 0 holds, such that the positive coefficients compensate
the negative coefficients. This is done in Appendix A derivation A.14, resulting in
equations 2.20.

fTC,tot =
aTC,RL

QLQC

+
aTC,RC

QLQC

− aTC,L
2
− aTC,C

2
(2.20)

aTC,RL

QLQC

+
aTC,RC

QLQC

=
aTC,L

2
+

aTC,C
2

(2.21)

QL =
2(aTC,RL

+ aTC,RC
)

QC(aTC,L + aTC,C)
QC =

2(aTC,RL
+ aTC,RC

)

QL(aTC,L + aTC,C)
(2.22)
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This shows that one of the two Q-factors can be altered in order to achieve a the-
oretical, first-order solution of fTC = 0, where the negative coefficients are ex-
actly compensated. By filling in the values for the temperature coefficients and
the correspondig Q-values, a new QL and QC is calculated. This states that either
QLnew = 2.67 or QCnew = 53.4 can be used to compensate and achieve fTC = 0,
while the other Q-factor remains the same. This reduction in Q-factor can be eas-
ily achieved by multiplying the corresponding resistance by the downscaling factor
which is 3.75 for both Q-values. This translates to multiplying resistance with a factor
3.75 since QL = ωL

RL
and QC = 1

ωCRC
. The total Q-factor of the system [4] however,

given in equation 2.23, needs to be as little affected as possible.
1

QT

= ωC
∑

R = ωC(RL + RC) (2.23)

Since RL >> RC , multiplying RC with 3.75 will give the smallest decrease in QT .
Therefore, the new QC is set at 53.4.

2.2.6 Comparison of calculated fTC coefficients

In this section an fTC breakdown is represented of all configurations for side-by-
side comparison. The tables are split in mixed configurations (Table 2.1) and tuned
Colpitts configurations (Table 2.2).

Table 2.1: Temperature coefficients of the various LC-configurations
Cross-coupled Colpitts Hartley Clapp Cross-coupled (+Ca)

fTC,L
−αL

2
−αL

2
−αL

2
−αL

2
−αL

2

fTC,C
−αC

2
−αC

2
−αC

2
−αC

2
−αC

2

fTC,RL

−αRL

Q2
L

αRL

QLQC

−2αRL

Q2
L

αRL

QLQC

−αRL

Q2
L

fTC,RC

αRC

Q2
C

αRC

QLQC

−αRC

QLQC

αRC

QLQC

αRC

Q2
C

When observing Table 2.1, it appears that for all configurations the fTC,L and
fTC,C are the same. More similarities are discovered for the fTC,RL

and fTC,RC

when comparing the Colpitts to the Clapp as well as the cross-coupled to the cross-
coupled (+Ca). It suggest that these configurations will give the same frequency
stability performance which will be checked in the simulations. The Hartley con-
figuration however seems to be the only one with a unique fTC,RL

and fTC,RC
. A

possible problem might be predicted since all Hartley’s coefficients are negative.
Also the fTC,RL

=
−2αRL

Q2
L

term is very influential considering Table B.1 and Table B.2.
In Table 2.2, the temperature coefficients for the original Colpitts and Colpitts

(+Ca) are displayed. It can be observed that the additional AX , AR and fTC,AX
can

be used to tweak the positive coefficients in order to compensate for the negative
coefficients
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Table 2.2: Temperature coefficients of the Colpitts and Colpitts (+Ca) configurations
Colpitts Colpitts +(Ca)

fTC,L
−αL

2
−αL

2

fTC,C
−αC

2
−αC

2

fTC,RL

αRL

QLQC

ARαRL

AXQLQC
+ fTC,AX

fTC,RC

αRC

QLQC

ARαRC

AXQLQC

2.3 Simulations for frequency stability

In this part of the report, simulations are conducted. The phase (Im{AB}) of the
closed loop oscillator circuit (asssuming ideal and linear MOSFET) is plotted for the
temperatures −40OC, 30OC and 150OC across the frequency spectrum in a phase
plot.

Based on the frequency values at which Im{AB} = 0 for the given temperature
range, the frequency deviation is derived and represented in parts per million (ppm).
This is plotted across temperature together with the calculated frequency deviation
of the given system. The simulated and calculated values are normalised for 30OC.

All simulations are conducted in MATLAB and the parameter ranges, values and
temperature coefficients defined in the tables B.1 and B.2 are used.

2.3.1 Hartley

First, the two plots are made for the Hartley.

(a) (b)

Figure 2.2: Hartley simulation results

From Figure2.2 (a), it can be derived that the maximum deviation is 38MHz or
20, 000ppm. This can also be conducted from (b). What also stands out is that
the phase intersection for the given temperatures is approximately −30O. Figure (b)
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also nicely shows how the calculations are a first order approximation (at normalised
temperature) of a slighter higher order system. As expected from the calculations, all
the calculated negative temperature coefficients are heavily degrading the oscillation
frequency for an increasing temperature.

2.3.2 Clapp

The same simulations are run for the Clapp configuration.

(a) (b)

Figure 2.3: Clapp simulation results

In Figure2.3 (a), it can be seen that the given deviation is around 3, 5MHz or
2, 000ppm. Here the phase intersection for the temperatures is around −3O. Also
here, the calculated frequency deviation in Figure2.3 (b) corresponds quite decently
with the higher order simulation. From these results it can be deduced that the
system has got the same frequency behaviour as the Colpitts over temperature.

2.3.3 Cross-coupled (+Ca)

The simulations are also done for the cross-coupled (+Ca) configuration.
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(a) (b)

Figure 2.4: Cross-coupled (+Ca) simulation results

In Figure2.4 (a), it can be seen that the maximum deviation is around 20MHz

or 12, 000ppm. Here the phase intersection for the temperatures is around −18O out
of phase. Also for the cross-coupled (+Ca), the calculated frequency deviation in
Figure2.4 (b) shows similarities to the higher order simulation. It seems that the extra
added CA only affects the oscillation frequency since the temperature behaviour is
comparable to that of the original cross-coupled configuration.

2.3.4 Colpitts (+Ca)

In this section, simulations are done for the Colpitts (+Ca) for three different CA
values. The first simulations are run with CA = 0, the second with CA = 560fF and
the third with CA = 1120fF .

(a) (b)

Figure 2.5: Colpitts CA = 0 simulation results

When CA = 0, the oscillator configuration basically turns back into an ordinary
Colpitts oscillator. By observing the results from Figure 2.5, these similarities can
be seen since the total deviation here is 3, 5MHz or 2, 000ppm. The temperature
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intersection seems to be −3O out of phase. The results from both calculations and
simulations are also in agreement with eachother.

(a) (b)

Figure 2.6: Colpitts CA = 560fF simulation results

The interesting results come when the (CA) value is tuned to let the expression
of 2.19 go to zero. The value CA = 560fF is used in the simulations of Figure 2.6.
While the first order approximation of the calculations result in fTC = 0, the sim-
ulations result in a parabolic shape. Since the frequency behaviour as a result of
temperature is not strictly linear, the temperature intersection, which seems to be
at around a phase of 0O, is not a single point but more or less a triangle shaped
intersection. The calculations appear to formulate a tangent line of the parabolic
shape for the normalised temperature value. The frequency deviation numbers of
∼> 1MHz or 600ppm seem to be quite impressive. What seems to be more impres-
sive is that (∼ 100ppm ∆ ± 50OC) can be achieved for the tuned for temperature.
Also the effect of AX on the overall oscillation frequency (2.14) can be duly noted.

(a) (b)

Figure 2.7: Colpitts (CA) = 1120fF simulation results

In Figure 2.7 the results for overshooting the value of CA are presented. The
frequency deviation slope is moving up as a result of the positive terms for the fTC
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in equation 2.16 taking over. This can also be seen by looking at the temperature
intersection which is phase shifted to around 3O. The total deviation in this case is
approximately ∼ 2, 6MHz or 1800ppm.

2.3.5 Colpitts (Qc = 53.4)

At last the original Colpitts with tuned RC values is simulated and checked.

(a) (b)

Figure 2.8: Colpitts with tuned Q-factor

By looking at Figure 2.8 (b), a mismatch between the calculated and simulated
fTC values arises. This is due to the effect of having RC increased in such a manner
that RL >> RC does not hold anymore which is assumed for simplification during
fTC derivations.

(a) (b)

Figure 2.9: Colpitts (QL = 2.67) simulation results

For a proof of concept, QL is tuned in order to maintain RL >> RC (and even
more). Figure 2.9 gives a good representation of the concept and with a total de-
viation of ∼> 1MHz or 500ppm. By observing Figure 2.9 (b) at around the tuned
for temperature, the total deviation over 100OC (−20OC to 80OC) stays within the
100ppm deviation which translates to an impressive 1ppm/OC.
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2.3.6 Comparison of simulated fTC coefficients

Figure 2.10: Frequency deviation comparison of all configurations

By looking at Figure 2.10, a division can be made between better performing config-
urations and worse performing configurations compared to the Colpitts. The Hartley
has got the largest frequency deviation over temperature, followed by the two cross-
coupled designs. The Clapp seems to perform the same as the original Colpitts.
These configurations perform subpar or equal. However, the altered Colpitts de-
signs show a performance increase over the original.



Chapter 3

Conclusion and discussion

In this part the conclusion is drawn based on previous found results. Based on the
conclusion, a discussion is given where improvements and possible next steps are
formulated.

3.1 Conclusion

Based on the results it can be concluded that there are possible configurations that
are an improvement over the original Colpitts construction in terms of frequency
stability over temperature. Both the Colpitts (+Ca) and the Colpitts (QC = 53.4)

show quite a performance increase (±3ppm/OC) compared to the standard Colpitts
(±10ppm/OC). The Clapp seems to perform equally to the Colpitts so adding the
extra CA component is not justified, at least according to the conducted calculations
and simulations. The Hartley and cross-coupled (+Ca) configurations have equal
or subpar performance in terms of frequency stability.

3.2 Discussion

Although the results seem promising for the improved configurations, it is still uncer-
tain how they cope with added parasitics and non-idealities coming from the MOS-
FET, supply and production processes. Also the effect of a load attached needs to
be considered. Further simulations need to be conducted in order to check if the
calculated approximations still hold. Also the robustness of the new configurations
can be checked in comparison with the other LC-combinations to see if there is still
a performance increase.

The research question for further research could be: How do the new config-
urations hold up when parasitics, non-idealities and other production variables are
involved?

15
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Appendix A

Calculations for ω and fTC

This part of the Appendix includes the extensive calculations and derivations.

A.1 Hartley oscillator

A.1.1 Oscillation frequency

∑
X = −(

1

QB

+
1

QD

)
∑

R

− 1

ωCA
+ ωLB + ωLD = −(

RB

ωLB
+

RD

ωLD
)(RA + RB + RD)

− 1

ωCA
+ ωL = −(

RB

ωLB
+

RD

ωLD
)(RA + RB + RD)

ω2

ω2
0
− 1

ωCA
= −(

RB

ωLB
+

RD

ωLD
)(RA + RB + RD)

ω2 = ω2
0(1− ωC(

RB

ωLB
+

RD

ωLD
)(RA + RB + RD))

ω2 =
1

LC
(1− C(

RB

LB
+

RD

LD
)(RA + RB + RD))

ω2 =
1

LC
(1− C(

RBLD
LBLD

+
RDLB
LBLD

)(RA + RB + RD))

ω2 =
1

LC
(
LBLD − C(RBLD + RDLB)(RA + RB + RD)

LBLD
)

ω2 =
1

LC
(
1
4
L2 − 1

2
LC(RC + RL)
1
4
L2

)

ω =

√
1

LC

√
L− 2CRL(RC + RL)

L

ω =

√
1

LC

√
L− 2CR2

L

L

(A.1)
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A.1.2 Frequency stability

∂ω

∂RL

= − 2C2RLω
3
0√

−2CR2
L

L
+ 1
≈ 2C2RLω

3
0

∂RL

∂T
= aTC,RL

RL

fTC,RL
=

∂ω

∂T
/ω =

∂ω

∂RL

∂RL

∂T
/ω

= 2aTC,RL
C2R2

Lω
2
0 =

2aTC,RL
C2L2ω4

0

Q2
L

=
2aTC,RL

Q2
L

∂ω

∂RC

= − C2RLω
3
0√

−2CRLRC

L
+ 1
≈ C2RLω

3
0

∂RC

∂T
= aTC,RC

RC

fTC,RC
=

∂ω

∂T
/ω =

∂ω

∂RC

∂RC

∂T
/ω

= aTC,RL
C2RLRCω

2
0 =

aTC,RC
RCC

2Lω3
0

QL

=
aTC,RC

RCCω0

QL

=
aTC,RC

QLQC

∂ω

∂L
= − (−4CR2

L + L)ω0

2L2

√
−2CR2

L

L
+ 1

= −Lω0

2L2
= − ω

2L

∂L

∂T
= aTC,LL

fTC,L =
∂ω

∂T
/ω =

∂ω

∂L

∂L

∂T
/ω = −aTC,LL

2L
= −aTC,L

2
∂ω

∂C
= − Lω3

0

2

√
−2CR2

L

L
+ 1
≈ −Lω3

0

2

∂C

∂T
= aTC,CC

fTC,C =
∂ω

∂T
/ω =

∂ω

∂C

∂C

∂T
/ω = −aTC,CLCω2

2
= −aTC,C

2

(A.2)
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A.2 Clapp

A.2.1 Oscillation frequency

∑
X = −(

1

QB

+
1

QD

)
∑

R

− 1

ωCA
− 1

ωCB
− 1

ωCD
+ ωL = (ωRBCB + ωRDCD)(RA + RB + RD)

− 1

ωC
+ ωL = (ωRBCB + ωRDCD)(RA + RB + RD)

ω2

ω2
0
− 1

ωC
= (ωRBCB + ωRDCD)(RA + RB + RD)

ω2 = ω2
0(1 + ωC(ωRBCB + ωRDCD)(RA + RB + RD))

ω2 =
1

LC
(1 +

1

L
(RBCB + RDCD)(RA + RB + RD))

ω2 =
1

LC

(L + (RBCB + RDCD)(RL + RB + RD))

L

ω =

√
1

LC

√
L + 2CBDRBDRL)

L

ω =

√
1

LC

√
L + 2CRCRL)

L

(A.3)
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A.2.2 Frequency stability

∂ω

∂RL

=
CBDCRBDω

3
0√

2CBDRBDRL

L
+ 1
≈ CBDCRBDω

3
0

∂RL

∂T
= aTC,RL

RL

fTC,RL
=

∂ω

∂T
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∂ω

∂RL

∂RL

∂T
/ω

= aTC,RL
CBDCRBDrLω

2
0 =

CBDRBDaTC,RL
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0

QL

=
aTC,RL

QLQC

∂ω

∂RC

=
CBDCRLω

3
0√

2CBDRBDRL

L
+ 1
≈ CBDCRLω

3
0

∂RC

∂T
= aTC,RC

RC

fTC,RC
=

∂ω

∂T
/ω =

∂ω

∂RC

∂RC

∂T
/ω

= aTC,RC
CBDCRBDRLω

2
0 =

CBDRBDaTC,RC
LCω3

0

QL

=
aTC,RC

QLQC

∂ω

∂L
= − (4CBDRLRBD + L)ω0

2L2

√
−2CBDRLRBD

L
+ 1

= −Lω0

2L2
= − ω

2L

∂L

∂T
= aTC,LL

fTC,L =
∂ω

∂T
/ω =

∂ω

∂L

∂L

∂T
/ω = −aTC,LL

2L
= −aTC,L

2
∂ω

∂C
= − Lω3

0

2
√

2CBDRLRBD

L
+ 1
≈ −Lω3

0

2

∂C

∂T
= aTC,CC

fTC,C =
∂ω

∂T
/ω =

∂ω

∂C

∂C

∂T
/ω = −aTC,CLCω2

2
= −aTC,C

2

(A.4)
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A.3 Cross-coupled (+Ca)

A.3.1 Oscillation frequency

∑
X = −(

1

QB

+
1

QD

)
∑

R

− 1

ωCA
− 1

ωCD
+ ωL = (ωRBCB + ωRDCD)(RA + RB + RD)

− 1

ωC
+ ωL = −(

RL

ωL
− ωRDCD)(RC + RL)

ω2

ω2
0
− 1

ωC
= −(

RL

ωL
− ωRDCD)(RC + RL)

ω2 = ω2
0(1− ωC(

RL

ωL
− ωRDCD)(RC + RL))

ω2 =
1

LC
(1− 1

L
(RLC −RDCD)RL)

ω2 =
1

LC

L− (RLC −RCC)RL

L

ω =

√
1

LC

√
L− (RLC −RCC)RL

L

ω =

√
1

LC

√
L− CR2

L

L

(A.5)
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A.3.2 Frequency stability

∂ω

∂RL

= − C2RLω
3
0√

−CR2
L

L
+ 1
≈ −C2RLω

3
0

∂RL

∂T
= aTC,RL

RL

fTC,RL
=

∂ω

∂T
/ω =

∂ω

∂RL

∂RL

∂T
/ω

= −aTC,RL
C2R2

Lω
2
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0

Q2
L

= −aTC,RL

Q2
L

∂ω

∂RC

=
C2RCω

3
0√

CR2
C−CR2

L

L
+ 1
≈ C2RCω

3
0

∂RC

∂T
= aTC,RC

RC
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=
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∂T
/ω =

∂ω

∂RC

∂RC

∂T
/ω

= aTC,RC
C2R2
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2
0 =

aTC,RC

Q2
C

∂ω

∂L
= − (−2CR2

L + L)ω0

2L2

√
−2CR2

L

L
+ 1

= −Lω0

2L2
= − ω

2L

∂L

∂T
= aTC,LL

fTC,L =
∂ω

∂T
/ω =

∂ω

∂L

∂L

∂T
/ω = −aTC,LL

2L
= −aTC,L

2
∂ω

∂C
= − Lω3

0

2

√
−CR2

L

L
+ 1
≈ −Lω3

0

2

∂C

∂T
= aTC,CC

fTC,C =
∂ω

∂T
/ω =

∂ω

∂C

∂C

∂T
/ω = −aTC,CLCω2

2
= −aTC,C

2

(A.6)
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A.4 Colpitts (+Ca)

A.4.1 New RA

RA =
RL

L
CA
−RL

L
CA

+ RL
1

ω2C2
A

R2
L + ω2L2 − 2 L

CA
+ 1

ω2C2
A

≈ RL

ω4L2C2
A − 2ω2LCA + 1

≈ RL

C2
A

C2 − 2CA

C
+ 1

=
RLC

@

CA − 2CAC + C2
=

RLC
2

(CA − C)2

(A.7)

A.4.2 New XA

XA =
−R2

L
1

ωCA
− ωL2

CA
+ L

ωC2
A

R2
L + ω2L2 − 2 L

CA
+ 1

ω2C2
A

≈ ωL− ω3L2CA
ω4L2C2

A − 2ω2LCA + 1

=
ωL(1− CA

C
)

C2
A

C2 − 2CA

C
+ 1

=
ωL(C2 − CAC)

(CA − C)2
= ωL

C

(C − CA)

(A.8)

A.4.3 New ω0

∑
X = 0

XA −
1

ωC
= 0

ωLC

C − CA
=

1

ωC

ω2LC2 = C − CA

ω2
0 =

C − CA
LC2

ω0 =

√
C − CA
LC2

ω0 =

√
1

AXLC

(A.9)
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A.4.4 Oscillation frequency

∑
X = −(

1

QB

+
1

QD

)
∑

R

− 1

ωCB
− 1

ωCD
+ AXωL = (ωRBCB + ωRDCD)(ARRA + RB + RD)

− 1

ωC
+ AXωL = (ωRBCB + ωRDCD)(ARRA + RB + RD)

ω2

ω2
0
− 1
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= (ωRBCB + ωRDCD)(ARRA + RB + RD)
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1
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ω2 =
1
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ω =

√
1

AXLC

√
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AXL

(A.10)
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A.4.5 Frequency stability

∂ω
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3
0√
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3
0
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A.4.6 Unsimplified AX

AX =
−R2

L
1

ω2LCA
− ωL

CA
+ 1

ωC2
A

R2
L + ω2L2 − 2 L

CA
+ 1

ω2C2
A

=
−R2

L
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L
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R2
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A + ω4L2C2
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=
−R2
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CA
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R2
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A
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+
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A

C2A2
X
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CAX
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=
−R2
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C2C2
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2
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(A.12)

A.4.7 Frequency stability for AX

∂ω

∂AX

= −C2Lω5(4ARRCCRL + LAX)
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2ARRCCRL

LAX
+ 1
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− AXC
2L2ω5
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∂RL
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∂RL
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= aTC,RL
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=

∂ω

∂T
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∂ω

∂AX

∂AX

∂RL

∂RL

∂T
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2aTC,RL
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(A.13)
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A.5 Colpitts (Qc = 54.3)

A.5.1 Q-factor compensation

fTC,RL
+ fTC,RC

+ fTC,L + fTC,C = 0
aTC,RL

QLQC

+
aTC,RC

QLQC

− aTC,L
2
− aTC,C

2
= 0

aTC,RL

QLQC

+
aTC,RC

QLQC

=
aTC,L

2
+

aTC,C
2

QL =
2(aTC,RL

+ aTC,RC
)

QC(aTC,L + aTC,C)

QC =
2(aTC,RL

+ aTC,RC
)

QL(aTC,L + aTC,C)

(A.14)



Appendix B

Schematics and parameter tables

This part of the Appendix includes supporting schematics and parameter tables

B.0.1 Schematics

Figure B.1: Colpitts common-gate schematic

Figure B.2: Cross-coupled simplified schematic
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Figure B.3: Hartley schematic

Figure B.4: Clapp schematic

Figure B.5: Cross-coupled (+Ca) schematic
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Figure B.6: Colpitts (+Ca) schematic

B.0.2 Parameter tables

Table B.1: Parameter ranges and values
L C frequency

range 0.5− 5nH 100fF − 20pF 1− 2GHz

Q 10 200

Table B.2: Temperature coefficients
aTC,RL

aTC,RC
aTC,L aTC,C

value 4000 4000 15 15
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